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Résumé

Dans cette thèse, nous allons utiliser les projections aléatoires pour réduire le nombre de

variables ou le nombre de contraintes (ou les deux) dans certains problèmes d’optimisation

bien connus. En projetant les données dans des espaces de dimension faible, nous obtenons de

nouveaux problèmes similaires, mais plus facile à résoudre. De plus, nous essayons d’établir

des conditions telles que les deux problèmes (original et projeté) sont fortement liés (en

probabilité). Si tel est le cas, alors en résolvant le problème projeté, nous pouvons trouver

des solutions approximatives ou une valeur objective approximative pour l’original.

Nous allons appliquer les projections aléatoires pour étudier un certain nombre de problèmes

d’optimisation importants, y compris la programmation linéaire et en nombres entiers (Chapitre

2), l’optimisation convexe avec des contraintes linéaires (Chapitre 3), adhésion et rapprocher

le plus proche voisins (chapitre 4) et la région-confiance (chapitre sous-problèmes 5). Tous

ces résultats sont tirés des documents dont je suis co-auteur avec [26, 25, 24, 27].

Cette thèse sera construite comme suit. Dans le premier chapitre, nous présenterons quelques

concepts et des résultats de base en théorie des probabilités. Puisque cette thèse utilise

largement les probabilités élémentaire, cette introduction informelle sera plus facile pour les

lecteurs avec peu de connaissances sur ce champ pour suivre nos travaux.

Dans le chapitre 2, nous allons présenter brièvement les projections aléatoires et le lemme

de Johnson-Lindenstrauss. Nous allons présenter plusieurs constructions des projecteurs

aléatoires et expliquer la raison pour laquelle ils fonctionnent. En particulier, les matri-

ces aléatoires sous-gaussienne seront traitées en détail, ainsi que des discussions rapides sur

d’autres projections aléatoires.

Dans le chapitre 3, nous étudions les problèmes d’optimisation dans leurs formes de faisabilité.

En particulier, nous étudions la soi-disant problème d’adhésion linéaire restreint, qui regarde

la faisabilité du système {Ax = b, x ∈ C} où C est un ensemble qui limite le choix des

paramètres x. Cette classe contient de nombreux problèmes importants tels que la faisabilité

linéaire et en nombres entiers. Nous proposons d’appliquer une projection aléatoire T aux
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contraintes linéaires et d’obtenir le problème projeté correspondant: {TAx = Tb, x ∈ C}.
Nous voulons trouver des conditions sur T , de sorte que les deux problèmes de faisabilité

sont équivalents avec une forte probabilité. La réponse est simple quand C est fini et borné

par un polynôme (en n). Dans ce cas, toute projection aléatoire T avec O (log n) lignes est

suffisante. Lorsque C = Rn+, nous utilisons l’idée de l’hyperplan séparateur pour séparer b

du cône {Ax | x ≥ 0} et montrer que Tb est toujours séparé du cône projeté {TAx | x ≥ 0}
sous certaines conditions. Si ces conditions ne tiennent pas, par exemple lorsque le cône

{Ax | x ≥ 0} est non-pointue, nous employons l’idée dans le Johnson-Lindenstrauss lemme

pour prouver que, si b /∈ {Ax | x ≥ 0}, alors la distance entre b et ce cône est légèrement

déformée sous T , reste donc toujours positive. Cependant, le nombre de lignes de T dépend

de paramètres inconnus qui sont difficiles à estimer.

Dans le chapitre 4, nous continuons à étudier le problème ci-dessus dans le cas où C est

un ensemble convexe. Sous cette hypothèse, on peut définir un cône tangent K de C à

x∗ ∈ arg minx∈C ‖Ax − b‖. Nous établissons les relations entre le problème original et le

problème projeté sur la base du concept de largeur gaussienne, qui est populaire dans les

problèmes de compressed sensing. En particulier, nous montrons que les deux problèmes

sont équivalents avec une forte probabilité pour autant que la projection aléatoire T est

échantillonnée à partir des distributions sous-gaussiennes et a au moins O(W2(AK)) lignes,

où W(AK) est le largeur Gaussienne de AK. Nous généralisons également ce résultat au cas

où T est échantillonnée à partir de systèmes orthonormés randomisés afin d’exploiter leurs

propriété de multiplication matrice-vecteur avec des algorithmes plus rapides. Nos résultats

sont similaires à ceux de [21], mais ils sont plus utiles dans les applications de préservation

de confidentialité, lorsque l’accès aux données originales A, b est limitée ou indisponible.

Dans le chapitre 5, nous étudions le problème d’adhésion euclidienne: “ Étant donné

un vecteur b et un ensemble fermé X dans Rn, décider si b ∈ X ou pas”. Ceci est une

généralisation du problème de l’appartenance linéaire restreinte. Nous employons une pro-

jection gaussienne aléatoire T pour intégrer à la fois b et X dans un espace de dimension

inférieure et étudier la version projetée correspondant: “Décidez si Tb ∈ T (X) ou non.”

Lorsque X est fini ou dénombrable, en utilisant un argument simple, nous montrons que

les deux problèmes sont équivalents presque sûrement quelle que soit la dimension projetée.

Toutefois, ce résultat n’a qu’un intérêt théorique, peut-être en raison d’erreurs d’arrondi dans

les opérations à virgule flottante qui rendent difficile son application pratique. Nous abordons

cette question en introduisant un seuil τ > 0 et étudier le problème correspondant seuillée:

“Décidez si dist(Tb, T (X)) ≥ τ”. Dans le cas où X peut être indénombrable, nous montrons

que l’original et les projections des problèmes sont également équivalentes si la dimension

projetée d est proportionnelle à une dimension intrinsèque de l’ensemble X. En particulier,
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nous employons la définition de dimension doublement pour prouver que, si b /∈ X, alors

Sb /∈ S(X) presque sûrement aussi longtemps que d = Ω(DDim(X)). ici, DDim(X) est la

dimension de doublement de X, qui est défini comme le plus petit nombre tel que chaque

boule dans X peut être couvert par 2dd(X) boules de la moitié du rayon. Nous étendons ce

résultat au cas seuillée, et obtenons un plus utile lié pour d. Il se trouve que, en conséquence

de ce résultat, nous sommes en mesure pour améliorer une borne de Indyk-Naor sur les plus

proches neigbour embeddings Préserver par un facteur de log(1/δ)
ε .

Dans le chapitre 6, nous proposons d’appliquer des projections aléatoires pour le problème

des régions de confiance sous-problème, qui est déclaré comme min{c>x + x>Qx | Ax ≤
b, ‖X‖ ≤ 1}. Ces problèmes se posent dans les méthodes de région de confiance pour faire

face à l’optimisation des produits dérivés libre. Soit P ∈ Rd×n soit une matrice aléatoire

échantillonnée par la distribution gaussienne, nous considérons alors le problème “ projeté ”

suivant:

min{c>P>Px+ x>P>RPQ>Px | AP>Px ≤ b, ‖Px‖ ≤ 1},

qui peut être réduit à min{(Pc)>u + u>(RPQ>)u | AP>u ≤ b, ‖U‖ ≤ 1} en définissant

u := Px. Ce dernier problème est de faible dimension et peut être résolu beaucoup plus

rapidement que l’original. Cependant, nous montrons que, si u∗ est la solution optimale,

alors avec une forte probabilité, x∗ := P>u∗ est une (1 + O(ε)) - approximation pour le

problème d’origine. Cela se fait à l’aide de résultats récents de la “concentration de valeurs

propres de matrices gaussiennes”.
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Abstract

In this thesis, we will use random projection to reduce either the number of variables or the

number of constraints (or both in some cases) in some well-known optimization problems. By

projecting data into lower dimensional spaces, we obtain new problems with similar structures,

but much easier to solve. Moreover, we try to establish conditions such that the two problems

(original and projected) are strongly related (in probability sense). If it is the case, then

by solving the projected problem, we can either find approximate solutions or approximate

objective value for the original one.

We will apply random projection to study a number of important optimization problems,

including linear and integer programming (Chapter 2), convex optimization with linear con-

straints (Chapter 3), membership and approximate nearest neighbor (Chapter 4) and trust-

region subproblems (Chapter 5). All these results are taken from the papers that I am

co-authored with [26, 25, 24, 27].

This thesis will be constructed as follows. In the first chapter, we will present some basic

concepts and results in probability theory. Since this thesis extensively uses elementary

probability, this informal introduction will make it easier for readers with little background

on this field to follow our works.

In Chapter 2, we will briefly introduce to random projection and the Johnson-Lindenstrauss

lemma. We will present several constructions of random projectors and explain the reason why

they work. In particular, sub-gaussian random matrices will be treated in details, together

with some discussion on fast and sparse random projections.

In Chapter 3, we study optimization problems in their feasibility forms. In particular, we

study the so-called restricted linear membership problem, which asks for the feasibility of the

system {Ax = b, x ∈ C} where C is some set that restricts the choice of parameters x. This

class contains many important problems such as linear and integer feasibility. We propose to

apply a random projection T to the linear constraints and obtain the corresponding projected

problem: {TAx = Tb, x ∈ C}. We want to find conditions on T , so that the two feasibility
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problems are equivalent with high probability. The answer is simple when C is finite and

bounded by a polynomial (in n). In that case, any random projection T with O(log n)

rows is sufficient. When C = Rn+, we use the idea of separating hyperplane to separate b

from the cone {Ax | x ≥ 0} and show that Tb is still separated from the projected cone

{TAx | x ≥ 0} under certain conditions. If these conditions do not hold, for example when

the cone {Ax | x ≥ 0} is non-pointed, we employ the idea in the Johnson-Lindenstrauss

lemma to prove that, if b /∈ {Ax | x ≥ 0}, then the distance between b and that cone is

slightly distorted under T , thus still remains positive. However, the number of rows of T

depends on unknown parameters that are hard to estimate.

In Chapter 4, we continue to study the above problem in the case when C is a convex set.

Under that assumption, we can define a tangent cone K of C at x∗ ∈ arg minx∈C ‖Ax − b‖.
We establish the relations between the original and projected problems based on the concept

of Gaussian width, which is popular in compressed sensing. In particular, we prove that the

two problems are equivalent with high probability as long as the random projection T is

sampled from sub-gaussian distributions and has at least O(W2(AK)) rows, where W(AK) is

the Gaussian-width of AK. We also extend this result to the case when T is sampled from

randomized orthonormal systems in order to exploit its fast matrix-vector multiplication.

Our results are similar to those in [21], however they are more useful in privacy-preservation

applications when the access to the original data A, b is limited or unavailable.

In Chapter 5, we study the Euclidean membership problem: “Given a vector b and a

closed set X in Rn, decide whether b ∈ X or not”. This is a generalization of the restricted

linear membership problem considered previously. We employ a Gaussian random projection

T to embed both b and X into a lower dimension space and study the corresponding pro-

jected version: “Decide whether Tb ∈ T (X) or not”. When X is finite or countable, using

a straightforward argument, we prove that the two problems are equivalent almost surely

regardless the projected dimension. However, this result is only of theoretical interest, possi-

bly due to round-off errors in floating point operations which make its practical application

difficult. We address this issue by introducing a threshold τ > 0 and study the corresponding

“thresholded” problem: “Decide whether dist (Tb, T (X)) ≥ τ”. In the case when X may

be uncountable, we prove that the original and projected problems are also equivalent if the

projected dimension d is proportional to some intrinsic dimension of the set X. In particular,

we employ the definition of doubling dimension to prove that, if b /∈ X, then Sb /∈ S(X)

almost surely as long as d = Ω(ddim(X)). Here, ddim(X) is the doubling dimension of X,

which is defined as the smallest number such that each ball in X can be covered by at most

2dd(X) balls of half the radius. We extend this result to the thresholded case, and obtain a

more useful bound for d. It turns out that, as a consequence of that result, we are able to
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improve a bound of Indyk-Naor on the Nearest Neigbour Preserving embeddings by a factor

of log(1/δ)
ε .

In Chapter 6, we propose to apply random projections for the trust-region subproblem,

which is stated as min{c>x+ x>Qx | Ax ≤ b, ‖x‖ ≤ 1}. These problems arise in trust-region

methods for dealing with derivative-free optimization. Let P ∈ Rd×n be a random matrix

sampled from Gaussian distribution, we then consider the following “projected” problem:

min{c>P>Px+ x>P>PQP>Px | AP>Px ≤ b, ‖Px‖ ≤ 1},

which can be reduced to min{(Pc)>u + u>(PQP>)u | AP>u ≤ b, ‖u‖ ≤ 1} by setting

u := Px. The latter problem is of low dimension and can be solved much faster than the

original. However, we prove that, if u∗ is its optimal solution, then with high probability,

x∗ := P>u∗ is a (1 + O(ε))-approximation for the original problem. This is done by using

recent results about the “concentration of eigenvalues” of Gaussian matrices.
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Chapter 1

Introduction

Optimization is the process of minimizing or maximizing an objective function over a given

domain, which is called the feasible set. In this thesis, we consider the following general

optimization problem

min f(x)

subject to: x ∈ D,

in which x ∈ Rn, D ⊆ Rn and f : Rn → R is a given function. The feasible set D is often

defined by multiple constraints such as: bound constraints (l ≤ x ≤ u), integer constraints

(x ∈ Z or {0, 1}), or general constraints (g(x) ≤ O for some g : Rn → Rm).

In the digitization age, data becomes cheap and easy to obtain. That results in many new

optimization problems with extremely large sizes. In particular, for the same kind of problems,

the numbers of variables and constraints are huge. Moreover, in many application settings

such as those in Machine Learning, an accurate solution is less preferred as approximate but

robust ones. It is a real challenge for traditional algorithms, which are used to work well with

average-size problems, to deal with these new circumstances.

Instead of developing algorithms that scale up well to solve these problems directly, one

natural idea is to transform them into small-size problems that strongly relates to the originals.

Since the new ones are of manageable sizes, they can still be solved efficiently by classical

methods. The solutions obtained by these new problems, however, will provide us insight

into the original problems. In this thesis, we will exploit the above idea to solve some high-

dimensional optimization problems. In particular, we apply a special technique called

random projection to embed the problem data into low dimensional spaces, and

approximately reformulate the problem in such a way that it becomes very easy

to solve but still captures the most important information.
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1.1 Random projection versus Principal Component Analysis

Random projection (defined formally in Chapter 2) is the process of mapping high-dimensional

vectors to a lower-dimensional space by a random matrix. Examples of random projectors are

matrices with i.i.d Gaussian or Rademacher entries. These matrices are constructed in certain

ways, so that, with high probability, they can well-approximate many geometrical structures

such as distances, inner products, volumes, curves, . . . The most interesting feature is that,

they are often very “fat” matrices, i.e. the number of rows is significantly smaller than the

number of columns. Therefore, they can be used as a dimension reduction tool, simply by

taking matrix-vector multiplications.

Despite of its simplicity, random projection works very well and comparable to many other

classical dimension reduction methods. One method that is often compared to random pro-

jection is the so-called Principal Component Analysis (PCA). PCA attempts to find a set

of orthonormal vectors {ξ1, ξ2, . . .} that better represent the data points. These vectors are

often called principal components. In particular, the first component ξ1 is found as the vector

with the largest variance, i.e.

ξ1 = arg max
‖u‖=1

n∑
i=1

〈xi, u〉2,

and inductively, ξi is found as the vector with the largest variance among all the vectors that

are orthogonal to ξ1, . . . , ξi−1. In order to apply PCA for dimension reduction, we simply

take k first components out to obtain a matrix Ξk = (ξ1 . . . ξk), and then form the new

(lower-dimensional) data point Tk = XΞk.

Note that, PCA closely relates to the singular vector decomposition (SVD) of the matrix X.

Recall that, any matrix X can be written in the SVD form as the product of UΣV >, in which

U, V are (n × n)-orthogonal matrices (i.e. UU> = V V > = In) and Σ is a diagonal matrix

with nonnegative entries that are ordered in the decreasing way. The matrix Tk (discussed

previously) can now be written as Tk = UkΣk, by truncating the singular values in that

decomposition.

It is easy to see that, as opposed to PCA and SVD, random projection is much cheaper to

compute. The complexity of constructing a random projector is often fractional to the number

of entries, i.e. O(nm), and that is significantly smaller than the complexity O(nm2 +m3) of

PCA. Moreover, random projections are data-independent, i.e. they are always constructed

the same way regardless how the point set is distributed. This property is often called

oblivious, and it is one of the main advantages of random projection over other dimension

reduction techniques. In many applications, the number of data points are often very large
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and/or might not be known at hand (in the case of online and stream computations). In these

circumstances, it is expensive and even impossible to exploit the information of the data point

to construct principal components in the PCA method. Random projection, therefore, is the

only choice.

1.2 Structure of the thesis

In this thesis, we will use random projection to reduce either the number of variables or the

number of constraints (or both in some cases) in some well-known optimization problems. By

projecting data into lower dimensional spaces, we obtain new problems with similar structures,

but much easier to solve. Moreover, we try to establish conditions such that the two problems

(original and projected) are strongly related (in probability sense). If it is the case, then

by solving the projected problem, we can either find approximate solutions or approximate

objective value for the original one.

We will apply random projection to study a number of important optimization problems,

including linear and integer programming (Chapter 2), convex optimization with linear con-

straints (Chapter 3), membership and approximate nearest neighbor (Chapter 4) and trust-

region subproblems (Chapter 5). All these results are taken from the papers that I am

co-authored with [26, 25, 24, 27].

The rest of this thesis will be constructed as follows. At the end of this chapter, we will

present some basic concepts and results in probability theory. Since this thesis extensively

uses elementary probability, this informal introduction will make it easier for readers with

little background on this field to follow our works.

In Chapter 2, we will briefly introduce to random projection and the Johnson-Lindenstrauss

lemma. We will present several constructions of random projectors and explain the reason why

they work. In particular, sub-gaussian random matrices will be treated in details, together

with some discussion on fast and sparse random projections.

In Chapter 3, we study optimization problems in their feasibility forms. In particular, we

study the so-called restricted linear membership problem, which asks for the feasibility of the

system {Ax = b, x ∈ C} where C is some set that restricts the choice of parameters x. This

class contains many important problems such as linear and integer feasibility. We propose to

apply a random projection T to the linear constraints and obtain the corresponding projected

problem: {TAx = Tb, x ∈ C}. We want to find conditions on T , so that the two feasibility

problems are equivalent with high probability. The answer is simple when C is finite and

bounded by a polynomial (in n). In that case, any random projection T with O(log n)

9



rows is sufficient. When C = Rn+, we use the idea of separating hyperplane to separate b

from the cone {Ax | x ≥ 0} and show that Tb is still separated from the projected cone

{TAx | x ≥ 0} under certain conditions. If these conditions do not hold, for example when

the cone {Ax | x ≥ 0} is non-pointed, we employ the idea in the Johnson-Lindenstrauss

lemma to prove that, if b /∈ {Ax | x ≥ 0}, then the distance between b and that cone is

slightly distorted under T , thus still remains positive. However, the number of rows of T

depends on unknown parameters that are hard to estimate.

In Chapter 4, we continue to study the above problem in the case when C is a convex set.

Under that assumption, we can define a tangent cone K of C at x∗ ∈ arg minx∈C ‖Ax − b‖.
We establish the relations between the original and projected problems based on the concept

of Gaussian width, which is popular in compressed sensing. In particular, we prove that the

two problems are equivalent with high probability as long as the random projection T is

sampled from sub-gaussian distributions and has at least O(W2(AK)) rows, where W(AK) is

the Gaussian-width of AK. We also extend this result to the case when T is sampled from

randomized orthonormal systems in order to exploit its fast matrix-vector multiplication.

Our results are similar to those in [21], however they are more useful in privacy-preservation

applications when the access to the original data A, b is limited or unavailable.

