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Résumé

Second-order derivatives for shape optimization

with a level-set method

Résumé

Le but de cette thèse est de définir une méthode d’optimisation de formes qui conjugue l’utilisation de la dérivée
seconde de forme et la méthode des lignes de niveaux pour la représentation d’une forme. On considèrera d’abord
deux cas plus simples : un cas d’optimisation paramétrique et un cas d’optimisation discrète.

Ce travail est divisé en quatre parties. La première contient le matériel nécessaire à la compréhension de l’ensemble
de la thèse. Le premier chapitre rappelle des résultats généraux d’optimisation, et notamment le fait que les
méthodes d’ordre deux ont une convergence quadratique sous certaines hypothèses. Le deuxième chapitre répertorie
différentes modélisations pour l’optimisation de formes, et le troisième se concentre sur l’optimisation paramétrique
puis l’optimisation géométrique. Les quatrième et cinquième chapitres introduisent respectivement la méthode des
lignes de niveaux (level-set) et la méthode des éléments-finis.

La deuxième partie commence par les chapitres 6 et 7 qui détaillent des calculs de dérivée seconde dans le cas de
l’optimisation paramétrique puis géométrique. Ces chapitres précisent aussi la structure et certaines propriétés de la
dérivée seconde de forme. Le huitième chapitre traite du cas de l’optimisation discrète. Dans le neuvième chapitre on
introduit différentes méthodes pour un calcul approché de la dérivée seconde, puis on définit un algorithme de second
ordre dans un cadre général. Cela donne la possibilité de faire quelques premières simulations numériques dans le cas
de l’optimisation paramétrique (Chapitre 6) et dans le cas de l’optimisation discrète (Chapitre 7).

La troisième partie est consacrée à l’optimisation géométrique. Le dixième chapitre définit une nouvelle notion de
dérivée de forme qui prend en compte le fait que l’évolution des formes par la méthode des lignes de niveaux, grâce
à la résolution d’une équation eikonale, se fait toujours selon la normale. Cela permet de définir aussi une méthode
d’ordre deux pour l’optimisation. Le onzième chapitre détaille l’approximation d’intégrales de surface et le douzième
chapitre est consacré à des exemples numériques.

La dernière partie concerne l’analyse numérique d’algorithmes d’optimisation de formes par la méthode des lignes de
niveaux. Le Chapitre 13 détaille la version discrète d’un algorithme d’optimisation de formes. Le Chapitre 14 analyse
les schémas numériques relatifs à la méthodes des lignes de niveaux. Enfin le dernier chapitre fait l’analyse numérique
complète d’un exemple d’optimisation de formes en dimension un, avec une étude des vitesses de convergence.

Mots-clefs

optimisation par la méthode de Newton, algorithme d’optimisation de second ordre, optimisation de formes, level-set,
dérivée de forme, approximation par des schémas numériques.
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Second-order derivatives for shape optimization

with a level-set method

Abstract

The main purpose of this thesis is the definition of a shape optimization method which combines second-order differ-
entiation with the representation of a shape by a level-set function. A second-order method is first designed for simple
shape optimization problems : a thickness parametrization and a discrete optimization problem.

This work is divided in four parts. The first one is bibliographical and contains different necessary backgrounds
for the rest of the work. Chapter 1 presents the classical results for general optimization and notably the quadratic
rate of convergence of second-order methods in well-suited cases. Chapter 2 is a review of the different modelings for
shape optimization while Chapter 3 details two particular modelings : the thickness parametrization and the geometric
modeling. The level-set method is presented in Chapter 4 and Chapter 5 recalls the basics of the finite element method.

The second part opens with Chapter 6 and Chapter 7 which detail the calculation of second-order derivatives
for the thickness parametrization and the geometric shape modeling. These chapters also focus on the particular
structures of the second-order derivative. Then Chapter 8 is concerned with the computation of discrete derivatives
for shape optimization. Finally Chapter 9 deals with different methods for approximating a second-order derivative
and the definition of a second-order algorithm in a general modeling. It is also the occasion to make a few numerical
experiments for the thickness (defined in Chapter 6) and the discrete (defined in Chapter 8) modelings.

Then, the third part is devoted to the geometric modeling for shape optimization. It starts with the definition of a
new framework for shape differentiation in Chapter 10 and a resulting second-order method. This new framework for
shape derivatives deals with normal evolutions of a shape given by an eikonal equation like in the level-set method.
Chapter 11 is dedicated to the numerical computation of shape derivatives and Chapter 12 contains different numerical
experiments.

Finally the last part of this work is about the numerical analysis of shape optimization algorithms based on the
level-set method. Chapter 13 is concerned with a complete discretization of a shape optimization algorithm. Chapter 14
then analyses the numerical schemes for the level-set method, and the numerical error they may introduce. Finally
Chapter 15 details completely a one-dimensional shape optimization example, with an error analysis on the rates of
convergence.

Keywords

Newton optimization method, second-order optimization algorithm, shape optimization, level-set, shape derivative,
numerical approximation schemes.
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Introduction

This thesis is devoted to the design of a second-order algorithm for shape optimization problems when the shape is
characterized by the level-set method. It takes place in the framework of the RODIN (Robust structural Optimization
for Design in Industry) project 1. This projects aims at developing a software for mechanical engineers.

For ”classical” optimization problems, formulated for example as the minimization of a functional J : Rd → R,
second-order methods are known to converge in few iterations (compared to first-order methods) when the initial guess
is not too far from the optimal solution, under some assumptions on the functional such as regularity and convexity.
However, they require to compute and inverse the Hessian matrix. In the case of shape optimization, it is not clear that
it is possible to compute the Hessian at a reasonable price, and to invert it. This raises the following question : is there
any potential gain in designing a second-order method in shape optimization ? Providing (partial) answers to this
question is one of the main goals of this work. The second-order derivatives are usually computationally expensive, and
it is not obvious that the gain given by the second-order information can exceed the additional cost. However, before
considering the ratio between the gain and additional cost of a second-order method we just want to evaluate how
fast (in terms of number of iterations) such a method can be for shape optimization problems, without considering
computational time issues. Then will come the question of computing only an approximation of the second-order
derivative in order to save computational time.

The first step in evaluating the speed of convergence of a second-order method is to consider simple shape optimiza-
tion problems. This is the reason why we shall consider the parametric case of thickness optimization, and the discrete
approach. Then we move on to the general case when a shape is represented by a level-set function and the derivatives
are computed in a continuous framework. This leads us to introduce a new framework for shape differentiation that
takes into account the fact that when the motion of the shape is characterized by a Hamilton-Jacobi equation for the
level-set function, the shape evolves along normal trajectories. This new framework for shape differentiation, which is
one of the main theoretical achievements of the thesis, allows us to design a particular shape optimization algorithm
and to apply it to different numerical examples.

Finally, the last topic of this work deals with the analysis of different numerical schemes. It provides some indica-
tions on the necessary ingredients to get a second-order rate of convergence.

Now we turn to a brief description of the different parts of the work, without any technical detail nor reference.
We refer to the corresponding chapters for the bibliography.

Part I : Review of the state of the art

The first part of the thesis recalls the necessary background for the works detailed in the next following parts. The
first chapter gives some usual results on general optimization in Banach and Hilbert spaces and explains the main
interest of a second-order method. The second chapter is a review on shape optimization methods, while Chapter 3
gives some details on the computation of derivatives for the specific cases of thickness parametrization and shape
variation frameworks. Then Chapter 4 is dedicated to the introduction of the level-set method and Chapter 5 focuses
on the finite element method.

Chapter 1 : Optimization

The first chapter opens with general results on optimization in a Banach space V. For a given optimization problem, it
recalls the notion of global and local optima and some conditions that ensure the existence of such optima. The notion
of Fréchet derivative allows one to give first and second-order optimality conditions. Then we can recall the usual
gradient and Newton algorithms for solving an optimization problem in a Hilbert space. With sufficient regularity
assumptions on the criterion to optimize, the Newton method is known to have a quadratic rate of convergence. If we
denote by (un)n∈N the iterative sequence obtained by the Newton method, and by u? a local minimum to which the
sequence converges, it means that when u0 is close enough to u?, there exists C > 0 such that for k ∈ N sufficiently
large, ∥∥uk+1 − u?

∥∥
V ≤ C

∥∥uk − u?
∥∥2

V .

1This project is funded by the FUI (Fonds Unique Interministériel) and gather different partners : CMAP (École Polytechnique, LJLL
(Université Pierre et Marie Curie), INRIA Bordeaux, Renault, Safran, Airbus, ESI-Group, Eurodecision, DPS, Alneos.
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This implies that the Newton method converges to machine precision in few iterations. This is the main interest of
second-order methods, and the main reason why considering them for shape optimization problems. The computa-
tion of the exact second-order derivative can be replaced by an approximation while keeping a super-linear rate of
convergence. This is the main goal of the well-known BFGS method which is then presented with some of its proper-
ties. Finally this chapter introduces the optimize-then-discretize and discretize-then-optimize approaches for solving
numerically an optimization problem. With the first approach, one approximates the exact derivatives while with the
latter one computes exactly the derivatives of an approximated model.

Chapter 2 : Shape optimization methods

The second chapter starts with the introduction of different physical models that will be used for the different modelings
and criteria. Then it reviews different usual modelings for shape optimization. They can be classified in three
categories : parametric optimization, topology optimization and geometric optimization. In the parametric framework
a shape is represented by a set of parameters such as curvatures, thickness, lengths, etc. The topology optimization
methods intend to find the best repartition of holes in a shape. Then, geometric optimization considers the shape as
a global variable seen as a bounded open set of Rd. Finally, the last part of this chapter recalls that usually there is
not existence of optimal shapes. It also gives some remedies to the non-existence of an optimal solution.

Chapter 3 : Examples of objective functions and optimality conditions

In the third chapter we focus on two modelings : the parametric case of thickness optimization and the geometric
optimization framework. For the thickness optimization we give the first-order derivative of three criteria : the volume
function, the compliance and a least square displacement criterion.

As concerns geometric optimization, we start by a brief review on previous work about second-order shape deriva-
tives. Then we recall some useful theoretical tools of differential geometry. Computing derivatives in this framework
requires to differentiate with respect to a shape. The notion of shape differentiation was first introduced by Hadamard.
We recall the two usual frameworks for shape derivation with the Hadamard method : the displacement field method
and the speed method. A shape is considered as a bounded open set of Rd. With θ ∈ W 1,∞(Rd;Rd) a variation of a
reference shape Ω is defined by Ωθ = (Id + θ)(Ω). Differentiating with respect to θ defines the shape derivative for the
displacement field method. There is also the speed method : for a vector velocity field V ∈ C1

(
R× Rd;Rd

)
we can

consider the solution to the following equation





∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
,

XV (0, x) = x,

(1)

for each x ∈ Ω. This defines a time-dependent domain Ωt = XV (t,Ω) = {XV (t, x), x ∈ Ω}. Differentiating with
respect to the time parameter leads to another notion of shape derivative. For both frameworks, the first-order shape
derivative has the same structure, and in many practical cases it can be represented by a function j ∈ L1(∂Ω;R) such
that it writes ˆ

∂Ω

(θ · n) j, or

ˆ
∂Ω

(V (0, ·) · n) j.

The resulting structure of the first and second-order derivatives for these two frameworks are rather similar. The
shape derivatives of a criterion are entirely characterized by a linear map (denoted by l1) and a bilinear map (denoted
by l2) defined on the boundary of the shape. Finally we detail the linear map of the first-order derivative of different
criteria for geometric optimization. We start by giving the derivative of a criterion that reads as the integral on the
shape of a shape-independent function. That is for f : Rd → R sufficiently regular

E(Ω) =

ˆ
Ω

f(x) dx.

Then we consider the shape derivatives of geometric quantities such as the signed distance function, so that we can
compute the shape derivatives of a maximum-thickness criterion. We also detail the shape derivatives of boundary
conditions, and thus the shape derivative of a state equation. Thus we can give the shape derivative of a compliance
and a least square displacement criteria.

The last part of this chapter is finally devoted to the question of regularity of an optimal shape for a simple problem
of shape optimization in the two-dimensional case. When the compliance of the shape (for a given load case) is to
be minimized with respect to a volume constraint in the two-dimensional case, it appears that the shape cannot have
regular holes.

Chapter 4 : The level-set method

The fourth chapter is an introduction to the level-set method for shape modeling. It is very practical especially
for tracking the motion of a shape. If a shape Ω ⊂ Rd is represented by a level-set function φ, and evolves with a
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normal velocity with speed v ∈ C1
(
Rd;R

)
, the level-set function is solution to the following Hamilton-Jacobi advection

equation

∂tφ(t, x) + v(x)|∇xφ(t, x)| = 0.

We also briefly evoke the theoretical framework in which there is existence and uniqueness result for this kind of
equation : namely the notion of viscosity solutions. Then we recall a numerical scheme for the resolution of this
equation.

From a numerical point of view it is practical to consider level-set functions that are close to signed distance to a
boundary. This is the goal of the redistanciation procedure detailed in the last part of this chapter. We recall three
methods that can be used to ensure numerically that the level-set is close to a signed distance function during the
resolution of the advection equation : the resolution of an additional transport equation, the fast-marching method,
and a redistanciation-free method for the advection equation.

Chapter 5 : Finite element method

The first part ends with Chapter 5 which introduces the finite element method. It is well-known for approximating
solutions to variational formulations of partial differential equations and boundary value problems. The underlying idea
is to reduce the space where the variational formulation takes place to a finite-dimensional space, and to interpolate
functions in this finite-dimensional space. We also give some error estimates on the interpolation error. Then we detail
the computation of variational forms, the mass and stiffness matrices, for the Q1 finite-dimensional space on a square
mesh. Finally, we also recall the mass-lumping method that is an approximation method for mass matrices.

Part II : Second-order derivatives and algorithms

The second part of the thesis is first devoted to the study of second-order derivatives in three different cases : the
thickness parametrization, the geometric approach from a continuous point of view, and finally the geometric ap-
proach with the discretize-then-optimize approach. Then we define first and second-order optimization methods, with
approximation or not of the second-order derivative. The underlying concepts are rather classical, but we detail here
the computation of some second-order derivatives that are not easy to locate in the literature. We also give some
properties of the second-order derivatives. Finally, we give a few original numerical examples in the parametric case
of thickness optimization and for the discretize-then-optimize approach in geometric optimization.

Chapter 6 : Parametric case

This chapter focuses on the parametric case of thickness optimization. It starts with the computation of the second-
order derivative of three criteria : the volume, the compliance and a least square displacement criterion. This is
rather classical, even if it is hard to locate such results in the literature. It is also the opportunity to notice that the
compliance criterion is convex (in this context). The rest of this chapter is devoted to the study of the structure of
the second-order derivative of the compliance criterion, which is, to our knowledge, completely new. We prove that
the operator corresponding to the second-order derivative is neither compact nor coercive in the scalar case as well
as in the vector case. This implies that the matrix of the discretized Hessian is ill-conditioned. However we establish
also in the scalar case that under regularity conditions, the Hessian of the compliance is positive definite.

Chapter 7 : Geometric case

Chapter 7 is somehow similar to Chapter 6. We first detail the computation of second-order derivatives for different
criteria : the volume or any criterion that can be written as the integral on a varying domain of a shape-independent
function, the compliance, a least square displacement criterion and a maximum-thickness criterion. The structure
theorem for geometric shape optimization (recalled in Chapter 3) ensures that the second-order derivative is symmetric.
However, when computing the derivatives, it is not clear that the obtained expressions are symmetric. Thus, this issue
is is considered especially in the case of the compliance and the least square displacement criterion. Then, for the
compliance criterion, we focus on the coercivity and the positiveness of the second-order derivative. Finally, we also
write the Newton equation when the shape derivatives are computed in the framework of the displacement field method
(also introduced in Chapter 3). In that case we show that the tangential components of the solution to the Newton
equation are almost entirely determined by its normal component.

Chapter 8 : Geometric discretized case

Chapter 8 defines a discrete model for shape optimization with the level-set method. We compute derivatives of
the discretized criteria (volume, compliance and least square displacement criterion). This allows us to introduce a
discretize-then-optimize approach for shape optimization problems within the level-set method.
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Chapter 9 : Numerical examples

The ninth chapter opens with the description of a second-order method for shape optimization. It also introduces
a gradient-like method that can be compared to the previously defined second-order method. Then it deals with
approximating the second-order derivative of the compliance criterion in a fully general framework. We define four
different approximations, namely a BFGS-like method, an inexact-Newton method, an incomplete LU method and
an approximate CG-Newton method. Finally we give a few numerical examples for the parametric case of thickness
optimization and the discretize-then-optimize framework. The thickness modeling shows the potentiality of the second-
order method with different approximations (see for example Figure 1). However, the discretize-then-optimize approach
does not seem to be well suited for second-order methods.
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Figure 1: Minimization of the compliance criterion with a penalization on the volume for the parametric case of
thickness optimization. One of the final shapes (left) and convergence of the objective function (right).

Part III : Derivation along normal trajectories

The third part opens with the definition of a new framework for computing shape derivatives : this is the main
theoretical contribution of this thesis. This allows one to define different first and second-order optimization methods.
Then Chapter 11 is devoted to the accurate and consistent computation of shape derivatives. Finally in Chapter 12,
we implement this method for computing shape derivatives and compare, on different examples, the efficiency of the
different optimization methods.

Chapter 10 : Shape derivation along normal trajectories

Chapter 10 is concerned with the geometric modeling for shape optimization. It has been seen in Chapter 3 that there
are already two usual frameworks for shape differentiation : the displacement field method and the speed method.
The goal of the present chapter is to define a third approach for shape differentiation by considering time-dependent
shapes Ωt that evolve in the direction of the normal vector n(t) to the boundary ∂Ωt. When a shape Ω is represented
by a level-set function φ, evolving it with a normal velocity v is equivalent to solving the Hamilton-Jacobi equation





∂ϕ

∂t
(t, x) + v(t, x) |∇xϕ(t, x)| = 0,

ϕ(0, x) = φ(x),

and to take the time-dependent domain Ωt defined by Ωt = {x ∈ Rd | ϕ(t, x) < 0}. This case is not embodied by
the speed method. For a given vector field V ∈ C1

(
R× Rd;Rd

)
, there is a priori no chance that it is, for each time,

directed by the normal n(t) to the evolving domain. Solving the Hamilton-Jacobi equation is not equivalent to solve
the ordinary differential equations that define XV (see (1)) with a given velocity field V independent of the motion of
the shape. However, with ϕ smooth solution to the Hamilton-Jacobi equation, the motion of the shape is recovered
thanks to a set of bicharacteristics (x, p) solution to :





dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
,
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with H(t, x, p) = v(t, x)|p(t, x)|. For x0 ∈ Ω, we can define Xv(t, x0) = x(t) where (x, p) is the solution to the
bicharacteristics system with x(0) = x0 and p(0) = ∇φ(0, x0). Thus, Xv(t,Ω) defines a time evolving domain, and
we can compute derivatives with respect to the time, which defines a notion of shape derivative. This new notion of
differentiation leads to a different structure for the second-order shape derivatives for which there is no more influence
of the tangential components of the directions of derivation.

There are two main applications for this new framework for shape differentiation. First, it allows one to define
a Newton algorithm for shape optimization. Secondly, it appears to be useful for the obtention of extended descent
directions, a priori defined only on the boundary of the shape, to the entire space Rd as required for solving the
Hamilton-Jacobi equation. The particular structure of the shape derivative indicates how to choose the normal
derivative of the extension on ∂Ω.

Chapter 11 : Computing boundary integrals

With the geometric modeling for shape optimization, whatever the choice of framework for shape differentiation
(displacement field method, speed method, derivation along normal trajectories), the shape derivatives are defined
by linear and bilinear maps defined on the boundary of the shape. They are written in terms of boundary integrals.
Chapter 11 is devoted to the approximation of these integrals. We start by recalling the classical approximation with
a Dirac mass concentrated on the boundary. However we also observe that this is not a consistent approach for the
computation of shape derivatives.

Thus we also introduce another method for computing boundary integrals. The main idea is to compute exactly the
integral of a linear interpolation of a function (or the product of interpolations of functions) on the linear interpolation
of the boundary. We then detail the computation of different shape derivatives with this integration method. We
also give an estimate on the error due to the approximation of the boundary, and show that for regular shapes this
method for computing boundary integrals is of order two with respect to the size of the mesh. Then we confront this
theoretical error analysis to some numerical experiments and compare the respective accuracies and consistencies of
the two approaches (see Figure 2).
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Figure 2: Comparison of consistencies with the approximation of a Dirac mass (left), and with the linear interpolation
method (right).

Finally this chapter ends with a remark on the fact that a shape with piecewise linear boundary cannot always be
represented by a piecewise linear interpolation of a level-set function.

Chapter 12 : Numerical examples

The twelfth chapter is a catalog of numerical examples for geometric shape optimization when the derivatives are
computed along normal trajectories. We aim at comparing the efficiency of the previously described second-order
methods (with the exact second-order derivative or only an approximation of it) with gradient methods. We also
compare the different methods for extending a velocity field from the boundary ∂Ω to the entire space Rd that are
introduced in Chapter 10.

The first examples deal with the minimization in the two-dimensional space of a functional of the form

E(Ω) =

ˆ
Ω

f(x) dx,

where the function f is scalar and does not depend on the domain Ω. Secondly we consider different two-dimensional
mechanical examples in the framework of linearized elasticity. The functions to be minimized in these mechanical
examples are either the compliance or the least square displacement criterion with a fixed penalization of the volume
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of the shape. For example, in Figure 3 we display some result for the minimization of the least-square displacement
criterion on the cantilever example.
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Figure 3: Minimization of the least square displacement criterion with a penalization of the volume for the cantilever.
One of the final shapes (left) and evolution of the error with respect to the best shape (right).

In the following section of this chapter we focus on different approximations of the second-order derivative. It starts
with describing an additional method based on the mass-lumping approximation. Then we consider the respective
consistencies of different approximations for the second-order derivative : the incomplete LU approximation, the CG-
Newton approximation and the mass-lumping approximation. Then we compare the efficiencies of these different
approximations on some examples with a fixed extension method.

Finally, the last part of this chapter deals with three-dimensional simulations.

Part IV : Numerical analyses

The last part of the thesis is dedicated to numerical analyses of different schemes used for shape optimization when
the shape is characterized by the level-set method. It also gives some hints on numerical ingredients that are necessary
to get a quadratic rate of convergence. It starts with a complete discretization of a shape optimization algorithm in
the two-dimensional space. Next, we focus on the numerical schemes for the level-set method : the Hamilton-Jacobi
transport equation and the redistanciation process. Finally the last chapter deals with the complete analysis of a
one-dimensional shape optimization example where almost all calculations can be made explicitly. This last chapter
is also the opportunity to compare the theoretical rates of convergence of different optimization methods.

Chapter 13 : Full discretization of a shape optimization algorithm

In this chapter, we provide a complete discretization of a geometric shape optimization problem in the two-dimensional
space for a simple model problem. The shape is modeled within the level-set method. We detail the numerical schemes
for solving the Hamilton-Jacobi advection equation, and for the redistanciation process. The derivatives are computed
with the optimize-then-discretize approach, meaning that they are discretized versions of the continuous derivatives.

Chapter 14 : Analysis of numerical schemes for the level-set method

This chapter is concerned with the analysis of numerical schemes for the level-set method. We first consider the
scheme for the transport equation. In the one-dimensional case, we observe that the scheme used to redistanciate the
level-set function does not keep the boundary of the shape unchanged. We also consider a particular example of shape
optimization and observe that some natural choice of descent direction makes the boundary be attracted by a node of
the mesh. Finally the last section of this chapter deals with the fast-marching method for the redistanciation process
and shows on a simple example that this method does not keep a distance function unchanged.
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Chapter 15 : A one-dimensional optimization case

In this last chapter, we introduce a one-dimensional shape optimization example for which all calculations are explicit.
We take Ω =]0, 1[, z ∈ Ω, α1, α2 ∈ R?+, α(x) = α1 for x ∈]0, z[, α(x) = α2 for x ∈]z, 1[ and u0 ∈ R, with boundary
conditions given by Figure 4.

z

α1 α2

Figure 4: One-dimensional problem.

We aim at minimizing J = (u(1)− u0)2 where u is solution to





− d

dx

(
α
d

dx
u

)
= 0 in Ω,

(
α
d

dx
u

)
(1) = 1,

u(0) = 0.

(2)

We start by describing the continuous problem, and its theoretical optimal solution. Then we detail a discretized
version, and the corresponding optimal solution. The continuous problem can be considered from either a parametric
or a shape variation point of view. Thus we detail the derivatives for the two frameworks and their discretizations.
We also give the derivatives for the discretized problem.

Then, we analyze the rates of convergence of Newton’s method for the different approaches : the continuous model,
the optimize-then-discretize and discretize-then-optimize approaches. We also study for the continuous problem the
impact on the rates of convergence of errors on the first and second-order derivatives.

Finally we compare these theoretical results and numerical experiments. In Figure 5 we plot the evolution of the
error with the theoretical optimal solution with the different approaches.
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Figure 5: Evolution of the error to the optimal solution for the continuous model, the optimize-then-discretize and
discretize-then-optimize approaches.

Part of the work on the new framework for shape derivative (Chapter 10 and Chapter 12) has been accepted for
publication under the title :

Allaire, G.; Cancès, E. & Vié, J.-L. Second-order shape derivatives along normal trajectories, governed by Hamilton-
Jacobi equation Structural and Multidisciplinary Optimization, 2016, 1-22.

The work of this thesis gave also rise the following poster presentation :

Vié, J.-L. Second-order shape optimization of a plate with a parametric point of view. CANUM 2014, Carry-le-Rouet
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and the following oral presentations :

Vié, J.-L. Méthode de second-ordre pour l’optimisation de formes. Un exemple sans contrainte. SMAI 2015, Les
Karellis.

Vié, J.-L. Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. PI-
COF 2016, Autrans.

Vié, J.-L. Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. EC-
COMAS 2016, Crete

Vié, J.-L. Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. ICTAM
2016, Montreal
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Review of the state of the art

”Que dites-vous ?... C’est inutile ?... Je le sais !
Mais on ne se bat pas dans l’espoir du succès !

Non ! non, c’est bien plus beau lorsque c’est inutile !”
E. Rostand
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Optimization is a very important discipline that may arise everywhere when some system is wanted to be improved.
The first step of an optimization process consists in defining an objective to be optimized. For example, one could
want to minimize or maximize a cost, an energy or a time lapse. This objective may depend on different variables that
describe the characteristics of the considered system. The variables are allowed to vary in a set usually called the set
of admissible solutions. The objective may be optimized such that some constraints are satisfied. These constraints
modify the definition of the set of admissible solutions. The choice of the set of admissible solutions, of objective and
of variables is often named modeling. There are many possibilities for setting an optimization problem on a given
system, since one can describe its characteristics by different ways. A simplistic choice in the modeling may lead to a
straightforward optimization problem, but may not be relevant. To the contrary, when the choice is too complex, the
optimization problem may have no solution or be too complicated to solve.

One can first mention different kinds of optimization problems. At first, there is the case of discrete optimization
where the variables lie in a discrete set of cardinality n. Usually n can be extremely large which makes the comparison
of all possible configurations completely out of reach. This can arise in problems such as minimal cuts or smallest paths
in graphs. These are combinatorial problems which we will not discuss further, but one can find a lot of literature
on them [24, 42, 79, 108]. Secondly, there is the case of continuous optimization where the variables can change
continuously in a Banach space. The main advantage of this case relies on the fact that continuous variations in a
Banach space allow one to have access to sensitivity analysis which is extremely useful from a theoretical as well as a
practical point of view.

Once a model is chosen to represent a system, there are also many optimization algorithms that are available to
solve the model problem. One can cite for example the famous gradient algorithm - with different possible variants -
or the Newton method that requires the computation of the second-order derivative of the objective function. When
the computation of the second-order derivative is too time consuming, it can be relevant to use an approximation
instead. This is the main idea of the BFGS or the incomplete Newton’s methods.

1.1 Continuous optimization

In this section we consider a Banach space V with a norm ‖·‖V and an objective function f : V → R. This space is the
vectorial space where the optimization takes place. Let also K ⊂ V be a subset of V, a set where the solution must
lie. This last set is also called the set of admissible solutions. We consider the following optimization problem

inf
v∈K⊂V

f(v). (1.1)

Let us mention that if we aim at maximizing a function instead of minimizing it, it suffices to consider −f , and
everything in the sequel applies. In the general case, there is a priori no result about the existence or uniqueness of a
solution to that problem. Some additional assumptions have to be made about the objective function, the vectorial

23
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space or the set of admissible solutions. At first there is the question of the dimension of the vectorial space V : whether
it is infinite or not. Secondly the convexity of the objective function or of the set of admissible solutions may be a
matter of importance. At first we recall some classical notation and definitions. We also refer to [7, 8, 24, 25, 26, 75, 92]
for more details.

1.1.1 Definitions

If the set of admissible solutions K is empty, there is of course no solution to (1.1) and by convention, the value of
the infimum is +∞. To the contrary when K is not empty, the value of (1.1) is the infimum of the values of f on the
set K. In the case where f has no inferior bound on K this value is conventionally −∞. Furthermore, when there
exists a finite infimum of f on K, this value may not be attained by an element of K. When this value is attained,
the infimum is said to be a minimum.

Definition 1.1.1. A element u ∈ K is said to be a local minimum of f on K if and only if

∃δ > 0, ∀v ∈ K, ‖u− v‖V ≤ δ ⇒ f(u) ≤ f(v).

Furthermore, u ∈ K is said to be a global minimum of f on K if and only if

∀v ∈ K, f(u) ≤ f(v).

Now let us define the notion of convexity for functions and spaces.

Definition 1.1.2. A set K ⊂ V is said to be convex if for every u, v ∈ K and θ ∈ [0, 1], the element θu+ (1− θ)v is
also in K.

Definition 1.1.3. A function f : V → R is said to be convex if for every u, v ∈ K and θ ∈ [0, 1] the following
inequality is satisfied

f
(
θu+ (1− θ)v

)
≤ θf(u) + (1− θ)f(v). (1.2)

Furthermore, if the inequality is strict for every u 6= v and for θ ∈]0, 1[, the function f is said to be strictly convex.

In the case where the objective function is convex on a convex set, each local minimum is a global minimum :

Proposition 1.1.4. Let f be a convex function on a convex set K. Every local minimum of f on K is a global
minimum. If f is strictly convex, there exists at most one local minimum which is therefore a global minimum.

In order to benefit from the sensitivity analysis, we also introduce the notion of differentiability.

Definition 1.1.5. The function f : V → R is said to be Fréchet-differentiable if there exists a linear map L ∈ V ′ (the
dual space of V) such that

f(u+ w) = f(u) + L(w) + o(‖w‖V),

where lim
‖w‖V→0

o(‖w‖V)

‖w‖V
= 0. The linear map L is also denoted L(w) = 〈f ′(u), w〉, where 〈·, ·〉 denotes the duality

product between V ′ and V. The first-order derivative is also represented by its gradient - denoted ∇f(u) ∈ V - that
satisfies

∀v ∈ V, 〈f ′(u), v〉 = ∇f(u) · v.
Similarly one can define the second-order differentiability.

Definition 1.1.6. The function f : V → R is said to be twice Fréchet-differentiable at u ∈ V if it is Fréchet-
differentiable in a vicinity of u and if the derivative

f ′ : V → V ′
v 7→ f ′(v)

is Fréchet-differentiable at u. The derivative of f ′ at u is called the second-order derivative of f at u and is denoted
by f ′′(u).

With this definition of the second-order differentiability, one can recall the second-order Taylor approximation :

Lemma 1.1.7. If f is twice Fréchet-differentiable on V, then

f(u+ w) = f(u) + 〈f ′(u), w〉+
1

2
f ′′(u)(w,w) + o(‖w‖2V),

where lim
‖w‖V→0

o(‖w‖2V)

‖w‖2V
= 0 and f ′′(u) is identified to a bilinear continuous form on V×V. The second-order derivative

is also represented by its Hessian - denoted D2f(u) - such that

∀v, w ∈ V, f ′′(u)(v, w) = D2f(u)v · w = vT D2f(u)w = wT D2f(u) v.

The second-order differentiability gives also a criterion for the convexity.

Lemma 1.1.8. Let f be twice Fréchet-differentiable on V. Then f is convex if and only if

∀u,w ∈ V, f ′′(u)(w,w) ≥ 0.
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1.1.2 Existence results

Whether the space V is of finite dimension or not, the existence result for (1.1) differs. Let us start with the finite-
dimensional case.

Proposition 1.1.9. Let V be a finite-dimensional vector space, K a closed non-empty subset of V and f : V → R a
continuous function on V. Assume also that f satisfies the following property

∀(un)n∈N ∈ KN, lim
n→∞

‖un‖V = +∞ =⇒ lim
n→∞

f(un) = +∞. (1.3)

Then there exists at least one minimum of f on K.

Remark 1.1.10. When K is bounded, the property (1.3) is not necessary : since the space V is of finite dimension,
K is compact, and the continuity of f ensures the existence of a minimum.

When the space V is of infinite dimension, these assumptions are no longer sufficient to ensure the existence of a
minimum. Existence results are recovered with additional conditions on the set K and the function f . We recall here
some results of [7, 35].

Theorem 1.1.11. Assume that K is a bounded and weakly closed subset of a reflexive Banach space, and that
f : V → R is weakly lower semicontinuous. Then f has a global minimum on K.

Similarly to the finite-dimensional case, the boundedness condition on the set K can be replaced by the property
(1.3) stating that f is infinite at infinity (see [35, Theorem 1.2]). However, the closure condition is still necessary for
the existence of a minimum. When this last condition is not satisfied but there are convexity assumptions on f and
K, there may still be existence of a minimum, such as stated by the following theorem. We recall that it is a stronger
assumption to assume that a space is weakly closed than to assume it is only closed.

Theorem 1.1.12. Let K be a closed convex non-empty subset of a reflexive Banach space V, and f be a convex
continuous function on K satisfying the property (1.3). Then there exists a minimum of f on K. Furthermore, if the
function f is strictly convex, then the minimum is unique.

This existence result is hardly used in shape optimization since the convexity of the subset K and the function f
as well as the closure condition on K are very strong conditions. In practice, there are lots of minimization problems
for which there is not existence of a solution. For shape optimization, the natural choice of modeling makes usually
the problems ill-posed (see Section 2.3).

1.1.3 Optimality conditions

Theorem 1.1.13. Assume that K is an open set, that the function f : K ⊂ V → R has a local minimum at u ∈ K
and is Fréchet-differentiable. Then

∀w ∈ V, 〈f ′(u), w〉 = 0.

When the subset K is convex, the first-order optimality condition may be written as follows.

Theorem 1.1.14. Assume that K is convex set and that f : K ⊂ V → R is a convex Fréchet-differentiable function.
Then u ∈ K is a minimum of f if and only f

∀v ∈ K, 〈f ′(u), v − u〉 ≥ 0.

The convexity assumption on K and f makes the necessary optimality condition of Theorem 1.1.13 become a
sufficient condition. When K = V, there is also a second-order optimality condition :

Theorem 1.1.15. Assume that K = V and that f is twice Fréchet-differentiable.

• If u is a local minimum of f on K then

f ′(u) = 0, ∀w ∈ V, f ′′(u)(w,w) ≥ 0.

• Conversely if f ′(u) = 0 and for every v ∈ V in a neighborhood of u

∀w ∈ V, f ′′(v)(w,w) ≥ 0.

then u is a local minimum of f .

Now we consider the case where the set K is not equal to V and can be described as a set

K = {v ∈ V | F (v) = 0},

where F (v) =
(
F1(v), · · · , Fp(v)

)
and Fj : V → R for all 1 ≤ j ≤ p. The optimization problem now reads

inf
v∈V, F (v)=0

f(v). (1.4)

In this framework it is useful to introduce the notion of Lagrangian.
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Definition 1.1.16. The Lagrangian of problem (1.4) is defined by

∀(v, µ) ∈ V × Rp, L(v, µ) = f(v) +

p∑

i=1

µiFi(v) = f(v) + µ · F (v). (1.5)

The variable µ ∈ Rp is called the Lagrange multiplier of the constraint F (v) = 0.

Now the set K has no reason to still have a convex structure. When the function F is continuous, the set K is
no longer open, and therefore the Theorem 1.1.13 is not available. The necessary optimality condition is given by the
following theorem.

Theorem 1.1.17. Let u ∈ V such that F (u) = 0. Assume that f so as Fi (1 ≤ i ≤ p) are continuously differentiable

in the vicinity of u. If u is a local minimizer of f on K and the vectors
(
F ′i (u)

)
1≤i≤p

are linearly independent, then

there exists a Lagrange multiplier λ ∈ Rp such that

∂L
∂v

(u, λ) = f ′(u) + λ · F ′(u) = 0 (1.6)

and
∂L
∂µ

(u, λ) = F (u) = 0. (1.7)

The notion of Lagrangian and of Lagrange multiplier can be extended to different cases such as the case when the
function F defining the set K takes its values in an infinite-dimensional space. It can also be extended to the case of
inequality constraints where there are restrictions on the sign of the multiplier.

1.2 Algorithms

In the previous section, we considered the existence of solutions to a minimization problem. Now we shall be concerned
with constructive aspects, that is finding sequences of approximating solutions. For the sake of simplicity, we will
consider the case where K = V = Rd, so that V can be identified to its dual space. In particular this is a finite-
dimensional case without constraints :

inf
v∈V

f(v). (1.8)

We will also assume that the function f is strictly convex and goes to +∞ at infinity, which ensures by Theorem 1.1.12
the existence of a unique minimizer u? to (1.8). In addition we also assume that f is three-times differentiable. Starting
from an initial data u0 we aim at constructing a sequence (un)n∈N that converges to u?. Basically the iterates of the
sequence are built on the same scheme. Given a step ρk and a direction wk the iterate uk+1 is computed by

uk+1 = uk + ρk wk. (1.9)

In view of minimizing the objective f , the sequence f(un) is required to be decreasing. It is usually required that the
direction wk is a descent direction, i.e such that

〈
f ′(uk), wk

〉
< 0. It ensures that the function f can be reduced in

this direction. The step ρk intervenes here : with a given direction wk it can be adjusted such that the reduction of
f allowed by the descent direction is effective.

There are many strategies to choose an efficient step. The question of finding a step is often called the line search
procedure. Two main things are to be noticed about it. A particularly small step should ensure the reduction of the
objective - i.e f

(
uk+1

)
≤ f

(
uk
)

- but the change in the iterate could be extremely tiny. Therefore the convergence of
the sequence to the solution would be very slow. To the contrary, with a large step the convergence can be hoped to
be quicker but there is no insurance to keep the decrease property, since the first-order approximation is only local.

The most famous rules for finding a ’nice’ step are given by Wolfe or Goldstein [92, §3]. These rules rely basically
on the ideas that there should be a sufficient decrease between two successive values of the objective function, and that
the step should not be too small. We can restrict ourselves to the Armijo backtracking procedure that is recognized
to be sufficient [92, Procedure 3.1] in practice.

Algorithm 1.2.1. Backtracking line search

1. Choose ρ > 0, c1, c2 ∈]0, 1[.

2. Compute f(uk + ρwk).

3. If f(uk + ρwk) > f(uk) + c2
〈
f ′(uk), wk

〉
set ρ = c1ρ and go to step 2. Else set ρk = ρ and stop.

1.2.1 Gradient method

The main idea of gradient methods is to take directions given by the steepest-descent direction. The descent direc-
tion is therefore given by the opposite gradient direction wk = −∇f(uk). In that case we straightforwardly have〈
f ′(uk), wk

〉
≤ 0 with equality only at critical points. Even if in practice the choice of the backtracking line search

(Algorithm 1.2.1) gives satisfactory convergence result we recall here two choices of a step for which the convergence
of a gradient algorithm is established.
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Optimal step

At iteration k ∈ N with a descent direction wk = −∇f(uk) given by the gradient,

uk+1 = uk + ρkwk, (1.10)

the step ρk may be chosen in an optimal way, that is such that

f
(
uk+1

)
= inf
ρ∈R+

f
(
uk + ρwk

)
. (1.11)

In other words, this consists in taking
ρk = arg inf

ρ∈R+

f
(
uk + ρwk

)
.

In that case, under regularity conditions on the function f , one can recall the following convergence result ([7, Théorème
3.38]).

Theorem 1.2.2. Assume that f is strictly convex and differentiable. Assume also that the first derivative f ′ is
Lipschitz on V, i.e there exists C > 0 such that

∀v, w ∈ V, ‖f ′(u)− f ′(v)‖V ≤ C ‖u− v‖V .
Then the gradient algorithm given by (1.10) and (1.11) converges to u? solution to (1.8).

Fixed step

The computation of an optimal step accelerates the convergence of the sequence (un)n∈N but is quite expensive in
time since at each iteration one has to solve another minimization problem. Therefore we also consider the algorithm
with a fixed step :

uk+1 = uk − ρ∇f(uk), (1.12)

where ρ > 0 is a priori chosen and the same for every iteration. In that case, under additional regularity conditions
on the objective function f there is still a convergence result.

Theorem 1.2.3. Assume that f is differentiable and strongly convex, i.e there exists α > 0 such that

∀u, v ∈ V, 〈f ′(u)− f ′(v), u− v〉 ≥ α ‖u− v‖V .

Assume also that f ′ is Lipschitz on V with constant C > 0. With the additional condition that 0 < ρ <
2α

C2
the

gradient algorithm with fixed step converges to u?.

1.2.2 Newton’s method

There are many other possible choices for a direction wk to be a descent direction. Instead of taking the steepest-descent
direction, the Newton method intends to find the direction that minimizes the second-order Taylor approximation of
f around uk :

f(uk + w) ' f(uk) +
〈
f ′(uk), w

〉
+

1

2
f ′′(uk)(w,w). (1.13)

When the quadratic form f ′′(uk) is positive definite, the minimization of w 7→ f(uk) +
〈
f ′(uk), w

〉
+

1

2
f ′′(uk)(w,w)

has a solution given by

wk =
(
f ′′(uk)

)−1

∇f(uk), (1.14)

where in this last expression, f ′′(uk) is seen as an operator from V to V ′. With this choice of direction, the choice
ρk = 1 is natural. Moreover, it appears that it ensures quadratic convergence under additional regularity conditions
on f . In order to ensure the existence of wk solution to (1.14) we also see that the the Hessian f ′′ has to be invertible
at uk. This is usually given by its positive-definiteness.

Theorem 1.2.4. Assume that f is three-times differentiable in a neighborhood of a minimizer u? where f ′(u?) = 0
and f ′′(u?) is positive definite. With the iteration uk+1 = uk + wk where wk is given by (1.14) then

1. if the initial data u0 is close enough from u?, the sequence (uk)k∈N converges to u?,

2. furthermore the rate of convergence of (uk)k∈N is quadratic, meaning that there exists C > 0 such that
∥∥uk+1 − u?

∥∥
V ≤ C

∥∥uk − u?
∥∥2

V ,

3. the sequence f ′(uk) converges also quadratically to zero
∥∥∥f ′
(
uk+1

)∥∥∥
V
≤ C

∥∥∥f ′
(
uk
)∥∥∥

2

V
,

The differentiability of the second-order derivative is not necessary in this theorem, a Lipschitz continuity condition
on the second-order derivative is sufficient (see [92, Theorem 3.7]).
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1.2.3 The BFGS method

The computational cost of computing the full Hessian may be prohibitive. Therefore the question of approximating
the second-order derivative at a monitored cost was soon considered. The BFGS method was introduced in the 70s
by Broyden, Fletcher, Goldfarb and Shanno [28, 29, 62, 65, 116]. Its main idea is to approximate the second-order
derivative with the difference between two successive first-order derivatives. The second-order quadratic approximation
of the objective function at uk reads for w ∈ Rd

f(uk) +∇f
(
uk
)
w +

1

2
wT D2f

(
uk
)
w.

Now let’s assume that the complete Hessian D2f(uk) is not known, but only an approximation : Bk. Therefore, this
leads to consider the following approximation

mk(w) = f
(
uk
)

+∇f
(
uk
)
w +

1

2
wT Bk w.

The minimization of this approximation with respect to w leads to take wk solution to

Bk w
k = −∇f

(
uk
)
. (1.15)

With this direction wk and a step ρk, a new iterate uk+1 can be computed by

uk+1 = uk + ρk wk.

Now, based on a quadratic approximation of the objective function at this new iterate, we aim at finding requirements
on an approximation of the second-order derivative at this new iterate : Bk+1. The quadratic approximation would
write

mk+1(w) = f
(
uk+1

)
+∇f

(
uk+1

)
w +

1

2
wT Bk+1 w.

By construction, this approximation satisfies straightforwardly

mk+1(0) = f
(
uk+1

)
, ∇mk+1(0) = ∇f

(
uk+1

)
.

The quadratic form mk+1 is an approximation of f
(
uk+1 +w

)
. For w = −ρk wk, it could be expected that its gradient

matches with the gradient of f at uk+1 − ρk wk = uk. Broyden, Fletcher, Goldfarb and Shanno therefore proposed
the requirement

∇mk+1

(
− ρk wk

)
= ∇f

(
uk
)
.

This also writes
Bk+1 ρ

kwk = ∇f
(
uk+1

)
−∇f

(
uk
)
.

Introducing the notation
sk = uk+1 − uk, yk = ∇f

(
uk+1

)
−∇f

(
uk
)
,

this leads to
Bk+1 s

k = yk. (1.16)

There is absolutely no chance to have a unique matrix Bk+1 satisfying this equation. But restricting to the case where

Bk+1 = Bk +Mk,

it is possible to find a rank-one or rank-two matrix Mk such that Bk+1 fulfills the requirement (1.16).

Rank-1 updates

Looking for a rank-one matrix consists in finding c ∈ R and z ∈ Rd such that

Mk = cz zT .

There are many possible choices for c and z, and one can for example take

z = yk −Bk sk, c =
1

zkT sk
. (1.17)

This choice leads to

Bk+1 sk = Bk sk +

(
yk −Bk sk

)(
yk
T sk − skT BkT sk

)

ykT sk − skT Bk sk
= Bk sk + yk −Bk sk
= yk.
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The rank-one update of the matrix guarantees that the newly approximated matrix stays symmetric but there is no
insurance to keep the positive definite character. Nevertheless, it can be proven that under regularity conditions on
the objective function, the so-computed approximation of the Hessian converges in some sense to the exact Hessian.

