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Résune

La localisation de la@formation dans un milieu ductilé&fbrme est le necanisme d'instabilé
qui provoque la dfaillance nale. Ce pBnonene se produit sous chargement statique ainsi que
dynamique. Les exemples songpenés pour le cas de chargement quasi-statique dans Fig. 1.1a,
montrant la localisation de leéfiormation sous la forme de bandes de cisaillement dans une bande
de nétal en tension et pour le chargement dynamique en Fig. 1édigmhnt I'apparition de la
striction dans un tube en aluminium en expangtactromagatiques. Elle peut se trouver au sein
des matriaux et on parle alors d'instab#itmaérielle, ou sur la structure eptie et dans ce cas il
s'agit d'une instabilie geonetrique. Les exemples sontgsenés pour le cas de chargement quasi-
statique dans Fig. 1.1cédrivant le pliage localies dans des tubes dade nétal sous Ecrasement
axial et pour le chargement dynamique en Fig. 1.1d, montrant la localisation @fandtion dans
un anneau d'aluminiunglectromagatiguement compregs Cette tieseétudie le pknonene de
localisation de @formation dans des contextes Bréux ou @onetriques et avec des conditions
de chargement statique ou dynamique. Dans tous les cas, un ou@l esti utili€ : I'évolution
de la perturbatiorm support localis. La classi cation des sujets selon la condition de chargement
mécanique (statique vs. dynamique) et lacanisme de l'instabile (materielle vs. structurelle) est
présenge dans le tableau gurant dans la partie gauche de la Fig. d éhaque cellule contient un
expriment repesentative. Le tableau donnant le chapitre correspondant dans estectt dortn
dans la partie droite de la Fig. 1.2.

L'instabilité du maériau dans des conditions de chargement quasi-statique et la connexion entre
la localisation de la&formation dans les solides microstruétsiet la perte de leur elliptiétmacro-
scopigue esttudiee dans le chapitre 2. Un exemple d'un teépbnene est domasur la Fig. 1.1e,
décrivant la localisation macroscopique de &aimation sous la forme de kink-bands originaires
du ambement microstructural de la bre en sein de bois de balsa. L'approche délisetibn en
milieu continu du pBnonene de localisatioatudie les conditions des lois constitutives conduisant
la perte d'ellipticie desequations gouvernantes, prae qui permet des solutionséjuilibre dis-
continues. Les mazles de micro-racanique et les #ories d'homogreisation nonligaires nous
aidenta comprendre les origines de ce comportement et |'on pense qu'une perte d'edliptadro-
scopique (homogréise) s'aboutit aux motifs deadormation localigs. Bien que cela soit le cas
dans de nombreuses applications dénggrie, il pose une question é@ressante: existe-t-il toujours
un motif de @&formation localié apparaissant dans les solides quand le chargement critique est
dépasé et qu'il y a une perte d'ellipticé macroscopique?

Dans un souci de simpli@trelative et de tragcabiétanalytique, nougpondons cette question

dans le cadre restrictif d'un solide multicouche, nonlinear (hgfastique) en @formation plane



et plus s@ci quement sous compression axiale le long de la direction de laminage.éldeda
réponse se trouve dans la solution post-biféejlhomogreiste du prok®me, qui pour certains
matriaux est supercritique (augmentation de la force etaflatement), conduisant dans ces com-
positesa des chemins @quilibre post-bifurgas qui ne pesent pas de localisation défdrmation
pour la contrainte macroscopique bien au-dessus de celui corresparidargrte d'ellipticié.
Linstabilité du magriau en relation avec la striction avec les conditions de chargement dy-
namigues dans des plagues rapideméfdmirées, lorsque l'inertie est prise en compte, eéspnée
dans le chapitre 3. Nous suivongVolution temporelle des perturbations spatialement |daedis
et leurs interactions sur une plaque in niment large sous tension biaxiale dont les lois constitutives
présentent une perte d'elliptiéitt des niveaux deddormation aéquats. Levolution temporelle non
linéaire d'une perturbation spatialement locadi®setudée analytiquement et niériquement. La
méthode analytique, bas sur la li@arisation, est utilese pour @ nir la taille de la zone d'in uence
d'une perturbation ponctuelle et noétidions sa @pendance I'égard des lois constitutives et des
conditions de chargement. Les calculs muigues montrent comment la zone dgfatmation lo-
caliee se propage et explique l'augmentation apparente de la dudtlits les plagues minces par
le temps requis par la zone de striction pour atteindre les bornes de la plaque. Les interactions de
défauts donnertgalement une &k des modes dethillance obse®s exg@rimentalement.
Linstabilité structurale sous chargement dynamique est le sujet du chapitreetudig la lo-
calisation des motifs deéformation apparaissant dans des anndédastiques eélastoplastiques
élastigues compreasélectromagatiquement. Contrairemeatl'approche largement utiée dans
la littérature pertinente, qui repose sur lathrode d'analyse modale pougtérminer le mode pro-
pre le plus rapide de la structuredlequent seulement pour les cas la vitesse de la structure
parfaite est signi cativement i@fieurea I'onde caradristique assoée. Dans cette #se, nous
analysons lagponse tempsépendante d'un anneau rapidement et hydrostatiquement compress
des perturbations spatialement locadis de sa solution principale (radialement éjnique), a n de
comprendre l'initiation des granismes de&aillance correspondants. Il est mangue pour de
petites valeurs de la vitesse de chargement ap@digla structur@choue par un mode global, alors
gue pour de grandes valeurs de la vitesse de chargement @gpligstructuréchoue par un mode
localist de @&formation. Nous constatoagalement que les lois constitutiveéspgndana la vitesse
ne sont pas écessaires pour métiser les penonenes assoes, confornrdment aux observations
experimentales qui montrent qu'il n'y a pas d'augmentation de la duetilans les anneaux minces
lorsque les taux de charge augmentent et lI'importance @&sits statistiguement distriés qui

expliquent I'absence d'une longueur d'onde dominante dans les modeailkaahce.
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Chapter 1

Introduction

Localization of deformation in nitely strained ductile solids is the instability mechanism leading

to their failure by rupture. This phenomenon occurs under static and dynamic loading conditions. It
can occur in bulk of solids, in which case itis referred to asaterialinstability phenomenon. Such
examples are shown for the case of quasistatic loading in Fig. 1.1a, depicting the localization of de-
formation in the form of shear bands in a metal strip in tension and for dynamic loading in Fig. 1.1b,
depicting the onset of necking in an electromagnetically expanding aluminum tube. Localization
of deformation can also occur in structures, in which case one talks atstutcaural instability
problem. Such examples are shown for the case of quasistatic loading in Fig. 1.1c, depicting the
localized folding in square plastic tubes under axial crushing and for dynamic loading in Fig. 1.1d,
depicting the localization of deformation in an electromagnetically compressed aluminum ring. The
thesis at hand studies localization in the material and structural context, both under static and dy-
namic conditions, using a common tool: the evolution of a geometrically localized perturbation.
The classi cation of topics according to loading condition (static vs. dynamic) and to instability
mechanism (material vs. structural) is presented in the table shown in the left part of Fig. 1.2, where
each box contains a representative experiment. The table giving the corresponding chapter in this

thesis is depicted in the right part of Fig. 1.2.

Material instability under quasistatic loading conditions and the connection between localiza-
tion of deformation in microstructured solids to the loss of their macroscopic ellipticity is presented
in Chapter 2. A example of to such phenomenon is shown in Fig. 1.1e, depicting the macroscopic
localization of deformation in the form of kink bands originated from the microstructural buckling
of ber in bulk of balsa wood. The continuum modeling approach of the localization phenomenon
studies conditions on the constitutive laws leading to the loss of ellipticity in the governing equa-

tions, a property that allows for discontinuous equilibrium solutions. Micro-mechanics models and

1
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@

(b)

Figure 1.1: Some examples of localization of deformation: a) local necking in form of shear bands
in a metal strip under quasistatic tension b) localized necking under high strain rate tension (electro-
magnetically expanding Al 6061-O tube test (Zhang and Ravi-Chandar, 2010)) c) localized folding
in square metal tubes under quasistatic axial crushing (Bodlani et al., 2009) d) overlay of sequential
images of a rapidly electromagnetically compressed ring showing localized failure patterns (Mainy,
2012). e) compressive failure of balsa wood under quasistatic loading showing a localized deforma-
tion in form of kink bands (Da Silva and Kyriakides, 2007).



Figure 1.2: Left: a classi cation of topics with a representative experiment in each box; Right:

corresponding chapter in this thesis.

nonlinear homogenization theories help us understand the origins of this behavior and it is thought
that a loss of macroscopic (homogenized) ellipticity results in localized deformation patterns. Al-
though this is the case in many engineering applications, it raises an interesting question: is there
always a localized deformation pattern appearing in solids loosing macroscopic ellipticity when

loaded past their critical state?

In the interest of relative simplicity and analytical tractability, we answer this question here
in the restrictive framework of a layered, nonlinear (hyperelastic) solid in plane strain and more
speci cally under axial compression along the lamination direction. The key to the answer is found
in the homogenized post-bifurcated solution of the problem, which for certain materials is super-
critical (increasing force and displacement), leading to post-bifurcated equilibrium paths in these
composites that show no localization of deformation for macroscopic strain well above the one

corresponding to loss of ellipticity.

Material instability under dynamic loading conditions in connection to necking in rapidly strained
plates, when inertia is taken into account, is presented in Chapter 3, We follow the time evolution of
spatially localized perturbations and their interactions in biaxially strained thin plates whose con-
stitutive laws exhibit loss of ellipticity at adequate strain levels. The nonlinear time evolution of
a spatially localized perturbation is studied analytically and numerically. The analytical method,
based on linearization, is used to de ne the size of the in uence zone of a point-wise perturbation
and we study its dependence on constitutive laws and loading conditions. Numerical calculations
show how the localized deformation zone propagates and explain the apparent increase in ductility

in thin plates by the time needed by the necking zone to reach the boundaries of the plate. Defect
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interactions also give an idea of the failure patterns observed experimentally.

Structural instability under dynamic loading conditions is the object of Chapter 4 that studies
the localization of deformation patterns appearing in electromagnetically compressed thin elastic
and elastoplastic rings. In contrast to the widely used approach in the relevant literature, which is
based on the method of modal analysis to determine the structure's fastest growing eigenmode—
meaningful only for cases where the velocity of the perfect structure is signi cantly lower than
the associated characteristic wave propagation speeds, in this thesis we analyze the time-dependent
response of a rapidly, hydrostatically compressed ring to spatially localized perturbations of its prin-
cipal (radially symmetric) solution, in order to understand the initiation of the corresponding failure
mechanisms. It is shown that for small values of the applied loading rate, the structure fails through
a global mode, while for large values of the applied loading rate the structure fails by a localized
mode of deformation. We also nd that rate-sensitive constitutive laws are not necessary to model
the associated phenomena, in accordance with experimental observations that show no ductility in-
crease in thin rings when loading rates increase and the importance of statistically distributed defects

that explain the absence of a dominant wavelength in failure patterns.



Chapter 2

Localization of deformation and loss of
macroscopic ellipticity in

microstructured solids

2.1 Introduction

Localization of deformation in nitely strained ductile solids is the instability mechanism leading to
failure by rupture. The general principles were introduced for the study of this fascinating and im-
portant phenomenon in the context of continuum mechanics by Hadamard (1903) and subsequently
advanced in his spirit by Hill (1962), Mandel (1966) and Rice (1976). The underlying mathematical
concept in the continuum model is the loss of ellipticity in the governing equations, which allows
for discontinuous strain solutions. With the advent of homogenization theories since the 1960's, a
vast amount of work has been dedicated to the bridging of scales and understanding how microme-
chanical features in solids lead to their macroscopic (homogenized) loss of ellipticity at adequate
levels of strain or stress. A plethora of applications for a wide range of solids has appeared in the
literature, covering rubber elasticity, various types of composites (porous, ber-reinforced, particle-
reinforced, cellular solids etc.), metal plasticity, granular media, rocks, just to name a few. Since the
review of such a large and diverse body of work is unfortunately not possible, only key references
relevant to the points made in the present chapter will be cited.

To avoid dif culties related to microstructure geometry and the identi cation of associated scale
and representative volume, our attention is restricted to solids with a well de ned scale, i.e. to archi-
tectured materials with periodic microsctructures. The role played by buckling at the microscopic

scale, as the onset of instability mechanism leading to macroscopic localization of deformation

5
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in these materials has been established and subsequently analyzed by a long series of investiga-
tions. For the case of ber reinforced composites, the connection between local buckling and global
localization started with the work of Rosen (1965), who recognized microbuckling as the onset
of instability mechanism. Subsequent investigations of Budiansky (1983), Budiansky and Fleck
(1993), Kyriakides et al. (1995), Vogler et al. (2001) and many others showed, with progressively
more sophisticated experiments and detailed modeling, how the buckling instability evolves into a
localized deformation pattern (kink band formation) and studied in detail the characteristics of these
bands. The same basic mechanism, i.e. buckling initiated at the microstructural level, has been rec-
ognized in materials science as the cause for localization of deformation in cellular solids (crushing
zones) and the interested reader is referred to the comprehensive monograph by Gibson and Ashby
(1988). Detailed experimental and theoretical investigations followed in mechanics with a particu-
lar interest in studying the initiation and evolution towards localization of the deformation pattern

in cellular solids by Papka and Kyriakides (1994), Papka and Kyriakides (1998), Papka and Kyri-
akides (1999a), Papka and Kyriakides (1999b) for two-dimensional microstructures and Jang et al.
(2010), Wilbert et al. (2011) for three-dimensional microstructures and in establishing conditions
where local or global buckling is the critical mechanism at the onset of failure by Triantafyllidis and
Schraad (1998), Gong et al. (2005), Lopez-Jimenez and Triantafyllidis (2013).

Progressing in parallel, the nonlinear homogenization theories that appeared in mechanics rst
addressed questions on macroscopic response in plasticity, viscoelasticity and nonlinear elasticity
with various microstructures (e.g. see Suquet (1983), Talbot and Willis (1985), Ponté&iksta
(1991)) and subsequently explored localization of deformation issues (e.g. see Kailasam and Ponte
Castdieda (1998), Lopez-Pamies and Ponte CGeasta (2004)). For periodic solids the question
asked was the possibility of detecting instabilities at the microscopic level from their homogenized
properties, thus formally connecting buckling at the microscopic level to localization of deforma-
tion. For these composites it has been shown, initially for layered solids by Triantafyllidis and
Maker (1985) and subsequently for the general three-dimensional periodic case by Geymonat et al.
(1993), that microstructural bifurcation phenomena (micro-buckling) is the mechanism responsible
for macroscopic loss of ellipticity and that a long wavelength critical mode (based on Bloch wave
analysis of the perfect in nite composite) coincides with the loss of ellipticity in its homogenized
incremental moduli. Further work for porous elastomers by Michel et al. (2007) and for particle
reinforced elastomers by Michel et al. (2010) has been done to connect local buckling to the macro-
scopic loss of ellipticity and compare periodic to random isotropic media with the same volume

fractions.

Since loss of ellipticity is the property allowing for discontinuous equilibrium solutions, it is
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thought (and supported by micromechanical calculations in most of the known—to the best of our

knowledge—engineering applications), that a loss of macroscopic (homogenized) ellipticity results

in a localized deformation pattern in the post-bifurcated regime. However, two questions arise:

is there always a localized deformation appearing in the post-bifurcation of solids loosing macro-

scopic ellipticity and what are the necessary conditions in the homogenized response leading to
localization?

In the interest of relative simplicity and analytical tractability, the present chapter answers these
questions in the restrictive framework of an in nite, layered, nonlinear (hyperelastic) solid under
plane strain loading conditions and more speci cally under axial compression along the lamination
direction. For this problem, one can nd macroscopic loads where the homogenized moduli of
the principal solution loose ellipticity (and since the solid has an energy density, the corresponding
homogenized energy looses rank-one convexity). Moreover one can also ensure that the critical
(i.e. corresponding to the lowest applied load) bifurcation eigenmode of the in nite solid is global
(in nite wavelength eigenmode), a property that for this problem allows us to nd a homogenized
solution for the post-bifurcated equilibrium path. The answer to the localization question posed lies
in the homogenized, initial post-bifurcation response of the perfect layered solid, as seenin Fig. 2.1;
it will be shown that for a composite with a monotonically increasing force (and displacement) post-
bifurcation response ( > 0; . > 0), no localized deformation solution develops in spite of a

loss of ellipticity found at the macroscopic critical strain

Figure 2.1: Different cases for the homogenized, initial post-bifurcation behavior of a perfect, non-
linear (hyperelastic) layered composite under plane strain loading conditions which is subjected to
axial compression along its lamination direction. Stable paths are marked by solid lines and unsta-
ble ones by broken lines. For a composite with a monotonically increasing force (and displacement)
post-bifurcation response{ > 0; > > 0), no localized deformation solution develops in spite of

a loss of ellipticity found at the macroscopic critical strain

The presentation is organized as follows: The model of the perfect, laminated, periodic compos-
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ite is presented in Section 2.2; more speci cally the bifurcation load and corresponding eigenmode
and their nature (local or global) are discussed in Subsection 2.2.1. The exact solution for the post-
bifurcation equilibrium path corresponding to a global eigenmode is given in Subsection 2.2.2 while

the asymptotic analysis of the homogenized post-bifurcation equilibrium path and its connection to
the homogenized moduli of the composite is given in Subsection 2.2.3.

The results are presented in Section 2.3, starting with the choice of constitutive laws in Subsec-
tion 2.3.1 and continuing with the general homogenized solution for the post-bifurcated equilibrium
path for an in nite, perfect, incompressible hyperelastic layered solid in Subsection 2.3.2. This
model allows us to investigate all possible scenarios: cases under which this bifurcation involves
a maximum displacement, a maximum force or a bifurcation occurring under increasing force and
displacement (see Fig. 2.1). The case of neo-Hookean composites is presented in Subsection 2.3.3,
where it is shown that they always have a stable, homogenized post-bifurcation response under in-
creasing force and displacement. Composites with decreasing homogenized post-bifurcation force
or displacement are given next in Subsection 2.3.4. The important question of how an adequately
large, but nite-size volume of such a composite will behave is addressed next in Subsection 2.3.5.
It is shown, by means of introducing a small geometric imperfection at the middle of a large sample
that under thesesoft’ boundary conditions, the monotonically increasing force (and displacement)
composites will evolve towards a uniform shearing solution away from the macroscopic critical
load and show no localization of deformation pattern past the critical load, in spite of a macroscopic
loss of ellipticity; as expected the composites with the snap-through (i.e. maximum displacement)
macroscopic response will evolve into a solution with a single strong localized deformation zone.

Concluding remarks are presented in Section 2.4. Finally some complementary material of inter-
est is presented in the appendices: Details of the general bifurcation analysis of the in nite, perfect,
rate-independent, layered composite in 2.A, the post-bifurcation equilibrium of the compressible
neo-Hookean composite in 2.B and the in uence of constitutive model choice on the critical load
(i.e. comparison of the hyperelastic model with its deformation theory counterpart using the same

uniaxial response) in 2.C.