In Chapter 5, we study the Euclidean membership problem: “Given a vector b and a

closed set X in Rn, decide whether b ∈ X or not”. This is a generalization of the restricted

linear membership problem considered previously. We employ a Gaussian random projection

T to embed both b and X into a lower dimension space and study the corresponding pro-

jected version: “Decide whether Tb ∈ T (X) or not”. When X is finite or countable, using

a straightforward argument, we prove that the two problems are equivalent almost surely

regardless the projected dimension. However, this result is only of theoretical interest, possi-

bly due to round-off errors in floating point operations which make its practical application

difficult. We address this issue by introducing a threshold τ > 0 and study the corresponding

“thresholded” problem: “Decide whether dist (Tb, T (X)) ≥ τ”. In the case when X may

be uncountable, we prove that the original and projected problems are also equivalent if the

projected dimension d is proportional to some intrinsic dimension of the set X. In particular,

we employ the definition of doubling dimension to prove that, if b /∈ X, then Sb /∈ S(X)

almost surely as long as d = Ω(ddim(X)). Here, ddim(X) is the doubling dimension of X,

which is defined as the smallest number such that each ball in X can be covered by at most

2dd(X) balls of half the radius. We extend this result to the thresholded case, and obtain a

more useful bound for d. It turns out that, as a consequence of that result, we are able to

improve a bound of Indyk-Naor on the Nearest Neigbour Preserving embeddings by a factor

of log(1/δ)
ε .
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In Chapter 6, we propose to apply random projections for the trust-region subproblem,

which is stated as min{c>x+ x>Qx | Ax ≤ b, ‖x‖ ≤ 1}. These problems arise in trust-region

methods for dealing with derivative-free optimization. Let P ∈ Rd×n be a random matrix

sampled from Gaussian distribution, we then consider the following “projected” problem:

min{c>P>Px+ x>P>PQP>Px | AP>Px ≤ b, ‖Px‖ ≤ 1},

which can be reduced to min{(Pc)>u + u>(PQP>)u | AP>u ≤ b, ‖u‖ ≤ 1} by setting

u := Px. The latter problem is of low dimension and can be solved much faster than the

original. However, we prove that, if u∗ is its optimal solution, then with high probability,

x∗ := P>u∗ is a (1 + O(ε))-approximation for the original problem. This is done by using

recent results about the “concentration of eigenvalues” of Gaussian matrices.

1.3 Preliminaries on Probability Theory

A probability space is mathematically defined as a triple (Ω,A,P), in which

• Ω is a non-empty set (sample space)

• A ⊆ 2Ω is a σ-algebra over Ω (set of events) and

• P is a probability measure on A.

A family ∅ ∈ A of subsets of Ω is called a σ-algebra (over Ω) if it is closed under compliments

and countable unions. More precisely,

• ∅,Ω ∈ A. is a non-empty set (sample space)

• If E ∈ A then Ec := Ω \ E ∈ A.

• If E1, E2, . . . ∈ A then
⋃∞
i=1Ei ∈ A.

A function P : A → [0, 1] is called a probability measure if it is countably additive and its

value over the entire sample space is equal to one. More precisely,

• If A1, A2, . . . are a countable collection of pairwise disjoint sets, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai),

• P(Ω) = 1.

11



Each E ∈ A is called an event and P(E) is called the probability that the event E occurs.

If E ∈ A and P(E) = 1, then E is called an almost sure event.

A function X : A → Rn is called a random variable if for all Borel set Y in R, X−1(Y ) ∈ A.

Given a random variable X, the distribution function of X, denoted by FX is defined as

follows:

FX(x) := P(ω : X(ω) ≤ x) = P(X ≤ x)

for all x ∈ Rn.

Given a random variable X, the density function of X is any measurable function with the

property that

P[X ∈ A] =

∫
X−1A

dP =

∫
A
f dµ

for any A ∈ A.

The following distribution functions are used in this thesis:

• Discrete distribution: X only takes values x1, x2 . . ., each with probability p1, p2, . . .

where 0 ≤ pi and
∑

i pi = 1.

• Rademacher distribution: X only takes values −1 and 1, each with probability 1
2 .

• Uniform distribution: X takes values in the interval [a, b] and has the density function

f(x) =
1

b− a
.

• Normal distribution: X has the density function

f(x) =
1√
2π

e−x
2/2.

The expectation of a random variable X is defined as follows:

• E(X) =
∑∞

i=1 xipi if X has discrete distribution: P(X = xi) = pi for i = 1, 2, . . ..

• E(X) =
∫∞
−∞ xf(x)dx, if X has a (continuous) density function f(.).

The variance of a random variable X is defined as follows:

• Var(X) =
∑∞

i=1 x
2
i pi if X has discrete distribution: P(X = xi) = pi for i = 1, 2, . . ..

• Var(X) =
∫∞
−∞ x

2f(x)dx, if X has a (continuous) density function f(.).

The following property, which is called union bound, will be used very often in this thesis:
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Lemma 1.3.1 (Union bound). Given events A1, A2, . . . and positive numbers δ1, δ2, . . . such

that for each i, the event Ai occurs with probability at least 1− δi. Then the probability that

all these events occur is at least 1−
∑∞

i=1 δi.

We also use the following simple but very useful inequality:

Markov inequality: For any nonnegative random variable X and any t > 0, we have

P(X ≥ t) ≤ E(X)

t
.

Note that, if we have a nonnegative increasing function f , then we can apply Markov inequality

to obtain

P(X ≥ t) = P(f(X) ≥ f(t)) ≤ E(f(X))

f(t)
.
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Chapter 2

Random projections and

Johnson-Lindenstrauss lemma

2.1 Johnson-Lindenstrauss lemma

One of the main motivations for the development of random projections is the so-called

Johnson-Lindenstrauss lemma (JLL), which is found by William B. Johnson and Joram Lin-

denstrauss in their 1984 seminal paper [14]. The lemma asserts that any subset of Rm can be

embedded into a low-dimension space Rk (k � m), whilst keeping the Euclidean distances

between any two points of the set almost the same. Formally, it is stated as follows:

Theorem 2.1.1 (Johnson-Lindenstrauss Lemma [14]). Given ε ∈ (0, 1) and A = {a1, . . . , an}
be a set of n points in Rm. Then there exists a mapping T : Rm → Rk, where k = O(ε−2 log n),

such that

(1− ε)‖ai − aj‖2 ≤ ‖T (ai)− T (aj)‖2 ≤ (1 + ε)‖ai − aj‖2 (2.1)

for all 1 ≤ i, j ≤ n.

To see why this theorem is important, let’s imagine we have a billion of points in Rm. Accord-

ing to JLL, we can compress these points by projecting them into Rk, with k = O(ε−2 log n) ≈
O(20 ε−2). For reasonable choices of the error ε, the projected dimension k might be much

smaller than m (for example, when m = 106 and ε = 0.01). The effect is even more significant

for larger instances, mostly due to the rapid decrease of the log-function.

Note that in JLL, the magnitude of the projected dimension k only depends on the number of

data points n and a predetermined error ε, but not on the original dimension m. Therefore,

JLL is more meaningful for the “big-data” cases, i.e. when m and n are huge. In contrast, if
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m is small, then small values of ε will result in dimensions k that are larger than m. In that

case the applying of JLL is not useful.

The existence of the map T in JLL is shown by probabilistic methods. In particular, T is

drawn from some well-structured classes of random maps T , in such a way one can prove

that the inequalities (2.1) hold for all i ≤ i, j ≤ n with some positive probability. This can

be done if the random map T satisfies for all x ∈ Rm:

P
[
(1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2

]
> 1− 2

(n− 1)n
. (2.2)

Indeed, if it is the case, we have

P
[
(1− ε)‖xi − xj‖2 ≤ ‖T (xi − xj)‖2 ≤ (1 + ε)‖xi − xj‖2

]
> 1− 2

(n− 1)n
,

for all 1 ≤ i < j ≤ n. It is only left to apply the union bound for
(
n
2

)
pairs of points (xi, xj).

There are several ways to construct a random map T satisfying the requirement (2.2). In

the original paper of Johnson and Lindenstrauss ([14]), T is constructed as the orthogonal

projection on a k-dimensional random subspace of Rm. Later on, P. Indyk and R. Motwani

[13] noticed that T can be defined simply as a random matrix whose entries are i.i.d Gaussian

random variables. Another breakthrough is made by Achlioptas [1], in which the entries of

T are greatly simplified to i.i.d random variables of ±1 values, each with probability 1
2 . He

also gave another interesting construction

Ti,j =


+1 with probability 1

6 ,

0 with probability 2
3 ,

−1 with probability 1
6 .

This construction is particularly useful because it only requires 1
3 of the entries to be non-

zero, therefore the matrix T becomes relatively sparse. The sparsity of T leads to faster

matrix-vector multiplications, which are useful in many applications.

After the discoveries of these results, many researchers continue to find more sophisticated

constructions of the random map T that are suitable for specific problems. These researches

can be divided into 2 main branches: faster constructions (i.e. to obtain fast matrix-vector

multiplications) and sparser constructions (i.e. to obtain sparse random matrices). As op-

posed to the common intuition, many fastest random matrices are dense. However, sparse

matrices are obvious relatively “fast”.

In the next section, we will give a formal definition of random projections. Several popular

constructions of random projections will be briefly introduced in Section 2.3.
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For the simplicity of notations, for the rest of the thesis, we will use T (instead of T ) to denote

a random map. Moreover, since we will only work with linear maps, T is also treated as a

random matrix. Thus, the expression T (x) is best written as the matrix-vector product Tx

and Tij will stand for the (i, j)−entry of T . The terminologies “random projection”, “random

mapping” and “random matrix”, therefore can be used exchangeable.

2.2 Definition of random projections

2.2.1 Normalized random projections

It might be useful and easy to follow if we give a formal definition of random projections

(RP). However, there is no general agreement on what an RP is. Naturally, we first provide

the properties that are desired and look for structures that follow them. Since we will focus

on the applications of existing random projections instead of constructing new ones, for

convenience, we will give the following definition (motivated by the unpublished manuscript

of Jǐŕı Matoušek [19]). It contains the property that we will mostly deal with in this thesis.

Definition 2.2.1. A random linear map T : Rm → Rk is called a random projection (or

random matrix ) if for all ε ∈ (0, 1) and all vectors x ∈ Rm, we have:

P( (1− ε)‖x‖2 ≤ ‖T (x)‖2 ≤ (1 + ε)‖x‖2 ) ≥ 1− 2e−Cε
2k (2.3)

for some universal constant C > 0 (independent of m, k, ε).

It should be noted that, given an RP, one can show the existence of a map T satisfying

conditions in the Johnson-Lindenstrauss lemma. Indeed, to obtain a positive probability, it

is sufficient to choose k such that 1 − 2e−Cε
2k ≥ 1 − 2

(n−1)n , and this can be done with any

k > ( 2
C ) logn

ε2
. More interesting, the probability that we can successfully find such a map (by

sampling) is very high. For example, if we want this probability to be at least, say 99.9%, by

the union bound, we can simply choose any k such that

1− n(n− 1)e−Cε
2k > 1− 1

1000
.

This means k can be chosen to be k = d ln(1000)+2 ln(n)
Cε2 e ≤ d7+2 ln(n)

Cε2 e. Therefore, by slightly

increasing the projected dimension, we almost always obtain a “good” mapping without

having to re-sample.
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2.2.2 Preservation of scalar products

From the definition, we can immediately see that an RP also preserves the scalar product

with high probability. Indeed, given any x, y ∈ Rn, then by applying the definition of RP on

two vectors x+ y, x− y and using the union bound, we have

|〈Tx, Ty〉 − 〈x, y〉| = 1

4

∣∣‖T (x+ y)‖2 − ‖T (x− y)‖2 − ‖x+ y‖2 + ‖x− y‖2
∣∣

≤ 1

4

∣∣‖T (x+ y)‖2 − ‖x+ y‖2
∣∣+

1

4

∣∣‖T (x− y)‖2 − ‖x− y‖2
∣∣

≤ ε

4
(‖x+ y‖2 + ‖x− y‖2) =

ε

2
(‖x‖2 + ‖y‖2),

with probability at least 1 − 4e−Cε
2k. We can actually strengthen it to obtain the following

useful lemma:

Lemma 2.2.2. Let T : Rm → Rk be a random projection and 0 < ε < 1. Then there is a

universal constant C such that, for any x, y ∈ Rn:

〈Tx, Ty〉 = 〈x, y〉 ± ε‖x‖.‖y‖

with probability at least 1− 4e−Cε
2k.

Proof. Apply the above result for u = x
‖x‖ and v = y

‖y‖ .

2.2.3 Lower bounds for projected dimension

It is interesting to know whether we can obtain a lower value for the dimension k if we use

a smarter construction of a map T (such as nonlinear ones). It turns out that the answer is

negative, i.e. the value k = O(ε−2 log n) is almost optimal. Indeed, Noga Alon shows in ([5])

that there exists a set of n points such that the dimension k has to be at least k = O( logn
ε2 log(1/ε)

)

in order to preserve the distances between all pairs of points. Moreover, when the mapping T

is required to be linear, then Larsen and Nelson [16]) are able to prove that k = O(ε−2 log n)

is actually the best possible. Therefore, the linearity requirement of T in the definition 2.2.1

is quite natural.

2.3 Constructions of random projections

In this section, we introduce several popular constructions of random projections. We first

consider sub-gaussian random matrices, the simplest case that contains many well-known

constructions that are mentioned in the previous section. Then we move to fast constructions
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in the subsection 2.3.2. For simplicity, we will discard the scaling factor
√

n
k in the random

matrix T . This does not affect the main ideas we present but makes them clearer and more

concise.

2.3.1 Sub-gaussian random projections

Perhaps the simplest construction of a random projection is matrices with i.i.d entries which

are drawn from a certain “good distribution”. Some of good distributions are: Normal N (0, 1)

(by Indyk and Motwani ([13]), Rademacher (±1) (by Achlioptas [1]), Uniform U(−a, a), . . . .

In [18], Matoušek shows that all these distributions turn out to be special cases of a general

class of the so-called sub-Gaussian distributions. He proves that an RP can still be obtained

by sampling under this general distribution.

Definition 2.3.1. A random variable X is called sub-Gaussian (or to has a sub-Gaussian

tail) if there are constants C, δ such that for any t > 0:

P(|X| > t) ≤ Ce−δt2 .

A random variable X is called sub-Gaussian up to t0 if there are constants C, δ such that for

any t > t0:

P(|X| > t) ≤ Ce−δt2 .

As the name suggests, this family of distributions strongly relates to Gaussian distribution.

Intuitively, a sub-Gaussian random variable has a strong tail decay property, similar to that

of a Gaussian distribution. One of its useful properties is that, a linear combination of sub-

Gaussian random variables (of the uniform constants C, δ) is again sub-Gaussian. Moreover,

Lemma 2.3.2. Let X be a random variable with E(X) = 0. If E(euX) ≤ eCu
2

for some

constant C and any u > 0, then X has a sub-gaussian tail. In reverse, if Var(X) = 1 and X

has a sub-gaussian tail, then E(euX) ≤ eCu2
for all u > 0 and some constant C.

The following lemma states that, the sum of squares of sub-Gaussian random projections also

has a sub-Gaussian tail up to a constant.

Lemma 2.3.3 (Matoušek [18]). Let Y1, . . . , Yk be independent random variables with E(Yj) =

0 and Var(E) = 1 and a uniform sub-Gaussian tail. Then

Z =
1√
k

(Y 2
1 + . . .+ Y 2

k − k)

has a sub-Gaussian tail up to
√
k.
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Now let T ∈ Rk×m be a matrix whose entries are random variables with expectation 0,

variance 1
k and a uniform sub-Gaussian tail. Then, for any x ∈ Rm,

‖Tx‖2 − 1 = (T1x)2 + . . .+ (Tkx)2 − 1

has the distribution the same as the variable 1√
k
Z in the above lemma. By the definition of

sub-Gaussian tail, we have

Prob (|‖Tx‖2 − 1| ≥ ε) = Prob (|Z| ≥ ε
√
k) ≤ Ce−δε2k,

which then implies that T is an RP.

2.3.2 Fast Johnson-Lindenstrauss transforms

In many applications, the bottle-neck in applying random projection techniques is the cost of

matrix-vector multiplications. Indeed, the complexity of multiplying a k × n matrix T to a

vector is of order O(kn). Even with Achlioptas’ sparse construction, the computation time is

only decreased by the factor of 3. Therefore, it is important to construct the random matrix

T such that the operations Tx can be done as fast as possible.

It is natural to expect that, the sparser the matrix T we can construct, the faster the product

Tx becomes. However, due to the uncertainty principle in analysis, if the vector x is also

sparse, then its image under a sparse matrix T can be largely distorted. Therefore, a random

projection that satisfies Johnson-Lindenstrauss lemma cannot be too sparse.

One of the ingenious ideas to construct fast random projectors is given by Ailon and Chazelle

[3], in which they propose the so-called Fast Johnson Lindenstrauss Transform (FJLT). The

idea is to precondition a vector (possibly sparse) by an orthogonal matrix, in order to enlarge

its support. After the precondition step, we obtain a “smooth” vector, which can now be

projected under a sparse random projector. More precisely, a FJLT is constructed as a

product of three real-valued matrices T = PHD, which are defined as follows:

• P is a k × d matrix whose elements are independently distributed as follows:

Pij =

0 with probability 1− q

∼ N (0, 1
q ) with probability q.

Here q is a sparsity constant given by q = min{Θ( ε
p−2 logp(n)

d ), 1}

• H is a d× d normalized Walsh–Hadamard matrix:

Hij =
1√
d

(−1)〈i−1,j−1〉

where 〈i, j〉 is the dot-product of the m-bit vectors i, j expressed in binary.
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• D is a d× d diagonal matrix, where each Dii independently takes value equal to −1 or

1, each with probability 1
2 .

Note that, in the above definition, the matrices P and D are random and H is deterministic.

Moreover, both H and D are orthogonal matrices, therefore it is only expected that P obeys

the low-distortion property, i.e. ‖Py‖ is not so different from y. However, the vectors y being

considered are not the entire set of unit vectors, but are restricted to only those that have

the form HDx. The two matrices H,D play the role of “smoothening” x, so that we have

the following property:

Property: Given a set X of n unit vectors. Then

maxx∈X ‖HDx‖∞ = O(
log n√
k

),

with probability at least 1− 1
20 .

The main theorem regarding FJLT is stated as follows:

Theorem 2.3.4 ([3]). Given a set X of n unit vectors in Rn, ε < 1, and p ∈ {1, 2}. Let T be

a FJLT defined as above. Then with probability at least 2/3, the following two events occur:

1. For all x ∈ X:

(1− ε)αp ≤ ‖Tx‖p ≤ (1 + ε)αp,

in which α1 = k
√

2
π and α2 = k.

2. The mapping T : Rn → Rk requires O(n log n + min{kε−2 log n, ep−4 logp+1 k}) time to

compute each matrix-vector multiplication.

21



22



Chapter 3

Random projections for linear and

integer programming

3.1 Restricted Linear Membership problems

Linear Programming (LP) is one of the most important and well-studied branches of opti-

mization. An LP problem can be written in the following normal form

max{cTx | Ax = b, x ≥ 0}.

It is well-known that it can be reduced (via an easy bisection argument) to LP feasibility

problems, defined as follows:

Linear Feasibility Problem(LFP). Given b ∈ Rm and A ∈ Rm×n. Decide

whether there exists x ∈ Rn+ such that Ax = b.

We assume that m and n are very large integer numbers. Furthermore, as most other standard

LPs, we also assume that A is a full row-rank matrix with m ≤ n.

LFP problems can obviously be solved using the simplex method. Despite the fact that

simplex methods are often very efficient in practice, there are instances for which the methods

run in exponential time. On the other hand, polynomial time algorithms such as interior point

methods are known to scale poorly, in practice, on several classes of instances. In any case,

when m and n are huge, these methods fail to solve LPF. Our purpose is to use random

projections to reduce considerably either m or n to the extend that traditional methods can

apply.

23



Note that, if a1, . . . , an are the column vectors of A, then the LPF is equivalent to finding

x ≥ 0 such that b is a non-negative linear combination of a1, . . . , an. In other words, the LPF

is equivalent to the following cone membership problem:

Cone Membership (CM). Given b, a1, . . . , an ∈ Rm, decide whether b ∈ cone{a1, . . . , an}.

It is known from the Johnson-Lindenstrauss lemma that there is a linear mapping T : Rm →
Rk, where k � m, such that the pairwise distances between all vector pairs (ai, aj) undergo

low distortion. We are now stipulating that the complete distance graph is a reasonable

representation of the intuitive notion of “shape”. Under this hypothesis, it is reasonable to

expect that the image of C = cone(a1, . . . , an) under T has approximately the same shape as

C.

Thus, given an instance of CM, we expect to be able to “approximately solve” a much smaller

(randomly projected) instance instead. Notice that since CM is a decision problem, “approx-

imately” really refers to a randomized algorithm which is successful with high probability.

The LFP can be viewed as a special case of the restricted linear membership problem, which

is defined as follows:

Restricted Linear Membership (RLM). Given b, a1, . . . , an ∈ Rm and X ⊆
Rn, decide whether b ∈ linX(a1, . . . , an), i.e. whether ∃λ ∈ X s.t. b =

n∑
i=1

λiai.

RLM includes several very important classes of membership problems, such as

• When X = Rn+( or Rn+ ∩ {
∑n

i=1 xi = 1}), we have the cone membership problem (or

convex hull membership problem), which corresponds to Linear Programming.