The computation of the descent direction wk using (1.15) requires to solve a linear system. Therefore instead of
working with an approximation of the Hessian, it can be more practical to work with an approximation of its inverse.
It appears that with a Sherman-Morrison formula [92, Appendix A], the rank-one update formulas for the inverse are
similar.

Rank-2 updates

The non-conservation of the positive definiteness of the approximation with the rank-one update may lead to difficulties
to find a descent direction. This is the main reason why one considers rank-two updates. In that case, the matrix Mk

is searched under the form
Mk = c1z1 z1

T + c2z2 z2
T ,

with c1, c2 in R and z1, z2 in Rd. There is still non-uniqueness of a solution but one can take





z1 = yk, c1 =
1

ykT sk
,

z2 = Bk sk c2 =
−1

skT Bk sk
.

With this choice, the new iterate Bk+1 writes

Bk+1 = Bk +
yk yk

T

ykT sk
− Bk sk sk

T Bk
T

skT Bk sk
. (1.18)

At first one can easily check that if the matrix Bk is symmetric, then it is the same for Bk+1. The question about the
positive definitiveness of Bk+1 is quite more tricky. If we assume that Bk is positive definite, one needs the additional
requirement

sk
T yk > 0,

to ensure that Bk+1 is positive definite.

Lemma 1.2.5. Assume that Bk is symmetric positive definite and that sk
T yk > 0. Then with

Bk+1 = Bk +
yk yk

T

ykT sk
− Bk sk sk

T Bk
T

skT Bk sk
,

the new iterate Bk+1 is also symmetric positive definite.

Proof. The symmetry of the new iterate Bk+1 is straightforwardly given by the one of Bk. With Hk being the inverse
of Bk, it is also possible - thanks to a Sherman-Morrison formula [92, Appendix A] - to get an update formula for
Hk+1 the inverse of Bk+1 (with sk

T yk 6= 0)

Hk+1 =

(
I − 1

skT yk
sk yk

T

)
Hk

(
I − 1

skT yk
yk sk

T

)
+

1

skT yk
sk sk

T .

Since sk
T yk > 0 it is easy to check that Hk+1 is positive. Let v ∈ Rd; one has

vT Hk+1 v =

(
v − 1

skT yk
yk sk

T v

)T
Hk

(
v − 1

skT yk
yk sk

T v

)
+

1

skT yk
vT sk sk

T v

≥ 0.

Since Hk is positive definite, assuming that vT Hk+1 v = 0 leads to

v − 1

skT yk
yk sk

T v = 0

sk
T v = 0

and therefore v = 0. As a result Hk+1 is positive definite, and so as Bk+1.

When the assumption sk
T yk > 0 is not satisfied, one can introduce

rk = θk yk + (1− θk)Bk sk,
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with

θk =





1 if sk
T yk ≥ 0.2sk

T Bk sk

0.8× sk
T Bk sk

skT Bk sk − skT yk
otherwise.

Since Bk is assumed to be positive definite, one can easily check that θk ∈ [0, 1] and that sk
T rk > 0. Then one

replaces yk by rk in the update formula (1.18). With this modification the requirement (1.16) is not really satisfied
since Bk+1 sk = rk and when θk 6= 0 the vector rk is different from yk. But the condition sk

T rk > 0 guarantees that
Bk+1 is positive definite which is way more important for practical purposes.

1.3 Optimize-then-discretize

Different questions arise beyond the choice of a model, such as the question of discretization, the numerical aspects or
the way to link discretization to optimization. With a given model, i.e an objective function and a set of variables the
discretization mainly consists in projecting the variables in a finite-dimensional space. For example, let us consider
the model

inf
v∈K⊂V

f(v). (1.19)

A discretized problem would be written
inf

vh∈Kh⊂RNh
fh(vh). (1.20)

Remark 1.3.1. Let us take an example. Let g0 ∈ C0([0, 1];R) and consider

inf
g∈L2([0,1];R)

ˆ
[0,1]

|g − g0|2,

The minimum is obviously attained at g = g0 but that is not the point here. In order to numerically solve this problem,
we can consider (xi)1≤i≤Nh a subdivision of [0, 1] and the finite element space

P1 =
{
g ∈ C0([0, 1]) | ∀1 ≤ i ≤ Nh, g is affine on [xi, xi+1]

}
.

Let g0
h be the interpolation of g0 on P1. The restriction to P1 of the minimization problem writes

inf
g∈P1

ˆ
[0,1]

|g − g0
h|2, (1.21)

For g ∈ P1, the value of

ˆ
[0,1]

|g − g0
h|2 varies only with respect to the values of g at the points (xi)1≤i≤Nh . Denoting

by gi these values, one can define

fh : RNh 3 (g1, · · · , gNh)→
ˆ

[0,1]

|g − g0
h|2.

Therefore, the problem (1.21) now reads
inf

(gi)∈RNh
fh(g1, · · · , gNh), (1.22)

There are two main approaches for solving numerically an optimization problem such as (1.19). At first we mention
the Optimize-then-discretize one. The idea is to write the optimality conditions for the real problem (1.19), to discretize
the resulting problem and then to solve it. Secondly we can also consider the Discretize-then-optimize approach, which
was first introduced for optimal control problems [23, 73, 77, 80, 101]. It consists first in discretizing the optimization
problem and then in solving the resulting finite-dimensional optimization problem.

Let us consider a problem without constraint, and its discretized counterpart

inf
v∈V

f(v), inf
vh∈RNh

fh(vh). (1.23)

The first-order optimality conditions respectively read

∀w ∈ V, 〈f ′(v?), w〉V′,V = 0, ∀wh ∈ RNh , 〈∇fh(v?h), wh〉RNh ,RNh = 0.

But the discretization of the first-order condition for the continuous problem in V reads

∀wh ∈ RNh , 〈f ′h(ṽ?h), wh〉RNh ,RNh = 0.

All the difference is between f ′h and ∇fh. The first one is the discretization of the derivative of f on V whereas ∇fh
is the gradient in RNh of the discretized function fh. There is a priori no chance for these two quantities to coincide
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(in some particular case it is possible), leading to different results of the optimization process.

We recall from [127] the difference between accuracy and consistency for the computed derivatives. Accuracy is the
difference with the exact derivatives of the continuous model, whereas consistency is the difference with the derivatives
of the numerical model. With this point of view, the Optimize-then-discretize approach is accurate - the accuracy is
given by the size of the discretization - but may not be consistent. As a result, there is no insurance to reach the
exact optimality conditions of the continuous model. To the contrary, the Discretize-then-optimize approach is not
accurate but is consistent. This means that it should find a solution of the numerical problem (since the derivatives
are consistent), but this solution may not be a good solution at all for the continuous problem.
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Chapter 2

Shape optimization methods
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At the beginning of any optimization process, there is a modeling question. One has to choose a mathematical
model to represent the data to be optimized. There are two main ingredients in a mathematical model for shape
optimization : at first the way to represent a shape, and secondly the way to perform a sensitivity analysis.

As regards shape optimization, the most general modeling of a shape is to consider it as a variable bounded open
subset of Rd. The main trouble with this approach is that the set of bounded open sets of Rd does not have a vectorial
space (nor a differentiable manifold) structure. Therefore, the usual mathematical results for optimization are not
available. The modeling consists in finding a variable that would lie in a ”nice” space - such as a Banach space -
and that would represent a shape. The different methods for optimization of a shape are traditionally divided in
three categories : parametric optimization, geometric optimization and topology optimization. We will present these
methods thanks to some physical examples, therefore we will start by introducing different physical models.

2.1 Physical models

The physical models we will considered may be classified in different categories, whether the unknown is scalar, and
whether there is a planar invariance.

2.1.1 Membrane model : −div(B∇u)

We consider a membrane ΩR3 represented by a bounded open set Ω ⊂ R2 and a thickness h ∈ L∞(Ω;R+) :

ΩR3 = {X ∈ R3 |X = (x, y, z) with (x, y) ∈ Ω and 0 ≤ z ≤ h(x, y)}.

The behavior of the membrane is represented by a second-order symmetric positive definite tensor B. For a given load
f ∈ L2(Ω;R), the out-of-plane displacement of the membrane u is modeled by the following equation

{
−div (hB∇u) = f in Ω,

u = 0 on ∂Ω.
(2.1)

The domain ΩR3 is formally replaced by Ω in (2.1) by integrating in the direction ez and assuming planar invariance
in this direction. We could also have considered different boundary conditions for this equation, such as Neumann
boundary conditions. The displacement u is a scalar quantity from Ω to R and is defined a priori in H1(Ω;R).

33
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2.1.2 Planar elastic model : −div(Aε(u))

We take the same membrane ΩR3 as in Section 2.1.1. Now we are concerned with in-plane displacements. Taking a
load f ∈ L2(Ω;R2), the in-plane displacements u are modeled by the solution to

{
−div (hAε(u)) = f in Ω,

u = 0 on ∂Ω,
(2.2)

where the deformation tensor ε is defined by

ε(u) =
1

2

(
∇u+∇uT

)
,

and the elastic behavior of the membrane is modeled by the Lamé’s coefficients λ, µ and the Hooke’s symmetric tensor
A that acts on a matrix ζ as follows

Aζ = 2µζ + λTr(ζ)Id.

Like previously, the domain ΩR3 is replaced by Ω to get (2.2) by integrating along the direction ez and assuming
planar invariance of u in this direction. Here, the displacement u is a two-dimensional quantity from Ω to R2 defined
a priori in H1(Ω;R2) (given by elliptic regularity).

Instead of having f as data with a homogeneous Dirichlet boundary conditions, we could also have other boundary
conditions on different parts of the boundary.

2.1.3 Planar vectorial model : −div(B∇u)

We also take the same membrane ΩR3 as in Section 2.1.1. With f ∈ L2(Ω;R2) we consider u as the solution to

{
−div (hB∇u) = f in Ω,

u = 0 on ∂Ω,
(2.3)

Compared to the planar elastic model of Section 2.1.2, we just replace ε(u) and A by respectively ∇u and B.

2.1.4 Scalar thermal model : −div(B∇u)

Here we consider a shape Ω being a bounded open set of Rd with d ∈ {2, 3}. We do not assume any more any planar
invariance. For an initial data f ∈ L2(Ω;R) we consider the following boundary problem with unknown u : Ω→ R :

{
−div (B∇u) = f in Ω,

u = 0 on ∂Ω,
(2.4)

where B is symmetric second-order tensor. The unknown u may model the solution of a thermal problem. This is
the reason why this model is said to be a thermal model. Similarly to the other models, we could also impose other
boundary conditions on different parts of the boundary than the homogeneous Dirichlet condition on ∂Ω. The tensor
B is denoted as the thermal tensor.

2.1.5 Elastic model : −div(Aε(u))

Finally we introduce the linear elastic model. We take Ω as a bounded open set of Rd, and f ∈ L2(Ω;Rd) a volumic
load. The displacement u : Ω→ Rd of the shape under this load is modeled by the solution to

{
−div (Aε(u)) = f in Ω,

u = 0 on ∂Ω.
(2.5)

Like in Section 2.1.2, the parameters λ and µ are the Lamé’s coefficients of the material. The elastic behavior of the
shape is modeled by the Hooke’s tensor A defined by

Aζ = 2µζ + λTr(ζ)Id.

The deformation tensor ε(u) is also defined by

ε(u) =
1

2

(
∇u+∇uT

)
.
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2.2 Overview of the different methods

2.2.1 Parametric optimization

In the case of parametric optimization, the shape is characterized by a finite number of parameters. This could be a set
of lengths, curvatures or thickness for example. In this section we present a parametric case of shape optimization. A
reference domain Ω is taken as a bounded open set of R2, and does not vary. At each point x ∈ Ω we assign a thickness
h(x) (see Figure 2.1) that may evolve between two given values hM ≥ hm > 0. This models the three-dimensional
shape ΩR3 defined by

ΩR3 = {X ∈ R3 |X = (x, y, z) with (x, y) ∈ Ω and 0 ≤ z ≤ h(x, y)}.

At first, let us mention that this choice has a great importance on the behavior of the optimization. Considering the

Ω

h

Figure 2.1: Thickness of a plate.

thickness h as a function in L∞ (Ω; [hm, hM ]), there cannot be any holes in the shape. Moreover there should be only
two boundaries in the z-direction for ΩR3 . This is kind of a moldability constraint : the shape must have a molding
direction in the z-direction (see for example [83] for more details on moldability constraints). In Figure 2.2, we give
an example of a shape that cannot be represented by the thickness parametrization : at the point x0 there is no clear
definition of the thickness.

Ω

h

x0

Figure 2.2: Shape that is not reachable with the thickness parametrization.

When the thickness is small the shape can be seen as a plate, and we can assume that the study takes place in
the framework of small deformations. For example we can place ourselves in the framework of the membrane model
of Section 2.1.1. The plate is assumed to be filled with a homogeneous isotropic material. In this case, the physical
behavior of the plate is described by the second-order tensor B, which depends linearly on the thickness, and is defined
by

B(h) = hId.

This equation characterizes the choice of the material that is made. For a given volumic load f ez with f ∈ L2 (Ω;R),
the vertical displacements - u(h) : Ω → R - of the shape ΩR3 under this load are modeled by the solution to the
following boundary-value problem

{
−div (B(h)∇u(h)) = f in Ω,

u = 0 on ∂Ω.
(2.6)

This model amounts notably to assuming planar invariance in the z-direction for the physical behavior of ΩR3 . The
solution u to the problem (2.6) depends on the thickness through the tensor B. In this context, the shape optimization
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reduces to the optimization of the thickness h in the convex set

Uad = {h ∈ L∞(Ω) | ∀x ∈ Ω, 0 < hm ≤ h(x) ≤ hM} .
The objective is to minimize a function J defined by

J(h) =

ˆ
Ω

j
(
h, u(h)

)
,

with h ∈ Uad and j : Ω×H1 (Ω;R)→ R. The optimization problem reads

min
h∈Uad

J(h). (2.7)

The set Uad is not relatively compact for the strong topology of L∞(Ω) (see [7, Remarque 5.4]). As a consequence
there is no existence results for optimal shapes in this space. This is well explained in [7, Proposition 5.2] where a
counter-example is given. It is for example possible to build a sequence of shapes with an increasing rigidity with a
constant volume. This seems possible by considering shapes with a infinite number of bars whose volume tends to
zero. In fact, this sequence can converge but not in the space Uad. This could be seen as the need to authorize some
composite material, made by superposition of different layers of materials at the microscopic scale. It also happens
that with regularity constraints on the thickness, there might be existence of optimal solutions [7, §5.2.3].

2.2.2 Topology optimization

In R2 optimizing the topology of a shape consists in finding the best repartition of holes in the shape. The first methods
authorizing topological changes used a relaxed characteristic function. This is at the basis of the homogenization
method [6, 89, 90] or the SIMP (Solid Isotropic Material with Penalization) method [20, 21] which is kind of a rough
approximation of the latter. These two methods consider materials with intermediate densities, and therefore the
classical notion of shape is lost. Eventually, one can interpret an optimal shape considering low densities as holes and
densities close to 1 as full material : this is the role of the penalization process. The final shapes then obtained are
still classical shapes, but may lose their optimal character.

One can also mention another topological method that deals with a classical notion of shape. It consists in working
with a characteristic function and to compute topological sensitivities that evaluates the sensitivity with respect to
nucleation of holes. We will not elaborate on this method here and refer to [17, 93, 121] for more details. The
computation of topological derivatives is usually technical. Moreover, when an optimization process creates many
small holes in the same area, it works as a larger hole, and at the end the topological gradient has no real sense in
this area. This is one of the main difficulties of this method.

Homogenization

The most general principle for shape optimization is to optimize the characteristic function χ of a shape Ω. This
function satisfies χ(x) = 0 if x is in the domain Ω, and χ(x) = 0 if the point is outside. The shape Ω is considered
to be included in a bounded open set D, so that the characteristic function χ lies in L∞(D). There is a priori no
way to benefit from a notion of derivative for this kind of variable. Moreover, from a numerical point of view, the
optimization turns out to lead to combinatorial issues. With a mesh of size N , there is 2N different characteristic
functions. Therefore, even for small meshes it is unmanageable to compare all configurations and to keep the best one.
In the case of thickness optimization, it is known that there is a priori no optimal solution in L∞(D). There might
be minimizing sequences, but they may not converge in the space L∞(D) which is not relatively compact. One first
way to get existence results is to restrict the admissible space by imposing more regularity on the solutions. To the
contrary, the homogenization method consists in enlarging the space of admissible shapes by adding the possible limits
of minimizing sequences, namely the composite solutions. A composite material is characterized by a material density,
and its physical behavior given by the one of its microstructure. To that end, the problem is relaxed by replacing the
characteristic function by a density function ρ varying in [0, 1]. When the density is 1 it corresponds to a full material,
and when it vanishes it corresponds to void. Otherwise the shape is made of a composite material with density ρ.

Now we introduce some notions and results for the homogenization method, starting with the definition of an
homogenized tensor. We start by the notion of periodic homogenization. Let Ω be a periodic domain of period ε. The
space Rd is paved with ε-homotheties of the unit cell Y = [0, 1]d such that Rd =

⋃
i∈Zd Yi,ε where Yi,ε = ε(i+ Y ). We

denote with an indice # a Y -periodic space : for example L∞# (Ω) is the space of L∞(Ω) functions that are Y -periodic.
The physical behavior of the shape is modeled by the tensor A. In this case, the tensor is assumed not to be constant
but to be Y -periodic :

∀1 ≤ i ≤ d, A(y + ei) = A(y), where (ei)1≤i≤d is the canonical basis of Rd.

With a source term f ∈ L2(Ω;R) and Dirichlet boundary conditions, we consider the scalar thermal model of
Section 2.1.4. The model problems now reads

{
−div

(
A
(x
ε

)
∇uε

)
= f in Ω,

uε = 0 on ∂Ω,
(2.8)
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Ω

ε

Figure 2.3: Periodic media with period ε.

Most of the time the exact knowledge of the microstructure and its physical property A
(
x
ε

)
is not necessary. There-

fore we usually prefer to consider the average behavior given by the source term f . This is the main idea of the
homogenization method.

The average behavior of the solution uε to (2.8) can be estimated by the two-scale asymptotic expansion method.
It consists in assuming that uε can be written under the form

uε(x) =

∞∑

i=0

εiui

(
x,
x

ε

)
,

where Ω× Y 3 (x, y) 7→ ui(x, y) is periodic in its second variable y ∈ Y . In that case, the gradient of uε reads

∇uε = ε−1∇yu0

(
x,
x

ε

)
+

∞∑

i=0

εi (∇yui+1 +∇xui)
(
x,
x

ε

)
.

Now (2.8) becomes

− ε−2
(

divy
(
A∇yu0

))(
x,
x

ε

)

− ε−1
(

divy
(
A(∇xu0 +∇yu1)

)
+ divx

(
A∇yu0

))(
x,
x

ε

)

−
∞∑

i=0

εi
(

divx
(
A(∇xui +∇yu1+1)

)
+ divy

(
A(∇xui+1 +∇yui+2)

))(
x,
x

ε

)

= f(x).

Then we can identify each power of ε. We will not details about that and refer to [7, §7.2.2]. The equation with ε−2

indicates that u0 does not depend on the periodicity variable y. The equation with ε−1 indicates how to introduce the
cell-problem (see below (2.9)) for computing u1. Finally, integrating the equation with ε0 defines the homogenized
tensor (see below (2.10)).

Definition 2.2.1. Let Y = [0, 1]d and (ei)1≤i≤d the canonical basis of Rd. For all 1 ≤ i ≤ d let wi be the solution to
the following cell problem {

−divy

(
A(y)(ei +∇ywi)

)
= 0 in Y,

y 7→ wi(y) Y − periodic.
(2.9)

Let A? be defined by

A?ij =

ˆ
Y

A(y)
(
ei +∇ywi(y)

)
·
(
ej +∇ywj(y)

)
dy. (2.10)

A? is said to be a homogenized tensor.

Definition 2.2.2. Let ρ ∈ [0, 1]. We define by Gρ the closure of the set of all homogenized tensors A? such thatˆ
Y

χ(y) dy = ρ. This is the set of all composite materials with the two materials α, β in proportion ρ. The set Gρ is

included in the set of symmetric matrices.
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It can also be interesting to consider the case where the material is a mix of two phases α, β. Let us consider the
composite material defined by the characteristic function χ(x) such that the behavior of the material is given by the
law Aχ defined by

Aχ(x) = αχ(x) + β(1− χ(x)).

Given f ∈ L2(D;R), let u : D → R be the solution to

{
−div

(
Aχ(x)∇uχ(x)

)
= f in D,

uχ(x) = 0 on ∂D.

We aim at minimizing an objective function J defined by

J(χ) =

ˆ
D
j
(
x, uχ(x)

)
dx,

where and j : D ×H1 (D;R)→ R and χ being in Uad defined by

Uad =
{
χ ∈ L∞

(
D; [0, 1]

)}
.

The optimization problem reads
min
χ∈Uad

J(χ). (2.11)

There is the following convergence result

Theorem 2.2.3. Let χε be a sequence of characteristic functions and Aε be the tensor defined by

Aε = αχε(x) + β(1− χε(x)).

There exists a subsequence, also denoted by ε, a density ρ ∈ L∞ (D; [0, 1]) and a symmetric homogenized tensor
A? ∈ L∞

(
D;Rd

)
such that χε weakly converges towards ρ and Aε converges in the sense of homogenization towards

A?. This means that for all f ∈ L2(D;R), the solution uε to

{
−div

(
Aε(x)∇uε(x)

)
= f in D,

u(x) = 0 on ∂D,

weakly converges in H1(Ω;R) towards the solution u to

{
−div

(
A?(x)∇u(x)

)
= f in D,

u(x) = 0 on ∂D.

Moreover, for all x ∈ Ω, A?(x) ∈ Gρ(x).

Now we can define the relaxation of the initial optimization problem. Let U?ad be defined by

U?ad =
{(
ρ,A?

)
∈ L∞

(
D; [0, 1]× S

)
| ∀x ∈ Ω, A?(x) ∈ Gρ(x)

}
,

where S is the set of symmetric tensors. Denoting by u? the solution to

{
−div

(
A?(x)∇u?(x)

)
= f in D,

u?(x) = 0 on ∂D,

the optimization problem writes
inf

(ρ,A?)∈U?ad
J(ρ,A?), (2.12)

where

J(ρ,A?) =

ˆ
D
j
(
x, u?(x)

)
dx.

Theorem 2.2.4. The homogenized formulation (2.12) is a relaxation of (2.11) in the following sense

1. there exists at least one solution to (2.12);

2. any minimizing sequence of (2.12) converges in the sense of homogenization to a minimizer of (2.11);

3. any optimal solution to (2.12) is the limit of a minimizing sequence of (2.11).

As a consequence
min
χ∈Uad

J(χ) = min
(ρ,A?)∈U?ad

J(ρ,A?).
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It is at first noticeable that the homogenization is a way to avoid the non-existence of solution to the optimization
problem. Furthermore, since there always exists a minimizing sequence of characteristic functions converging to an
optimal solution, it is also possible to get a shape as close to an optimum as needed for the initial problem (2.11).
However, the definition of the homogenized tensor is implicit, and the set Gρ is a priori known only in a few cases, like
the case of laminated materials. At the end of the optimization process, the solution to the homogenized problem is
a composite material and not a classical shape. Most of the time it is preferred to obtain a classical shape described
by a characteristic function and not by material densities. For this purpose, at the latest steps of the optimization
process, the intermediate densities are penalized [7, §7.5.5] so that the densities get either closer to 0 or to 1.

Remark 2.2.5. As stated by Theorem 2.2.3, for x ∈ Ω we have A?(x) ∈ Gρ(x). This does not mean that the material
is periodic. But at each point x ∈ Ω, the tensor A?(x) can be attained by a limit of a sequence of homogenized periodic
materials with density ρ(x). Moreover in the case where the objective to be minimized depends only on one load-case,
for any optimal configuration (ρ,A?) one can find another equivalent configuration such as the material is periodic,
and more precisely a first-order laminate (see [7, Remarque 7.22]).

The SIMP method

The SIMP (Solid Isotropic Method with Penalization) was introduce by M.P. Bendsøe in [20]. This method has
been widely developed for topology optimization [21, 132], and is very popular for it is extremely easy to implement
[117]. Similarly to the homogenization method, the SIMP method intends to optimize a material density instead of a
characteristic function. It is not originally linked to the homogenization method, but can be seen as a simplification
of it. Given two materials with laws α, β and a density function ρ, we introduce a mixed material with law tensor Aρ
defined by

Aρ = αρp(x) + β(1− ρp(x)),

where p ∈ N?. The parameter p plays the role of the penalization, in order to force the density to converge to a
characteristic function. The SIMP method optimizes a material density which parametrizes the shape. Even if it is
now referred to as a topological optimization method, it is nothing but a parametric framework for shape optimization.

The optimization problem writes

min
ρ∈L∞(D;[0,1])

J(ρ), (2.13)

where

J(ρ) =

ˆ
D
j
(
x, u(x)

)
dx,

and u : D → R is the solution to {
−div

(
Aρ(x)∇u(x)

)
= f in D,

u(x) = 0 on ∂D,

for f ∈ L2(D;R) is a source term. Similarly to the previous section on homogenization, we place ourselves in the
framework of the scalar thermal model of Section 2.1.4. In the homogenization method, the tensor A is taken as a
homogenized limit of the tensor of a composite material. The local material density, as well as the microstructure
of the material are taken into account in the homogenized tensor. However, for most cases, the set of homogenized
tensor is not known, which is the main difficulty of the method. To the contrary, in the SIMP method, the thermal
tensor is explicit, and there is only a polynomial dependency on the density. There is absolutely no influence of the
microstructure in the thermal tensor. In that sense the approximation is much simpler. The polynomial dependency
on the density makes also all calculations straightforward. It is quite simple to get the differentiability - with respect
to the density - of the solution u to the boundary problem, and therefore to the objective function J . This is one of
the main advantages of the method. However, there is no convergence results. At first, there is no existence result of
an optimal solution. Assuming a numerical method converges to some local optimum, there is also no insurance to
find a classical shape in its vicinity. Therefore the penalization used to force the optimization to converge to a classical
solution may degrade considerably the optimality of the solution.

The approximation of the thermal behavior of the mixed material has a priori nothing to do with a homogenized
tensor. When p = 1, it can be seen [7, §7.6.5] that it is an upper bound on the homogenized tensor, and therefore
the SIMP solutions are not as good as the homogenized ones, since the material is assumed to be more rigid than
it really is. In the two-dimensional case, if we consider hM = 1 and β = 0, the SIMP method and the thickness
optimization coincide (provided that the density satisfies ρ(x) ≥ ρm > 0 in the SIMP method). A counter-example of
non-existence of optimal solutions ([7, Proposition 5.2]) for the thickness optimization is also relevant for the SIMP
method. Lastly let us mention that the penalization parameter p has a great influence on the behavior of numerical
methods. Increasing p makes the algorithms converge to a characteristic function, but when p is too high at the
beginning, the optimization may stop at a local optimum. Therefore, tuning p is a matter of great importance, but
without a lot of mathematical guidelines.

Moreover, since there is no exact representation of the shape, there is no access to geometric quantities such as
curvatures, thickness, or even the perimeter of the shape.
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2.2.3 Geometric optimization

In geometric optimization, the variable is the shape itself, or equivalently the boundary. The shape is not governed
by a set of parameters such as lengths, curvatures, etc. We first introduce the set of smooth bounded open sets : for
k ∈ N let Ok be defined by

Ok =
{

Ω ⊂ Rd | Ω is a bounded open set of class Ck
}
, (2.14)

where a set is said to be of class Ck when its boundary is of class Ck. We refer to Definition 3.2.1 for more details on
smooth domains.

We consider a domain Ω ∈ Ok filled with homogeneous isotropic material. The model is the Elastic model of
Section 2.1.5 with Hooke’s tensor A. The Hooke’s tensor is constant and does not depend on the shape, and the

deformation tensor ε is classically defined by ε(u) =
1

2

(
∇u+∇uT

)
. With f ∈ L2(Ω;Rd) let uΩ : Ω → Rd be the

solution to {
−div

(
Aε (uΩ)

)
= f in Ω,

uΩ = 0 on ∂Ω.
(2.15)

The goal is to minimize a function J defined by

J(Ω) =

ˆ
Ω

j
(
Ω, uΩ

)
,

with respect to Ω being in
Uad = Ok,

and where j : Uad ×H1
(
Rd;Rd

)
→ R. The optimization problem reads now

min
Ω∈Uad

J(Ω). (2.16)

Where the sufficient smoothness of the shape Ω may be more detailed (see Section 3.2). We can notice that in this
case the integration domain Ω is the optimization variable as well as the domain on which the boundary-value problem
(2.15) takes place. This is the main difficulty for computing shape derivatives. The shape sensitivity analysis can be
performed with respect to smooth variations of the boundary. We follow here the formalism introduced by Hadamard
[66] that was widely developed [56, 72, 86, 88, 122]. With a given reference domain Ω, in the framework introduced
by Murat and Simon [88, 118, 119], we consider domains of the form

Ωθ =
(
Id + θ

)
(Ω),

where θ ∈ W 1,∞(Rd;Rd
)
. Now we can define a notion of derivation with respect to the shape. We also refer to

Section 3.2.2 for more details.

Definition 2.2.6. The shape derivative of J(Ω) at Ω is defined as the Fréchet derivative in W 1,∞(Rd;Rd
)

at 0 of

θ 7→ J
((

Id + θ
)
(Ω)
)

. The shape derivative is denoted J ′ (Ω; θ) or J ′θ when there is no ambiguity.

Since smooth variations of the boundary do not include topological change, a geometric method works a priori
with a fixed topology. However it is possible to mix a geometric shape sensitivity analysis to a representation of the
shape that allows topological changes. This is the case of the level-set method presented in Chapter 4.

2.3 Existence of optimal shapes

2.3.1 A counter-example

After the choice of representation and modeling of the shape it remains another major difficulty inherent to shape
optimization. This is a theoretical aspect of shape optimization that may influence the choice of representation of
a shape. This is the fact that there is a priori no existence of optimal shapes. Let us explain this problem with
one example taken from [7, §6.2.1]. We start with a working domain D =]0, 1[2, in the two-dimensional space. This
domain is filled with two homogeneous, isotropic materials with properties α, β such that β > α > 0 and β � α. This
consists in assuming that there is one rigid (with property β) and one soft (with property α) material. The shape to
be optimized - Ω - is the area filled with the ”solid” material, whereas the ”soft” material is given by the shape D\Ω.
We define by χ(x) the characteristic function of the domain Ω. The global property of the domain D is now defined
by

aχ = αχ+ β(1− χ).

With (e1, e2) being the canonical basis of R2, the domain D is subject to a uniform pressure load in the direction e1,
and to no volume force (see Figure 2.4). Therefore its displacement u is given by the solution to

{
−div

(
aχ∇u

)
= 0 in D,

aχ∇un = e1 · n on ∂D.
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α

β

Figure 2.4: Plate under uniform load.

The function to be minimized is the following

J(χ) =

ˆ
∂D

(e1 · n)u.

This consists in minimizing the deformation energy of the plate under the pressure load. Without any other condition,
it is easy to see that it suffices to fill the domain D with the ”solid” material to minimize J . This is the reason why a
constraint on the proportion of this material is added : given a proportion 0 < θ < 1 we introduce

Uad =

{
χ ∈ L∞ (D; {0, 1})

∣∣∣∣
1

|D|

ˆ
D
χ = θ

}
.

Now the optimization problem reads
min
χ∈Uad

J(χ). (2.17)

Theorem 2.3.1. There is no optimal solution to (2.17).

The proof of this theorem is rigorously detailed in [7]. The main reason why the optimization problem does not
have a solution can be explained with the following picture. Starting from a shape with a given repartition of holes, it
is always possible to get a better shape by adding a new hole while preserving the proportion of ”solid” material. There
is a theoretical lower bound on the deformation energy, and for any proportion θ of ”solid” material, it is possible to
get as close as we want to this lower bound, by adding new holes, such as depicted in Figure 2.5. However, it is not

Figure 2.5: Minimizing sequence for (2.17).

possible to achieve the lower bound with a classical notion of shape.
One can find another interesting example of non-existence for a shape optimization problem in solving the heat

equation with Dirichlet boundary condition in [30, Theorem 4.2.1] or [52, Theorem 2.1].

2.3.2 Remedies to the non-existence

Shape optimization problems are a priori ill-posed in the sense that there may not exist optimal shapes. In order
to avoid this, there is basically two kinds of methods. On the first hand, it is possible to change the problem by
restricting the set of admissible shapes. On the other hand, one can also enlarge this set by adding all possible limits
of minimizing sequences.

• Restriction of the set of admissible shapes : the non-existence of optimal shapes is mainly due to the fact that
minimizing sequences may converge to a design that is not in the set of admissible shapes. As stated in the
previous counter-example, adding holes allows to improve the shape with respect to the objective function. In the
end, adding too many holes leads to obtaining a shape made of composite material, which does not correspond
to a ”classical” shape. The restriction of the set of admissible shapes intends to ban the creation of too many
holes. This has been widely detailed in the literature and we mention here a few methods for restricting this set.



42 CHAPTER 2. SHAPE OPTIMIZATION METHODS

– Adding a constraint on the perimeter : the non-existence of classical optimal shapes may comes from the
fact that letting the perimeter go to infinity improves the shape on some cases. A porous or composite
material is a way to allow the perimeter to go to infinity. Therefore, adding a constraint or a penalization
on the perimeter may ensure the existence of classical optimal shapes (see for example [72, §4.6]).

– Imposing more regularity : when the number of holes goes to infinity, their sizes must go to zero. Therefore,
their curvatures develop singularities. Restricting the set of admissible shapes to only regular shapes would
then have the desired effect. There are many different ways to impose more regularity on a shape. For
example one can require that shapes satisfy the ε-cone property (see [72, §4.3] or [7, §6.2.2]) which is kind of
a regularity condition on the boundary. It is also possible to restrict the set of admissible shapes to shapes
that are reachable by a smooth diffeomorphism starting from a reference shape, following the formalism
introduced by Murat and Simon [88, 87].

– Adding a topological or capacity constraint : the topology of a connected shape - in the two-dimensional space
- can be defined by the number of holes (in the three-dimensional space, it is more complicated). Imposing a
topology prevents an optimization method from adding holes, and it was then proven [36, 123] in two space
dimensions, under assumptions on the number of connected components, that the optimization problem
has at least one solution. Other kind of constraints on the shape, such as uniform capacity constraints (see
[72, §3.4.3]) may also lead to a well-posed problem.

– Establishing a monotonous property : It appears that when the objective function is decreasing with respect
to inclusion, there is an existence theorem for minimal shapes. This result also mentioned in [72, Théorème
4.7.6] is due to [33]. This is not strictly speaking a remedy to ill-posedness of the shape optimization
problem, but this case of existence is itself interesting.

• Relaxation of the problem : since a minimizing sequence may not converge in the set of admissible shapes, another
idea is to enlarge this set with all limits of minimizing sequences. This is at the basis of the homogenization
method, where generalized shapes made of composite materials are considered.
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Examples of objective functions and
optimality conditions

Contents
3.1 Thickness optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 State equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.4 Least square displacement criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Shape differentiation for geometric optimization . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Differential geometry on domain boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 The displacement field method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 The speed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Geometric objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Integrals on a varying domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Shape derivative of the signed distance function . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Shape derivative of boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.5 Least square displacement criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.6 Maximum-thickness criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.7 Regularity of optimal shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

In this section we detail some different objective functions in both the parametric case of thickness optimization
(Section 2.2.1) and the geometric formalism (Section 2.2.3) the latter being first detailed in Section 3.2. Their first-
order derivatives in the corresponding formalisms are also given whereas the higher-order derivatives are detailed in
Part II. As regards mechanical criterion, we focus on the compliance and a least square criterion on the displacements.
These are two usual functions widely used in the literature. The compliance is one of the simplest way to consider
the rigidity of the shape since it corresponds to the deformation energy of the shape under an applied load. We also
consider a least square displacement criterion which has the interest not to be self-adjoint, contrary to the compliance.
For the geometric criterion, we consider the volume, which is the most natural one. We also focus on a maximum-
thickness criterion, which allows one to take into account manufacturing constraints. We follow here the same line as
in [83], and therefore we need to also introduce the signed distance function and its shape derivative.

3.1 Thickness optimization

We come back to the formalism presented in Section 2.2.1 in the framework of the membrane model of Section 2.1.1.
With Ω ⊂ R2 a smooth bounded open set as a reference domain, 0 < hm ≤ hM and h ∈ L∞

(
Ω; [hm, hM ]

)
we consider

the membrane given by

ΩR3 = {X ∈ R3 |X = (x, y, z) with (x, y) ∈ Ω and 0 ≤ z ≤ h(x, y)}.

The boundary of Ω is divided in three parts, ΓN , ΓD and Γ such that

∂Ω = ΓN ∪ ΓD ∪ Γ,

43
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where each part Γ, ΓN and ΓD have a non-zero measure. Given f ∈ L2(Ω;R) and g ∈ H1(Ω;R) such that g = 0 on
Γ, the out-of-plane displacements of the membrane are modeled by u : Ω→ R the solution to the following problem :




−div (h∇u) = f in Ω,

h∂nu = g on ΓN ∪ Γ,
u = 0 on ΓD.

(3.1)

The domain ΩR3 is replaced by Ω here by integrating along the out-of-plane direction and assuming planar invariance.
The set of admissible shapes is taken as

Uad = {h ∈ L∞(Ω;R) | hm ≤ h ≤ hM} .

We recall that for an objective function J , the optimization problem reads

min
h∈Uad

J(h). (3.2)

Remark 3.1.1. There might be any additional constraint on the optimization problem, such that the set Uad is of the
form

Uad = {h ∈ L∞(Ω;R) | hm ≤ h ≤ hM and G(h) ≤ 0} .

In that case we refer to Section 1.1.3 and Theorem 1.1.17 for writing the optimality conditions that imply to differentiate
both J and G.

In order to find the solution to (3.1) we introduce the variational space

V =
{
u ∈ H1(Ω;R) | u = 0 on ΓD

}
.

The variational formulation of (3.1) now reads





find u ∈ V, such that ,

∀v ∈ V,
ˆ

Ω

h∇u · ∇v =

ˆ
Ω

fv +

ˆ
ΓN

gv.

In this introduction to parametric optimization, we will focus on three criterion : the volume of the shape, the
compliance and a least square criterion on the displacements.

3.1.1 Volume

The volume of the shape is defined by

V (h) =

ˆ
Ω

h. (3.3)

Since it is completely linear in the thickness h and the domain Ω does not vary, the differentiability is straightforward.
The derivative is given by the following lemma.

Lemma 3.1.2. The volume : Uad 3 h 7→ V (h) is differentiable with respect to h. Its derivative in the direction
k ∈ L∞(Ω) is given by

V ′ (h; k) =

ˆ
Ω

k.

3.1.2 State equation

Provided the data f, g have the assumed regularity (f ∈ L2(Ω;R) and g ∈ H1(Ω;R)), the displacement u solution to
(3.1) is differentiable with respect to h. The same kind of result is proven in [7, Lemme 5.15] but only with volume
forces and no boundary force. The sketch of the proof remains exactly the same.

Lemma 3.1.3. The function Uad 3 h 7→ u(h) ∈ V is differentiable with respect to h. Its derivative in the direction
k ∈ L∞(Ω;R), denoted by u′ (h; k) - or u′k - is solution in V to




−div (h∇u′k) = div (k∇u) in Ω,

h∂nu
′
k = −k∂nu on ΓN ∪ Γ,
u = 0 on ΓD.

(3.4)
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3.1.3 Compliance

The compliance is defined by

J1(h) =

ˆ
Ω

h |∇u|2 =

ˆ
Ω

fu+

ˆ
ΓN

gu.

Lemma 3.1.4. Let f ∈ L2(Ω;R) and g ∈ H1(Ω;R). The compliance is differentiable with respect to h. Its derivative
in the direction k ∈ L∞(Ω;R) is given by

J1
′ (h; k) =

ˆ
Ω

fu′k +

ˆ
ΓN

gu′k = −
ˆ

Ω

k|∇u|2.

Proof. Once the differentiability of u is established, since there is no variation of Ω and ΓN with respect to the thickness
h, the first expression is straightforward. To obtain the second one, it suffices to write the variational formulation for
u and u′k that are, for v ∈ V

ˆ
Ω

h∇u · ∇v =

ˆ
Ω

v +

ˆ
ΓN

gv, (3.5)

ˆ
Ω

h∇u′k · ∇v = −
ˆ

Ω

k∇u · ∇v. (3.6)

Taking v = u′k in the first equality, and v = u in the second one leads to the expected result.

3.1.4 Least square displacement criterion

Given a target displacement u0 we consider the least square criterion J2 defined by

J2(h) =

ˆ
Ω

|u− u0|2.

Lemma 3.1.5. Let f ∈ L2(Ω;R) and g ∈ H1(Ω;R). The function h 7−→ J2(h) is differentiable on L∞(Ω;R). Let p -
the adjoint state - be the solution in V to the following boundary-value problem




−div

(
h∇p

)
= 2(u− u0) Ω,

p = 0 ΓD,
h∂np = 0 ΓN ∪ Γ.

(3.7)

Then the derivative of J2 in the direction k ∈ L∞(Ω;R) is given by

J2
′ (h; k) = 2

ˆ
Ω

(u− u0)u′k

= −
ˆ

Ω

k∇u · ∇p.

Proof. The derivative of J2 in the direction k immediately gives

J2
′ (h; k) = 2

ˆ
Ω

(u− u0)u′k dx.

The variational formulation associated to (3.7) is

∀ϕ ∈ V,
ˆ

Ω

h∇p · ∇ϕ = 2

ˆ
Ω

(u− u0)ϕ,

and the variational formulation for u′k gives

∀ϕ ∈ V,
ˆ

Ω

h∇u′k · ∇ϕ = −
ˆ

Ω

k∇u · ∇ϕ.

Then

J2
′ (h; k) = 2

ˆ
Ω

(u− u0)u′k

=

ˆ
Ω

h∇u′k · ∇ϕ

= −
ˆ

Ω

k∇u · ∇p.
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Similarly to u one can check that the adjoint state p defined by (3.7) is differentiable.

Lemma 3.1.6. With the same regularity assumption on f, g as previously, the function h 7−→ p(h) is differentiable
w.r.t h. Its derivative in the direction k - namely p′ (h; k) or p′k - is the solution in V of the following boundary-value
problem 



−div

(
∇p′k

)
= div

(
k∇p

)
+ 2u′k Ω,

p′k = 0 ΓD,
h∂np

′
k = −k∂np ΓN ∪ Γ.

(3.8)

The associated variational formulation writes

∀ϕ ∈ V,
ˆ

Ω

h∇p′k · ∇ϕ = 2

ˆ
Ω

u′kϕ−
ˆ

Ω

k∇p · ∇ϕ.

3.2 Shape differentiation for geometric optimization

Differentiation with respect to a shape (an open subset of Rd with d = 2 or 3) is a key tool in shape optimization,
that was first introduced by Hadamard [66]. It was then widely developed by many authors [7, 56, 72, 86, 88, 118],
[122] (and references therein). There are two variants of the Hadamard method of shape differentiation. The first one,
advocated by Murat and Simon [88, 118, 119], is based on a parametrization of shapes by displacement vector fields.
Given a reference open set Ω of Rd, a variation of this domain is of the type Ωθ =

(
Id + θ

)
(Ω), where θ is a vector field

from Rd into Rd and Id is the identity operator on Rd. In other words, any point x ∈ Ω is moved to a new position
x + θ(x) ∈ Ωθ. In this context, shape differentiation is defined as differentiation with respect to the vector field θ.
The second approach is the so-called speed method, introduced by Zolésio and co-workers [55, 54, 122, 134], which
is based on the flow of a vector field and on shapes evolving along this flow. For a given vector field V (t, x), defined
from R+ × Rd into Rd, consider the solution (or flow) of the ordinary differential equation





∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
for t > 0 ,

XV (0, x) = x .

(3.9)

Then the variation of the reference domain Ω is defined, for t ≥ 0, as Ωt = XV (t,Ω) = {XV (t, x) such that x ∈ Ω}.
In this context, shape differentiation is defined as the derivative with respect to t and it is a directional derivative in
the direction of V . These two variants of the Hadamard method of shape differentiation lead to the same notion of
first-order derivative by identifying the vectors fields θ(·) and V (0, ·) but to slightly different second-order derivatives.
There are strong connections between them in the sense that results obtained with one method can be translated to
similar results for the other one.

The second-order shape derivatives have already been studied in the literature. Simon was one of the first to study
the second-order derivatives for shape optimization [119]. He notably explained the particular link between the first
and second-order shape derivatives in the framework of the displacement field method. For the speed method, Delfour
and Zolésio found a similar link between the first and second order derivatives [54]. Some numerical experiments can
be found for electromagnetic problems in [95] where apparently there is no trouble in solving the Newton equation
that requires to solve a linear system with the Hessian matrix. The particular structure of the shape Hessian was
next studied by Novruzi and Pierre [94]. They proved that the second-order derivatives are composed of two maps
(we denote them l1 and l2). More recently, there is also the work of Dambrine and co-workers [4, 48, 49, 50, 51].
They details different second-order computation, but also focus on properties of the shape Hessian such as coercivity
and compactness on some cases. They also worked on the necessary assumptions on the shape Hessian to ensure the
stability of a critical shape.

In this section, we first provide some background of differential geometry. Secondly we recall the two usual
frameworks for computing shape derivatives, namely domain perturbation (or displacement field method) [88, 118, 119]
and time moving domain (or speed method) [31, 55, 54, 122], and the respective structures of the second-order shape
derivatives.

3.2.1 Differential geometry on domain boundaries

For the sake of completeness, we recall the basics of domain variations (see also [72, §5]) .

Definition 3.2.1 ([72, Theorem 2.4.5]). A bounded open set Ω is said to have a Lispchitz boundary if, for any x0 ∈ ∂Ω,
there exists a local Cartesian coordinate system with origin x0 = 0, a cylinder K = K ′×]− a, a[ with K ′ ⊂ Rd−1, an
open ball with center O and radius r, and a Lipschitz function ϕ : K ′ →]− a, a[ with ϕ(0) = 0 such that

∂Ω ∩K =
{(
x′, ϕ(x′)

)
| x′ ∈ K ′

}
,

Ω ∩K =
{(
x′, xN

)
∈ K | xN > ϕ(x′)

}
.