2.2 Modeling

This section pertains to the modeling of the onset of bifurcation and post-bifurcation response of
the axially compressed hyperelastic layered solid. Finding the critical load (i.e. lowest macroscopic
compressive strain or stress) at the onset of bifurcation and the corresponding eigenmode is pre-

sented in Subsection 2.2.1. The exact solution of the post-bifurcation problem for the case of a
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global critical eigenmode is given in Subsection 2.2.2, followed by the corresponding asymptotic

solution of this problem near the critical load in Subsection 2.2.3.

2.2.1 Bifurcation of a layered solid in plane strain: local vs. global critical mode

The presentation starts with the solution for the plane strain bifurcation problem for an in nite,
perfectly periodic, layered, hyperelastic solid. The composite is subjected to uniaxial compression
along the ber direction characterized by a monotonically increasiongd parameter 0,

which designates the absolute value of the applied macroscopic strain under displacement control
(or its corresponding work-conjugate stress 0, when force is controlled). The goal is to nd the
lowest critical load ¢ (or ) and corresponding eigenmode as the load parameter increases away
from =0 (or =0 ), which is the stress-free, reference con guration of the solid. Without loss

of generality, it is assumed in this section that the composite is loaded under displacement control.

Figure 2.2: Reference con guration with a unit cell in (a) and bifurcation eigenmode type (local or

global) in (b), for axially compressed layered solid deformed under plane strain conditions.

The in nite, weightless, perfectly periodic solid is composed of a self-repeating sequence of
two layers, as depicted in Fig. 2.2a. The two layfersber) and m (matrix) have initial thickness
H: andH in the stress-free reference con guration. The solid is deformed under nite, plane
strain conditions with perfect bonding between layers which guarantees traction and displacement
continuity across each interface for all possible deformations. A full Lagrangian formulation of the
problem is adopted with respect to a xed Cartesian coordinate sy&tem X ,, whereX 1 is the

lamination direction.



CHAPTER 2. LOCALIZATION IN MICROSTRUCTURED SOLIDS 10

The procedure for determining the onset of the rst bifurcation hinges on nding a non-trivial
solution to the difference between principal and bifurcated equilibrium solutions at the onset of a
bifurcation:

i =0, X12R; X22[GH]?! (2.2.1)

and interface conditions:
[ 2]1=0;[ ul=0; X12R; X22f0;Hm;Hg, (2.2.2)

where is the difference in the rst Piola-Kirchhoff stress tensors of the principal and bifurcated
equilibrium solutions, u is the corresponding displacement eld difference &hd= H, + H¢
is the initial thickness of the unit cell. Moreovdg] denotes a difference in the values of any eld
guantityg when evaluated on both sides of an interface.

The constitutive response of the hyperelastic composite takes the form:

ji = ?IJ\N, (2.2.3)
whereW (F) is the strain energy density of the ber or matrix layer dnds the corresponding
deformation gradient. Consequently, from (2.2.1) can be expressed in terms af by:

a@w |
QF @k’

The fourth rank tensdr is termed the ihcremental moduli tensbiand is a function of the position

i = Lik Fu; Lk = Fu = Uk (2.2.4)

X and the load parameter. The above formulation pertains to the case of a compressible solid.
The slightly simpler formulation for the incompressible case has already been presented by (Tri-
antafyllidis and Maker, 1985). The compressible version for the onset of bifurcation in the axially
compressed, hyperelastic layered solid under plane strain is given in (Geymonat et al., 1993), where
the interested reader can nd the complete derivations. However, for reasons of completeness of the
presentation, the main results are outlined in this section and detailed derivations are given in 2.A.

The critical load ¢, corresponding to the onset of the rst (as load parameter increases away
from zero) bifurcation is found to be:

— . N | .
c: !|1r|14f> 0 (' 1H); (2.2.5)

where”(! 1H) is a function of the dimensionless wavenumbeH of the eigenmode along the;

direction, as de ned in (2.A.14), and depends on the two layer thicknesses and their incremental

'Here and subsequently in this chapter, Latin indexes range from 1 to 2, unless indicated differently. Einstein's sum-
mation convention is implied over repeated indexes. Repeated indexes in parentheses are not summed, unless indicated

explicitly.
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moduliL™( ) andL®( ). When the wavelength; of the critical mode is commensurate with the
layer thicknes#$1, i.e.(L1=H)c =2 = (! 1H). 6 0, the critical mode is termeddcal’, and when
this is not the case, i.dL1=H)c =2 =(' 1H)c ' 1 ( (' 1H)c ! 0, the critical mode is
termed ‘Global’ (see Fig. 2.2b). The cagé 1H ). = 0 corresponds to aX ;-independent solution,
which is excluded by the local rank-one convexity condition for each layer, as shown in 2.A, thus
explaining the use of in mum in (2.2.5).

For the present chapter it is important to ensure that the bifurcation occurriggsaglobal, i.e.
(' 1H)c ! 0. In this case it can be shown that the critical load= 4, where 4 is the lowest
load corresponding to the rst loss of rank-one convexity of the homogenized mod(li) of the

composite de ned by:

= mi(rll > 0|det L ()njmy =0 ; (2.2.6)
where the expressions for the components of the homogenized nidd(il) tensor are given in
(2.A.21).

For all the layered composites considered here it is shown that (2.2.6) is satis ed along the

critical direction(n1; n2)¢ = (1; 0) and hence:
Lb121( ¢)=0; (2.2.7)

which implies a vanishing shear stiffness of the composite at that load, perpendicular to the lamina-

tion direction.

2.2.2 Post-bifurcation equilibrium for global critical mode: exact solution

By ignoring the in uence of boundary conditions, the onset and evolution of the long wavelength bi-
furcated solution emerging from, = y is depicted in Figure 2.3, according to which the initially
parallel and straight layers in the principal solution in Figure 2.3a evolve in a long-wavelength wavy
pattern shown in Figure 2.3b. The post-bifurcation equilibrium solution is idealized in Figure 2.3c,
according to which all layers rotate by the same angle, while each layer experiences a uniform state
of strain (and stress). All ber layers share the same strdirand all the matrix layers shafe",
butFf 6 F™.

More speci cally, the idealized post-buckling equilibrium is a periodic solution with a unit cell

depicted in Figure 2.4. This post-bifurcated equilibrium path is found as follows:
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Figure 2.3: Post-buckling mechanism for the case of a global critical mode in axially compressed
layered media subjected to a macroscopic compressive tress  with a corresponding macro-

scopic strain =

Figure 2.4: Unit cell for the post-buckling equilibrium solution of an axially compressed composite

with a global critical mode.

From the kinematics of deformation one has the following relafions

WFyi=FL,=Fh=1 ;

Lo f _ m— .
hFoii = Fyy = Fo1 =

(2.2.8)
. f _ .
. f .
ool = § Foot m F5;
2Henceforthhgi = ¢g" + mg™ denotes the weighted average of a functiomith different values of the ber and

matrix part of the composite.
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where ¢ = Hf=H and , = Hy=H are respectively the volume fractions of the ber and matrix.
From equilibrium we obtain the following relations fbr i i, the average rst Piola-Kirchhoff

stresses which are work-conjugatekg i:

h =+ 31+ m 0= ;
hpi= ¢ H+ m 5=0;
122= f 10 m 12=-0U;
(2.2.9)
hoai= %= B
21l = 1= 21
h 20 = 5= 2,=0:

The above relations re ect the fact that the bifurcated con guration is subjected to an average
compressive axial stresh (11i = < 0) along theX direction, zero average shear stress
(h 12i = 0) and zero lateral normal strefls i = 0). To complete the above system of equa-
tions (2.2.8) and (2.2.9), one has to add the constitutive response of the ber and matrix, given by
(2.2.3). A closed-form analytical solution is possible only for simple constitutive laws, as detailed

in Section 2.3.

2.2.3 Post-bifurcation equilibrium for global critical mode: asymptotics near critical
point

The bifurcated equilibrium path can be obtained from its homogenized energy density, de ned by:
wH( Y=twi= ;wh+ ,wm: (2.2.10)

By extremizing the homogenized potential enetyyi with respect to the displacement
parameters, introduced in Section 2.2.2, we show that the onset of bifurcation coincides with
the vanishing of the homogenized moduli,,( ¢) in (2.2.7). Indeed, a slightly stronger result is

available by showing that along the principal equilibrium patk():
Wi? = LY ) (2.2.12)

where the” superscript op subscript denotes evaluation on the principal equilibrium path. Indeed

from (2.2.10) and the de nitions of the rst Piola-Kirchhoff stress and the incremental moduli in

(2.2.3) and (2.2.4) one obtains:
*

@F @K o O@Fj

+

@ -, @ ., " @

(2.2.12)

H\N|’0 = Li(j)k|
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Notice rstthatin view of the kinematics (2.2.8)(2.2.8) that @F11=@? o = @F1=@?2 o =
0. Moreover the absence of lateral stresged" =@ &) = @V\flz@lﬁ—“2 =0in (2&.9)4 and the van-
ishing of the average sheldf1,i according to (2.2.8)lead to the vanishing ofthe | @F; =@% _;
term ofh\Ni? in (2.2.12). Consequently and since from kinema@g;=@ =0, @F1=@ =1

according to (2.2.8)and (2.2.8) respectively, (2.2.12) can be rewritten as:
* +

2
0 _ 0 0 0 @I 0 O
Wi~ = Lojpr+ Lapo+ Ligpn —— +Lisy ——

@ =0 @ =0

E

(2.2.13)

In the derivation of (2.2.13) use is made of the fact that in view of the orthotropy of the principal
solutionL?,,; = LS50y = LYy1; = LYo, = 0 (plus all the principal symmetry related moduli)
vanish, plus the fact@bE.=@) _, = 0, which follows from the principal solution's orthotropy
and the vanishing of the lateral stres$, = ;2 =0.

The last remaining ingredient to prove (2.2.11) is the calculatig@it,=@) _, for the matrix

and ber layers respectively. Indeed from taking thelerivatives of (2.2.8)and (2.2.9) one has:

#

= 1< =0 ;
m @ - f @ "
) (2.2.14)
#
@ o @B of .
Lo, @12 & + L% = Ly, @12 + Lioor

=0

From the above linear system one can calcu@d,=@) _, and @Plfzz@ o which upon
substitution into (2.2.13) and recalling the de nitionlo;,;( ) in (2.A.21), gives (2.2.11).

For the case of a hyperelastic layered composite of arbitrary energy density and volume frac-
tions where a closed-form analytical solution is not possible, the initial stability of the bifurcated
equilibrium path near the critical load can be found asymptotically. The bifurcation amplitude pa-
rameter of the system is the shegprincipal solution = 0). Due to the symmetry of the problem,
one has near the critical point the following asymptotic expressions for the applied average stress

( ) or average strain (:
2 2
= ot 25+ O 4, = o+ 2+ O( : (2.2.15)

The goal of the asymptotic analysis is to obtainand ; as functions of geometry and material
properties of the composite. Consequently, according to the general theory of stability of an elastic
system with a simple eigenmode at criticality (the homogenized perfect composite has a nite en-
ergy given in (2.2.10)), for displacement control, the stability of the bifurcated path near the critical

point requires » > 0 (or equivalently , > 0) for force control.
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2.3 Results

Following the presentation of the constitutive laws for the composite in Subsection 2.3.1, we pro-
ceed to the general formulation of the post-bifurcated equilibrium path for in nite, incompressible,
hyperelastic layered composites in Subsection 2.3.2. It is subsequently shown in Subsection 2.3.3,
that all perfect neo-Hookean composites irrespectively of ber-to-matrix thickness ratio, have an
initial post-bifurcation response with increasing load and displacement. We then present in Subsec-
tion 2.3.4 a more general layered composite, consisting of an equal thickness neo-Hookean layer
and a softer nonlinear matrix, that can exhibit all possible post-critical responses. It is worth noticing
that all these different post-bifurcation responses can be achieved with composites made of locally
stable, i.e. strongly elliptic layers. Numerical (FEM) calculations for boundary value problems
showing the absence or presence of localized deformation zones in these composites, in accordance
with the predicted initial post-bifurcation response of their perfect counterparts, are presented in
Subsection 2.3.5.

2.3.1 Constitutive laws

Two different versions of a rank-one convex, plane strain, isotropic, hyperelastic constitutive law
are employed. The incompressible version—used for its analytical tractability—of any isotropic
hyperelastic solid subjected to plane strain can be written in terms of a one variable scalar function
9(2):°

W(F)= 59(2); z=11 2 12=1; ¢0)=0; gY0)=1; (2.3.1)

where > O0is the initial shear modulus of the material dndi = 1; 2) are the two invariants of
the right Cauchy-Green tensGr, (related to the deformation gradient tensoby Cjj = Fy; Fyj),

namely:
1
li=tr C; 1= 5 (r C)2 trC? =det(C): (2.3.2)

Rank-one convexity is guaranteed whgf> 0 andg®® 0 (rank-one convexity requires a weaker
condition:g°+ 2zg°% 0, sincez  0).

A compressible version of (2.3.1) will also be used:
W(F)= 5o+ 5057 D% y=1r 27 (23.3)

where and are the initial shear and bulk moduli of the solid. This material's rank-one
convexity follows from its polyconvexity (see Ball (1977)) which is guaranteed, since0, by:
g°> 0andg® o.

3Here and subsequently in this cham@rg®etc. denote rst and second derivativesgoliith respect to its argument.
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2.3.2 Post-bifurcation equilibrium: general setting

As previously mentioned, a closed-form analytical solution of the post-bifurcation equilibrium path

described in Subsection 2.2.2. is not in general possible, thus motivating the need for the asymptotic
analysis presented in Subsection 2.2.3. However, for the special case of incompressibility or of the
case of compressible neo-Hookean composites one can nd analytically tractable expressions for

the post-bifurcation equilibrium paths.

For the incompressible composite in (2.3.1), the constitutive law of (2.2.3) a takes the form:

_ ow @
TR Pey

(detF 1);
(2.3.4)

detF = (12)"2 = F11Fp  FiaFp1 = 1;

wherep is the Lagrange multiplier associated to the incompressibility constraint (the unde ned part

of the hydrostatic pressure).

Recalling from the kinematics in (2.2:8)2.2.8) thatF1; = 1 andF,1 = one obtains

that: Y 2#
_ 0 (1+ F12)
1n=9g° 1 —
@ )
(1+ Fi)
=0 07;
22 ) pP=49 1 )
(2.3.5)
_ 0 1+ F1) |
21= g° Foot+t ———==
)
Fi2(1+ F12)
= 0 + -
2= 9 1 )2
From shear traction continuityf21 = ) from (2.2.9% and the kinematic constraint that
hF1,1 = 0 from (2.2.8}% one has the following system for the two unknovﬁq_fg andF%:
2 h . i
1+ mi Fio, MmFB +—— (Mf mp)=0;
(l )2 f F12 m 12 (1 )2 ( f m)
(2.3.6)

f m_ .
t Fio* mF{3=0;

me = ¢ Mm= mol:
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Solving the above linear system fé{z, F% yields:

(Mm M) m,
1 )2+ 2 fmMp+t mmg’

fo_
I:12_

(2.3.7)
(Mg Mm) ¢ .
(1 )2+ 2 fmpy+ mmf'

m —
I:12_

The - relationship along the bifurcated equilibrium path can now be obtained by combining
h 15i =0 from (2.2.9) with the expressions for /3" andF!," in (2.3.5) and (2.3.7):
9

8
=2
(w1 F
h 1o = Mg h 5
z M 1 )2+ 2°7
(2.3.8)
Mm=m; Mm, Mg= tMf+ My, My=—+ —:
f m
Thus the sought-after- relationship takes the form:
m
@ )+ 2= (2.3.9)
(mg my)*™

where without loss of generality we have tacitly assumed > 0i.e.ms > m .

One important remark about (2.3.9) is in order at this point, namely that this is an implicit
equation for and , given the fact thatny andmy, are functions oﬂ{ and! " which in turn
depend on and by:
1+ Fpp ?

1
where the expressions fét2 in the ber and matrix layers are given in (2.3.7). The critical axial

1= FjFj =@ )%+ +(F)2+ 2 (2.3.10)

strain ¢ is found from (2.3.9) for = 0.

2.3.3 Neo-Hookean composites

As it turns out, the simplest case of a neo-Hookean composite is always stable under either force
of displacement control with monotonically increasing forces and displacements as functions of the
shear . Moreover, a closed-form solution is possible in this case, simce= ; andmpy, =

are now constants:
#1=
1 )P+ 2= — =) =1 — 2

(e )2
(2.3.11)
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where it is tacitly assumed that the shear strain satifes: < ()= ¢ n)¥™.

Using (2.3.11), we calculate, the absolute value of the average compressive diress:
2

2
n 0 1 (( ))
= h pi=—%.1 @ )2+ 2% = ¢ e HJ,

2

© (2.3.12)

3=2

(e n)*

Figure 2.5: Dimensionless macroscopic axial stressg Vs. its work-conjugate strain for the
principal and bifurcated equilibrium path of perfect neo-Hookean composites with,, = 10

(lefty and =, =100 (right) calculated for four different volume fractions.

The absolute value of the dimensionless axial stressg vs. its work-conjugate strain is
depicted in Fig. 2.5, which shows the stable equilibrium paths of four different volume fraction
neo-Hookean composites for two different values of ber-to-matrix stiffness raties , = 10,

100. As expected, increasing the ber-to-matrix stiffness ratio, leads to a sharp decrease in the
slope of the bifurcated equilibrium path, in view of an increasingly softening matrix response in the
post-bifurcated path. From (2.3.11) one obtains, by settirg0, the following simple expression

for the critical load  under displacement control for the neo-Hookean composite:

( )2'

1=
G H

c=1 (2.3.13)

The in uence of ber volume fraction and stiffness contrast on the critical strgiis depicted
in Fig. 2.6. The reference critical straines used for calculating the in uence of ber volume frac-
tion under xed stiffness contrast corresponds to= 0:5 (and changes according to the stiffness
contrast), while the reference critical straips used for calculating the in uence of stiffness con-

trast under xed ber volume fraction corresponds te= , = 2 (and changes according to the
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ber volume fraction). As expected the critical strain increases monotonically with increasing ber
volume fraction, while for a xed ber volume fraction, the critical strain decreases monotonically

with increasing ber-to-matrix stiffness ratio.

Figure 2.6: In uence of ber volume fraction on the critical strain for two different ber-to-matrix
stiffness ratios (left) and in uence of the ber-to-matrix stiffness contrast on the critical strain for

four different volume fractions (right).

The in uence of ber volume fraction and stiffness contrast on the critical streds depicted
in Fig. 2.7. The reference critical stresgs used for calculating the in uence of ber volume frac-
tion under xed stiffness contrast corresponds to= 0:5 (and changes according to the stiffness
contrast), while the reference critical stresg; used for calculating the in uence of stiffness con-
trast under xed ber volume fraction corresponds te= ,, = 2 (and changes according to the
ber volume fraction). As expected the critical stress increases monotonically with increasing ber
volume fraction, while for a xed ber volume fraction, the critical stress after a steep initial de-
crease with increasing ber-to-matrix stiffness ratio, reaches a plateau after gbouf, = 10 but
not in a monotonic fashion, as seen in particular o= 0:95. Since an analytic form is available
for the entire homogenized, post-bifurcated equilibrium path in a perfect neo-Hookean composite
according to (2.3.11) and (2.3.12), one can nd the stability of this equilibrium path by checking
the positive de niteness of the homogenized energy. For algebraic simplicity, we calculate here the
initial curvatures at criticality , and », whose positivity implies stability, according to the general

theory, at least in a neighborhood of the critical point.