• When X = Zn (or {0, 1}n), we have the integer (binary) cone membership problem

(corresponding to Integer and Binary Linear Programming - ILP).

• When X is a convex set, we have the convex linear membership problem.

• When n = d2 and X is the set of d × d−positive semidefinite matrices, we have the

semidefinite membership problem (corresponding to Semidefinite Programming- SDP).

Notation wise, every norm ‖ · ‖ is Euclidean unless otherwise specified, and we shall denote

by Ac the complement of an event A. Moreover, we will implicitly assume (WLOG) that

a1, . . . , an, b, c are unit vectors.

The following lemma shows that the kernels of random projections are “concentrated around

zero”. This can be seen as a direct derivation from the definition of RP.
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Corollary 3.1.1. Let T : Rm → Rk be a random projection as in the definition 2.2.1 and let

x ∈ Rm be a non-zero vector. Then we have

P(T (x) 6= 0) ≥ 1− 2e−Ck. (3.1)

for some constant C > 0 (independent of m, k).

Proof. For any ε ∈ (0, 1) , we define the following events:

A =
{
T (x) 6= 0

}
B =

{
(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

}
.

By Definition 2.2.1, it follows that P(B) ≥ 1− 2e−Cε
2k for some constant C > 0 independent

of m, k, ε. On the other hand, Ac ∩ B = ∅, since otherwise, there is a mapping T1 such that

T1(x) = 0 and (1 − ε)‖x‖ ≤ ‖T1(x)‖, which altogether imply that x = 0 (a contradiction).

Therefore, B ⊆ A, and we have P(A) ≥ P(B) ≥ 1− 2e−Cε
2k. This holds for all 0 < ε < 1, so

we have P(A) ≥ 1− 2e−Ck.

Lemma 3.1.2. Let T : Rm → Rk be a random projection as in the definition 2.2.1 and let

b, a1, . . . , an ∈ Rm. Then for any given vector x ∈ Rn, we have:

(i) If b =
n∑
i=1

xiai then T (b) =
n∑
i=1

xiT (ai);

(ii) If b 6=
∑n

i=1 xiai then P
[
T (b) 6=

∑n
i=1 xiT (ai)

]
≥ 1− 2e−Ck;

(iii) If for all y ∈ X ⊆ Rn where |X| is finite, we have b 6=
∑n

i=1 yiai , then

P
[
∀y ∈ X, T (b) 6=

n∑
i=1

yiT (ai)

]
≥ 1− 2|X|e−Ck;

for some constant C > 0 (independent of n, k).

Proof. Point (i) follows by linearity of T , and (ii) by applying Cor. 3.1.1 to Ax− b. For (iii),

we have

P
[
∀y ∈ X, T (b) 6=

n∑
i=1

yiT (ai)

]
= P

[ ⋂
y∈X

{
T (b) 6=

n∑
i=1

yiT (ai)
}]

= 1− P
[ ⋃
y∈X

{
T (b) 6=

n∑
i=1

yiT (ai)
}c] ≥ 1−

∑
y∈X

P
[{
T (b) 6=

n∑
i=1

yiT (ai)
}c]

[by (ii)] ≥ 1−
∑
y∈X

2e−Ck = 1− 2|X|e−Ck,

as claimed.
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This lemma can be used to solve the RLM problem when the cardinality of the restricted set

X is bounded by a polynomial in n. In particular, if |X| < nd, where d is small w.r.t. n, then

P
{
T (b) /∈ LinX {T (a1), . . . , T (an)}

}
≥ 1− 2nde−Ck. (3.2)

Then by taking any k such that k ≥ 1
C ln(2

δ ) + d
C lnn, we obtain a probability of success of at

least 1 − δ. We give an example to illustrate that such a bound for |X| is natural in many

different settings.

Example 3.1.3. If X = {x ∈ {0, 1}n|
∑n

i=1 αixi ≤ d} for some d, where 0 < αi for all

1 ≤ i ≤ n, then |X| < nd, where d = max1≤i≤nb dαi c.

To see this, let α = min
1≤i≤n

αi; then
n∑
i=1

xi ≤
n∑
i=1

αi
α xi ≤

d
α , which implies

n∑
i=1

xi ≤ d. Therefore

|X| ≤
(
n
0

)
+
(
n
1

)
+ · · ·+

(n
d

)
< nd, as claimed.

Lemma 3.1.2 also gives us an indication as to why estimating the probability that T (b) /∈
cone{T (a1), . . . , T (an)} is not straightforward. This event can be written as an intersection

of infinitely many sub-events {T (b) 6=
∑n

i=1 yiT (ai)} where y ∈ Rn+; even if each of these

occurs with high probability, their intersection might still be small. As these events are

dependent, however, we still hope to find to find a useful estimation for this probability.

3.2 Projections of separating hyperplanes

In this section we show that if a hyperplane separates a point x from a closed and convex

set C, then its image under a random projection T is also likely to separate T (x) from T (C).

The separating hyperplane theorem applied to cones can be stated as follows.

Theorem 3.2.1 (Separating hyperplane theorem). Given b /∈ cone{a1, . . . , an} where b, a1, . . . , an ∈
Rm. Then there is c ∈ Rm such that cT b < 0 and cTai ≥ 0 for all i = 1, . . . , n.

For simplicity, we will first work with pointed cone. Recall that a cone C is called pointed

if and only if C ∩ −C = {0}. The associated separating hyperplane theorem is obtained by

replacing all ≥ inequalities by strict ones. Without loss of generality, we can assume that

‖c‖ = 1. From this theorem, it immediately follows that there is a positive ε0 such that

cT b < −ε0 and cTai > ε0 for all 1 ≤ i ≤ n.

Proposition 3.2.2. Given unit vectors b, a1, . . . , an ∈ Rm such that b /∈ cone{a1, . . . , an}.
Let ε > 0 and c ∈ Rm with ‖c‖ = 1 be such that cT b < −ε and cTai ≥ ε for all 1 ≤ i ≤ n. Let

T : Rm → Rk be a random projection as in the definition 2.2.1, then

P
[
T (b) /∈ cone{T (a1), . . . , T (an)}

]
≥ 1− 4(n+ 1)e−Cε

2k
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for some constant C (independent of m,n, k, ε).

Proof. Let A be the event that both (1 − ε)‖c − x‖2 ≤ ‖T (c − x)‖2 ≤ (1 + ε)‖c − x‖2 and

(1− ε)‖c+ x‖2 ≤ ‖T (c+ x)‖2 ≤ (1 + ε)‖c+ x‖2 hold for all x ∈ {b, a1, . . . , an}. By Definition

2.2.1, we have P(A) ≥ 1 − 4(n + 1)e−Cε
2k. For any random mapping T such that A occurs,

we have

〈T (c), T (b)〉 =
1

4
(‖T (c+ b)‖2 − ‖T (c− b)‖2)

≤ 1

4
(‖c+ b‖2 − ‖c− b‖2) +

ε

4
(‖c+ b‖2 + ‖c− b‖2)

= cT b+ ε < 0

and similarly, for all i = 1, . . . , n, we can derive 〈T (c), T (ai)〉 ≥ cTai − ε ≥ 0. Therefore, by

Thm. 3.2.1, T (b) /∈ cone{T (a1), . . . , T (an)}.

From this proposition, it follows that the larger ε will provide us a better probability. The

largest ε can be found by solving the following optimization problem.

Separating Coefficient Problem (SCP). Given b /∈ cone {a1, . . . , an}, find

ε = maxc,ε {ε| ε ≥ 0, cT b ≤ −ε, cTai ≥ ε}.

Note that ε can be extremely small when the cone C generated by a1, . . . , an is almost non-

pointed, i.e., the convex hull of a1, . . . , an contains a point close to 0. Indeed, for any convex

combination x =
∑

i λiai with
∑

i λi = 1 of ai’s, we have:

‖x‖ = ‖x‖ · ‖c‖ ≥ cTx =
n∑
i=1

λic
Tai ≥

n∑
i=1

λiε = ε.

Therefore, ε ≤ min{‖x‖ | x ∈ conv{a1, . . . , an}}.

3.3 Projection of minimum distance

In this section we show that if the distance between a point x and a closed set is positive, it

remains positive with high probability after applying a random projection. First, we consider

the following problem.

Convex Hull Membership (CHM). Given b, a1, . . . , an ∈ Rm, decide whether

b ∈ conv{a1, . . . , an}.
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Applying random projections, we obtain the following proposition:

Proposition 3.3.1. Given a1, . . . , an ∈ Rm, let C = conv{a1, . . . , an}, b ∈ Rm such that

b /∈ C, d = min
x∈C
‖b−x‖ and D = max1≤i≤n ‖b−ai‖. Let T : Rm → Rk be a random projection

as in the definition 2.2.1. Then

P
[
T (b) /∈ T (C)

]
≥ 1− 2n2e−Cε

2k (3.3)

for some constant C (independent of m,n, k, d,D) and ε < d2

D2 .

We will not prove this proposition. Instead we will prove the following generalized result

concerning the separation of two convex hulls under random projections.

Proposition 3.3.2. Given two disjoint polytopes C = conv{a1, . . . , an} and C∗ = conv{a∗1, . . . , a∗p}
in Rm, let d = min

x∈C,y∈C∗
‖x − y‖ and D = max1≤i≤n,1≤j≤p ‖ai − a∗j‖. Let T : Rm → Rk be a

random projection. Then

P
[
T (C) ∩ T (C∗) = ∅

]
≥ 1− 2n2p2e−Cε

2k (3.4)

for some constant C (independent of m,n, p, k, d,D) and ε < d2

D2 .

Proof. Let Sε be the event that both (1 − ε)‖x − y‖2 ≤ ‖T (x − y)‖2 ≤ (1 + ε)‖x − y‖2 and

(1−ε)‖x+y‖2 ≤ ‖T (x+y)‖2 ≤ (1+ε)‖x+y‖2 hold for all x, y ∈ {ai−a∗j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

Assume Sε occurs. Then for all reals λi ≥ 0 with
n∑
i=1

λi = 1 and γj ≥ 0 with
p∑
j=1

γj = 1, we

have:

‖
n∑

i=1

λiT (ai)−
p∑

j=1

γjT (a∗j )‖2 = ‖
n∑

i=1

p∑
j=1

λiγjT (ai − a∗j )‖2

=

n∑
i=1

p∑
j=1

λ2i γ
2
j ‖T (ai − a∗j )‖2 + 2

∑
(i,j)6=(i′,j′)

λiγjλi′γj′〈T (ai − a∗j ), T (ai′ − a∗j′)〉

=

n∑
i=1

p∑
j=1

λ2i γ
2
j ‖T (ai − a∗j )‖2 +

1

2

∑
(i,j)6=(i′,j′)

λiγjλi′γj′

(
‖T (ai − a∗j + ai′ − a∗j′)‖2 − ‖T (ai − a∗j − ai′ + a∗j′)‖2

)

≥ (1− ε)
n∑

i=1

p∑
j=1

λ2i γ
2
j ‖ai − a∗j‖2 +

+
1

2

∑
(i,j) 6=(i′,j′)

λiγjλi′γj′

(
(1− ε)

∥∥ai − a∗j + ai′ − a∗j′
∥∥2 − (1 + ε)‖ai − a∗j − ai′ + a∗j′‖2

)

= ‖
n∑

i=1

λiai −
p∑

j=1

γja
∗
j‖2 − ε

( n∑
i=1

p∑
j=1

λ2i γ
2
j ‖ai − a∗j‖2 +

∑
(i,j)6=(i′,j′)

λiγjλi′γj′
(
‖ai − a∗j‖2 + ‖ai′ − a∗j′‖2

))
.

From the definitions of d and D, we have:

‖
n∑

i=1

λiT (ai)−
p∑

j=1

γjT (a∗j )‖2 ≥ d2 − εD2

( n∑
i=1

p∑
j=1

λ2i γ
2
j + 2

∑
(i,j) 6=(i′,j′)

λiγjλi′γj′

)
≥ d2 − εD2 > 0

28



due to the choice of ε < d2

D2 . In summary, if Sε occurs, then T (C) and T (C∗) are disjoint.

Thus, by the definition of random projection and the union bound,

P(T (C) ∩ T (C∗) = ∅) ≥ P(Sε) ≥ 1− 2
(
np)2e−Cε

2k

for some constant C > 0.

Now we assume that b, c, a1, . . . , an are all unit vectors. In order to deal with the CM prob-

lem, we consider the so-called A-norm of x ∈ cone{a1, . . . , an} as ‖x‖A = min
{ n∑
i=1

λi
∣∣ λ ≥

0 ∧ x =
n∑
i=1

λiai
}

. For each x ∈ cone{a1, . . . , an}, we say that λ ∈ Rn+ yields a minimal

A-representation of x if and only if
n∑
i=1

λi = ‖x‖A. We define µA = max{‖x‖A | x ∈

cone{a1, . . . , an} ∧ ‖x‖ ≤ 1}; then, for all x ∈ cone{a1, . . . , an}, ‖x‖ ≤ ‖x‖A ≤ µA‖x‖.
In particular µA ≥ 1. Note that µA serves as a measure of worst-case distortion when we

move from Euclidean to ‖ · ‖A norm.

Theorem 3.3.3. Given unit vectors b, a1, . . . , an ∈ Rm such that b /∈ C = cone{a1, . . . , an},
let d = min

x∈C
‖b−x‖ and T : Rm → Rk be a random projection as in the definition 2.2.1. Then:

P(T (b) /∈ cone{T (a1), . . . , T (an)} ) ≥ 1− 2n(n+ 1)e−Cε
2k (3.5)

for some constant C (independent of m,n, k, d), in which ε = d2

µ2
A+2
√

1−d2µA+1
.

Proof. For any 0 < ε < 1, let Sε be the event that both (1− ε)‖x− y‖2 ≤ ‖T (x− y)‖2 ≤ (1 +

ε)‖x−y‖2 and (1−ε)‖x+y‖2 ≤ ‖T (x+y)‖2 ≤ (1+ε)‖x+y‖2 hold for all x, y ∈ {b, a1, . . . , an}.
By definition of random projection and the union bound, we have

P(Sε) ≥ 1− 4

(
n+ 1

2

)
e−Cε

2k = 1− 2n(n+ 1)e−Cε
2k

for some constant C (independent of m,n, k, d). We will prove that if Sε occurs, then we

have T (b) /∈ cone{T (a1), . . . , T (an)}. Assume that Sε occurs. Consider an arbitrary x ∈
cone{a1, . . . , an} and let

n∑
i=1

λiai be the minimal A-representation of x. Then we have:

‖T (b)− T (x)‖2 = ‖T (b)−
n∑

i=1

λiT (ai)‖2

= ‖T (b)‖2 +

n∑
i=1

λ2i ‖T (ai)‖2 − 2

n∑
i=1

λi〈T (b), T (ai)〉+ 2
∑

1≤i<j≤n

λiλj〈T (ai), T (aj)〉

= ‖T (b)‖2+
n∑

i=1

λ2i ‖T (ai)‖2+
n∑

i=1

λi
2

(‖T (b−ai)‖2−‖T (b+ai)‖2)+
∑

1≤i<j≤n

λiλj
2

(‖T (ai+aj)‖2−‖T (ai−aj)‖2)

≥ (1− ε)‖b‖2 + (1− ε)
n∑

i=1

λ2i ‖ai‖2 +

n∑
i=1

λi
2

((1− ε)‖b− ai‖2 − (1 + ε)‖b+ ai‖2)

+
∑

1≤i<j≤n

λiλj
2

((1− ε)‖ai + aj‖2 − (1 + ε)‖ai − aj‖2),
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because of the assumption that Sε occurs. Since ‖b‖ = ‖a1‖ = · · · = ‖an‖ = 1, the RHS can

be written as

‖b−
n∑
i=1

λiai‖2 − ε
(

1 +

n∑
i=1

λ2
i + 2

n∑
i=1

λi + 2
∑
i<j

λiλj

)

=‖b−
n∑
i=1

λiai‖2 − ε
(
1 +

n∑
i=1

λi
)2

=‖b− x‖2 − ε
(
1 + ‖x‖A

)2

Denote by α = ‖x‖ and let p be the projection of b to cone{a1, . . . , an}, which implies

‖b− p‖ = min{‖b− x‖ | x ∈ cone{a1, . . . , an}}.

Claim. For all b, x, α, p given above, we have ‖b− x‖2 ≥ α2 − 2α‖p‖+ 1.

By this claim (proved later), we have:

‖T (b)− T (x)‖2 ≥ α2 − 2α‖p‖+ 1− ε
(
1 + ‖x‖A

)2
≥ α2 − 2α‖p‖+ 1− ε

(
1 + µAα

)2
=

(
1− εµ2

A

)
α2 − 2

(
‖p‖+ εµA

)
α+ (1− ε).

The last expression can be viewed as a quadratic function with respect to α. We will prove

this function is nonnegative for all α ∈ R. This is equivalent to(
‖p‖+ εµA

)2 − (1− εµ2
A

)
(1− ε) ≤ 0

⇔
(
µ2
A + 2‖p‖µA + 1

)
ε ≤ 1− ‖p‖2

⇔ ε ≤ 1− ‖p‖2

µ2
A + 2‖p‖µA + 1

=
d2

µ2
A + 2‖p‖µA + 1

,

which holds for the choice of ε as in the hypothesis. In summary, if the event Sε occurs, then

‖T (b)− T (x)‖2 > 0 for all x ∈ cone{a1, . . . , an}, i.e. T (x) /∈ cone{T (a1), . . . , T (an)}. Thus,

P(T (b) /∈ TC) ≥ P(Sε) ≥ 1− 2n(n+ 1)e−Cε
2k

as claimed.

Proof of the claim. If x = 0 then the claim is trivially true, since ‖b − x‖2 = ‖b‖2 = 1 =

α2 − 2α‖p‖ + 1. Hence we assume x 6= 0. First consider the case p 6= 0. By Pythagoras’

theorem, we must have d2 = 1− ‖p‖2. We denote by z = ‖p‖
α x, then ‖z‖ = ‖p‖. Set δ = α

‖p‖ ,
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we have

‖b− x‖2 = ‖b− δz‖2

= (1− δ)‖b‖2 + (δ2 − δ)‖z‖2 + δ‖b− z‖2

= (1− δ) + (δ2 − δ)‖p‖2 + δ‖b− z‖2

≥ (1− δ) + (δ2 − δ)‖p‖2 + δd2

= (1− δ) + (δ2 − δ)‖p‖2 + δ(1− ‖p‖2)

= δ2‖p‖2 − 2δ‖p‖2 + 1 = α2 − 2α‖p‖+ 1.

Next, we consider the case p = 0. In this case we have bT (x) ≤ 0 for all x ∈ cone{a1, . . . , an}.
Indeed, for an arbitrary δ > 0,

0 ≤ 1

δ
(‖b− δx‖2 − 1) =

1

δ
(1 + δ2‖x‖2 − 2δbTx− 1) = δ‖x‖2 − 2bTx

which tends to −2bTx when δ → 0+. Therefore

‖b− x‖2 = 1− 2bTx+ ‖x‖2 ≥ ‖x‖2 + 1 = α2 − 2α‖p‖+ 1,

which proves the claim.

3.4 Certificates for projected problems

In this section, we will prove that, under certain assumptions, the solutions we obtain by

solving the projected feasibility problem are not likely to be solutions for the original problems.

They are unfortunately negative results, which reflects the fact that we cannot simply solve

the projected problem to obtain a solution but need a smarter way to deal with it.

In the first proposition, we assume that a solution is found uniformly in the feasible set of the

projected problem. However, this assumption does not hold if we use some popular methods

(such as simplex) because in these cases we rather end up with extreme points. We make use

of this observation in our second proposition.

Recall that, we want to study the relationship between the linear feasibility problem (LFP):

Decide whether there exists x ∈ Rn such that Ax = b ∧ x ≥ 0.

and it projected version (PLFP):

Decide whether there exists x ∈ Rn such that TAx = Tb ∧ x ≥ 0,
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where T ∈ Rk×m is a real matrix. To keep all the following discussions meaningful, we assume

that k < m and the LFP is feasible. Here we use the terminology certificate to indicate a

solution x that verifies the feasibility of the associated problem.

Proposition 3.4.1. Assume that b belongs to the interior of cone(A) and x∗ is uniformly

chosen from the feasible set of the PLFP. Then x∗ is almost surely not a certificate for the

LFP.

In a formal way, let O = {x ≥ 0 | Ax = b} and P = {x ≥ 0 | TAx = Tb} denote the feasible

sets for the original and projected problems, and let x∗ be uniformly distributed on P, i.e. P
is equipped with a uniform probability measure µ. For each v ∈ ker(T ), let

Ov = {x ≥ 0 | Ax− b = v} ∩ P

Notice that here O0 = O. We need to prove that Prob(x∗ ∈ O) = 0.