If, in addition the function ϕ can be chosen of class Ck, the domain Ω is said to be of class Ck.
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Let us consider a domain Ω of class C1, and use the notation introduced in the above definition. For x = (x′, xN ) ∈ K,
we set F (x) = ϕ(x′)− xN . We have

∀x ∈ ∂Ω ∩K, F (x) = 0,
∀x ∈ Ω ∩K, F (x) < 0.

The local derivative of F gives the outer normal on ∂Ω ∩K

∀x ∈ ∂Ω ∩K, n(x) =
1√

1 + |∇x′ϕ(x′)|2

(
∇x′ϕ(x′)
−1

)
. (3.10)

Let k ∈ N?. We set
Ok = {Ω ⊂ Rd | Ω is a bounded open set of class Ck}. (3.11)

We now introduce some notation about tangential derivation.

Definition 3.2.2. Let k ≥ 1. Let V,W be two vector fields in Ck
(
Rd;Rd

)
, with respective components Vi,Wi. The

j-th partial derivative of Vi is denoted by ∂jVi, and ∇V is the matrix defined by [∇V ]ij = ∂jVi. It is convenient to
use Einstein’s convention which means that repeated indices indicate summation from 1 to d. We define the operator
V · ∇ that acts on scalar fields of class Ck+1 as

V · ∇ : Ck+1
(
Rd;R

)
→ Ck

(
Rd;R

)

g 7→ Vi∂ig,

and on a vector fields of class Ck+1 as

V · ∇ : Ck+1
(
Rd;Rd

)
→ Ck

(
Rd;Rd

)

W 7→ V · ∇W,

where the j-th component of V · ∇W is given by

[V · ∇W ]j = Vi∂iWj .

Definition 3.2.3. Let k ≥ 1. Let Ω ∈ Ok+1 with outer normal n. Let V ∈ Ck
(
Rd;Rd

)
. We define the tangential

component VΓ ∈ Ck
(
∂Ω;Rd

)
of the vector field V by

VΓ = V − (V · n)n.

Definition 3.2.4. Let k ≥ 1. Let Ω ∈ Ok+1 with outer normal n. We define the tangential gradient ∇Γ by

∇Γ : Ck+1
(
Rd;R

)
→ Ck

(
∂Ω;Rd

)

v 7→ ∇Γv,

where ∇Γv is the tangential component of the gradient of v :

∀x ∈ ∂Ω, ∇Γv(x) = ∇v(x)−
(
∇v(x) · n(x)

)
n(x).

For a vector field V ∈ Ck+1
(
Rd;Rd

)
, the tangential gradient ∇ΓV is the matrix-valued field on ∂Ω defined by

∀x ∈ ∂Ω,
[
∇ΓV (x)

]
ij

=
[
∇ΓVi(x)

]
j
.

We now introduce an equivalence relation on Ck
(
Rd;R

)
for functions that take the same values on ∂Ω.

Definition 3.2.5. Let k ≥ 1. Let Ω ∈ Ok+1 with outer normal n. Let vγ ∈ Ck
(
∂Ω;R

)
. We define the equivalence

class of vγ by
cl(vγ) = {w ∈ Ck

(
Rd;R

)
| w|∂Ω = vγ}.

We also denote by ext(vγ) any element of cl(vγ). In particular ext(vγ) ∈ Ck
(
Rd;R

)
and for x ∈ ∂Ω, ext(vγ)(x) =

vγ(x). We proceed similarly for vector-valued functions Vγ ∈ Ck
(
∂Ω;Rd

)
, and use the same notation cl(Vγ), and

ext(Vγ).

Definition 3.2.6. Let k ≥ 1 and Ω ∈ Ok+1. We define the tangential gradient on Ck+1
(
∂Ω;R

)
by

∇Γ : Ck+1
(
∂Ω;R

)
→ Ck

(
∂Ω;Rd

)

vγ 7→ ∇Γvγ ,

where
∀x ∈ ∂Ω, ∇Γvγ(x) := ∇ext(vγ)(x)−

(
ext(vγ)(x) · n(x)

)
n(x). (3.12)

Lemma 3.2.7. The Definition 3.12 does not depend on the choice of ext(vγ) in cl(vγ).
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Proof. If v = 0 on ∂Ω, i.e if two extensions are in the same equivalence class, according to Definition 3.2.1 we have in
local coordinates v(x′, ϕ(x′)) = 0. The derivation of this equality gives ∇x′v +∇x′ϕ∂xN v = 0, which leads to

∇v =

(
∇x′v
∂xN v

)
= ∂xN v

(
−∇x′ϕ

1

)
.

With the help of (3.10), we get

∇v = −
√

1 + |∇x′ϕ(x′)|2 ∂xN v n.

Therefore
∇Γv = 0.

Let ξ ∈ Ck
(
Rd;Rd

)
, and n be the outer normal to a shape Ω ∈ Ok+1. In order to simplify the notation, we set

ξ · n ≡ ξ|∂Ω · n ∈ Ck
(
∂Ω;Rd

)
.

Definition 3.2.8. Let W ∈ C1(∂Ω,Rd). We define

divΓW = Tr
(
DΓW

)
,

where W̃ is a continuous extension of W on Rd and DΓW is the matrix whose line i is given by ∇W̃i −
(
∇W̃in

)
n =

∇ΓWi.

Definition 3.2.9. Assume Ω is of class C2. We define the mean curvature H of ∂Ω by

H = divΓn.

Finally we introduce the Laplace-Beltrami operator

Definition 3.2.10. Let Ω be a bounded open set of class C2. The Laplace-Beltrami operator on ∂Ω, called ∆Γ is
defined by

∀u ∈W 2,1(∂Ω), ∆Γu = divΓ

(
∇Γu

)
.

We then have
∆Γu = ∆u−H∂nu− ∂2

nnu.

3.2.2 The displacement field method

We fix Ω0 ∈ Ok a reference set with boundary ∂Ω0. Let W 1,∞(Rd,Rd) be the set of Lipschitz bounded functions of
Rd, endowed with the norm

∀θ ∈W 1,∞(Rd;Rd
)
, ‖θ‖W 1,∞ = sup

y,ỹ∈Rd,y 6=ỹ
{|θ(y)|+ |θ(y)− θ(ỹ)|/|y − ỹ|} .

We can alternatively define a classical notion of shape derivative by working with C1(Rd;Rd)∩W 1,∞(Rd;Rd) instead
of W 1,∞(Rd;Rd). For k ≥ 1 we set Ck,∞(Rd;Rd) := Ck(Rd;Rd) ∩W k,∞(Rd;Rd). For any θ ∈ W 1,∞(Rd;Rd), let Ωθ
be given by

Ωθ =
{(

Id + θ
)
(x), x ∈ Ω0

}
.

When ‖θ‖W 1,∞(Rd;Rd) < 1, thanks to the Banach fixed-point theorem, Id + θ is invertible, with (Id + θ)−1 ∈
W 1,∞(Rd;Rd

)
, and





∥∥∥
(
Id + θ

)−1 − Id
∥∥∥
W 1,∞(Rd;Rd)

≤ ‖θ‖W 1,∞

(
1− ‖θ‖W 1,∞(Rd;Rd)

)−1

,

∥∥∥
(
Id + θ

)−1 − Id + θ
∥∥∥
L∞(Rd;Rd)

≤ ‖θ‖W 1,∞

∥∥∥
(
Id + θ

)−1 − Id
∥∥∥
L∞(Rd;Rd)

.

Then denoting by B = {θ ∈W 1,∞(Rd;Rd) | ‖θ‖W 1,∞(Rd;Rd) < 1} we have that B 3 θ 7→
(
Id + θ

)−1 ∈W 1,∞(Rd;Rd) is

continuous at 0 and B 3 θ →
(
Id + θ

)−1 ∈ L∞
(
Rd
)

is differentiable at 0 with derivative −Id.

Definition 3.2.11. Let k ≥ 1 and E(Ω) be a function from Ok into R. We define

E : Ck,∞(Rd;Rd) → R
θ 7→ E

((
Id + θ

)(
Ω
))
.

The function E is said to be shape-differentiable at Ω if E is Fréchet-differentiable at 0, that is, if there exists a
continuous linear map E ′(0; ·) : C1,∞(Rd;Rd

)
→ R such that :

E(θ)− E(0)− E ′ (0; θ) = o
(
‖θ‖Ck,∞(Rd;Rd)

)
.

We denote E′ (Ω; θ) := E ′ (0; θ).
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Definition 3.2.12. The function E of Definition 3.2.11 is said to be twice shape-differentiable at Ω if E is Fréchet-
differentiable in a neighborhood U of 0 in Ck,∞

(
Rd;Rd

)
and if the first derivative E ′ defined by

E ′ : U →
(
Ck,∞

(
Rd;Rd

))′

θ 7→ E ′
(
θ; ·
)
,

is Fréchet-differentiable at 0. We denote by E ′′
(
0; θ1, θ2

)
the second Fréchet derivative at 0, θ1 and θ2 being respectively

the first and second directions of derivation. We also denote E′′ (Ω; θ1, θ2) := E ′′
(
0; θ1, θ2

)
. In that case, E has a

second-order Taylor expansion at 0 and

E(θ) = E(0) + E ′(0; θ) +
1

2
E ′′(0; θ, θ) + o

(
‖θ‖2Ck,∞(Rd;Rd)

)
.

Remark 3.2.13. When E is Fréchet-differentiable, it is a fortiori Gâteaux-differentiable. Therefore, for θ ∈ U

E′ (Ω; θ) := E ′ (0; θ) = lim
t→0

1

t

(
E(tθ)− E(0)

)
,

and

E ′′ (0; θ1, θ2) = lim
t→0

1

t

(
E ′ (tθ2; θ1)− E ′ (0; θ1)

)
,

where

E ′(θ2; θ1) := lim
s→0

1

s

(
E(θ2 + sθ1)− E(θ2)

)
.

Remark 3.2.14. As a classical result of Calculus of Variations (see [63, §II.1.2] for example), since C1,∞(Rd;Rd
)

is a linear space, the second-order derivative of E corresponds to the derivative of its first-order derivative. However,
as explained in [119], it is not the case for E(Ω) because the variation of two successive vector fields θ1, θ2 is not the
same as the variation obtained with the sum θ1 + θ2:

(
Id + θ1

)
◦
(
Id + θ2

)
= Id + θ2 + θ1 ◦

(
Id + θ2

)
6= Id + θ2 + θ1. (3.13)

It follows that there is a particular relation between the second-order derivative of E at 0 on the one hand, and the
second-order derivative of E at Ω on the other hand. Indeed

E ′(θ2; θ1) = lim
s→0

1

s

(
E(θ2 + sθ1)− E(θ2)

)

= lim
s→0

1

s

(
E
((

Id + θ2 + sθ1

)(
Ω)
)
− E

((
Id + θ2

)(
Ω
))
)
.

Observing that

Id + θ2 + sθ1 =
(

Id + sθ1 ◦
(
Id + θ2

)−1
)
◦
(
Id + θ2

)
.

we obtain

E ′(θ2; θ1) = lim
s→0

1

s

(
E
((

Id + sθ1 ◦
(
Id + θ2

)−1) ◦
(
Id + θ2

)
(Ω)
)
− E

((
Id + θ2

)
(Ω)
))

= E′
((

Id + θ2

)
(Ω); θ1 ◦

(
Id + θ2

)−1
)
.

Since E ′ is linear in its second variable and θ1 ◦
(
Id + tθ2

)−1
= θ1 − t (θ2 · ∇) θ1 + o(t), we have

E ′′
(
0; θ1, θ2

)
= lim
t→0

1

t

(
E ′(tθ2; θ1)− E ′(0; θ1)

)

= lim
t→0

1

t

(
E′
((

Id + tθ2

)
(Ω); θ1 ◦

(
Id + tθ2

)−1
)
− E′

(
Ω; θ1

))

= lim
t→0

1

t

(
E′
((

Id + tθ2

)
(Ω); θ1

)
− E′

(
Ω; θ1

))

+ lim
t→0

E′
((

Id + tθ2

)
(Ω);

1

t

(
θ1 ◦

(
Id + tθ2

)−1 − θ1

))
,

=
(
E′(Ω; θ1)

)′
(Ω; θ2)− E′ (Ω;∇θ1 θ2)

so that

E ′′ (0; θ1, θ2) =
(
E′(Ω; θ1)

)′
(Ω; θ2)− E′ (Ω; (θ2 · ∇) θ1) . (3.14)
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We now recall the Hadamard structure theorem for the first and second-order shape derivatives.

Theorem 3.2.15 ([72, Theorem 5.9.2]). Let k ≥ 1, E, E defined in Definition 3.2.11.

1. Take Ω ∈ Ok+1 and E differentiable at 0 in Ck,∞
(
Rd;Rd

)
. Then, there exists a continuous linear map l1 :

Ck
(
∂Ω)→ R such that :

∀ξ ∈ Ck,∞
(
Rd;Rd

)
, E ′ (0; ξ) = l1 (ξ · n) .

2. Take Ω ∈ Ok+2 and E twice differentiable at 0 in Ck,∞
(
Rd;Rd

)
. Then there exists a continuous bilinear sym-

metric map l2 : Ck
(
∂Ω)× Ck

(
∂Ω)→ R such that for any θ, ξ ∈ Ck+1,∞(Rd;Rd

)
,

{
E′′ (Ω; θ, ξ) = E ′′ (0; θ, ξ) = l2(θ · n, ξ · n) + l1(Zθ,ξ),

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

(3.15)

Definition 3.2.16. According to [72, Proposition 5.4.14, §5.9.1], denoting by dΩ the signed distance function to ∂Ω,
we define ñ by : ñ = ∇dΩ. The vector field ñ is a unitary extension of class C1 of the outer normal in a neighborhood
of ∂Ω.

As a result ∇ñT ñ = 0, and in particular ∇ñTn = 0 on ∂Ω (on ∂Ω, n = ñ). Therefore

∇Γñ = ∇ñ−
(
n · ∇ñ

)
n = D2dΩ.

Consequently, ∇Γñ is a symmetric matrix on ∂Ω. As discussed in Section 3.2.1, the tangential gradient does not
depend on the extension, which means that ∇Γn is symmetric on ∂Ω. Therefore the vector field Zθ,ξ defined by (3.15)
and the second-order shape derivative E′′ (Ω; θ, ξ) are also symmetric in (θ, ξ). Explicit examples of the linear maps
l1 and l2 are given in Section 3.3 and Section 7.1.

3.2.3 The speed method

Following the approach of Sokolowski and Zolésio [55, 54, 122], shape derivatives may also be defined as the Eulerian
derivatives along time trajectories, defined as flows or solutions of ordinary differential equations.

Definition 3.2.17. Let V ∈ C1,∞(R+ × Rd;Rd
)
. For τ > 0 small enough and for x ∈ Rd, we define the flow of the

vector field V as the unique solution XV : [0, τ ]× Rd → Rd of




∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
,

XV (0, x) = x.

(3.16)

Define the set
XV (t, ·)(Ω) = {XV (t, x), x ∈ Ω} .

For V , W in C1,∞(R+ × Rd;Rd
)

the first and second-order directional derivatives of E are defined by

dE
(
Ω;V

)
:= ∂tE

(
XV (t, ·)(Ω)

)∣∣∣
t=0

,

d2E
(
Ω;V,W

)
:= ∂t∂sE

(
XV (t, ·) ◦XW (s, ·)(Ω)

)∣∣∣
s=t=0

.

Since Ω is a bounded domain, the existence time τ for (3.16) can be chosen to be uniform for any point x in a
compact neighborhood of Ω.

Remark 3.2.18. In the above definition, the velocity field V plays the same role as the vector field θ in Section 3.2.2.
One can check [94, Remark 2.5] that

dE
(
Ω;V

)
= E′ (Ω;V ) and d2E

(
Ω;V,W

)
=
(
E′(Ω;V )

)′
(Ω;W ) .

Contrary to Definition 3.2.11 where the shape derivative is a Fréchet derivative, the shape derivative of Definition 3.2.17
is a directional or Gâteaux derivative.

Theorem 3.2.19 ([72, Corollaire 5.9.3]). Let XV (·, x) be the solution of (3.16) where V ∈ C1,∞(R+×Rd;Rd
)
. Define

the function e(t) from [0, τ ] into R by

e(t) = E
(
XV (t, ·)(Ω)

)
= E

(
XV (t, ·)− Id

)
. (3.17)

Then e is twice differentiable on [0, τ ] and

e′(0) = l1 (V · n) ,

e′′(0) = l2
(
V · n, V · n

)
+ l1(Z̃V,V ),

with the same linear map l1 and bilinear map l2, defined on ∂Ω, as in Theorem 3.2.15, and with

Z̃V =
(
∂tV + (V · ∇)V

)
· n +

(
(VΓ · ∇Γ)n

)
· VΓ − 2∇Γ (V · n) · VΓ.



3.2. SHAPE DIFFERENTIATION FOR GEOMETRIC OPTIMIZATION 51

Proof. Using the chain rule we get e′(t) = E ′
(
XV (t, ·)− Id;V

(
t,XV (t, ·)

))
and e′′(0) = E ′′(0;V, V )+E ′

(
0;
dV

dt

)
. The

expected result then follows from Theorem 3.2.15.

Although Theorem 3.2.19 is just a corollary of Theorem 3.2.15, the two notions of shape derivative differ. The
first-order derivatives in Theorems 3.2.15 and 3.2.19 coincide but the second-order derivatives are different. Note
however that the directional derivatives of Theorem 3.2.15 can be recovered from Theorem 3.2.19 by the special choice
in (3.16) of the vector field

V (t, x) = θ ◦
(
Id + tθ

)−1
(x),

which corresponds to the solution X(t, x) =
(
Id + tθ

)
(x).

Remark 3.2.20 ([72, Remarque §5.9.4]). An alternative second-order shape derivative can be defined as

D2E
(
Ω;V,W

)
= ∂s∂tE

(
XV (s+ t, ·) ◦XV (s, ·)−1 ◦XW (s, ·)(Ω0)

)∣∣∣
t=s=0

.

We notice that, for s fixed, X(t, ·) := XV (s+ t, ·) ◦XV (s, ·)−1 satisfies

d

dt
X(t, ·) = V

(
s+ t,X(t, ·)

)
, X(0, ·) = Id.

The derivation of (t, s) 7→ E
(
XV (s+ t, ·) ◦XV (s, ·)−1 ◦XW (s, ·)− Id

)
with respect to s and t leads to

D2E
(
Ω;V,W

)
= ∂s

(
E ′
(
XW (s, ·)− Id

)
;XV

(
s,XW (s, ·)

))

= E ′′ (Ω;V,W ) + E ′ (Ω; ∂sV +W · ∇V ) .

Now we can cite a corollary that states a connection between the two frameworks for shape differentiation. With
a particular choice of a velocity field V for the speed method, we can have the exact same shape derivatives as with
the displacement field method.

Corollary 3.2.21 ([94, Corollary 2.4]). With the same assumptions and notation as in Corollary 3.2.19, we consider
X(t, x) =

(
Id + tξ

)
(x) (it would correspond to taking θ(t, x) = tξ(x) in Theorem 3.2.15) for ξ ∈ Ck,∞

(
Rd;Rd

)
. Then

e is twice differentiable on [0, τ ] and we get

e′(0) = l1 (ξ · n) ,

e′′(0) = l2
(
ξ · n, ξ · n

)
+ l1

((
(ξΓ · ∇Γ)n

)
· ξΓ − 2∇Γ (ξ · n) · ξΓ

)
.

Proof. We just have to notice that if X(t, x) =
(
Id + tξ

)
(x), then X is the flow of the vector field

V (t, x) = ξ ◦
(
Id + tξ

)−1
(x)

such that ∂tV (0) = −∇ξ ξ. Therefore with Corollary 3.2.19, we get

(
∂tV + V · ∇V

)∣∣∣
t=0
· n = 0.

Lemma 3.2.22 ([72, Proposition 5.4.14]). Let Ω be a bounded open set of class C2, and ñ the unitary extension of the
outer unit normal n introduced in Definition 3.2.16. Let also V ∈ Ck

(
R+ × Rd;Rd

)
and XV be the maximal solution

to (3.16). Then, for t ∈ [0, η[ with η > 0 small enough,

t 7→ nt(x) = w(t, x)/‖w(t, x)‖ with w(t, ·) =
(
∇TXV (t, ·)−1ñ(·)

)
◦XV (t, ·)−1,

is a unitary extension of the outer unit normal to ∂Ωt, and t 7→ nt ∈ C0
(
Rd;Rd

)
is differentiable at 0 with

∂tnt(x) = −∇ΓV (0, x) · ñ(x). (3.18)

Remark 3.2.23. We can now compare the structure of the shape derivatives for the two frameworks presented here.
The first-order shape derivatives are the same and is given by a linear map we have until now denoted by l1.

The second-order shape derivatives somewhat differ from one method to the other, but the structure remains similar.
It is always given by a combination of two terms. The first one is a bilinear map - denoted by l2 - on the normal
components of the velocity field on the boundary. The second-one is given by the first-order linear map l1 on a vector
- Z - that contains tangential components of the velocity field. This is only by the expression of this vector that the
second-order shape derivatives differ. Moreover, this vector Z does not depend on the function to be differentiated.

Therefore, it suffices to know the linear and bilinear maps l1 and l2 to know the shape derivatives whatever the
framework used to compute them.
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3.3 Geometric objective functions

The geometric formalism which we consider here consists in considering shapes as bounded open sets of Rd and focusing
on the displacement field method of Murat and Simon already introduced above. In this framework we detail some
first-order derivative results for usual objective functions. They include a few purely geometric functions such as the
volume or a maximum-thickness criterion. We also consider two usual mechanical criterion that are the compliance
and a least square criterion on displacements. This section is basically a catalog of how to compute the different shape
derivatives of the considered criterion. All rigorous justifications can be found in [7, 15], [72], or [52, 83]. As regards
the mechanical criterion, we place ourselves in the framework of the scalar thermal model of Section 2.1.4. We assume
that the shape Ω is smooth with its boundary divided in three disjoint parts ΓD, ΓN and Γ such that

∂Ω = ΓD ∪ ΓN ∪ Γ.

For f ∈ L2(Ω;R) and g ∈ H1(Ω;R) such that g = 0 on Γ let u : Ω→ R be the solution to



−div (∇u) = f in Ω,

∂nu = g on ΓN ∪ Γ,
u = 0 on ΓD.

(3.19)

In the most general setting, for an objective function J , the optimization problem reads

min
Ω∈Uad

J(Ω), (3.20)

with
Uad =

{
Ω ⊂ Rd | Ω ∈ Ok

}
,

(where k ∈ N?) or with an additional constraint G(Ω) ≤ 0 in the definition of Uad such as in Remark 3.1.1. In practice
it is also often assumed that the parts ΓD and ΓN of the boundary are not supposed to be modified. In this section we
will not make this assumption on the boundary, and give the shape derivatives for different functions. We also recall
that for a given direction θ sufficiently smooth, the first-order shape derivative of J at Ω in the direction θ is denoted
J ′ (Ω; θ) or J ′θ.

3.3.1 Integrals on a varying domain

We recall here from [72, Theorem 5.2.2, 5.4.17] how to derive integral expressions with respect to the shape.

Proposition 3.3.1. Let Ω be a measurable bounded open set of Rd. Let f ∈ W 1,1(Rd,Rd). The functional F (Ω) =ˆ
Ω

f(x) dx is shape-differentiable with

∀θ ∈ C1,∞(Rd,Rd), F ′ (Ω; θ) =

ˆ
Ω

div(fθ).

If in addition, Ω has a Lipschitz boundary, one can write

F ′ (Ω; θ) =

ˆ
∂Ω

(θ · n)f.

Let us briefly give a sketch of the proof

Proof. We denote Ωθ := (Id + θ)(Ω). Then we get

F (Ωθ) =

ˆ
Ωθ

f(x) dx.

Now we want to bring back this integral, by a change of variable, to the reference domain Ω. We introduce f =
f ◦ (Id + θ). Thus,

F (Ωθ) =

ˆ
Ω

f(x)|det(Id +∇θ(x))| dx.

Now we write the first-order Taylor expansions

det(Id +∇θ) = 1 + div(θ) + o
(
‖θ‖C1,∞(Rd;Rd)

)
,

f = f +∇fθ + o
(
‖θ‖C1,∞(Rd;Rd)

)
.

This leads to the expansion

F (Ωθ) =

ˆ
Ω

f +

ˆ
Ω

∇fθ + div(θ) + o
(
‖θ‖Ck,∞(Rd;Rd)

)
,

which is what was expected.
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We now consider functionals defined by a boundary integral

Proposition 3.3.2. Assume that Ω is a bounded Lipschitz domain of class C2 (that is Ω ∈ O2, where Ok for k ∈ N

is defined by (3.11)) Let also g ∈W 2,1(Rd,Rd). Then the functional G(Ω) =

ˆ
∂Ω

g(x) dx is shape-differentiable with

∀θ ∈ C1,∞(Rd,Rd), G′ (Ω; θ) =

ˆ
∂Ω

(θ · n)
(
∂ng +Hg

)
.

We can notice that more regularity on Ω and on the direction of derivation θ is needed in the case of boundary
integral expressions. This is due to the change of variable in the integrals used to get the differentiability. A particular
case is the one of the volume function which is defined by

V (Ω) =

ˆ
Ω

1.

The previous results do apply to this criterion, and we can write the following lemma.

Lemma 3.3.3. Assume that Ω ∈ O1 with a Lipschitz boundary. The volume is shape-differentiable and

∀θ ∈W 1,∞ (Rd;Rd
)
, V ′ (Ω; θ) =

ˆ
∂Ω

(θ · n) .

We will also consider later the case of a shape-dependent function E of the form

E(Ω) =

ˆ
Ω

f(x) dx, (3.21)

where Ω ∈ O2 and f ∈ C2(Rd;R). In that case a minimization problem reads

min
Ω∈O2

E(Ω). (3.22)

We have first a shape differentiability result.

Lemma 3.3.4. Assume that Ω ∈ O1 and that f ∈ C1(Rd;R). The function E defined by (3.21) is shape-differentiable
and

∀θ ∈W 1,∞ (Rd;Rd
)
, E′ (Ω; θ) =

ˆ
∂Ω

(θ · n) f.

We can also notice that the minimization problem is straightforward since the optimal shape are given by the set
of negative values of f .

Proposition 3.3.5. We assume that f ∈ L1
loc(R2) ∩ C0(R2),

f(x) > 0 when |x| → ∞ and |{x ∈ Rd | f(x) < 0}| 6= 0.

Then Ω∗ = {x ∈ Rd | f(x) < 0} is a bounded open set solution of (3.22). The shape Ω∗ is the minimal solution in the
sense that for any other solution Ω we have

Ω∗ ⊂ Ω and f∣∣Ω\Ω∗ = 0.

Proof. The boundedness of Ω∗ is clear with the assumption made. Now let Ω1 be a bounded open set of Rd such that

ˆ
Ω1

f(x) dx ≤
ˆ

Ω∗
f(x) dx.

Since

Ω1 = (Ω1 ∪ Ω∗) ∩ (Ω1\Ω∗) ,
Ω∗ = (Ω1 ∪ Ω∗) ∩ (Ω∗\Ω1) ,

we have ˆ
Ω1\Ω∗

f(x) dx ≤
ˆ

Ω∗\Ω1

f(x) dx.

According to the definition of Ω∗ we have f ≥ 0 on Ω1\Ω∗ and f < 0 on Ω∗\Ω1. This yields

0 ≤
ˆ

Ω1\Ω∗
f(x) dx ≤

ˆ
Ω∗\Ω1

f(x) dx ≤ 0,
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and then ˆ
Ω1\Ω∗

f(x) dx =

ˆ
Ω∗\Ω1

f(x) dx = 0.

This proves that ˆ
Ω1

f(x) dx =

ˆ
Ω∗
f(x) dx.

Therefore Ω∗ is a minimum. In addition since f < 0 on Ω∗, if Ω∗\Ω1 is non-empty, then

ˆ
Ω∗\Ω1

f(x) < 0,

which is not the case. Hence Ω∗\Ω1 = ∅ and Ω∗ ⊂ Ω1. On the other hand, we have f∣∣Ω\Ω∗ ≥ 0 and

ˆ
Ω1\Ω∗

f(x) dx = 0,

which means that
f∣∣Ω\Ω∗ = 0.

3.3.2 Shape derivative of the signed distance function

The maximum-thickness criterion which is to be introduced later in Section 7.1.5 requires some background about the
signed distance function and its shape derivative. To that end we recall some results of [52, 83].

Definition 3.3.6.

- Let A ⊂ Rd be a non-empty closed set. The Euclidean distance function to A, denoted by d(., A) is defined as

∀x ∈ Rd, d(x,A) = min
a∈A
|x− a|. (3.23)

- Let Ω ⊂ Rd be a Lipschitz domain. The signed distance function dΩ to Ω is defined as

∀x ∈ Rd, dΩ(x) =




−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ Rd\ (Ω ∪ ∂Ω) .

(3.24)

Definition 3.3.7. Let Ω ⊂ Rd be a Lipschitz bounded open set.

- For any x ∈ Rd,
∏
∂Ω(x) = {y0 ∈ ∂Ω | |x− y0| = infy∈Ω |x− y|} is the set of orthogonal projections of x on ∂Ω. It

is a closed subset of ∂Ω. When
∏
∂Ω(x) reduces to a single point, this point is denoted as p∂Ω(x), and is called

the orthogonal projection of x onto ∂Ω.

- Σ =
{
x ∈ Rd such that (dΩ)2 is not differentiable at x

}
is called the skeleton of ∂Ω (or sometimes of Ω by a small

abuse of terminology).

- For any x ∈ ∂Ω, ray∂Ω(x) =
{
y ∈ Rd such that dΩ is differentiable at y and p∂Ω(y) = x

}
is the ray emerging from

x. Equivalently, ray∂Ω(x) = p−1
∂Ω(x).

Proposition 3.3.8.

1. Let x ∈ Rd\∂Ω and y ∈∏∂Ω(x). If ∂Ω enjoys C1 regularity in a neighborhood of y, then

x− y
dΩ(x)

= n(y),

where n(y) is the unit normal vector to Ω at y, pointing outward.

2. A point x /∈ ∂Ω has a unique projection p∂Ω(x) onto ∂Ω if and only if x /∈ Σ. In such a case, it satisfies
d(x, ∂Ω) = |p∂Ω(x)− x| and the gradient of dΩ at x reads

∇dΩ(x) = n(p∂Ω(x)) =
x− p∂Ω(x)

dΩ(x)
.



3.3. GEOMETRIC OBJECTIVE FUNCTIONS 55

Ω

Σ

x
•

• p∂Ω(x)

n(p∂Ω(x))

ray∂Ω(x) |dΩ(x)|

• •• y
z1 ∈ Π∂Ω(y)Π∂Ω(y) � z2

Figure 3.1: Skeleton.

3. If Ω is of class Ck, for k ≥ 2, then dΩ is Ck too in a tubular neighborhood of ∂Ω. In that case, dΩ is differentiable
at every point x ∈ ∂Ω, and at such a point

∇dΩ(x) = n(x).

For any x ∈ ∂Ω we also introduce κi(x) with 1 ≤ i ≤ d − 1 the principal curvatures of ∂Ω at x and ei(x) the
associated principal directions.

Proposition 3.3.9. For every x ∈ Rd and every y ∈∏∂Ω(x), one has

∀i ∈ {1, · · · , d− 1}, −κi(y)dΩ(x) ≤ 1.

Furthermore, denoting by Σeq the set of points x /∈ Σ such that the above equality holds for some i, we have :

Σ = Σ ∪ Σeq.

If x /∈ Σ, then dΩ is twice differentiable at x and

−κi
(
p∂Ω(x)

)
dΩ(x) < 1; D2dΩ(x) =

d−1∑

i=1

κi
(
p∂Ω(x)

)

1 + κi
(
p∂Ω(x)

)
dΩ(x)

ei
(
p∂Ω(x)

)
⊗ ei

(
p∂Ω(x)

)
.

Remark 3.3.10. The orthogonal projection map p∂Ω is related to dΩ and ∇dΩ by

∀x ∈ Rd\Σ, p∂Ω(x) = x− dΩ(x)∇dΩ(x).

Proposition 3.3.11. Take Ω ∈ O1, and fix a point x /∈ Σ. Then θ 7→ d(Id+θ)Ω(x) is Gâteaux-differentiable at θ = 0,

as an application from W 1,∞(D,Rd) into R, and its derivative is

dΩ
′ (Ω; θ) (x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Remark 3.3.12. The signed distance function can also be seen as a solution of the following eikonal equation
{
|∇dΩ(x)| = 1 in D,

dΩ(x) = 0 on Ω.

The behavior of the variations of dΩ with respect to the domain can be retrieved by a formal computation. Indeed,
assuming that dΩ is shape-differentiable, a formal computation yields that the directional shape derivative dΩ

′ (Ω; θ)
satisfies {

∇dΩ(x) · ∇dΩ
′ (Ω; θ) (x) = 0 in D,

dΩ
′ (Ω; θ) (x) = −θ(x) · n(x) on ∂Ω.

In the following we will sometimes write d′θ instead of dΩ
′ (Ω; θ).

Now we are able to differentiate with respect to the shape a functional defined by an integral depending on the
signed distance function.
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Lemma 3.3.13. Take Ω ∈ O1 and m(x, s) : Rdx × Rs 7→ R a function of class C1. Define the functional J(Ω) as

J(Ω) =

ˆ
D
m(x, dΩ(x)) dx.

The mapping θ 7→ J((Id + θ)Ω) from W 1,∞(D,Rd) into R is Gâteaux-differentiable at θ = 0 and its derivative reads

J ′ (Ω; θ) = −
ˆ
D

∂m

∂s
(x, dΩ(x)) θ(p∂Ω(x)) · n(p∂Ω(x)) dx.

Lemma 3.3.14. Take Ω ∈ O2. For i = 1, · · · , d−1, denote by κi the principal curvatures of ∂Ω and ei the associated
principal directions. Let x ∈ D\Σ. The orthogonal projection map p∂Ω is differentiable at x and, in the orthonormal
basis {e1, · · · , ed−1,n}(p∂Ω(x)) of Rd, its gradient is the d× d diagonal matrix

∇p∂Ω(x) =




1− dΩ(x)κ1

1 + dΩ(x)κ1
0 · · · 0

0
. . .

. . .
...

...
. . . 1− dΩ(x)κd−1

1 + dΩ(x)κd−1
0

0 · · · 0 0



,

where the principal curvatures κi are evaluated at p∂Ω(x).

Corollary 3.3.15. Let Ω ∈ O2, and let ϕ be an integrable function over D. Then,

ˆ
D
ϕ(x) dx =

ˆ
∂Ω

(ˆ
ray∂Ω(y)∩D

ϕ(z)

d−1∏

i=1

(1 + dΩ(z)κi(y)) dz

)
dy,

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line integration along that ray.

Proposition 3.3.16. Let Ω ∈ O2, and consider a smooth variation of Ω, θ ∈ C2,∞(Rd,Rd) ∩W 2,∞(Rd,Rd). Let
x ∈ Rd\Σ, where Σ denotes the skeleton of Ω. Then there exists α > 0 such that the function t 7→ p∂Ωtθ (x) is well
defined and C1-differentiable over (0, α). Besides,

d

dt

(
p∂Ωtθ (x)

)∣∣∣
t=0

=
(
θ(z) · n(z)

)
n(z) + dΩ(x)

(
Id + dΩ(x)D2dΩ(z)

)−1

∇Γ (θ · n) (z),

where z = p∂Ω(x).

Remark 3.3.17. For the sake of simplicity, in the sequel we write p′∂Ω,θ for the derivative of p∂Ω in the direction θ
when there is no ambiguity.

3.3.3 Shape derivative of boundary conditions

In this section, the state u is a priori not assumed to be solution to (3.19). We only assume that u ∈ H2(Ω;R) is
twice shape-differentiable. We recall some useful formal calculus from [72] to get boundary conditions on a directional
derivative. The following results on boundary conditions may be enlarged to more general boundary-value problems
(see [72, §5.6])

Dirichlet boundary condition

Let’s consider the boundary condition

u = 0 on ΓD.

The shape derivative of u satisfy different boundary conditions on ΓD.

Proposition 3.3.18. Let u′θ be the shape derivative of the state u in the direction θ. It satisfies the following boundary
condition

u′θ + (θ · ∇)u = 0 on ΓD.

Remark 3.3.19. Since u = 0 on ΓD, ∇Γu = 0 on ΓD. Then the derivation of the boundary condition writes

u′θ + (θ · n) ∂nu = 0 on ΓD.

This consistent with the well-known result stating that the shape derivative depends only on the normal component of
the velocity field θ.
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Proposition 3.3.20. Let u′′θ,ξ be the second-order shape derivative of the state u in the direction θ, ξ. It satisfies the
following boundary condition

u′′θ,ξ + (θ · ∇)u′ξ + (ξ · ∇)u′θ + θTD2u ξ = 0 on ΓD.

Proof. We have from [119, Theorem 3.3] or (3.14)

u′′θ,ξ = (u′θ)
′
ξ − u′(ξ·∇)θ. (3.25)

Proposition 3.3.18 applied to u′θ + (θ · ∇)u gives

(
u′θ + (θ · ∇)u

)′
ξ

+ (ξ · ∇)u′θ + (ξ · ∇) (θ · ∇)u = 0.

Then
u′′θ,ξ + (θ · ∇)u′ξ + (ξ · ∇)u′θ + (ξ · ∇) (θ · ∇)u = 0.

With the Dirichlet boundary condition satisfied by u′ξ·∇θ we get

u′(ξ·∇)θ = −
(

(ξ · ∇) θ · ∇
)
u,

and

(ξ · ∇) (θ · ∇)u =
(

(ξ · ∇) θ · ∇
)
u+

(
θ · (ξ · ∇)∇

)
u

=
(

(ξ · ∇) θ · ∇
)
u+ θTD2u ξ.

We deduce from (3.25) that

(u′θ)
′
ξ = u′′θ,ξ + u′(ξ·∇)θ

=
(

(ξ · ∇) θ · ∇
)
u+ θTD2u ξ + u′(ξ·∇)θ.

Therefore,
u′′θ,ξ +∇u′ξ · θ +∇u′θ · ξ + θTD2u ξ = 0.

Neumann boundary condition

Let consider a boundary condition such as ∂nu = g on ΓN . According to [72, §5.6] we have :

Proposition 3.3.21. If u is shape-differentiable, and satisfies ∂nu = g on ΓN , its shape derivative in the direction θ
satisfies

∂nu
′
θ = (θ · n)

(
∂ng − ∂2

nnu
)

+∇u · ∇Γ (θ · n) .

This is the same result as the one stated in [7, Corollaire 6.36]. We also mention that this differs from the result
in [122, Equation (3.12)], where the term ∂ng is forgotten.

Shape derivative of the outer normal

Let Ω be in O2. The outer normal to the shape is shape-differentiable. In the previous section, in Lemma 3.2.22, its
expression was given in the case of the speed method for shape differentiation. Since the first-order expressions for
shape derivative do not change for the displacement field method we have

Lemma 3.3.22. Let Ω ∈ O2. The shape derivative in the direction θ ∈ C1,∞(Rd;Rd) of the outer normal is given by

n′ (Ω; θ) = −∇Γ

(
θ · n).

Shape derivative of state equations

When the state u is solution to (3.19), with sufficient regularity conditions on the source term, it is possible to prove
that it is shape-differentiable. In that case, the shape derivative is solution to a boundary-value problem.

Proposition 3.3.23. Let f ∈ H1(Ω;R), g ∈ H2(Ω;R) and u be solution to (3.19). Then u is shape-differentiable on
C1,∞(Ω). Its first-order shape derivative in the direction θ ∈ C1,∞(Ω) solves





−∆u′θ = 0 in Ω,
u′θ = − (θ · ∇)u on ΓD,

∂nu
′
θ = (θ · n)

(
∂ng − ∂2

nnu
)

+∇u · ∇Γ (θ · n) on ΓN ,

∂nu
′
θ = − (θ · n) ∂2

nnu+∇u · ∇Γ (θ · n) on Γ.

(3.26)



58 CHAPTER 3. EXAMPLES OF OBJECTIVE FUNCTIONS AND OPTIMALITY CONDITIONS

The details of the proof are not given here, but we refer to [72, Théorème 5.5.1] for a complete proof in the case
of a Neumann problem. The main argument is to work with the variational formulation, to make a change of variable
in the integrals so that the integration domains are fixed (as in the proof of Proposition 3.3.1), and then to call an
implicit function theorem to get the differentiability with respect to θ. We can also reformulate the Neumann boundary
condition on the derivative of the state equation.

Proposition 3.3.24. The Neumann boundary condition for u′θ also writes

∂nu
′
θ = divΓ

(
(θ · n)∇Γu

)
+ (θ · n)

(
∂ng −∆u+H∂nu

)
.

Proof. It is just an expansion of divΓ

(
(θ · n)∇Γu

)
:

divΓ

(
(θ · n)∇Γu

)
= ∇u · ∇Γ (θ · n) + (θ · n) ∆Γu

= ∇u · ∇Γ (θ · n) + (θ · n)
(

∆u−H∂nu− ∂2
nnu

)
.

Remark 3.3.25. In the proof of the differentiability of the state equation, the implicit function theorem states first
that the function C1,∞ 3 θ 7→ Uθ = uθ ◦(Id+θ) is differentiable, where uθ is the solution to (3.19) on Ωθ = (Id+θ)(Ω).
We have uθ : Ωθ → Rd and therefore Uθ : Ω→ Rd. It appears that the regularity of the function θ 7→ Uθ (given by the
implicit function theorem) is only limited by the regularity of f and g. But since uθ = Uθ ◦ (Id + θ), the derivative at
0 in the direction θ reads

u′θ = U ′θ −∇u θ.
Therefore, if f is only L2(Ω;R), u is a priori only in H1(Ω;R) and then ∇u is in L2(Ω;R). As a result, u′θ is a
priori only in L2(Ω;R). This is the main reason why stronger assumptions on f and g are made, so that u has more
regularity.

3.3.4 Compliance

Let u be the solution to (3.19). The compliance is defined by

J1(Ω) =

ˆ
Ω

fu+

ˆ
ΓN

gu =

ˆ
Ω

|∇u|2,

and its first-order shape derivative is given by ([15, Theorem 7]).

Proposition 3.3.26. Let Ω be a smooth bounded open set and θ ∈ W 1,∞ (Rd;Rd
)
. Assume that the data f , g as

well as u are smooth, such as f ∈ H1(Ω;R), g ∈ H2(Ω;R) and u ∈ H2(Ω;R). Then J1 is shape-differentiable in the
direction θ and

J1
′ (Ω; θ) = 2

ˆ
ΓN∪Γ

(θ · n)
(
∂n(gu) + fu+Hgu

)

+

ˆ
ΓD

|∇u|2 (θ · n)−
ˆ

ΓN∪Γ

|∇u|2 (θ · n) ,

where H is the mean curvature.

3.3.5 Least square displacement criterion

Let u be the solution to (3.19). Given a target displacement u0 ∈ R, α ∈ N and k ∈ L∞(Ω;R), we define a least square
displacement criterion by

J2(Ω) =

(ˆ
Ω

k(x)|u− u0|α
) 1
α

.

Under sufficient regularity conditions on f and g, the function J2 is shape-differentiable and by [15, Theorem 7],

Proposition 3.3.27. Let Ω be a smooth bounded open set and θ ∈W 1,∞ (Rd;Rd
)
. Assume that the data f , g as well as

u are regular enough in the sense that f ∈ H1(Ω;R), g ∈ H2(Ω;R) and u ∈ H2(Ω;R). Then J1 is shape-differentiable
in the direction θ and

J2
′ (Ω; θ) =

C0

α

ˆ
ΓN∪Γ

(θ · n)
(
k|u− u0|α +∇u · ∇p− fp− ∂n(gp)−Hgp

)

+
C0

α

ˆ
ΓD

(θ · n)
(
k|u− u0|α +∇u · ∇p

)
,
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where H is the mean curvature, p the solution to




−div (∇p) = −αk|u− u0|α−2(u− u0) in Ω,

∂np = 0 on ΓN ∪ Γ,
p = 0 on ΓD,

(3.27)

and

C0 =

(ˆ
Ω

k|u− u0|α
) 1
α−1

.

3.3.6 Maximum-thickness criterion

The main purpose of a thickness criterion in shape optimization is to model manufacturing constraints. Given dmax ≥
0, a maximum-thickness constraint may be seen as the fact that at each point x ∈ Ω, the disk of center x and of ray
dmax

2 intersects the void :

∀x ∈ Ω, B
(
x,
dmax

2

)
∩
(
Rd\Ω

)
6= ∅.

For example, in Figure 3.2, the maximum-thickness constraint is violated at x1 and satisfied at x0. Since the signed

x0

dmax

2 x1

dmax

2

Ω

Figure 3.2: Violation of the maximum-thickness constraint on given shape.

distance function satisfies

dΩ(x) =




−d(x, ∂Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ Rd\ (Ω ∪ ∂Ω) ,

this constraint can be reformulated as

∀x ∈ Ω, dΩ(x) ≥ −dmax
2

.

The major difficulty of this kind of constraint is that it is pointwise. From a numerical point of view, this means that
there are as many constraints in the optimization problem as the number of nodes in the mesh. That tends to be
unmanageable. This is the main reason why Michailidis [83, §3.2.1] use a quadratic penalty function to aggregate the
criterion :

PMax(Ω) =

ˆ
Ω

((
dΩ(x) +

dmax
2

)−)2

dx. (3.28)

The penalty function is shape-differentiable and we have

Lemma 3.3.28. The first-order shape derivative of (3.28) reads

PMax
′ (Ω; θ) =

ˆ
∂Ω

−
(
θ(x) · n(x)

)ˆ
ray∂Ω(x)∩Ω

(
2

(
dΩ(z) +

dmax
2

)− d−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dz

)
dx,

where κi are the principal curvatures at the point x ∈ ∂Ω.
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Ω

ΓD

ΓN

Γ

Figure 3.3: Boundary conditions.