At criticality, the strain curvature » of the neo-Hookean composite's bifurcated equilibrium
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Figure 2.7: In uence of ber volume fraction on the critical stress for two different ber-to-matrix
stiffness ratios (left) and in uence of the ber-to-matrix stiffness contrast on the critical stress for

four different volume fractions (right).

path is found from (2.3.11):

1 2 1
= = == — 2.3.14
i B RS (2314
The corresponding curvature is obtained by evaluatingd® =d 2 o from (2.3.12):
3 G 1 2 3
= 1 =) —=—X: 2.3.15
71 c (1 of ) ¢ (1 0)? ( )

We have thus shown that for the perfect, incompressible neo-Hookean composite, its homogenized
post-bifurcation path has monotonically increasing displacements and forces; it is thus stable near
the critical point and even beyond.

This result is not surprising; in contrast to classical ber reinforced composites where the much
stiffer ber is linearly elastic while the soft matrix has a low hardening which favors shearing of the
matrix and unloading of the ber leading to a decreasing displacement (snap-back), here each layer
of the composite stiffens at the same rate, resulting in an increasing force and displacement at the
bifurcated equilibrium path.

Itis worth checking if this strong post-bifurcation stability result found for arbitrary neo-Hookean
composites is in uenced by compressibility; it turns out that it is not and the corresponding calcu-

lations are in 2.B.
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2.3.4 Rank-one convex composites exhibiting all possible cases of post-bifurcation
response

We have proved that the homogenized, post-bifurcation equilibrium path of a perfect layered com-
posite consisting of two neo-Hookean layers of arbitrary shear moduli and volume fractions is sta-
ble (near the critical load), under either force;(> 0) or displacement ( > 0) control. An

even stronger result holds: the homogenized, post-bifurcation equilibrium paths of the perfect neo-
Hookean composite have a monotonically increasing macroscopic stress and strain as the bifurca-
tion amplitude increases (d=d > Oand d=d > 0), as one can easily show from (2.3.11) and
(2.3.12).

The question that naturally arises is whether a different choice of a locally stable (i.e. rank-one
convex) constitutive laws, i.e. a nonlineg(z) in (2.3.1), can lead to an unstable post-bifurcation
response. The answer to this question is af rmative and we present below composites that exhibit
unstable post-bifurcated equilibrium paths even under displacement controj, «e0.

For analytical tractability, we consider composites of two equal thickness layers (m, =
0:5) but different energy densities, de ned by (2.3.1):

o (2) = %z; On(2) = Ez”; 1 >0 1 n>05 (2.3.16)
Since the material is isotropic, incompressible and under plane strain conditions, it is best described
by its response in simple shear Recalling that under simple she@an? = z (= I; 2) and
that its shear stress= dW=d , we record in Fig. 2.8 the response of the ber and matrix layers.
The response of the neo-Hookean ber is linear & 1) and always stiffer than the response of
the matrix, which exhibits softening under increasing applied strain. The singularity of the matrix

material at the origin can be removeand the shear strain, where the matrix response starts

differing from the ber's is adjusted by the parameteas seenin Fig. 2.8. The equal layer thickness

neo-Hookean composite is recovered for a matrix withl and = = ¢.
For the cases = = 0:50ne obtains from (2.3.7):

thus yielding with the help of (2.3.10) the following expressions for the strain invariainteach

*We setgr (z) = gm(z) for0O z  zm andgm(z) =0:5z "forz  zm, wherezm, = ( m)? with . the shear
strain that marks the onset of the matrix nonlinear response. Continuity of shear stigsdiettes thatn = zZ& ",

Note that the matrix material is always strongly rank-one convex sifidésd 2 > 0.
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layer:
f_ 1 1 f .
E R e A o A e
(2.3.18)
m 2 2 1 4
M= )° + @ )2+2 1+ a 2 + a )2:zm+2:

Consequently the- relationship along the bifurcated equilibrium path in (2.3.9) takes the form
(after recalling also the de nitions fans , mpy, in (2.3.6}):

1 n (zy)" 1

2 2 —
R S

(2.3.19)

The corresponding expression for the macroscopic stress along the bifurcated equilibrium path is

found to be:
1+n (zy)" "
21 )3

Solving equation (2.3.19) for = 0 yields the following implicit equation for the critical strain:

2O
= h pi= 1 @ )%+ 2° (2.3.20)

1 (n 1) 1 1 2
n (1 C)2+ 2 — ( C) .

@ o T o2 #320

where the bifurcation occurs at the lowest positive rqoof the implicit equation (2.3.21).
Of interest is the initial post-bifurcation behavior of this composite, i.e. the curvatyraad
2 of the bifurcated equilibrium path at critical load. To this end, by taking into account (2.3.18),

we differentiate (2.3.19) with respecttaat =0 to nd:
2 3

@ o 61 (1 o2 (@ n)1+@ 2°
2 1 n g:
1 2+ 1+(1 27

T1 @ o2

(2.3.22)

Initial post-bifurcation stability of this composite under displacement control requires 0, i.e.

that the numerator in the above expression fpbe positive:
1 (@ 9% (1 ni1+@ o?°>0 (2.3.23)

To nd the initial stability under force control, by taking into account (2.3.21), we differentiate

(2.3.20) with respecttoat =0to nd »:
2 3

L o®g31 @ 022 21 n 2 (1 % 1+ c)zzg_
P @ o+t 1 9 |

2 =

(2.3.24)
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Figure 2.8: Left: Uniaxial response in simple shear || of the neo-Hookean ber (linear, in black)

and of the matrix (in color, for different values of the hardening expongaof a composite contain-

ing two equal thickness layers. Right: Initial post-bifurcation stability behavior of this composite
at a given critical load (¢, in solid black lines) as a function of matrix constitutive parameters

n. Area shaded red:, > 0, , > 0, area shaded greeny < 0, » > 0, remaining non-shaded
area:. » < 0, » < 0. The blue shaded area at the bottom of the graph indicates composites where

a local bucking mode precedes the global one.

Initial post-bifurcation stability of this composite under force control requirgs 0, i.e. that the

numerator in the above expression for be positive:

31 (1 2% 21 n2 @ % 1+(1 2°>o0 (2.3.25)

The range of matrix constitutive parameters @, see de nition in (2.3.16)), for which the
homogenized, post-bifurcated solution is initially stable under either force or displacement control
( 2> 0, 2> 0, red-shaded area), is initially stable only under displacement contgok( 0,

2 > 0, green-shaded area) and initially unstable under either force or displacement coatol (
0, 2 < 0, non-shaded area), is given in Fig. 2.8. The same gure also records contours of equal
critical strain ¢ as a function of the matrix constitutive parametetsn. Notice that for large
critical strains (approximately. > 0:5) the composite is initially stable, while for small strains
(depending on the value of) the composite exhibits a snap-back & 0). A word of caution: for
the post-bifurcation results to be meaningful, one should select matrix paramgteisr which the

critical mode is global in nature, i.e. exclude composites with matrix parameters in the blue-shaded
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area of Fig. 2.8 (see discussion in Section 2.2). The results obtained in Fig. 2.8 are important in
selecting composites for the numerical calculations of the boundary value problems reported in the

next section.

2.3.5 Boundary value problem calculations

Thus far we have established the homogenized post-bifurcation behavior of anin nite, perfect, ber-
reinforced, hyperelastic composite compressed axially along the direction of its bers. We want
to nd out the response in the bulk of such a composite (i.e. away from boundaries) by solving an
appropriate boundary value problem, in order to establish whether a localized pattern of deformation
will actually emerge or not, once the critical load is approached, given that the energy density of the
homogenized principal solution looses its rank-one convexity once a critical macroscopic sfrain (
or stress () has been reached. We seek the equilibrium path eéalistic’ such composite, i.e.
one with the inevitable small imperfections and nite boundaries; in the interest of avoiding edge
effects, an adequately large sample should be considered and the perturbation should vanish on the
sample edges. No analytical solution being possible (to the best of our knowledge) for a nite-size,
imperfect composite, a numerical one is sought based on FEM discretization of the corresponding
boundary value problem. It should be mentioned at this point that there is a vast amount of work
dedicated to the problem of multiscale calculations, i.e. how to nd the response of a microstructured
solid which is prone to localization by selecting an appropriate representative volume element,
consistent boundary conditions and an ef cient computational strategy. Our main concern for the
FEM calculations is the avoidance of boundary strain concentrations and this is achieved by the
procedure described below. However, the reader interested in this aspect of the problem is referred
to the recent article by Coenen et al. (2012), who propose an interesting computational strategy for
arbitrary microstructures and also present a very comprehensive literature review.

To this end we seek the solution of a nite-size, initially square segment of the composite (of
dimensiond. L), subjected to a macroscopic (average) deformation gradientiiti = 1 ,
hF1,1 = 0 and a macroscopic (average) rst Piola-Kirchhoff stress wiithoi = h 20 = 0, in
agreement with (2.2.8). Moreover, periodic boundary conditions are imposed on opposite faces of
this square segment, so that the perfect, nite-size composite can exhibit both the perfect principal
and perfect bifurcated solutions presented in Subsection 2.2.2, thus avoiding the development of
large deviations from the perfect solution at the boundaries.

Several such nite-size composites are investigated; the results presented here correspond to
an initially square segment containing 40 unit cells, with each such cell consisting of a ber layer

(initial dimensionL=80 L and a matrix layer (initial dimensidc=80 L ; only composites with
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equal matrix and ber volume fractionsf = ; = 0:5) are modeled. Each ber and matrix
layer are discretized using a Cartesian grid of 4 quadrilateral elements through the thickness and
320 elements along their length for a grid consisting of a total of 102,400 such elements. The FEM
calculations are performed using ABAQUS by implementing the constitutive relations in (2.3.16)
into the incompressible element CPE4H.

The reference con guration of the sample has a small geometric imperfection with respect to its
perfect counterpart, which is necessary to trigger the bifurcated solution. Accordingly the following
initial imperfection which is designed to have a maximum amplitude at the middle of the nite-size

composite and vanish at its boundaries:
X1=0; Xo= sin( X p=L)arctan] (X=L 1=2)]; (2.3.26)

where the parameter = 10 2 controls the maximunX ,-amplitude of the perturbation and the
parameter = 8 controls itsX ;-range. The origin of the coordinate system is taken at the bottom
left corner of the domain. The control parameter is the macroscopic axial stramd a Riks
continuation method is employed to bypass the limit loads which are associated to snapbacks.

The FEM calculations presented correspond to three different composites, described in Subsec-
tion 2.3.4; the material parameters of their matrix layers are indicated by a dot in Fig. 2.8, which
gives the initial post-bifurcation of the homogenized response for the corresponding perfect com-
posite (then = 1 axis corresponds to the fully neo-Hookean composite with = ¢, as
described in Subsection 2.3.3).

The response of a neo-Hookean composite witte , = 0:5and = = = 0:22
whose perfect con guration exhibits a stable post-bifurcation behavige( 0, » > 0), is shown
in Fig. 2.9. The composite has two equal thickness neo-Hookean 1) layers (see point A in
Fig. 2.8). Onthe left is the macroscopic stress-strain response of the homogenized perfect composite
(in red) and of its nite-size imperfect counterpart, based on FEM computations using 40 unit cells
(in black). On the middle and right are depicted the deformed con gurations at points a and b,
showing also contours of the Lagrangian shear strain comp&enThe macroscopic stress-strain
curve of the imperfect composite is almost indistinguishable from its perfect counterpart. When the
critical strain ¢ is reached at point a, the imperfect composite shows a higher strain zone in the
middle, as seen in the middle picture of Fig. 2.9. Upon further increase of the applied macroscopic
strain, the composite reaches at point b a uniform solution corresponding to the bifurcated state
of its perfect counterpart, as shown in the right picture of Fig. 2.9. In contrast to what is known
in typical engineering composites, the present example shows a case where in spite of loosing its
macroscopic rank-one convexity, the composite exhibits no localized zone of deformation in its

post-critical response.
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Figure 2.9: Response of a neo-Hookean composite, exhibiting a stable homogenized post-
bifurcation behavior (» > 0, » > 0). The composite consists of two equal thickness neo-Hookean

(n = 1) layers with a stiffness ratio = = ¢ = 0:22, see point A in Fig. 2.8. On the left is the
macroscopic stress-strain response of the homogenized perfect composite (in red) and of its nite-
size imperfect counterpart computed by FEM (in black). On the middle and right are deformed
con gurations at points a and b, showing also contours of the Lagrangian shear strain component

E12. Undeformed con guration is shown by its bounding square.

The response of a locally stable (i.e. locally rank-one convex= ., = 0:5 composite
which has a neo-Hookean ber and a nonlinear matrix witle 0:75, = 1:0, whose perfect
con guration exhibits an initially stable post-bifurcation behavioe (> 0, > > 0 and identi ed
by point B in Fig. 2.8), is shown in Fig. 2.10. On the left is the macroscopic stress-strain response
of the homogenized perfect composite (in red) and of its nite-size imperfect counterpart based
on FEM computations using 40 unit cells (in black). On the middle and right are depicted the
deformed con gurations at points a and b, showing also contours of the Lagrangian shear strain
componenE 1,. Similarly to the neo-Hookean case presented in Fig. 2.9, the macroscopic stress-
strain curve of the imperfect composite is almost indistinguishable from its perfect counterpart.
When the critical strain ¢ is reached at point a, the imperfect composite is covered by alternating
higher and lower strain zones (a mix of principal and bifurcated solutions of the corresponding

in nite, perfect composite), as shown in the middle picture of Fig. 2.10. Upon further increase of
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Figure 2.10: Response of a composite with a stable homogenized post-bifurcation behavi®r

2 > 0. The composite consists of two equal thickness layers: a neo-Hookeaf Y and a softer
layer @ = 0:75, = 1:0, see point B in Fig. 2.8). On the left is the macroscopic stress-strain
response of the homogenized perfect composite (in red) and of its nite-size imperfect counterpart
computed by FEM (in black). On the middle and right are depicted the deformed con gurations at
points a and b, showing also contours of the Lagrangian shear strain companaehindeformed

con guration is shown by its bounding square.

the applied macroscopic strain, the compaosite reaches at point b a uniform solution corresponding
to the bifurcated state of the perfect composite, as seen in the right picture of Fig. 2.10.

The response of a locally stable (i.e. locally rank-one convex) composite with a neo-Hookean
ber and a matrix withn = 0:55, = 0:22, whose perfect con guration exhibits a homogenized
post-bifurcation behavior with an initial snap-back,(< 0, » < 0 and identi ed by point C
in Fig. 2.8), is shown in Fig. 2.11. On the left is the macroscopic stress-strain response of the
homogenized perfect composite (in red) and of its nite-size imperfect counterpart based on FEM

computations using 40 unit cells (in black). Due to structural effects, the post-bifurcation snap-back
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Figure 2.11: Response of a composite with a snap-back homogenized initial post-bifurcation behav-
ior 2< 0, 2< 0. The composite consists of two equal thickness layers: a neo-Hookeat )

and a softer layem( = 0:55, = 0:22, see point C in Fig. 2.8). On the left is the macroscopic
stress-strain response of the homogenized perfect composite (in red) and of its nite-size imperfect
counterpart computed by FEM (in black). On the middle and right are depicted the deformed con-
gurations at points a and b, showing also contours of the Lagrangian shear strain compgnent

Undeformed con guration is shown by its bounding square.

of the imperfect, nite-sized composite is signi cantly more severe than the one of its homogenized,
perfect counterpart, resulting in a reversal of the macroscopic stress-strain path. It is practically
impossible to distinguish in Fig. 2.11 between the forward loading path, which ends at point a
(maximum macroscopic strain and stress) and the return path, which ends at b. The corresponding
deformed con gurations at points a and b, as well as the contours of the Lagrangian shear strain
component ;, are depicted in the middle and right of Fig. 2.11.

When the maximum macroscopic strain and stress is reached (point a) one can see in the middle
picture of Fig. 2.11 the beginning of the formation of a localized deformation zone at the middle
of the imperfect composite, where the amplitude of the imperfection is maximized. When the
structure has snapped back and reached point b, one can see in the right picture of Fig. 2.11 a very
pronounced localized deformation zone, while the rest of the composite relaxes and tries to return
to its principal equilibrium path. This behavior is also typical in many elastoplastic composites
studied in the literature, where the localization of deformation mechanism and details of the kink
band formation have been studied in detail.

All the above calculations pertain to locally stable (i.e. locally rank-one convex) hyperelastic

composites that share the same feature: a critical (i.e. occurring at lowest applied macroscopic load)
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long wavelength bifurcation mode which corresponds to a loss of ellipticity in the homogenized
principal solution. Our calculations show that a localization of deformation in these composites
does not always appear in the neighborhood of critical load and beyond; the result depends on the
post-bifurcation behavior of the homogenized, perfect composite. In contrast to the widely studied
cases of elastoplastic composites, with high stiffness contrast between ber and matrix that exhibit
kink band solutions, we have shown here the existence of composites that have stable, homogenized
post-bifurcated solutions with increasing macroscopic stresses and strains. These composites do not
exhibit localized deformation post-bifurcated solutions, in spite of the fact that their homogenized

energy looses its rank-one convexity as the applied loading increases.

2.4 Conclusion

Localization of deformation in solids is the instability mechanism leading to failure by rupture.

In the framework of continuum modeling, this phenomenon is captured by the loss of ellipticity
in the governing equations, may lead to discontinuous strain solutions. To better understand the
origins of continuum models that exhibit loss of ellipticity at adequate levels of strain or stress, a
substantial amount of work has been dedicated to the nonlinear homogenization of microstructured
solids to study how geometry and constitutive laws at the microscopic level lead to a macroscopic
loss of ellipticity. Since a loss of ellipticity is the property allowing for discontinuous equilibrium
solutions, it is thought that a loss of macroscopic (homogenized) ellipticity results in a localized
deformation pattern in the post-bifurcated regime. Although this is the case in many engineering
applications, it raises interesting questions: is there always a localized deformation appearing in the
post-critical equilibrium path of solids loosing macroscopic ellipticity and what are the suf cient
conditions in the homogenized response that lead to localization?

The present chapter answers these questions in the framework of a simple, but analytically
tractable microstructure, namely an in nite, layered, locally stable (i.e. point-wise rank-one con-
vex) nonlinear (hyperelastic) solid under plane strain loading conditions and more speci cally un-
der axial compression along the lamination direction. For this problem, one can nd macroscopic
loads where the moduli of the homogenized principal solution loose ellipticity (and since the solid
has an energy density, the corresponding homogenized energy looses rank-one convexity). More-
over we can ensure that the critical (i.e. corresponding to the lowest applied load) buckling mode
of the in nite, perfect solid is global in nature (in nite wavelength eigenmode), a property that al-
lows us to nd a homogenized solution for the bifurcated equilibrium path of the in nite, perfect

structure. Within this homogenized framework, we prove that perfect, neo-Hookean composites
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(incompressible or compressible) of arbitrary ber/matrix volume fraction, always have a stable
initial post-bifurcation response with increasing force and displacemer (0, » > 0). We also
construct a more general composite, consisting of a neo-Hookean ber and a softer matrix of equal
thicknesses which, depending on the constitutive details of the matrix, can exhibit all possible initial
post-bifurcation responses: a snap-back€ 0, , < 0), amaximum force (< 0, 2> Q)ora

stable bifurcation occurring under increasing force and displacement 0, » > 0).