Proof. Assume for contradiction that

Prob(x∗ ∈ O) = p > 0.

We will prove that there exists δ > 0 and a family V of infinitely many v ∈ ker(T ) such

that Prob(x∗ ∈ Ov) ≥ δ > 0. Since (Ov)v∈V is a family of disjoint sets, we deduce that

Prob

(
x∗ ∈

⋃
v∈V
Ov
)
≥
∑
v∈V

δ = +∞, leading to a contradiction.

Because dim(ker(T )) ≥ 1, then ker(T ) contains a segment [−u, u]. Furthermore, since 0 ∈
int{Ax − b | x ≥ 0} (due to the assumption that b belongs to the interior of cone(A)), we

can choose ‖u‖ small enough such that [−u, u] also belongs to {Ax− b | x ≥ 0}.

Also due to the assumption that b belongs to the interior of cone(A), there exists x̄ > 0 such

that Ax̄ = b. Let x̂ ∈ Rn be such that Ax̂ = −u. There always exists an N̄ > 0 large enough

such that 2x̂ ≤ N̄ x̄ (since x̄ > 0).

For all N ≥ N̄ and for all x ∈ O, we denote x′N = x̄+x
2 −

1
N x̂. Then we have Ax′N = b− 1

NAx̂ =

b+ u
N and x′N = x

2 + ( x̄2 −
x̂
N ) ≥ 0. Therefore,

x̄+O
2
− 1

N
x̂ ⊆ O u

N

which implies that, for all N ≥ N̄ ,

Prob(x∗ ∈ O u
N

) = µ(O u
N

) ≥ µ(
x̄+O

2
) ≥ cµ(O) = cp > 0

for some constant c > 0. The proposition is proved.
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Proposition 3.4.2. Assume that b does not belong to the boundary of cone(AB) for any basis

AB of A and x∗ is an extreme point of the projected feasible set. Then x∗ is not a certificate

for the LFP.

For consistency, we use the same notations O,P as before to denote the feasible sets of the

LFP and its projected problem. We also denote by O∗,P∗ their vertex sets, respectively.

Proof. For contradiction, we assume that x∗ is also a certificate for the LFP. Then we claim

that x∗ is an extreme point of the LFP feasible set, i.e. x∗ ∈ O∗. Indeed, if this does not hold,

then there are two distinct x1, x2 ∈ O such that x∗ = 1
2(x1 +x2). However, since O ⊆ P, then

both x1, x2 belong to P, which contradicts to the assumption that x∗ is an extreme point of

the projected feasible set.

For that reason, we can write x∗ = (x∗B, x
∗
N ), where x∗B = (AB)−1b is a basis solution and

x∗N = 0 is a non-basis solution. It then follows that b ∈ cone(AB), and due to our first

assumption, b ∈ int(CB). Let b = ABx for some x > 0. Since ABx = ABx
∗
B, it turns out that

x∗B = x > 0 (due to the non-singularity of AB). Now we have a contradiction, since every

extreme point of the projected LFP has at most k non-zero components, but x∗ has exactly

m non-zero components (m > k). The proof is finished.

Please notice that the assumptions in the above two propositions hold almost surely when

the instances A, b are uniformly generated. This explains the results we obtained for random

instances.

Now we consider the Integer Feasibility Problem (IFP)

Decide whether there exists x ∈ Zn+ such that Ax = b

and it projected version (PIFP):

Decide whether there exists x ∈ Zn such that TAx = Tb ∧ x ≥ 0,

where T ∈ Rk×m is a real matrix. We will prove that

Proposition 3.4.3. Assume that T is sampled from a probability distribution with bounded

Lebesgue density, and the IFP is feasible. Then any certificate for the projected IFP will

almost surely be a certificate for the original IFP.

We first prove the following simple lemma:
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Lemma 3.4.4. Let ν be a probability distribution on Rmk with bounded Lebesgue density.

Let Y ⊆ Rm be an at most countable set such that 0 /∈ Y . Then, for a random projection

T : Rm → Rk sampled from ν, we have 0 /∈ T (Y ) almost surely, i.e. P
(
0 /∈ T (Y )

)
= 1.

Proof. Let f be the Lebesgue density of ν. For any 0 6= y ∈ Y , consider the set Ey = {T :

Rm → Rk | T (y) = 0}. If we regard each T : Rm → R1 as a vector t ∈ Rmk, then Ey is a

hyperplane {t ∈ Rmk| y · t = 0} and we have

P(T (y) = 0) = ν(Ey) =

∫
Ey
fdµ ≤ ‖f‖∞

∫
Ey
dµ = 0

where µ denotes the Lebesgue measure on Rm. The proof then follows by the countability of

Y .

Proof of the Proposition. Assume that x∗ is a (integer) certificate for the projected IFP. Let

y∗ = Ax∗ − b and let Z = {Ax − b | x ∈ Zn+}. Then 0 belongs to Z due to the feasibility

of the original IFP. Moreover, Z is countable, so the above lemma implies that (applied on

Y = Z \ {0})
ker(T ) ∩ Z = {0} almost surely.

However, y∗ belongs to both ker(T ) and Z, therefore, y∗ = 0 almost surely. In other words,

x∗ is a certificate for the IFP almost surely.

3.5 Preserving Optimality in LP

Until now, we have only discussed about Linear Programming in the feasible form. In this

section, we will directly consider the following LP:

(P ) min{cTx|Ax = b, x ≥ 0},

in which A is an Rm×n matrix (m < n) with full row rank. Its projected problems is given by

(PT ) min{cTx|TAx = Tb, x ≥ 0}.

Let v(P ) and v(PT ) be the optimal objective value of the two problems (P ) and (PT ), re-

spectively. In this section we will show that v(P ) ≈ v(PT ) with high probability. Our proof

assumes that the feasible region of P is non-empty and bounded. Specifically, we assume that

a constant θ > 0 is given such that there exists an optimal solution x∗ of P satisfying

n∑
i=1

x∗i < θ. (3.6)
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For the sake of simplicity, we assume further that θ ≥ 1. This assumption is used to control

the excessive flatness of the involved cones, which is required in the projected separation

argument.

3.5.1 Transforming the cone membership problems

In this subsection, we will explain the idea of transforming a cone into another cone, so that

the cone membership problem becomes easier to solve by random projection.

Given a polyhedral cone

K =

{
n∑
i=1

Cixi

∣∣∣∣ x ∈ Rn+

}
in which C1, . . . , Cn are column vectors of an m× n matrix C. For any u ∈ Rm, we consider

the following transformation φu, defined by:

φu(K) :=

{
n∑
i=1

(
Ci −

1

θ
u

)
xi

∣∣∣∣ x ∈ Rn+

}
.

In particular, φu moves the origin in the direction u by a step 1/θ. For θ defined in the

equation (3.6), we also consider the following set

Kθ =

{
n∑
i=1

Cixi

∣∣∣∣ x ∈ Rn+ ∧
n∑
i=1

xi < θ

}
.

Kθ can be seen as a set truncated from K. We shall show that φu preserves the membership

of u in the “truncated cone” Kθ. Moreover, φu, when applied to Kθ, will result in a more

acute cone, which is easier for us to work with.

Lemma 3.5.1. For any u ∈ Rm, we have that u ∈ Kθ if and only if u ∈ φu(K).

Proof. For all 1 ≤ i ≤ n, let C ′i = Ci − 1
θu.

(⇒) If u ∈ Kθ, then there exists x ∈ Rn+ such that u =
n∑
i=1

Cixi and
n∑
i=1

xi < θ. Then

u ∈ φu(K) because it can be written as
n∑
i=1

C ′ix
′
i with x′ = x

1− 1
θ

n∑
j=1

xj

. Note that, due to

the assumption that
n∑
j=1

xj < θ, x′ ≥ 0 indeed.

(⇐) If u ∈ φu(K), then there exists x ∈ Rn+ such that u =
n∑
i=1

C ′ixi. Then u can also be
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written as
n∑
i=1

C ′ix
′
i, where x′i = xi

1+ 1
θ

n∑
j=1

xj

. Note that,
n∑
i=1

x′i < θ because

n∑
i=1

x′i =

n∑
i=1

xi

1 + 1
θ

n∑
i=1

xi

< θ,

which implies that u ∈ Kθ.

Note that this result is still valid when the transformation φu is only applied to a subset of

columns of C. Given an index set I ⊆ {1, . . . , n}, we define ∀i ≤ n:

CIi =

{
Ci − 1

θu if i ∈ I
Ci otherwise.

We extend φu to

φIu(K) =

{
n∑
i=1

CIi xi

∣∣∣∣ x ∈ Rn+

}
, (3.7)

and define

KIθ =

{
n∑
i=1

Cixi

∣∣∣∣ x ∈ Rn+ ∧
∑
i∈I

xi < θ

}
.

The following corollary is proved in the same way as Lemma 3.5.1, in which φu is replaced

by φIu.

Corollary 3.5.2. For any u ∈ Rm and I ⊆ {1, . . . , n}, we have u ∈ KIθ if and only if

u ∈ φIu(K).

3.5.2 The main approximate theorem

Given an LFP instance Ax = b∧x ≥ 0, where A is an m×n matrix and T is a k×m random

projector. From the previous section, we know that

∃x ≥ 0 (Ax = b) ⇔ ∃x ≥ 0 (TAx = Tb)

with high probability. We remark that this also holds for a (k + h)×m random projector of

the form (
Ih 0

T

)
,
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where T is a k × m random projection. This allows us to claim the feasibility equivalence

w.o.p. even when we only want to project a subset of rows of A. In the following, we will

use this observation to handle constraints and objective function separately. In particular,

we only project the constraints while keeping objective function unchanged.

If we add the constraint
n∑
i=1

xi ≤ θ to the problem PT , we obtain the following:

PT,θ ≡ min

{
c>x

∣∣∣∣ TAx = Tb ∧
n∑
i=1

xi ≤ θ ∧ x ∈ Rn+

}
. (3.8)

The following theorem asserts that the optimal objective value of P can be well-approximated

by that of PT,θ.

Theorem 3.5.3. Assume F(P ) is bounded and non-empty. Let y∗ be an optimal dual solution

of P of minimal Euclidean norm. Given δ > 0, we have

v(P )− δ ≤ v(PT,θ) ≤ v(P ), (3.9)

with probability at least 1− 4ne−Cε
2k, where ε < δ

2(θ+1)η , and η is O(‖y∗‖).

Proof. First, we will briefly explain the idea of the proof. Since v(P ) is the optimal objective

value of problem P , for any positive δ, the value v(P )− δ can not be attained. It means the

following problem

Ax = b ∧ x ≥ 0 ∧ cx ≤ v(P )− δ.

is infeasible. This problem can now be projected in such a way that it remains infeasible

w.o.p. By writing this original problem as(
c 1

A 0

)(
x

s

)
=

(
v(P )− δ

b

)
, where

(
x

s

)
≥ 0, (3.10)

and applying a random projection of the form(
1 0

0 T

)
, where T is a k ×m random projection,

we will obtain the following problem, which is supposed to be infeasible w.o.p.

cx+ s = v(P )− δ
TAx = Tb

x ≥ 0

 . (3.11)

The main idea is that, the prior information about the optimal solution x∗ (i.e.
n∑
i=1

x∗i ≤ θ),

can now be added into this new problem. It does not change the feasibility of this problem,
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but later can be used to transform the corresponding cone into a better one (more acute).

Therefore, w.o.p., the problem

cx ≤ v(P )− δ
TAx = Tb
n∑
i=1

xi ≤ θ

x ≥ 0


(3.12)

is infeasible. Hence we deduce that cx ≥ v(P )− δ holds w.o.p. for any feasible solution x of

the problem PT,θ, and that proves the LHS of Eq. (3.9). For the RHS, the proof is trivial

since PT is a relaxation of P with the same objective function.

Let

Ã =

(
cT 1

A 0

)
, x̃ =

(
x

s

)
and b̃ =

(
v(P )− δ

b

)

Furthermore, let T̃ =

(
1 0

0 T

)
. In the rest of the proof, we prove that b̃ 6∈ cone(Ã) iff

T b̃ 6∈ cone(TÃ) w.o.p.

Let I be the set of indices of the first n columns of Ã. Consider the transformation φI
b̃

as

defined above, using a step 1
θ′ instead of 1

θ , in which θ′ ∈ (θ, θ + 1). We define the following

matrix:

A′ =
(
Ã1 − 1

θ′ b̃ · · · Ãn − 1
θ′ b̃ Ãn+1

)
Since Eq. (3.10) is infeasible, it is easy to verify that the system:

Ãx̃ = b̃
n∑
i=1

xi < θ′

x̃ ≥ 0

 (3.13)

is also infeasible. Then, by Cor. 3.5.2, it follows that b̃ 6∈ cone(A′).

Let y∗ ∈ Rm be an optimal dual solution of P of minimal Euclidean norm. By the strong

duality theorem, we have y∗A ≤ c and y∗ b = v(P ). We define ỹ = (1,−y∗)>. We will prove

that ỹ A′ > 0 and ỹ b̃ < 0. Indeed, since ỹ Ã =

(
c− y∗A

1

)
≥ 0 and ỹ b̃ = v(P )− δ − v(P ) =

−δ < 0, then we have

ỹ A′ =

(
c− y∗A+ δ

θ′

1

)
≥ δ

θ′
≥ δ

θ + 1
and ỹ b̃ = −δ, (3.14)

which proves the claim.
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Now we apply the scalar product preservation property and the union bound, to get

‖(T̃ ỹ) (T̃A′)− ỹ A′‖∞ ≤ εη (3.15)

holds with probability at least p = 1− 4ne−Cε
2k. Here, η is the normalized constant

η = max

{
‖ỹ‖.‖b̃‖, max1≤i≤n ‖ỹ‖.‖A′i‖

}
,

in which η = O(θ‖y∗‖) (proof is given at the end). Let us now fix ε = δ
2(θ+1)η . By (3.14) and

(3.15), we have, with probability at least p, the system

(T̃ ỹ) (T̃A′) ≥ 0

(T̃ ỹ) (T̃ b̃) < 0

holds, which implies that the problem

T̃A′x̃ = T̃ b̃

x̃ ≥ 0

is infeasible (by Farkas’ Lemma). By definition, T̃A′x̃ = T̃ Ãx̃ − 1
θ′

n∑
i=1

xiT̃ b̃, which implies

that
T̃ Ãx̃ = T̃ b̃
n∑
i=1

x̃i < θ′

x̃ ≥ 0


is also infeasible with probability at least p (the proof is similar to that of Corollary 3.5.2).

Therefore, with probability at least p, the following optimization problem:

inf

{
c>x

∣∣∣∣ TAx = Tb ∧
n∑
i=1

xi < θ′ ∧ x ∈ Rn+

}
.

has its optimal value greater than v(P )− δ. Since θ′ > θ, it follows that with probability at

least p, v(PT,θ) ≥ v(P )− δ, as claimed.

Proof of the claim η = O(θ‖y∗‖): We have

‖b̃‖2 = ‖b‖2 + (v(P )− δ)2

≤ ‖b‖2 + 2v(P )2

= 1 + 2|c>x∗|

≤ 1 + 2‖c‖∞.‖x∗‖1 (by Hölder inequality)

≤ 1 + 2θ (since ‖c‖2 = 1 and
∑
x∗i ≤ θ)

≤ 3θ (by the assumption that θ ≥ 1).
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Therefore, we conclude that

η = max

{
‖ỹ‖.‖b̃‖, max1≤i≤n ‖ỹ‖.‖A′i‖

}
= O(θ ‖y∗‖)

3.6 Computational results

Let T be the random projector, A the constraint matrix, b the RHS vector, and X either Rn+ in

the case of LP and Zn+ in the case of IP. We solve Ax = b∧x ∈ X and T (A)x = T (b)∧x ∈ X
to compare accuracy and performance. In these results, A is dense. We generate (A, b)

componentwise from three distributions: uniform on [0, 1], exponential, gamma. For T , we

only test the best-known type of projector matrix T (y) = Py, namely P is a random k ×m
matrix each component of which is independently drawn from a normal N (0, 1√

k
) distribution.

All problems were solved using CPLEX 12.6 on an Intel i7 2.70GHz CPU with 16.0 GB

RAM. All the computational experiments were carried out in JuMP (a modeling language for

Mathematical Programming in JULIA).

Because accuracy is guaranteed for feasible instances by Lemma 3.1.2 (i), we only test infea-

sible LP and IP feasibility instances. For every given size m × n of the constraint matrix,

we generate 10 different instances, each of which is projected using 100 randomly generated

projectors P . For each size, we compute the percentage of success, defined as an infeasible

original problem being reduced to an infeasible projected problem. Performance is evaluated

by recording the average user CPU time taken by CPLEX to solve the original problem, and,

comparatively, the time taken to perform the matrix multiplication PA plus the time taken

by CPLEX to solve the projected problem.

In the above computational results, we only report the actual solver execution time (in the

case of the original problem) and matrix multiplication plus solver execution (in the case of

the projected problem). Lastly, although Tables 3.1 tell a successful story, we obtained less

satisfactory results with other distributions. Sparse instances yielded accurate but poorly

performant results. So far, this seems to be a good practical method for dense LP/IP.
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Table 3.1: LP: above, IP: below. Acc.: accuracy (% feas./infas. agreement), Orig.: original (CPU),

Proj.: projected instances (CPU).

Uniform Exponential Gamma

m n Acc. Orig. Proj. Acc. Orig. Proj. Acc. Orig. Proj.

600 1000 99.5% 1.57s 0.12s 93.7% 1.66s 0.12s 94.6% 1.64s 0.11s

700 1000 99.5% 2.39s 0.12s 92.8% 2.19s 0.12s 93.1% 2.15s 0.11s

800 1000 99.5% 2.55s 0.11s 95.0% 2.91s 0.11s 97.3% 2.78 s 0.11s

900 1000 99.6% 3.49s 0.12s 96.1% 3.65s 0.13s 97.0% 3.57s 0.13s

1000 1500 99.5% 16.54s 0.20s 93.0% 18.10s 0.20s 91.2% 17.58s 0.20s

1200 1500 99.6% 22.46s 0.23s 95.7% 22.46s 0.20s 95.7% 22.58s 0.22s

1400 1500 100% 31.08s 0.24s 93.2% 35.24s 0.26s 95.0% 31.06s 0.23s

1500 2000 99.4% 48.89s 0.30s 91.3% 51.23s 0.31s 90.1% 51.08s 0.31

1600 2000 99.8% 58.36s 0.34s 93.8% 58.87s 0.34s 95.9% 60.35s 0.358s

500 800 100% 20.32s 4.15s 100% 4.69s 10.56s 100% 4.25s 8.11s

600 800 100% 26.41s 4.22s 100% 6.08s 10.45s 100% 5.96s 8.27s

700 800 100% 38.68s 4.19s 100% 8.25s 10.67s 100% 7.93s 10.28s

600 1000 100% 51.20s 7.84s 100% 10.31s 8.47s 100% 8.78s 6.90s

700 1000 100% 73.73s 7.86s 100% 12.56s 10.91s 100% 9.29s 8.43s

800 1000 100% 117.8s 8.74s 100% 14.11s 10.71s 100% 12.29s 7.58s

900 1000 100% 130.1s 7.50s 100% 15.58s 10.75s 100% 15.06s 7.65s

1000 1500 100% 275.8s 8.84s 100% 38.57s 22.62s 100% 35.70s 8.74s
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Chapter 4

Random projections for convex

optimization with linear constraints

4.1 Introduction

For motivation, we first consider the following convex optimization problem with linear con-

straints:

min{f(x) | Ax = b, x ∈ S},

in which A ∈ Rm×n, b ∈ Rm, f : Rn → R is a convex function, and S ⊆ Rn is a convex set.

One example is from constrained model fitting, in which Ax = b expresses the interpolation

constraints, x ∈ S restricts the choices for model parameters to a certain domain and f(x)

indicates some cost (such as squared error ‖ . ‖2). Using bisection method, we can write

this problem in the feasibility form as follows: Given c ∈ R, decide whether the set {x| x ∈
S, f(x) ≤ ck, Ax = b} is empty or not. Let denote by C = {x ∈ S | f(x) ≤ c}. Since f(x) is

convex, C is also a convex set. Then, similar as the previous chapter, this feasibility problem

can be viewed as a Convex Restricted Linear Membership problem (CRLM). Formally, we

ask

Convex RLM (CRLM). Given a closed convex set C ⊆ Rn, A ∈ Rm×n, b ∈ Rm,

decide whether the set

{x ∈ C | Ax = b} is empty or not.