3.3.7 Regularity of optimal shapes

In this section we consider a basic example of shape optimization in the two-dimensional space. Let us consider a
bounded open shape Ω subjected to a load g ∈ H2(Ω;R) such that g = 0 on Γ, and to no body forces (f = 0). The
shape is clamped on ΓD where Dirichlet boundary conditions are imposed such as depicted in Figure 3.3. Under these
conditions, the displacement u is solution to




−div (∇u) = 0 in Ω,

∂nu = g on ΓN ∪ Γ,
u = 0 on ΓD.

(3.29)

We also impose that the part ΓD and ΓN are not subject to optimization; therefore we restrict the space of admissible
to

Uad = {Ω ∈ O2 | ΓD ∪ ΓN ⊂ ∂Ω} ,
and the space of derivation F to

F =
{
θ ∈ C1

(
Rd;Rd

)
| θ = 0 on ΓD ∪ ΓN

}
.

We now consider, for Λ > 0 the objective function

L(Ω) =

ˆ
Ω

|∇u|2 + Λ

ˆ
Ω

1.

This consists in minimizing the compliance with a penalization on the volume of the shape. Under these assumptions,
L is shape-differentiable and for θ ∈ F we have

L′ (Ω; θ) =

ˆ
Γ

(θ · n)
(

Λ− |∇u|2
)
.

Proposition 3.3.29. Let assume that there exists Ω ∈ O2 that is a critical point of L. Therefore Ω does not have
any hole.

Proof. We have for all θ in F , L′ (Ω; θ) = 0, which implies that, on Γ

|∇u|2 = Λ.

Moreover, on Γ we have ∂nn = 0. Therefore

∀x ∈ Γ, |∇Γu|2 = Λ.

The Sobolev embedding [27] in R2

H2(Ω) ⊂ C1,0(Ω) = C1(Ω)

implies that u is in C1(Ω), and that ∇u is continuous over Ω. Now since Ω ∈ O2, its normal is continuous, and
therefore ∇Γu is also continuous over Γ. If there exists a hole, its boundary is necessary part of Γ let us denote it
by γ. On γ the tangential gradient of u is continuous and satisfies |∇Γu|2 = Λ. Since Ω lies in a subset of R2, the
tangential gradient is constant. Let assume for example that ∇Γu =

√
Λ. Integrating over γ leads toˆ

γ

∇Γu = 0,

which means that √
Λ|γ| = 0.

Therefore Λ = 0 which is not possible since it is assumed positive. As a conclusion, there cannot exist any hole when
the boundary is smooth.
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This property is very interesting. We have already seen that a way to get existence results for shapes was to require
more regularity on admissible shapes (see Section 2.3). But here we can see that if there exists a smooth optimal
shape, it must have no hole. Therefore, the restriction to smooth shapes has a really important cost, since there is
only one possible topology. On the other hand it also proves that if non-smooth shapes are authorized, there will
necessarily be singularities on the boundary of optimal shapes. Indeed, one can observe that optimization algorithms
develop corners on shapes (see Chapter 12).
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Chapter 4

The level-set method
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4.1 Presentation of the level-set method

Since the early works of Osher and Sethian [97, 113], the level-set method has become a widely used method for
shape modeling, especially in view of tracking the evolution of a shape, or equivalently of its boundary. It has already
proven its effectiveness and its ability to solve a large variety of problems [98, 115], [129] or [10, 11, 12, 13]. It consists
in working in an implicit framework where the shape Ω is represented by the set of negative values of a function
Rd 3 x 7→ φ(x). In other words the level-set φ is a function such that





φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ Rd\ (Ω ∪ ∂Ω) .

One can mention two major advantages of the level-set method. At first, with this representation of a shape, a motion

Figure 4.1: Signed distance function to a shape.

of an evolving domain Ω(t) over a time interval [0, T ] is tracked by a partial differential equation for a time-dependent
level-set function φ(t, ·), namely a Hamilton-Jacobi equation. This equation admits a unique viscosity (or weak)
solution global in time. The framework of viscosity solution (see Section 4.2.1) is well-suited for shape optimization
since it allows topological changes. Secondly, a second advantage lies in a numerical point of view. Usually, the shape
Ω is assumed to vary in a bounded working domain D. Once this domain is meshed, it is sufficient for letting the
level-set evolve. Therefore, there is no need of a costly remeshing process to track the motion of the shape.

The level-set gives also access quickly to different geometric quantities. Since the level-set satisfies φ(x) = 0 on

∂Ω, the normal to the shape n is given by the gradient of φ : n =
∇φ
|∇φ| (at least in the vicinity of the boundary

63
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when ∇φ does not vanish). The mean curvature introduced in Definition 3.2.9 is computed by the divergence of the
outer normal. With a Cartesian grid used to discretize the working domain D on which the level-set is evaluated, it
becomes quite straightforward to use a finite difference scheme for computing the normal to the shape and the mean
curvature. One can also introduce a sign function s, a Heaviside χ function and a Dirac function δ∂Ω. We introduce
here the sign and Heaviside functions and postpone the introduction of the Dirac function to Section 11.1

Definition 4.1.1. Let φ : Rd → R, and Ω a shape defined by the zero level-set of φ. We define the sign function s by





s(x) = 1 if φ(x) > 0,
s(x) = 0 if φ(x) = 0,
s(x) = −1 otherwise.

(4.1)

This gives access to the characteristic function defined by

χ =
1

2
(1− s). (4.2)

4.2 The Hamilton-Jacobi transport equation

With a level-set representation, the motion of a shape can be simply determined by a transport equation which is often
called the level-set advection equation. In the particular case when the motion of the shape is always directed by its
time-evolving outer normal, the level-set advection equation takes the form of a Hamilton-Jacobi equation. The ability
of the Hamilton-Jacobi to track the motion of a shape has been widely studied by Osher and Sethian [97, 96, 110].
We first begin by recalling the link between shape motion and the Hamilton-Jacobi equation.

Let us consider a smooth time-evolving level-set function φ(t, ·) with t ∈ [0, T ]. Let Ω0 ∈ O∞ and φ0 an associated
level-set function defined by its signed distance function. Since it is a distance function, at least in the vicinity of ∂Ω0

the gradient of φ0 does not vanish. For v ∈ C∞ (D) and φ0 ∈ C∞ (D;R) assume that φ ∈ C∞ ([0, T ]×D) solves the
following Hamilton-Jacobi equation

{
∂tφ(t, x) + v(x)|∇xφ(t, x)| = 0 on (0, T )×D,
φ(0, x) = φ0 on D. (4.3)

This equation needs additional boundary conditions on ∂D in order to be well-posed. We will not give much detail
about that, and refer to [46] for more details. For each t ∈ [0, T ] we consider a time-evolving domain Ω(t) as

Ω(t) = {x ∈ D | φ(t, x) < 0}.

Since the gradient of φ0 does not vanish in the neighborhood of ∂Ω0, there exists O a bounded open set of Rd containing
∂Ω0 and τ ∈]0, T ] such that in [0, τ [×O the level-set φ solution to the Hamilton-Jacobi equation (4.3) has its gradient
bounded away from zero. Now, following the idea of the characteristics method, let x0 ∈ ∂Ω0 and [0, τ ] 3 t 7→ x(t)
given by 




dx

dt
(t) = v

(
x(t)

) ∇φ(t, x(t))

|∇φ(t, x(t))| ,
x(0) = x0.

It appears that for each time t ∈ [0, τ ], x(t) ∈ ∂Ω(t). The smoothness of φ ensures that

dφ
(
t, x(t)

)

dt
= ∂tφ

(
t, x(t)

)
+
dx

dt
(t) · ∇φ

(
t, x(t)

)
,

= ∂tφ
(
t, x(t)

)
+ v
(
x(t)

)
|∇φ(t, x(t))|,

= 0.

Since x(0) = x0 ∈ ∂Ω0 at t = 0, we have φ
(
0, x(0)

)
= 0. Therefore, the invariance of φ

(
t, x(t)

)
with respect to t

implies that

∀t ∈ [0, τ ], φ
(
t, x(t)

)
= 0,

and as a consequence

∀t ∈ [0, τ ], x(t) ∈ ∂Ω(t).

With all this, one can see that the motion of the boundary ∂Ω(t) is given by the speed vector v(t, ·) ∇φ(t, ·)
|∇φ(t, ·)| . Since

φ(t, ·) is a level-set function for Ω(t) the vector
∇φ(t, ·)
|∇φ(t, ·)| is on ∂Ω(t) the outer normal to the shape Ω(t). Therefore,

the speed vector translating the motion of the boundary is always normal to the shape (see Figure 4.2).



4.2. THE HAMILTON-JACOBI TRANSPORT EQUATION 65

(v n)
(
t0, x(t0)

)

(v n)
(
t, x(t)

)

∂Ω(t0)

∂Ω(t)

Figure 4.2: Normal evolution of a shape.

Remark 4.2.1. It is also noticeable that the shape Ω(T ) resulting from the solution to (4.3) depends only on Ω(0)
which is the set {x ∈ D | φ0(x) = 0}. This is a result from [18, 38, 61]. Indeed, let z → h(z) be an increasing function
on R with h′(z) > 0 and h(0) = 0. When φ is a solution to (4.3) with initial data φ0, then h(φ) is a solution for this
equation with initial data h(φ0). Since h(0) = 0 and h is increasing, the zero level-set of φ and of h(φ) are the same,
meaning that h(φ) and φ represent the same shape.

According to [64], the motion of a shape with respect to a vectorial velocity field V is more generally defined by
the the viscosity solution to (see Section 4.2.1)

{
∂tφ(t, x) + V (t, x) · ∇xφ(t, x) = 0 on (0, T )×D,
φ(0, x) = φ0 on D.

4.2.1 Existence of solutions

In this section we focus on the existence of solutions to the Hamilton-Jacobi equations (4.3) on [0, T ]. When Ω ∈ O∞
and T is sufficiently small, there exists a unique solution to this equation. But if T is too high, it appears that the
bicharacteristics for solving the Hamiltonian system associated to the transport equation may cross. In that case, the
level-set φ may be multi-valuated (see Remark 10.1.2). In other words, even if the initial condition φ0 as well as the
velocity field v are arbitrarily smooth, the solution to (4.3) may develop singularities. In oder to get an existence
and uniqueness result for the solution to the Hamilton-Jacobi equation, one should enlarge the set of solutions and
”choose” one of the multiple choices that may appear for the level-set. This is one achievement of the work of Crandall
and Lions [46] on the viscosity solutions to this kind of equations. The different singularities that may appear are well
described for example by Sethian [110] or [52, §1.1].

For the sake of completeness we recall here some notions about the viscosity solution theory for the Hamilton-Jacobi
equation.

Definition 4.2.2. Let U ⊂ Rd be an open set and H : Rdx × Ru × Rdp × S(Rd) → R be a continuous function, where

S(Rd) is the set of d × d symmetric matrices. Consider the following general second-order Hamilton-Jacobi equation
posed on (0, T )× U :

∂u

∂t

(
t, x) +H(x, u,∇u,D2u

)
(t, x) = 0. (4.4)

• A function u is a viscosity subsolution of equation (4.4) if it is upper semicontinuous on U and, for any function
φ of class C2 on U such that u− φ reaches a local maximum at x,

∂u

∂t
(t, x) +H

(
x, u(x),∇φ(x), D2φ(x)

)
≤ 0.

• A function u is a viscosity supersolution of equation (4.4) if it is lower semicontinuous on U , and, for any
function φ of class C2 on U such that u− φ reaches a local minimum at x,

∂u

∂t
(t, x) +H

(
x, u(x),∇φ(x), D2φ(x)

)
≥ 0.

• A function u is a viscosity solution of equation (4.4) if it is a viscosity subsolution and a viscosity supersolution.



66 CHAPTER 4. THE LEVEL-SET METHOD

There are many ways to find viscosity solutions to (4.4). One can first mention Perron’s method such as depicted
in [64, §2.4]. It mainly consists in finding the largest viscosity subsolution. It is also more standard to consider the
vicosity solution by their physical meaning : in some cases (see [18, 46]), they are seen as limits of an associated
viscous equation

∂uε
∂t

(t, x) +H
(
x, uε,∇uε, D2uε

)
(t, x) = ε∆uε. (4.5)

while ε goes to zero.

4.2.2 Numerical scheme

Now let us focus on the numerical resolution of the Hamilton-Jacobi equation in the case of a normal evolution :
{

∂tφ(t, x) + v(x)|∇xφ(t, x)| = 0 on (0, T )×D,
φ(0, x) = φ0 on D, (4.6)

where both the given scalar velocity field v and the initial data φ0 are assumed to be bounded and uniformly continuous.
Actually the results we refer to are also available for more general equations of the form

{
∂tφ(t, x) +H(x,∇φ) = 0 on (0, T )×D,
φ(0, x) = φ0 on D. (4.7)

The first case is then obtained when taking H(x, p) = v(x) |p|.
Starting from the work of Crandall and Lions [46], the numerical schemes to find viscosity solutions to Hamilton-

Jacobi equations have been widely studied [105, 110, 114]. There are also many other ways to construct a ”nice”
numerical scheme, up to higher orders such as depicted for example in [97]. We recall here some background on this
topic and detail a further used numerical scheme for (4.6). For the sake of readability we restrict ourselves - without
loss of generality - to the two-dimensional case. Given T > 0 the space (0, T ) × R2 is meshed with a rectangular
mesh with sizes (∆t,∆x,∆y). Given (n, i, j) ∈ N×Z2, the point (tn, xi, yj) denotes (n∆t, i∆x, j∆y), and xi,j denotes
(xi, yj) = (i∆x, j∆y). For a numerical quantity U defined on the lattice ∆ = {(xi, yj) | (i, j) ∈ Z}, its value at (xi, yj)
for t = tn is written Uni,j . A general first-order numerical scheme may be written under the form




∀(n, i, j) ∈ N× Z2, φn+1

i,j = φni,j −∆tH
(
xi,j , D

−x
i,j φ

n, D+x
i,j φ

n, D−yi,j φ
n, D+y

i,j φ
n
)
,

∀(i, j) ∈ Z2, φ0
i,j = φ0(xi, yj)

(4.8)

where

D+x
i,j φ =

φi+1,j − φi,j
∆x

, D−xi,j φ =
φi,j − φi−1,j

∆x
,

D+y
i,j φ =

φi,j+1 − φi,j
∆y

, D−yi,j φ =
φi,j − φi,j−1

∆y
.

The numerical Hamiltonian H
(
xi,j , D

−x
i,j φ

n, D+x
i,j φ

n, D−yi,j φ
n, D+y

i,j φ
n
)

is chosen to be an approximation of the real one

H(x,∇φ). We also recall that the numerical Hamiltonian H is said to be consistent if for any (a, b) ∈ R2, and x ∈ R2

H (x, a, a, b, b) = H
(
x, (a, b)

)
.

Let us note that the first variable of H and H - namely x - is a two-dimensional one. All the other variables of H are
scalar, whereas the second variable of H is a vector of R2. Moreover, the Hamiltonian H is said to be monotonous if
it is increasing in the second and fourth arguments and decreasing in the third and fifth arguments. In the case where
the numerical Hamiltonian H is both consistent and monotonous, Crandall and Lions [47, Theorem 1] proved that the
numerical scheme converges to a viscosity solution to (4.7).

For the particular case of (4.6) when H(x, p) = v(x) |p|, we consider the following numerical scheme



∀(n, i, j) ∈ N× Z2, φn+1

i,j = φni,j −∆t
(

max(vi,j , 0)∇+
i,jφ

n + min(vi,j , 0)∇−i,jφn
)
,

∀(i, j) ∈ Z2, φ0
i,j = φ0(xi, yj),

(4.9)

where

∇+
i,jφ =

[
max

(
max(D−xi,j φ, 0);−min(D+x

i,j φ, 0)
)2

+ max
(

max(D−yi,j φ, 0);−min(D+y
i,j φ, 0)

)2
] 1

2

,

∇−i,jφ =

[
max

(
max(D+x

i,j φ, 0);−min(D−xi,j φ, 0)
)2

+ max
(

max(D+y
i,j φ, 0);−min(D−yi,j φ, 0)

)2
] 1

2

.

It appears that this scheme is both consistent and monotonous, which ensures the stated convergence to a viscosity
solution. A CFL condition on the time step has also to be added because this scheme is explicit in time. The scheme is
said to be upwind since the computation of φn+1

i,j is only made with the values of φni±1,j and φni,j±1 larger (respectively
smaller) than φni,j if vi,j is negative (respectively positive).
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4.3 Eikonal equation

The numerical scheme presented in Section 4.2.2 is a very practical way to compute a viscosity solution to a Hamilton-
Jacobi equation. However it turns out that it is not numerically efficient. In practice the level-set often becomes
too steep (or too flat) which causes a numerical error on the geometric properties of the shape such as for example
the outer normal, and consequently the curvature, the perimeter or any boundary integral. In order to prevent these
numerical inconveniences, the level-set may be periodically reinitialized such that it stays close to some signed distance
function. This is what the eikonal equation aims at :





|∇φ| = 1 on D,
φ < 0 in Ω,
φ > 0 in D\ (Ω ∪ ∂Ω) ,
φ = 0 on ∂Ω.

(4.10)

4.3.1 Transport equation

Instead of solving exactly the eikonal equation, it is possible to solve the following transport equation :

{
∂tφ(t, x) + s

(
φ0(t, x)

)(
|∇xφ(t, x)| − 1

)
= 0 on (0, T )×D,

φ(0, x) = φ0 on D,
(4.11)

where s is the sign function. It is not mathematically clear that this equation should have a solution. When ∇φ 6= 0

one can rewrite s
(
φ(t, x)

)
|∇xφ(t, x)| as s

(
φ(t, x)

)
n(t, x) · ∇xφ(t, x) with n(t, x) :=

∇xφ(t, x)

|∇xφ(t, x)| . When x ∈ ∂Ω(t),

n(t, x) is on ∂Ω(t) the outer normal to Ω(t) = {y ∈ D |φ(t, y) < 0} at x. This means that the characteristics are
directed along the normal, and evolve with a speed given by the sign function.

The numerical scheme presented in Section 4.2.2 may also be used for solving this equation. Even if there is no a
priori existence of a solution to (4.11), in practice this scheme always finds a numerical solution. It is in the vicinity of
the boundary that it is important for the level-set to be close to a signed distance function. Therefore, the numerical
scheme can also be stopped before the characteristics associated to the velocity s(φ)n cross.

This way of solving the eikonal equation is very practical and is not very expensive from a computational point of
view. However it turns out that even if the property |∇φ| = 1 may be accurately preserved, the boundary of the shape
is not exactly conserved. Theoretically, if φ(x) = 0 on the boundary, s(φ(x)) also vanishes and therefore the level-set
φ does not change at this point. But numerically, unless the boundary contains exactly a point of a mesh grid, this
should not happen. In a one-dimensional case (see Chapter 14) we will see explicitly that for a grid cell around the
boundary, the conserved quantity is not the position of the interface but only the mean value of the level-set on the
cell.

We could expect that the solution to (4.11) depends only on the initial shape. This would mean that it depends
only on the zero level-set of φ0 and not on the other values of this initial data. But there is no theoretical result about
that. However, we can consider the two systems





∂tφ1(t, x) + |∇xφ1(t, x)| − 1 = 0 on (0, T )×D\
(
Ω ∪ ∂Ω

)
,

φ1(0, x) = φ0 on D\
(
Ω ∪ ∂Ω

)
,

φ1(x) = 0 on ∂Ω,

(4.12)

and 



∂tφ2(t, x) + |∇xφ2(t, x)| − 1 = 0 on (0, T )×
(
Ω ∪ ∂Ω

)
,

φ2(0, x) = φ0 on
(
Ω ∪ ∂Ω

)
,

φ2(x) = 0 on ∂Ω,

(4.13)

and take {
φ(t, x) = φ1(t, x) on (0, T )×D\

(
Ω ∪ ∂Ω

)
,

φ(t, x) = −φ2(t, x) on (0, T )× Ω.
(4.14)

Now since the respective Hamiltonians are continuous, theses problems are well posed.

Remark 4.3.1. The shape defined by the level-set function given by (4.14) only depends on the initial shape Ω defined
by φ0. We can see that in the continuous case of (4.12) the zero level-set is conserved. A fortiori, for any x such that
φ0(x) = 0, since φ1 = 0 is imposed on ∂Ω as a boundary condition, we have φ1(t, x) = 0. This means that ∂Ω ⊂ ∂Ωt
where ∂Ωt = {x ∈ D | φ1(t, x) = 0}.

Now reciprocally, we could check that φ1 cannot vanish at any point that is not on ∂Ω. We start by assuming that
there exists T and B such that for every x0 ∈ B, the solution to





dx

dt
=
∇φ1

(
t, x(t)

)

|∇φ1

(
t, x(t)

)
| ,

x(0) = x0,

(4.15)
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is well-defined, meaning in particular that ∇φ1

(
t, x(t)

)
6= 0. Let us also assume the existence of (t0, y) ∈ [0, T ] × B

such that φ1(t0, y) = 0. Let x be the characteristic defined by





dx

dt
=
∇φ1

(
t, x(t)

)

|∇φ1

(
t, x(t)

)
| ,

x(t0) = y

(4.16)

We can see that
d

dt
φ1

(
t, x(t)

)
= 1. Then φ1

(
t0, x(t0)

)
= φ1

(
0, x(0)

)
+ t0 > 0 which contradicts the assumption

φ
(
t0, y) = 0. But the following equation 




dz

dt
=
∇φ1

(
t, z(t)

)

|∇φ1

(
t, z(t)

)
| ,

z(0) = x(0)

(4.17)

has a unique solution which is t 7→ z(t) = x(0). Since t 7→ x(t) satisfies this same equation, we deduce that y = x(0)
and that φ(0, y) = 0. This means that in the vicinity of the boundary, no point can be added to the boundary, and that
∂Ωt ⊂ ∂Ω.

Doing the same for (4.13), we can see that (4.14) conserves the boundary of Ω (at least in the vicinity of the initial
boundary).

4.3.2 The fast-marching method

The fast-marching method is another way to solve the eikonal equation. This method, introduced by Sethian [109,
111, 112, 110], is well-suited for tracking the motion of interfaces when the velocity field depends only on the space
variable and has a constant sign. This is especially efficient for the eikonal equation which is basically a static or
stationary Hamilton-Jacobi equation where the speed is uniformly equals to 1 and independent of the time. Let us
here consider the following eikonal equation in D ⊂ R2





|∇φ| = 1 on D,
φ < 0 in Ω,
φ > 0 in D\ (Ω ∪ ∂Ω) ,
φ = 0 on ∂Ω.

(4.18)

The two-dimensional case is chosen for the sake of clarity, but everything that follows is also available in higher
dimension.

The fast-marching method relies on computing the values of φ at grid nodes in an upwind fashion as if they were
given by the propagation of a front starting from ∂Ω. We describe here the propagation outside Ω, given that the
propagation inside Ω is made in the exact same way. With the same notation as in Section 4.2.2 for a discretization
on a grid, the upwind discretization of the gradient for a positive velocity field (1 ≥ 0) reads

max
(

max(D−xi,j φ, 0);−min(D+x
i,j φ, 0)

)2

+ max
(

max(D−yi,j φ, 0);−min(D+y
i,j φ, 0)

)2

= 1. (4.19)

In the upwind approximation of the gradient at (i, j), only the values smaller than φi,j are taken into account. The
key ingredient is to divide the set of nodes into three categories : accepted, narrow and far. The accepted nodes are
all nodes where the front has already gone through. The values of φ at these nodes will no longer be updated. The
narrow nodes consist of every nodes that are not already accepted but are neighbors (connected by an edge) of an
accepted node. The values of φ at these nodes may be updated many times. Finally, the far nodes are every other
nodes where φ is initialized to ∞. Once a node is assigned as narrow, a trial φ̃ value is computed such that it solves
(4.19), where φi,j is replaced by φ̃ (we recall that φi,j intervenes in the computation of every D±x,yi,j φ) and only the
accepted values are used among the set {φi−1,j , φi+1,j , φi,j−1, φi,j+1} .

The sketch of the algorithm is the following

Algorithm 4.3.2. The fast-marching algorithm

1. Initialization.

• Compute the distance to the boundary of each node being in a cell crossed by the boundary Ω. All these
nodes become accepted.

• Put every neighbor of an accepted node in the set of narrow nodes.

• Put every other node in the set of far nodes.

2. Loop (while the set of narrow nodes is non-empty)

• Find the narrow node with the smallest value of φ. Put it in the set of accepted nodes. Enlarge the set of
narrow nodes with all its neighbors.
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• Recompute a trial value of φ for every narrow node.

This algorithm provides a viscosity solution to (4.18). The tricky part consists in having an efficient sorting
procedure so that finding the narrow node with the smallest value of φ is not too costly. Though it remains quite
efficient since it converges in O

(
N log(N)

)
iterations with a Cartesian grid of size N . The main advantage of the

fast-marching method lies in the fact that the boundary of the shape should be preserved. The initialization of the
method starts with computing the exact distance function to the shape. Therefore the values of the new level-set
preserve the position of the interface. Nevertheless this is kind of a theoretical advantage, since most of the time it
is not possible to numerically compute the exact distance to the shape. Usually the exact distance to the interface
is computed with linear approximation of the level-set. But once the distance is computed, the linear approximation
is no longer available. Therefore one can say that the fast-marching procedure is not a projection, in the sense that
distance functions are not fixed points of the procedure. In Section 14.3 we will give an example of non-conservation
of the boundary by the fast-marching method.

4.3.3 Redistanciation-free method

Moving a shape requires only the normal component of a boundary vector field. When the motion of the shape is
tracked by a Hamilton-Jacobi equation (4.3) the velocity field - directed along the time-dependent outer normal to
the shape - has to be defined on the whole space. Indeed, the Hamilton-Jacobi equation moves all the level-sets and
not only the zero level-set. The natural velocity fields given by shape derivatives are defined only on the boundary.
Thus they have to be extended to the whole space. The only requirement on the extension is that its restriction
to the boundary matches with the field to be extended. There are many different ways to compute extensions of
velocity fields [15, 53, 32]. In this section we will briefly present an idea of Adalsteinsson and Sethian [3] for which
the coupling of the advection equation with a redistanciation process does not seem necessary. The key ingredient is
the construction of a time-dependent velocity field v such that at each time

∇v · ∇φ = 0. (4.20)

Assume that such a field exists and that φ solves the Hamilton-Jacobi equation (4.3). One has

d|∇φ|2
dt

= 2∇φ · d∇φ
dt

Since φ solves the Hamilton-Jacobi equation, the time derivative of its gradient is given by

d∇φ
dt

+ |∇φ|∇v + v∇|∇φ| = 0.

Therefore

d|∇φ|2
dt

= −2|∇φ| ∇φ · ∇v − v∇φ · ∇|∇φ|,

and starting from a distance function with |∇φ| = 1, the property ∇φ · ∇v = 0 leads to

d|∇φ|2
dt

= 0,

which ensures that the level-set function remains a distance function. Therefore this choice of extension for the field
v ensures that the level-set keeps being a distance-function, and that there is no need for a redistanciation.

All the difficulty remains now to build - at least numerically - a velocity field satisfying (4.20) at all times. There
is a priori no chance to find a theoretical construction since it would depend on the solution to the Hamilton-Jacobi
equation for which the field is required. Its construction is only implicit. The work of Adalsteinsson and Sethian
consists in applying a fast-marching method for the construction of a velocity field satisfying the expected requirement.
Naturally, the extension is to be recomputed at each time step of the resolution of the Hamilton-Jacobi equation. The
sketch of their method is the following

Algorithm 4.3.3. Advection

• Start from a level-set φn at time step n∆t.

• Build a temporary signed distance function φ̃ that has the same zero level-set as φn.

• Build an extended velocity field ṽn such that it matches ṽn−1 on the interface and that ∇ṽn · ∇φ̃ = 0.

• Make one step of the numerical scheme for the Hamilton-Jacobi equation with velocity ṽn.
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The numerical method they implemented shows very convincing results. This method is not computationally
cheaper than the coupling of the Hamilton-Jacobi equation with the eikonal equation for reinitializing the level-set.
At each time step the eikonal equation is indeed used for computing a distance function and the extended velocity. It
consists in solving the Hamilton-Jacobi equation with a time-dependent velocity. But the main advantage is that there
is no perturbation on the current level-set. As we will see later, this should be a great improvement in the perspective
of optimization.

One can also note that it is possible to start from an already extended velocity. If v is initially defined on the
whole space, this means that at each time step the extended velocity should match with v on the current interface,
instead of ṽn−1.
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Finite element method
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Partial differential equations have historically first been numerically solved by finite difference methods. The
main idea was introduced by Courant, Friedrichs and Lewy [45] in the early 30s and is essentially based on Taylor
approximation to compute numerical derivatives. Based on previous other formal works ([44] in the 40s), the finite
element method was first introduced in mechanics in the 70s (see [133] for example). We also refer to the work
of Thomée [125] for a historical review of numerical resolution of partial differential equations. It relies on the
approximation of variational equalities in piecewise polynomial spaces. The finite element method is very popular for
it is an easy way to solve partial differential equations on any kind of geometry. Finite difference schemes are also
still widely used but preferably for time discretization in evolution problems. In this section we will focus on the finite
element method, for which we recall some usual prerequisites.

5.1 Variational approximation

The general framework of variational formulations is the following. Let us consider a Hilbert space V, a bilinear
continuous and coercive form a : V × V → R and a linear continuous form l : V → R. All the variational formalism is
based on the Lax-Milgram theorem ([8, Théorème 3.3.1] for example) that ensures that the variational formulation

find u ∈ V such that ∀v ∈ V, a(u, v) = l(v), (5.1)

has a unique solution when the above assumptions on a and l are satisfied. This important result provides a mathe-
matical framework for a large part of integral and partial differential equations, including in particular linear elliptic
equations.

Usually the partial differential equations considered are set in Sobolev spaces such as H1, H1
0 , H

2. The main
concept of finite element method is to reduce the variational space (namely H1, etc.) to a subspace of finite dimension.
Courant [44] was the first to propose the idea to consider a triangulation adapted to the geometry of the shape and
the variational space Vh made of continuous piecewise linear functions on the triangulation. For a given triangulation,
this space is naturally of finite dimension and a subspace of H1. Now it remains to consider what is called the internal
variational approximation

find uh ∈ Vh such that ∀vh ∈ Vh, a(uh, vh) = l(vh). (5.2)

Under the suitable assumptions on a (continuity and coercivity) this problem now sums up to a linear system with a
finite-dimensional positive definite matrix [8, Lemme 6.1.1].

In this framework we also recall an error estimate due to Céa [8, Théorème 6.1.2] between u and uh, the respective
solutions to (5.1) and (5.2).

Lemma 5.1.1. Let u and uh be the solutions to (5.1) and (5.2) respectively. One has the following estimate

‖u− uh‖ ≤
M

ν
inf

vh∈Vh
‖u− vh‖ ,

where M and ν are respectively the constants of continuity and coercivity of the bilinear map a.

71
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5.1.1 Interpolation error

In this section we consider a triangulation Th of size h. For k ≥ 1 we introduce the Lagrange finite element space Vh
of continuous scalar functions that are piecewise polynomials of degree k :

Vh =
{
u ∈ C (D;R) | ∀τ ∈ Th, u|τ is a polynomial of degree k

}
.

With Nh the dimension of Vh and (ai)1≤i≤Nh being the degrees of freedom of Vh, there exists [7, Proposition 2.35] a
basis (ϕi)1≤i≤Nh of Vh such that

∀1 ≤ i, j ≤ Nh, ϕi(aj) = δij ,

and

∀v ∈ Vh, v(x) =

Nh∑

i=1

v(ai)ϕi(x).

In particular, one can notice that on each cell τ such that ai is not part of, the basis function ϕi vanishes. Therefore,
the support of ϕi is exactly the union of the cells τ that contain ai. In the case of piecewise linear function - namely
the space P1 - the degrees of freedom coincide with the set of vertices of the triangulation. For the space P2, the
degrees of freedom is the union of the set of vertices of the triangulation and the set of nodes at the middle of every
edges of the triangulation.

Definition 5.1.2. For v ∈ Vh we now define the interpolation operator IkTh by

IkThv =

Nh∑

i=1

v(ai)ϕi.

Under suitable assumptions on the triangulation [22, Théorème IX.1.5], there is an estimate on the interpolation
error :

Theorem 5.1.3. Let l ∈ N such that 0 ≤ l ≤ k+ 1 and (p, q) ∈ N2 with 1 ≤ p ≤ q ≤ +∞ such that W l,p(D) ⊂ C (D).
There exists c > 0 dependent only on l, p, q such that for all v ∈W l,p(D)

∥∥v − IkThv
∥∥
Lq(D)

≤ chl− dp+ d
q |v|W l,p(D),

where

|v|p
W l,p(D)

:=
∑

|α|=l

‖Dαv‖pLp(D)

Remark 5.1.4. The assumption W l,p(D) ⊂ C (D) is needed in the proof of this theorem for IkThv may not be defined

when v is only in W l,p(D). If l, p, k are such that the inclusion is not satisfied but v is continuous, the result remains
true (see also [22]).

Now if we take d ≤ 3 and k = 1, that is we consider piecewise linear approximations, l = 2, p = 2 and q = +∞.
When u ∈ H2(D), Theorem 5.1.3 leads to

∥∥u− IkThu
∥∥
L∞(D)

≤ ch2− d2 |u|H2(D). (5.3)

Notice that since d ≤ 3, the power of h in the error estimate is always positive, meaning that there is a L∞-convergence
result as soon as the function u is in H2(D). The regularity of the solution to (5.1) is a priori only in H1(D). But in
view of shape differentiation, the applied loads as well as the shape have to be sufficiently regular so that u is H2(D)
by elliptic regularity [27] (see Remark 3.3.25). In addition when u is in H2(D) (with a space dimension less than 3)
the Sobolev embedding

H2(D) ⊂ C0,α(D) ⊂ C (D)

ensures that u is continuous and therefore

‖u− uh‖L∞(D) ≤ inf
vh∈Vh

‖u− vh‖L∞(D)

≤
∥∥u− IkThu

∥∥
L∞(D)

≤ ch2− d2 |u|H2(D).
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5.1.2 Q1 finite element in the two-dimensional space

In numerical practice, working always with a mesh adapted to the geometry is time consuming. This is the reason why
it can be interesting to work with a fixed mesh, and to track the evolution of the boundary with a level-set method
for example. The choice of a square mesh may also be well-suited for it eases finite difference computations - let us
mention here that the numerical scheme for solving the advection equation (see Section 4.2.2) requires finite difference
approximations on the level-set. Thus, we consider a finite element approximation on a mesh with quadrangular
elements denoted also Qh.

We could also have made the choice of working with a triangular mesh adapted to the geometry with remeshing
process, and adapt the numerical scheme for advection equation to non-conforming grids. This is one of the main
achievements of the work of Abgrall [1, 2], Hu and Shu [74] or Dapogny [52].

In a cell K ∈ Qh, the Lagrange finite element requires at least to work with quadratic polynomials : the problem
of finding a polynomial of degree 1 with prescribed values on the vertices of a square is overdetermined. In order not
to increase too much the dimension of the variational space Vh we deal here with quadratic approximations. In the
two-dimensional space it consists in considering

Vh =
{
u ∈ C (D;R) | ∀K ∈ Qh, u|K is of the form u|K(x) = a0 + a1x+ a2y + a3xy

}
.

Now for v, w ∈ Vh we will detail the way to compute integrals such asˆ
D
v w,

ˆ
D
∇v · ∇w.

These two kinds of integrals are quite simple since a priori v, w are assumed to have scalar values. However the
principle is exactly the same for vectorial functions. Therefore it is also easy to extend these computations to the case
of homogeneous linear elasticity where the approximation matrices can be computed with the same principle.

When v, w are in Vh these integrals depend only on the components of v, w on a basis of Vh, and their computations
sum up to matricial evaluations. Let assume that

v(x) =

Nh∑

i=1

viϕi(x), w(x) =

Nh∑

i=1

wiϕi(x).

The integrals now read ˆ
D
vw =

∑

1≤i,j≤Nh

viwj

ˆ
D
ϕiϕj ,

ˆ
D
∇v · ∇w =

∑

1≤i,j≤Nh

viwj

ˆ
D
∇ϕi · ∇ϕj .

Denoting by V = (v1, · · · , vNh)
T

, W = (w1, · · · , wNh)
T

and

M1 =

(ˆ
D
ϕiϕj

)

1≤i,j≤Nh
, M2 =

(ˆ
D
∇ϕi · ∇ϕj

)

1≤i,j≤Nh

the mass and stiffness matrices, the integrals writeˆ
D
vw = V TM1W,

ˆ
D
∇v · ∇w = V TM2W.

Since the supports of the basis functions are reduced to the neighboring cells of a vertex, when i, j are such that the
vertices ai and aj are not neighbors, the (i, j) entries of M1 and M2 are zero. Therefore these matrices have a sparse
structure.

Following the formalism of Maday and al [22], each cell K is brought to a reference cell K̂ such as depicted on
Figure 5.1. The vertices of the cells are respectively denoted by Vi and V̂i. The boundary of a cell K is composed of
four curves defined by [−1, 1] 3 t 7→ fi(t) ∈ R2 with i ∈ J1, 4K. Each function fi is assumed to be smooth, injective
and such that

f1

(
[−1, 1]

)
= [V1, V2], f2

(
[−1, 1]

)
= [V2, V3],

f3

(
[−1, 1]

)
= [V3, V4], f4

(
[−1, 1]

)
= [V4, V1],

and such that

f1(1) = V2 = f2(−1),

f2(1) = V3 = f3(−1),

f3(1) = V4 = f4(−1),

f4(1) = V1 = f1(−1).
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−1 1

−1

1

V3

V4
V2

V1

K

−1 1

−1

1
V̂3

V̂4

V̂2
V̂1

K̂

Figure 5.1: Transformation of a cell K to a reference cell K̂.

Let F : K̂ → K be defined by

F(x̂, ŷ) =
1− x̂

2
f1(ŷ) +

1 + x̂

2
f3(ŷ)

+
1− ŷ

2

(
f2(x̂)− 1− x̂

2
f2(−1)− 1 + x̂

2
f2(1)

)

+
1 + ŷ

2

(
f4(x̂)− 1− x̂

2
f4(−1)− 1 + x̂

2
f4(1)

)
.

It maps the edges of K̂ to the edges of K. When the cell K is a quadrangle and (xi, yi) are the coordinates of the
vertices Vi one can define the fi functions by

f1(t) =



x1 +

1

2
(x2 − x1)(t+ 1)

y1 +
1

2
(y2 − y1)(t+ 1)


 , f2(t) =



x2 +

1

2
(x3 − x2)(t+ 1)

y2 +
1

2
(y3 − y2)(t+ 1)


 ,

f3(t) =



x3 +

1

2
(x4 − x3)(t+ 1)

y3 +
1

2
(y4 − y3)(t+ 1)


 , f4(t) =



x4 +

1

2
(x1 − x4)(t+ 1)

y4 +
1

2
(y1 − y4)(t+ 1)


 .

Now we introduce K̂ 3 (x̂, ŷ) 7→ Ni(x̂, ŷ) with

N1(x̂, ŷ) =
(1− x̂)(1− ŷ)

4
, N2(x̂, ŷ) =

(1 + x̂)(1− ŷ)

4
,

N3(x̂, ŷ) =
(1 + x̂)(1 + ŷ)

4
, N4(x̂, ŷ) =

(1− x̂)(1 + ŷ)

4
.

In this context, the function F writes

F(x̂, ŷ) =




x1N1(x̂, ŷ) + x2N2(x̂, ŷ) + x3N3(x̂, ŷ) + x4N4(x̂, ŷ)

y1N1(x̂, ŷ) + y2N2(x̂, ŷ) + y3N3(x̂, ŷ) + y4N4(x̂, ŷ)


 .

Therefore, when we aim at computing the integral of a function g on K we haveˆ
K

g(x, y) dx dy =

ˆ
K̂

g ◦ F(x̂, ŷ) det
(
∂F(x̂, ŷ)

)
dx̂ dŷ, (5.4)

where 



∂x̂Fx = −x1
1− ŷ

4
+ x2

1− ŷ
4

+ x3
1 + ŷ

4
− x4

1 + ŷ

4
,

∂ŷFx = −x1
1− x̂

4
− x2

1 + x̂

4
+ x3

1 + x̂

4
+ x4

1− x̂
4

,

∂x̂Fy = −y1
1− ŷ

4
+ y2

1− ŷ
4

+ y3
1 + ŷ

4
− y4

1 + ŷ

4
,

∂ŷFy = −y1
1− x̂

4
− y2

1 + x̂

4
+ y3

1 + x̂

4
+ y4

1− x̂
4

,
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and when the cell K is a square with length ∆x, ∆y

det
(
∂F(x̂, ŷ)

)
) =

∆x∆y

4
.

Mass matrix

To assemble the global mass matrix, we need to compute the elementary mass matrix. Let g, h ∈ Vh be defined on K,
and consider

I =

ˆ
K

g(x, y)h(x, y) dx dy.

With a Q1 finite element approximation, g ◦ F and f ◦ F can be decomposed on the basis (Ni)1≤i≤4.

g ◦ F(x̂, ŷ) = g1N1(x̂, ŷ) + g2N2(x̂, ŷ) + g3N3(x̂, ŷ) + g4N4(x̂, ŷ),

h ◦ F(x̂, ŷ) = h1N1(x̂, ŷ) + h2N2(x̂, ŷ) + h3N3(x̂, ŷ) + h4N4(x̂, ŷ).

Introducing the vectors

G =




g1

g2

g3

g4


 , H =




h1

h2

h3

h4


 , N =




N1

N2

N3

N4


 ,

the product
(
g ◦ F

)(
h ◦ F

)
reads

GT NT N H.

Therefore one can write the expression of I as

I =

ˆ
K̂

GT NT (x̂, ŷ)N(x̂, ŷ)H det
(
∂F(x̂, ŷ)

)
,

which leads to

I = GT

(
∆x∆y

4

ˆ
K̂

NT (x̂, ŷ)N(x̂, ŷ)

)
H.

The elementary mass matrix M1 is

M1 =
∆x∆y

4

ˆ
K̂

NT (x̂, ŷ)N(x̂, ŷ).

It is independent on the functions g, h and can be computed explicitly :

M1 =
∆x∆y

36




4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4


 .

Stiffness matrix

Similarly for the stiffness matrix, with g, h ∈ Vh defined on K, the integral to be considered is

J =

ˆ
K

∇x,yg(x, y) · ∇x,yh(x, y) dx dy.

With a change of variable in the integral (with formula of (5.4)) this can be reformulated as

J =

ˆ
K̂

∇x,y
(
g ◦ F

)
· ∇x,y

(
h ◦ F

)
det
(
∂F(x̂, ŷ)

)
dx̂ dŷ.

In this equation the gradient ∇x,y is computed with respect to the variables (x, y) in the original cell K. A change of
variable so that the gradients are computed with respect to x̂, ŷ leads to

J =

ˆ
K̂

∇x̂,ŷ
(
g ◦ F

)
· ∇x̂,ŷ

(
h ◦ F

)
dx̂ dŷ.

Now decomposing similarly to the previous case g, h on the basis (Ni)1≤i≤4 gives

∇x̂,ŷ
(
g ◦ F)(x̂, ŷ

)
=

1

4

(
−g1(1− ŷ) + g2(1− ŷ) + g3(1 + ŷ)− g4(1 + ŷ)

−g1(1− x̂)− g2(1 + x̂) + g3(1 + ŷ) + g4(1− x̂)

)
,
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and the same for h. This can be written as

∇x̂,ŷ
(
g ◦ F)(x̂, ŷ

)
= ∇NT G,

where ∇N is defined by

∇N =




∂xN1 ∂yN1

∂xN2 ∂yN2

∂xN3 ∂yN3

∂xN4 ∂yN4


 .

Therefore J can be computed by

J = GT

(ˆ
K̂

∇N(x̂, ŷ)∇NT (x̂, ŷ)

)
H.

The elementary stiffness matrix M2 is ˆ
K̂

∇N(x̂, ŷ)∇NT (x̂, ŷ),

which is also independent of g and h and whose explicit expression on a square mesh is

M2 =
1

6




4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4


 .

5.2 Mass-lumping method

The mass-lumping method, described for example in [124, Chapter 15], [37], or [130] for surface integrals in R2, consists
in replacing the mass matrix by a diagonal matrix whose diagonal terms are the sum of each row of the mass matrix.
In this section we recall some properties of the mass-lumping method. Let us consider a finite element mesh Th on a
domain Ω, Vh the space of continuous piecewise linear functions (P1) on this mesh. Let also Nh be the dimension of
this finite element space. In particular one has Vh ⊂ H1(Ω). Let M be the mass matrix for the meshed domain, i.e.
for each φ, ψ in Vh with coordinates Φ,Ψ on the canonical basis of Vh we have

ˆ
Ω

φψ = ΦT M Ψ.

We also denote by m the bilinear map, L2(Ω)×L2(Ω) 3 (φ, ψ) 7→ m(φ, ψ) =

ˆ
Ω

φψ. For φ ∈ C (Ω) we denote by I1
Thφ

the piecewise linear interpolation on Vh. For an element τ ∈ Th we introduce the linear map Qτ defined on C (τ) by

Qτ (φ) =

ˆ
τ

I1
Thφ.

Now we can define a linear map Q on C (Ω) by

Q(φ) =
∑

τ∈Th

Qτ (φ) =

ˆ
Ω

I1
Thφ. (5.5)

We also define m̃ : C (Ω)× C (Ω)→ R, an approximated mass bilinear map on C (Ω), by

m̃(φ, ψ) = Q(φψ).

The lumped-mass matrix M̃ is defined by the matrix of the bilinear map m̃, i.e. such that

m̃(φ, ψ) = ΦT M̃ Ψ.

One can therefore consider the approximation error between m̃ and m for continuous functions (for which the inter-
polation is defined).

Lemma 5.2.1. The matrix M̃ is a diagonal matrix whose diagonal terms m̃i,i are defined by

m̃i,i =

Nh∑

j=1

mi,j ,

where mi,j are the entries of the mass matrix M .
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Proof. With the same notation as in Section 5.1.1, (ϕi)1≤i≤Nh and (ai)1≤i≤Nh denote respectively the canonical basis
of Vh with Lagrange finite element, and the set of edges of the mesh. Therefore, with j 6= k we have for each 1 ≤ i ≤ Nh,
ϕj(ai)ϕk(ai) = 0. This means that the piecewise linear interpolation of the product ϕkϕj is uniformly equal to zero.