The important question addressed next is how a nite-size volume of such a composite will
behave in the bulk, i.e. away from its boundaries where strain concentration can easily appear. To
this end, we consider a square sample (containing 40 unit cells and using a re ned FEM mesh for
the corresponding calculations) of the composite with periodic boundary conditions that can capture
the homogeneous principal and bifurcated equilibrium paths of the perfect structure. We show,
by means of introducing a small geometric imperfection at the middle of the sample, that under
these boundary conditions composites with a monotonically increasing force (and displacement)
homogenized initial post-bifurcation response (> 0, > > 0) will evolve towards a uniform
shearing solution away from the macroscopic critical load and show no localization of deformation
pattern past the critical load, in spite of a macroscopic loss of ellipticity of the principal solution. As
expected, composites exhibiting a the snap-back (i.e. maximum displacement) in their macroscopic
response (» < 0, » < 0), will evolve into a solution with a single strong localized deformation
zone.

The key concept for nding whether loss of macroscopic ellipticity leads to localization of de-
formation lies in the post-bifurcation behavior of the solid under investigation. Providing consistent
criteria based on homogenization ideas, for the absence or presence of localized deformation zones
in the post-critical regime of nitely strained solids, is possible, as the current layered composite
model shows, for cases when the critical bifurcation mode is also global in nature and well separated
from other eigenmodes. For more complex problems, such as solids with two- or three-dimensional
periodic microstructures, the presence or absence of localized deformation patterns cannot be an-
swered by using homogenization ideas, because of the local nature of the bifurcated solutions ( nite
number of unit cells involved). Instead ef cient numerical calculations of their equilibrium paths
that take into account the symmetry groups of these structures (both point and space) are needed in

order to nd their solutions well past the onset of a rst instability (see Combescure et al. (2016)).
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2.A Critical load of an axially compressed layered solid

2.A.1 Finite wavelength (local) bifurcation eigenmodes

To nd conditions for a non-trivial solution to the system (2.2.1), (2.2.2) and (2.2.3), one can take
advantage of itX ; translational invariance by considering a Fourier transform with respect to

This linear system of partial differential equations and interface conditions with piecewise constant
coef cients that governs the onset of bifurcation of the layered solid is thus reduced to the following

linear system of ordinary differential equations and interface conditioksin
P2Liga% i 2(Lizka + Lim2)¥k2  Lizko%22 = 0; (2.A.1)
[i' 1Liok1% + Lizko¥;2] = 0; [%i]=0; (2.A.2)

where®(! 1; X») is the Fourier transform of u(X1;X>2) and the real numbdr; is the Fourier
transform variable corresponding Xo;. It is assumed that the eld u is uniformly bounded and
has adequate continuity, in which case its Fourier transfbenrists in the sense of distributions.

To determine a non-trivial solutioh (up to a multiplicative constant), for the periodic system
of ordinary differential equations in (2.A.1) and (2.A.2), the system is solved on just one unit cell
together with some additional boundary conditions at its egss 0" andX, = H*. These
conditions are provided by Floquet theory, which applies to linear systems of ordinary differential

equations irX », with periodic coef cients (period is the unit cell thicknedg, according to which:
Gt HT) =exp (it 2H)0i(! 1;07); (2.A.3)

where the real numbeér, (! ;H 2 [0;2 )) is the Floquet parameter of the solution.
The general solution to the system of ordinary differential equations with piecewise constant

coef cients (2.A.1) is found in each layer to be the sum of four linearly independent partial solu-

tions:
P, m)  m
(! 1, X2) = j=1 Ck exp il 1Z(J)X2 7 X22 (0;HM);
p, 10 f
Ok(' 11X2) = i=1 Ck exp i! 1Z(J)X2 , X22(Hm,H), (2A4)
P, m

m
(! 15 X2) j=1 Cx exp it 1Z;H X2 5 X222 (H;H + Hp);

whereZjy (j = 1;4) are the four complex roots of the following fourth order, biquadratic polyno-
mial in Z:
det LixoZ?+ (Lizki+ Liw2)Z + Lizka =0; (2.A.5)
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andCU) is the eigenvector of th2 2 matrix shown in brackets in (2.A.5) associated with the root

Zjy- The eigenvector componer(téij) andcg) are related by:

L12122(2j) + L
(L1221 + L1122)Z(5)
Note that equations (2.A.5) and (2.A.6) are valid for each of the two layers and that superscripts

ng) - D(j)C?); D(j) = (2.A.6)

m andf are omitted from these equations in the interest of notational simplicity. The requirement
that the rootsZ ;) are complex for the loading parameterof interest, stems from the assumed
strong rank-one convexity of each layer, which implies the absence of any discontinuous deforma-
tion gradients in each layer for all loading paths considered here.
The Fourier transform of the interface conditions (2.A.2),fafter substituting equations (2.A.4)
m

m
and (2.A.6), gives the following equations for the coef ciefitg, C1 andC 4 in matrix form:

m . m m f ) f f
Vexp I' 1 ZHn C1 = Vexp I 1ZHy Cy;

(2.A.7)
f f f m m m
Vexp il 1ZH C; = Vexp il 1ZH Cy;
for the interfacexX > = Hy andX, = Hy, + Hf = H, respectively. The components of the 4

matricesV andZ are de ned by:

Vy =1,
Vo = Dyj);
V3 = La212Z(jy + L1221Djy; (2.A.8)

Vaj = Lo2ua+ L2222Z(j)Dyjy;

Zip = i 2y

The components of the vect@r; are the four constanfsf) introduced in (2.A.4). Here again,
the superscripten andf are omitted from (2.A.8) in the interest of notational simplicity since the
components of , Z andC 1 are evaluated on the corresponding layer. Substituting equation (2.A.4)

into the Floquet conditions (2.A.3) results in the additional relation:

m i i m m
Co=exp(i' 2H)exp i' 1ZH Ci: (2.A.9)

SRepeated indexes in parentheses are not summed, unless explicitly indicated by a summation symbol.
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Finally, after employing the above result (2.A.9) into equations (2.A.7), a non-trivial solution
m
¢(! 1;X2) 6 0 (or equivalentlyC1 6 0) exists if the matrix with constant coef cients has

unimodular eigenvalues:
det[K(;! 1H) exp(i! 2H)1]=0;

| o (2.A.10)

f m | |
K=KK; K=Vexp il 1ZH, V ; |I=mf;
wherel is the4 4 identity matrix. It should be noted here that the 4 matrix K(;! 1H)
satis es:
detfK]=1; K (;! {H)= K(; !1H): (2.A.11)

represents the rst occurrence of a bifurcation in the layered solid during a monotonically increasing
loading history, corresponds to the rst occurrence of a singular matrix in (2.4.28)the loading
parameter increases from zero, over all possible pairs of dimensionless wavenuimidérand
IoH.

The calculation works as follows: At criticality. := exp (i(! 2H)¢) is an eigenvalue of matrix
K, and in view of the fact thg.j = 1), it corresponds to the rst occurrence of a unimodular root

of the following fourth order equation:
vyt VARG H) +YAIS (G H) yIR (G H)+1=0; (2.A.12)
where the two real invariant$< of matrixK , satisfy in view of (2.A.113:
1K =tr K; 1K = % (trK)2 trK? ;10 tH)= 1] 11H): (2.A.13)

For a xed dimensionless wavenumblkeiH , ’\(! 1H) is the lowest value of for which the
characteristic equation (2.A.12) admits a unimodular solutionyfand corresponds to the rst
bifurcation load with a dimensionless wavelengtH along theX; direction. It is given by the

lowest positive root of one of three equations:
8

9
% 201X 2=0; (1 2H)c = 0; §

"riH)=min _ > 02K +1X +2=0; (1 oH)e = ; L (2.A14)

1
zlr(|f)2 IX+2=0; (12H)c=cos Y(1K=4):;

The critical load parameter. is then found by a numerical search as the lowest value of

“(! 1H), when the in mum is taken over an adequately large intetvgi 2 R, in the process
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also giving the corresponding critical dimensionless wavenurflbgt )., as de ned in (2.2.5).
Notice that in view of (2.A.13 only positive wavenumbers {(H > 0) need to be considered, thus

explaining the de nition of the critical load in (2.2.5).

Figure 2.12: Different types of bifurcation modes in axially compressed layered media.

Some additional comments are in line at this point. Depending on whether the in mum in
(2.A.14) occurs at the rst, second or third equation, one can determine the nature of the criti-
cal eigenmode. More speci cally, when the in mum occurs for,H ). = 0, the corresponding
eigenmode idH -periodic, as shown in Fig. 2.12d, when the in mum occurs(fogH ). = , the
corresponding eigenmodekt-antiperiodic, as shown in Fig. 2.12e, while for an in mum reached

at(! oH)c = cos (1K =4), the corresponding eigenmode is shown in Fig. 2.12f.

2.A.2 Long wavelength (global) bifurcation eigenmodes

It should be noted here, that in all the previous calculations it was tacitly assumed that the di-
mensionless wavenumbkiH 6 0. The function’\(! 1H) has a singular point at the origin, i.e.
"0) 8 "(0*) = lim, y, o~ "(! 1H), since two physically different types of modes can ex-

ist in the neighborhood of {H = 0: an X»-periodic, X 1-independent eigenmodg0; X ) for

I 1H =0 and a long wavelength eigenmode with dimensionless wavelength aloXg ttlieection
2=(11H)=L;=H!'1 when! ;H ! 0". For the latter case it has been shown by (Triantafyl-
lidis and Maker, 1985), that the limit value 6(! 1H),as! 1H ! 0%, is y which corresponds to

the loss of rank-one convexity of the homogenized incremental maduliAlthough the proof of
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this assertion for the general case of periodic composites is detailed in (Geymonat et al., 1993), for
reasons of completeness a brief outline for layered composites in plane strain is presented here.
Starting point for the proof of the above assertion is (2.A.10), where the asymptotic expansion

of K(;! 1H) with respecttd 1H givesto rst order:

det[G( ) (!,=1)1]=0;

G11( ) = Gaa2( )= Gs3( )= Gaa( )=0;

Gi2( )= hLiza(L1212) 15 Gai( )= h Larza(Lazzo) i

Gia( )= hL1212) Yi; Gar( )= hlLir  (L1122)?(L2o2o) i (2.A.15)
Goa( )= h(L2222) Yi; Gaz( )= Morzn  (Lizon)*(L1212) i

Gaa( ) = Ma1za(Lazzg) tis Gas( )= Hoiz2a(Li212) i

G1a( )= Gaa( )= Gas( )= Gaz( )=0:
Hence(! »,=! 1) is an eigenvalue of the matri®, and must satisfy the following biquadratic
eqguation:
(1= )+ (12=1)218( )+ 1$( )=0; (2.A.16)

where the invariants db are real and given in terms of its components by:

I$( )= (G12G21 + G13G31 + G24Gaz + G34Ga3);
(2.A.17)

12( ) =(G12Ga3 G13G42)(G21G34 G31G24):

The critical load parameter corresponding to the long wavelet@h) = lim I H! O “(11H)
is then found as the lowest value offor which the biquadratic (2.A.16) admits real solutions in

(! 2=!1), namely the lowest root of one of two equations:

8 9

3 1S =0; (! 2=11)c = 0; 2
"0*)=min _ > 0 ; (2.A.18)

%109)2 1£=0; (I=l)e= (1§22 2

The proof thaf' (0*) coincides with , the lowest load parameter corresponding to the loss of
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the rank-one convexity of the homogenized modidli( ) follows from (2.A.15) and (2.A.16) and
the expressions for the homogenized moduli, which are presented next.
For the orthotropic layered medium at hand subjected to axial loading the determination of
LH () starts with the following de nition:
A )
L:?kl ()= Hi Lmnpg — im jn + : min kp Ig t klp;q dXo; (2.A.19)
0

where jj is the Kronecker delta. The characteristic e”lc(X 2) is the unit cell's response to the
ij -th component of the unit macroscopic deformation and is a periodic functi¥n,imwith period
the unit cell thicknessl . It is calculated by solving the following boundary value problem given in

its variational form:
A "
Lmnpg  kp lgt pg  mpn dX2=0: (2.A.20)
0
From (2.A.19)—(2.A.20), and recalling the orthotropy of the principal solution, one obtains the

following expressions for the nonzero components of the homogenized moduli tensor:

L )= Marnn (L1122)%(L2ze2) N+ hl11oo(L2ozo) i2h(Laggo) L L

L oo( ) = Moa122(L2222) tih(Lozzz) ti = LEL 5();

L5hoo( )= hLaozo) ti %

(2.A.21)

LYo1( )= Moiar (L1221)?(La212) Y+ Hoazpa(Li212) ti2h(Lizio) ti L
Lihoi( ) = hoazoa(Li212) tih(L1212) 1= L5 4o( );

Lihio( )= liorp) b L

The rst, as the load parameter increases, loss of ellipticity for the homogenized, layered solid,
corresponds to the lowest load parametgifor which the homogenized incremental modufi ( )
loose rank-one convexity, i.ey is the lowest -root of (2.2.4). From the orthotropy of the homoge-
nized incremental modulit ( ), the determinant of the homogenized acoustic teh’-,;'gr( nin

in (2.2.6) is the following biquadratic equation:

(n2=n)* + (nx=n)? 15 ( )+ 15 ()=0; (2.A.22)
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where the coefcientd}' andl}' are expressed in terms of the components of the homogenized

moduli tensor by:

I E ( ) = ( L|J_.|111L 9222 + L|]-.|212L?121) (L|]-.|122) + LEZZZ Z(LTZIZL |;222) l;

(2.A.23)
1) = (Lol B (L bl Bgp)
However, from the expressions for the invariant€ofn (2.A.15) and the expressions for the

components of the homogenized moduli tensor in (2.A.21) one can show that:

1SC)=18C) 180)=18(); (2.A.24)

thus proving our assertion th'é(o") = y and moreover, since the biquadratics in (2.A.16) and
(2.A.22) coincide, thaf! >=! 1)c = (n2=n1)c.

2.A.3 Periodic (X ;-independent) bifurcation eigenmodes

The last case remaining to be checked j$1 = 0, i.e. when the eigenmode is independent on
X 1. The corresponding critical load paramef¢@) is also found from the transformed governing
equations (2.A.1) and (2.A.2). In this case it can be seen from (2.A. 1 {@GtX 2) and¥»(0; X 2)

are piecewise linear functions ¥, within each layer. A non-trivial solutiotk (0; X ) exists when
L1212( ) =0 orLa22( ) =0 in either the ber or the matrix layer, thus giving the critical stretch
ratio as the lowest root of one of the four equations:

n )
"0=min >0 Lf1212( )=0; szzzz( )=0; LTho( )=0; Lou( )=0 : (2.A.25)

For the hyperelastic solids investigated here, their rank-one convexity guarantéesib@at) >
0 andL222o( ) > Ofor both ber and matrix. Even for rate-independent solids that might loose
ellipticity, one can see that(0) from (2.A.25) is strictly larger than'(0*) from (2.A.18), itself

being by de nition larger than , the lowest -root of (2.2.5), namely:
"0)>N0Y)= n . (2.A.26)

Note that the existence of a singularity’a@t!H 1 = 0 explains the use of the in mum in the
de nition of (2.2.5).



CHAPTER 2. LOCALIZATION IN MICROSTRUCTURED SOLIDS 38

2.B  Post-bifurcation asymptotics for a compressible neo-Hookean com-

posite

It is now of interest to see if the stability result for the neo-Hookean composite is in uenced by
compressibility. To this end we now consider the compressible neo-Hookean compaosite in (2.3.3)
a which also admits a closed form solution. Recalling again from the kinematics in (2.2.8) that
Fii1=1 andF,; = one obtains from (2.2.9) the following expressions for the rst Piola-

Kirchhoff stresses:

2
11=01 ) P- ;
h - i
2=0 ) p= k (I27™ 1= F22;
21= Fa2+p; (28.1)
12 = + pFao;
(1)¥2=@1 )Fp Fp=@1 )3 PE 12:

Again recalling shear traction continuit)/21 = %) from (2.2.9% and the kinematic constraint

hF1,1 = 0 from (2.2.8% one obtains the following linear system for the two unknoﬁ{mzsandFl”}:

iFi, mFB+(pr pm) =0;
(2.B.2)
t Fl,+ mFD =0:
The solution of the above linear system R)Ir , F{% gives:
Fl = (Pm__Pr). £ = (P Pm). (2.B.3)
f H m H

where 4 =( t=¢)*( m=m)asdenedin(2.3.11). Using (2.B.4)n combination with (2.B.3)
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one obtains the following expressions farandpm, :
IDf:Cm(1+rf)+ 2MA+r)=m+@+ rm)=¢]l=n,
GCm+ 2[Cm=f+CG=m]=H ’
D _C (A+rm)+ 2[A+rm)=m+(@1+ m)=¢]= H .
m = + 2 = + = = !
C Cm [Cm=t+ CG=m]=H (2.8.4)
h , i
= (1 )Hre =¢; = 57k,
h , [
cm = (1 )+ TIm = m; m™= m=Kn:

The - relationship along the bifurcated equilibrium path is obtained from the requirement

h 101 =0 in (2.2.9), and the help of (2.B.1), (2.B.3) giving:
" #

2
hpiz o P Pm) _, (2.B.5)
H

Consequently, with the help of (2.B.4) the sought relationship is:

1=2 2 Cr
Cm (I+rf) c (L+rm)=( G H) C Cm + — +

: (2.B.6)

f m
where without loss of generality it was tacitly assumed that p, or equivalently from (2.B.4)
thatcy (1+ rf) >c¢ (1+ ry). Notice that at the incompressible limig = r, = 0, in which
case (2.B.6) reduces to (2.3.18s expected.

From (2.B.6) at bifurcation, i.e. for = 0, recalling also the de nitions of; ,

Cm, I, I'm in
(2.B.4) which give an additional relation betweenandcy,:

Chn m &G f=Im If= 1 (2.B.7)
one obtains the following result for the critical load under displacement contrpl = ):
L " " #) 1=
c=1 5 —— 357D (rr+rm) ;
2 (e W)Y
M= ¢ @Q+rr) m@+rm); (2.B.8)
( 2 ) 1=2
. ( M) 2 r
D = +( 1) +271:2[f(1+rf)+ m (L+1m)]
H (6 H)

As expected, at the incompressible limit= r,, = 0, the above expression reduces to (2.3.13).