Instead of solving this problem, we can apply a random projection T ∈ Rd×m to its linear

constraints and study the projected version:
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Projected CRLM (PCRLM). Given a convex set C ⊆ Rn, A ∈ Rm×n, b ∈ Rm,

decide whether the set

{x ∈ C | TAx = Tb} is empty or not.

Usually, d is selected so that it is much smaller than m. Therefore, we are able to reduce

the number of linear constraints significantly to obtain a simpler problem. We will show that

the two problems are closely related under several choices of T such as sub-Gaussian random

projection and randomized orthorgonal system (ROS).

In this chapter, we also discuss the noised version of this problem. Instead of requiring

Ax = b, we require that they are close enough to each other. In particular, we replace it by

the condition ‖Ax− b‖ ≤ δ for some δ > 0. In this way we can avoid the assumption m ≤ n,

and we are able to assume that m is very large regardless how small the dimension n is.

4.1.1 Our contributions

The results in this chapter is inspired by the work of Mert Pilanci and Martin J. Wain-

wright ([22]) on the Constrained Linear Regression problem. In that work, they propose to

approximate

x∗ ∈ arg min
x∈C
‖Ax− b‖

by a “sketched” solution

x̂ = arg min
x∈C
‖TAx− Tb‖.

In particular, they provide bounds for the dimension d of the projected space to ensure that

‖Ax̂− b‖ ≤ (1 + ε)‖Ax∗− b‖ for any given ε > 0. Therefore, if the original CRLM is feasible,

then ‖Ax∗− b‖ = 0 and it implies that Ax̂ = b. In other words, x̂ provides a feasible solution

for the original problem. In order to apply these results to our feasibilty setting, we first solve

the projected problem, obtain a feasible solution x̂ and plug it back to check if Ax̂ = b or not.

In this chapter, we are interested in the related but different question: what are the relations

between the optimal objective functions of these two problems. We will prove that we can

choose appropriate random projection T such that one objective value is the approximation

of the other. This means that we no longer need to plug x̂ back to validate the system Ax̂ = b

(or more generally ‖Ax̂ − b‖ ≤ δ) but can make inference immediately from the projected

problem.

This result can be interesting in the case when the access to the original data is limited or

unavailable. For example, for private security, the user information is strictly confidential.
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Random projections provide a way to encode the problem without leaking the data of any

particular people. The ability to make a decision based only on TA, Tb therefore become

crucial.

Now, if the original problem is feasible, i.e. {x ∈ C | Ax = b} is not empty, then there is

x̃ ∈ C such that Ax̃ = b. It follows that TAx̃ = Tb and the projected problem is also feasible.

Therefore, we only consider the infeasible case: {x ∈ C | Ax = b} is empty. In particular, we

assume that

‖Ax∗ − b‖ = min
x∈C
‖Ax− b‖ > 0.

We will find random projection T so that the projected problem is also infeasible, i.e.

min
x∈C
‖TAx− Tb‖ > 0.

We consider two classes of random projections: σ-subgaussian matrices (see Section 2.3.1)

and randomized orthogonal systems (ROS, see Section 2.3.2). For σ-subgaussian matrices,

we establish the relation between the two problems via the well-known concept of Gaussian

width. For a given set Y ⊆ Rn, the Gaussian width of Y, denoted by W(Y) is defined by

W(Y) = Eg
(

sup
y∈Y
|〈g, y〉|

)
where g is of N (0, I) distribution. Gaussian width is a very important tool used in compressed

sensing [7]. Our main result in this case is:

Theorem 4.1.1. Assume that the set {x ∈ C| Ax = b} is empty. Denote by Y = AK∩ Sn−1,

in which K is the tangent cone of the constraint set C at an optimum

x∗ = arg min
x∈C
‖Ax− b‖.

Let T : Rm → Rk be a σ-subgaussian random projection. Then for any δ > 0, with probability

at least 1− 6e−
c2kδ

2

σ4 , the set {x ∈ C| TAx = Tb} is also empty if

k >
( 25c1

1− 17δ

)2W2(Y).

In the ROS case, our main result involve two generalized concept: Rademacher width and

T−Gaussian width, which are defined respectively as follows. For any set Y ⊂ Sm−1:

R(Y) = Eε
(

sup
y∈Y
|〈ε, y〉|

)
,

where ε ∈ {−1,+1}n is an i.i.d. vector of Rademacher variables; and

WT (Y) = Eg,T
(

sup
z∈Y
|〈g, Tz√

m
〉|
)
.

Using these two concepts, we obtain the following result:
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Theorem 4.1.2. Assume that the set {x ∈ C| Ax = b} is empty. Denote by Y = AK∩ Sn−1,

in which K is the tangent cone of the constraint set C at an optimum

x∗ = arg min
x∈C
‖Ax− b‖.

Let T : Rm → Rk be an ROS random projection. Then for any δ > 0, with probability at least

1− 6

(
c1

(mn)2 + e
− c2mδ

2

R2(Y)+log(mn)

)
, the set {x ∈ C| TAx = Tb} is also empty if

√
k >

(
736

1− 17
2 δ

)(
R(Y) +

√
6 log(mn)

)
WT (Y).

The rest of this chapter is constructed as follows: Section 4.2 and 4.3 will be devoted to the

proofs of Theorem 4.1.1 and Theorem 4.1.2. In Section 4.4, we discuss a new method to find

a certificate for this system.

4.2 Random σ-subgaussian sketches

Recall from Chapter 2 that, a real-valued random variable X is said to be σ-subgaussian if

one has

E(etX) ≤ e
σ2t2

2 for every t ∈ R.

Now, let T = (tij) ∈ Rm×n be a matrix with i.i.d entries sampling from a zero-mean

σ-subgaussian distribution and Var(sij) = 1
m . Such a matrix will be called a random σ-

subgaussian sketch.

Denote by Q = T>T − In×n. From [22] we obtain the following important results:

Lemma 4.2.1. There are universal constants c1, c2 such that for any Y ⊆ Sn−1 and any

v ∈ Sn−1, we have

sup
u∈Y

∣∣uTQu∣∣ ≤ c1
W(Y)√
m

+ δ with probability at least 1− e−
c2mδ

2

σ4 . (4.1)

sup
u∈Y

∣∣uTQv∣∣ ≤ 5c1
W(Y)√
m

+ 3δ with probability at least 1− 3e−
c2mδ

2

σ4 . (4.2)

Now we will apply this lemma to prove Theorem 4.1.1.

Proof of Theorem 1:

Denote by e := x̂− x∗. Then e belongs to the tangent cone K of the constraint set C at the

optimum x∗.
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Since x∗ is the minimizer of min{‖Ax− b‖ : x ∈ C}, then

‖Ax∗ − b‖2 ≤ ‖Ax̂− b‖2 = ‖Ax∗ − b‖2 + 2〈Ax∗ − b, Ae〉+ ‖Ae‖2.

Therefore, 2〈Ax∗ − b, Ae〉 + ‖Ae‖2 ≥ 0. On the other hand, since x̂ is the minimizer of

min{‖TAx− Tb‖ : x ∈ C}, then

‖TAx∗ − Tb‖2 ≥ ‖TAx̂− Tb‖2 = ‖TAx∗ − Tb‖2 + 2〈TAx∗ − Tb, TAe〉+ ‖TAe‖2.

Therefore, ‖TAe‖2 ≤ −2〈TAx∗ − Tb, TAe〉 ≤ 2‖TAx∗ − Tb‖.‖TAe‖, which implies that

‖TAe‖ ≤ 2‖TAx∗ − Tb‖.

Now we have

‖TAx̂− Tb‖2 = ‖TAx∗ − Tb‖2 + 2〈TAx∗ − Tb, TAe〉+ ‖TAe‖2

= ‖TAx∗ − Tb‖2 + 2〈Ax∗ − b, Ae〉+ ‖Ae‖2 + 2〈Ax∗ − b,QAe〉+ 〈Ae,QAe〉

≥ ‖TAx∗ − Tb‖2 + 2〈Ax∗ − b,QAe〉+ 〈Ae,QAe〉

≥ ‖TAx∗ − Tb‖2 − 2‖Ax∗ − b‖.‖Ae‖
(
5c1

W(Y)√
m

+ 3δ
)
− ‖Ae‖2

(
c1
W(Y)√
m

+ δ
)

with probability at least 1 − 4e−
c2mδ

2

σ4 ( by applying Lemma 4.2.1). For some arbitrary

λ > 0 (we will fix it later), we have 2‖Ax∗ − b‖.‖Ae‖ ≤ λ‖Ax∗ − b‖2 + 1
λ‖Ae‖

2. Denote by

∆1 = 5c1
W(Y)√
m

+ 3δ and ∆2 = c1
W(Y)√
m

+ δ, and substitute them to the above expression, we

have

‖TAx̂− Tb‖2 ≥ ‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2 −
( 1

λ
∆1 + ∆2

)
‖Ae‖2 (4.3)

with probability at least 1− 4e−
c2mδ

2

σ4 . Now, let y∗ = Ax∗−b
‖Ax∗−b‖ , we have

‖TAx∗ − Tb‖2 = ‖Ax∗ − b‖2 + 〈Ax∗ − b,Q(Ax∗ − b)〉

≥ ‖Ax∗ − b‖2
(
1− c1

W({y∗})√
m

− δ
)

≥ (1−∆2)‖Ax∗ − b‖2 (4.4)

with probability at least 1 − e−
c2mδ

2

σ4 . Here, the first inequality is an direct application of

Lemma 4.2.1 and the second inequality follows from the fact that W({y∗}) ≤W(Y).

Furthermore,

‖TAe‖2 = ‖Ae‖2 + 〈Ae,Q(Ae)〉 ≥ ‖Ae‖2
(
1− c1

W(Y)√
m
− δ
)

= (1−∆2)‖Ae‖2,
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which implies

‖Ae‖2 ≤ 1

1−∆2
‖TAe‖2 ≤ 4

1−∆2
‖TAx∗ − Tb‖2 (4.5)

with probability at least 1− e−
c2mδ

2

σ4 (due to the fact that ‖TAe‖ ≤ 2‖TAx∗ − Tb‖).

From (4.3), (4.4) and (4.5) we have

‖TAx̂− Tb‖2 ≥ ‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2 − 4
1
λ∆1 + ∆2

1−∆2
‖TAx∗ − Tb‖2

=

(
1− 4

1
λ∆1 + ∆2

1−∆2

)
‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2

≥
(
1− 4

1
λ∆1 + ∆2

1−∆2

)
(1−∆2)‖Ax∗ − b‖2 − λ∆1‖Ax∗ − b‖2

= (1−∆2 −
4

λ
∆1 − 4∆2 − λ∆1)‖Ax∗ − b‖2

with probability at least 1− 6e−
c2mδ

2

σ4 . Select (the best possible) λ = 2, then

‖TAx̂− Tb‖2 ≥ (1− 4∆1 − 5∆2)‖Ax∗ − b‖2 = (1− 25c1
W(Y)√
m
− 17δ)‖Ax∗ − b‖2

with probability at least 1− 6e−
c2mδ

2

σ4 .

It follows that TAx̂ 6= Tb with probability at least 1− 6e−
c2mδ

2

σ4 , if

m >
( 25c1

1− 17δ

)2W2(Y),

which proves Theorem 4.1.1.

4.3 Random orthonormal systems

Sketched matrices resulted from σ-subgaussian distributions are often dense, therefore re-

quiring us to perform expensive matrix-vector multiplications. In order to overcome that

difficulty, a different kind of sketch matrices is proposed in [4]. The idea is to randomly

sample rows from an orthogonal matrix to form the new matrix T . Formally, we define this

matrix as follows: let H be an orthogonal matrix, we independently sample each row of T by

si =
√
nDHT pi,

where pi is a vector chosen uniformly at random from the set of all n canonical basis

vectors {e1, . . . , en}, and D = diag (v) is a diagonal matrix of i.i.d Rademacher variables

v ∈ {−1,+1}n. It is showed that if for certain choices of H (such as Walsh - Hadamard
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matrix), the matrix-vector product Tx can be computed in O(n logm) time for any x ∈ Rn.

This is a huge save of time, comparing to the normal O(nm) time from an unstructured

matrix.

For simplicity, we define a function Φ given by:

Φ(X ) = 8
{
R(X ) +

√
6 log(mn)

}WT (X )√
m

.

Then from [22], we have the following important properties (note that the parameters in this

lemma have been corrected based on the original proof):

Lemma 4.3.1. There are universal constants c1, c2 such that for any Y ⊆ Bn and any

v ∈ Sn−1, we have

sup
u∈Y

∣∣uTQu∣∣ ≤ Φ(Y) +
δ

2
with probability at least 1− c1

1
(mn)2 − c1e

− c2mδ
2

R2(Y)+log(mn) . (4.6)

sup
u∈Y

∣∣uTQv∣∣ ≤ 21Φ(Y) +
3δ

2
with probability at least 1− 3c1

1
(mn)2 − 3c1e

− c2mδ
2

R2(Y)+log(mn) .

(4.7)

Proof of Theorem 4.1.2:

This proof follows almost the same line as that of Theorem 4.1.1. Denote by e := x̂ − x∗.
Then similar to the previous proof, we also have:

2〈Ax∗ − b, Ae〉+ ‖Ae‖2 ≥ 0 (4.8)

‖TAe‖ ≤ 2‖TAx∗ − Tb‖. (4.9)

Then we have

‖TAx̂− Tb‖2 = ‖TAx∗ − Tb‖2 + 2〈TAx∗ − Tb, TAe〉+ ‖TAe‖2

= ‖TAx∗ − Tb‖2 + 2〈Ax∗ − b, Ae〉+ ‖Ae‖2 + 2〈Ax∗ − b,QAe〉+ 〈Ae,QAe〉

≥ ‖TAx∗ − Tb‖2 + 2〈Ax∗ − b,QAe〉+ 〈Ae,QAe〉

≥ ‖TAx∗ − Tb‖2 − 2‖Ax∗ − b‖.‖Ae‖
(
21 Φ(Y) +

3δ

2

)
− ‖Ae‖2

(
Φ(Y) +

δ

2

)
with probability at least 1 − 4

(
c1

(mn)2 + c1e
− c2mδ

2

R2(Y)+log(mn)

)
( by applying Lemma 4.3.1). For

some arbitrary λ > 0 (we will fix it later), we have 2‖Ax∗− b‖.‖Ae‖ ≤ λ‖Ax∗− b‖2 + 1
λ‖Ae‖

2.

Denote by ∆1 = 21 Φ(Y)+ 3δ
2 and ∆2 = Φ(Y)+ δ

2 , and substitute them to the above expression,

then we have

‖TAx̂− Tb‖2 ≥ ‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2 −
( 1

λ
∆1 + ∆2

)
‖Ae‖2 (4.10)
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with probability at least 1− 4

(
c1

(mn)2 + c1e
− c2mδ

2

R2(Y)+log(mn)

)
. Now, let y∗ := Ax∗−b

‖Ax∗−b‖ , we have

‖TAx∗ − Tb‖2 = ‖Ax∗ − b‖2 + 〈Ax∗ − b,Q(Ax∗ − b)〉

≥ ‖Ax∗ − b‖2
(
1− Φ({y∗})− δ

2

)
≥ (1− 4Φ(Y)− δ

2
)‖Ax∗ − b‖2 (4.11)

with probability at least 1−

(
c1

(mn)2 + c1e
− c2mδ

2

R2(Y)+log(mn)

)
. Here we use the fact (from the proof

of Lemma 5 in [22]) that Φ({y∗}) ≤ 4Φ(Y).

Similar to the previous proof, we also have

‖TAe‖2 = ‖Ae‖2 + 〈Ae,Q(Ae)〉 ≥ (1−∆2)‖Ae‖2,

therefore

‖Ae‖2 ≤ 1

1−∆2
‖TAe‖2 ≤ 4

1−∆2
‖TAx∗ − Tb‖2 (4.12)

with probability at least 1−

(
c1

(mn)2 + c1e
− c2mδ

2

R2(Y)+log(mn)

)
.

From (4.10), (4.11) and (4.12) we have

‖TAx̂− Tb‖2 ≥ ‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2 − 4
1
λ∆1 + ∆2

1−∆2
‖TAx∗ − Tb‖2

=

(
1− 4

1
λ∆1 + ∆2

1−∆2

)
‖TAx∗ − Tb‖2 − λ∆1‖Ax∗ − b‖2

≥
(
1− 4

1
λ∆1 + ∆2

1−∆2

)(
1− 4Φ(Y)− δ

2

)
‖Ax∗ − b‖2 − λ∆1‖Ax∗ − b‖2

≥
(

1− 4Φ(Y)− δ

2
− 4

λ
∆1 − 4∆2 − λ∆1

)
‖Ax∗ − b‖2

with probability at least 1− 4

(
c1

(mn)2 + e
− c2mδ

2

R2(Y)+log(mn)

)
. (Here we simplify by using the fact

that 1− 4Φ(Y)− δ
2 < 1−∆2). Now select λ = 2 (the best possible), then we have

‖TAx̂− Tb‖2 ≥ (1− 4Φ(Y)− δ

2
− 4∆1 − 4∆2)‖Ax∗ − b‖2

= (1− 92Φ(Y)− 17

2
δ)‖Ax∗ − b‖2

with probability at least 1− 6

(
c1

(mn)2 + e
− c2mδ

2

R2(Y)+log(mn)

)
.
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The last expression is positive if and only if

1− 17

2
δ − 736

(
R(Y) +

√
6 log(mn)

)WT (Y)√
m

> 0,

or equivalently,

√
m >

(
736

1− 17
2 δ

)(
R(Y) +

√
6 log(mn)

)
WT (Y),

which proves Theorem 4.1.2.

4.4 Sketch-and-project method

Assume that the CRLM problem we considered in this chapter is feasible. As shown in

Chapter 3, it is not possible to find a certificate for this system just by solving the projected

problem. In this section, we will propose a method for finding such a certificate. The idea is

to first sketch the constrained system by a random projection, and then to project a current

solution to the new sketched feasible set.

Algorithm 1 Randomized sketch-and-project (RSP)

1: parameter: D = distribution over random matrices

2: Choose x0 ∈ Rn . Initialization step

3: for k = 0, 1, 2, . . . do

4: Construct a random projection matrix S ∼ D
5: xk+1 = arg min ‖x− xk‖2 s.t. SAx = Sb, x ∈ C. . Update step

For any vector x and any set Q, we will denote by

‖x−Q‖ = min
y∈Q
‖x− y‖.

Let P = {x ∈ C | Ax = b} and PS = {x ∈ C | SAx = Sb}.

Then we can rewrite the update step simply as

xk+1 = arg min
x∈PS

‖x− xk‖2.

In other word, ‖xk − xk+1‖ = ‖xk − PS‖.

We have the following result:

Lemma 4.4.1. Given xk, xk+1, P, PS defined as above, then
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(i) For any x ∈ P , 〈xk − xk+1, x− xk+1〉 ≤ 0.

(ii) ‖xk+1 − P‖2 ≤ ‖xk − P‖2 − ‖xk − PS‖2.

Proof. (i) Assume there is some x̂ ∈ P such that 〈xk−xk+1, x̂−xk+1〉 > 0. For any λ ∈ (0, 1),

let define xλ = λx̂+(1−λ)xk+1. Since P ⊆ PS , x̂ ∈ PS . Then by the convexity of PS (followed

from the convexity of C), we have xλ ∈ PS . However,

‖xk − xλ‖2 = ‖xk − xk+1 + λ(xk+1 − x̂)‖2

= ‖xk − xk+1‖2 + λ2‖xk+1 − x̂‖2 − 2λ〈xk − xk+1, x̂− xk+1〉

< ‖xk − xk+1‖2 when λ is small enough.

But this contradicts to the definition of xk+1.

(ii) Let denote by

x∗k = arg min
x∈P
‖x− xk‖2,

then

‖xk − P‖2 = ‖xk − x∗k‖2

= ‖xk − xk+1 + xk+1 − x∗k‖2

= ‖xk − xk+1‖2 + ‖xk+1 − x∗k‖2 + 2〈xk − xk+1, xk+1 − x∗k〉

≥ ‖xk − xk+1‖2 + ‖xk+1 − x∗k‖2 (due to (i))

= ‖xk − PS‖2 + ‖xk+1 − x∗k‖2

≥ ‖xk − PS‖2 + ‖xk+1 − P‖2,

which proves (ii).

Now, we are going to estimate the quantity ‖xk − PS‖2 for some special construction of the

random matrix S. We will consider the case when the entries of S are i.i.d random variables

sampled from a σ-subgaussian distribution.