Therefore Q(ϕkϕj) = 0 and so is m̃jk for j 6= k. As a consequence, the matrix M̃ is diagonal. It remains to consider
m̃(ϕk, ϕk) :

m̃(ϕk, ϕk) = Q(ϕ2
k).

Since the functions ϕ2
k and ϕk take the value 1 on the vertex ak and zero everywhere else, we have Q(ϕ2

k) = Q(ϕk).
Therefore

m̃(ϕk, ϕk) = Q(ϕk)

= Q(ϕk u)

= m(ϕk, u)

=

Nh∑

j=1

mk,j

where u : Ω 3 x 7→ u(x) = 1.

Now we can recall an error analysis result from [124, Lemma 15.1] or from the same author [37, Lemma 1] between
the approximated lumped bilinear map m̃ and the mass bilinear map m.

Lemma 5.2.2. Let v, w ∈ Vh and εh = m̃(v, w)−m(v, w). Then we have

∀v, w ∈ Vh, |εh| ≤ Ch2 ‖∇v‖L2(Ω) ‖∇w‖L2(Ω) .

Proof. Since the quadrature formula (5.5) is exact for φ linear we have, by transformation to a fixed reference cell τ0
and using the Bramble-Hilbert lemma [41, Theorem 4.1.3] that

∀f ∈W 2,1(τ),

∣∣∣∣Qτ (f)−
ˆ
τ

f

∣∣∣∣ ≤ Ch2
∑

|α|=2

‖Dαf‖L1(τ) .

With v, w ∈ Vh and f = vw this leads to

∣∣∣∣Qτ (vw)−
ˆ
τ

vw

∣∣∣∣ ≤ Ch2
∑

|α|=2

‖Dα(vw)‖L1(τ) .

Since both v and w are linear in every τ this reads

∣∣∣∣Qτ (vw)−
ˆ
τ

vw

∣∣∣∣ ≤ Ch2 ‖∇v‖L2(τ) ‖∇w‖L2(τ) .

And we can conclude with a Cauchy-Schwarz inequality that after summation on every τ

|εh(v, w)| ≤ Ch2 ‖∇v‖L2(Ω) ‖∇w‖L2(Ω) .

These two results state all the benefit from the mass-lumping method. Firstly, the resulting mass matrices are
diagonal and not much complicated to compute, since it suffices to multiply the ”true” mass matrix with a vector
containing only the value 1. The diagonal structure of the resulting matrix may be a real advantage in view of linear
system solving as well as optimization. Secondly, the additional error introduced by the lumped approximation is not
large.

Remark 5.2.3. According to Theorem 5.1.3 for l ∈ N such that 0 ≤ l ≤ k + 1 and (p, q) ∈ N2 with 1 ≤ p ≤ q ≤ +∞
such that W l,p(D) ⊂ C (D) there exists c > 0 dependent only on l, p, q such that for all v ∈W l,p(D),

∥∥v − IkThv
∥∥
Lq(D)

≤ chl− dp+ d
q |v|W l,p(D).

For example, for p = q = 2, this means that

∥∥v − IkThv
∥∥
L2(D)

≤ chl|v|Hl(D).
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Therefore, with v, w ∈ H l(D) one has

∣∣∣∣
ˆ
D
vw −

ˆ
D
IkThv IkThw

∣∣∣∣ ≤
∣∣∣∣
ˆ
D

(
v − IkThv

)
w

∣∣∣∣+

∣∣∣∣
ˆ
D

(
v − IkThv

)
IkThv

∣∣∣∣
≤
∥∥v − IkThv

∥∥
L2(D)

‖w‖L2(D) +
∥∥w − IkThw

∥∥
L2(D)

∥∥IkThv
∥∥
L2(D)

≤ chl
(
|v|Hl(D) ‖w‖L2(D) + |w|Hl(D)

∥∥IkThv
∥∥
L2(D)

)
.

Therefore with piecewise linear interpolation, i.e k = 1, we have at most l = 2 which implies that the error on m(v, w) is
of order two. In this context the additional error of the mass-lumping method is of the same order as the interpolation
error.

Remark 5.2.4. The mass-lumping method is widely used for evolution problems (see the above references). The
main interest of the presentation of this method here is for further use in Section 9.2 where it gives some hints for
approximation of second-order derivatives.



Part II

Second-order derivatives and algorithms

”Une erreur originale
vaut peut-être mieux
qu’une idée banale.”

F. Dostöıevski

79



80



Chapter 6

Parametric case
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There are many different ways of modeling shape optimization problems which can be found in the literature
[7, 21, 30, 40, 68, 86, 93, 106, 122]. Among these different formalisms the thickness parametrization of a shape we
introduced in Section 2.2.1 is one of the simplest formalisms. Some formalisms can be very similar to this one (for
example the SIMP method [21]). However, most of the time for such a framework, only the first-order derivatives are
considered. In this chapter, we focus on the second-order derivatives of usual criteria for the thickness optimization.
We first detail the computation of the derivatives. This is rather classical, even if it is hard to locate such results in
the literature Then we study the structure of the second-order derivative which, up to my knowledge has not been
considered yet.

The thickness modeling of shape a priori takes place in a two-dimensional framework. Therefore, we restrict
ourselves in this whole chapter to the case where d = 2.

6.1 A model problem

We consider like in Section 3.1 the case of the membrane model (see Section 2.1.1), with Ω ⊂ Rd a smooth bounded
open reference domain and d = 2, 0 < hm ≤ hM , h ∈ L2(Ω; [hm, hM ]) and

ΩR3 = {X ∈ R3 |X = (x, y, z) with (x, y) ∈ Ω and 0 ≤ z ≤ h(x, y)}.

The boundary of Ω is divided in three parts : ∂Ω = Γ ∪ ΓN ∪ ΓD, each of them having a non-zero measure. For
f ∈ L2(Ω;R) and g ∈ H1(Ω;R) with g = 0 on Γ the out-of-plane displacements of the membrane are modeled by




−div (h∇u) = f in Ω,

h∂nu = g on ΓN ∪ Γ,
u = 0 on ΓD.

(6.1)

With the Hilbert space V defined by

V =
{
u ∈ H1(Ω;R) | u = 0 on ΓD

}
. (6.2)

the variational formulation for (6.1) reads





find u ∈ V such that

∀v ∈ V,
ˆ

Ω

h∇u · ∇v =

ˆ
Ω

fv +

ˆ
ΓN

gv.
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We consider shapes for which the thickness h takes its values in [hm, hM ]. Therefore, we define the set of admissible
shapes by

Uad = {h ∈ L∞(Ω;R) | hm ≤ h ≤ hM} .
In this section we are concerned with the second-order derivatives of the criteria introduced in Section 3.1, that

are the volume, the compliance J1 and a least square displacement criterion J2 whose expressions are

V (h) =

ˆ
Ω

h,

J1(h) =

ˆ
Ω

h|∇u|2,

J2(h) =

ˆ
Ω

|u− u0|2,

where u0 ∈ L2(Ω;R) is a given target displacement.

Remark 6.1.1. This study takes place in the two-dimensional case. However, with a physical sense to be detailed, we
could also consider the same state equation as (6.1) with d > 2, Ω ∈ Rd. Then, the computation of the second-order
derivatives in Section 6.2 remains the same. In the scalar case Section 6.3 (with u ∈ H1(Ω;R)) as well as in the vector
case Section 6.4 (with u ∈ H1(Ω;Rd)) the structure result for the second-order derivative would also be the same.

6.2 Second-order derivatives

The computation of first and second-order derivatives is well-known for parametric optimization. For example, one
can find different examples of design sensitivity analysis in the following references : [57, 67, 69, 70]. We recall
here the computation of second-order derivatives for our parametric model (the first-order derivatives are recalled in
Section 3.1), so that in the next section we will focus on the structure of the Hessian operator, which is our main
contribution on this topic.

The case of the volume is straightforward since the function h 7→ V (h) is linear.

Lemma 6.2.1. The function h 7→ V (h) is twice differentiable in L∞(Ω;R). For k, l ∈ L∞(Ω;R) the second-order
derivative of the volume is given by

V ′′ (h; k, l) = 0.

Now we focus on the state equation and the criteria J1, J2.

Lemma 6.2.2. Let k ∈ L∞(Ω;R). The function h 7→ u′k(h) is differentiable on L∞(Ω;R). The second-order derivative
of the state in the direction l ∈ L∞(Ω;R) is given by

u′′ (h; k, l) = u′′kl,

where u′′kl is the unique solution in H1(Ω;R) of





−div (h∇u′′kl) = div (l∇u′k) + div (k∇u′l) in Ω,

u′′kl = 0 on ΓD,

h∂nu
′′
kl = −k∂nu′l − l∂nu′k on ΓN ∪ Γ.

Lemma 6.2.3. The function h→ J1(h) is twice differentiable on L∞(Ω;R). The Hessian defines a bilinear symmetric
positive form on L∞(Ω;R)× L∞(Ω;R) :

J1
′′ (h; k, l) = −2

ˆ
Ω

l(x)∇u(x) · ∇u′k(x) dx = 2

ˆ
Ω

h(x)∇u′l(x) · ∇u′k(x) dx,

where u′k is the unique solution in H1(Ω;R) of




−div (h∇u′k) = div (k∇u) Ω,

u′k = 0 ΓD,
h∂nu

′
k = −k ∂nu ΓN ∪ Γ.

(6.3)

We can define the Hessian operator H by

H : L∞(Ω;R) −→ L1(Ω;R)
k 7−→ −2∇u(x) · ∇u′k(x).
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Remark 6.2.4. The Hessian operator H can be seen as a bounded linear operator from L2(Ω;R) to itself whenever
∇u ∈ L∞(Ω;Rd). Indeed, for p, q ∈ L2(Ω;R) we have

〈Hp, q〉L2(Ω;R),L2(Ω;R) = −2

ˆ
Ω

q(x)∇u(x) · ∇u′p(x) dx

≤ 2 ‖q‖L2(Ω;R) ‖∇u‖L∞(Ω;Rd)

∥∥∇u′p
∥∥
L2(Ω;Rd)

.

Since u′p solves (6.3) we have, thanks to the variational formulation

hm
∥∥∇u′p

∥∥2

L2(Ω;Rd)
≤
ˆ

Ω

p(x)∇u(x) · ∇u′p(x) dx

≤ ‖p‖L2(Ω;R) ‖∇u‖L∞(Ω;Rd)

∥∥∇u′p
∥∥
L2(Ω;Rd)

.

Then
∥∥∇u′p

∥∥
L2(Ω;Rd)

≤ 1

hm
‖p‖L2(Ω;R) ‖∇u‖L∞(Ω;Rd) .

And

〈Hp, q〉L2(Ω;R),L2(Ω;R) ≤
2

hm
‖∇u‖2L∞(Ω;Rd) ‖q‖L2(Ω;R) ‖p‖L2(Ω;R) .

Remark 6.2.5. The second expression of the Hessian in Lemma 6.2.3 proves that it is positive (h ≥ hm > 0) :

〈Hk, k〉L1(Ω;R),L∞(Ω;R) = 2

ˆ
Ω

h(x)|∇u′k|2 dx ≥ 0.

This notably proves that the compliance function is convex with respect to h.

Lemma 6.2.6. The function h 7−→ J2(h) is twice differentiable on L∞(Ω;R). Its second-order derivative is given by

J2
′′ (h; k, l) =

ˆ
Ω

2u′ku
′
l −

ˆ
Ω

(
l∇p · ∇u′k + k∇p · ∇u′l

)
,

where p is the unique solution in H1(Ω;R) of



−div (h∇p) = 2(u− u0) Ω,

p = 0 ΓD,
h∂np = 0 ΓN ∪ Γ.

(6.4)

Proof. The derivation of

J2
′ (h; k) = −

ˆ
Ω

k∇u · ∇p

immediately gives

J2
′′ (h; k, l) = −

ˆ
Ω

k∇u′l · ∇p−
ˆ

Ω

k∇u · ∇p′l.

The variational formulation for u′k gives

∀ϕ ∈ V,
ˆ

Ω

h∇u′k · ∇ϕ = −
ˆ

Ω

k∇u · ∇ϕ.

Then

−
ˆ

Ω

k∇u · ∇p′l =

ˆ
Ω

h∇u′k · ∇p′l

= 2

ˆ
Ω

u′lu
′
k −

ˆ
Ω

l∇p · ∇u′k,

and

J2
′′ (h; k, l) =

ˆ
Ω

2u′ku
′
l −

ˆ
Ω

(
l∇p · ∇u′k + k∇p · ∇u′l

)
.

6.3 Scalar case - Structure of the Hessian of the compliance

Second-order optimization methods, such as the Newton method, have efficient convergence properties in the neigh-
borhood of an optimal solution when the Hessian is regular enough. The main step of the Newton method consists in
inverting this operator (see Section 1.2.2). In several examples of shape optimization, the bilinear map H defined by
the shape Hessian is compact (see for example [4],[51], [60]), which makes it difficult to invert. For the boundary-value
problem introduced here, we will study the structure of the second-order derivative of the compliance J1. It will be
seen that it is not compact, but also not coercive.
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6.3.1 Non-compactness on L2(Ω;R)

Proposition 6.3.1. Assume that ∇u ∈ L∞(Ω;R). Then the second-order derivative operator H, seen as an operator
on L2(Ω;R), is not compact.

The main idea of the proof is to build a sequence kε that converges weakly to 0 in L2(Ω;R) such that
〈Hkε, kε〉 does not converge to 0. In order to prove this result, we use the framework of homogenization [5, 91].
With ε > 0, we pave Rd with ε-homotheties of the periodicity cell Y = [0, 1]d, such that Rd =

⋃
i∈Zd Yi,ε where

Yi,ε = ε(i+ Y ). For (x, y) ∈ Ω× Y , let k = k (x, y) ∈ C
(

Ω;C1
#(Y )

)
, where C1

#(Y ) is the space of C1(Y ;R) functions

that are Y -periodic. More generally, for p ∈ N we also introduce the spaces Lp#(Y ) that are the spaces of functions in
Lp(Ω;R) that are Y -periodic. We consider the following boundary-value problem




−div (h∇vε) = div

(
k
(
x, xε

)
∇u
)

Ω,
vε = 0 ΓD,

h∂nvε = −k
(
x, xε

)
∂nu ΓN ∪ Γ,

(6.5)

where u is solution of (6.1). The variational formulation of this problem is





find vε ∈ V such that

∀ϕ ∈ V,
ˆ

Ω

h(x)∇vε(x) · ∇ϕ(x) dx = −
ˆ

Ω

k
(
x,
x

ε

)
∇u(x) · ∇ϕ(x) dx.

(6.6)

Denoting kε : x 7→ k
(
x, xε

)
, we have vε = u′kε . The second-order derivative of J1 in the direction kε is also

J1
′′ (h; kε, kε) = 〈Hkε, kε〉 = 2

ˆ
Ω

h(x)|∇vε(x)|2 dx. (6.7)

We now recall some background on homogenization and two-scale convergence that will be needed. We will denote by
D the space of C∞(Ω;R) functions with compact support.

Definition 6.3.2. A sequence of functions vε in L2(Ω;R) is said to two-scale converge to a limit u0(x, y) belonging

to L2 (Ω× Y ;R) if, for any function ϕ(x, y) in D
(

Ω;C∞# (Y )
)

, it satisfies

lim
ε→0

ˆ
Ω

vε(x)ϕ
(
x,
x

ε

)
=

ˆ
Ω

 
Y

u0(x, y)ϕ(x, y) dxdy.

Theorem 6.3.3. From each bounded sequence vε in L2(Ω;R) one can extract a subsequence which two-scale converges
to some v0(x, y) ∈ L2(Ω× Y ;R).

Theorem 6.3.4. Let vε be a bounded sequence in H1(Ω;R). Then, up to a subsequence, vε two-scale converges to
a limit v(x) ∈ H1(Ω;R), and ∇vε two-scale converges to ∇xv(x) +∇yv1(x, y), where the function v1(x, y) belongs to

L2
(

Ω;H1
#(Y )/R

)
.

We also recall some useful results

Lemma 6.3.5. Let f ∈ L2
(

Ω;C#(Y )
)

. We denote

fε(x) = f
(
x,
x

ε

)
.

Then

lim
ε→0
‖fε‖L2(Ω;R) = ‖f‖L2(Ω×Y ;R) ,

fε(x) two− scale converges to f.

Remark 6.3.6. The first statement of this lemma is explained and proved in [5, Lemma 1.3]. The second result is
then easy to obtain with the first one.

Theorem 6.3.7. [5, Theorem 1.8] Let fε be a sequence of functions in L2(Ω;R) that two-scale converges to a limit
f0(x, y) ∈ L2(Ω× Y ;R). Assume that

lim
ε→0
‖fε‖L2(Ω;R) = ‖f0‖L2(Ω×Y ;R) .

Then, for any sequence gε that two-scale converges to a limit g0(x, y) ∈ L2(Ω× Y ;R), we have

fε(x)gε(x) −→
ε→0

ˆ
Y

f0(x, y)g0(x, y) dy in D′(Ω;R).
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Proposition 6.3.8. Assume that ∇u ∈ L∞
(
Ω;Rd

)
and h ∈ L∞(Ω;R). Let k ∈ C

(
Ω;C1

#(Y )
)

such that

1.

∀x ∈ Ω,

 
Y

k(x, y) dy = 0, (6.8)

2.
‖∇xu(x) · ∇yk(x, y)‖L2(Ω×Y ;R) 6= 0. (6.9)

Then there exists v1 ∈ L2
(

Ω;C1
#(Y )/R

)
with ‖∇yv1(x, y)‖L2(Ω×Y ;Rd) 6= 0 such that the solution vε of the problem

(6.5) satisfies (
vε(x)− εv1

(
x, xε

) )
−→
ε→0

0 strongly in H1(Ω;R),

(
∇vε(x)−∇yv1

(
x, xε

) )
−→
ε→0

0 strongly in L2
(
Ω;Rd

)
.

Proof. Since vε is solution of the variational formulation (6.6), and vε ∈ V

hm ‖∇vε‖2L2(Ω;Rd) ≤
ˆ

Ω

h(x)∇vε(x) · ∇vε(x) dx

= −
ˆ

Ω

k
(
x,
x

ε

)
∇u(x) · ∇vε(x) dx

≤ ‖k‖L∞(Ω×Y ;R) ‖∇u‖L2(Ω;Rd) ‖∇vε‖L2(Ω;Rd) .

Then vε is a bounded sequence in H1(Ω;R), and according to Theorem 6.3.4, vε two-scale converges (up to a subse-

quence) to a limit v ∈ H1(Ω;R), and ∇vε two-scale converges to ∇xv(x) +∇yv1(x, y) with v1 ∈ L2
(

Ω;H1
#(Y )/R

)
.

Given that k(x, y)∇u(x) ∈ L2
(

Ω;C#(Y )d
)

, (u solves (6.1), and k is continuous) Lemma 6.3.5 ensures that k
(
x, xε

)
∇u

two-scale converges to k(x, y)∇u(x).
We now take in (6.6) a test function ϕ similar to the limit of vε, namely ϕ(x) + εϕ1

(
x, xε

)
, where ϕ(x) ∈ D (Ω;R)

and ϕ1(x, y) ∈ D
(

Ω;C∞# (Y )
)

. Its gradient is

∇ϕ(x) +∇yϕ1

(
x,
x

ε

)
+ ε∇xϕ1

(
x,
x

ε

)
.

We get

ˆ
Ω

h(x)∇vε(x) ·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

)
+ ε∇xϕ1

(
x,
x

ε

))
dx =

−
ˆ

Ω

k
(
x,
x

ε

)
∇u(x) ·

(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

)
+ ε∇xϕ1

(
x,
x

ε

))
dx.

We first see that vε and ϕ1 are bounded in H1(Ω;R) and H1(Ω× Y ;R) respectively, which means that

lim
ε→0

ε

ˆ
Ω

 
Y

h(x)∇vε(x) · ∇xϕ1

(
x,
x

ε

)
dxdy = 0,

lim
ε→0

ε

ˆ
Ω

 
Y

k
(
x,
x

ε

)
∇u(x) · ∇xϕ1

(
x,
x

ε

)
dxdy = 0.

We look at h(x)
(
∇ϕ(x) +∇yϕ1

(
x, xε

))
and ∇ϕ(x) +∇yϕ1

(
x, xε

)
as test functions for the two-scale convergence of

∇vε and k
(
x, xε

)
∇u(x). These test functions may not be regular enough, but they at least belong to L2

(
Ω;C#(Y )d

)

(h is in L∞(Ω;R)) which is sufficient for the two-scale convergence theorem (see [5, Remark 1.11] for details). We can
then pass to the two-scale limit and get

ˆ
Ω

 
Y

h(x) (∇v(x) +∇yv1(x, y)) · (∇ϕ(x) +∇yϕ1(x, y)) dxdy =

−
ˆ

Ω

 
Y

k(x, y)∇u(x) · (∇ϕ(x) +∇yϕ1(x, y)) dxdy,

Taking ϕ1 = 0 we obtain

ˆ
Ω

 
Y

h(x) (∇v(x) +∇yv1(x, y)) · ∇xϕ(x) dxdy = −
ˆ

Ω

 
Y

k(x, y)∇u(x) · ∇xϕ(x) dxdy.
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Since ϕ does not depend on y, and v1 is Y -periodic,

ˆ
Ω

h(x)∇v(x) · ∇ϕ(x) dx = −
ˆ

Ω

∇u(x) · ∇ϕ(x)

( 
Y

k(x, y) dy

)
dx = 0.

With (6.8), since the Dirichlet boundary condition for vε on ΓD is satisfied by the weak limit in H1(Ω;R), we get

v = 0. (6.10)

Taking ϕ = 0 yields to

ˆ
Ω

 
Y

h(x) (∇v(x) +∇yv1(x, y)) · ∇yϕ1(x, y) dxdy = −
ˆ

Ω

 
Y

k(x, y)∇u(x) · ∇yϕ1(x, y) dxdy.

An easy integration by parts leads to

− divy (h(x) (∇v(x) +∇yv1(x, y))) = divy (k(x, y)∇u(x)) ,

y → v1(x, y) Y − periodic.

We have by (6.10), v = 0 and since we assumed (6.9) :

−divy (h(x)∇yv1(x, y)) = ∇u(x) · ∇yk(x, y) 6= 0,

y → v1(x, y) Y − periodic.
(6.11)

As a result v1 6= 0, ‖∇yv1‖L2(Ω×Y ;Rd) 6= 0, and ∇vε two-scale converges to ∇yv1(x, y).

We now prove that

∇vε −∇yv1

(
x,
x

ε

)
−→
ε→0

0 strongly in L2
(
Ω;Rd

)
.

Since vε ∈ H1(Ω;R) the variational formulation gives

ˆ
Ω

h(x)|∇vε(x)|2 dx = −
ˆ

Ω

k
(
x,
x

ε

)
∇u(x) · ∇vε(x) dx,

ˆ
Ω

h(x)

(
∇vε(x)−∇yv1

(
x,
x

ε

))2

dx =−
ˆ

Ω

k
(
x,
x

ε

)
∇u(x) · ∇vε(x) dx+

ˆ
Ω

h(x)
∣∣∣∇yv1

(
x,
x

ε

)∣∣∣
2

dx

− 2

ˆ
Ω

h(x)∇vε(x) ·
(
∇yv1

(
x,
x

ε

))
dx.

With Lemma 6.3.5 we have

lim
ε→0

∥∥∥k
(
x,
x

ε

)
∇u
∥∥∥
L2(Ω;Rd)

= ‖k(x, y)∇u(x)‖L2(Ω×Y ;R) .

Then we can use Theorem 6.3.7 to conclude that with the two-scale convergence of k
(
x, xε

)
∇u and ∇vε

lim
ε→0

ˆ
Ω

k
(
x,
x

ε

)
∇u(x) · ∇vε(x) dx =

ˆ
Ω

 
Y

k(x, y)∇u(x) · ∇yv1(x, y) dxdy.

Furthermore, v1 is regular; more precisely, v1 ∈ L2(Ω;C1
#(Y )). Indeed, ∇u(x) · ∇yk(x, y) ∈ L∞(Ω × Y ;R), and

h ∈ L∞(Ω;R) so that for all p ∈ N and almost all x ∈ Ω, y 7−→ v1(x, y) ∈W 1,p(Y ;R). This implies that for almost all
x ∈ Ω, y 7−→ v1(x, y) ∈ C1(Y ;R). Then ∇yv1(x, y) is regular enough to be considered as a test-function for the two
scale-convergence. We can then pass to the two-scale limit and get

hm lim
ε→0

∥∥∥∇vε(x)−∇yv1

(
x,
x

ε

)∥∥∥
2

L2(Ω;Rd)
≤

−
ˆ

Ω

 
Y

k(x, y)∇u(x) · ∇yv1(x, y) dxdy −
ˆ

Ω

 
Y

h(x) |∇yv1 (x, y)|2 dxdy. (6.12)

In view of (6.11), considering v1 as a test function for the variational formulation (Theorem 6.3.4 ensures that v1

has the required regularity) the right-hand side of (6.12) is equal to zero, which gives the desired result.

We are now able to prove Proposition 6.3.1.
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Proof of Proposition 6.3.1. Since u is the solution of (6.1) with non-zero boundary conditions, u is not constant on
Ω. Then, for (ei)[1,d] a basis of Rd, we assume that ‖∇u(x) · e1‖L2(Ω;R) 6= 0. Let k the function defined on Ω× Y by

k(x, y) = cos (π(y · e1)). An easy computation proves that

∀x ∈ Ω,

 
Y

k(x, y) dy = 0.

By construction, k is chosen such that

∇u(x) · ∇yk(x, y) 6= 0 in L2(Ω× Y ;R). (6.13)

We can now use Proposition 6.3.8. There exists v1 ∈ L2
(

Ω;H1
#(Y )/R

)
, with ∇yv1(x, y) 6= 0 in L2(Ω × Y ;R), such

that the solution vε of the homogenized problem (6.5) satisfies
(
vε(x)− εv1

(
x, xε

))
−→
ε→0

strongly in H1(Ω;R),
(
∇vε(x)−∇yv1

(
x, xε

))
−→
ε→0

strongly in L2
(
Ω;Rd

)
.

With the notation introduced in (6.7), we have proven that
ˆ

Ω

h(x)|∇vε(x)|2 dx = 〈Hkε, kε〉L1(Ω;R),L∞(Ω;R) −→
ˆ

Ω

 
Y

h(x) |∇yv1(x, y)|2 dxdy > 0.

On the other hand, by Lemma 6.3.5 and Theorem 6.3.7, kε ⇀ 0 weakly in L2(Ω;R). Thus the second-order derivative
H is not compact.

Remark 6.3.9. Continuity assumptions on ∇u and k are only used at the beginning of the proof of Proposition 6.3.8

(we need k(x, y) ∈ C
(

Ω;C#(Y )
)

and ∇u ∈ L2
(
Ω;Rd

)
), and to get regularity on v1 for (6.12) (∇u ∈ L∞

(
Ω;Rd

)
and

∇yk(x, y) ∈ L2
(
Ω;L∞(Y )d

)
were needed).

6.3.2 Non-coercivity on L2(Ω;R)

We now prove the non-coercivity of the Hessian of J1. It implies that zero is in the spectrum of the operator H (see
Section 6.3.3).

Proposition 6.3.10. Assume that ∇u ∈ H1
(
Ω;Rd

)
. The second-order derivative operator H of the compliance J1,

is not coercive in L2(Ω;R).

In order to proves the non-coercivity, the main idea is to find a sequence kn ∈ L2(Ω;R) such that
lim
n→∞

〈Hkn, kn〉 = 0 with kn that does not converge to zero in the following sense

∃C > 0, ∀n ∈ N, ‖kn‖L2(Ω;R) > C.

For δ > 0 we pave Rd with δ-homotheties of the periodic cell Y = [0, 1]d, such that Rd =
⋃
i∈Zd Yi,δ where Yi,δ = δ(i+Y ).

We denote Dδ =
{
i ∈ Nd | Yi,δ ∩ Ω 6= ∅

}
. There exists M0 > 0 such that |Dδ| ≤ M0

δd
. The proof uses some well-known

lemmas that are recalled and proved later.

Proof. In each cell Yi,δ of the paving, we introduce

ξi =

 
Yi,δ

∇u(x) dx =
1

|Yi,δ|

ˆ
Yi,δ

∇u(x) dx.

In each cell we also choose ξ⊥i ∈ R2 such that
∥∥ξ⊥i

∥∥ = 1, ξi · ξ⊥i = 0.

We define the function k on [0, 1] by
k(x) = cos(πx), (6.14)

and introduce a sequence (kn)n∈N ∈ L∞(Ω;R) defined in each cell Yi,δ by

kn(x) = k
(
n
(
x · ξ⊥i

))
.

The sequence kn is in L2(Ω;R), with ‖kn‖L2(Ω;R) = 1
2 |Ω|(1 + o(1)) (for nδ � 1). Since u′kn ∈ H1(Ω;R) is solution to

(6.3)

〈Hkn, kn〉 =

ˆ
Ω

h|∇u′kn |2 dx = −
ˆ

Ω

kn∇u · ∇u′kn dx.
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To establish the result, it is sufficient to prove that for all bounded sequence ϕn ∈ H1(Ω;R)

lim
n→∞

ˆ
Ω

kn(x)∇u(x) · ∇ϕn(x) dx = 0. (6.15)

Let ϕn be a bounded sequence in H1(Ω;R). There exists ϕ∞ ∈ H1(Ω;R) such that up to an extraction

ϕn ⇀ ϕ∞ weakly in H1(Ω;R),
ϕn → ϕ∞ strongly in L2(Ω;R).

Let

In =

ˆ
Ω

kn(x)∇u(x) · ∇ϕn(x) dx.

We have

In =
∑

i∈Nd

ˆ
Yi,δ

1Ω(x)kn(x)∇u(x) · ∇ϕn(x) dx

=
∑

i∈Dδ

ˆ
Yi,δ

1Ω(x)kn(x) (∇u(x)− ξi) · ∇ϕn(x) dx

︸ ︷︷ ︸
I1n

+
∑

i∈Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi · ∇ϕn(x) dx

︸ ︷︷ ︸
I2n

,

and

I2n =
∑

i∈Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi · ∇ϕ∞(x) dx

︸ ︷︷ ︸
I21n

+
∑

i∈Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi · (∇ϕn(x)−∇ϕ∞) dx

︸ ︷︷ ︸
I22n

.

Estimate for I1n . ξi was chosen such that it approximates ∇u. That is the main reason why I1n should go to zero.
Since ∇u ∈ H1

(
Ω;Rd

)
, in each Yi,δ, according to Lemma 6.3.16 we have for i ∈ Dδ (we recall that Yi,δ is convex)ˆ

Yi,δ

1Ω(x)kn(x) (∇u(x)− ξi) · ∇ϕn(x) dx ≤ ‖1Ωkn‖L∞(Yi,δ;R) ‖∇u(x)− ξi‖L2(Yi,δ;Rd) ‖∇ϕn‖L2(Yi,δ;Rd)

≤ δ
∥∥D2u

∥∥
L2(Yi,δ;Rd2) ‖∇ϕn‖L2(Yi,δ;Rd) .

Then, by Cauchy-Schwarz, summing over Dδ

|I1n | ≤ δ
∥∥D2u

∥∥
L2(Ω;Rd2) ‖∇ϕn‖L2(Ω;Rd) .

Since ϕn converges weakly in H1(Ω;R), ∇ϕn is bounded in L2(Ω;Rd). Therefore there exists M1 ∈ R such that

|I1n | ≤ δM1. (6.16)

Estimate for I21n . We now prove that for each i ∈ Dδ,

lim
n→∞

ˆ
Yi,δ

kn(x)ξi · ∇ϕ∞(x) dx = 0.

In this paragraph, the main reason why I21n is small, is that kn is oscillating and its mean-value is zero. We denote

g(x, y) = k
(
y · ξ⊥i

)
ξi · ∇ϕ∞(x).

We then pave Yi,δ in the direction ξ⊥i , with periodicity 1
n . We denote Y 0

i,δ the rescaled periodic cell for this paving.

By construction, g is defined on Yi,δ × Y 0
i,δ, and

g ∈ L2(Yi,δ;C#(Y 0
i,δ)).

We can use the two-scale convergence theory in the framework of homogenization. In particular, it follows from
Lemma 6.3.5 that

lim
n→∞

ˆ
Yi

kn(x)ξi · ∇ϕ∞(x) dx =

ˆ
Yi,δ

 
Y 0
i,δ

g(x, y) dxdy.

Since the paving is chosen in the direction ξ⊥i , we haveˆ
Yi,δ

 
Y 0
i,δ

g(x, y) dxdy =

ˆ
Yi,δ

 
Y 0
i,δ

k
(
y · ξ⊥i

)
ξi · ∇ϕ∞(x) dxdy

=

(ˆ
Yi,δ

ξi · ∇ϕ∞(x) dx

)( 
Y 0
i,δ

k
(
y · ξ⊥i

)
dy

)

= 0,
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because k and Y 0
i,δ are chosen such that the mean integral of k

(
y · ξ⊥i

)
vanishes on Y 0

i,δ. Then for any fixed δ, I21n

has a fixed number of terms and each of them tends to zero.

∀δ > 0, lim
n→0

I21n = 0. (6.17)

Estimate for I22n . In this paragraph, there are two main arguments to prove that I22n goes to zero. On the one
hand, k varies only in the direction perpendicular to ξi (the space is two-dimensional). On the other hand, ϕn is
bounded in H1(Ω;R). We have by integration by parts

I22n = −
∑

i∈Dδ

ˆ
Yi,δ

n����(
ξ⊥i · ξi

)
k′(nx · ξ⊥) (ϕn(x)− ϕ∞) dx+

∑

i∈Dδ

ˆ
∂Yi,δ

kn(x) (ϕn(x)− ϕ∞) ξi · n dx

=
∑

i∈Dδ

ˆ
∂Yi,δ

kn(x) (ϕn(x)− ϕ∞) ξi · n dx,

and

|I22n | ≤
∑

i∈Dδ

‖ξi · n‖L∞(∂Yi,δ;R) ‖ϕn − ϕ∞‖L2(∂Yi,δ;R)

√
|∂Yi,δ|

≤
∑

i∈Dδ

‖∇u‖L2(Yi,δ;Rd) ‖ϕn − ϕ∞‖L2(∂Yi,δ;R)

√
|∂Yi,δ|
|Yi,δ|

≤
(∑

i∈Dδ

δ ‖ϕn − ϕ∞‖2L2(∂Yi,δ;R)

) 1
2
(∑

i∈Dδ

‖∇u‖2L2(Yi,δ;Rd)

|∂Yi,δ|
δ|Yi,δ|

) 1
2

,

where for the first inequality we used Lemma 6.3.16 below which gives

‖ξi · n‖L∞(∂Yi,δ)
≤ |ξ| ≤

‖∇u‖L2(Yi,δ;Rd)√
|Yi,δ|

.

Applying Lemma 6.3.15 below we have for all η > 0

|I22n | ≤
(
C(η) ‖ϕn − ϕ∞‖2L2(Ω;R) + δ2η ‖∇ϕn −∇ϕ∞‖2L2(Ω;Rd)

) 1
2 ‖∇u‖L2(Ω;Rd)

δ
.

Since ϕn converges weakly in H1(Ω;R), ‖∇ϕn −∇ϕ∞‖L2(Ω;Rd) is bounded. There exists M2 such that, for all n ∈ N,

‖∇ϕn −∇ϕ∞‖L2(Ω;Rd) ≤M2. Then

|I22n | ≤ ‖∇u‖L2(Ω;Rd)

(
C(η)

δ2
‖ϕn − ϕ∞‖2L2(Ω;R) + ηM2

) 1
2

. (6.18)

Let ε > 0. There exists δ > 0 such that, with (6.16),

|I1n | ≤
ε

3
.

Using (6.17), since all terms

ˆ
Yi

kn(x)ξi · ∇ϕ∞(x) dx go to zero, and δ is now fixed, there exists n0 ∈ N such that for

all n ≥ n0

|I21n | ≤
ε

3
.

We then choose η > 0 such that

η ≤ 1

2 ‖∇u‖2L2(Ω;Rd)M2

(ε
3

)2

.

Since ϕn converges to ϕ∞ in L2 (Ω;R), there exists n1 ∈ N such that for all n ≥ n1,

‖ϕn − ϕ∞‖2L2(Ω;R) ≤
δ2

2 ‖∇u‖2L2(Ω;Rd) C(η)

(ε
3

)2

,

which means
|I22n | ≤

ε

3
.

Let N = max{n0, n1}. For any n ≥ N , we have

|In| ≤ ε,
which proves that

lim
n→∞

In = 0.

Since kn is of order 1
2 |Ω|(1+o(1)) in L2(Ω;R), it follows that the second-order derivative operator H is not coercive.
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Remark 6.3.11. In the proof, the sequence kn oscillates in a direction roughly perpendicular to the gradient of u, so
that div(kn∇u) vanish in L2(Ω;R). Therefore, according to Lemma 3.1.3 giving the first-order derivative of the state,
we have

∥∥u′kn
∥∥
H1(Ω;R)

−→ 0. This implies thanks to Lemma 6.2.3 that 〈Hkn, kn〉L1(Ω;R),L∞(Ω;R) −→ 0.

Remark 6.3.12. In this section the regularity assumption concerns only ∇u which is needed to be in H1
(
Ω;Rd

)
.

This assumption is used in (6.16) in order to use Lemma 6.3.16. We do not really need the continuity of k.

For convenience, we denote by ‖ϕ‖L2(∂Ω;R) the L2-norm of the trace of a function ϕ ∈ H1(Ω;R) on the boundary
∂Ω of the regular domain Ω.

Lemma 6.3.13. Let Ω be a bounded open set with a regular boundary. Then

∀η > 0, ∃C(η), ∀ϕ ∈ H1(Ω;R), ‖ϕ‖2L2(∂Ω;R) ≤ C(η) ‖ϕ‖2L2(Ω;R) + η ‖∇ϕ‖2L2(Ω;Rd) . (6.19)

Proof. By contradiction, let us assume that

∃η > 0, ∀n ∈ N?, ∃ϕn ∈ H1(Ω;R), ‖ϕn‖2L2(∂Ω;R) > n ‖ϕn‖2L2(Ω;R) + η ‖∇ϕn‖2L2(Ω;Rd) .

We can renormalize the sequence ϕn, or assume that ‖ϕn‖L2(∂Ω;R) = 1. Then

‖ϕn‖2L2(Ω;R) −→ 0,

‖∇ϕn‖2L2(Ω;Rd) bounded.

As a result
ϕn ⇀ 0 weakly in H1(Ω;R),

and consequently
γϕn ⇀ 0 weakly in H1/2(∂Ω;R),

where γ is the trace operator. The regularity of the boundary is nedded for the continuity of the trace operator γ, in
order to get the weak convergence of γϕn. Using the compact embedding ([81, Theorem 3.27]) :

H1/2(∂Ω;R) ↪→ L2(∂Ω;R),

we obtain
γϕn → 0 strongly in L2(∂Ω;R),

which contradicts the fact that ‖ϕn‖L2(∂Ω;R) = 1.

Remark 6.3.14. Thanks to [58], Lemma 6.3.13 remains true if Ω = Y , with Y = [0, 1]d. However, we could also
simply invoke arguments of symmetry and extension by reflexion to get this result on a cube.

Now we make precise how estimate (6.19) behaves if the cube Yi,δ is rescaled.

Lemma 6.3.15. We have

∀η > 0, ∃C(η) ∈ R+, ∀i ∈ Nd, ∀δ > 0, ∀ϕ ∈ H1(Yi,δ;R), δ ‖ϕ‖2L2(∂Yi,δ;R) ≤ C(η) ‖ϕ‖2L2(Yi,δ;R) + ηδ2 ‖∇ϕ‖2L2(Yi,δ;Rd) .

Proof. All is about a change of variable. We use [7, Lemmas 6.21,6.23] with T = δ (Id + ti). It yields for ϕ ∈ H1(Yi,δ;R)
ˆ
Yi,δ

ϕ(x)2 dx = δd
ˆ
Y

(ϕ ◦ T (x))2 dx,

ˆ
Yi,δ

|∇ϕ(x)|2 dx = δd
ˆ
Y

|∇ϕ ◦ T (x)|2 dx

= δd−2

ˆ
Y

|∇ (ϕ ◦ T ) (x)|2 dx,
ˆ
∂Yi,δ

ϕ(x)2 ds =

ˆ
∂Y

(ϕ ◦ T (x))2δdδ−1 ds.

Then

‖ϕ‖2L2(Yi,δ;R) = δd ‖ϕ ◦ T‖2L2(Y ;R) ,

‖∇ϕ‖2L2(Yi,δ;Rd) = δd−2 ‖∇ (ϕ ◦ T )‖2L2(Y ;Rd) ,

‖ϕ‖2L2(∂Yi,δ;R) = δd−1 ‖ϕ ◦ T‖2L2(∂Y ;R) .

Applying Lemma 6.3.13 to ϕ ◦ T in Y , we conclude

δ ‖ϕ‖2L2(∂Yi,δ;R) ≤ C(η) ‖ϕ‖2L2(Yi,δ;R) + ηδ2 ‖∇ϕ‖2L2(Yi,δ;Rd) .
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We also recall the Poincaré-Wirtinger inequality.

Lemma 6.3.16. (Poincaré-Wirtinger) Let v ∈ H1(Ω;R). Then there exists C > 0 such that for any bounded,
connected open set ω ⊂ Ω,

‖v − ξ‖L2(ω;R) ≤ Cdiam(ω) ‖∇v‖L2(ω;Rd) ,

where

ξ =

 
ω

v dx =
1

|ω|

ˆ
ω

v(x) dx,

and

|ξ| ≤ 1√
|ω|
‖v‖L2(ω;R) .

6.3.3 Ill-conditioning of the discretized Hessian

We prove here that the non-coercivity of the Hessian w.r.t the L2(Ω;R) norm implies that it is ill-conditioned, meaning
that there is a sequence of eigenvalues converging to zero. We use the same paving as previously : Rd =

⋃
i∈Nd Yi,δ.

On each cell Yi,δ, we introduce a triangulation Tρ,i (ρ ≤ δ), with ρ the discretization parameter on each cell Yi,δ. Then,
choosing Tρ =

⋃
i∈Nd Tρ,i gives a triangulation of Rd. We introduce X a finite element space (continuous piecewise

polynomials of degree ≤ r) on Ω, associated with the triangulation Tρ. We denote Πρ,r the orthogonal projection from
L2(Ω;R) to X. For any v ∈ L2(Ω;R), Πρ,r belongs to X and satisfies

∀wρ ∈ X,
ˆ

Ω

(Πρ,rv)(x)wρ(x) dx =

ˆ
Ω

v(x)wρ(x) dx. (6.20)

We also use from [22, Chapter III, Theorem 1.2] an approximation result, under good conditions on the finite element
space.

Theorem 6.3.17. There exists a constant c independent on ρ such that for all v ∈ H1(Ω;R)

‖v −Πρ,rv‖L2(Ω;R) ≤ cρr−1 ‖v‖H1(Ω;R) .

Proof. On a reference triangle T we get from [22, Chapter III, Theorem 1.2],

‖v ◦ T −Πρ,r(v ◦ T )‖L2(T ;R) ≤ cr−1 ‖v ◦ T‖H1(T ;R) ,

where T is the linear transformation from a reference triangle T to the triangle Tρ,i. The variational equality satisfied
by Πρ,r gives

‖v ◦ T −Πρ,r(v ◦ T )‖L2(T ;R) =
∥∥(v −Πρ,r(v)

)
◦ T
∥∥
L2(T ;R)

.

Using the inequalities written in the proof of Lemma 6.3.15, we can then deduce the expected result.

Proposition 6.3.18. Let Hρ be the approximation of the Hessian H on X : Hρ = Πρ,rH Πρ,r. Assume that H is
not coercive in L2(Ω;R) and that ∇u ∈ L∞(Ω;Rd). Then the smallest eigenvalue of Hρ goes to zero when ρ→ 0.

Proof. We have Hρ = Πρ,rH Πρ,r. From the previous section we found a sequence kn such that ‖kn‖L2(Ω;R) = 1 and

〈Hkn, kn〉L2(Ω;R),L2(Ω;R) → 0. Denoting ln = Πρ,rkn we get

〈Hρln, ln〉X,X = 〈Πρ,rHΠρ,rkn,Πρ,rkn〉X,X
= 〈HΠρ,rkn,Πρ,rkn〉L2(Ω;R),L2(Ω;R) ,

where the first equality comes from Π2
ρ,r = Πρ,r and the last one from (6.20). Then

〈Hρln, ln〉X,X = 〈H(Πρ,rkn − kn),Πρ,rkn〉L2(Ω;R),L2(Ω;R)

+ 〈Hkn,Πρ,rkn − kn〉L2(Ω;R),L2(Ω;R)

+ 〈Hkn, kn〉L2(Ω;R),L2(Ω;R) .

According to the definition of kn (6.14) in the proof of Proposition 6.3.10, in each cell Yi,δ we have kn ∈ H1(Yi,δ;R)
with

kn(x) = cos
(
π
(
nx · ξ⊥

))
.

Since we assumed that each Tρ,i is a triangulation on Yi,δ, one can apply Theorem 6.3.17 and get

‖Πρ,rkn − kn‖L2(Yi,δ;R) ≤ C3ρ ‖kn‖H1(Yi,δ;R) ≤ C4ρn|Yi,δ|
1
2 ,

‖Πρ,rkn − kn‖L2(Ω;R) ≤ C4ρn|Ω|
1
2 .
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We know from Remark 6.2.4 that, for p, q ∈ L2(Ω),

〈Hp, q〉L2(Ω;R),L2(Ω;R) ≤ C2 ‖q‖L2(Ω;R) ‖p‖L2(Ω;R) .

Therefore,

〈Hρln, ln〉X,X ≤ C5ρn+ 〈Hkn, kn〉L2(Ω),L2(Ω) .

Now we can denote λρ the smallest eigenvalue of Hρ. We then obtain

λρ ‖ln‖L2(Ω;R) ≤ C5ρn+ 〈Hkn, kn〉L2(Ω;R),L2(Ω;R) .