The expression for the curvature ( o =  ») of the bifurcated equilibrium path at the critical
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point is found by taking the secondderivative of (2.B.6) at = 0, giving after some straightfor-

ward by lengthy algebra:

1 1
@ ogp & N e @R

which reduces, as expected, to its incompressible limit (2.3.14) asr,, = 0. Notice that » > 0,

2:

showing that the compressible neo-Hookean composite has like its incompressible counterpart a

stable post-bifurcation response under displacement control.
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2.C In uence of constitutive law choice on critical load

In all calculations presented in this chapter, the response of each layer of the composite is described
by a hyperelastic constitutive law, which cannot take into account the presence of a possible un-
loading in the bifurcated solution. Since unloading will occur in the stiffer layer (matrix), the neo-
Hookean model is adequate for this case, due to its lineafshear stress-shear strain) response.
Hence, to make connections with elastoplasticity, one can compare the predictions of the hyperelas-
tic composites to models where the softer (matrix) layer follows a deformation theory constitutive
law, for this layer will continue loading in the homogenized post-bifurcated solution. However, only
the onset of bifurcation can be compared for the two different models; post-bifurcation calculations
for deformation theory of plasticity would require integrating the corresponding rate-independent
(hypoelastic) model, unlike the hyperelastic case where no such integrations are needed.

For comparison purposes we revisit below the composite investigated in Subsection 2.3.4, con-
sisting of two equal thickness layers, the stiffer ( ber) being neo-Hookean with energy density
W = (1=2)(I1 2) and the softer (matrix) being in turn a) hyperelastic, b) deformation the-
ory elastoplastic, both sharing the same uniaxial stress-strain law derived from the matrix energy
density. For incompressible plane strain conditions, the incremental form of a rate-independent,
pressure-insensitive, initially orthotropic material, as rst noted by Biot (1965), takes the general

form:

"11=2 Din p; "2=2 Dy p; "12=2D 1= " x; (2.C.1)

where" denotes the Jaumann rate of the Cauchy stf2ghie strain rate tensop, the hydrostatic
pressure rate and the quantitieand ? are the incremental moduli associated with an in nitesimal
simple shear, superposed on a homogeneous deformation, parallel to the principal axes dnd at
respectively. It can be shown, (e.g. see Abeyaratne and Triantafyllidis (1981a)), that for the defor-
mation theory model proposed byd&n and Rice (1975a), which has the same uniaxial stress-strain
law as the hyperelastic model (energy dengity= ( = 2)g(l1  2)), only the incremental modulus

is different between the hyperelastic and deformation theory under loading condition:

=— @1 )%+ (11)2 g%z); hyperelastic mode|

(2.C.2)

1
- > 1 , : .
= T @a ) a gXz); deformation theory model

wherez:=1; 2=(1 )2+(1 ) ? 2

Using the matrix energy density from (2.3.16) in conjunction with (2.C.2), one obtains the
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following expressions for the critical load under displacement congyol

(n 1 2
n (1 o+ (11)2 2 = m; hyperelastic mode|
C c
(n 1) 4
n (1 )%+ (11)2 2 = In(1 6)2[11:((11 ‘3))2]2; deformation theory model:
C C

(2.C.3)
Comparing the critical strain. of the composite using the two different matrix models is pre-
sented in Fig. 2.13. As expected from (2.C.2), since for a given axial stridie shear moduli are
larger for the hyperelastic matrix (while remaining unchanged for the ber), the stiffness contrast
between the two layers is greater for the deformation theory version of the matrix and hence result

in a lower critical strain for the corresponding composite.

Figure 2.13: Critical load (c, in solid black lines) as a function of matrix constitutive parameters

for a composite containing two equal thickness layers: a stiff neo-Hookean ber and a soft nonlinear
matrix. On the left gure the matrix is hyperelastic while on the right gure the matrix is based on

a deformation theory model of elastoplasticity, with both models sharing the same uniaxial stress-
strain response. The blue shaded area in each graph indicates composites where a local bucking

mode precedes the global one.

It is also worth noticing by comparing the shaded areas of the two different composites in
Fig. 2.13, that there is a larger range of material parameters where a local instability precedes the
onset of a global one. The bottom shaded area corresponds to antisymmetric local modes (where
(' 2H)c = in(2.A.14)), while the right shaded area in the deformation theory case corresponds to

symmetric local modes (whefé,H): = 0 in (2.A.14)).
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Figure 2.14: In uence of constitutive law choice on the critical strairas a function of the initial
matrix-to- ber stiffness ratio for the hyperelastic (red line) and the hypoelastic (deformation the-
ory, blue line) matrix models presented in Fig. 2.13, for three different matrix hardening exponents:
n = 0:55, 0:57, 1. A solid line indicates a global critical (lowest strain) mode and a dotted line

indicates a local one.

An alternative way of comparing the critical straig of the composite as a function of the
initial matrix-to- ber stiffness ratio for the two different matrix models for a given hardening
exponent il = 0:55, 0:57, 1) is presented in Fig. 2.14. As explained above, for a given set of
material parameters ( n), the hyperelastic model has a critical load which is consistently higher
than its hypoelastic counterpart. However, for small values,afe. large differences between the
initial stiffness of the two layers, there is practically no difference between the predictions of the two
different matrix models, which means almost identical critical strains in the 1dnge. < 0:2, as

seen in Fig. 2.14.






Chapter 3

Dynamic stabllity of biaxially strained

thin sheets under high strain rates

3.1 Introduction

The issue of dynamic stability of structures is an important engineering problem and as such has
drawn considerable attention. The rst investigation in this area appears to be the work of Koning
and Taub (1933), who investigated the in uence of inertia in a simply supported imperfect column
subjected to a sudden axial load. A substantial amount of work followed that investigated the re-
sponse of, mainly elastic, structures to impulse or time-dependent loads. As a result, and due to
the many possible de nitions for the stability of time-dependent systems, thedigramic stability
encompasses many classes of problems and different physical phenomena and has many interpreta-

tions, with inertia being the only common denominator.

In the absence of inertia, the processes of failure by a bifurcation instability mode in elastic
solids and structures is well understood (e.g. Brush and Almroth (1975)) and a general asymptotic
analysis, termed Lyapunov-Schmidt-Koiter (LSK), has been developed for their study. The rst
effort to use the LSK general analysis for the dynamic stability problem of an elastic structure
appears to be Budiansky and Hutchinson (1964), where the authors proposed an asymptotic analysis

of the time-dependent problem using the eigenmodes of the static problem.

Another idea, popular in uid mechanics, has also been adopted for the dynamic stability anal-
ysis of solids with more general constitutive laws under high rates of loading, according to which
one seeks the solid's fastest growing eigenmode, or the wavelength associated with lowest necking
strain. This method has been repeatedly applied in the study of dynamic stability of various elasto-

plastic structures (bars, rings, plates, shells etc.) under high loading rates where the failure pattern

45



CHAPTER 3. LOCALIZATION IN BIAXIALLY STRAINED THIN SHEETS 46

Figure 3.1: Unfolded conical mirror image for an electromagnetically expanding Al 6061-O tube
test (from Zhang and Ravi-Chandar (2010)), showing the onset and evolution of necks under high

strain rate loading; notice the absence of a dominant wavelength in the failure pattern.

and size of fragments is of interest (e.g. see Guduru and Freund (2002); Jouve (2015); Mercier et al.
(2010); Mercier and Molinari (2003); Shenoy and Freund (1999); Sorensen and Freund (2000); Xue
et al. (2008); Zhou et al. (2006)).

However, recent experimental evidence from rapidly expanding electromagnetically loaded metal-
lic rings by Zhang and Ravi-Chandar (2006, 2008) nds no evidence of a dominant wavelength at
the necked pattern of the rings. Moreover, they nd no experimental evidence of in uence of strain
rate on the necking strains, which are consistent with maximum force criterion of a rate-independent
constitutive law (Consiere criterion).

As explained by these authors, using the fastest growing eigenmode to predict the onset of failure
is physically meaningful provided that some characteristic velocity of the principal solution—e.g.
ring/tube expansion rate—is much slower than the speed of propagation of perturbations in the
solid or structure at hand. For high loading rates, commensurate with some characteristic wave
propagation speed in the structure, a novel approach to the stability analysis is required, namely the

study of evolution of localized perturbations.

We are motivated by the experimental studies of Zhang and Ravi-Chandar (2006, 2010) on the
high strain rate expansion of thin rings and tubes, that show no evidence of a dominant wavelength
in their failure mode and no in uence of strain rate sensitivity on the necking strains—the onset
of failure of an electromagnetically loaded, dynamically expanding tube is shown in Figure 3.1,
where one can observe a rather random failure mode. Recently, Ravi-Chandar and Triantafyllidis
(2015) studied the dynamic stability of an incompressible, nonlinearly elastic bar at different strain
rates by following the evolution of localized small perturbations introduced at different times. The
same approach is followed here for the biaxial stretching of thin plates, where we follow the time
evolution of spatially localized perturbations and their interactions. Following this introduction, in

Section 3.1, the formulation of the problem (de nition of in uence zones and algorithm for the
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Figure 3.2: A schematic diagram of a biaxially strained plate.

nonlinear FEM calculations) is presented in Section 3.2. Results are given in Section 3.3, start-
ing with the description of the constitutive models and following with the numerical study of the
nonlinear time evolution of a such a perturbation showing that these structures are stable until the
time when the condition for the loss of ellipticity is reached. In the same section we present an
analytical method, based on linearization, to de ne the size of the in uence zone of a point-wise
perturbation and we study its dependence on constitutive laws and loading conditions. The presen-
tation is concluded in Section 3.4, while details on the constitutive models used are presented in the

appendix.

3.2 Problem Formulation

This section starts with the presentation of the model for the propagation of perturbation about
a point defect on a biaxially strained, rate-independent, at plate of in nite extent by studying
the evolution of in uence zones (linearized approach). The setting of the corresponding nonlinear

problem, which is treated numerically, is presented subsequently.

3.2.1 The in uence zones of a biaxially strained elastoplastic plate

We consider a two-dimensional thin, at plate (idealized as a membrane) of in nite extent and
uniform initial thicknessH subjected to a biaxial stretching as shown in Figure 3.2. To avoid in-
plane acceleration terms in the unperturbed solution of the perfect plate, the following stretch ratios

are being imposed at in nity:
1=1+(ccos )t 2=1+(csin )t (3.2.2)

Hence a uniaxial straining correspondd¢da = 0, balanced biaxial straining tan =1,

while a uniaxial stressing is approximatedtay = 1=2 (assuming incompressibility and valid
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only initially for small strains. A more accurate value for nite strains depends on constitutive
response).
In the absence of body forces the equations of motion of the thin plate can be put in the form

@N _  @u .

ax - " @t (3.2.2)

whereN is the nominal (force/reference thickness) stress resultatiie reference mass density,
X the reference geometric coordinates an@X ; t) the corresponding displacement of a material
point initially at X in the Lagrangian description. For simplicity the reference con guration is
identi ed with the stress-free con guration of the plate.

The plate's constitutive equation is assumed to be rate-independent with the following relation

between the time derivative of the stress measlre and rate of deformation gradiefit 2:

@u
N =L E; F = + —— 2.
i) @X 1 (3 3)
wherelL are the plane stress incremental moduli of the plate, which in general depend on the

current state of stress plus the deformation history represented by a set of internal variables. This
moduli obtained from the three-dimensional version of the constitutive equisifjorr Lk Fy
(relating the rate of the norminal stredg to its work-conjugate quantitl ) plus the plane stress
conditionN;3 = 0 and the orthotropy of the plate with respect to the thickness direction. For the case
of a hyperelastic material the stress measures are derivable from a potentlal i.e. @W=@F
in which casd. = @W=@F @F whereW (F) is the two-dimensional strain energy density
of the plate.

Of interest here is the propagation of the localized perturbation abouat 0. Using f to
denote the difference between the perturbed and unperturbed values respectively of a eld quantity
f and exploiting the fact that the principal solution is homogeneous (i.e. independ&nt ofie
obtains the following systems governing the evolution of perturb&tion

@u _ @ u .
axaex ° @t -

(3.2.4)

We follow the propagation of the perturbation in all directiorsnd for this purpose we consider

solutions of the form:

u (X;t)=Uf (vt n X ); (3.2.5)

!Note: Here and subsequently in this chapter Greek indexes range from 1 to 2 while Latin indexes range from 1 to 3.
2Note: Here and subsequently superimposed dot denotes time differentiatio@{ X ;t)=@t
3For hyperelastic material, a linearization of perturbation yieldé = L F . To avoid algebraic compli-

cations we further assume that the same holds true for a rate-independent material.
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wheref (z) is an arbitrary function oz 2 R, U is the perturbation amplitude an its speed of
propagation.
Introducing (3.2.5) into (3.2.4) one nds thé )? is one of the two eigenvaluesbf n n =

A (n) which is the acoustic tensor along
L nn oV)? U =0: (3.2.6)

The absence of any characteristic length ratio in the in nite at plate, leads to the following non-

dimensionalization of perturbation velocity)( distance (), and time () for this problem
=VI[G=o ¥?; =Xc[G=g ¥?; =ct (3.2.7)

where[G= g] 122 is the shear wave propagation speed at zero stfaibging the corresponding
shear modulus of the plate at zero strain) amlde straining speed introduced in (3.2.1).

We are now in a position to estimate the extent of the zone in uenced by a point-wise per-
turbation introduced at the onset of deformat{on= 0) in the plate until the onset of a necking
localization, characterized by the loss of ellipticity in the perfect thin plate. We also call this pertur-
bation aninitial defect since the introduction of the spatially localized perturbation at the beginning
of the loading process is equivalent to the presence of a defect in the plate. To this end we de ne
the lowest and highest dimensionless wave propagation speestsd . which are the lowest and
highest eigenvalues of the acoustic tensor according to (3.2.6) appropriately non-dimensionalized
with the help of (3.2.7).

For a given time , one can thus de ne the in uence zones and . determined by:
V4 Z

(; )= A D S + 5 %d@ (3.2.8)
0 0

which are the distances travelled at timeby the slow and fast wave fronts respectively along
direction (recalln; =cos ,n =sin ).
The perturbation can no longer propagate along a directiamce its lowest speed reaches
= 0, which occurs at timeg( ) (subscripte standing for loss of ellipticity in the incremental

equilibrium equations):

(; e« )=0 ( (; )>0for0 < o )): (3.2.9)
The locus of points reached by the wave propagating along a given direatiotl = 0 is given
by: 5

e( )
e( )= ; %d?@ (3.2.10)
0
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Figure 3.3: Typical in uence cone of an intial & 0) perturbation aK = 0 showing the evolution
of the in uence zones (red), .+ (blue) of the slow ( ) and fast (+ ) wave speeds as a function

of time .

as shown in Figure 3.4. Two particular values gf ) are of interest: the ones corresponding to the

lowest () and highest (v ) values of ¢( ) with respect to , namely:
m=min e( )= e( m); wm=max ¢( )= el m): (3.2.11)

Attime , the plate reaches for the rst time conditions of loss of ellipticity of its incremental
equilibrium equations. The in uence zone corresponding to the lowest spead  (; m)
as seen in Figure 3.4. One can thus de nethe radius of the minimum disc in uenced by the
perturbation aX = 0 at the onset of loss of ellipticity:
z

m

= (mm= m; %d?@ (3.2.12)
0

In a similar way we are interested in the maximum size disc, center&d at O, that the
perturbation can reach. Attime, the plate has already lost ellipticity for all possible directions
of wave propagation and the zone in uenced by the perturbationXat= 0is + (; ) asseen
in Figure 3.4. In analogy to , one can also de ne. the radius of the maximum disc covering
entirely the range of in uence of the perturbationXat= 0 when the plate has lost ellipticity along
all possible directions, namely:

Z

M

+= +(mim)= v om; 0d@ (3.2.13)
0

It should be noted here that exists as long as the model looses ellipticity for the loading

considered. Moreover even if a exists, a + might not.
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Figure 3.4: Inuence zones of an initial (= 0) perturbation aX = 0 for biaxially stretched
thin, atplates: (; m), +(; wm)insolidlines. The minimum and maximum . discs of
in uence are depicted in dotted line. Also plotted in dashed line.(s ), the locus of points reached
by the wave propagating along a given directionntil loss of ellipticity occurs. Results correspond

to uniaxial strain = 0 of a power-law type material with hardening exponent 0:22.
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3.2.2 Proof of linearized stability

In order to get an analytically tractable way to investigate the stability of the plate's uniform stretch-
ing solution (3.2.1), we start by studying the linearized system of the evolution of a perturbation in

(3.2.2). By de ning the displacement and particle velocity perturbations as:
u (X;t)=u (Xt) u@); v (Xit)=v (Xt) VO@); (3.2.14)

and introducing them to the time derivative of (3.2.2), one obtains upon linearization about the

uniform stretching solution the following equation:

@L
@F

FOu, +L° v. = v (3.2.15)
using the constitutive relation of the principal solution
L u. = v: (3.2.16)

We can write down the the Fourier transform of (3.2.15) and (3.2.16) using the mapping of

notationsof u 7!  u andX ! [

@L

aF E0 u 11O V = ey (3.2.17)
0

1L u= v (3.2.18)

By replacing u terms in (3.2.17) using (3.2.18), we obtains an equation expressed in particle

velocity v

@L
@F

EPrr o rr )1t v o v

1
.
<

(3.2.19)

P o .
We now de ne the wavenumber = = ! 2+ 1 2 and the polarization unit vectdny;ny)

satisfying! 1 = 'n 1,! 2= In 2, andn? + n3 = 1. (3.2.19) can thus be rewritten as:
MM v +12a0M v 4 v =0 (3.2.20)
with acoustic tensof (M) and damping tensiv (") de ned by

AM =@=)L nn (3.2.21)

@L

(M) = (1=
M= (1=) ok 0

FE°nnAtl (3.2.22)
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We assume that the tangential moduli  is derived from an internal energy, namely =

@W=@F @F . With this assumption, (3.2.22) can be considerably simpli ed in form:

(M) _ g — @w 0 1
MM =@1= EnnA
=) @F @F @F ,
D
=— (1=)L nn A1?
=A Al (3.2.23)

Using the method of frozen coef cients, i.e. assuming that the rate of growth/decay of the per-
turbation is much higher than the loading rate, (3.2.20) is considered as a constant coef cient equa-
tion, which admits solutions of formv = P | exp(sit) V| wheres; are the 4 roots of eigenvalue
equation:

det sM +12A + s2 =0 (3.2.24)

Our next step is to prove that the real parts ofsallare negative. This relies on that fact that
A is derived from real-world material behavior, and has special properties. Before the material
loses ellipticity,A (™) is for all polarization unit vectora a positive-de nite matrix admitting two
positive eigenvalues, noted as (n) = 2(n)and (n) = ?2(n), along with their orthogonal

eigenvectors, noted & ande :
A= ,e;es+ ee (3.2.25)
Sincee; ande are orthogonal, one can de ne a real valusuch that
e = e ; e = e+ (3.2.26)
and the time derivative ok can be given accordingly:
A= _se,es+_ee + (+ )(ere +e ey): (3.2.27)

Using +, ,and and theirtime derivatives, we can transform (3.2.24) into a equivalent yet

more explicit form:

0 1
s+12 4+ ¢ R et
Eép * X@ A_o (3.2.28)
- s =s+12 +
.

which is a fourth-order polynomial equation

s*+ ags® + ays?+ ays+ ag=0 (3.2.29)
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with coef cients

A
gz = = ,= A L 2 (3.2.30)
+ +
a; = =+ = | 2; a= + | 4: (3231)

The weakening behavior of the metallic material in plastic regime grants two more properties:

l)detA > 0and 2) . < 0, _ < 0, with which we can de ne ve positive real values

A= (4= ++_ = ); B=detA; =( ++ );
= (L +«= + _+ =4); = + : (3.2.32)

and express (3.2.31) with them:

az= A, a,=B+ 1% a= 12 ag= 1% (3.2.33)

We recall the special case of the Routh-Hurwitz theorem: the neccessary and suf cient condi-
tions for the fourth order equaticays® + ass® + a»s? + a;s+ ag = 0 to have all four roots with
negative real parts are: 8

% a1>0 a>0 a>0 a4>0
3 azay, aa1>0 : (3.2.34)
" azapa; aya; azap> 0

It is evident that (3.2.34)is satis ed. For (3.2.34)we have

aza, aa1=AB ( A)!?