Proposition 4.4.2. There are universal constants c1, c2 such that, with probability at least

1− e−
c2dδ

2

σ4 we have

‖xk+1 − P‖2 ≤
(W(AK)√

m
+ δ
)
‖xk − P‖2,

Denote by Q := STS − E where E is the identity matrix. Then STS = Q+ E.

Proof. By the definition, we have

‖xk − PS‖2 = min
x∈C, SAx=Sb

‖xk − x‖2.
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Notice that, by using a penalty term, it can also be written as

maxλ≥0

(
min
x∈C
‖xk − x‖2 + λ‖SAx− Sb‖2

)
. (4.13)

Indeed, if we denote by Lλ = minx∈C ‖xk − x‖2 + λ‖SAx−Sb‖2 for each λ ≥ 0. Then due to

xk+1 ∈ C, we have

Lλ ≤ ‖xk − xk+1‖2 + λ‖SAxk+1 − Sb‖2 = ‖xk − PS‖2,

which proves that the value in (4.13) is smaller than or equal to ‖xk−PS‖2. But when λ ≥ 0

is very large, the penalty becomes so expensive that it forces SAx = Sb, and in those cases,

Lλ = ‖xk − PS‖2. The claim is proved.

Now, for any λ ≥ 0, we have,

Lλ = min
x∈C
‖xk − x‖2 + λ‖SAx− Sb‖2

= min
x∈C
‖xk − x‖2 + λ〈S(Ax− b), S(Ax− b)〉

= min
x∈C
‖xk − x‖2 + λ〈STS(Ax− b), Ax− b〉

= min
x∈C
‖xk − x‖2 + +λ‖Ax− b‖2 + λ〈Q(Ax− b), Ax− b〉.

= min
x∈C
‖xk − x‖2 + +λ‖Ax− b‖2 − λ‖Ax− b‖2

(W(AK)√
m

+ δ
)

with probability at least 1− δ. Therefore, we have

Lλ ≥
(
1− W(AK)√

m
− δ
)

min
x∈C
‖xk − x‖2 + λ‖Ax− b‖2

Therefore, we have

‖xk − PS‖2 = maxλ≥0 Lλ

≥
(
1− W(AK)√

m
− δ
)

maxλ≥0

(
min
x∈C
‖xk − x‖2 + λ‖Ax− b‖2

)
=
(
1− W(AK)√

m
− δ
)

min
x∈C, Ax=b

‖xk − x‖2

=
(
1− W(AK)√

m
− δ
)
‖xk − P‖2

with probability at least 1− δ. Therefore, we have, from part (ii) of Lemma ,

‖xk+1 − P‖2 ≤ ‖xk − P‖2 − ‖xk − PS‖2 ≤
(W(AK)√

m
+ δ
)
‖xk − P‖2,

with probability at least 1− δ.
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Chapter 5

Gaussian random projections for

general membership problems

5.1 Introduction

In this chapter we employ random projections to study the following general problem:

Euclidean Set Membership Problem (ESMP). Given b ∈ Rm and S ⊆ Rm,

decide whether b ∈ S.

This is a generalization of the convex hull and cone membership problems that we consider

in Chapter 2. However, in this chapter, we consider the general case where the data set S has

no specific structure. We will use Gaussian random projections in our arguments to embed

both b and S to a lower dimensional space, and solve its associated projected version:

Projected ESMP (PESMP). Given b ∈ Rm and S ⊆ Rm, and let T : Rm → Rd

be some given mapping. Decide whether T (b) ∈ T (S).

Our objective is to investigate the relationships between ESMP and PESMP. As before, it is

obvious that when b ∈ S then T (b) ∈ T (S). We are therefore only interested in the case when

b /∈ S, i.e. we want to estimate Prob(T (b) /∈ T (S)), given that b /∈ S.

5.1.1 Our contributions

In the case when S is at most countable (i.e. finite or countable), using a straightforward

argument, we prove that these two problems are equivalent almost surely. However, this result
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is only of theoretical interest due to round-off errors in floating point operations, which make

its practical application difficult. We address this issue by introducing a threshold τ > 0 and

study the corresponding “thresholded” problem:

Threshold ESMP (TESMP): Given b, S, T as above. Let δ > 0. Decide whether

‖T (b)− T (S)‖ ≥ τ .

In the case when S may also be uncountable, we prove that ESMP and PESMP are also

equivalent if the projected dimension d is proportional to some intrinsic dimension of the set

S. In particular, we employ the definition of doubling dimension (defined later) to prove that,

if b /∈ S, then T (b) /∈ T (S) almost surely as long as the projected dimension d ≥ c · ddim(S).

Here, ddim(S) is the doubling dimension of S and c is some universal constant.

We also extend this result to the threshold case, and obtain a more useful bound for d.

5.2 Finite and countable sets

In this section, we assume that S is either finite or countable. Let T ∈ Rd×m be a random

matrix drawn from Gaussian distribution, i.e. each entry of T is independently sampled from

N (0, 1). It is well known that, for an arbitrary unit vector a ∈ Sm−1, then ‖Ta‖2 is a

random variable with a Chi-squared distribution χ2
d with d degrees of freedom ([20]). Its

corresponding density function is 2−d/2

Γ(d/2)x
d/2−1ed/2, where Γ(·) is the gamma function. By [9],

for any 0 < δ < 1, taking z = δ
d yields a cumulative distribution function (CDF)

Fχ2
d
(δ) ≤ (ze1−z)d/2 < (ze)d/2 =

(
eδ

d

)d/2
. (5.1)

Thus, we have

Prob(‖Ta‖ ≤ δ) = Fχ2
d
(δ2) < (

3

d
δ2)d/2 (5.2)

or, more simply, Prob(‖Ta‖ ≤ δ) < δd when d ≥ 3.

Using this estimation, we immediately obtain the following result.

Proposition 5.2.1. Given b ∈ Rm and S ⊆ Rm, at most countable, such that b /∈ S. Then,

for any d ≥ 1 and for a Gaussian random projection T : Rm → Rd , we have T (b) /∈ T (S)

almost surely, i.e. Prob
(
T (b) /∈ T (S)

)
= 1.

Proof. First, note that for any u 6= 0, Tu 6= 0 holds almost certainly. Indeed, without loss of

generality we can assume that ‖u‖ = 1. Then for any 0 < δ < 1:

Prob
(
T (u) = 0

)
≤ Prob

(
‖Tu‖ ≤ δ

)
< (3δ2)d/2 → 0 as δ → 0. (5.3)

56



It means that for any y 6= b, then T (y) 6= T (b) almost surely. Since the event T (b) /∈ T (S) can

be written as the intersection of at most countably many “almost sure” events T (b) 6= T (y)

(for y ∈ S), it follows that Prob
(
T (b) /∈ T (S)

)
= 1, as claimed.

Proposition 5.2.1 is simple, but it looks interesting because it suggests that we only need to

project the data points to a line (i.e. d = 1) and study an equivalent membership problem

on a line. Furthermore, it turns out that this result remains true for a large class of random

projections.

Proposition 5.2.2. Let ν be a probability distribution on Rm with bounded Lebesgue density

f . Let S ⊆ Rm be an at most countable set such that 0 /∈ S. Then, for a random projection

T : Rm → R1 sampled from ν, we have 0 /∈ T (S) almost surely, i.e. Prob
(
0 /∈ T (S)

)
= 1.

Proof. For any 0 6= s ∈ Y , consider the set Es = {T : Rm → R1 | T (s) = 0}. If we regard each

T : Rm → R1 as a vector t ∈ Rm, then Es is a hyperplane {t ∈ Rm| s · t = 0} and we have

Prob(T (s) = 0) = ν(Es) =

∫
Es
fdµ ≤ ‖f‖∞

∫
Es
dµ = 0

where µ denotes the Lebesgue measure on Rm. The proof then follows by the countability of

S, similarly to Proposition 5.2.1.

This idea, however, does not work in practice: we tested it by considering the ESMP given by

the IPF defined on the set {x ∈ Zn+ ∩ [L,U ] | Ax = b}. Numerical experiments indicate that

the corresponding PESMP {x ∈ Zn+ ∩ [L,U ] | T (A)x = T (b)}, with T consisting of a one-row

Gaussian projection matrix, is always feasible despite the infeasibility of the original IPF.

Since Prop. 5.2.1 assumes that the components of T are real numbers, the reason behind this

failure is possibly due to the round-off error associated to the floating point representation

used in computers. Specifically, when T (A)x is too close to T (b), floating point operations will

consider them as a single point. In order to address this issue, we force the projected problems

to obey stricter requirements. In particular, instead of only requiring that T (b) /∈ T (S), we

ensure that

dist(T (b), T (S)) = min
x∈S

‖T (b)− T (x)‖ > τ, (5.4)

where dist denotes the Euclidean distance, and τ > 0 is a (small) given constant. With this

restriction, we obtain the following result.

Proposition 5.2.3. Given τ > 0, 0 < δ < 1 and b /∈ S ⊆ Rm, where S is a finite set. Let

R = min
x∈S

‖b − x‖ > 0 and T : Rm → Rd be a Gaussian random projection with d ≥ log(
|S|
δ

)

log(R
τ

)
.

Then:

Prob
(

min
x∈S

‖T (b)− T (x)‖ > τ
)
> 1− δ.
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Proof. We assume that d ≥ 3. For any x ∈ S, by the linearity of T , we have:

Prob
(
‖T (b− x)‖ ≤ τ

)
= Prob

(∥∥∥∥T ( b− x
‖b− x‖

)∥∥∥∥ ≤ τ

‖b− x‖

)
≤ Prob

(∥∥∥∥T ( b− x
‖b− x‖

)∥∥∥∥ ≤ τ

R

)
<
τd

Rd
,

due to (5.1). Therefore, by the union bound,

Prob
(

min
x∈S

‖T (b)− T (x)‖ > τ
)

= 1− Prob
(

min
x∈S

‖T (b)− T (x)‖ ≤ τ
)

≥ 1−
∑
x∈S

Prob
(
‖T (b)− T (x)‖ ≤ τ

)
> 1− |S| τ

d

Rd
.

The RHS is greater than or equal to 1 − δ if and only if Rd

τd
≥ |S|

δ , which is equivalent to

d ≥ log(
|S|
δ

)

log(R
τ

)
, as claimed.

Note that R is often unknown and can be arbitrarily small. However, if both b, S are integral

and τ < 1, then R ≥ 1 and we can select d >
log
|S|
δ

log 1
τ

in the above proposition.

5.3 Sets with low doubling dimensions

In many real-world applications, the data set S is not finite or countable, but it lies in

some intrinsically low-dimensional space. Examples of such sets are various, including human

motion records, speed signals, image and text data ([8, 6]). Random projections can provide

a tool to extract the full information of the set, despite of the (high) dimension of the ambient

space that it is embedded in.

In this section, we will use doubling dimension as a measure for the intrinsic dimension of a

set. Let denote by B(x, r) = {y ∈ S : ‖y − x‖ ≤ r}, i.e. the closed ball centered at x with

radius r > 0 (w.r.t S). We use the following definition:

Definition 5.3.1. The doubling constant of a set S ⊆ Rm is the smallest number λS such

that any closed ball in S can be covered by at most λS closed balls of half the radius. A set

S ⊆ Rm is called a doubling set if it has a finite doubling constant. The number log2(λS) is

then called the doubling dimension of S and denoted by ddim (S).

One popular example of doubling spaces is a Euclidean space Rm. In this case, it is well-

known that its doubling dimension is a constant factor of m ([23, 11]). However, there are

cases where the set S ⊆ Rm is of much lower doubling dimension. It is also easy to see that
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ddim (S) does not depend on the dimension m. Therefore, doubling dimension becomes a

powerful tool for reducing dimensions in several classes of problems such as nearest neighbor

[15, 12], low-distortion embeddings [2], and clustering [17].

In this section, we assume that ddim (S) is relatively small compared to m. Note that,

computing the doubling dimension of S is generally NP-hard ([10]). For simplicity, we assume

that λS is a power of 2, i.e. the doubling dimension of S is a positive integer number.

We shall make use of the following simple lemma.

Lemma 5.3.2. For any b ∈ S and ε, r > 0, there is a set S0 ⊆ S of size at most λ
dlog2( r

ε
)e

S

such that

B(b, r) ⊆
⋃
s∈S0

B(s, ε). (5.5)

Proof. By the definition of the doubling dimension, B(b, r) is covered by at most λS closed

balls of radius r
2 . Each of these balls in turn is covered by λS balls of radius r

4 , and so on:

iteratively, for each k ≥ 1, B(b, r) is covered by λkS balls of radius r
2k

. If we select k = dlog2( rε)e
then k ≥ log2( rε), i.e. r

2k
≤ ε. This means B(b, r) is covered by λ

dlog2( r
ε

)e
S balls of radius ε.

We will also use the following lemma:

Lemma 5.3.3. Let S ⊆ {s ∈ Rm| ‖s‖ ≤ 1} be a subset of the m-dimensional Euclidean unit

ball. Let T : Rm → Rd be a Gaussian random projection. Then there exist universal constants

c, C > 0 such that for d ≥ C log λS + 1 and δ ≥ 6, the following holds:

Prob(∃s ∈ S s.t. ‖Ts‖ > δ) < e−cdδ
2
. (5.6)

This lemma is proved in [12] using concentration estimations for sum of squared gaussian

variables (Chi-squared distribution). In particular, we recall two important inequalities: for

all δ > 0 and a mapping T as above,

Prob (|‖Ta‖ − 1| > δ) ≤ e−dδ2/8 and (5.7)

Prob(‖Ta‖ ≤ δ) < δd when d ≥ 3 (already used in the previous section). (5.8)

For the sake of completeness, we will present the original proof ([12]). Here, we use an

additional requirement that δ ≥ 6 instead of δ > 1 to make the proof more rigorous (than the

original), however the main argument is unchanged.

Proof. Choose b = 0, r = 1 and εk = 1
2k

in the Lemma 5.3.2. By earlier convention that

B(x, r) = {y ∈ S : ‖y − x‖ ≤ r}, obviously we have S = B(0, 1). Then there is a set Sk ⊆ S
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of size at most λkS such that

S ⊆
⋃
s∈Sk

B(s,
1

2k
). (5.9)

Therefore, for any x ∈ S, there is a sequence {0 = x0, x1, x2, x3, . . .} that converges to x, with

xk ∈ Sk and ‖xk − xk+1‖ ≤ 1
2k

for each k. We claim that, if ‖Tx‖ ≥ δ, then there must be

some k such that

‖T (xk − xk+1)‖ ≥ δ

3
(
3

2
)−k

Indeed, if no such k exists, then

δ ≤ ‖Tx‖ ≤
∞∑
k=0

‖T (xk − xk+1)‖ < δ

3

∞∑
k=0

(
3

2
)−k = δ, a contradiction.

Now, if we want to neglect x, we can treat xk and xk+1 (found above) as two points u, v, in

which u ∈ Sk and v ∈ B(u, 1
2k

) ∩ Sk+1. Then we have

‖Tu− Tv‖ > δ

3
(
3

2
)−k >

‖u− v‖
2−k

δ

3
(
3

2
)−k =

δ

3
(
4

3
)k‖u− v‖.

Therefore, we have

Prob
(
∃x ∈ S s.t ‖T (x)‖ > δ

)
≤ Prob

(
∃x ∈ S,∃k ≥ 0 s.t ‖T (xk − xk+1)‖ > δ

3
(
3

2
)−k
)

≤
∞∑
k=0

Prob

(
∃u ∈ Sk, ∃v ∈ B(u,

1

2k
) ∩ Sk+1 s.t ‖Tu− Tv‖ > δ

3
(
4

3
)k‖u− v‖

)

≤
∞∑
k=0

λ2k+1
S Prob

(
‖Tz‖ > δ

3
(
4

3
)k
)

for some unit vector z (by the union bound).

Since δ ≥ 6, for any k ≥ 0 we have δ
3(4

3)k ≥ 1 + δ
6(4

3)k. Therefore, from the inequality (5.7),

the above expression is less than or equal to

∞∑
k=0

λ2k+1
S Prob

(
|‖Tz‖ − 1| ≥ δ

6
(
4

3
)k
)
≤

∞∑
k=0

λ2k+1
S e−d

δ2

8.62 ( 4
3

)2k

≤ e−cdδ
2

(5.10)

as long as d ≥ C log(λS) for some universal constants c, C. The proof is done.

Now we state one of the main results in this chapter. It says that we can maintain the

equivalence between ESMP and its projected version by using Gaussian random projections

with d proportional to the doubling dimension of S.

Theorem 5.3.4. Given b /∈ S ⊆ Rm where S is a closed doubling set. Let T : Rm → Rd be a

Gaussian random projection. Then

Prob(T (b) /∈ T (S)) = 1 (5.11)

if d ≥ C ddim (S), for some universal constant C.
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Proof. Let d ≥ C log2(λS) for some universal constant C (large).

Assume that R > 0 is the distance between b and the set S. Let εi,∆i, i = 0, 1, 2 . . . and

R = r0 < r1 < r2 < . . . be positive scalars (their values will be defined later). For each

k = 1, 2, 3, . . . we define an annulus

Xk = S ∩B(b, rk) rB(b, rk−1).

SinceXk ⊆ S∩B(b, rk), by Lemma 5.3.2 we can find a point set Sk ⊆ S of size |Sk| ≤ λ
dlog2(

rk
εk

)e
S

such that

Xk ⊆
⋃
s∈Sk

B(s, εk).

Hence, for any x ∈ Xk, there is s ∈ Sk such that ‖x − s‖ < εk. Moreover, by the triangle

inequality, any such s satisfies rk−1− εk < ‖s− b‖ < rk + εk (since x is inside the annuli Xk).

So without loss of generality we can assume that

Sk ⊆ B(b, rk + εk) rB(b, rk−1 − εk).

Using the union bound, we have:

Prob
(
∃x ∈ S s.t T (x) = T (b)

)
= Prob

(
∃x ∈

∞⋃
k=1

Xk s.t T (x) = T (b)
)

≤
∞∑
k=1

Prob
(
∃x ∈ Xk s.t T (x) = T (b)

)
.

Now, we will try to estimate the individual probabilities inside this sum.

For each k ≥ 1, we denote by Ek the event that:

∃s ∈ Sk, ∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k.

Then we have

Prob
(
∃x ∈ Xk s.t T (x) = T (b)

)
≤ Prob

(
(∃x ∈ Xk s.t T (x) = T (b)) ∧ Eck

)
+ Prob(Ek) (5.12)

For the second term in (5.12), by the union bound, we have

Prob(Ek) ≤
∑
s∈Sk

Prob
(
∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k

)
.

61



If we denote by Xs
k = {x− s| x ∈ Xk}, then the RHS can be written as∑

s∈Sk

Prob
(
∃(x− s) ∈ Xs

k ∩B(0, εk) s.t. ‖Ts− Tx‖ > ∆k

)
=

∑
s∈Sk

Prob
(
∃u ∈ Xs

k ∩B(0, εk) s.t. ‖Tu‖ > ∆k

)
≤

∑
s∈Sk

e
−c1d(

∆k
εk

)2

(for the universal constant c1 in Lemma 5.3.3)

≤ λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

.

(Note that here we must choose ∆k ≥ 6εk in order to apply the Lemma 5.3.3).

For the first term in (5.12), we have

Prob
(
(∃x ∈ Xk s.t T (x) = T (b)) ∧ Eck

)
≤ Prob

(
∃x ∈ Xk, s ∈ Sk ∩B(x, εk) s.t T (x) = T (b) ∧ ‖T (s)− T (x)‖ ≤ ∆k

)
≤ Prob

(
∃s ∈ Sk s.t ‖T (s)− T (b)‖ < ∆k

)
≤ λ

dlog2(
rk
εk

)e
S Prob

(
‖T (z)‖ < ∆k

rk−1 − εk
)

for some unit vector z

≤ λ
dlog2(

rk
εk

)e
S (

∆k

rk−1 − εk
)d (by inequality 5.8).

Putting all the estimations we have obtained together, we have:

Prob
(
∃x ∈ S s.t T (x) = T (b)

)
≤
∞∑
k=1

λ
dlog2(

rk
εk

)e
S

(
e
−c1d(

∆k
εk

)2

+ (
∆k

rk−1 − εk
)d
)
. (5.13)

Next, we will show that there are choices of εk,∆k, rk such that the RHS of (5.13) can be as

small as needed.

Choices of εk,∆k, rk: For some N > 1 large, we will choose εk,∆k, rk as follows:

1. εk = ε, for some ε > 0.