But,

‖Πρ,rkn‖L2(Ω;R) ≥ ‖kn‖L2(Ω;R) − ‖kn −Πnkn‖L2(Ω;R)

≥ ‖kn‖L2(Ω;R) − C5ρn,

‖ln‖L2(Ω;R) ≥ 1− C5ρn.

As a result

λρ (1− C5ρn) ≤ C5ρn+ 〈Hkn, kn〉L2(Ω;R),L2(Ω;R) .

Then, choosing n =
1√
ρ

we obtain

lim sup
ρ→0

λρ ≤ 〈Hkn, kn〉L2(Ω;R),L2(Ω;R) −→n→∞ 0.

The last expression of the second-order derivative in Lemma 6.2.3 proves that H is positive. Then λρ ≥ 0. As a result

lim
ρ→0

λρ = 0,

which ends the proof.

Remark 6.3.19. In this section we need a little more regularity on ∇u. The non-coercivity of the continuous operator
H is given provided ∇u ∈ H1

(
Ω;Rd

)
. But we need in addition that ∇u ∈ L∞

(
Ω;Rd

)
to deduce the non-coercivity of

the discretized operator.

6.3.4 Kernel on H1(Ω;R)

It has just been seen that the Hessian is not coercive on the whole space L2(Ω;R). We will now prove, when the source
term f vanishes, that if we restrict the space to H1(Ω;R) ∩ L∞(Ω;R), the Hessian becomes definite.

Proposition 6.3.20. Assume that f = 0 (in (6.1)), h ∈ H1(Ω;R) ∩ L∞(Ω; [hm;hM ]), ∇u ∈ L∞
(
Ω;Rd

)
. We also

assume that the set {x ∈ Ω, | ∇u(x) = 0} is of zero Lebesgue measure. Then the Kernel of the Hessian H satisfies

(
H1(Ω;R) ∩ L∞(Ω;R)

)
∩Ker(H) = {0}.

Proof. Let k ∈ H1(Ω;R) ∩ L∞(Ω;R) such that Hk = 0. We have

〈Hk, k〉L1(Ω;R),L∞(Ω;R) = −2

ˆ
Ω

k(x)∇u(x) · ∇u′k(x) dx

= 2

ˆ
Ω

h(x)|∇u′k(x)|2 dx.

Then ∇u′k(x) = 0. The variational formulation of (6.3) gives

∀ϕ ∈ V,
ˆ

Ω

k(x)∇u(x) · ∇ϕ(x) dx = 0, (6.21)

where we recall the definition of V by (6.2) V =
{
u ∈ H1(Ω;R) | u = 0 on ΓD

}
. For ϕ ∈ V we can then write

0 =

ˆ
Ω

k∇u · ∇ϕ

=

ˆ
Ω

k

h
h∇u · ∇ϕ.
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An integration by parts then gives

0 = −
ˆ

Ω

hϕ∇u · ∇
(
k

h

)
−
ˆ

Ω

k

h
ϕdiv (h∇u) +

ˆ
∂Ω

k

h
ϕh

∂u

∂n
.

Taking ϕ with compact support in Ω, with div (h∇u) = f = 0 we get

h∇u · ∇
(
k

h

)
= 0.

Since h, k, u are in H1(Ω;R) ∩ L∞(Ω;R) and 0 < hm ≤ h ≤ hM < +∞, ϕ =
ku

h
is an admissible test function for

(6.21) (since u = 0 on ΓD, ϕ vanishes also on ΓD). We have

0 =

ˆ
Ω

k(x)∇u(x) · ∇ϕ(x) dx =

ˆ
Ω

k(x)u(x)∇u(x) · ∇
(
k

h

)
(x) dx+

ˆ
Ω

k2(x)

h(x)
|∇u(x)|2 dx

=

ˆ
Ω

k2(x)

h(x)
|∇u(x)|2 dx.

Thus we can deduce that
k = 0 in L2(Ω;R).

Proposition 6.3.21. Assume that f = 0 (in (6.1)), h ∈ H1(Ω;R) ∩ L∞(Ω; [hm;hM ]), ∇u ∈ L∞
(
Ω;Rd

)
. We also

assume that the set {x ∈ Ω, | ∇u(x) = 0} is of zero Lebesgue measure. Let

F =
{
k ∈ H1(Ω;R) | k = 0 on ΓN

}
.

Let kn ∈ H1(Ω;R) ∩ L∞(Ω;R) ∩ F bounded such that

lim
n→0
〈Hkn, kn〉L1(Ω;R),L∞(Ω;R) = 0.

Then
lim
n→0
‖kn‖L2(Ω;R) = 0.

Proof. The scheme of the proof is the same than the one of Proposition 6.3.20. From lim
n→0
〈Hkn, kn〉 = 0 we deduce

that
lim
n→∞

∥∥∇u′kn
∥∥
L2(Ω;R)

= 0.

The variational formulation for u′kn gives

∀ϕ ∈ V,
ˆ

Ω

h(x)∇u′kn(x) · ∇ϕ(x) dx = −
ˆ

Ω

kn(x)∇u(x) · ∇ϕ(x) dx.

The strong convergence of ∇u′kn to zero in L2(Ω,Rd) implies that for any bounded sequence ϕn ∈ V,

lim
n→∞

ˆ
Ω

h(x)∇u′kn(x) · ∇ϕn(x) dx = 0.

As a result, for any bounded sequence ϕn ∈ H1(Ω;R),

lim
n→∞

ˆ
Ω

kn(x)∇u(x) · ∇ϕn(x) dx = 0. (6.22)

But we have, with an integration by parts
ˆ

Ω

kn(x)∇u(x) · ∇ϕn(x) dx =

ˆ
Ω

kn(x)

h(x)
h(x)∇u(x) · ∇ϕn(x) dx

=

ˆ
∂Ω

ϕn
kn
h
h
∂u

∂n
−
ˆ

Ω

h(x)ϕn∇u · ∇
kn
h
−
ˆ

Ω

kn
h
ϕndiv (h∇u) .

Since div (h∇u) = f = 0, ∇u · n = 0 on Γ, and kn = 0 on ΓN we have

ˆ
Ω

kn(x)∇u(x) · ∇ϕn(x) dx =

ˆ
ΓD

ϕnkn
∂u

∂n
−
ˆ

Ω

h(x)ϕn∇u · ∇
(
kn
h

)
.

Now we take

ϕn =
knu

h
.
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Since ϕn = 0 on ΓD, we have ˆ
ΓD

ϕnkn
∂u

∂n
= 0,

and then

lim
n→∞

ˆ
Ω

h(x)ϕn∇u · ∇
(
kn
h

)
= 0.

But

lim
n→∞

ˆ
Ω

knu∇u · ∇
(
kn
h

)
= 0.

Since kn, u are in H1(Ω;R) ∩ L∞(Ω;R), with kn bounded in H1(Ω;R), h ∈ H1(Ω;R) and 0 < hm ≤ h ≤ hM < +∞,

we can take ϕn =
knu

h
in (6.22). We also have knu bounded in H1(Ω;R). Then,

ˆ
Ω

kn(x)∇u(x)∇ϕn(x) dx =

ˆ
Ω

kn(x)u(x)∇u(x)∇
(
kn
h

)
(x) dx

ˆ
Ω

k2
n(x)

h(x)
|∇u(x)|2 dx,

with

ˆ
Ω

kn(x)u(x)∇u(x)∇
(
kn
h

)
(x) dx→ 0. We deduce that

lim
n→∞

ˆ
Ω

k2
n(x)

h(x)
|∇u(x)|2 dx = 0,

and therefore that
lim
n→∞

‖kn‖L2(Ω;R) = 0.

Remark 6.3.22. It might not be too restrictive to limit ourselves to Fc. Indeed, it means that we are looking for
directions k which do not allow the shape Ω to change in the region of ∂Ω where the loads are applied.

6.4 Vector case - Structure of the Hessian of the compliance

We consider the same problem as in the previous section in the framework of the planar vectorial case of Section 2.1.3.
Like previously said in Remark 6.1.1, in practice we take d = 2, however the computation of derivatives and their
structure are the same if d > 2. Now the data f, g as well as the solution u are now vectors with two components,
instead of being scalars. In particular f, g ∈ H1(Ω;Rd) with g = 0 on Γ. In this framework, all derivative expressions
of Section 6.2 and Section 3.1 remain the same with the dot product ” · ” replaced by the contracted product ” : ”
when necessary.

6.4.1 Non-compactness in L2
(
Ω;Rd

)

Proposition 6.4.1. For the boundary-value problem (6.1), the second-order derivative of the compliance, H, is not
compact in L2(Ω;R).

Proof. The proof is similar to the one of the scalar case. With (ei)1≤i≤d a basis of Rd, knowing that u is not constant,

there exists x0 ∈ Ω such that ∇u(x0) 6= 0. We can assume that ∇u(x0)
T
e1 6= 0. The difference with the scalar case is

that ∇u(x0)
T
e1 is a vector instead of being a scalar. We can take the same sequence kε defined by

k(x, y) = cos(π (y · e1))

kε(x) = k
(
x,
x

ε

)
.

By construction, we still have
∣∣∣∇u(x0)

T∇yk(x, y)
∣∣∣ 6= 0, in L2(Ω×Y ;Rd), seen as the norm of the vector∇u(x0)

T∇yk(x, y)

in Rd. Then we will have the same conclusions : there exists v1 ∈ L2

(
Ω;
(
C1

#(Y )/R
)d)

, such that

ˆ
Ω

h(x)|∇vε(x)|2 dx = 〈Hkε, kε〉L1(Ω;R),L∞(Ω;R) −→ε→0

ˆ
Ω

 
Y

h(x) |∇yv1(x, y)|2 dxdy > 0,

whereas
kn −→

ε→0
0 L2(Ω;R)−weak.

Remark 6.4.2. For the non-compactness property in the vector case, the regularity assumptions on h, k and ∇u are
exactly the same as in the scalar case.
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6.4.2 Non-coercivity in L2
(
Ω;Rd

)

Like in Section 6.3.2, for δ > 0 we pave Rd with δ-homotheties of the periodicity cell Y = [0, 1]d, i.e there exists

(ti)i∈Nd ∈
(
Rd
)Nd

, such that Rd =
⋃
i∈Nd Yi,δ where Yi,δ = δ(ti + Y ). We introduce ∂Dδ =

{
i ∈ Nd | Yi,δ ∩ ΓD 6= ∅

}
.

There exists M0 > 0 such that |∂Dδ| ≥ M0

δd−1 . In the scalar case, the main argument was to find a sequence kn whose
variations were orthogonal to ∇u. In the vector case, the problem is now to find a sequence whose variations are
orthogonal to all components of ∇u. When u has d components, for a domain Ω ⊂ Rd, there is a priori no vector in
the kernel of ∇u. For the particular problem (6.1), with the homogeneous Dirichlet boundary condition u = 0, the
tangential gradient vanishes on ΓD

∇Γu = 0.

As a result, only the normal gradient of u is non-zero on ΓD.

Proposition 6.4.3. Let Ω be a bounded open set of Rd with a regular boundary. We also assume that Ω and u
are sufficiently regular so that u ∈ H1(Ω;R2), and that ∇u is Lipschitz with coefficient C1. Then the second-order
derivative of the compliance, H, is not coercive in L2(Ω;R).

Lemma 6.4.4. We assume that u is such that ∇u is Lipschitz with coefficient C1. We denote ∇uj each row of ∇u.
For i ∈ ∂Dδ, since ΓD ∩ Yi,δ is not empty, we choose xi ∈ ΓD ∩ Yi,δ. We also define ξi a matrix of same size than
∇u, such that each row ξi,j is

ξi,j =

 
Yi,δ

(
(∇uj(x) · n(xi))n(xi)

)
dx.

Then

∀δ > 0, ∀i ∈ ∂Dδ, ‖∇u− ξi‖L2(Yi,δ)
≤ 2δC1

√
|Yi,δ|,

and we have

|ξi| ≤
1√
|Yi,δ|

‖∇u‖L2(Yi,δ;R2d) .

Proof. For x ∈ Yi,δ and j ∈ J1, dK one has

∇uj(x)− ξi,j =

 
Yi,δ

(
∇uj(x)− (∇uj(y) · n(xi)) n(xi)

)
dy.

Since xi ∈ ΓD we have

∇uj(x)− ξi,j =

 
Yi,δ

(
∇uj(x)−∇uj(xi) +∇uj(xi)− (∇uj(y) · n(xi)) n(xi)

)
dy

=

 
Yi,δ

(
∇uj(x)−∇uj(xi)

)
dy +

 
Yi,δ

(
∇Γuj(xi) + (∇uj(xi) · n(xi)) n(xi)− (∇uj(y) · n(xi)) n(xi)

)
dy.

Since xi is on ΓD we have ∇Γuj(xi) = 0. We can now rewrite

∇uj(x)− ξi,j =

 
Yi,δ

(
∇uj(x)−∇uj(xi)

)
dy

+

((
∇uj(xi)−

 
Yi,δ

∇uj(y) dy

)
· n(xi)

)
n(xi).

Since ∇u is Lipschitz with coefficient C1 we have
∥∥∥∥∥∇uj(xi)−

 
Yi,δ

∇uj(y) dy

∥∥∥∥∥
L2(Yi,δ;R)

≤ δC1

√
|Yi,δ|,

∥∥∥∥∥

 
Yi,δ

(
∇uj(x)−∇uj(x0)

)
dy

∥∥∥∥∥
L2(Yi,δ,R)

≤ δC1

√
|Yi,δ|.

Thus we obtain

‖∇uj(x)− ξi,j‖L2(Ω;R2) ≤ 2δC1

√
|Yi,δ|.

In order to get the bound on |ξi,j | we write

|ξi,j | ≤
1

|Yi,δ|

 
Yi,δ

|(∇uj(x) · n(xi)) n(xi)| dx

≤ 1√
|Yi,δ|

‖∇uj‖L2(Yi,δ;R2d) .

Doing the same for all j ∈ J1, dK we get the result.
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Remark 6.4.5. For i ∈ ∂Dδ, the definition of ξi ensures that ξi,1 and ξi,2 have the same direction : n(xi).

Proof of Proposition 6.4.3. For i ∈ ∂Dδ, there exists xi ∈ Yi,δ ∩ ΓD. For each cell of the paving we define ξ =

(ξi,1, ξi,2)
T

, where ξi,1, ξi,2 ∈ R2, by





ξi,j =

 
Yi,δ

(∇uj(x) · n(xi)) n(xi) dx, if i ∈ ∂Dδ,

ξi,j = 0 otherwise.

and ξi the matrix whose rows are ξi,j . In each cell we also choose ξ⊥i such that

∥∥ξ⊥i
∥∥ = 1, n(xi) · ξ⊥i = 0.

By construction we also have
ξi,j · ξ⊥i = 0.

We take again the function k defined on [0, 1] by

k(x) = cos(πx),

and introduce the sequence (kn)n∈N ∈ L2(Ω;R)N defined in each cell Yi,δ by

kn(x) =





1√
δ
k
(
nx · ξ⊥i

)
if i ∈ ∂Dδ,

0 else.

Let (ϕn)n∈N a bounded sequence in
(
H1
(
Ω;Rd

) )N
. The goal is now to prove (6.15) :

lim
n→∞

ˆ
Ω

kn(x)∇u(x) : ∇ϕn(x) dx = 0.

There exists ϕ∞ ∈ H1
(
Ω;Rd

)
such that

ϕn ⇀ ϕ∞ weakly in H1
(
Ω;Rd

)
,

ϕn → ϕ∞ strongly in L2
(
Ω;Rd

)
.

Let

In =

ˆ
Ω

kn(x)∇u(x) : ∇ϕn(x) dx.

We have

In =
∑

i∈Nd

ˆ
Yi,δ

1Ω(x)kn(x)∇u(x) : ∇ϕn(x) dx

=
∑

i∈∂Dδ

ˆ
Yi,δ

1Ω(x)kn(x) (∇u(x)− ξi) : ∇ϕn(x) dx

︸ ︷︷ ︸
I1n

+
∑

i∈∂Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi : ∇ϕn(x) dx

︸ ︷︷ ︸
I2n

,

and

I2n =
∑

i∈∂Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi : ∇ϕ∞(x) dx

︸ ︷︷ ︸
I21n

+
∑

i∈∂Dδ

ˆ
Yi,δ

1Ω(x)kn(x)ξi : (∇ϕn(x)−∇ϕ∞) dx

︸ ︷︷ ︸
I22n

.

Estimate for I1n . According to Lemma 6.4.4 we have for i ∈ Dδˆ
Yi,δ

1Ω(x)kn(x) (∇u(x)− ξi) : ∇ϕn(x) dx ≤ ‖1Ωkn‖L∞(Yi,δ;R) ‖∇u(x)− ξi‖L2(Yi,δ;R2d) ‖ϕn‖L2(Yi,δ;Rd)

≤ 2δC1

√
|Yi,δ| ‖ϕn‖L2(Yi,δ;R2d) .

Then summing over Dδ

|I1n | ≤ 2δC1

√
|Ω| ‖ϕn‖L2(Ω;Rd) .

Since ϕn is bounded in L2
(
Ω;Rd

)
(ϕn has a strong limit in L2

(
Ω;Rd

)
), there exists M1 ∈ R such that

|I1n | ≤ δM1. (6.23)
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Estimate for I21n . This is exactly the same as in Proposition 6.3.10. We have

∀δ > 0, lim
n→∞

I21n = 0. (6.24)

Estimate for I22n . This is as well exactly the same as in Proposition 6.3.10. We just have to take into account that

‖kn‖L∞(Yi,δ)
=

1√
δ

. With the same integration by parts (and ξi
T ξ⊥ = 0)

I22n =
∑

i∈∂Dδ

ˆ
∂Yi,δ

kn(x) (ϕn(x)− ϕ∞) ξin dx,

and

|I22n | ≤
∑

i∈∂Dδ

‖kn‖L∞(∂Yi,δ;R) ‖ξin‖L∞(∂Yi,δ;Rd) ‖ϕn − ϕ∞‖L2(∂Yi,δ;Rd)

√
|∂Yi,δ|

≤
∑

i∈∂Dδ

1√
δ
‖∇u‖L2(Yi,δ;R2d) ‖ϕn − ϕ∞‖L2(∂Yi,δ;Rd)

√
|∂Yi,δ|
|Yi,δ|

≤
( ∑

i∈∂Dδ

δ ‖ϕn − ϕ∞‖2L2(∂Yi,δ;Rd)

) 1
2
( ∑

i∈∂Dδ

‖∇u‖2L2(Yi,δ;R2d)

|∂Yi,δ|
δ2|Yi,δ|

) 1
2

,

|I22n | ≤ ‖∇u‖L2(Ω;R2d)

√
1

δ

(
C(η)

δ2
‖ϕn − ϕ∞‖2L2(Ω;Rd) + ηM3

) 1
2

. (6.25)

Now we take ε > 0. We choose δ > 0 such that

|I1n | ≤
ε

3
.

With 6.24, there exists n1 ∈ N such that

|I2n | ≤
ε

3
.

Now we take η > 0 such that

η ≤
(ε

3

)2 δ

2 ‖∇u‖2L2(Ω;R2d)M3

,

and n2 such that for all n ≥ n2

‖ϕn − ϕ∞‖2L2(Ω;Rd) ≤
(ε

3

)2 δ3

2 ‖∇u‖2L2(Ω;R2d) C(η)
.

Taking n3 ≥ max{n1, n2} we have for all n ≥ n3

In ≤ ε,
which proves that

lim
n→ε

In = 0.

Now it remains to check that kn does not go to zero in L2(Ω;R). We have

‖kn‖2L2(Ω;R) =
∑

i∈∂Dδ

ˆ
Yi,δ

1

δ

∣∣k
(
nx · ξ⊥i

)∣∣2 dx

=
∑

i∈∂Dδ

δd−1

≥ M0

δd−1
δd−1.

Then we have

lim
n→∞

〈Hkn, kn〉 = 0,

‖kn‖L2(Ω;R) 9 0,

which concludes the proof.

Remark 6.4.6. For the non-coercivity in the vectorial case, the regularity assumptions concern ∇u and the regularity
of ∂Ω. But these assumptions are somehow stronger than in the scalar case.
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6.4.3 Ill-conditioning of the discretized Hessian

In the vector case, the discretization of the second-order derivative operator H is not coercive. This is exactly the
same result and the same proof as in the scalar case. We keep the same notation, with a paving Rd =

⋃
i∈Nd Yi,δ, and

X a finite element space where ρ is the parameter of the discretization, such that the triangulation of Rd is the union
of triangulations of all Yi,δ (ρ ≤ δ).

Proposition 6.4.7. Let Hρ be the approximation of the Hessian H on X. Assume that H is not coercive in L2(Ω;R)
and that ∇u ∈ L∞

(
Ω;R2d

)
. Then the smallest eigenvalue of Hρ goes to zero when ρ→ 0.
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The theoretical background for computing shape derivative was introduced in Chapter 3 where there is also a
brief review on previous works on second-order shape derivatives. The computation of first-order shape derivatives
for usual criterion was also detailed there. Now we are concerned with second-order shape derivatives for the same
criteria. We also saw that there are a priori two usual frameworks for shape differentiability, namely the speed method
and the displacement field method. The shape derivatives in these two frameworks are the same at first-order, but
differ at the second-order. However their structures remain the same. Indeed for a given criterion they are entirely
determined by a linear map l1 and a bilinear map l2 (see also Remark 3.2.23). In this section we detail some second-
order shape derivatives for the speed method, which allows one to obtain the two maps l1 and l2 and then to switch
to the displacement field framework if wanted.

We will keep here the notation of Section 3.2 and recall that, for k ∈ N, Ok is the set of bounded open sets of Rd
that are of class Ck. In the perspective of optimization, we take a priori the set of admissible shape Uad as

Uad = O3.

The third-order regularity for the shape (Ω ∈ O3) is assumed for computing second-order shape derivatives. With this
notation, when we aim at minimizing a shape functional J , the problem reads

min
Ω∈Uad

J(Ω). (7.1)

In this chapter we first detail some calculations of shape derivatives. The first two criterion (volume and pde-free
example) are already known and we recall them for the sake of completeness. For the compliance and least square
criteria, the main work here is to detail the calculations of the second-order derivatives. These are rather classical,
and we could already find the results in the literature (see the works of Dambrine for example). In the case of the
compliance we also give the derivatives in a fully general case (in Section 7.3) which doesn’t seem to have been done
yet. Then we also compute the second-order derivatives of the thickness criterion. This criterion has already been
introduced for shape optimization [83], but the calculation of its second-order derivative is new. Finally, we are
concerned with the compliance criterion in a specific load case. We focus on properties of its second-order derivatives
that appear not to have been explored yet.

99
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7.1 First and second-order shape derivatives

7.1.1 Volume

Let Ω ∈ O3. We recall that the volume of the shape Ω is given by

V (Ω) =

ˆ
Ω

1.

The volume is shape-differentiable, and the shape derivative in the direction θ ∈W 1,∞ (Rd;Rd
)

is given by

V ′ (Ω; θ) =

ˆ
∂Ω

(θ · n) .

Lemma 7.1.1. With Ω ∈ O3, the volume is twice shape-differentiable. The second-order shape derivative in the
directions θ, ξ ∈ C2,∞ (Rd;Rd

)
is given by

V ′′ (Ω; θ, ξ) =

ˆ
∂Ω

H (θ · n) (ξ · n) +

ˆ
∂Ω

Zθ,ξ,

where H is the mean curvature of the boundary and Zθ,ξ is defined by

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Remark 7.1.2. For the first-order shape-differentiability, the volume Ω needs only to have a Lipschitz boundary (see
Proposition 3.3.1). But for the second-order shape-differentiability, Theorem 3.2.15 that details the structure of the
derivative, is written for shapes that are at least in O3. It is not surprising to require more regularity on the shape
for the second-order derivative : the derivation of the first-order shape derivative V ′θ implies indeed to derive the outer
normal to the shape. However, the requirement Ω ∈ O3 in Theorem 3.2.15 is not assumed for the existence of the
second-order derivative, but for the structure result.

In order to obtain the formula for the second-order shape derivative, it suffices to differentiate the first-order shape
derivative and to use (3.14).

For the volume criterion and v, w ∈ C1(∂Ω;Rd) the linear and bilinear maps l1 and l2 that characterize the shape
derivatives are given by

l1(v) =

ˆ
∂Ω

v,

l2(v, w) =

ˆ
∂Ω

H v w.

7.1.2 PDE-free example

The case of an objective shape-dependent function E of the form

E(Ω) =

ˆ
Ω

f(x) dx, (7.2)

was also introduced in Section 3.3.1. When the shape as well as the function f : Rd 7→ R are sufficiently regular, the
function E is twice shape-differentiable.

Lemma 7.1.3. With Ω ∈ O3, the function E defined by (7.2) is twice shape-differentiable. The second-order shape
derivative in the directions θ, ξ ∈ C2,∞ (Rd;Rd

)
is given by

E′′ (Ω; θ, ξ) =

ˆ
∂Ω

(
Hf + ∂nf

)
(θ · n) (ξ · n) +

ˆ
∂Ω

Zθ,ξ,

where H is the mean curvature of the boundary and Zθ,ξ is defined by

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

7.1.3 Compliance

In the framework of the scalar thermal model (see Section 2.1.4), we recall that the compliance is

J1(Ω) =

ˆ
Ω

fu+

ˆ
ΓN

gu =

ˆ
Ω

|∇u|2,
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where u : Ω→ R is solution to 


−∆u = f in Ω,
∂nun = g on ΓN ∪ Γ,

u = 0 on ΓD,
(7.3)

with f ∈ L2(Ω;R), g ∈ H2(Ω;R). The first-order derivative of the compliance reads

J1
′ (Ω; θ) = 2

ˆ
ΓN∪Γ

(θ · n)
(
∂n(gu) + fu+Hgu

)

+

ˆ
ΓD

|∇u|2 (θ · n)−
ˆ

ΓN∪Γ

|∇u|2 (θ · n) ,

(7.4)

where H is the mean curvature. In order to get the first-order shape-differentiability, we assumed in Section 3.3, that
f ∈ H1(Ω;R), g ∈ H2(Ω;R) so that by elliptic regularity, u ∈ H2(Ω;R). We also had to assume that Ω was a smooth
bounded open set, typically Ω ∈ O3 in accordance with the assumptions of Theorem 3.2.15. At first we consider the
case where there is no other restriction on an admissible shape than being in O3. Thus, for the optimization problem,
the set of admissible shape is

Uad = O3.

Ω0

Γ0
N

Γ0
D

Γ0

Ωθ

ΓθN

ΓθD

Γθ

Figure 7.1: Variation of a shape Ω0 and its boundary trough the diffeomorphism (Id + θ), when the set of admissible
shapes is O3.

In order to compute the second-order shape derivative of the compliance, we need two geometric results we introduce
here.

Lemma 7.1.4. Let p, q, r ∈ C1
(
Rd;Rd

)
. One has

∇ (p · q) · r = (r · ∇) p · q + (r · ∇) q · p.

Proof. It is only a writing game

∇ (p · q) · r =

d∑

j=1

rj

d∑

i=1

qi∂jpi +

d∑

j=1

rj

d∑

i=1

pi∂jqi

=

d∑

i=1

qi




d∑

j=1

rj∂jpi


+

d∑

i=1

pi




d∑

j=1

rj∂jqi


 ,

= (r · ∇) p · q + (r · ∇) q · p.

Lemma 7.1.5. Let θ, ξ ∈ C1,∞(Ω;Rd), and n the outer unit normal to Ω. Then

(ξ · ∇) θ · n− (ξ · n) ∂n(θ · n) = (ξΓ · ∇) θ · n,

and
(ξΓ · ∇) θ · n = ξΓ · ∇Γ (θ · n)−

(
(ξΓ · ∇Γ)n

)
· θΓ.
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Proof. The decomposition of ξ in its tangential and normal components gives

(ξ · ∇) θ · n = (ξΓ · ∇) θ · n + (ξ · n) (n · ∇) θ · n.
Given that ‖n‖ = 1, we have (n · ∇) n = 0. Then, with Lemma 7.1.4

(n · ∇) θ · n = ∇ (θ · n) · n− (n · ∇) n · θ
= ∇ (θ · n) · n,

and

(ξ · ∇) θ · n = (ξΓ · ∇) θ · n + (ξ · n) ∂n(θ · n).

On the other hand,

(ξΓ · ∇) θ · n = ∇ (θ · n) · ξΓ − (ξΓ · ∇) n · θ,
(ξΓ · ∇) n · n = ∇ (n · n) · ξΓ − (ξΓ · ∇) n · n = 0.

Therefore
(ξΓ · ∇) θ · n = ∇ (θ · n) · ξΓ − (ξΓ · ∇Γ) n · θΓ.

Now we can compute the second-order shape derivative of the compliance.

Proposition 7.1.6. Let Ω ∈ O3, f ∈ H1(Ω;R) and g ∈ H2(Ω;R) such that by elliptic regularity, u ∈ H2(Ω;R). Then
the compliance J1 is twice shape-differentiable. For θ, ξ ∈ C2,∞ (Ω;Rd

)
, let

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

The second-order shape derivative in the directions θ, ξ writes

J1
′′ (Ω; θ, ξ) =− 2

ˆ
ΓN∪Γ

(θ · n)∇u′ξ · ∇u+ 2

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+ 2

ˆ
ΓN∪Γ

(θ · n)u′ξ(f +Hg + ∂ng) + 2

ˆ
ΓN

(θ · n) g∇Γu · ∇Γ (ξ · n)

+ 2

ˆ
ΓN∪Γ

(θ · n) (ξ · n)
(
H
(
fu+Hgu+ ∂n(gu)

)
+ ∂n

(
fu+Hgu+ ∂n(gu)

))

+ 2

ˆ
ΓN

(θ · n) (ξ · n) g
(
∂ng − ∂2

nnu
)

+ 2

ˆ
ΓN

gu∇Γ (θ · n) · ∇Γ (ξ · n)

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)

+ 2

ˆ
ΓN∪Γ

Zθ,ξ

(
∂n(gu) + fu+Hgu

)
+

ˆ
ΓD

Zθ,ξ|∇u|2 −
ˆ

ΓN∪Γ

Zθ,ξ|∇u|2,

where u′θ (and similarly for u′ξ) is defined by




−∆u′θ = 0 Ω,
u′θ = − (θ · ∇)u ΓD,

∂nu
′
θ = (θ · n)

(
∂ng − ∂2

nnu
)

+∇u · ∇Γ (θ · n) ΓN ,

∂nu
′
θ = − (θ · n) ∂2

nnu+∇u · ∇Γ (θ · n) Γ.

(7.5)

Theorem 3.2.15 ensures that J ′′1 is symmetric. One can check this property in reformulating the expression.

Proposition 7.1.7. Let θ, ξ ∈ C2,∞ (Ω;Rd
)

and

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

The second-order shape derivative of the compliance is symmetric on C2,∞ (Rd;Rd
)
×C2,∞ (Rd;Rd

)
. It can be rewritten

in a symmetric expression :

J1
′′ (Ω; θ, ξ) = 2

ˆ
Ω

∇u′ξ · ∇u′θ + 2

ˆ
ΓN

gu∇Γ (θ · n) · ∇Γ (ξ · n)− 2

ˆ
ΓD

(
u′ξ∂nu

′
θ + u′θ∂nu

′
ξ

)

+ 2

ˆ
ΓN∪Γ

(θ · n) (ξ · n)
(
H
(
fu+Hgu+ ∂n(gu)

)
+ ∂n

(
fu+Hgu+ ∂n(gu)

))

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)

+ 2

ˆ
ΓN∪Γ

Zθ,ξ

(
∂n(gu) + fu+Hgu

)
+

ˆ
ΓD

Zθ,ξ|∇u|2 −
ˆ

ΓN∪Γ

Zθ,ξ|∇u|2.
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In order to ease the reading, these propositions are formally proven here in the case where f = 0, g = 0 on Γ and
when the parts ΓD and ΓN of the boundary cannot be modified. Thus, with a reference domain Ω0, whose boundary
is divided like ∂Ω0 = Γ0 ∪ Γ0

D ∪ Γ0
N the set of admissible shapes is restricted to

Uad :=
{

Ω ∈ O3 | ΓD = Γ0
D and ΓN = Γ0

N

}
. (7.6)

Ω0

Γ0
N

Γ0
D

Γ0

Ωθ

Γθ

Figure 7.2: Variation of a shape Ω0 and its boundary trough the diffeomorphism (Id + θ), when the set of admissible
shapes is restricted to Uad defined by (7.6).

We also define the space F by

F =
{
θ ∈ C2,∞ (Rd;Rd

)
| θ = 0 on ΓD ∪ ΓN

}
. (7.7)

For the more general case, the computations are given in Section 7.3.

Proposition 7.1.8. Let Ω ∈ O3 and f, g with the same regularity as in Proposition 7.1.6. We also assume that g = 0
on Γ. For θ, ξ ∈ F , the shape derivatives of the compliance in the directions θ, ξ read

J1
′ (Ω; θ) = −

ˆ
Γ

(θ · n) |∇u|2,

J1
′′ (Ω; θ, ξ) = −2

ˆ
Γ

(θ · n)∇u′ξ · ∇u−
ˆ

Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
−
ˆ

Γ

Zθ,ξ|∇u|2,

where 



−∆u′θ = 0 Ω,
u′θ = 0 ΓD,

∂nu
′
θ = 0 ΓN ,

∂nu
′
θ = −divΓ ((θ · n)∇Γu) Γ,

(7.8)

and
Zθ,ξ =

(
(ξΓ · ∇Γ)n

)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Proof. For the first-order shape derivative, we simply use the fact that θ = 0 on ΓD ∪ ΓN for (7.4) :

J1
′ (Ω; θ) = −

ˆ
Γ

|∇u|2 (θ · n) .

According to Proposition 3.3.23, the state u as well as the normal n are shape-differentiable, and therefore we can
differentiate the above expression. This leads to

(
J1
′(Ω; θ)

)′
(Ω; ξ) =− 2

ˆ
Γ

(θ · n)∇u′ξ · ∇u−
ˆ

Γ

(
θ · n′ξ

)
|∇u|2

−
ˆ

Γ

(ξ · n)

(
∂n

(
|∇u|2 (θ · n)

)
+H (θ · n) |∇u|2

)
.
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Now we write the derivative of the outer normal n, which exists by Lemma 3.3.22 since Ω ∈ O3

n′ξ = −∇Γ (ξ · n) .

As a result

(
J1
′(Ω; θ)

)′
(Ω; ξ) =− 2

ˆ
Γ

(θ · n)∇u′ξ · ∇u

+

ˆ
Γ

|∇u|2∇Γ (ξ · n) · θ − (ξ · n) |∇u|2 ∂n
(
θ · n

)

−
ˆ

Γ

(ξ · n) (θ · n)

(
∂n|∇u|2 +H|∇u|2

)
.

Now with (3.14)

J1
′′ (Ω; θ, ξ) =

(
J1
′(Ω; θ)

)′
(Ω; ξ)− J1

′ (Ω; (ξ · ∇) θ)

=− 2

ˆ
Γ

(θ · n)∇u′ξ · ∇u

−
ˆ

Γ

(ξ · n) (θ · n)

(
∂n|∇u|2 +H|∇u|2

)

+

ˆ
Γ

|∇u|2
(
∇Γ (ξ · n) · θ − (ξ · n) ∂n(θ · n) +

(
ξ · ∇

)
θ · n

)
.

But, with Lemma 7.1.5 and

Zθ,ξ =
(

(ξΓ · ∇Γ) n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ,

we get

J1
′′ (Ω; θ, ξ) =

(
J1
′(Ω; θ)

)′
(Ω; ξ)− J1

′ (Ω; (ξ · ∇) θ)

= −2

ˆ
Γ

(θ · n)∇u′ξ · ∇u−
ˆ

Γ

(ξ · n) (θ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
Γ

Zθ,ξ|∇u|2.

Remark 7.1.9. We can notice that the form of the second-order shape derivative corresponds to the structure we
expect from Theorem 3.2.15. The second-order shape derivative is composed of a bilinear map l2 and a linear map l1
defined on F × F and F respectively, that we give here :

l2(Ω; θ, ξ) = −2

ˆ
Γ

(θ · n)∇u′ξ · ∇u−
ˆ

Γ

(ξ · n) (θ · n)
(
∂n|∇u|2 +H|∇u|2

)
, (7.9)

l1(Ω;Z) = −
ˆ

Γ

Z|∇u|2, (7.10)

where l1 is exactly the linear map of the first-order shape derivative. It just remains to check that l2 is symmetric.

Now we consider the symmetry of the second-order shape derivative. The structure theorem ensures that struc-
turally it is symmetric (Theorem 3.2.15) but, with the previous expression, it is not obvious.

Proposition 7.1.10. When the state u is regular enough and ∆u = 0 on ∂Ω, the bilinear map l2 defined in Re-
mark 7.1.9 is symmetric on F , under assumption (7.6). It writes

l2(Ω; θ, ξ) = 2

ˆ
Ω

∇u′θ · ∇u′ξ −
ˆ

Γ

(ξ · n) (θ · n)
(
∂n|∇u|2 +H|∇u|2

)
.

Proof. The second component of l2 in (7.9) is obviously symmetric. Now let us consider for θ, ξ ∈ F ,

l(Ω; θ, ξ) =

ˆ
Γ

(θ · n)∇u′ξ · ∇u.

Since ∂nu = 0 on Γ we have

l(Ω; θ, ξ) =

ˆ
Γ

(θ · n)∇Γu
′
ξ · ∇Γu.
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Since ˆ
∂Ω

divΓ

(
(θ · n)u′ξ∇Γu

)
= 0,

and θ · n = 0 on ΓD ∪ ΓN , we obtain

ˆ
Γ

divΓ

(
(θ · n)u′ξ∇Γu

)
= 0,

and ˆ
Γ

(θ · n)∇Γu
′
ξ · ∇Γu = −

ˆ
Γ

u′ξ divΓ

(
(θ · n)∇Γu

)
.

On the other hand, since ∂nu = g = 0 on Γ we get

divΓ

(
(θ · n)∇Γu

)
= (θ · n) ∆Γu+∇Γ (θ · n) · ∇Γu.

Since

∆Γu = ∆u−H∂nu− ∂2
nnu,

we finally get

ˆ
Γ

(θ · n)∇Γu
′
ξ · ∇Γu = −

ˆ
Γ

(θ · n) u′ξ∆Γu−
ˆ

Γ

u′ξ∇Γ (θ · n) · ∇Γu

= −
ˆ

Γ

(θ · n) u′ξ∆u+

ˆ
Γ

u′ξ

(
(θ · n) ∂2

nnu−∇Γ (θ · n) · ∇Γu
)

= −
ˆ

Γ

(θ · n) u′ξ∆u−
ˆ

Γ

u′ξ ∂nu
′
θ.

Since ∆u = 0 on ∂Ω and ∆u′θ = 0 we obtain by integration by parts

l(Ω; θ, ξ) = −
ˆ

Ω

div (∇u′θ)u′ξ −
ˆ

Ω

∇u′θ · ∇u′ξ

= −
ˆ

Ω

∇u′θ · ∇u′ξ.

Therefore the bilinear map l2 is symmetric.

7.1.4 Least square criterion

Let α ≥ 2 and u0 ∈ Lα(Rd;Rd). Let us consider the elastic model (see Section 2.1.5) and the following criterion,
referred to as the least square displacement criterion

J2(Ω) =

(ˆ
Ω

k(x)|u(x)− u0(x)|α dx
) 1
α

, (7.11)

where g ∈ H1(Ω;Rd) satisfies g = 0 on Γ and u ∈ H2(Ω;Rd) is solution to




−div (Aε(u)) = 0 in Ω,

Aε(u)n = g on Γ ∪ ΓN ,
u = 0 on ΓD,

(7.12)

where the Hooke’s tensor is defined on every symmetric matrix ζ by the Lamé coefficients λ, µ, and

Aζ = 2µζ + λTr(ζ),

and where the linearized deformation tensor ε(u) is defined by

ε(u) =
1

2

(
∇u+∇uT

)
.

Remark 7.1.11. Here we consider the mechanical equation (7.12) in the case of linear elasticity for an isotropic
material. This is quite different from (7.3) since Hooke’s tensor is not proportional to the identity, and since the
gradient operator is replaced by its symmetrization ε(u).
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Remark 7.1.12. This criterion is usually used in the literature with α = 2, so that it is called a least square criterion.
However, we can define it for other values of α ≥ 2, and we detail the shape derivatives here in this more general case.

The H2 regularity is given by elliptic regularity since g is in H2(Ω;R). In order to ease the calculations, we
introduce

j2(Ω) =

ˆ
Ω

k(x)|u(x)− u0(x)|α. (7.13)

Similarly to the previous section we also assume that only the part Γ of the boundary ∂Ω may evolve. This implies
to consider the set of admissible shapes

Uad := {Ω ∈ O3 | ΓD ∪ ΓN ⊂ ∂Ω} . (7.14)

Similarly to the previous section we also introduce

F =
{
θ ∈ C2,∞(Rd;Rd) | θ = 0 on ΓD ∪ Γ

}
.

Lemma 7.1.13. The state u is twice shape-differentiable.

Proof. Since g is in H2(Ω;Rd), by elliptic regularity, u is in H3(Ω;Rd). The regularity of the shape Ω ensures then
that u is twice shape-differentiable (see also Remark 3.3.25).

Remark 7.1.14. The shape differentiability of u in Remark 3.3.25 is a priori only considered in the framework of the
scalar thermal model. However the same arguments work for the elastic model.

Proposition 7.1.15. Let k ≥ 3, and Ω ∈ Ok. The function j2 defined by (7.13) is twice shape-differentiable with
respect to Ω. For θ, ξ ∈ F , we have

j′2(Ω; θ) = α

ˆ
Ω

k|u− u0|α−2(u− u0)u′θ +

ˆ
Γ

(θ · n) k|u− u0|α, (7.15)

and

j′′2 (Ω; θ, ξ) =

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p) + α(α− 1)

ˆ
Ω

k|u− u0|α−2u′θu
′
ξ

+ α

ˆ
Γ

k|u− u0|α−2(u− u0)
(

(θ · n)u′ξ + (ξ · n)u′θ

)
(7.16)

+

ˆ
Γ

(θ · n) (ξ · n)
(
∂nL +HL

)
+

ˆ
Γ

LZθ,ξ,

where

L = Aε(u)ε(p) + k|u− u0|α,

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ,

and p is the solution to



−div (Aε(p)) = −αk|u− u0|α−2(u− u0) in Ω,

Aε(p)n = 0 on ΓN ∪ Γ,
p = 0 on ΓD.

(7.17)

Proof. The state u is twice shape-differentiable. Therefore j2 is shape-differentiable. The first-order derivative is
straightforward. Now, for θ, ξ ∈ F ,

(j′2)′(Ω; θ, ξ) = α

ˆ
Ω

k u′θ

(
(α− 2)|u− u0|α−4(u− u0)2u′ξ + |u− u0|α−2u′ξ

)

+ α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ + α

ˆ
Γ

(ξ · n) k |u− u0|α−2(u− u0)u′θ

+

ˆ
Γ

(
θ · n′ξ

)
k |u− u0|α +

ˆ
Γ

(θ · n) k |u− u0|α−2(u− u0)u′ξ

+

ˆ
Γ

(ξ · n)

(
∂n

(
(θ · n) k |u− u0|α

)
+H (θ · n) k |u− u0|α

)

= α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ + α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

−
ˆ

Γ

(θ · ∇Γ (ξ · n)) k |u− u0|α

+

ˆ
Γ

(ξ · n)

(
∂n

(
(θ · n) k |u− u0|α

)
+H (θ · n) k |u− u0|α

)
,
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which can be rewritten as

(j′2)′(Ω; θ, ξ) = α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ + α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

+

ˆ
Γ

(θ · n) (ξ · n)

(
∂n

(
k |u− u0|α

)
+Hk |u− u0|α

)

+

ˆ
Γ

k |u− u0|α
(

(ξ · n) ∂n(θ · n)−
(
θ · ∇Γ (ξ · n)

))
.

The second-order shape derivative obtained from the derivative of the first-order shape derivative by (see also (3.14))

j′′2 (Ω; θ, ξ) = (j′2)′(Ω; θ, ξ)− j′2(Ω; (ξ · ∇) θ),

and we also have

j′2(Ω; (ξ · ∇) θ) =

ˆ
Ω

αk |u− u0|α−2(u− u0)u′(ξ·∇)θ +

ˆ
Γ

(
(ξ · ∇) θ · n

)
k |u− u0|α. (7.18)

Therefore, we get

j′′2 (Ω; θ, ξ) = α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ + α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

−
ˆ

Ω

αk |u− u0|α−2(u− u0)u′(ξ·∇)θ

+

ˆ
Γ

(θ · n) (ξ · n)

(
∂n

(
k |u− u0|α

)
+Hk |u− u0|α

)

+

ˆ
Γ

k |u− u0|α
(

(ξ · n) ∂n(θ · n)−
(
θ · ∇Γ (ξ · n)

)
−
(

(ξ · ∇) θ · n
))
.

Since p is the solution to (7.17), we have

α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ =

ˆ
Ω

div
(
Aε(p)

)
(u′θ)

′
ξ

= −
ˆ

Ω

Aε(p) : ε
(
(u′θ)

′
ξ

)
+

ˆ
Γ

Aε(p)n · (u′θ)′ξ.

With (u′θ)
′
ξ and A

(
ε(p)

)
n vanishing respectively on ΓD and ΓN ∪ Γ we get

α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ =

ˆ
Ω

div
(
Aε
(
(u′θ)

′
ξ

))
p−

ˆ
Γ

Aε
(
(u′θ)

′
ξ

)
n · p.