AB (++_)!%>0 (3.2.35)

and for (3.2.34) we have (after some algebra):

azaan  asai ajag = AB !2+hA a2 244
|
=AB 1%+ . (-« =(+ ) !*>0 (3.2.36)

The conditions are hence satis ed, and we can prove that alldotrave negative real parts,
this is to say for all wavenumbets the corresponding solutionv = P | exp(sit) V, decays in
time. Now we want to characterize the dependencg an! when! tends to in nity and 0 by
partially solving (3.2.29). Using Ferrai-Cardano formula, one can express the roots of the fourth
order polynomiak* + azs® + a,s? + a;s+ ap =0 as:

a® @1 & 48 O 1=2

2 2 2 2 3 4

(3.2.37)
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with some new notations

1=2
ha§:4 2a,=3 + E = aj+4asay 8ay;
i

gk=2)12 + 2=k =3, g=a 3aga;+12ap;

k=h+ h? 4g® 72, h=2ad Oap(agay+8ag)+27 a+ aay : (3.2.38)

By investigating high order terms of these parameters, we have fdr
(4A 8)1% g 12+ 21% h 2 2 36 !

_ 3
1=2. : K 2 +2 p3i 1= "6 (3.2.39)

where = (1=3) 12+ 2 +2 p§i 1=2 16 We conclude thas have the same order as

%2 = 0 13 when! tends to in nity. By investigating the constant terms of these parameters,

we have forl ! O:

A 4B A®?; g BZ% h 2B3
: B3+1=B =3; k 2B® (3.2.40)
with = A2=4 2B=3+ B3=3+1=3B) "~ and

! 1=2

S

AL @1 A?2 48 B® 1 WA 4B A?
2 2 22 3 3 B 4 (3241
We also need the initial conditions to complete our proof of linearized stability. Néte ¥,

as ( + )= 5 _+= ++ 12 .+ 57 the solutons of (3.2.20) can be written as

X
V= rexp(sit) Ve, + ¥ e (3.2.42)
!

where | is real valued function of and should be determined by initial conditions. Without loss
of generality, let's consider a localized initial condition with the help gfx) the Dirac function

located at the origin

v(X;0)= p(X)es; v (X;0)=0: (3.2.43)
With these initial conditions, | are solutons of the following system:
X X X X
A 173, A BN sV, =0 (3.2.44)

and are of orde® ! 3 when! tends to in nity. The inverse of Fourier transform ofv is hence
given by
Z +1Z 2
v (X;t)= rexp(sit+itn X) Vies +V, e dndi (3.2.45)
0 o
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Figure 3.5 In uence of the time of perturbation introduction on the subsequent growth/decay of
the perturbation. The vertical (blue) line indicates the localization tigewhich for the parameter

values used here is, = 0:52

s have negative real parts and are of ortlémwhen! tends to in nity and tends to constant
when! tends to zero, | andV, are all of polynomial order il on the open boundaries of
R*, hence there is always a large2 R* that the before-mentioned integral is well de ned on
R?=fl < . Itis also de ned on the compaéX ! < g, so the inverse of Fourier transform
exists and decays to zero when the titrtends to in nite. Thus is proven the linearized stability

before the material loses its ellipticity.

Fig. 3.5 shows a veri cation of the linearized stability of perturbation before the material loses
ellipticity using a set of interconnected numerical simulations. In these calculations, instead of
introducing an imperfection in the material at the beginning of the simulation, a small axisymmetric
perturbation in displacement is directly introduced into the perfect solution at a chosen time of the
simulation. The axisymmetric perturbation in displacement takes the following form, which always

gives nite deformation measure over its domain of de nition:

ur = A(r=R)exp( r=R); u =0; A<Re? (3.2.46)

The condition orA (used as amplitude parameter here, de nition different from (3.2.32)) and
R (size parameter) should be ensured in order to prevent inversion of the space orientation. In the
Fig. 3.5, the perturbations introduced befoke rst rapidly decay, and then eventually localize after
time passesn, (lines in black to orange color). On the other hand, the perturbations introduced after

m localize directly without decaying (lines in light orange or yellow color).
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3.2.3 Numerical Calculations

Nonlinear dynamics calculations for the evolution of a spatially localized initial perturbation are
done using the nite element method using the simplest constitutive law, hamely a hyperelastic,
nite (logarithmic) strain model tted a uniaxial power law. The use of this model for elastoplastic
materials is justi ed by the absence of unloading in the calculations (of interest is the response of
the plate up to the loss of ellipticity). A brief description of the algorithm used is presented here.
The starting point of the calculations is the weak formulation of equilibrium equations (3.2.2)
in Lagrangian (reference) con guration:
z
u
A[N u. + 0%
with u as the test function. A spatial FEM discretization leads to the solution of the following

system of equations:
M A+ FU(@)=0; A(t) =@ (t)=@tV (1) = @Q (t)=@t (3.2.48)

whereF is the force vectorM the mass matrix ant (t), V (t) andA (t) respectively vector of
nodal displacements, velocities and accelerations.

The time marching algorithm chosen for the solution of (3.2.48) is the HHilethod (see
Hilber et al. (1977) which uses the following updating scheme for the displacement and velocity
vectors:

t+ t — )t t(t)2 t t+ t .
U —U+tV+T(1 2 )A'+2 A ;

Vt+t:Vt+ t(l )At+ At+t;

(3.2.49)

which are in turn used for the iterative solution of (3.2.48) by driving its residual v&tar each

time step to zero according to:
0=R"™ =M A™ '+@+ )FU™ Y  FUY: (3.2.50)

In the above expressions, the constants and govern the stability and numerical dissipation of
the algorithm and are related by= (1 2=4and =1=2 (see Hilber et al. (1977)). For
the calculations reported here we choose  0:05. The remaindeR!* ' at iterationi at time

stept + tis updated using the tangent stiffness mdﬁiﬁ( ! of the algorithm:

A 1 @ :
Rit+ t — Kit+ t (Uitilt Uit+ t); Kit+ t_= @J“ : = 1:2|\/| +(1+ )@(Ulﬁ t),
' (3.2.51)

until convergence in the displacement is reachedkdy, ' U!* 'k kU!* 'k, where isa

conveniently chosen tolerance parameter.
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The spatial discretization of the plate uses standard two-dimensional isoparametric quadrilateral
elements. The boundary conditions imposed at any time are the displacements and velocities of
the principal (perfect) solution given in (3.2.1). The reference con guration rectangular domain
used in the calculations covers completely a disc of radjyshus ensuring that no perturbation
wave ever reaches any boundary. The initial conditions are the displacements and velocities of the
principal solution. Instead of prescribing a slightly perturbed initial displacement or velocity eld,
we chose the equivalent approach of using an initial imperfection through a central element with
a slightly lower shear modulus, as detailed in the results section. A special element incorporating
the constitutive law and time solution algorithm described here is then introduced in a commercial
FEM code (ABAQUS) to calculate the results for this chapter.

3.3 Results

This section starts with the constitutive models chosen. It continues with the study of the evolution
of a single spatially localized perturbation with different amplitudes, followed by the study on in-
teractions of such perturbations. These results show the stability of the biaxially strained plate, as
long as none of its points has reached the loss of ellipticity condition and determine the actual (non-
linear) zone of in uence of the perturbation. The section concludes by investigating the in uence

of constitutive law and load orientation on the size of the minimum and maximum in uence zones.

3.3.1 Constitutive laws

The analysis presented in Section 3.2 is general; any rate-independent constitutive law (which can
be put in the form of (3.2.3)) can be accommodated, provided that its membrane (plane stress)
version looses ellipticity at some strain level. Results presented here correspond to the three such
models: a hyperelastic (deformation theory) type model of plasticity,) gheeformation theory
model of Sbren and Rice (1975b) and a nite strain generalization of daeow theory. All
models are tted to the same power law uniaxial stress-strain curve and share the same principal
solution. Since no unloading occurs in the perturbed plate prior to reaching a loss of ellipticity, the
use of deformation theory type constitutive models is adequate for analyzing its stability.

We start with the hyperelastic constitutive model, which is described by a strain energy

function of the equivalent logarithmic straig as follows:

2 1 e 1 < =1for ¢

1+ y

+

(3.3.1)

NI =
+
=

= nfor ¢> y;
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where theequivalent strain ¢ is given in terms of the principal logarithmic strain components
h i =
2 1=2
e= P 2+ 2+ 1, ; =In (3.3.2)
with ; the stretch ratios of the deformation (principal values of the stretch téhdibie rotationless
part of the deformation gradieft= R U;U = FT F l:2).
The above isotropic model is tted with a piecewise power law uniaxial stress-strain‘curve

L= £ . (3.3.3)
y y

where the exponent is given in (3.3.1) and thequivalent stress. is the Von-Mises stress given

in terms of the principal Cauchy stress by:

1=2
e= 2+ 3 4,75 (3.3.4)
Since the principal solution is biaxial straining, the principal stresses are related to the principal

logarithmic strains by:

= O 1=ZE21 50 o= ZEs 1422 (3.3.5)
whereEs = ¢= ¢ is thesecant modulyE; = d ¢=d ¢ is thetangent modulusf the equivalent
uniaxial stress-strain curve in which the equivalent stress and strain are relatedbyW=d ..

When we are no longer along the principal axes of deformation (as is the case of numerical FEM
calculations) the stress measures and incremental moduli of this model (see (3.2.3)) are found by:
_ew | _ @w

@F ’ @F F

In addition to the above-presented hyperelastic constitutive model used in numerical calcula-

N (3.3.6)

tions, for comparison purposes two more constitutive models will be employed for the calculation
of in uence zones under different loading orientations: dhedeformation theory model by &ten

and Rice (1975b) and th& ow theory model, both in their nite strain version. Details on the
incremental moduli derivations of these models from the initial three-dimensional formulation to
the two-dimensional plane stress version are presented in the appendix.

As previously mentioned, all three constitutive models share the same uniaxial stress-strain
curve and are so constructed as to have the same response when loaded with xed principal axes of
deformation. Since the calculation of and + (the minimum and maximum) in uence disc sizes
for the different constitutive laws requires the principal solution, the evaluation of the corresponding

incremental moduli are presented below along the xed principal axes.

“Note: for a uniaxial stress statg = ;=2and . = ; Moreover y and y = E y are the yield strain and stress

respectively in a uniaxial loading path.
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The non-zero components of the plane stress moduli in (3.2.3) are given below in two groups;

thenormal modulicomponents are:

h i
1 hg 2
Lim1= — §E + E, E 2 15
1 e .
1 o 1 2
L1122 = éE + Et E 5 X (3.3.7)
lh2 e i
104 2
L2222 = — §E + B E 2 25
2 e

where for thel, deformation theory model as well as the hyperelastic model in (3.3.1), (3.3.2) the
normal incremental moduli are the same with= E5 = ¢= ¢ while for theJ, ow theory model
E = E.
Theshear modulcomponents are given by:
1 hIi ) 1i '

L == +
1212 %h 3 2 . ’
1" 1 o
L == —+ : 3.3.8
2121 % 3 2 . ( )
Comis Ly (LTE 1t ol
1221 — 2112 — 1 3 2 ’
where for thed, ow theory E = E, for the J, deformation theonf = Eg while for the

hyperelasitc modeE = Es[( 3+ %)=( 2 3)](In 1 In 7). The principal stresses for all
three models are identical and given by (3.3.5).

The hyperelastic angb deformation theory models loose ellipicity at realistic strain levels for all
load path orientations (see de nition (3.2.1)) while thd, ow theory gives unrealistic results for
load orientations > 0 (and hence the need for the deformation theory models used). Moreover,
only values of for which both principal stresses are tensile ( = @QW=@ > 0) will be
investigated, since a compressible membrane stress is unsustainable (thin plate will immediately
buckle).

3.3.2 Evolution at a spatially localized perturbation

We start by analyzing the in uence of an initial imperfection, located at the origin, in the form
of a square domain of size = 6 10 ° whose shear modulus (1 + ), where = 4

is the imperfection amplitude. Equivalently, one could have taken a perturbation in the principal
solution (dimensionless) displacement ald( ;0) = 1 cos ,ux( ;0)= 5 sin orinthe
principal solution (dimensionless) velocity eldy( ;0) = i1cos , 2( ;0) = »sin . The

shear modulus imperfection used here is equivalent to an isotropic displacement or velocity eld
perturbation that would have resulted from a sudden isotropic dilation/contraction of the perturbed

domain at = 0. Hence we use the terms initial imperfection or perturbation indistinguishably.
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To better visualize the in uence of the initial perturbation on the dymamic behavior of the
biaxially strained plate, we plot two different measures of the perturbations: the perturbation in the

total Green-Lagrange strain:
h i 120
E= E(;) E°% ;) = E EC E !50 > 0 33.9)
E :%FF ;EO:diagh; 21|; .
and the perturbation in the shear component of the Green-Lagrange strain, which in view of the
absence of a shear strain component in the principal solution, is the shear strain component of the
perturbed solution:

Eip= E( ;) EYS( ;) = Epp >0 (3.3.10)

The in uence of the initial perturbation is shown in Figure 3.6 and Figure 3.7 which depict the
evolution of contours of E and Ej»in  1; 2 space (only the positive quadrant is shown here
due to symmetry). More speci cally, the evolution of the strain perturbation due to an initial imper-
fection of amplitude = 4 (contours of perturbations with magnitudes belbdv 2 are not plotted,

for visual enhancement of the evolution of the initial perturbation) for three different dimensionless
times (0.17, 0.35 an®:52 = ) are depicted in these gures. Results correspond to a hypere-
lastic material witm = 0:22and y = 10 3, strained along a loading path with= 1=2, which
corresponds to uniaxial stressing for small strains.

For the lowest value of = 0:17, only a small region near the origin= 0 is affected, while for

= 0:35the emergence of a localized band of deformation in the direction of the loss of ellipticity
of the material &2 m) is obvious. At the time of onset of loss of ellipticityy, the localized
deformation band in the directiorr 2 m is more pronounced. What is worth mentioning is
that the localized deformation appears to propagate in ttinegues This phenomenon can be
explained by the square shape of the initial perturbation domain, where each corner acsras a
A static analogue of this phenomenon has been found in Abeyaratne and Triantafyllidis (1981b).
Moreover the width of the localized deformation zone is considerably larger than the size of the
initial perturbation due to propagation of the signal.

Notice that results in Figure 3.6 are similar to those of Figure 3.7, save for the lower values of the
perturbation in the latter compared to the former gure—compared for the same time—due to the
different norm used (the norm used in Figure 3.6 contains perturbations of all strain components).

A different way to depict the propagation of perturbation initiated at 0 is presented in
polar coordinates in Figure 3.8 and Figure 3.9 which shows respectiielgnd E;» as function
of the polar angle at different positions incremented by = 1:5 10 3 from the center

(1= cos, = sin ), for the same material and loading path and at the same three times
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(@) (b) (©

Figure 3.6: Green-Lagrange strain perturbation contoug¢ ; ) at three different dimensionless
timesa) =0:17,b) =0:35andc) =0:52 = ,,, where only contours of E 10 3 are
shown in color. The extent of the in uence zones(; )and . (; ) forthe slowest and fastest
wave speeds and . respectively, are also shown in these gures. Results calculated correspond
to a hyperelastic constitutive law with a piecewise power law uniaxial cugve 0:002 n = 0:22)

and a loading anglan = 1=2.

@ (b) (©

Figure 3.7: Shear strain perturbation contouis12( ; ) at three different dimensionless times a)
=0:17,b) =0:35andc) = 0:52 = ,,, where only contours of E 10 2 are shown

in color. The extent of the in uence zones (; ) and . (; ) forthe slowest and fastest wave

speeds and . respectively, are also shown in these gures. Results calculated correspond to a

hyperelastic constitutive law with a piecewise power law uniaxial curye(0:002 n = 0:22) and

aloading angléan = 1=2.
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@) (b) (©)

Figure 3.8: Green-Lagrange strain perturbatiok plotted in polar coordinate$ 1; ») =

( cos; sin )for 2 [0; =2]and at different distancesfrom the origin (distance is increasing
byconstant =1:5 10 3and + E(; )is plotted inthe y-axis). Results are shown for three
different dimensionless times a)= 0:17,b) =0:35andc) =0:52 = . The extent of the
inuence zones () and .( ) for the slowest and fastest wave speedsand . respectively

are also shown in these gures. Result calculated correspond to a hyperelastic constitutive law with

a piecewise power law uniaxial curvg, (= 0:002 n = 0:22) and a loading anglan = 1=2.
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(@) (b) (©

Figure 3.9: Shear strain perturbatiott 1 2 plotted in polar coordinatds 1; 2)=( cos; sin )

for 2 [0; =2] and at different distances from the origin (distance is increasing by constant
=1:5 10 %and + E(; )is plotted in the y-axis). Results are shown for three different

dimensionless times a) = 0:17, b) = 0:35andc) = 0:52 = . The extent of the in u-

ence zones ( ) and . ( ) for the slowest and fastest wave speedsand . respectively are

also shown in these gures. Result calculated correspond to a hyperelastic constitutive law with a

piecewise power law uniaxial curve,(= 0:002 n = 0:22) and a loading anglan = 1=2.

as in Figure 3.6 and Figure 3.7. Notice that as time approaches the critical yaladocalized

deformation pattern appears with maximum at abouat =2 m (the strain discontinuity at the

loss of ellipticity appears in a line perpendicular to the critical directipnvhich forms an angle
m Wwith the 1 axis).

A better way to visualize the size of the localized deformation zone is by plotting the time
evolution0 m Of perturbation as a function of dimensionless distance from the origin for
two different values of : 29 = =2 m and6l = . Theresults for E and Ej» are
depicted, respectively in Figure 3.10 and Figure 3.11. The blue lines give the in uence cone of
while the red lines give the in uence cone of . Notice the pattern of the different tongues of the
localization zone evolving with time, as expected from Figure 3.6 and Figure 3.7.

These results show that, due to wave propagation, the width of the localized deformation zones
are considerable larger than the width of the initial imperfection, but also a fraction of the linearized
estimate (in uence zone for the slower wave) for the same time, a phenomenon also observed for
the growth of a localized perturbation in the nonlinear bar model of Ravi-Chandar and Triantafyllidis
(2015).

To study the stability of the structure under a spatially localized perturbation, we follow the time
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@) (b)

Figure 3.10: Pro le of Green-Lagrange strain perturbatioB plotted at different dimensionless

timesO m (in increments of = 0:02) at a distance from the origin and for two

different values of polar angle a)= , andb) = =2 m. The extent of the in uence zones
()and () for the slowest and fastest wave speedsand . respectively are also shown

in these gures. Result calculated correspond to a hyperelastic constitutive law with a piecewise

power law uniaxial curve ( = 0:002 n = 0:22) and a loading anglean = 1=2.