2. ∆k = Nkε

3. rk = (N2(k + 1)2 + 1)ε

Now the RHS of (5.13) can be rewritten as follows
∞∑
k=1

λ
dlog2(N2(k+1)2+1)e
S

(
e−c1d(Nk)2

+ (
1

Nk
)d
)

≤
∞∑
k=1

λ
3 log2(Nk)
S

(
e−c1d(Nk)2

+ (
1

Nk
)d
)

≤
∞∑
k=1

23 ddim(S) log2(Nk)

(
e−c1d(Nk)2

+ (
1

Nk
)d
)
. (5.14)
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Note that 23 ddim(S) log2(Nk) does not increase fast enough compared to the decreasing speeds

of both e−c1d(Nk)2
and ( 1

Nk )d when d ≥ Cddim(S) with C large enough (and also independent

of N). Therefore, there are universal constants c2, c3 > 0 such that the value of (5.14) is less

than or equal to

∞∑
k=1

e−c2(Nk)2
+
∞∑
k=1

(
1

Nk
)c3d (5.15)

Both the two infinite sums tend to 0 when N tends to ∞. This means that

Prob
(
∃x ∈ S s.t T (x) = T (b)

)
= 0,

which proves our theorem.

Our next result in this section is an extension of Thm. 5.3.4 to the threshold case.

Theorem 5.3.5. Let b /∈ S where S ⊆ Rm is a closed doubling set, T : Rm → Rd be a

Gaussian random projection, and r = min
x∈S
‖b − x‖. Let κ < 1 be some fixed constant. Then

for all 0 < δ < 1 and 0 < τ < κr, we have

Prob(dist(T (p), T (S)) > τ) > 1− δ

if the projected dimension d = Ω(
log(

λS
δ

)

1−κ ).

Proof. Let d ≥ C( log(
λS
δ

)

1−κ ) for some universal constant C (large). As before, let εi,∆i, i =

0, 1, 2 . . . and r = r0 < r1 < r2 < . . . be positive scalars whose values will be decided later.

The annuli Xk and point sets Sk are also defined similarly. Using the union bound, now we

have:

Prob
(
∃x ∈ S s.t ‖T (x)− T (b)‖ < τ

)
= Prob

(
∃x ∈

∞⋃
k=1

Xk s.t ‖T (x)− T (b)‖ < τ
)

≤
∞∑
k=1

Prob
(
∃x ∈ Xk s.t ‖T (x)− T (b)‖ < τ

)
.

Now, we will try to estimate the individual probabilities inside this sum.

For each k ≥ 1, we denote by Ek the event that:

∃s ∈ Sk, ∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k. (5.16)

Then we have

Prob
(
∃x ∈ Xk s.t ‖T (x)− T (b)‖ < τ

)
≤ Prob

(
(∃x ∈ Xk s.t ‖T (x)− T (b)‖ < τ) ∧ Eck

)
+ Prob(Ek) (5.17)
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For the second term in (5.17), from the previous proof, we already had:

Prob(Ek) ≤ λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

. (5.18)

(Note that here we must choose ∆k ≥ 6εk in order to apply the Lemma 5.3.3).

Now, for the first term in (5.17), we have

Prob
(
(∃x ∈ Xk s.t ‖T (x)− T (b)‖ < τ) ∧ Eck

)
≤ Prob

(
∃x ∈ Xk, s ∈ Sk ∩B(x, εk) s.t ‖T (x)− T (b)‖ < τ ∧ ‖T (s)− T (x)‖ ≤ ∆k

)
≤ Prob

(
∃s ∈ Sk s.t ‖T (s)− T (b)‖ < ∆k + τ

)
(by triangle inequality)

≤

 λ
dlog2(

rk
εk

)e
S Prob

(
‖T (z)‖ < ∆k+τ

rk−1−εk

)
for some unit vector z if k ≥ 2

λ
dlog2(

r1
ε1

)e
S Prob

(
‖T (z)‖ < ∆1+τ

r

)
for some unit vector z if k = 1

≤

 λ
dlog2(

rk
εk

)e
S ( ∆k+τ

rk−1−εk )d if k ≥ 2

λ
dlog2(

rk
εk

)e
S (∆1+τ

r )d if k = 1.

Putting all the estimations we have obtained together, we have:

Prob
(
∃x ∈ S s.t ‖T (x)− T (b)‖ < τ

)
≤

( ∞∑
k=1

λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

+
∞∑
k=2

λ
dlog2(

rk
εk

)e
S (

∆k + τ

rk−1 − εk
)d
)

+ λ
dlog2(

r1
ε1

)e
S (

∆1 + τ

r
)d

. (5.19)

Here we separate one term out, and we will prove that the remaining expression can be made

as small as wanted by certain choices of parameters.

Choices of εk,∆k, rk: Let N > 0 be the number such that ( 7
N +1) = r

τ . From the assumption,

we have N < 7κ
1−κ <

7
1−κ . We will choose εk,∆k, rk as follows:

1. εk = ε = τ
N ,

2. ∆k = 6
√
kε,

3. rk = (6k + 7)ε+
√
k + 1 τ .

(Our purpose is to choose the parameters so that ∆k+τ
rk−1−εk = 1√

k
and ∆k ≥ 6εk).

From this choice, it is obvious r0 = r. Now the RHS of (5.19) can be rewritten as follows( ∞∑
k=1

λ
dlog2(6k+7+N

√
k+1)e

S e−c1d(36k2) +
∞∑
k=2

λ
dlog2(6k+7+N

√
k+1)e

S (
1√
k

)d
)

+ λ
dlog2(13+N

√
2)e

S ((
6

N
+ 1)

τ

r
)d.

≤
( ∞∑
k=1

λ
c3 log2(N(k+1))
S e−c1d(36k2) +

∞∑
k=2

λ
c3 log2(N(k+1))
S (

1√
k

)d
)

+ λc2S ((
6

N
+ 1)

τ

r
)d (5.20)
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for some universal constants c1, c2, c3.

It is easy to show that the expression is the big bracket is bounded above by e−c4d as long as

d ≥ C log2(λS) log( 7
1−κ) > C log2(λS) log(N) (for some large constants c4, C). Moreover,

e−c4d ≤ δ

2
if and only if d ≥ 1

c4
log(

2

δ
) (5.21)

and λc2S (( 6
N + 1) τr )d ≤ δ

2 if and only if

d ≥
c2 log(λS) + log(2

δ )

log(( N
6+N ) rτ )

. (5.22)

However, log(( N
6+N ) rτ ) = log( 7r

6r+τ ) ≥ log( 7
6+κ) ≥ log(1 + 1−κ

7 ) ≥ 1−κ
7 , from the Taylor series

of the logarithm function. Therefore, (5.22) holds if we select

d ≥ C
log(λSδ )

1− κ
(5.23)

for some universal constants C.

The proof follows immediately from (5.21) and (5.23) by apply the union bound.

One of the interesting consequence of Theorem 5.3.5 is the following application to the Ap-

proximate Nearest Neighbour problem.

Corollary 5.3.6. For X ⊆ Rd, ε ∈ (0, 1/2) and δ ∈ (0, 1/2), there exists

d = max

{
O

(
log(1

δ )

ε2

)
, O

(
log(λSδ )

ε

)}
such that for every x0 ∈ X, with probability at least 1− δ,

1. dist (Tx0, T (X \ {x0})) ≤ (1 + ε)dist (x0, X \ {x0}),

2. Every x ∈ X with ‖x0 − x‖ ≥ (1 + 2ε)dist (x0, X \ {x0}) satisfies

‖Tx0 − Tx‖ > (1 + ε)dist (x0, X \ {x0}).

Note that, this result improves the bound provided by Indyk-Naor in ([12]). In that paper,

the authors give the bound for the projected dimension to be

d = O

(
log(2/ε)

ε2
log(

1

δ
) log(λS)

)
,

which is significantly larger than our bound.
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Proof. Similar as the proof of Theorem 4.1 in ([12]), we have: for d ≥ C log( 1
δ

)

ε2
with some large

constant C:

Prob [dist (Tx0, T (X \ {x0})) ≤ (1 + ε)dist (x0, X \ {x0})] <
δ

2
. (5.24)

Now, assume that dist (x0, X\{x0}) = 1. Let set b = x0 and S = {x ∈ X : ‖x−x0‖ ≥ 1+2ε}
and τ = 1 + ε as in Theorem 5.3.5. We then have r := minx∈S ‖x− b‖ ≥ 1 + 2ε, which implies
τ
r ≤

1+ε
1+2ε = 1 − ε

1+2ε < 1 − ε
2 . Therefore, we can choose κ = 1 − ε/2. Applying Theorem

5.3.5, we have:

Prob(dist(T (b), T (S)) ≤ τ) ≤ δ

2
(5.25)

if the projected dimension d = Ω(
log(

λS
δ

)

1−κ ) = Ω(
log(

λS
δ

)

ε ).

From (5.24) and (5.25), we conclude that the two required conditions hold for some

d = max

{
O(

log(1
δ )

ε2
), O(

log(λSδ )

ε
)

}
,

as claimed.
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Chapter 6

Random projections for

trust-region subproblems

6.1 Derivative-free optimization and trust-region methods

Derivative-free optimization (DFO) is a branch of optimization that has attracted a lot of

attentions recently. In the general form, a DFO problem is defined as follows:

min {f(x) | x ∈ D},

in which D is a subset of Rn and f(.) is a continuous function such that no derivative in-

formation about it is available. In many cases, we have to treat the objective function as a

black-box. It means that we can only understand f(.) by evaluating it at a limited number

of input points.

Because of the lack of derivative information, traditional gradient-based methods cannot be

applied. Moreover, when the objective function is expensive, meta-heuristics such as evolu-

tionary algorithms, simulated annealing or ant colony optimization (ACO) are not desirable,

since they often require a very large number of function evaluations. Recently, trust-region

(TR) method stands out as one of the most efficient methods for solving DFO. TR methods

involve the construction of surrogate models to approximate the true function (locally) in

small subsets of D and relying on those models to search for optimal solutions. These local

subsets are called trust-regions and often chosen as closed balls with respect to certain norms.

There are several ways to update the new data points, but the most common way is to find

them as minima of the current model over the current trust-region. Formally, we need to
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solve the following problems, which are often called trust-region sub-problems:

min {m(x) | x ∈ B(c, r) ∩ D}.

Here the balls B(c, r) and the models m(.) are updated at every iteration. The newly found

solutions of these problems will then be evaluated under the objective function f(.). Based

on their values, we can adaptively adjust the model as well as the trust region, i.e. either to

expand, contract, or switch their centers . . .

The models m(.) are often chosen to be simple so that the TR subproblems are easy to solve.

The most common choices for m(.) are linear and quadratic functions. However, when the

instances are large, solving TR subproblems becomes difficult and sometimes they are the

bottle-neck in applying TR methods for large-scale problems. For example, it is known that

quadratic programming is NP-hard, even with only one negative eigenvalue.

In this chapter, we propose to use random projections to speed up the solving of high-

dimensional TR subproblems. We assume that linear and quadratic functions are used as

TR models and ‖ . ‖2 is used for norm. Moreover, we assume that D is a polyhedron defined

by explicit linear inequality constraints. When scaling properly, a TR subproblem can be

rewritten as

min {x>Qx+ c>x | Ax ≤ b, ‖x‖2 ≤ 1}, (6.1)

in which Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm.

Now, let P ∈ Rd×n be a random projection with i.i.d. N (0, 1) entries, we can “project” x to

Px and study the following projected problem

min {x>(P>PQP>P )x+ c>P>Px | AP>Px ≤ b, ‖Px‖2 ≤ 1}.

By setting u = Px, c = Pc, A = AP>, we can rewrite it as

min {u>(PQP>)u+ c>u | Au ≤ b, ‖u‖2 ≤ 1}. (6.2)

This problem is of much lower dimension than the original one, so it is expected to be much

easier. However, as we will show later, with high probability, it still provides us a good

approximate solution. This result is interesting, especially for DFO and black-box problems.

In these cases, it is unwise to spend too much time on solving TR subproblems and we are

often happy with approximate solutions. Moreover, since the surrogate models might not

even fit the true objective function, we are more or less tolerative to the small probability of

failure.
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6.2 Random projections for linear and quadratic models

In this section, we will explain the motivations for the study of the projected problem (6.2).

We start with the following simple lemma, which says that linear and quadratic models can

be approximated well under random projections:

6.2.1 Approximation results

Lemma 6.2.1. Let P : Rn → Rd be a random projection and 0 < ε < 1. Then there is a

constant C such that

(i) For any x, y ∈ Rn:

〈Px, Py〉 = 〈x, y〉 ± ε‖x‖.‖y‖

with probability at least 1− 4e−Cε
2d.

(ii) For any x ∈ Rn and A ∈ Rm×n whose rows are unit vectors:

AP TPx = Ax± ε‖x‖


1

. . .

1


with probability at least 1− 4me−Cε

2d.

(iii) For any two vectors x, y ∈ Rn and a square matrix Q ∈ Rn×n, then with probability at

least 1− 8ke−Cε
2d, we have:

xTP TPQP TPy = xTQy ± 3ε‖x‖.‖y‖.‖Q‖∗,

in which ‖Q‖∗ is the nuclear norm of Q and k is the rank of Q.

Proof.

(i) This property has already been proved in Lemma 2.2.2, Chapter 2.

(ii) Let A1, . . . , Am be (unit) row vectors of A. Then

AP>Px−Ax =


A>1 P

>Px−A>1 x
. . .

A>mP
>Px−A>mx

 =


〈PA1, Px〉 − 〈A1, x〉

. . .

〈PAm, Px〉 − 〈Am, x〉

 .

The claim is then followed by applying Part (i) and the union bound.
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(iii) Let Q = UΣV T be the Singular Value Decomposition of Q. Here U, V are (n × k)-

real matrices with orthogonal unit column vectors u1, . . . , uk and v1, . . . , vk, respectively and

Σ = diag(σ1, . . . , σk) is a diagonal matrix with positive entries. Denote by 1k = (1, . . . , 1)>

the k-dimensional column vector of all 1 entries. Then

xTP TPQP TPy = (U>P>Px)>Σ(V >P>Py)

= (U>x± ε‖x‖1k)> Σ (V >y ± ε‖y‖1k)

with probability at least 1− 8ke−Cε
2d (by applying part (ii) and the union bound). Moreover

(U>x± ε‖x‖1k)> Σ (V >y ± ε‖y‖1k)

= xTQy ± ε‖x‖.(1>k ΣV >y)± ε‖y‖.(x>UΣ1k)± ε2‖x‖.‖y‖.
k∑
i=1

σi

= xTQy ± ε(σ1, . . . , σk)
(
‖x‖V >y ± ‖y‖U>x

)
± ε2‖x‖.‖y‖.

k∑
i=1

σi.

Therefore,

|xTP TPQP TPy − xTQy| ≤ ‖x‖.‖y‖.(2ε

√√√√ k∑
i=1

σ2
i + ε2

k∑
i=1

σi)

≤ 3ε‖x‖.‖y‖.
k∑
i=1

σi = 3ε‖x‖.‖y‖.‖Q‖∗

with probability at least 1− 8ke−Cε
2d.

It is known that singular values of random matrices often concentrate around their expec-

tations. In the case when the random matrix is sampled from Gaussian ensemble, this phe-

nomenon is well-understood due to many current research efforts. The following lemma, which

is proved in [28], uses this phenomenon to show that when P ∈ Rd×n is a Gaussian random

matrix (with the number of row significantly smaller than the number of columns), then PP>

is very close to the identity matrix.

Lemma 6.2.2. Let P ∈ Rd×n be a random matrix in which each entry is an i.i.d N (0, 1√
n

)

random variable. Then for any δ > 0 and 0 < ε < 1
2 , with probability at least 1− δ, we have:

‖PP> − I‖2 ≤ ε

provided that

n ≥
(d+ 1) log(2d

δ )

cε2
,

where ‖ . ‖2 is the spectral norm of matrix and c > 1
4 is some universal constant.
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This lemma also tells us that when we go from low to high dimensions, with high probability

we can ensure that the norms of all the points endure small distortions. Indeed, for any vector

u ∈ Rd, then

‖P>u‖2 − ‖u‖2 = 〈P>u, P>u〉 − 〈u, u〉 = 〈(PP> − I)u, u〉 = ±ε‖u‖2,

due to the Cauchy–Schwarz inequality. Moreover, it implies that ‖P‖2 ≤ (1 + ε) with proba-

bility at least 1− δ.

6.2.2 Trust-region subproblems with linear models

We will first work with a simple case, when the surrogate models using in TR methods are

linear and defined as follows:

min {c>x | Ax ≤ b, ‖x‖2 ≤ 1, x ∈ Rn}. (6.3)

We will establish the relations between problem (6.3) and its corresponding projected prob-

lems:

min {(Pc)>u | AP>u ≤ b, ‖u‖2 ≤ 1− ε, u ∈ Rd} (P−ε )

We first obtain the following feasibility result:

Theorem 6.2.3. Let P ∈ Rd×n be a random matrix in which each entry is an i.i.d N (0, 1√
n

)

random variable. Let δ ∈ (0, 1). Assume further that

n ≥
(d+ 1) log(2d

δ )

cε2
,

for some universal constant c > 1
4 . Then with probability at least 1 − δ, for any feasible

solution u of the projected problem (P−ε ), P>u is also feasible for the original problem (6.3).

We should notice a universal property in this theorem, in which with a fixed probability, the

feasibility holds for “all” (instead of a specific) vectors u.

Proof. Let u be any feasible solution for the projected problem (P−ε ) and take x̂ = P>u.

Then we have Ax̂ = AP>u ≤ b and

‖x̂‖2 = ‖P>u‖2 = u>P>Pu = u>u+ u>(P>P − I)u ≤ (1 + ε)‖u‖2,

with probability at least 1− δ (by Lemma 6.2.2). Since ‖u‖ ≤ 1− ε, we have

‖x̂‖ ≤ (1 + ε)(1− ε) < 1,

which proves the theorem.
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In order to estimate the quality of the objective values, we define another projected problem,

which can be considered as a relaxation for the previous one:

min {(Pc)>u | AP>u ≤ b+ ε, ‖u‖2 ≤ 1 + ε, u ∈ Rd} (P+
ε )

Intuitively, these two projected problems are very close to each other when ε is small enough

(under some additional assumptions). Moreover, for practical use, we need to assume that

they are both feasible. Let u−ε and u+
ε be optimal solutions for these two problems, respec-

tively. Denote by x−ε = P>u−ε and x+
ε = P>u+

ε . Let x∗ be an optimal solution for the original

problem (6.1). We will try to bound c>x∗ between c>x−ε and c>x+
ε , the two values that are

expected to be approximately close to each other.

Theorem 6.2.4. Let P ∈ Rd×n be a random matrix in which each entry is an i.i.d N (0, 1√
n

)

random variable. Let δ ∈ (0, 1). Assume further that

n ≥
(d+ 1) log(2d

δ )

cε2
,

for some universal constant c > 1
4 and

d ≥ C log(m/δ)

ε2
,

for some universal constant C > 1.

Let x∗ be an optimal solution for the original problem (6.1). Then

(i) With probability at least 1− δ, the solution x−ε is feasible for the original problem (6.1).

(ii) With probability at least 1− δ, we have:

cTx−ε ≥ cTx∗ ≥ cTx+
ε − ε‖c‖.

Proof. (i) From the previous theorem, with probability at least 1− δ, for any feasible point u

of the projected problem (P−ε ), P>u is also feasible for the original problem (6.3). Therefore,

it must hold also for x−ε .

(ii) From part (i), with probability at least 1− δ, x−ε is feasible for the original problem (6.1).

Therefore, we have

cTx−ε ≥ c>x∗,

with probability at least 1− δ.

Moreover, due to Lemma 6.2.1, with probability at least 1− 4e−Cε
2d, we have

c>x∗ ≥ c>P>Px∗ − ε‖c‖.‖x∗‖ ≥ c>P>Px∗ − ε‖c‖,
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since ‖x∗‖ ≤ 1. On the other hand, let û := Px∗, due to Lemma 6.2.1, we have

AP>û = AP>Px∗ ≤ Ax∗ + ε‖x∗‖


1

. . .

1

 ≤ Ax∗ + ε


1

. . .

1

 ≤ b+ ε,

with probability at least 1− 4me−Cε
2d, and

‖û‖ = ‖Px∗‖ ≤ (1 + ε)‖x∗‖ ≤ (1 + ε),

with probability at leats 1 − 2e−Cε
2d (this is the norm preservation property of random

projections). Therefore, û is a feasible solution for the problem (P+
ε ) with probability at least

1− (4m+ 2)e−Cε
2d. Due to the optimality of u+

ε for the problem (P+
ε ), it follows that

c>x∗ ≥ c>P>Px∗ − ε‖c‖ = c>P>û− ε‖c‖ ≥ c>P>u+
ε − ε‖c‖ = c>x+

ε − ε‖c‖,

with probability at least 1−(4m+6)e−Cε
2d, which is at least 1−δ for some universal constant

C.