With the help of Lemma 7.1.16 we get an expression of α

ˆ
Ω

k |u− u0|α−2(u− u0)(u′θ)
′
ξ which leads to

j′′2 (Ω; θ, ξ) =

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p)

+

ˆ
Γ

(ξ · n) (θ · n)

(
∂n

(
Aε(u) : ε(p)

)
+HAε(u) : ε(p)

)

+

ˆ
Γ

Aε(u) : ε(p)

(
(ξ · n) ∂n(θ · n)−

(
θ · ∇Γ (ξ · n)

))

+ α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

−
ˆ

Ω

αk |u− u0|α−2(u− u0)u′(ξ·∇)θ

+

ˆ
Γ

(θ · n) (ξ · n)

(
∂n

(
k |u− u0|α

)
+Hk |u− u0|α

)

+

ˆ
Γ

k |u− u0|α
(

(ξ · n) ∂n(θ · n)−
(
θ · ∇Γ (ξ · n)

)
−
(

(ξ · ∇) θ · n
))
.
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Now we consider specifically the term with u′(ξ·∇)θ. Thanks to the variational formulation for the adjoint p, we have:

−α
ˆ

Ω

k |u− u0|α−2(u− u0)u′(ξ·∇)θ = −
ˆ

Ω

div
(
Aε(p)

)
u′(ξ·∇)θ

=

ˆ
Ω

Aε(p) : ε
(
u′(ξ·∇)θ

)
−
ˆ

Γ

Aε(p)n · u′(ξ·∇)θ

= −
ˆ

Ω

div
(
Aε
(
u′(ξ·∇)θ

))
p+

ˆ
Γ

Aε
(
u′(ξ·∇)θ

)
n · p

=

ˆ
Γ

divΓ

((
(ξ · ∇) θ · n

)
Aε(u)

)
p

= −
ˆ

Γ

(
(ξ · ∇) θ · n

)
Aε(u) : ε(p).

Therefore

j′′2 (Ω; θ, ξ) =

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p)

+

ˆ
Γ

(ξ · n) (θ · n)

(
∂n

(
Aε(u) : ε(p)

)
+HAε(u) : ε(p)

)

+

ˆ
Γ

Aε(u) : ε(p)

(
(ξ · n) ∂n(θ · n)−

(
θ · ∇Γ (ξ · n)

)
− ((ξ · ∇) θ · n)

)

+ α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

+

ˆ
Γ

(θ · n) (ξ · n)

(
∂n

(
k |u− u0|α

)
+Hk |u− u0|α

)

+

ˆ
Γ

k |u− u0|α
(

(ξ · n) ∂n(θ · n)−
(
θ · ∇ (ξ · n)

)
−
(

(ξ · ∇) θ · n
))
,

and then

j′′2 (Ω; θ, ξ) =

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p) + α(α− 1)

ˆ
Ω

k |u− u0|α−2u′θu
′
ξ

+ α

ˆ
Γ

k |u− u0|α−2(u− u0)
(

(ξ · n)u′θ + (θ · n)u′ξ

)

+

ˆ
Γ

(θ · n) (ξ · n)
(
∂nL +HL

)
+

ˆ
Γ

LZθ,ξ,

where

L = Aε(u) : ε(p) + k|u− u0|α,
Zθ,ξ =

(
(ξΓ · ∇Γ) n

)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Lemma 7.1.16. For θ, ξ ∈ F , the second-order shape derivative (u′θ)
′
ξ of the state u satisfies

ˆ
Γ

Aε
(
(u′θ)

′
ξ

)
n · v =−

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(v) + (θ · n)Aε(u′ξ) : ε(v)

−
ˆ

Γ

(ξ · n) (θ · n)

(
∂n

(
Aε(u) : ε(v)

)
+HAε(u) : ε(v)

)

+

ˆ
Γ

Aε(u) : ε(v)

((
θ · ∇Γ (ξ · n)

)
− (ξ · n) ∂n(θ · n)

)
.

Proof. The variational formulation for u reads

∀v ∈ V,
ˆ

Ω

Aε(u) : ε(v) =

ˆ
Γ

gv,

where

V =
{
v ∈ H1(Ω) | v = 0 on ΓD

}
.
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The shape derivation of this equality leads to

∀v ∈ V,
ˆ

Ω

Aε(u′θ) : ε(v) +

ˆ
Γ

(θ · n)Aε(u) : ε(v) = 0,

and the second-order derivation gives ∀v ∈ V,

0 =

ˆ
Ω

Aε
(
(u′θ)

′
ξ

)
: ε(v) +

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(v)

+

ˆ
Γ

(
θ · n′ξ

)
Aε(u) : ε(v) +

ˆ
Γ

(θ · n)Aε(u′ξ) : ε(v)

+

ˆ
Γ

(ξ · n)

(
∂n

(
(θ · n)Aε(u) : ε(v)

)
+H (θ · n)Aε(u) : ε(v)

)
.

An integration by part of the volumic term gives

0 =−
ˆ

Ω

div
(
Aε
(
(u′θ)

′
ξ

))
v +

ˆ
Γ

Aε
(
(u′θ)

′
ξ

)
n · v

+

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(v) +

ˆ
Γ

(
θ · n′ξ

)
Aε(u) : ε(v) +

ˆ
Γ

(θ · n)Aε(u′ξ) : ε(v)

+

ˆ
Γ

(ξ · n)

(
∂n

(
(θ · n)Aε(u) : ε(v)

)
+H (θ · n)Aε(u) : ε(v)

)
.

With v varying in V we obtain that div
(
Aε
(
(u′θ)

′
ξ

))
= 0 and

ˆ
Γ

Aε
(
(u′θ)

′
ξ

)
n · v =−

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(v) + (θ · n)Aε(u′ξ) : ε(v)

−
ˆ

Γ

(ξ · n) (θ · n)

(
∂n

(
Aε(u) : ε(v)

)
+HAε(u) : ε(v)

)

+

ˆ
Γ

Aε(u) : ε(v)

((
θ · ∇Γ (ξ · n)

)
− (ξ · n) ∂n(θ · n)

)
.

We can observe that the second-order shape derivative of the displacement is symmetric in θ, ξ. We can also write
it in another way that could be more useful from a numerical point of view.

Proposition 7.1.17. With the same notation as previously, when the adjoint p is shape-differentiable, the second-order
shape derivative of j2 also reads

j′′2 (Ω; θ, ξ) =

ˆ
Γ

(θ · n)Aε(p′ξ) : ε(u) + (θ · n)Aε(u′ξ) : ε(p)

+ α

ˆ
Γ

k |u− u0|α−2(u− u0) (θ · n)u′ξ

+

ˆ
Γ

(θ · n) (ξ · n)
(
∂nL +HL

)
+

ˆ
Γ

LZθ,ξ.

Proof. The variational formulation for the adjoint p is

∀v ∈ V, −
ˆ

Ω

div
(
Aε(p)

)
v = −

ˆ
Ω

αk |u− u0|(u− u0)v.

After integration by parts we obtain

∀v ∈ V,
ˆ

Ω

Aε(p) : ε(v) +

ˆ
Ω

αk |u− u0|(u− u0)v = 0.

For v ∈ V and ξ ∈ F , the derivation with respect to the shape leads to

0 =

ˆ
Ω

Aε(p′ξ) : ε(v) +

ˆ
Γ

(ξ · n)Aε(p) : ε(v)

+

ˆ
Ω

α(α− 1)k |u− u0|α−2u′ξv +

ˆ
Γ

(ξ · n)αk |u− u0|α−2(u− u0)v.
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Now, taking v = u′θ and integrating by parts gives

0 =−
ˆ

Ω

div
(
Aε(u′θ)

)
p′ξ +

ˆ
Γ

Aε(u′θ)n · p′ξ

+

ˆ
Γ

(ξ · n)Aε(p) : ε(u′θ) +

ˆ
Ω

α(α− 1)k |u− u0|α−2u′ξu
′
θ

+

ˆ
Γ

(ξ · n)αk |u− u0|α−2(u− u0)u′θ.

But div
(
Aε(u′θ)

)
= 0 and

ˆ
Γ

Aε(u′θ)n · p′ξ =

ˆ
Γ

divΓ

(
(θ · n)Aε(u)

)
p′ξ = −

ˆ
Γ

(θ · n)Aε(u) : ε(p′ξ).

Therefore
ˆ

Γ

(θ · n)Aε(u) : ε(p′ξ) =

ˆ
Γ

(ξ · n)Aε(p) : ε(u′θ) +

ˆ
Ω

α(α− 1)k |u− u0|α−2u′ξu
′
θ

+

ˆ
Γ

(ξ · n)αk |u− u0|α−2(u− u0)u′θ,

which gives the expected result.

Proposition 7.1.18. Let k ≥ 2, Ω ∈ Ok and θ, ξ ∈ Ck,∞(Rd;Rd). The derivatives of the displacement criterion J2

reads

J ′2(Ω; θ) =
1

α
j′2(Ω; θ) j2(Ω)

1
α−1,

J ′′2 (Ω; θ, ξ) =
1

α
j′′2 (Ω; θ, ξ) j2(Ω)

1
α−1 +

1

α
(

1

α
− 1)j′2(Ω; θ) j′2(Ω, ξ) j2(Ω)

1
α−2.

Proof. This is straightforwardly given by the chain rule and the relations

j′′2 (Ω; θ, ξ) = (j′2)′(Ω; θ, ξ)− j′2(Ω;∇θξ),

J ′′2 (Ω; θ, ξ) = (J ′2)′(Ω; θ, ξ)− J ′2(Ω;∇θξ).

7.1.5 Maximum-thickness criterion

In order to consider a maximum-thickness criterion we use the quadratic penalty function

PMax(Ω) =

ˆ
Ω

((
dΩ(x) +

dmax
2

)−)2

dx. (7.19)

This criterion was introduced by G. Michailidis [83]. He explained the computation of the first-order derivative,
whose result we recall here. We also refer to Section 3.3.2 for the definition of the projection, the skeleton, and other
geometric quantities we need here.

Lemma 7.1.19. The shape derivative of (7.19) reads

PMax
′ (Ω; θ) =

ˆ
∂Ω

−
(
θ(x) · n(x)

)ˆ
ray∂Ω(x)∩Ω

(
2

(
dΩ(z) +

dmax
2

)− d−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dz

)
dx.

Now we are concerned with the computation of second-order derivative of such a criterion. We need first the
following lemma.

Lemma 7.1.20. Let Ω ⊂ Rd be a bounded domain of class C2 and m(s) : R 7→ R a function of class C2. We assume
that m vanishes on Σ, where Σ is the skeleton. Define the functional

J3(Ω) =

ˆ
Ω

m(y) dx.
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The function J3 is twice shape-differentiable and its derivatives read

J3
′ (Ω; θ) =−

ˆ
Ω

(θ · n) (z)m′(y) dx+m(0)

ˆ
∂Ω

(θ · n) (x) dx,

J3
′′ (Ω; θ, ξ) =−

ˆ
Ω

y

((
1 + yD2dΩ(z)

)−1

∇Γ (ξ · n) (z) · ∇Γ (θ · n) (z)

)
m′(y) dx

+

ˆ
Ω

(ξ · n) (z) (θ · n) (z)m′′(y) dx

+m(0)

ˆ
∂Ω

(ξ · n) (θ · n)H dx−m′(0)

ˆ
∂Ω

(ξ · n) (θ · n) dx

+

ˆ
Ω

Zθ,ξ ◦ p∂Ω(x)m′(y) dx−m(0)

ˆ
∂Ω

Zθ,ξ dx,

where z = p∂Ω(x), y = dΩ(x) and

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Proof. The first-order derivation formula yields to

J3
′ (Ω; θ) =

ˆ
Ω

m′(y)d′θ(x) dx+m(0)

ˆ
∂Ω

(θ · n) (x) dx

= −
ˆ

Ω

(θ · n) (z)m′(y) dx+m(0)

ˆ
∂Ω

(θ · n) (x) dx.

Since we assumed that Ω ∈ O3, p∂Ω is shape-differentiable (see Proposition 3.3.16) on D\Σ. Now, since m vanishes
on Σ the regularity assumption on m allows one to derive J3

′.

(
J3
′(Ω; θ)

)′
(Ω; ξ) =−

ˆ
Ω

((
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
θ · n′ξ

)
(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)
m′(y) dx

+

ˆ
Ω

(ξ · n) (z) (θ · n) (z)m′′(y) dx

−
ˆ
∂Ω

(θ · n) (ξ · n)m′(y) dx+m(0)

ˆ
∂Ω

(
θ · n′ξ

)
(x) dx

+m(0)

ˆ
∂Ω

(ξ · n)
(
∂n(θ · n) +H (θ · n)

)
dx.

We can compute J3
′′ (; , ) :

J3
′′ (Ω; θ, ξ) =

(
J3
′(Ω; θ)

)′
(Ω; ξ)− J3

′ (Ω; (ξ · ∇) θ)

−
ˆ

Ω

((
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
θ · n′ξ

)
(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)
m′(y) dx

+

ˆ
Ω

(ξ · n) (z) (θ · n) (z)m′′(y) dx

−m′(0)

ˆ
∂Ω

(θ · n) (ξ · n) dx+m(0)

ˆ
∂Ω

(
θ · n′ξ

)
dx

+m(0)

ˆ
∂Ω

(ξ · n)
(
∂n(θ · n) +H (θ · n)

)
dx

+

ˆ
Ω

(
(ξ · ∇) θ(z) · n(z)

)
m′(y) dx−m(0)

ˆ
∂Ω

(ξ · ∇) θ · n dx.

Let us introduce

A =−
ˆ

Ω

((
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
θ · n′ξ

)
(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)
m′(y) dx

+

ˆ
Ω

(
(ξ(z) · ∇) θ(z) · n(z)

)
m′(y) dx,

B =m(0)

ˆ
∂Ω

(
θ · n′ξ

)
dx+m(0)

ˆ
∂Ω

(ξ · n) ∂n(θ · n) dx−m(0)

ˆ
∂Ω

(ξ · ∇) θ · n dx.

With

p′∂Ω,ξ =
(
ξ(z) · n(z)

)
n(z) + y

(
1 + yHdΩ(z)

)−1

∇Γ (ξ · n) (z),
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we get

A =−
ˆ

Ω

(ξ · n) (z)
(

(n(z) · ∇) θ(z) · n(z)
)
m′(y) dx

−
ˆ

Ω

m′(y)y
((

1 + yD2dΩ(z)
)−1∇Γ (ξ · n) (z) · ∇

)
θ(z) · n(z) dx

+

ˆ
Ω

(
θ(z) · ∇Γ (ξ · n) (z)

)
m′(y)

−
ˆ

Ω

(ξ · n) (z)
(

(n(z) · ∇) n(z) · θ(z)
)
m′(y) dx

−
ˆ

Ω

m′(y)y
((

1 + yD2dΩ(z)
)−1∇Γ (ξ · n) (z) · ∇

)
n(z) · θ(z) dx

+

ˆ
Ω

(ξ · n) (z)
(

(n(z) · ∇) θ(z) · n(z)
)
m′(y) dx

+

ˆ
Ω

(
(ξΓ(z) · ∇) θ(z) · n(z)

)
m′(y) dx.

With Lemma 7.1.5, we have

A =−
ˆ

Ω

m′(y)y
((

1 + yD2dΩ(z)
)−1∇Γ (ξ · n) (z) · ∇

)
θ(z) · n(z) dx

−
ˆ

Ω

m′(y)y
((

1 + yD2dΩ(z)
)−1∇Γ (ξ · n) (z) · ∇

)
n(z) · θ(z) dx

+

ˆ
Ω

(
θΓ · ∇Γ(ξ · n) + ξΓ · ∇Γ(θ · n)− (ξΓ · ∇) n · θΓ

)
m′(y) dx,

and

A =−
ˆ

Ω

m′(y)y
(
∇ (θ · n) ·

(
1 + yD2dΩ(z)

)−1∇Γ(ξ · n)(z)
)
dx

−
ˆ

Ω

Z(θ, ξ) ◦ p∂Ω(x)m′(y) dx.

Applying the same lemma to B gives

(ξ · ∇) θ · n = (ξ · n) ∂n(θ · n) + ξΓ · ∇Γ (θ · n)− (ξΓ · ∇) n · θΓ,

and

B =m(0)

ˆ
∂Ω

−θ · ∇Γ (ξ · n) + (ξ · n) ∂n(θ · n)

−m(0)

ˆ
∂Ω

(ξ · n) ∂n(θ · n) + ξΓ · ∇Γ (θ · n)− (ξΓ · ∇) n · θΓ

=m(0)

ˆ
∂Ω

Zθ,ξ dx.

Then

J3
′′ (Ω; θ, ξ) =−

ˆ
Ω

m′(y)y
(
∇ (θ · n) ·

(
1 + yD2dΩ(z)

)−1∇Γ (ξ · n) (z)
)
dx

+

ˆ
Ω

(ξ · n) (z) (θ · n) (z)m′′(y) dx

−m′(0)

ˆ
∂Ω

(θ · n) (ξ · n) dx+m(0)

ˆ
∂Ω

H (ξ · n) (θ · n) dx

−
ˆ

Ω

Zθ,ξ ◦ p∂Ω(x)m′(y) dx+m(0)

ˆ
∂Ω

Zθ,ξ dx.

Lemma 7.1.21. Let Ω ⊂ Rd be a bounded domain of class C2 and m(s) : R→ R a function of class C2. We assume
that m vanishes on Σ, where Σ is the skeleton. Define the functional

J4(Ω) =

ˆ
Ω

m
(
dΩ(x)

)
dΩ(x)p dx.
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This functional is twice shape-differentiable at θ = 0 and its derivatives read

J4
′ (Ω; θ) =−

ˆ
Ω

(θ · n) (z)
(
m′(y)yp + pm(y)yp−1

)
dx,

J4
′′ (Ω; θ, ξ) =−

ˆ
Ω

y

((
1 + yHdΩ(z)

)−1

∇Γ (ξ · n) (z) · ∇Γ (θ · n) (z)

)(
m′(y)yp + pm(y)yp−1

)
dx

+

ˆ
Ω

(ξ · n) (z) (θ · n) (z)
(
m′′(y)yp + 2pm′(y)yp−1 + p(p− 1)m(y)yp−2

)
dx

−
ˆ

Ω

Zθ,ξ ◦ p∂Ω(x)
(
m′(y)yp + pm(y)yp−1

)
dx,

where z = p∂Ω(x), y = dΩ(x) and

Zθ,ξ =
(

(ξΓ · ∇Γ)n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Proof. Since ∀x ∈ ∂Ω, dΩ(x) = 0 the first-order derivation yields

J4
′ (Ω; θ) =

ˆ
Ω

pd′θ(x)m(y)yp−1 + d′θ(x)m′(y)yp +

ˆ
∂Ω

(θ · n)m(y)yp

= −
ˆ

Ω

(θ · n) (z)
(
m′(y)yp + pm(y)yp−1

)
dx.

We recall that since y = dΩ(x), we have y = 0 on ∂Ω. Then

(
J4
′(Ω; θ)

)′
(Ω; ξ) =−

ˆ
Ω

( (
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)(
m′(y)yp + pm(y)yp−1

)
dx

−
ˆ

Ω

(
θ · n′ξ

)
(z)
(
m′(y)yp + pm(y)yp−1

)
dx

−
ˆ

Ω

(θ · n) (z)
(
pd′ξm

′(y)yp−1 + p(p− 1)d′ξm(y)yp−2 + d′ξm
′′(y)yp + pd′ξm

′(y)yp−1
)
dx

−
ˆ
∂Ω

(ξ · n) (θ · n)
(
pm(y)yp−1 +m′(y)yp

)
dx.

With d′ξ = − (ξ · n) (z) we have

(
J4
′(Ω; θ)

)′
(Ω; ξ) =−

ˆ
Ω

( (
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)(
m′(y)yp + pm(y)yp−1

)
dx

−
ˆ

Ω

(
θ · n′ξ

)
(z)
(
m′(y)yp + pm(y)yp−1

)
dx

+

ˆ
Ω

(θ · n) (z) (ξ · n) (z)
(

2pm′(y)yp−1 + p(p− 1)m(y)yp−2 +m′′(y)yp + pd′ξm
′(y)yp−1

)
dx.

As a result,

J4
′′ (Ω; θ, ξ) =

(
J4
′(Ω; θ)

)′
(Ω; ξ)− J4

′ (Ω; (ξ · ∇) θ)

=−
ˆ

Ω

( (
p′∂Ω,ξ(x) · ∇

)
θ(z) · n(z) +

(
p′∂Ω,ξ(x) · ∇

)
n(z) · θ(z)

)(
m′(y)yp + pm(y)yp−1

)
dx

−
ˆ

Ω

(
θ · n′ξ

)
(z)
(
m′(y)yp + pm(y)yp−1

)
dx

+

ˆ
Ω

(θ · n) (z) (ξ · n) (z)
(

2pm′(y)yp−1 + p(p− 1)m(y)yp−2 +m′′(y)yp + pd′ξm
′(y)yp−1

)
dx

+

ˆ
Ω

(
(ξ · ∇) θ · n

)
(z)
(
pm(y)yp−1 +m′(y)yp

)
.

The same computation as in the previous lemma gives

J4
′′ (Ω; θ, ξ) =−

ˆ
Ω

y
(
pm(y)yp−1 +m′(y)yp

)(
∇ (θ · n) ·

(
1 + yHdΩ(z)

)−1∇Γ (ξ · n) (z)
)
dx

+

ˆ
Ω

(θ · n) (z) (ξ · n) (z)
(

2pm′(y)yp−1 + p(p− 1)m(y)yp−2 +m′′(y)yp + pd′ξm
′(y)yp−1

)
dx

−
ˆ

Ω

Zθ,ξ ◦ p∂Ω(x)
(
m′(y)yp + pm(y)yp−1

)
dx.



114 CHAPTER 7. GEOMETRIC CASE

7.2 Structure of the second-order shape derivative

Now we are concerned with the structure of the second-order shape derivative in the framework of geometric shape
optimization. To that end, we come back to the scalar thermal model (see Section 2.1.4), and the compliance criterion

J1(Ω) =

ˆ
Ω

|∇u|2,

where the state u is solution to 



−∆u = 0 in Ω,
∂nu = g on ΓN ,
∂nu = 0 on Γ,
u = 0 on ΓD.

(7.20)

We consider shape variations such that the parts ΓD ∪ ΓN are not modified. We therefore introduce F by

F =
{
θ ∈ C2,∞(Rd;Rd) | θ = 0 on ΓD ∪ ΓN

}
.

For θ, ξ ∈ F , we recall that the shape derivatives are given by

J1
′ (Ω; θ) = −

ˆ
Γ

(θ · n) |∇u|2,

J1
′′ (Ω; θ, ξ) = −2

ˆ
Γ

(θ · n)∇u′ξ · ∇u−
ˆ

Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
−
ˆ

Γ

Zθ,ξ|∇u|2,

where 



−∆u′θ = 0 Ω,
u′θ = 0 ΓD,

∂nu
′
θ = 0 ΓN ,

∂nu
′
θ = −divΓ ((θ · n)∇Γu) Γ,

(7.21)

and

Zθ,ξ =
(

(ξΓ · ∇Γ) n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

7.2.1 Coercivity, positiveness

In this section we are looking at the coercivity and the positiveness of the shape Hessian of the compliance. In [49],
it is proven that there is an equivalence between coercivity and positiveness. We recall the corresponding result.

Theorem 7.2.1. [49, Theorem 3.2] Let Ω? ∈ O5 and J a shape functional, invariant with respect to a translation of
the shape, twice shape-differentiable on a neighborhood of Ω? such that

1. Structural hypotheses : there exists 0 ≤ s1 < s2 ≤ 1 such that

(a) the bilinear map l2 of the second-order derivative of J can be written under the form l2 = lm + lr, where lm
is lower semi-continuous in Hs2(∂Ω?;R) and ∀ϕ ∈ C∞(∂Ω?;R), lm(ϕ,ϕ) ≥ c1|ϕ|2Hs2 and lr is continuous
in Hs1 .

(b) J satisfies CHs2 . This is a continuity assumption (see [49])

2. Necessary optimality conditions :

(a) Ω? is a critical domain for J .

(b) Ω? is a stable shape for J , that is such that

∀ϕ ∈ Hs2(∂Ω;R)\{0}, l2(ϕ,ϕ) > 0.

Then Ω? is a stable local minimum of J in a neighborhood of Ω? (in a precise sense defined by [49, Theorem 3.1]).

For the case of the compliance, the part of the second-order derivative that could correspond to lm is the following.

l : F × F 7−→ R

(θ, ξ) 7→
ˆ

Ω

∇u′θ · ∇u′ξ.
(7.22)

We recall that u′θ is solution to (7.21). We are now looking to the coercivity of this bilinear map. We first establish
that ∇Γu does not vanish on any bounded open set of Γ.
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Lemma 7.2.2. Assume that Ω ∈ O3. We also assume that the solution u of (7.3) is in H2(Ω;R). Let x ∈ Γ such
that ∇Γu(x) = 0. Assume that there exists a neighborhood V of x in Γ such that

∀y ∈ V , ∇Γu(y) = 0.

Then
u = 0 on Ω.

In order to prove this lemma, we recall a result from [39, Corollary 1.38].

Lemma 7.2.3. Let Ω be a connected open set of class C2. Let γ an open subset of ∂Ω. Let u ∈ H2(Ω;R) such that
∆u = 0 in Ω and u = ∂nu = 0 on γ. Then u vanishes identically on Ω.

Proof of Lemma 7.2.2. Let γ = V ∩ Γ. On γ we have by assumption

∂nu = 0,

∇Γu = 0.

The condition ∇Γu = 0 ensures that u is constant on γ. Let C be the value of u on γ. Now we introduce w = u− C.
We have w ∈ H2(Ω;R) and

∆w = 0 on Ω,
w = 0 on γ,

∂nw = 0 on γ.

Then Lemma 7.2.3 ensures that w = 0 in Ω. In particular, on ΓD we have u = w = 0. Therefore C = 0, and u
vanishes identically on Ω.

We also recall a result proven in [103].

Proposition 7.2.4. Let O be a bounded open set of Rd. Suppose that u ∈ C2(Ω;R), c ∈ C1(Ω;R) and |∇u| ≥ k1 in
O, where k1 is positive. For any f ∈ L∞(Ω;R), consider the following problem with unknown α

∇u · ∇α+ c(x)α = f. (7.23)

For any P ∈ O, we denote C the characteristics of (7.23) containing P , and Q its root on Γ. The union of such
point Q as P ranges over O is referred to as the inflow boundary Γ1. Then (7.23) has a unique solution α ∈ C1(Ω;R)
assuming prescribed values along Γ1.

We denote by s the curvilinear abscissa along C , and take s = 0 at P . We also denote by L the arc length of C
between P and Q. The solution α can be expressed as

α(P ) = α(Q) exp

(
−
ˆ 0

−L

c

|∇u|ds
)

+

ˆ 0

−L

f

|∇u| exp

(
−
ˆ 0

−s

c

|∇u|ds
′

)
ds. (7.24)

Proposition 7.2.5. Assume that Γ ⊂ Rd−1, and that there exists k1 > 0 such that |∇Γu| ≥ k1 on Γ. Then the bilinear
map l defined by (7.22) is positive on F .

Proof. Let θ ∈ F . Assume that l(θ, θ) = 0. Then we have

ˆ
Ω

|∇u′θ|2 = 0.

As a result, we have u′θ = 0 in H1(Ω;R). According to (7.21), we have

divΓ

(
(θ · n)∇Γu

)
= 0,

or equivalently
∇Γ (θ · n) · ∇Γu− (θ · n) ∂2

nnu = 0.

Since Γ ⊂ Rd−1, one can apply Proposition 7.2.4, with O = Γ, f = 0 and c = ∆u. The boundary condition on θ on
the boundary of Γ is θ = 0. Then the uniqueness of the solution of (7.23) ensures that

θ = 0.

In the same framework, we prove the following result which is similar to Proposition 6.3.21 for thickness optimiza-
tion.



116 CHAPTER 7. GEOMETRIC CASE

Proposition 7.2.6. Assume that Γ ⊂ Rd−1, and that there exists k1 > 0 such that |∇Γu| ≥ k1 on Γ, and that ∂2
nnu

is in L∞(Γ;R). Then for θk a sequence of elements of F with

lim
k→∞

l(θk, θk) = 0,

we have

θk|Γ −→ 0 in C0
(
Γ;Rd

)
.

Proof. Let θk be sequence of elements of F such that

lim
k→∞

l(θk, θk) = 0.

Let

fk = ∇Γ (θk · n) · ∇Γu− (θk · n) ∂2
nnu. (7.25)

Considering (θk · n) as an unknown, this equation has the same form as (7.23). Like it is explained in [103], the
assumption |∇Γu| ≥ k1 > 0 ensures that for each point P of Γ there exists a characteristic for equation (7.25) containing
P . Moreover, this assumption also implies that there is an upper bound LM on the length of the characteristics.

Let P ∈ Γ, and C be the characteristic of θk through P . The origin of C is on the boundary of Γ where θk vanishes.
Like in Proposition 7.2.4, we denote by s the curvilinear abscissa such that s = 0 at P , and L the arc length of C
between P and its root. Then Proposition 7.2.4 ensures that the solution of (7.25) at P is given by

θk(P ) =

ˆ 0

−L

fk
|∇u| exp

(
−
ˆ 0

−s

∂2
nnu

|∇u| ds
′

)
ds,

Let M =
∥∥∂2

nnu
∥∥
L∞(Γ;R)

. We then have

|θk(P )| ≤ ‖fk‖L∞(Γ;R)

LM
k1

exp

(
MLM
k1

)
.

We can observe that the bound for |θk(P )| is independent of P . Thus, for all P ∈ Γ θk(P ) converges uniformly to
zero, which gives the desired result.

When Γ is not included in Rd−1, it means that this part of the boundary is not plane. According to [72, §5.4.1], when
Ω is Lipschitz, its boundary can be represented by a set of graphs. For each one we can compute the corresponding
change of variables, and (7.25) will conserve exactly the same structure and properties. Then the results on positiveness
and coercivity of l are the same.

Remark 7.2.7. The results established in this section are most theoretical than practical. Indeed, it is not clear that
the requirement |∇Γu| > k1 > 0 could be satisfied.

7.2.2 Counter-example for the coercivity

In the case where ∇u vanishes at one point on Γ, we can prove that the bilinear map is not coercive on H
1
2

(
Γ;Rd

)
.

This is the subject of the following example.

Example 7.2.8. Consider the case of Rd with d = 2. Let Ω = R× R+ and Γ = R× 0. Let

u = −1

2
e−(x2+y2).

The function u is solution of 



∆u = (2− 2(x2 + y2))e−(x2+y2) on Ω
∂nu = 0 on Γ
u = 0 at ∞

We have on Γ,

∇Γu =

(
xe−x

2

0

)
, n =

(
0
1

)
.

Let vn and θn defined on Γ by

vn(x) = e−nx
2

, θn(x) = vn(x)n(x),

divΓ

(
vn∇Γu

)
=

d

dx

(
vn(x)xe−x

2
)
.
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Now we will prove that

lim
n→∞

‖vn‖H1/2(Γ;R) 6= 0

lim
n→∞

∥∥∥divΓ

(
vn∇Γu

)∥∥∥
H−1/2(Γ;R)

= 0.

In order to compute the Sobolev norms, we have to compute different Fourier transforms.

F
(
vn
)
(ξ) =

√
π

n
e−

ξ2

4n ,

divΓ

(
vn∇Γu

)
=

d

dx

(
vn(x)xe−x

2
)

= − 1

2(n+ 1)

d2

dx2

(
e−(n+1)x2

)
,

F
(

divΓ

(
vn∇Γu

))
(ξ) =

ξ2

2(n+ 1)

√
π

n+ 1
e−

ξ2

4(n+1) .

Then we have

‖vn‖2H1/2(Γ;R) =

ˆ +∞

−∞
(1 + ξ2)

1
2 |F ((θn · n))(ξ)|2 dξ

=
π

n

ˆ +∞

−∞
(1 + ξ2)

1
2 e−

ξ2

2n dξ

= π

ˆ +∞

−∞

(
1

n
+ z2

) 1
2

e−
z2

2 dz,

where we set ξ =
√
nz. We also have

∥∥∥divΓ

(
vn∇Γu

)∥∥∥
2

H−1/2(Γ;R)
=

π

4(n+ 1)3

ˆ +∞

−∞
(1 + ξ2)−

1
2 ξ4e−

ξ2

2(n+1) dξ

=
π

4
√
n+ 1

ˆ +∞

−∞
(1 + (n+ 1)z2)−

1
2 z4e−

z2

2 dz,

with the change of variable ξ =
√
n+ 1z. Now with dominated convergence we easily see that

lim
n→∞

‖vn‖H1/2(Γ;R) = 2π

ˆ +∞

0

ze−
z2

2 dz = 2π

lim
n→∞

∥∥divΓ

(
vn∇Γu

)∥∥
H−1/2(Γ;R)

= 0.

We deduce from the definition of u′θ by (7.21) that

lim
n→∞

∥∥u′θn
∥∥
H1(Γ;R)

= 0,

and from the definition of l that

lim
n→∞

l(θn, θn) = lim
n→∞

ˆ
Ω

|∇u′θn |2 = 0.

Since lim
n→∞

‖(θn · n)‖H1/2(Γ;R) 6= 0 we conclude that l is not coercive on H
1
2 (Γ;Rd).

7.2.3 Newton’s equation and tangential components

Solving Newton’s equation is equivalent to minimizing the quadratic approximation of an objective function. In this
section we consider a twice shape-differentiable function J . According to Theorem 3.2.15 for Ω ∈ O3, the shape
derivatives of J in the directions θ, ξ ∈ C2,∞ (Rd;Rd

)
are given by

{
J ′ (Ω; θ) = l1(θ · n),

J ′′ (Ω; θ, ξ) = l2(θ · n, ξ · n) + l1(Zθ,ξ),

where
Zθ,ξ =

(
(ξΓ · ∇Γ) n

)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

Now, in view of minimizing J with the Newton method, the Newton equation for θ ∈ C2,∞ (Rd;Rd
)

reads

∀ξ ∈ C2,∞ (Rd;Rd
)
, J ′′ (Ω; θ, ξ) = −J ′ (Ω; ξ) .
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Lemma 7.2.9. Let Ω ∈ O3 and J be twice shape-differentiable. The Newton equation is equivalent to

∀ξ ∈ C2,∞ (Rd;Rd
)
,





l2(θ · n, ξ · n) + l1
(
∇Γ(ξ · n) · θΓ

)
= −l1(ξ · n),

l1

(
ξΓ ·

(
(θΓ · ∇Γ)n−∇Γ (θ · n)

))
= 0.

(7.26)

Proof. The Newton equation reads

∀ξ ∈ C2,∞ (Rd;Rd
)
, l2(θ · n, ξ · n) + l1(Zθ,ξ) = −l1(ξ · n).

We start by writing it with ξ ∈ C2,∞ (Rd;Rd
)

such that ξ · n = 0. This leads to

l1(Zθ,ξ) = 0.

More particularly, since ξ · n = 0 and ∇Γn is symmetric we have for all ξ ∈ C2,∞ (Rd;Rd
)

with ξ · n = 0

l1

(
ξΓ ·

(
(θΓ · ∇Γ) n−∇Γ (θ · n)

))
= 0,

which is the second equation we are looking for. The first equality is then straightforward with this result.

Remark 7.2.10. In the previous lemma, it is interesting to focus on the second equation of (7.26). In particular we
have for every ξΓ ∈ C2,∞ (∂Ω;Rd

)
,

l1

(
ξΓ ·

(
(θΓ · ∇Γ)n−∇Γ (θ · n)

))
= 0.

This means that the vector (θΓ · ∇Γ)n−∇Γ (θ · n) should be in the kernel of l1. When this kernel reduces to {0}, this
means that Moreover, when the linear map l1 is of the form

∀v ∈ C1(∂Ω;R), l1(v) =

ˆ
∂Ω

jv,

it means that this vector vanishes whenever j is non-zero.

(θΓ · ∇Γ)n = ∇Γ (θ · n) . (7.27)

This is a geometric condition between the tangent and the normal components - namely θΓ and θ · n - which does not
depend on the criterion but only on the shape trough the outer normal n.

In the case of the compliance with u solution to (7.3), Lemma 7.2.2 ensures that u cannot vanish on open subsets
of the boundary. This means that |∇u| - which defines the first-order derivative - may vanish only on isolated points.
Therefore, equation (7.27) is satisfied for a solution to the Newton equation.

This property is interesting more from a theoretical than from a practical point of view. It is a priori not obvious
to have such a relation between the tangential and normal components of the directions. Moreover, when the kernel
of the linear map l1 reduces to {0}, this relation depends only on the shape and not on the criterion. It is not really
used in practice since it is quite difficult to compute numerically the tangential components of directions. We will also
see later in Chapter 10 that we can consider a framework where only normal evolutions of the shape are considered.

7.3 Appendix

7.3.1 Computation of the shape Hessian

Proposition 7.3.1. For every θ, ξ in C2,∞(Ω;Rd) the shape Hessian of the compliance in the directions θ, ξ reads

J1
′′ (Ω; θ, ξ) =− 2

ˆ
ΓN∪Γ

(θ · n)∇u′ξ · ∇u+ 2

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+ 2

ˆ
ΓN∪Γ

(θ · n)u′ξ(f +Hg + ∂ng) + 2

ˆ
ΓN

(θ · n) g∇Γu · ∇Γ (ξ · n)

+ 2

ˆ
ΓN∪Γ

(θ · n) (ξ · n)
(
H
(
fu+Hgu+ ∂n(gu)

)
+ ∂n

(
fu+Hgu+ ∂n(gu)

))

+ 2

ˆ
ΓN

(θ · n) (ξ · n) g
(
∂ng − ∂2

nnu
)

+ 2

ˆ
ΓN

gu∇Γ (θ · n) · ∇ (ξ · n)

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)

+ 2

ˆ
ΓN∪Γ

Zθ,ξ

(
∂n(gu) + fu+Hgu

)
+

ˆ
ΓD

Zθ,ξ|∇u|2 −
ˆ

ΓN∪Γ

Zθ,ξ|∇u|2.
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Proof. We start from the first-order shape derivative of the compliance

J1
′ (Ω; θ) = 2

ˆ
ΓN∪Γ

(θ · n)
(
∂n(gu) + fu+Hgu

)

+

ˆ
ΓD

|∇u|2 (θ · n)−
ˆ

ΓN∪Γ

|∇u|2 (θ · n) ,

and we introduce

Ja
′ (Ω; θ) =

ˆ
ΓN∪Γ

(θ · n)
(
∂n(gu) + fu+Hgu

)
,

Jb
′ (Ω; θ) =

ˆ
ΓD

|∇u|2 (θ · n) ,

Jc
′ (Ω; θ) = −

ˆ
ΓN

|∇u|2 (θ · n) ,

and

Ja
′′ (Ω; θ, ξ) =

(
Ja
′(Ω; θ)

)′
(Ω; ξ)− Ja′ (Ω; (ξ · ∇) θ) ,

Jb
′′ (Ω; θ, ξ) =

(
Jb
′(Ω; θ)

)′
(Ω; ξ)− Jb′ (Ω; (ξ · ∇) θ) ,

Jc
′′ (Ω; θ, ξ) =

(
Jc
′(Ω; θ)

)′
(Ω; ξ)− Jc′ (Ω; (ξ · ∇) θ) .

Then we use equation (3.14), and the linearity of J ′a, J ′b, J
′
c to compute the second-order shape derivative.

(
J1
′(Ω; θ)

)′
(Ω; ξ) = 2

(
Ja
′(Ω; θ)

)′
(Ω; ξ) +

(
Jb
′(Ω; θ)

)′
(Ω; ξ) +

(
Jc
′(Ω; θ)

)′
(Ω; ξ) .

Case of J ′a. Deriving J ′a leads to

(
Ja
′(Ω; θ)

)′
(Ω; ξ) =

ˆ
ΓN∪Γ

(
θ · n′ξ

) (
fu+Hgu+ ∂n(gu)

)

+

ˆ
ΓN∪Γ

(θ · n)

(
fu′ξ +Hgu′ξ + ∂n(gu′ξ) +∇ (gu) · n′ξ +H′ξgu

)

+

ˆ
ΓN∪Γ

(ξ · n)

(
H (θ · n)

(
f +Hgu+ ∂n(gu)

)
+ ∂n

(
(θ · n)

(
f +Hgu+ ∂n(gu)

)))

−
ˆ

ΓN∪Γ

((
(ξ · ∇) θ

)
· n
)(
f +Hgu+ ∂n(gu)

)
.

Since H = div(n), we have H′ξ = div(n′ξ). From Proposition 3.3.22, we then have

n′ξ = −∇Γ (ξ · n) ,

H′ξ = −div(∇Γ (ξ · n)) = −∆Γ (ξ · n) ,
(
ξ · ∇θ

)
· n = (ξ · n) ∂n(θ · n) + ξΓ · ∇Γ (θ · n)−∇ΓnξΓ · θΓ.

Using Lemma 7.1.5 and introducing

Zθ,ξ =
(

(ξΓ · ∇Γ) n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ,

we have

Ja
′′ (Ω; θ, ξ) =

ˆ
ΓN∪Γ

Zθ,ξ

(
fu+Hgu+ ∂n(gu)

)

+

ˆ
ΓN∪Γ

(ξ · n) (θ · n)
(
H
(
f +Hgu+ ∂n(gu)

)
+ ∂n

(
f +Hgu+ ∂n(gu)

))

+

ˆ
ΓN∪Γ

(θ · n)
(
fu′ξ +Hgu′ξ + ∂n(gu′ξ)−∇ (gu) · ∇Γ (ξ · n)−∆Γ (ξ · n) gu

)

︸ ︷︷ ︸
J′′d

.

Now we consider the last term of J ′′a , and use expression

∂nu
′
ξ = (ξ · n)

(
∂ng − ∂2

nnu
)

+∇Γu · ∇Γ ((ξ · n)) ,
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to get

J ′′d =

ˆ
ΓN∪Γ

(θ · n)
(
fu′ξ +Hgu′ξ + u′ξ∂ng + g (ξ · n)

(
∂ng − ∂2

nnu
))

−
ˆ

ΓN∪Γ

(θ · n)
(
u∇g · ∇Γ ((ξ · n)) + ∆Γ (ξ · n) gu

)
.

Integrating by parts the term with the Laplace-Beltrami operator, we obtain

−
ˆ
∂Ω

(θ · n) ∆Γ (ξ · n) gu =

ˆ
∂Ω

∇Γ ((θ · n) gu) · ∇Γ ((ξ · n)) .

Since u = 0 on ΓD, ∇Γu vanishes as well on ΓD. Then the previous equality is available on ΓN ∪ Γ instead of ∂Ω :

−
ˆ

ΓN∪Γ

(θ · n) ∆Γ (ξ · n) gu =

ˆ
ΓN∪Γ

gu∇Γ (θ · n) · ∇Γ (ξ · n)

+

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n) + u (θ · n)∇Γg · ∇Γξ · n.

As a result, we can rewrite J ′′d as

J ′′d =

ˆ
ΓN∪Γ

(θ · n)u′ξ

(
f +Hg + ∂ng

)
+

ˆ
ΓN∪Γ

(θ · n) (ξ · n) g
(
∂ng − ∂2

nnu
)

+

ˆ
ΓN∪Γ

gu∇Γ (θ · n) · ∇Γ (ξ · n) +

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n) ,

and J ′′a as

Ja
′′ (Ω; θ, ξ) =

ˆ
ΓN∪Γ

Zθ,ξ

(
fu+Hgu+ ∂n(gu)

)

+

ˆ
ΓN∪Γ

(ξ · n) (θ · n)
(
H
(
f +Hgu+ ∂n(gu)

)
+ ∂n

(
f +Hgu+ ∂n(gu)

))

+

ˆ
ΓN∪Γ

(θ · n)u′ξ

(
f +Hg + ∂ng

)
+

ˆ
ΓN∪Γ

(θ · n) (ξ · n) g
(
∂ng − ∂2

nnu
)

+

ˆ
ΓN∪Γ

gu∇Γ (θ · n) · ∇Γ (ξ · n) +

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n) .

Case of J ′b and J ′3. The derivation of these terms is done in the proof of Proposition 7.1.8. We find

Jb
′′ (Ω; θ, ξ) =−

ˆ
ΓN∪Γ

Zθ,ξ|∇u|2 − 2

ˆ
ΓN∪Γ

(θ · n)∇u′ξ · ∇u

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
,

and

Jc
′′ (Ω; θ, ξ) =

ˆ
ΓD

Zθ,ξ|∇u|2 + 2

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
.

Finally

J1
′′ (Ω; θ, ξ) = 2

ˆ
ΓN∪Γ

Zθ,ξ

(
fu+Hgu+ ∂n(gu)

)
+

ˆ
ΓD

Zθ,ξ|∇u|2 −
ˆ

ΓN∪Γ

Zθ,ξ|∇u|2

+ 2

ˆ
ΓN∪Γ

(ξ · n) (θ · n)
(
H
(
f +Hgu+ ∂n(gu)

)
+ ∂n

(
f +Hgu+ ∂n(gu)

))

+ 2

ˆ
ΓN∪Γ

(θ · n) (ξ · n) g
(
∂ng − ∂2

nnu
)

+ 2

ˆ
ΓN∪Γ

gu∇Γ (θ · n) · ∇Γ (ξ · n)

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)

− 2

ˆ
ΓN∪Γ

(θ · n)∇u′ξ · ∇u+ 2

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+ 2

ˆ
ΓN∪Γ

(θ · n)u′ξ

(
f +Hg + ∂ng

)
+ 2

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n) .

(7.28)
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7.3.2 Symmetry of the shape Hessian

We consider here the general case, with no particular assumption on f or on the vanishing of the derivation directions.

Proof of Proposition 7.1.7. The shape Hessian of the compliance reads :

J1
′′ (Ω; θ, ξ) = 2

ˆ
Ω

∇u′ξ · ∇u′θ + 2

ˆ
ΓN

gu∇Γ (θ · n) · ∇Γ (ξ · n)− 2

ˆ
ΓD

(
u′ξ∂nu

′
θ + u′θ∂nu

′
ξ

)

+ 2

ˆ
ΓN∪Γ

(θ · n) (ξ · n)
(
H
(
fu+Hgu+ ∂n(gu)

)
+ ∂n

(
fu+Hgu+ ∂n(gu)

))

−
ˆ

ΓN∪Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
+

ˆ
ΓD

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)

+ 2

ˆ
ΓN∪Γ

Z(θ, ξ)
(
∂n(gu) + fu+Hgu

)
+

ˆ
ΓD

|∇u|2Zθ,ξ −
ˆ

ΓN∪Γ

|∇u|2Zθ,ξ.