(a) (b)

Figure 3.11: Pro le of shear strain perturbatiork 1, plotted at different dimensionless times

m (inincrements of = 0:02) at a distance from the origin and for two different values of
polaranglea) = yandb) = =2 . The extent of thein uence zones ( )and . ( ) for
the slowest and fastest wave speedsand . respectively are also shown in these gures. Result
calculated correspond to a hyperelastic constitutive law with a piecewise power law uniaxial curve
(y=0:002 n=0:22) and aloading anglan = 1=2.
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(@) (b)

Figure 3.12: In uence of the initial amplitudeof a localized perturbation at= 0. Notice that the
magnitude of the perturbation (measured by its maximum, at a given tiroeer the entire plate,
ie. EMX( ) =max sz E( ; )in(@and Ef*( ) = max ,gz E12( ; ) in (b))
decreases, for each value ok |, with decreasing, thus showing the stability of the structure

as long as it stays in the elliptic domain (non-shaded area , in the graphs).

evolution of the maximum (over the entire dom&if) perturbations E™( ) :=max ,gz E( ; )

and ET( ) =max re E12( ; )inFigure 3.12.

Notice that for < , the two perturbation norms decrease as a function of time with decreas-
ing initial amplitude, showing the stability of the structure for times prior to the loss of ellipticity
(the ellipticity domain > |, isindicated by the shaded area in the above gures). A similar result
has been obtained for the one-dimensional nonlinear bar model by Ravi-Chandar and Triantafyllidis
(2015), who nd stability of spatially localized perturbations at all times prior to reaching the bar's

Consicere point (maximum force).

The physical meaning of the minimum and maximum . in uence disc sizes is illustrated in
Figure 3.13 that shows contours of strain perturbati@d@ 10 2 at the time of loss of ellipticity
m in a plate with two localized imperfections of the same size and initial amplitude spaced at a

distance smaller than in a) and at distance larger than in b).

It appears from Figure 3.13a, that when the localized deformation zones of the two perturbations
meet and interact, the width of the resulting localized deformation zone is bigger than the width of
the single localized imperfection. The failure pattern for the stretched plate can be explained as
resulting from interaction of statistically distributed such localized defects—inevitable in reality—

as observed experimentally in the tube expansion experiments of Zhang and Ravi-Chandar (2010)
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@) (b)

Figure 3.13: Interaction of same amplitude perturbations initially at a distance<a) and b)
h > .. Results show contours of strain perturbatioE 10 3 calculated at the time of loss
of ellipticity ,, = 0:52 and corresponding to a hyperelastic constitutive model with a piecewise

power law uniaxial curve ( = 0:002 n = 0:22) and a loading anglan = 1=2.

3.3.3 Size of in uence zones for various constitutive laws and loading orientations

The following three gures give the minimum and maximum ; in uence disc sizes as functions
of the load orientation angle for the three different plasticity models considered and for three
different power-law hardening exponents, Figure 3.14rfor 0:1, Figure 3.15 forn = 0:22
(typical of Al alloys) and Figure 3.16 fan = 0:40 (typical of steel alloys). Curves in the< 0
range are terminated when one of the stresses becomes compressived] (applicable for the
calculation of ) or when a nite value of the in uence disc cannot be found (applicable for the

calculation of ).

As expected, for a given material and load orientatipboth  and . are increasing functions
of the hardening exponemt. There is practically no difference for the minimum in uence disc
size  between the), deformation and hyperelastic theory models over the entire range of load
orientations of interest. However the maximum in uence disc siz@redictions for the same two
constitutive models coincide only for a certain range of 0. As the uniaxial strain is approached

= 0, the stiffer hyperelastic theory predicts no nite maximum in uence disc sizein contrast

to theJ, deformation theory that predicts nite. for a signi cant range of < 0.

There is however a signi cant difference in the predictions of the much stiffeow theory

that considerably overestimates over the other two constitutive models (the difference increasing

with increasing hardening exponemy for the range that a reasonable loss of ellipticity strain can
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Figure 3.14: Minimum and maximum , in uence disc sizes, in dashed and solid lines re-
spectively, as functions of the load orientation angléor the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve yittd:002 n = 0:1

be found (essentially in the range 0) and which does not have a for strain paths with 0,
given that thel, ow theory model does not predict loss of ellipticity for these loadings. Also notice
that theJ, ow theory has no nite . for any loading.

The difference in the minimum and maximum ., in uence disc sizes predicted by the dif-
ferent constitutive models (in particular between deformation and ow theories) is indicative of
the dif culty in predicting failure patterns in these structures and their extreme sensitivity to the

constitutive model chosen.

3.4 Conclusion

This chapter pertains to the in uence of loading rate on the stability of structures when inertia plays a
dominant role. The currently established approach to study these stability problems is the method of
modal analysis, which determines the structure's fastest growing eigenmode. This method supposes
that all points in the structure can be perturbed simultaneously, an assumption that is not appropriate
for cases when the velocity of material points in the structure are comparable to the associated wave
propagation speeds.

The novel idea here is to analyze the evolution of spatially localized perturbations of the time-
dependent, high strain rates states of these structures, in order to understand the initiation of the cor-
responding failure mechanisms. Following the recent analysis by Ravi-Chandar and Triantafyllidis

(2015) in one-dimensional bars, we study the high strain extension of a two-dimensional, incom-
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Figure 3.15: Minimum and maximum . in uence disc sizes, in dashed and solid lines re-
spectively, as functions of the load orientation angléor the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve yvitt0 :002 n = 0:22

Figure 3.16: Minimum and maximum 4 in uence disc sizes, in dashed and solid lines re-
spectively, as functions of the load orientation angléor the three different constitutive models

considered, all sharing the same uniaxial stress-strain curve yvitt0 :002 n = 0:40
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pressible, elastoplastic (rate-independent) plate. Using a nonlinear constitutive law makes sense for
real structures since no unloading occurs until a point in the structure reaches the loss of ellipticity
condition, at which point our calculations are terminated.

Using a nite strain deformation theory of plasticity (based on logarithmic strain), we follow the
time evolution of spatially localized perturbations and their interactions. The nonlinear time evolu-
tion of such a perturbation is studied numerically using FEM and it is shown that these structures are
stable until the time when the condition for the loss of ellipticity is reached. An analytical method,
based on linearization, is used to de ne the size of the in uence zone of a point-wise perturbation
and we study its dependence on constitutive laws and loading conditions.

The above approach is useful for the stability analysis of more realistic structures under high
strain rates. As one such example we cite the recent work by Putelat and Triantafyllidis (2014)
on the stability of a pressurized thin ring at high rates, where it is shown that for small values of
the applied loading rate, the structure fails through a global mode, while for large values of the
applied loading rate the structure fails by a localized mode of deformation, as also found recently
in the experiments of Mainy (2012). Our study also shows the sensitivity of the size of minimum
and maximum in uence zones with respect to the constitutive model used, and hence the caution

needed in using such calculations to predict failure patterns.
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3.A Plane stress incremental moduli for the constitutive models used

Three different nonlinear constitutive models are used in this chapter; all adapted for nite strains:
J, deformation theory modell, ow theory model and a hyperelastic model, all sharing the same
uniaxial stress strain curve, which can be arbitrary and t to experimental dataJ.Ttieforma-

tion/ ow theory models are incompressible rate-independent (hypoelastic) models that can be put
in the from:

=C:D pl; (3.A.2)

0 0
where( ) denotes the Jaumann rate of the Cauchy stress tensor (. + with
the spin tensor)) is the strain rate tensor apdhe hydrostatic pressure rate.
For the case of nite strains, the above current con guration relation can be transformed into its

reference con guration counterpart:
Sj = Liw Exw PG LoOEj =Gy i (3.A.2)

whereS is the second Piola-Kirchhoff streds, its work-conjugate Green-Lagrange strain and the

reference con guration components of moduli tenkoare:

h 0O i
_201 g 1~ 1 3 E: Sj S
Liw =3B 5 GG+ G "Gy > 1 = 5
1h i ¢ (3.A.3)
> Ci 'St + Cjklsil +C, 'S + Ci sk ;

whereSCis the deviatoric part of the stress ten§oand . the Mises equivalent stress, namely:

3
Cij 1Ck| Ski; g = 5Cik le SI? Sl?l: (3A4)

Si? = Sij %
In the above expressiots = E for theJ, ow theory while for the J, deformation theory of
Storen and Rice (1975 = Es = <= ¢is the secant modulus of the uniaxial stress-strain curve.
In both model<; is the tangent modulus of the uniaxial stress-strain cive d ¢=d ..

The principal axes expressions in three dimensions for the equivalent stiess the equivalent
strain ¢, which are useful in (3.3.7), (3.3.8) in the sequel in view of the biaxial loading of the plate
are:

1=2.

_ 2 2
e= 1t 5+t 12 23 31 ;

wN

) 1= (3.A.5)

2
e= 1t

NN

+ 12 23 31

WIN
W

Due to plane stress loading conditions:

Ssi=0; E3=0; Eg3= CzC 'E ; (3.A.6)
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which substituted in (3.A.2) give the following relation betwe®n and its work conjugaté-

S =M E ;
(3.A7)
M =L Caz3 L 33C 1y C 1L33 + C 1C 1C§3L33332
The above result, combined with (3.A.3) gives the following expressioMfor
h g0 go i
M =§ % 1C1+C1C1+C1C1§1 ?72

écls +Cls +cls +cls

Recalling the relations betweéh& N andE & F, the moduliL in (3.2.3) are found to be:
L =M F F +5S ; (3.A.9)

For the case of biaxial loading of interest hére = diag and thus:

(3.A.10)

which upon substitution into (3.A.8), (3.A.9) gives the incremental moduli expressions in (3.3.7),
(3.3.8) forJ, ow & J, deformation theories.

Calculations of the moduli for the hyperelastic model also use (3.A.9) & (3.A.10Mbus
derived from the strain energy potenti&l through:

a@w @w

M =@E @t

(3.A.11)

=4@c @ac’

and are based on successive application of chain rule of differentiation Ws{ng where the
equivalent straing = ¢(l1;12) is expressed in terms of the invariants®f which in turn depend

on the principal stretch ratios by:

li=tr C= 2+ % l,=detC= 4 ,° (3.A.12)

After some lengthy aglebra we end in expression in the expressions given in section 3.3.1.



Chapter 4

Localization of deformation of metallic
rings under high loading rate

compression

4.1 Introduction

As expounded in the previous chapter (Chapter 3), for high loading rates that are commensurate
with some characteristic wave propagation speed in the solid/structure, a new approach to analyzing
the dynamic stability is needed, hamely to study the time evolution of localized perturbation intro-
duced onto the principal solution of the system. In this chapter, in contrast to a solid under rapid
extension, of particular interest here is the in uence of loading rate on the stability of structures
under compression that exhibits an instability even under quasistatic loading. As a model structure
to illustrate these ideas, we select an elastoplastic ring subjected to external hydrostatic pressure
which is applied at different rategappropriately non-dimensionalized with respect to elastic axial
wave speed). Of course such a classical topic has been treated repeatedly in the mechanics lit-
erature; following the work of Carrier (1945), different linear and nonlinear versions of the ring
dynamical equations of increasing complexity have been proposed (e.g. Boresi and Reichenbach,
1967; Dempsey, 1996; Goodier and Mclvor, 1964; Graff, 1971; Morley, 1961; Simmonds, 1979;
Wah, 1970) to study their vibrations. The stability of rings subjected to impulsive or step loadings
has also been repeatedly studied (e.g. Amabili and Paidoussis, 2003; Anderson and Lindberg, 1968;
Florence, 1968; Goodier and Mclvor, 1964; Lindberg, 1964, 1974; Lindberg and Florence, 1987,
Simmonds, 1979). These studies rely on modal analysis using Fourier series whose truncation leads

nonlinear amplitude equations and showed that dynamic buckling is triggered by exural modes.

73
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At leading order, the dynamics of exural modes are governed by Mathieu-Hill equations whose
characteristic curves of associated Mathieu functions delineate boundaries of instability domains

within the control parameter plane of load versus ring's slenderness.

All the above-mentioned works were concerned with the stability of ring vibrations and not
with their stability at high loading rates as is the case of interest here. Our investigation is further
motivated by work involving rings with high strain rate using electromagnetic loading—since this
method avoids propagating waves—under tension that study the in uence of high loading rate on
metal ductility (Gourdin, 1989; Triantafyllidis and Waldenmyer, 2004; Zhang and Ravi-Chandar,
2006, 2008), and in particular by experiments in ring and cylinder under electromagnetic com-
pression by Anderson and Lindberg (1968) and Jones and Okawa (1976), since these experiments
combine structural instability with rapid loading. It is the most recent experimental work of Mainy
(2012) that serves as the starting point for this investigation, and in particular, the localized failure
patterns observed (see Fig. 4.1), which are in remarkable contrast to global buckling modes of ex-
ternally pressurized rings under quasistatic loading rates. In order to keep essential features such
as buckling under static loading and nite wave speeds for all wavenumbers, we concentrate on the
dynamics of an elastic ring following a von Karman-Timoshenko theory allowing for small strains,
moderate rotations, transverse shear and rotational inertia. The ring's stability is studied by follow-
ing the evolution of a localized small perturbation. It is shown that for small values of the applied
loading rate the structure fails through a global mode, while for large values of the applied loading
rate the structure fails by a localized mode of deformation. Following Section 4.1 the presentation of
the work continues with Section 4.2, where we derive the equations of motion, outline the numerical
scheme for the principal solution of these equations, and present the linearized analysis of the initial
growth/decay of a perturbation. The results are given in Section 4.3 where we conduct numerical
calculations of the evolution of different types of spatially localized imperfection/perturbation and

a discussion in Section 4.4 concludes this chapter.

4.2 Theory

Inthe rst subsection, we derive the equations of motion from Hamilton's variational principle, from
which we deduce the structure's Euler-Lagrange equations. In the second subsection, we study the
behavior of the principle solution when dynamic loading condition with different loading rates are
applied onto the ring. In the third subsection, we carry out linearized analysis on the problem to

study the initial growth/decay of a perturbation introduced at a nite morhentg to the system.
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Figure 4.1: Overlay of sequential images of a radially compressed ring electromagnetically com-
pressed with a charge level of 3kV. Images are captured bettve@nand91.8 s (Mainy, 2012).

Courtesy of Prof. K. Ravi-Chandar, University of Texas Austin.

4.2.1 Problem setting

We consider a homogeneous elastoplastic ring of rectangular section with thitknédsh a and
cross-sectional aréa = h  a. The ring has a mid-line radiusand follows small strain—moderate
rotation Timoshenko kinematics describedwy), w( ), and ~( ) respectively the tangential and
normal displacements of the ring's reference mid-line at poimaind the rotation of the section
perpendicular to the mid-line, initially at

Before deriving the governing equations for the system, we would want to introduce a set of
useful dimensionless variables and physically relevant parameters. Length, time, and stress are non-
dimensionalized by, r=c andG wherer is the radius of the ring in initial reposed con guration,

c = G= is proportional to the ring's longitudinal wave speed. In addition, the slenderness

parameter and the dimensionless pressurare also proven to be expressive and listed below:

I= Ar? =(h=r)?=12;

(4.2.1)

Ta= (GA)= =G (r=h):

To nd the system'’s Lagrangian, We need to determine its potential and kinetic enErgied
K respectively. The potential enerdy consists of two parts: the stored strain eneRgy plus
Pext the work potential of the externally applied uniform pressure lambda. All the quantities are
expressed with before-mentioned non-dimensionlization in length, time, and stress.

The stored strain enerddy is

ZZ Zh=2 #

Pint = W( )+ =G 2 dz ard (4.2.2)
0 h=2



CHAPTER 4. LOCALIZATION IN DYNAMICALLY COMPRESSED RINGS 76

where the axial and shear strainsand  are given by

1
=v0+w+§v wo %+ 0?; F=vowo (4.2.3)

with f ©denoting the -derivative of the corresponding functiow the axial strain energy, the
shear correction factor (= 2=3 for a rectangular section) argé the material's shear modulus.
By reformulating the integration in thickness and collecting all the dimensional terms, the fol-

lowing expression is obtained for the internal energy

z, 'z, #
2 1=2 2 h 1
Pint = Garh W e+ —+ = %d +Z ¢ )2 d (4.2.4)
0 1=2 2 r 2
wheree = vO+w, =v wandW = W=G denote respectively the dimensionless axial strain,

rotation of the ring's mid-line, and the dimensionless strain energy.

The work potentialPey; Of the external pressure loadingapplied on the ring equals S
where S is the change of area due to deformatienvg) enclosed by the ring's mid-line, which is
given by (e.g. Brush and Almroth, 1975)

Z,
Pext = Garh w+ = v w4+ wh+ w? d
z, (4.2.5)

= Garh w+}(v +we) d
0 2

NI =

where is taken positive when acting inwards (resulting in compressive hoop stress0) in the
ring.
Using the same kinematic assumptions as for the derivation of (4.2.3), the kinetic energy of the
ring is
d Z, lh i
K = Garh > v+ wl+ 2 d (4.2.6)
0

where is de nedin (4.2.1) and also served as slenderness parameter.

The system's Lagrangian is now determined by (4.2.4), (4.2.5), and (4.2.6)
L=K P =K (Pint+ Pinp): 4.2.7)

R
Using now Hamilton's principle, i.e. by extremizing the action integgiIL dt over time paths
with xed initial and nal time values of the independent variablesw, and , we deduce the
following Euler-Lagrange equations governing respectively the axial, normal and rotational motion

of the ring

w= o+ 0 0 @a+e ( ) (4.2.8)
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where and denote respectively the dimensionless axial force and the dimensionless bending

moment de ned b

Y Z 1= VA 1=2 dw

= —d; = —d; (4.2.9)
1=2 d 1=2 d

To the above equations initial conditions farw, andv, w, —must be added.

4.2.2 Principal solution

Of particular interest here now is the perfect structure's principal soluti@s O, wp, o =0), i.e.
the response of the perfect ring to a uniform pressure loading at constani(staeting att = 0):
= t. Due to axisymmetry, there is zero tangential displacement and zero rotation of section,

the governing equation of axial displaceme(t) is simpli ed to:
w = 1+ w); (4.2.10)

with inital conditionswg(0) = wg(0) = 0.

For the quasistatic case with elastic material, we havwekw andw  1withk =2(1+ ).

By using the fact thattd = 2d 2, the previous equation can be written as
d’w
ZF = kw (4.2.11)
with corresponding initial conditions, which admits solutioln (Putelat and Triantafyllidis, 2014)
P— .
w( )= p—E sin —k k (4.2.12)

For the case where inertia effect is taken into account, we Wwave 1, and the force could
present substantial nonlinearity regardmgDue to these high nonlinearities, a numerical approach
is adopted to calculate its solution using given initial conditions. By virtue of the axisymmetry of the
principal solution, this numerical simulation could be very computationally light-weighted by using
axisymmetric elements to mesh only the ring's rectangular cross-section. The same set of numerical
results, used for computation of the principal solutions, will also serve in numerical stability analysis

reported in Section 4.3.