We have established that c>x∗ is sandwiched between cTx−ε and cTx+
ε . Now we will compare

these two values. For simplicity, we assume that the feasible set

S∗ = {x ∈ Rn | Ax ≤ b, ‖x‖2 ≤ 1}

is of full dimension. We associate with each set P a positive number full(P ) > 0, which is

considered as a fullness measure of P and is defined as the maximum radius of any closed

ball contained in P . Now, assume that full(S∗) = r∗ > 0.

The following lemma characterizes the fullness of S+
ε with respect to r∗, in which

S+
ε := {u ∈ Rd | AP>u ≤ b+ ε, ‖u‖2 ≤ 1 + ε},

that is, the feasible set of the problem (P+
ε ).

Lemma 6.2.5. Let S∗ be of full dimension with full(S∗) = r∗. Then with probability at

least 1− 3δ, S+
ε is also full dimensional with the fullness measure:

full(S+
ε ) ≥ (1− ε)r∗.

In the proof of this lemma, we will extensively use the fact that, by Cauchy-Schwartz, for any

row vector a ∈ Rn

sup
‖u‖≤r

au = r‖a‖.
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Proof. For any i ∈ [1, ..., n] let Ai denotes the ith row of A. Let B(x0, r
∗) be a closed ball

contained in S∗. Then for any x ∈ Rn with ‖x‖ ≤ r∗, we have A(x0 + x) = Ax0 + Ax ≤ b,

which implies that for any i ∈ [1, ..., n],

bi ≥ (Ax0)i + sup
‖x‖≤r∗

Aix = (Ax0)i + r∗‖Ai‖ = (Ax0)i + r∗, (6.4)

hence

b ≥ Ax0 + r∗

By Lemma 6.2.1, with probability at least 1− δ, we have

AP>Px0 ≤ Ax0 + ε ≤ b+ ε− r∗.

Let u ∈ Rn with ‖u‖ ≤ (1− ε)r∗, for any i ∈ [1, ..., n], we have:

(AP>(Px0 + u))i ≤ bi + ε− r∗ + (AP>)iu = bi + ε− r∗ +AiP
>u

where (AP>)i denotes the ith row of AP>. Hence, by Cauchy-Schwartz,

(AP>(Px0 + u))i ≤ bi + ε− r∗ + (1− ε)r∗‖AiP>‖

Using Eq. (??), we can prove that with probability 1 − 2me−Cε
2d ≥ 1 − δ, we have that for

all i ∈ [1, ...,m], ‖AiP>‖ ≤ (1 + ε)‖Ai‖ = (1 + ε). Hence

AP>(Px0 + u) ≤ bi + ε− r∗ + (1− ε)r∗(1 + ε) ≤ b+ ε

therefore, with probability 1− 2δ the closed ball B∗ centered at Px0 with radius (1− ε)r∗ is

contained in {u : AP>u ≤ b+ ε}.
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Moreover, since B(x0, r
∗) is contained in S∗, which is the subset of the unit ball, then ‖x0‖ ≤

1− r∗.

With probability at least 1− δ, for all vectors u in ball(Px0, (1− ε)r∗), we have

‖u‖ ≤ ‖Px0‖+ (1− ε)r∗ ≤ (1 + ε)‖x0‖+ (1− ε)r∗ ≤ (1 + ε)(1− r∗) + (1− ε)r∗ ≤ 1 + ε.

Therefore, by the definition of S+
ε we have

ball
(
Px0, (1− ε)r∗

)
⊆ S+

ε ,

which implies that the fullness of S+
ε is at least (1− ε)r∗, with probability at least 1− 3δ.

Now, assume that B(u0, r0) is a closed ball with maximum radius that is contained in S+
ε .

In order to establish the relation between u+
ε and u−ε , our idea is to move u+

ε a bit closer to

u0 (defined in the above lemma), so that the new point is contained in S−ε . Therefore, its

objective value will be at least that of u−ε , but quite close to the objective value of u+
ε .

We define û := (1 − λ)u+
ε + λu0 for some λ ∈ (0, 1) specified later. We want to find λ such

that û is feasible for P−ε while its corresponding objective value is not so different from cTx+
ε .

Since for all ‖u‖ ≤ r0:

AP>(u0 + u) = AP>u0 +AP>u ≤ b+ ε,

then

AP>u0 ≤ b+ ε− r0


‖A1P

>‖
...

‖AmP>‖

 .

Therefore, we have, with probability 1− δ,

AP>u0 ≤ b+ ε− r0(1− ε)


‖A1‖

...

‖Am‖

 v = b+ ε− r0(1− ε).

Hence

AP>û = (1− λ)AP>u+
ε + λAP>u0 ≤ b+ ε− λr0(1− ε) ≤ b+ ε− 1

2
λr0,

as we can assume w.l.o.g. that ε ≤ 1
2 . Hence, AP>û ≤ b if we choose ε ≤ λ r02 . Moreover let

u ∈ B(u0, r0) such that u is collinear to u0 and ‖u‖ = r0, we have

‖u0‖ ≤ ‖u0 + u‖ − r0 ≤ 1 + ε− r0,
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so we have

‖û‖ ≤ (1− λ)‖u+
ε ‖+ λ‖u0‖ ≤ (1− λ)(1 + ε) + λ(1 + ε− r0) = 1 + ε− λr0,

which is less than or equal to 1− ε for

ε ≤ 1

2
λr0.

We can choose λ = 2 ε
r0

. With this choice, û is a feasible point for the problem P−ε . Therefore,

we have

c>P>u−ε ≤ c>P>û = c>P>u+
ε + λc>P>(u0 − u+

ε ) ≤ c>P>u+
ε +

4(1 + ε)ε

r0
‖Pc‖.

By the above Lemma, we know that r0 ≥ (1− ε)r∗, therefore, we have:

c>P>u−ε ≤ c>P>û ≤ c>P>u+
ε +

4(1 + ε)ε

r0
‖Pc‖ ≤ c>P>u+

ε +
4(1 + ε)2ε

(1− ε)r∗
‖c‖,

with probability at least 1− δ.

Theorem 6.2.6. With probability at least 1− 2δ, we have

c>x+
ε ≤ c>x−ε ≤ c>x+

ε +
18ε

r∗
‖c‖.

Proof. It follows directly from the above discussions, with the notice that, when 0 ≤ ε ≤ 1
2 ,

we can simplify:
2(1 + ε)2

(1− ε)
≤

2(1 + 1
2)2

(1− 1
2)

= 9.

6.2.3 Trust-region subproblems with quadratic models

In this subsection, we consider the case when the surrogate models using in TR methods are

quadratic and defined as follows:

min {x>Qx | Ax ≤ b, ‖x‖2 ≤ 1, x ∈ Rn}. (6.5)

Similar to the previous section, we also study the relations between this and two other prob-

lems:

min {u>PQP>u | AP>u ≤ b, ‖u‖2 ≤ 1− ε, u ∈ Rd} (Q−ε )

and

min {u>PQP>u | AP>u ≤ b+ ε, ‖u‖2 ≤ 1 + ε, u ∈ Rd}. (Q+
ε )

We will just state the similar feasibility result in this case:
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Theorem 6.2.7. Let P ∈ Rd×n be a random matrix in which each entry is an i.i.d N (0, 1√
n

)

random variable. Let δ ∈ (0, 1). Assume further that

n ≥
(d+ 1) log(2d

δ )

cε2
,

for some universal constant c > 1
4 . Then with probability at least 1 − δ, for any feasible

solution u of the projected problem (Q−ε ), P>u is also feasible for the original problem (6.5).

Let u−ε and u+
ε be optimal solutions for these two problems, respectively. Denote by x−ε =

P>u−ε and x+
ε = P>u+

ε . Let x∗ be an optimal solution for the original problem (6.1). We

will try to bound x∗>Qx∗ between x−>ε Qx−ε and x+>
ε Qx+

ε , the two values that are expected

to be approximately close to each other.

Theorem 6.2.8. Let P ∈ Rd×n be a random matrix in which each entry is an i.i.d N (0, 1√
n

)

random variable. Let δ ∈ (0, 1). Assume further that

n ≥
(d+ 1) log(2d

δ )

Cε2
,

for some universal constant C > 1
4 and

d ≥ C log(m/δ)

ε2
,

for some universal constant C > 1.

Let x∗ be an optimal solution for the original problems (6.5). Then

(i) With probability at least 1− δ, the solution x−ε is feasible for the original problem (6.5).

(ii) With probability at least 1− δ, we have:

x−>ε Qx−ε ≥ x∗>Qx∗> ≥ x+>
ε Qx+

ε − 3ε‖Q‖∗.

Proof. (i) From the previous theorem, with probability at least 1− δ, for any feasible point u

of the projected problem (P−ε ), P>u is also feasible for the original problem (6.5). Therefore,

it must hold also for x−ε .

(ii) From part (i), with probability at least 1− δ, x−ε is feasible for the original problem (6.5).

Therefore, we have

x−>ε Qx−ε ≥ x∗>Qx∗,

with probability at least 1− δ.

Moreover, due to Lemma 6.2.1, with probability at least 1− 8ke−Cε
2d, where k is the rank of

Q, we have

x∗>Qx∗ ≥ x∗>P>PQP>Px∗ − 3ε‖x∗‖2.‖Q‖∗ ≥ x∗>P>PQP>Px∗ − 3ε‖Q‖∗,
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since ‖x∗‖ ≤ 1. On the other hand, let û := Px∗, due to Lemma 6.2.1, we have

AP>û = AP>Px∗ ≤ Ax∗ + ε‖x∗‖


1

. . .

1

 ≤ Ax∗ + ε


1

. . .

1

 ≤ b+ ε,

with probability at least 1− 4me−Cε
2d, and

‖û‖ = ‖Px∗‖ ≤ (1 + ε)‖x∗‖ ≤ (1 + ε),

with probability at leats 1 − 2e−Cε
2d (this is the norm preservation property of random

projections). Therefore, û is a feasible solution for the problem (P+
ε ) with probability at least

1− (4m+ 2)e−Cε
2d. Due to the optimality of u+

ε for the problem (P+
ε ), it follows that

x∗>Qx∗ ≥ x∗>P>PQP>Px∗ − 3ε‖Q‖∗

= û>PQP>û− 3ε‖Q‖∗

≥ u+>
ε PQP>u+

ε − 3ε‖Q‖∗

= x+>
ε Qx+

ε − 3ε‖Q‖∗,

with probability at least 1−(4m+6)e−Cε
2d, which is at least 1−δ for some universal constant

C.

The above result implies that the value of x∗>Qx∗ lies between x−>ε Qx−ε and x+>
ε Qx+

ε . It

remains to prove that these two values are not so far from each other. For that, we also use

the definition of fullness measure. We have the following result:

Theorem 6.2.9. Let 0 < ε < 0.1. Then with probability at least 1− 2δ, we have

x+>
ε Qx+

ε ≤ x−>ε Qx−ε < x+>
ε Qx+

ε +
36ε

full(S∗)
‖c‖.

Proof. Let B(u0, r0) be a closed ball with maximum radius that is contained in S+
ε .

We define û := (1−λ)u+
ε +λu0 for some λ ∈ (0, 1) specified later. We want to find “small” λ

such that û is feasible for Q−ε while its corresponding objective value is still close to x+>
ε Qx+

ε .

Similar to the above proof, when we choose λ := 2 ε
r0

, then û is feasible for the problem Q−ε

with probability at least 1− δ.

Therefore, u−>ε PQP>u−ε is smaller than or equal to

û>PQP>û

=
(
u+
ε + λ(u0 − u+

ε )
)>
PQP>

(
u+
ε + λ(u0 − u+

ε )
)

= u+>
ε PQP>u+

ε + λu+>
ε PQP>

(
u0 − u+

ε

)
+ λ(u0 − u+

ε )>PQP>u+
ε + λ2(u0 − u+

ε )>PQP>(u0 − u+
ε ).
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However, from the Lemma 6.2.1 and the Cauchy-Schwartz inequality, we have

u+>
ε PQP>

(
u0 − u+

ε

)
≤ ‖P>u+

ε ‖ · ‖Q‖2 · ‖P>(u0 − u+
ε

)
‖

≤ (1 + ε)2‖u+
ε ‖ · ‖Q‖2 · ‖(u0 − u+

ε

)
‖

≤ 2(1 + ε)4 ‖Q‖2

(Since ‖u+
ε ‖ and ‖u−ε ‖ ≤ 1 + ε)

Similar for other terms, then we have

û>PQP>û ≤ u+>
ε PQP>u+

ε + (4λ+ 4λ2)(1 + ε)4 ‖Q‖2.

Since ε < 0.1, we have (1 + ε)4 < 2 and we can assume that λ < 1. Then we have

û>PQP>û < u+>
ε PQP>u+

ε + 16λ‖Q‖2

= u+>
ε PQP>u+

ε +
32ε

r0
(since ‖Q‖2 = 1)

≤ u+>
ε PQP>u+

ε +
32ε

(1− ε)full(S∗)
(due to Lemma 6.2.5)

< u+>
ε PQP>u+

ε +
36ε

full(S∗)
(since ε ≤ 0.1),

with probability at least 1− 2δ. The proof is done.
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Chapter 7

Concluding remarks

7.1 Summary

This thesis focuses on some applications of random projections in optimization. It shows that

random projections is a potential dimension reduction tool for many important optimization

problems. In order to effectively apply this technique, the desired problem should be of really

high dimension. Therefore, it is suitable for problems arising from “big-data” scenarios, such

as those in machine learning and image processing. The thesis studies several other popular

problems.

1. Linear and Integer Programming. We first use random projections to solve LPs

and IPs in their standard form. Using bisection arguments, we can transform them

into feasibility problems and apply random projections to their set of linear equality

constraints. We show that the original and projected feasibility problems are strongly

related (under some conditions) with high probability. Taking these results as a starting

point, we then develop some algorithms to solve linear programming directly (without

having to use binary search), thanks to the LP duality theory.

2. Convex Programming with linear system of constraints. We next consider the

feasibility problem where a linear system is accompanied by other convex constraints.

Similarly, the projected problem is formed by applying random projections to the set

of linear equalities while keeping others unchanged. We consider two choices of random

projections: one is sampled from a sub-gaussian distributions, one is from a randomized

orthogonal system. The relations between the two problems are established through the

so-called “Gaussian width”.
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3. Membership problem. We extend our study to the general case of membership

problem, in which we ask whether a given point belongs to a given set . In this case,

we prove that if we reach the “true dimension” of the set, we can always separate

the projected point from the projected set. In order to do that, we use the concept

of “doubling dimension” to quantify the intrinsic dimension of a point set. We also

generalize this result to the case when a threshold distance between a point and a set

is required.

4. Trust-region subproblem. Lastly, we apply random projections to study trust-region

subproblems. This is the only time we are able to reduce the number of variables but

not the number of constraints. We prove that the linear and quadratic models can

be well approximated by those in a lower projected dimension. We quantify the error

between the two problems using the so-called “fullness measure” of a set. The results

suggest that random projection can be used to study high dimensional derivative-free

optimization problems, which is intractable at the current time.

7.2 Further research

• It should be noted that, if a problem consists of linear constraints, we can directly

apply a random projection to them. Therefore, we are able to reduce the number of

(linear) constraints. On the other hand, if those linear constraints are written in the

inequality form, then we can reduce the number of variables (as in the case of the trust-

region subproblems in Chapter 6). However, we can not reduce both of them. One of

our future researches therefore will focus on reducing both these two quantities (at the

same time): the number of variables and the number of constraints. Our intuition tells

us that using random projections alone will not work, and we need to combine random

projections with other dimension reduction techniques. At the moment, we are looking

at the multiplicative weight update (MWU) algorithm, which seems to be a potential

candidate.

• Another research direction would be to extend the results and techniques developed

in this thesis to study other different problems. Currently, we are studying the use

of random projection and measure concentration in semidefinite programming (SDP).

We also planned to look at several problems arising from “machine learning” such

as constrained linear regression and support vector machine. They seem to be very

amenable to random projection techniques.

• One of the weaknesses of this thesis is the lack of numerical tests and “real-work appli-
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cations”. We will try to improve this facet by looking at more practical problems with

similar form as those being studied here. At the moment, we are studying the “quantile

regression”, a problem that can be reformulated as a (dense) linear feasibility problem.

The preliminary computational results are quite promising. It seems to be the right

application to illustrate the success of random projections.

• In addition to reducing dimension, we also want to investigate some side effects of

random projections. For example, they turn a very ill-scaled system (of linear equalities)

into a good one. Therefore, we want to know how the condition number of the projected

matrix TA changes, compared to the condition number of the original matrix A.
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Titre : Projection aléatoire pour l'optimisation de grande dimension  

Mots clés : Réduction de dimension , algorithme aléatoire , Johnson - Lindenstrauss lemme 

Résumé : Les projection aléatoires sont une 
technique très utile pour réduire la dimension des 
données et a été largement utilisé dans l'algèbre 
linéaire numérique, le traitement d'image, de 
l'informatique, l'apprentissage machine et ainsi de 
suite. Une projection aléatoire est souvent définie 
comme une matrice aléatoire construite d'une 
certaine manière de telle sorte qu'elle conserve de 
nombreuses propriétés importantes, y compris les 
distances, les produits internes, les volumes ... de 
l'ensemble de données. L'un des exemples les plus 
célèbres est le lemme de Johnson-Lindenstrauss, qui 
affirme  qu'un ensemble de m points peut être 
projeté, par une projection aléatoire, dans un 
espace euclidien de dimension O (log m) tout en 
assurant que les distances entre les 
points reste environ inchangé.. 
 
Dans cette thèse, nous appliquons des projections 
aléatoires pour étudier un certain nombre de  
 

problèmes d'optimisation importants comme la 
programmation linéaire et la programmation en 
nombres entiers, les problèmes d'appartenance 
convexes et l'optimisation des produits dérivés libre. 
Nous nous sommes particulièrement intéressés aux 
cas où les dimensions du problème sont si élevés 
que les méthodes traditionnelles ne peuvent pas 
être appliquées. Dans ces conditions, au lieu de 
traiter directement avec les problèmes d'origine, 
nous appliquons des projections aléatoires pour les 
transformer en des problèmes de dimensions 
beaucoup plus faibles. Nous montrons que, tout en 
obtenant des problèmes beaucoup plus facile à 
résoudre, ces nouveaux problèmes sont de très 
bonnes approximations des originaux. Cela permet 
de suggérer que les projections aléatoires sont un 
outil très prometteur de réduction de dimension 
pour beaucoup d'autres problèmes.. 

 

 

Title :  Random projection for high dimensional optimization. 

Keywords : Dimension reduction, randomized algorithm, Johnson-Lindenstrauss lemma 

Résumé : Random projection is a very useful 
technique for reducing data dimension and has 
been widely used in numerical linear algebra, 
image processing, computer science, machine 
learning and so on. A random projection is often 
defined as a random matrix constructed in certain 
ways such that it preserves many important 
features, including distances, inner products, 
volumes… of the data set. One of the most famous 
examples is the Johnson-Lindenstrauss lemma, 
which asserts that a set of m points can be 
projected by a random projection, to an Euclidean 
space of dimension O(log m) whilst still ensures 
that the inner distances between them 
approximately unchanged. 
 
 
 

In this PhD thesis, we apply random projections to 
study a number of important optimization 
problems such as linear and integer programming, 
convex membership problems and derivative-free 
optimization. We are especially interested in the 
cases when the problem dimensions are so high 
that traditional methods can not be applied. In 
those circumstances, instead of dealing directly 
with the original problems, we apply random 
projections to transform them into much lower 
dimensional problems. We prove that, while getting 
much easier to solve, these new problems are very 
good approximation of the original ones.   It is 
suggested that random projection is a very 
promising dimension reduction tool for many other 
problems as well.catervis mixtae praedonum. 
 

 Thalassius vero ea tempestate praefectus 
praetorio praesens ipse quoque adrogantis 
ingenii, considerans incitationem eius ad 
multorum augeri discrimina, non maturitate 
vel consiliis mitigabat, ut aliquotiens celsae 
potestates iras principum molliverunt, sed 
adversando iurgandoque cum parum 
congrueret, eum ad rabiem potius evibrabat, 
Augustum actus eius exaggerando creberrime 
docens, idque, incertum qua mente, ne lateret 
adfectans. quibus mox Caesar acrius efferatus, 
velut contumaciae quoddam vexillum altius 
erigens, sine respectu salutis alienae vel suae 
ad vertenda opposita instar rapidi fluminis 
irrevocabili impetu ferebatur. 
Hae duae provinciae bello quondam piratico 
catervis mixtae praedonum  
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