4.2.3 Linearized stability analysis
Assuming a perturbation (v, w, ) superposed on the principal solution (@, 0), the lin-
earized perturbation equations obtained from (4.2.8) are
g v=E? V% (EP+ o+ + ) w0 ((+ ot ) v+
ew= (EQ+ o+ + ) VO0+( + o) w® (E0+ ) w+ O (4.213)

*=EQ 9 ¢ v+ wH
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(a) Elastic (b) BilinearE=E = 0:22 (c) Power-lawnn = 0:22

Figure 4.2: Radial displacement versus external load for principal solutions with different loading
rates. Color red, green, and blue represent respectively different loading=&t® 3, 10 2, and
10 L.

where o andE? denote respectively the axial force and the tangential modulus, both computed

with the principal solution:

Z 1=2
dw
= — d; EQ2:= —— d: 4.2.14

The equation (4.2.13) is completed by the initial conditions fov,( w, ) and their time
derivatives at the time of the onset of perturbaticn tg.

Using the method of frozen coef cients, i.e. assuming that the rate of growth/decay of the pertur-
bation is much higher than the loading rate, (4.2.13) is considered as a constant coef cient equation,

which admits a base of solutions of form
(v w, )=k wWk); “(K)exp i(lt +k); 2R k2N; k 2 (4.2.15)

By combining (4.2.13) and (4.2.15) and ignoring the time dependenceaofiwy we obtain

the following implicit dispersion relation betweénandk

0 1
+ + o+ EQKk? 12 ik EQ+ o+ +

detB ik EQ+ o+ + Eo2+ +( + ok? 12 ik =0

ik + EPK? 172
(4.2.16)

which yields the following bi-cubic polynomial ih?

ag+ ap! 2+ ayl 4+ agl 6 =0; (4.2.17)
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with coef cients

h
2= (EP+ )+ o+ o (EP+ )+ o+ ) EN
2 |
+ (o+ ) EY K' K* 1
&= (EP+2 + o) (E0+ )+ o+ )

+ 2 B2+ XE? o ) (E2+ o) K? (4.2.18)

EQES+2 o+2 )k*

ag= + (E2+2 + o+ )+ (2E2+ o+ )K?

dg —

It should be noted that fd¢ = 1 the dispersion equation has a zero rbdt= 0, re ecting the
fact thatk = 1 corresponds to a rigid body mode of the ring, easily veri ed since the corresponding
strain measure vanishes.

We can nd out the time corresponding to the onset of static buckling by calculating the lowest
time t, required for a zero rodt?, i.e. solvingag = 0 in (4.2.18). Using the fact that up to static

buckling the thinring alwayshas 1, ¢ 1, and 0, ap = 0 can be simpli ed into
= E2 k? 1 (4.2.19)

which corresponds to the buckling pressure of a quasistatically loaded ring, achieved for the lowest
integer value ok = 2 (Brush and Almroth, 1975).

For nite loading rates inertia effects are important and perturbations travel at nite speeds. For
such cases, failure occurs by a localized deformation mode, which correspond to short wavelength
k 1. The time corresponding to their onset of instability can be found by investigating the
behavior of the dispersion relation (4.2.17) for different valuek,afhen the lowest rodt? = 0,

which is equivalent t@ag = 0.

4.3 Numerical simulations

4.3.1 FEM modeling

A model of J, plasticity associated with power-law isotropic hardening is chosen to match the

mechanical properties of annealed Al 6061-O and will be used in all following calculations. The
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plastic response of Al 6061-O was investigated by Zhang and Ravi-Chandar (2006) through uniaxial

tensile tests and is formulated here as:
=~=G =21+ )y 1+ " (4.3.1)

expressed in measured quantities: Young's modilus 70 GPa, Poisson's ratio = 0:25, yield
strain y =3:57 10 4 =14165, and hardening power = 0:22.

Under stability theory framework, all types of in nitesimal deviation from the ideal system
are “equivalent” in the sense that they can equally trigger instability (if there is any) under the
same loading condition intrinsic to the ideal system and then draw corresponding bifurcated so-
lutions. In the real experiments of ring compression, they can be incarnated into various forms:
voids/inclusions inside aluminum, machining error, non-uniformity of the external elds, etc. In
numerical simulations, these can be modeled by imperfections manually introduced on the level
of elements (“imperfection”), or direct modi cation of the converged solution between any two
consecutive time-integration iterations (“perturbation”). In all the following calculations, both the
“imperfection” type and “perturbation” type of modi cation are used for the ring compression sys-
tem. More precisely, for the “imperfection” type, small radial shiftes( ) is introduced onto the
mid-plane of the ring as part of the reposed con guration, and boundary surfaces are de ned as
infoutward equidistant offset of the mid-plane by2 (Figure 4.3b), wheré is the thickness of
the ring used in (4.2.1). Such geometric imperfection imitates roughly the machining error of the
ring. For the “perturbation” type, small radial velocityw( ;t o) is added to the principal solution
at a chosen time= to. Such uctuation of the solution imitates roughly the inhomogeneity of the
external elds. When no confusion is possible, we refer both types of “small modi cation” of the
system as imperfections and specify the rst type as “geometrical imperfection” when individual
clari cation is needed.

Imperfections of various shapes can be implemented by different amplia(d¢sof interest
here is two speci ¢ kinds of imperfection, namely the spatially isolated imperfection and randomly
distributed imperfections, as illustrated in Figure 4.4. With the spatially isolated imperfection, only
one narrowly spreading radial shift/velocity is added to the ring, characterized by a Gaussian func-
tona + = Aexp ( )2 with adjustable amplitud@, width parameter and position

. The information send from this isolated imperfection propagates at a nite speed and will not
interfere with others or itself until it is disseminated over the totality of the ring after some nite
time. The other kind, randomly distributed imperfections, is by its name the arithmetic sum of
random instances of the rst kind. Since the randomness introduces extra arbitrarity and obscurity
into the analysis, and yet there is no practical way to match the parametdy;sef; ; from the

real specimen, a xed set of parameters is used throughout this study in the hope of ensuring result
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(&) Mesh without imperfection intro- (b) Mesh with imperfection introduced

duced

Figure 4.3: A zoom-in of two exemplary meshes for thin rings5(10 4). Red lines represent

the mid-plane of rings and hold constant distande the origin in the unperturbed con guration.

Blues lines represent the inner/outer surfaces of the rings which always retain a constant distance
h between themselves. On the right-hand side, an additional radial shifts ) in the form of a
Gaussian function is added onto the mid-plane, producing a highly localized bump on the original

perfect ring.

consistency across different calculations. The parameters in this set are generated regarding to the

following distributions:
A N 010 % ; 4;1); U (0;2): (4.3.2)

As read from Figure 4.4b, the result of discrete Fourier transform shows that the imperfection
amplitudea( ) introduced by these randomly distributed imperfections blend in a wide range of
periodic shapes without promoting a signi cant dominant wavelength, i.e. it cannot be directly
approximated by a sinusoidal function. One could expect that this random pro le is free from bias

for any unstable periodic mode.

4.3.2 Results

In the case of linearly time-varying loading case, the external surface of the ring is subject to a
uniform pressure eld, with time-varying amplitude= t where is the dimensionless loading

rate. By the dimensionless loading rate alone one can freely parameterize the system around the
quasistatic regime and the highly dynamic regime. This freedom marks a great difference with the
case of two-dimensional extension of metallic sheets, as in the latter case the “free” parameter—the

extent of the sheet—can be treated as in nite in the context of spatially localized perturbaon.
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(a) spatially isolated imperfection  (b) randomly distributed imperfections

Figure 4.4: Schematic graphs showing the two kinds of imperfections used in the study, along with
their wave components' renormalized amplitudes plotted versus wavenumbers. In both gures,
dashed lines indicate the reference circle of unity radius; red lines indicate the perturbed reposed
con gurations with exaggeration. For the spatially isolated imperfection, the tuple of parameters
A =10 2, =10,and = isused, and the red line is 10 times exaggerated. For the randomly
distributed imperfections, the discussed set of parameters is used, and the red line is 100 times

exaggerated.

linked to its dimensional counterparby the following formula:
=~ 1?2 hG>? : (4.3.3)

Before showing the results of the localization titpeit worths mentioning another time point
to compare with, namely the tintg corresponding to the onset of quasistatic buckling instability,
which can be deduced from (4.2.19):

th=3E¢=: (4.3.4)

An interesting empirical practice is proposed by Putelat and Triantafyllidis (2014). In these
numerical experiments, they observed that the axial component (as opposed to bending and shearing
components) of internal energy stored in the elastic ring rst increased with the load, then followed
by a steep drop once the absolute maximum has been reached. And more importantly, this maximum
point is proven to be a robust indicator to detect the onset of instability for both the local and global
modes. Inspired by this observation, we propose a similar approach to serve as an indicator of the
onset of instability for elastoplastic rings by averagipg; the axial strain along the mid-plane (i.e.

the red lines highlighted in Figure 4.3) and calculating its minimum within time.
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(@ =10 ?! (b) =10 2
(c) =10 ° (d =10 *
(e) =10 ° (f =10 ©

Figure 4.5: Time evolution of the average axial strain of rings with geometrical imperfections. The
horizontal axes represent the dimensionless timie vertical axes represent the average axial
strainh n,gi calculated on the mid-plane of the ring at every time increment. The dotted thin (black)
data line represents the principal solution. The solid (blue) data line and dashed (red) data line
represent calculations respectively with prede ned isolated imperfection and randomly distributed
imperfections. The dotted-dashed (green) line represgiiie time at which a quasistatic buckling

instability would have occurred. The gures are ordered from high loading rate to low loading rate.

Suppose there alé¢ nodes on the mid-plane indexed hythen thet, is calculated as:
|
. . 1 X '
t; = argmin h pigi (t) = argmin > kxi+1 (t)  Xxi(H)k 1 : (4.3.5)
t t .
|
The relations between time ahg,gi are plotted in Figure 4.5 for a product combination of (iso-
lated imperfection, randomly distributed imperfections) a2d 10 1;10 2;10 2;10 4;10 °;10 ©
for geometrically imperfect rings. All time increments afteg,qi > 1 are cut off on purpose, as

this kind of axial tension in a real compression experiment is quite unphysical. Numerically, this
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is due to the fact that no collision detection is set up for these calculations, and some segments of
the ring eventually intersect themselves which ends in an inversion of inner/outer surfaces. One
can roughly divide the gures of six different loading raténto two groups according to the ratio
betweert| the time of onset of general instability atythe time of the onset of quasistatic buckling
instability, with 4.5a, 4.5b, and 4.5c in the rst group fogety 1, 4.5e and 4.5f in the second
group fort;  ty, and 4.5d entering into either group as a transitional element. As expected, the
imperfect ring loaded at a high rate is initially stable for pressures well above the static buckling,
which is calculated by ignoring the speed of propagation of the perturbation. To further illustrate
the connections between nite propagation speed of signals and delay of onset of instability, one
can calculatdg, a lower bound of time taken by the axial wave to propagation through the entire
ring:

to:= lim 2=co(k)=2 = P 21+ ) 316: (4.3.6)

The rings in 4.5a and 4.5b have thgirstrictly less than than this lower bound, which implies
that the in uence generated by their isolated/distributed imperfection(s) never has enough time to
affect the whole structure. Whereas for 4.5e and 4.5f, the in uence would have totally disseminated
over the whole structure.

For all the six gures, especially in the rst four: 4.5a, 4.5b, 4.5¢, and 4.5d where local effect
overwhelms global effect, Thig and the corresponding strainygi (t;) all have a good match be-
tween two extensively different imperfection shapes (isolated/distributed). This proves reciprocally
the robustness of this indicator, i.e. using the axial strain limit to predict the onset of instability, for
both quasistatic and high loading rate cases.

The in uence of the timetg at the introduction of isolated perturbation in velocity and the
meaning of the localization timg introduced in (4.3.5) is illustrated in Fig. 4.6 for two case of
high loading rate (= 10 2 and10 #) for a ring with slenderness = 10 4. We plot the norm
of the perturbatiork wk as a function of time for perturbations with different introduction time
to. Notice thatt; is an upper bound for the real time of onset of localization. The perturbation
amplitude rst decreases provided that the time of perturbation introduction is lesg thehrich is
a direct consequence of the stability of the perturbed solution before onset of localization.

Once thet; is well de ned through the results of calculations, it's possible to investigate the
shape and patterns formed by the metallic ring in post-bifurcation phase. In Figure 4.7, the visual
representations of the time evolution of the ring's pro le are shown for rings with isolated imper-
fection and for different loading rate The in uence of loading rate is clear shown in the gures.

We rst observe that independently of the loading rate, the initial disturbance caused by the intro-

duced imperfection splits in two. As the loading rateanges from the smallest= 10 © to the
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(@ =10 * (b) =10 2

Figure 4.6: In uence of the time of perturbation introduction on the subsequent growth/decay of the
perturbation. The vertical dashed lines delimitated the localizationtiinweéhich for the parameter
values used hereis &) 37b)t,  8:8. Imperfections used here are velocity perturbation with

isolated extent.

highest = 10 1, the instability mode also varies gradually from a global buckling mode, as seen
in Figure 4.7f, to a localization of deformation, as seen in Figure 4.7a.

In the regime where localization of deformation is in favor, we observe a stationary wave packet
whose maximum amplitude of its envelope grows with time, and that compared to elastic ring
case (Putelat and Triantafyllidis, 2014), the localizations on the elastoplastic ring has a much faster
spatial decay outside of the two principal localizations. For the latter one, an interesting analog can
be made with the calculation of stretching of a two-dimensional elastoplastic sheet reported in the
previous chapter.

In Figure 4.8, similar information are shown for the time evolution of the ring's pro le. The
in uence of loading rate is shown in the gures in a more subtle way. We can observe that
independently of the loading rate, the initial disturbance caused by the introduced imperfection is
distributed over the totality of the ring, which, however, should not be systematically categorized
as global buckling mode. For loading rate 10 3, namely in Figure 4.8a, Figure 4.8b, and
Figure 4.8c, no dominant wavelength can be spotted. For the irregular spacing pattern showing in
these three gures, we shall adopt a rationalization based on the local interaction between localized
imperfection present in the structure.

In Figures 4.8a and 4.8b, the post-bifurcation patterns have similar shapes up to amplitude
ratio difference. Recall the previous discussion relatetj, t@e ned in (4.3.6)), that the rings in

Figures 4.8a and 4.8b have their time of onset of localizatiatrictly less than the lower bound
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(@ =10 ! (b) =10 2 (c) =10 3

(d =10 *4 (e) =10 ° H =10 °©

Figure 4.7: Time evolution of the ring's pro le. The slenderness parameteris10 4. The
isolated geometrical imperfection depicted in Figure 4.4a is applied. In each gure, the ring's
pro le is traced according to its mid-plane, evolving from outmost (the pure blue line) inwardly
(purple lines than the pure red line). Green lines correspond to the onset of localizatibime

gures are ordered from high loading rate to low loading rate.

ts. In Figure 4.8, it could imply that the strong short-range effect has somehow “locked” distributed

imperfections' information and force them to express “in place”.

4.4 Conclusion

As a model structure to study the in uence of inertia and loading rates on the stability of a structure
that becomes unstable even at static loads (structures with buckling modes), we study an elasto-
plastic ring subjected to external hydrostatic pressure applied at different réagpropriately

non-dimensionalized with respect to elastic axial wave speed). Unlike existing analyses of this



87 4.4. CONCLUSION

(@ =10 1! (b) =10 2 (c) =10 3

(d =10 4 (e) =10 ° (H =10 ©

Figure 4.8: Time evolution of the ring's pro le. The slenderness parameteris10 *. The
randomly distributed geometrical imperfection depicted in Figure 4.4b is applied. In each gure,
the ring's pro le is traced according to its mid-plane, evolving from outmost (the pure blue line)
inwardly (purple lines than the pure red line). Green lines correspond to the onset of localization

The gures are ordered from high loading rate to low loading rate.

phenomenon that are based on modal analysis to nd the fastest growth rate—a method that is only
meaningful for slow loading rates in view of characteristic wave speeds present in the structure—the
ring's stability is studied by following the evolution of a localized small perturbation. It is shown
that for small values of the applied loading rate the structure fails through a global (buckling-type)
deformation mode, while for large values of the applied loading rate the structure fails by a local-
ized mode of deformation, and these two regimes are bridged by a continous spectrum of different
failure patterns. With the help of numerical simulations, we proposed a practical manner to de ne
the onset of localization timg that determines when a localized mode of instability can occur in

the structure as time evolves. More precisely, we show that the onset of instability is triggered when
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the extremum of the average axial strain is reached. This chapter presents a new approach for inves-
tigating the dynamic stability of structures that exhibit instabilities even under static loadings. For a
future perspective, the in uence of different types of dynamic loading (i.e. step, pulse) needs to be

considered as well as a more realistic modeling of the electromagnetic loading conditions.



Chapter 5

Concluding remarks

This thesis pertains to the study of localization of deformation in bulk of solids and in structures
under quasistatic and dynamic loading conditions. The novel approach of this work consists of
introducing geometrically localized perturbations and investigating their time evolution to study
failure by localization of deformation in the corresponding problems. Analytical as well as numer-
ical (FEM) tools are used and the results are interpreted in light of experiments available in the

literature.

Following the brief introduction, the problem of localization of deformation in microstructured
solids under static loading condition is examined in Chapter 2. The speci ¢ problem discussed is
the stability of uniform compressive deformation in a unidirectionally oriented ber reinforced com-
posite. This thesis refutes the common belief that there is always a localized deformation appearing
in the post-critical equilibrium path of solids loosing macroscopic ellipticity. It's proposed in this
Chapter that the key concept for nding whether loss of macroscopic ellipticity leads to localiza-
tion of deformation lies in the post-bifurcation behavior of the solid under investigation. A phase
diagram has been created that outlines the various kinds of instabilities that arise in this problem
for cases when the critical bifurcation mode is also global in nature and well separated from other

eigenmodes.

In Chapter 3 and Chapter 4, two problems involving dynamic instability are presented. The
main objective is to explore the in uence of high rate of background deformation on the growth of
a perturbation arising from a point defect. This thesis refutes the prevalent approach of using the
method of modal analysis, which determines the structure's fastest growing eigenmode, to study its
stability. Modal analysis method supposes that all points in the structure can be perturbed simul-
taneously, an assumption that is not appropriate for cases when the velocity of material points in

the structure are comparable to the associated wave propagation speeds. The novel idea proposed

89
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in these two Chapters is to analyze the evolution of spatially localized perturbations of the time-
dependent, high strain rates states of these structures, in order to understand the initiation of the
corresponding localization of deformation.

In Chapter 3 where biaxial tension incorporating dynamics/inertial effects is considered, it is
shown that the deformation under biaxial tension is dynamically stable until loss of ellipticity of
material is reached. Moreover, we found that under high strain rates the plate has not shown any
localized deformation mode for strains well above the ones corresponding to the static loss of ellip-
ticity of material, thus provides explanation for ductility increase observed in experiments.

In Chapter 4 where an analysis of localization of deformation in thin metallic rings under high
strain-rate compression is presented, it is demonstrated that for high strain rates the failure pattern
involves highly localized deformation zones and a resulting “irregular ower pattern” indicates

interactions of randomly existing imperfections on structures as observed in experiments.
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