Since
Zθ,ξ =

(
(ξΓ · ∇Γ) n

)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ,

we see that Zθ,ξ is symmetric. Only the terms in the last two lines of (7.28), may be non-symmetric. Let

Jns =−
ˆ

ΓN∪Γ

(θ · n)∇u′ξ · ∇u+

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+

ˆ
ΓN∪Γ

(θ · n)u′ξ

(
f +Hg + ∂ng

)
+

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n) .

The aim is now to prove that Jns is symmetric. Let

Jns1 = −
ˆ

ΓN∪Γ

(θ · n)∇u′ξ · ∇u.

We recall that

∂nu
′
ξ = (ξ · n)

(
∂ng − ∂2

nnu
)

+∇Γu · ∇Γ (ξ · n)

= divΓ

(
(ξ · n)∇Γu

)
+ (ξ · n)

(
∂ng −∆u+H∂nu

)
.

Then

Jns1 = −
ˆ

ΓN∪Γ

(θ · n) g∂nu
′
ξ −

ˆ
ΓN∪Γ

(θ · n)∇Γu
′
ξ · ∇Γu.

But u′ξ = 0 and u = 0 on ΓD. Therefore ∇Γu = 0 on ΓD and
ˆ

ΓN∪Γ

(θ · n)∇Γu
′
ξ · ∇Γu =

ˆ
∂Ω

(θ · n)∇Γu
′
ξ · ∇Γu

= −
ˆ
∂Ω

u′ξdivΓ

(
(θ · n)∇Γu

)

= −
ˆ

ΓN∪Γ

u′ξdivΓ

(
(θ · n)∇Γu

)

= −
ˆ

ΓN∪Γ

u′ξ∂nu
′
θ +

ˆ
ΓN∪Γ

u′ξ (θ · n)
(
∂ng + f +Hg

)
.

As a result

Jns1 =−
ˆ

ΓN∪Γ

g (θ · n) (ξ · n)
(
∂ng − ∂2

nnu
)
−
ˆ

ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n)

+

ˆ
ΓN∪Γ

u′ξ∂nu
′
θ −

ˆ
ΓN∪Γ

u′ξ (θ · n)
(
∂ng + f +Hg

)
,

and

Jns =

ˆ
ΓD

(θ · n)∇u′ξ · ∇u

+

ˆ
ΓN∪Γ

(θ · n)u′ξ

(
f +Hg + ∂ng

)
+

ˆ
ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n)

−
ˆ

ΓN∪Γ

g (θ · n) (ξ · n)
(
∂ng − ∂2

nnu
)
−
ˆ

ΓN∪Γ

g (θ · n)∇Γu · ∇Γ (ξ · n)

+

ˆ
ΓN∪Γ

u′ξ∂nu
′
θ −

ˆ
ΓN∪Γ

u′ξ (θ · n)
(
∂ng + f +Hg

)
,
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which leads to

Jns =

ˆ
ΓD

(θ · n)∇u′ξ · ∇u+

ˆ
ΓN∪Γ

u′ξ∂nu
′
θ −

ˆ
ΓN∪Γ

g (θ · n) (ξ · n)
(
∂ng − ∂2

nnu
)
.

Now, we see that

ˆ
ΓN∪Γ

u′ξ∂nu
′
θ =

ˆ
∂Ω

u′ξ∂nu
′
θ −

ˆ
ΓD

u′ξ∂nu
′
θ

=

ˆ
Ω

∇u′θ · ∇u′ξ +

ˆ
Ω

u′ξ∆u
′
θ −

ˆ
ΓD

u′ξ∂nu
′
θ.

We also know the Dirichlet boundary condition on u′θ : u′θ = − (θ · n) ∂nu. Then, with ∇Γu = 0 on ΓD,

ˆ
ΓD

(θ · n)∇u′θ · ∇u =

ˆ
ΓD

(θ · n) ∂nu
′
ξ∂nu

= −
ˆ

ΓD

u′θ∂nu
′
ξ.

As a result

Jns = −
ˆ

ΓN∪Γ

g (θ · n) (ξ · n)
(
∂ng − ∂2

nnu
)

+

ˆ
Ω

∇u′θ · ∇u′ξ −
ˆ

ΓD

(
u′ξ∂nu

′
θ + u′θ∂nu

′
ξ

)
,

which is entirely symmetric.
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Geometric discretized case
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The computation of shape derivatives from a continuous point of view performed in the previous chapters is
suitable for the optimize-then-discretize methodology (see Section 1.3) In this chapter we are concerned with the
discretize-then-optimize approach for shape optimization with the level-set method (see Chapter 4) when the update
of the level-set is governed by a Hamilton-Jacobi transport equation. The material domain is described implicitly by a
level-set function which is positive outside the material domain, negative inside and zero on its boundary. Considering
a finite element discretization, the level-set function allows one to compute a material fraction - or a material density -
in each element. Like in density-based method such as the Solid Isotropic Material with Penalization (SIMP) method
[20], every criterion can be computed thanks to the density. In the discretize-then-optimize methodology we introduce
here, we proceed as follows for computing derivatives of a criterion : we first differentiate the criterion with respect to
the material density, and compute the derivative of the material density with respect to the level-set function. Then
we compose the two derivatives. It remains finally to compose again with the variation of the level-set trough the
Hamilton-Jacobi equation.

This approach has already been studied for shape optimization [126, 127] but not when the update of the level-set
function is made through a Hamilton-Jacobi transport equation. We would like to test if the coupling of a discrete
approach with a Hamilton-Jacobi equation for tracking the motion of the shape is possible for first and second-order
optimization methods. The discrete approach is also known for being consistent even if not accurate. We recall
from Section 1.3 the difference between consistency and accuracy : accuracy is the difference between the computed
derivative and the exact derivative of the continuous model whereas consistency is the difference with the derivatives
of the discretized model. Therefore, in the present framework, we would also like to evaluate the consistency of the
discretize-then-optimize approach.

This chapter is dedicated to first and second-order calculations for usual criteria in this discrete approach. The
use of these derivatives are considered later in Section 9.4 as well as the question consistency.

8.1 Model Problem

Let Ω0 be a reference domain. Its boundary is divided in three parts with ∂Ω0 = Γ0 ∪Γ0
D ∪Γ0

N . We want to optimize
the part Γ0 of this shape. Thus, we define the set of admissible shapes by

Uad :=
{

Ω ∈ O3 | ΓD = Γ0
D and ΓN = Γ0

N

}
=
{

Ω ∈ O3 | Γ0
D ∪ Γ0

N ⊂ ∂Ω
}
. (8.1)

We also introduce a bounded open set D ⊂ Rd called the working domain or the computational domain, and impose
that all admissible shapes are included in this domain. This means that we consider the set of admissible shapes as

Uad = {Ω ∈ O1 | Γ0
D ∪ Γ0

N ⊂ ∂Ω and Ω ⊂ D}.

In this section, the C1-regularity for the shape is sufficient since we only need for the normal to be well-defined. For

123
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Ω0

Γ0
N

Γ0
D

Γ0

Ωθ

Γθ

Figure 8.1: Variation of a shape Ω0 and its boundary trough the diffeomorphism (Id + θ), when the set of admissible
shapes is restricted to Uad defined by (8.1).

Ω

D

ΓD

ΓN

Γ

Figure 8.2: Boundary condition for the arch.

a given f ∈ L2
(
D;Rd

)
and g ∈ H1

(
D;Rd

)
such that g = 0 on Γ, we consider the following boundary-value problem,

with unknown u ∈ H1(Ω;Rd) : 



−div
(
Aε(u)

)
= 0 in Ω,

u = 0 on ΓD,
Aε(u)n = g on ΓN ,
Aε(u)n = 0 on Γ,

(8.2)

where

Aξ = 2µξ + λTr(ξ)Id,

ε(u) =
1

2

(
∇u+∇uT

)
.

This is the framework of the elastic model presented in Section 2.1.5. With the Hilbert space

V =
{
u ∈ H1(Ω;Rd) | u = 0 on ΓD

}
,

the variational formulation of (8.2) is





find u ∈ V,

∀ϕ ∈ V,
ˆ

Ω

Aε(u) : ε(ϕ) =

ˆ
ΓN

g · ϕ. (8.3)

We consider three criteria : the compliance, a least square displacement criterion and the volume of the shape. First,
the compliance reads

J1(Ω) =

ˆ
Ω

Aε(u) : ε(u) =

ˆ
ΓN

g · u,
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Secondly, we consider a displacement criterion. For α ≥ 2, u0 ∈ Lα
(
Ω;R2

)
and k ∈ L∞(R2;R2) let J2 be defined by

J2(Ω) =

(ˆ
Ω

k|u− u0|α
) 1
α

.

The volume is simply

V (Ω) =

ˆ
Ω

1.

8.2 Discretization

We consider a square mesh with elements K ∈ Qh of size h and introduce the finite element space Q1

(
Qh;R2

)
for

the state equation (8.2). Let (ϕi)i∈I a basis of Q1

(
Qh;R2

)
. For the Q1 finite element space, the set I is the set of

vertices of the mesh Qh. We introduce a density function ρ which plays the role of the characteristic function of Ω. It
is defined on each cell by

ρ(K) =





1 if K ⊂ Ω,
0 if K ⊂ D\Ω,
|K ∩ Ω|
|K| otherwise.

Notation. For v ∈ Q1

(
Qh;R2

)
, we denote Vi its components in the basis (ϕi)i∈I , i.e v =

∑
i∈I Viϕi.

On each element K of the mesh, one can extract from (ϕi)i∈I a basis (ϕp)p∈IK of Q1

(
K;R2

)
. The set IK

corresponds to the vertices of the element K. Any v, w in Q1

(
Qh;R2

)
can be represented by their components V,W

in the basis (ϕi)i∈I . Then their restriction to Q1

(
K;R2

)
can be represented by the components V|K ,W|K in the basis

(ϕp)p∈IK . The elementary stiffness matrix AQh is the matrix such that for any v, w with components V,W in the
basis (ϕi)i∈I , ˆ

K

Aε(v) : ε(w) = V|K
TAQhW|K .

Taking into account the fact that the element K may not be embedded in Ω, we take advantage of the density function
to approximate ˆ

K∩Ω

Aε(v) : ε(w) ' ρ(K)V|K
TAQhW|K .

Therefore we have for any v, w in Q1

(
Qh;R2

)
ˆ

Ω

Aε(v) : ε(w) '
∑

K∈Qh

ρ(K)V|K
TAQhW|K . (8.4)

Definition 8.2.1. We define a third-order stiffness tensor A by

∀v, w ∈ Q1

(
Qh;R2

)
, A

(
ρ, v, w

)
≡
∑

K∈Qh

ρ(K)V|K
TAQhW|K . (8.5)

Due to the symmetry of the elementary stiffness matrix AQh , A is symmetric with respect to v, w, i.e A
(
ρ, v, w

)
=

A
(
ρ, w, v

)
. We also build another third-order mass tensor M by

∀v, w ∈ Q1

(
Qh;R2

)
, M

(
ρ, v, w

)
≡
∑

K∈Qh

ρ(K)V|K
TMQhW|K , (8.6)

where MQh is the usual elementary mass matrix for Q1, that is such that

∀v, w ∈ Q1(R2;R2),

ˆ
K

vw = V|K
TMQhW|K .

The mass tensor is straightforwardly symmetric.

Definition 8.2.2. We define the stiffness matrix A by

A = A
(
ρ, ·, ·

)
.

For the discretized version of (8.2), we will consider the load g as being a point load applied on a vertex of the
mesh Qh. Denoting G the components of the Q1 interpolation of g, this vector would have only one non-zero entry.
Then, for solving (8.2), we consider the following discretized version

∀v ∈ Q1

(
Qh;R2

)
, A

(
ρ, u, v

)
= V T G, (8.7)

which can also be written as
AU = G. (8.8)

With all these ingredients, it is possible to compute the criteria (J1, J2 and V ) and their gradients which we
detail in the following section. For the resolution of the Hamilton-Jacobi transport equation, we will use the classical
numerical scheme we introduced in Chapter 4.
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8.3 Discrete derivation

In the previous section, we constructed a discrete model for the optimization problem. Now we are concerned with
the derivation of this discrete model.

8.3.1 Density function

The density is computed from a level-set function φ. The level-set function is defined on each node i ∈ I, whereas the
density function is defined on each cell K ∈ Qh. A cell fully include in the domain Ω has a full density (ρ = 1), and a
cell that does not intersect the domain has a void density (ρ = ε� 1). The use of an ersatz density instead of void is
made to avoid the ill-conditioning of the stiffness matrix A. In the sequel, we only focus on cells that are intersected
by the boundary. They are characterized by the fact that the sign of φ changes on their four nodes. At their center
we introduce an additional node (in Figure 8.4 this node is denoted by C). This additional node is necessary for there
might be an uncertainty about the position of the shape (see Figure 8.3). A priori we do not know the value of φ

+ −

+−

+ −

+−

Figure 8.3: Non-uniqueness of a shape (grid domain) for a given level-set function defined by its values at the four
corners of a square.

at this node. We introduce at this node a value of φ such that it is the mean value of φ on the square cell. (This is
exactly the Q1 approximation). Now the cell is divided in four similar triangles Ti (i ∈ J1, 4K).

Figure 8.4 shows a square cell, and the subdividing triangles. It also shows all the possible ways for the domain Ω to
intersect a triangle. In each triangle T = ABC we compute a linear interpolation of φ and D , the linear approximation
of the curve φ = 0. We denote P1, P2, P3 the intersection points between D and the boundary of the triangle, according
to whether they are respectively on [A,C], [B,C] or [A,B]. The intersection points being on [A,C], [B,C] or [A,B]
are entirely determined by the sign of φ at the nodes A, B and C. Now we choose a coordinate system for the triangle,
so that D can be parametrized by the x-coordinate. Depending on the choice of the coordinate system, we are looking
for the plane P ⊂ R3 containing the points

(a)





(
0, 0, φC

)
,(√

2
2 , 0, φA

)
,(

0,
√

2
2 , φB

)
.

(b)





(
0, 0, φB

)
,(√

2
2 , 0, φC

)
,(√

2
2 ,
√

2
2 , φA

)
.

(c)





(
0, 0, φA

)
,(

1, 0, φB

)
,(

1
2 ,

1
2 , φC

)
.

This amounts to doing a linear approximation of φ. This is quite accurate, since the function φ is often redistan-
ciated during the resolution of the Hamilton-Jacobi transport equation to be an approximation of the signed distance
function. Let ax+ by + cz + d = 0 be an equation of P. Taking c = 1 leads to

(a)





a =
√

2
(
φC − φA

)
,

b =
√

2
(
φC − φB

)
,

c = 1,
d = −φC .

(b)





a =
√

2
(
φB − φC

)
,

b =
√

2
(
φC − φA

)
,

c = 1,
d = −φB .

(c)





a = φA − φB ,
b = φA + φB − 2φC ,
c = 1,
d = −φA.

Now we have the equation of the straight-line D , intersection of P with the plane whose equation is z = 0. Since
φ is very close to a signed distance function, it can at most vanish on two points on the triangle (assuming Ω is a
”nice” domain, well discretized on Qh). The equation of D is then ax+ by + d = 0. The choice of coordinates for the
triangle is made so that b 6= 0. The area of Ω ∩ T can be expressed only in terms of the values of φ at the nodes A,
B, C. When D coincides with an edge of the triangle T , the area is either 0 or 1

4h
2. Otherwise, we can compute it
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C

A B

C

A B

C

A B

C

A B

C

P3

P2

A B

C

P3

P1

A B

C

P2

P1

A B

C

P3

P2

A B

C

P3

P1

A B

C

P2

P1

Figure 8.4: All possible configurations of a triangle cut by the level-set function.

x

y

C A

B

P2 P3

B C

A

P3 P1

A B

C

P2P1

Figure 8.5: Choice of coordinate system for the triangle ABC in the cases (a) (left), (b) (middle) and (c) (right).
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analytically.

(a) |Ω ∩ T | =





φAφB − φAφC + φBφC
4(φA − φB)(φB − φC)

if φA < 0,

−φ2
B

4(φA − φB)(φB − φC)
otherwise.

(8.9)

(b) |Ω ∩ T | =





φ2
A

4(φA − φB)(φA − φC)
if φA < 0,

−(φAφB + φAφC − φBφC)

4(φA − φB)(φA − φC)
otherwise.

(8.10)

(c) |Ω ∩ T | =





−φAφC − φAφB + φBφC
4(φA − φC)(φB − φC)

if φA < 0,

φ2
C

4(φA − φC)(φB − φC)
otherwise.

(8.11)

Adding all contributions on the four triangles of a cell, we get Aτ , the value of the area of Ω ∩ Yτ . The density ρ is
obtained on Yτ by

ρ(τ) =
Aτ

|Yτ |
.

It depends only on the values of φ at the nodes of the square cell Yτ .

Lemma 8.3.1. Assume that φ does not vanish on the grid points, and that in any cell the mean value of φ on the
vertices does not vanish. Then the discrete density function is differentiable with respect to φ, and its derivative is

δρ(φ; dφ) = ∇ρ dφ, (8.12)

as long as φ does not vanish on one of the vertices of the triangles.

Proof. On each triangle in each cell τ , the dependency of the density with respect to the values of φ is analytic. This
expression is then differentiable with respect to φ. The lack of regularity occurs when φ vanishes on one of the vertices
of a triangle. In this case, with a variation of φ at the vertex where it vanishes, the density may switch between two
analytic expressions (8.9),(8.10), (8.11). Once we have computed the gradient of the density in each cell τ with respect
to φ, one can assemble it to get the global gradient of ρ.

8.3.2 Compliance

The discrete expression of the compliance reads

J1,d = A
(
ρ, U, U

)
, (8.13)

where U solves
AU = G.

Lemma 8.3.2. Let dρ1, dρ2 be two variations of ρ such that dρ1 = dρ2 = 0 on ΓD ∪ ΓN . The discrete compliance
J1,d is twice differentiable with respect to ρ, with

δJ1,d(ρ; dρ1) = −A
(
dρ1, u, u

)
.

δ2J1,d(ρ; dρ1, dρ2) = −2A
(
dρ1, du(dρ2), u

)
,

= 2A
(
ρ, du(dρ1), u(dρ2)

)
.

Proof. The variations dρ1, dρ2 are assumed not to modify ΓD ∪ΓN so that there is no variation of the right-hand side
of (8.8). Differentiating (8.13) with respect to ρ gives

δJ1,d(ρ; dρ1) = A
(
dρ1, u, u

)
+ A

(
ρ, du(dρ1), u

)
+ A

(
ρ, u, du(dρ1)

)
.

The symmetry of A allows us to write

δJ1,d(ρ; dρ1) = 2A
(
ρ, du(dρ1), u

)
+ A

(
dρ1, u, u

)
.
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We can differentiate the state equation (8.8). Therefore

∀v ∈ Q1

(
Qh;R2

)
, A

(
dρ1, u, v

)
+ A

(
ρ, du(dρ1), v

)
= 0, (8.14)

which leads to the announced result for the first derivative. Since A is linear in ρ, the state equation is smooth
with respect to ρ, and so is then the compliance J1,d. The second-order differentiability and the first expression of the
second-order derivative are then straightforwardly obtained. The variation of the state equation (8.14) with v = u(dρ2)
gives the result.

Lemma 8.3.3. Assuming that ρ is twice differentiable with respect to φ (under the assumptions of Lemma 8.3.1). Let
dφ1, dφ2 ∈ Q1

(
R2;R2) such that ∇ρ dφi = 0 on ΓD ∪ ΓN (with i = 1, 2). The compliance is twice differentiable with

respect to φ with

δ[J1,d ◦ ρ](φ; dφ1) = −A
(
∇ρ dφ1, u, u

)
,

and

δ2[J1,d ◦ ρ](φ; dφ1, dφ2) = −A
(
d2ρ(φ; dφ1; dφ2), u, u

)
+ 2A

(
ρ, du

(
∇ρ dφ1

)
, du
(
∇ρ dφ2

))
,

where d2ρ(φ; dφ1; dφ2) is the vector defined by



dρ(1)(φ; dφ1; dφ2)

...
dρ(n)(φ; dφ1; dφ2)




with n being the number of cells τ , and dρ(τ)(φ; dφ1; dφ2) is the second-order variation of ρ(τ) in the directions
dφ1, dφ2.

Proof. It is just a chain rule differentiation, thanks to (8.12). The requirement ∇ρ dφi = 0 on ΓD ∪ ΓN implies that
the space V as well as the right-hand side of (8.8) do not vary with respect to the shape.

8.3.3 Displacement

Let α ≥ 2, u0 ∈ Lα(Ω;R2) be a target displacement and k ∈ L∞(R2;R2). The displacement criterion reads

J2(Ω) =

(ˆ
Ω

k|u− u0|α
) 1
α

,

where u is the solution to (8.2). The discrete displacement criterion reads

J2,d(ρ) =

( ∑

τ∈Th

ρ(τ)k(τ)|u(τ)− u0(τ)|α
) 1
α

= M (ρ, k|u− u0|α, 1)
1
α .

We introduce

j2(Ω) =

ˆ
Ω

k|u− u0|α,

whose discrete expression is

j2,d(ρ) =
∑

τ∈Th

ρ(τ)k(τ)|u(τ)− u0(τ)|α = M (ρ, k|u− u0|α, 1).

Lemma 8.3.4. Let dρ1 be a variation of ρ such that dρ1 = 0 on ΓD∪ΓN . The discrete displacement j2,d is differentiable
with respect to ρ, with

δj2,d(ρ; dρ1) = M (dρ1, k|u− u0|α, 1) + A
(
dρ1, u, p

)
,

where p is the solution to

∀v ∈ Q1(R2;R2), A
(
ρ, p, v

)
= −M (ρ, αk |u− u0|α−2(u− u0), v).

Proof. The derivation with respect to ρ leads to

δj2,d(ρ; dρ1) = M (dρ1, k|u− u0|α, 1) + M (ρ, αk |u− u0|α−2(u− u0), du(dρ1)).

Introducing p solution to

∀v ∈ Q1(R2;R2), A
(
ρ, p, v

)
= −M (ρ, αk |u− u0|α−2(u− u0), v),
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with v = du(dρ1), we have

M (ρ, αk |u− u0|α−2(u− u0), du(dρ1)) = −A
(
ρ, p, du(dρ1)

)
,

and then with the help of (8.14)

M (ρ, αk |u− u0|α−2(u− u0), du(dρ1)) = A
(
dρ1, p, u

)
,

which is the expected result.

Lemma 8.3.5. Let dρ be a variation of ρ such that ΓN is not modified. Let also p be the solution to

∀v ∈ Q1(R2;R2), A
(
ρ, p, v

)
= −M (ρ, αk |u− u0|α−2(u− u0), v).

Then for all v ∈ Q1(R2;R2) we have

0 = A (dρ, p, v) + A (ρ, dp(dρ), v)

+ M (dρ, αk |u− u0|α−2(u− u0), v) (8.15)

+ M (dρ, α(α− 1)k |u− u0|α−2du(dρ), v).

Proof. This is nothing but a chain rule.

Lemma 8.3.6. Let dρ1, dρ2 be two variations of ρ such that dρ1 = dρ2 = 0 on ΓD∪ΓN . Then j2,d is twice differentiable
with respect to ρ, with

δ2j2,d(ρ; dρ1, dρ2) = A
(
dρ1, du(dρ2), p

)
+ A

(
dρ2, du(dρ1), p

)
,

+ M
(
ρ, kα(α− 1)|u− u0|α−2, du(dρ1)du(dρ2)

)

+ M
(
dρ1, kα|u− u0|α−2(u− u0), du(dρ2)

)

+ M
(
dρ2, kα|u− u0|α−2(u− u0), du(dρ1)

)
.

Proof. It suffices to combine the chain rule differentiation with (8.15).

8.3.4 Volume

The discrete expression of the volume reads

V =
∑

τ∈Th

ρ(τ)

Lemma 8.3.7. The volume function is twice differentiable with respect to ρ, its derivatives are given by

δV (ρ; dρ) =
∑

τ∈Th

dρ,

δ2V (ρ; dρ1; dρ2) = 0.

Proof. The result comes from the linearity of the discrete expression of the volume.

Lemma 8.3.8. Assuming that the density ρ is differentiable with respect to φ, the volume is also differentiable with
respect to φ. For dφ1, dφ2 ∈ Q1

(
Qh;R2

)
we have

δV (φ; dφ) = δV
(
φ;∇ρ dφ),

δ2V (φ; dφ1, dφ2) = δV
(
φ; d2ρ(φ; dφ1; dφ2)

)
.

8.3.5 Transport equation

Finally, after computing derivatives of the various criteria J1,d, J2,d and V with respect to a variation of the level-set,
we consider the variations of a level-set function through a Hamilton-Jacobi transport equation. We first recall briefly
the numerical scheme (see Section 4.2.2). For a given normal velocity v, the level-set φ0 is updated with :




∀(n, i, j) ∈ N× Z2, φn+1

i,j = φni,j −∆t
(

max(vi,j , 0)∇+
i,jφ

n + min(vi,j , 0)∇−i,jφn
)
,

∀(i, j) ∈ Z2, φ0
i,j = φ0(xi, yj),

(8.16)

where ∇±i,jφ is a numerical approximation by finite difference of the gradient of φ. The level-set function is often
redistanciated, then when φ0 is smooth, at least at the first step we have |∇φ0| = 1. Therefore we have

φ1 − φ0 = −v∆t.
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We then consider that the variation dφ given by the velocity v reads

dφ = −v.

As a result, the previous discrete derivatives with respect to normal velocities can be easily obtained. For example,
let us consider the volume criterion. Let v, w ∈ Q1(R2;R) be two normal velocities. The derivatives of the volume in
these direction read

δV (Ω; v) = −δV
(
φ;∇ρ v),

δ2V (Ω; v, w) = δV
(
φ; d2ρ(φ; v, w)

)
.
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After performing second-order analysis in the previous chapters, we would like now to benefit from it in view
of optimization. For finite-dimensional optimization, it is well-known that under regularity conditions on objective
functions, the Newton method converges quadratically. In the case of shape optimization we would like to see if the
second-order analysis allows one to have this quadratic convergence. At first we detail the optimization methods we
use and compare them. We focus on a quasi-Newton method that we compare to a gradient-like method. Secondly we
will introduce different approximation of the Newton method. Finally we will compare these methods on numerical
examples for the parametric thickness optimization and on the discretize-then-optimize approach for shape optimization
with the level-set method. The case of geometric shape optimization (see Chapter 7) is not considered here for the
numerical examples but only in Chapter 12.

9.1 Optimization method

In this section we consider the question of minimizing a real function E on a set Uad :

min
Ω∈Uad

E(Ω). (9.1)

The shape Ω can be represented by a thickness such as in Chapter 6, or by a material density like in Chapter 8, a
level-set function like in Chapter 4 or any other model. We will only assume here that we can compute first and
second-order derivatives of the function E : Uad → R with respect to the model.

For simplicity we consider the unconstrained minimization of an objective function E(Ω) over all possible shapes
Ω ⊂ Uad. Of course, in practice there are always additional constraints, whether directly on the domain Ω (like
geometrical or manufacturing constraints) or on the mechanical performances of Ω. Nevertheless, for simplicity we
focus on the definition of the Newton algorithm in the unconstrained case and we recall that the Newton method
can be extended to the constrained setting [92] without theoretical difficulties, although it may be quite intricate in
numerical practice. Starting from an initial shape Ω0, we build an iterative sequence (Ωp)p∈N in order to minimize the
objective function E(Ω).

For a direction v and a time-step t we will denote by Ω(p, t, v) the update of Ωp in the direction v with the time-step
t. We also assume that there is a scaling invariance between t and v, i.e. such that for α > 0, Ω(p, tα , αv) = Ω(p, t, v).
The new shape is defined as Ωp+1 = Ω(p, tp, v

p) where tp > 0 is chosen in order to decrease the reduced objective
function t 7→ E (Ω(p, t, vp)). With the notation of Chapter 1 it would correspond to take

up+1 = up + tp vp.

133
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At an iterate p, we will denote respectively lp,1 and lp,2 the first and second-order derivatives of the objective
function E with respect to the model. We denote Fp the space where the derivatives take place. The use of the index
p on Fp means that this space may depend on the shape Ωp.

9.1.1 Newton’s algorithm

In view of the scaling invariance Ω(p, tα , αv
p) = Ω(p, t, vp), there is no loss of generality in choosing the parameter tp

equal to 1. Then, for small enough v ∈ Fp, the following quadratic approximation holds true

E
(
p,Ω(1, v)

)
' E(Ωp) + lp,1(v) +

1

2
lp,2(v, v),

The principle of the Newton method is to minimize this quadratic approximation in order to obtain the descent
direction vp. First, we solve the following problem, referred to as the Newton problem

inf
v ∈ Fp

lp,1(v) +
1

2
lp,2(v, v). (9.2)

There is a priori no reason for the Newton problem (9.2) to have a finite infimum. Indeed, the Hessian operator
lp,2 may have zero or negative eigenvalues. To be convinced, consider the examples of Chapter 7 where the Hessian
depends on the normal vector n but also on the shape curvature H and has thus no clear sign. In such a case, the
infimum in (9.2) could be −∞. For this reason, instead of solving the Newton problem (9.2) we consider a trust-region
variant (see for example [92, Section 6.4], [131])

min
v ∈ Fp,

‖v‖L∞ ≤ vM ,

lp,1(v) +
1

2
lp,2(v, v) , (9.3)

for some finite positive bound vM . Such a bound implies that, at least after finite-dimensional discretization, (9.3)
admits a minimizer. If the solution vp to (9.3) satisfies a strict bound ‖vp‖L∞ < vM , then it is also a solution of (9.2)
and it satisfies the optimality condition or Newton equation

lp,2(vp, w) = −lp,1(w) ∀w ∈ Fp .

After having found a good descent direction vp, we also look for a good descent step tp to ensure an efficient decrease
of the reduced objective function t 7→ E

(
Ω(p, t, vp)

)
, or equivalently t 7→ E

(
Ω(p, 1, tvp)

)
, due to the scaling invariance.

Ideally we should choose tp as the global minimizer of the reduced objective function, but repeated evaluations of the
objective function are way too costly. Therefore, our strategy is a trade-off which ensures a substantial decrease of
the objective function, at an affordable computing price. We use a well-known backtracking procedure [92, Procedure
3.1, Chapter 3] :

Algorithm 9.1.1. Backtracking line search.

1. Choose tp > 0, c1, c2 in ]0, 1[.

2. Set tp := c1tp.

3. If E
(
Ω(p, 1, tpv

p)
)
≤ E

(
Ωp
)

+ c2 tp lp,1(vp) stop. Else go to step 2.

The following algorithm will be referred to as the Newton algorithm in the sequel.

Algorithm 9.1.2. Newton’s algorithm

1. Initialization Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in ]0, 1[.

2. Newton’s direction Compute the solution vp of (9.3).

3. Time Step Compute a time step tp with Algorithm 9.1.1.

4. Update Set Ωp+1 := Ω(p, tp, v
p) and p = p+ 1. If ‖vp‖Fp ≤ ε or tp ≤ η stop. Else return to step 2.

Remark 9.1.3. Since the Hessian operator lp,2 may have negative eigenvalues, the solution vp to (9.3) may fail to
be a descent direction, i.e. we may have lp,1(vp) > 0. When it occurs, we take its opposite in order to ensure that
lp,1(vp) ≤ 0.
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9.1.2 Gradient algorithm

Gradient algorithms are based on a first-order Taylor expansion for sufficiently small v

E
(
Ω(p, 1, v)

)
' E(Ωp) + lp,1(v).

The steepest-descent direction is defined by the solution to

min
‖v‖F=1 ,

lp,1(v).

Then, one looks for a descent step tp > 0 such that the objective function decreases. This is the classical gradient-type
method. However, in order to make a fair comparison with the previous Newton algorithm which is coupled to a
trust-region method, we change this usual algorithm and couple it again with a trust-region method. More precisely,
we compute a descent direction as the solution of

min
v ∈ Fp,

‖v‖L∞ ≤ vM

lp,1(v) +
1

2
‖v‖2Fp . (9.4)

Comparing with (9.3), we keep the same L∞ bound and we replace the Hessian operator by the simpler Fp scalar
product. Note that this quadratic term is not really necessary to make (9.4) well-posed but it helps for making a fair
comparison with (9.3). In particular, when F is a Banach space, if vp is a solution to (9.4) which does not saturate
the bound, ‖vp‖L∞ < vM , then the optimality condition of (9.4) yields that vp is the steepest-descent direction.

The main reason for choosing this approach for the gradient algorithm is to ease the comparison with the Newton
method. Indeed, the only difference between (9.3) and (9.4) is the replacement of the Hessian operator by the identity
operator on Fp.

The following algorithm will be referred to as the gradient algorithm in the sequel.

Algorithm 9.1.4. Gradient algorithm

1. Initialization Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in ]0, 1[.

2. Gradient direction Compute the solution vp of (9.4).

3. Time Step Compute a time step tp with Algorithm 9.1.1.

4. Update Set Ωp+1 := Ω(p, tp, v
p) and p = p+ 1. If ‖vp‖Fp ≤ ε or tp ≤ η stop. Else return to step 2.

9.2 Approximation of the Hessian

In the case of smooth objective functions to be optimized, the Newton method may improve a classical gradient method
by accelerating the convergence rate. Indeed it could become quadratic instead of being only linear. Therefore the use
of the second-order analysis usually decreases significantly the number of iteration of an optimization process. However
each iteration may become way more expensive from a computational point of view. In case of shape optimization,
when the criterion depends on the solution of an elliptic partial differential equation, the computation of the second-
order derivative implies to invert the corresponding elliptic operator, or at least to solve a lot of linear systems with
this operator. It can become prohibitive especially when the number of variables in the discretization increases. This
is the main reason why considering approximations of the second-order derivative.

The underlying idea of the methods we propose here is to approximate the inverse of the elliptic operator and then
to keep the exact structure of the second-order derivative. This idea does not really depend on the chosen framework
for shape optimization : it can be relevant for the thickness optimization (see Chapter 6) as well as for the geometric
shape optimization with the optimize-then-discretize approach (see Chapter 7) or for the discretize-then-optimize
approach (see Chapter 8). In order to ease the reading we will focus on the compliance criterion.

Let Uad be a set of designs. For instance Ω ∈ Uad could be a thickness distribution as well as a bounded open
set in Rd. We only assume that Uad is a Banach space. We also denote F the Banach space to which the directions
of derivation belong. Let A(Ω) be an invertible symmetric elliptic bilinear map (for instance the linearized elasticity
operator) defined on a Banach space V, and f be a source term. The operator A is a priori dependent on the design
Ω, contrary to the source term f which is assumed not to vary with respect to the shape. For v ∈ V, we denote A(Ω)v
the linear map : V 3 w 7→ A(Ω)(v, w). We consider the state uΩ solution to a ”physical system”

A(Ω)uΩ = f. (9.5)

In this section we are concerned with the approximation of the second-order derivative of a criterion that depends
on the state uΩ. We will focus on the case of the compliance that reads

J1(Ω) = A(Ω)(uΩ, uΩ). (9.6)



136 CHAPTER 9. NUMERICAL EXAMPLES

Even if this example is one of the simplest criterion, the approximation method applies to any other criterion implying
the state. The derivation of the function J1 with respect to the design in the direction θ ∈ F formally reads

J1
′ (Ω; θ) = 2A(Ω)(uΩ, u

′
Ω,θ) +A′ (Ω; θ) (uΩ, uΩ),

where u′Ω,θ and A′ (Ω; θ) correspond respectively to the derivation with respect to the design of the state and the
elliptic operator. We can also write formally the derivation of the state equation (9.5) :

A(Ω)u′Ω,θ = −A′ (Ω; θ)uΩ, (9.7)

which leads to
J1
′ (Ω; θ) = −A′ (Ω; θ) (uΩ, uΩ)

Therefore, for θ, ξ ∈ F , the second-order derivative of J1 reads

J1
′′ (Ω; θ, ξ) = −2A′ (Ω; θ) (uΩ, u

′
Ω,ξ)−A′′ (Ω; θ, ξ) (uΩ, uΩ).

In order to ease the reading here, we denote by g(u, θ) the right-hand side of (9.7) :

g(u, θ) = −A′ (Ω; θ)uΩ.

With the first-order derivation of the sate equation, this can be written as

J1
′′ (Ω; θ, ξ) = 2A(Ω)(u′Ω,θ, u

′
Ω,ξ)−A′′ (Ω; θ, ξ) (uΩ, uΩ),

or
J1
′′ (Ω; θ, ξ) = 2A(Ω)−1

(
g(u, ξ), g(u, θ)

)
−A′′ (Ω; θ, ξ) (uΩ, uΩ). (9.8)

Remark 9.2.1. The computation here is only formal. However, it has the benefit to show the form of the second-order
derivatives. For example, in the parametric case of thickness optimization in Chapter 6, the second-order derivative
of the compliance reads (see Lemma 6.2.3)

J1
′′ (h; k, l) = −2

ˆ
Ω

l(x)∇u(x) · ∇u′k(x) dx = 2

ˆ
Ω

h(x)∇u′l(x) · ∇u′k(x) dx.

The second term of (9.8) does not appear since the elasticity operator depends linearly on the design. In this case, the
linear elasticity operator reads

A(Ω)(v, w) =

ˆ
Ω

h∇v · ∇w.

Similarly for the geometric framework for shape optimization of Chapter 7, the second-order derivative reads

J1
′′ (Ω; θ, ξ) = 2

ˆ
Ω

∇u′θ · ∇u′ξ −
ˆ

Γ

(θ · n) (ξ · n)
(
∂n|∇u|2 +H|∇u|2

)
−
ˆ

Γ

Zθ,ξ|∇u|2,

where
Zθ,ξ =

(
(ξΓ · ∇Γ)n

)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

The first term 2

ˆ
Ω

∇u′θ ·∇u′ξ corresponds to 2A(Ω)(u′Ω,θ, u
′
Ω,ξ) whereas the remaining terms can be seen as a variation

of the elliptic operator with respect to the design.

Finally for optimization with the discretize-then-optimize framework described in Chapter 8, the second-order
derivative reads (see Lemma 8.3.3)

δ2[J1,d ◦ ρ](φ; dφ1, dφ2) = −A
(
d2ρ(φ; dφ1; dφ2), u, u

)
+ 2A

(
ρ, du

(
∇ρ dφ1

)
, du
(
∇ρ dφ2

))
,

which is again of the same form.

The computation of the second-order derivative implies to invert the elliptic operator A. Even if the last term
implying the derivative of the elliptic operator with respect to the design may lead to numerical difficulties, the
computationally expensive part of the second-order derivative is the inversion of A. This is the reason why in this
section we focus on approximating the first component :

A(Ω)−1
(
g(u, ξ), g(u, θ)

)
.

To that end, we present different methods based on the idea of approximating the inverse operator A(Ω)−1. The main
advantage is to reduce the cost of the computation while keeping the structure of the derivative, since the right-hand
sides g(u, θ) and g(u, ξ) will be exactly computed.

With these approximations, we can then use the exact same method as the Newton method presented in Sec-
tion 9.1.1. For the approximated CG-Newton method, we replace the resolution of (9.3) by Algorithm 9.2.4. For all
other approximation methods, for solving (9.3) we use the approximated second-order derivative instead of lp,2.
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9.2.1 BFGS-like method

The BFGS method intends to build iteratively a sequence (Bk)k∈N as an approximation of the second-order derivative
of a function, thanks to the variation of the design and the gradient of the function between two successive iterations
(see Section 1.2.3). At iteration k, a new approximation of the Hessian Bk+1 is searched such that

Bk+1sk = yk, (9.9)

where sk (and respectively yk) is the difference between the last two designs (respectively gradients). The iterate Bk+1

is usually built as a rank-one or rank-two update of the previous approximation Bk. It is also possible to build an
approximation of the inverse of Bk+1 instead, with the same update-rules and requirement.

In our case, we will also build an iterative sequence (Hk)k∈N as an approximation of the inverse of the operator
A. We will consider the same kinds of rank-one or rank-two updates of the inverse, but with a requirement different
from (9.9). We will impose that

Hk+1f = uΩk , (9.10)

where uΩk is the state, solution to A(Ωk)uΩk = f . For instance, the rank-two update will look like

Hk+1 =

(
I − 1

uΩk
T f

uΩk f
T

)
Hk

(
I − 1

uΩk
T f

f uΩk
T

)
+

1

uΩk
T f

uΩk uΩk
T . (9.11)

Remark 9.2.2. In case of geometric optimization, the BFGS method is quite tricky to apply. For instance, the shape
derivative is only defined on the boundary of a shape. Therefore for comparing two successive shape derivatives, one
should first map one shape to the other one, and then transport the shape derivative accordingly. From a numerical
point of view, the discretization of the shape derivative may be defined for example on every node in the vicinity of the
boundary. For two successive shapes, the set of nodes in the vicinity of the boundary may change, which implies that
two successive shape derivatives may not have the same dimensions.

The void domain is often represented by an ersatz material [6, 15]. During the optimization process, some parts
of the shape may be disconnected. The ersatz material allows one to avoid ill-conditioning of the stiffness matrix in
this case. The use of an ersatz material makes also the stiffness matrix as well as the state uΩ be defined on the
whole computational domain that does not change. This means that the stiffness matrix and the state uΩ have the
same dimensions from one iteration to the next one. Therefore it is possible to compare these quantities between two
successive iterates and use an update rule like (9.11).

9.2.2 Inexact-Newton method

The costly part of the computation of the second-order derivative is to invert the operator A. If the operator were
diagonal, it would not be expensive to invert. This is the reason why we would like to approximate the stiffness matrix
by its diagonal. This approximation is extremely rough but it keeps the structure of the second-order derivative since
the right-hand side g(u, θ) are exactly computed. As we will see later (see Section 15.5.4), the second-order derivative
can be less accurate than the first-order derivative while keeping the quadratic rate of convergence. Therefore the
roughness of the approximation may not be that problematic.

9.2.3 Incomplete LU-factorization method

Looking at the structure of the second-order derivative, we can observe that we don’t exactly need to invert the elliptic
operator A. It is only required to compute

A(Ω)−1g(uΩ, θ), (9.12)

for every θ ∈ F . After discretization, the number of linear systems to solve is the dimension of F . However, the
matrix of the operator is still the same for each right-hand side. Then if it is possible to factorize the operator A
with a Cholesky or a LU method for example, the computational cost may not be prohibitive. In this section we will
consider the LU factorization method. The idea is to compute two matrices L and U that are respectively lower and
upper triangular, and such that their product is equal to the matrix to factorize : LU = A. With such a factorization,
solving a linear system for A becomes straightforward : it suffices to solve two triangular systems.

When the matrix is sparse and of high dimension, the LU factorization method can be approximated. It briefly
consists in computing the pivots only for non-zero entries of the matrix to factorize. We will not enter into the details
of this approximation method and refer to [16, Exercise 6.10] for example. Once an approximated factorization is per-
formed, it is possible to solve all linear systems (9.12) very rapidly, and then to compute quite easily an approximation
of the second-order derivative.

9.2.4 Approximate CG-Newton method

The Newton method intends to find at each iteration the minimum of the quadratic approximation of the objective :

F 3 θ 7→ Q(θ) = J1
′ (Ω; θ) +

1

2
J1
′′ (Ω; θ, θ) . (9.13)
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When the bilinear map (θ, ξ) 7→ J1
′′ (Ω; θ, θ) is positive definite, one can use the well-known conjugate-gradient

algorithm to find a solution to the Newton equation. Since for shape optimization problems the second-order derivative
may not be positive definite, we use a modified version of this algorithm. This is an iterative method for minimizing
(9.13). In order to be consistent with the trust-region imposed for the Newton method Section 9.1.1 we also project
at each iteration of this modified conjugate-gradient algorithm the state θk on the trust-region.

In order to ease the reading, we start by recalling the classical conjugate-gradient algorithm for minimizing F (x) =
1
2x

TAx− bT x with x ∈ Rn and A is a n× n symmetric, positive definite matrix.

Algorithm 9.2.3. [92, Algorithm 5.2]

1. The initial state is x0 = 0.

2. The initial residual r0 is defined by r0 = Ax0 − b.
3. The initial descent direction is given by w0 = r0.

4. Loop
while rk 6= 0 do

(a) Set

αk =
rk
T rk

wkTAwk
.

(b) The new state is updated with xk+1 = xk − αkwk.

(c) Calculate the new residual rk+1 = rk − αkAwk.

(d) Set

γk =
rk+1

T rk+1

rkT rk
.

(e) Update the descent direction with wk+1 = rk+1 + γkwk.

end

5. return xk.

In the case of the functional Q defined by (9.13), we replace the mapping (x, y) 7→ xTAy by the mapping (θ, ξ) 7→
J1
′′ (Ω; θ, ξ). We also adapt the classical conjugate-gradient algorithm to the case when the bilinear map J1 is not

positive definite. Finally we truly thank C. Dapogny for all his ideas and advices, and that was a great help on this
topic.

Algorithm 9.2.4. Approximated conjugate-gradient algorithm.

1. The initial state is θ0 = 0.

2. The initial residual r0 is defined by the unique solution to

∀ξ ∈ F , r0 · ξ = J1
′ (Ω; ξ) + J1

′′ (Ω; θ0, ξ)

3. The initial descent direction is given by w0 = r0.

4. Loop
for k=0 ... until convergence do

(a) Calculate the mapping ξ 7→ J1
′′ (Ω;wk, ξ)

(b) If J1
′′ (Ω;wk, wk) is negative or ”very small” break. Else calculate the coefficient

αk =
rk · rk

J1
′′ (Ω;wk, wk)

.

(c) The new state is updated with θk+1 = θk−αkwk. The new state is projected on the space {v ∈ L∞ | ‖L∞‖v <
vM}

(d) Calculate the new residual which is the solution to

∀ξ ∈ F , rk+1 · ξ = rk · ξ − αkJ1
′′ (Ω;wk, ξ) .

(e) If the residual is ”small”, that is if
rk+1 · rk+1

r0 · r0
≤ ε,

for a user-defined threshold ε, break. Else, evaluate

γk =
rk+1 · rk+1

rk · rk
.
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(f) Update the descent direction with wk+1 = rk+1 + γkwk.

end

5. return θk.

This algorithm is not exactly a conjugate-gradient algorithm, since it stops if the direction wk comes in a region
where the bilinear map is not positive definite. However, it appears that the direction is always a descent direction.

In the numerical examples, the use of the approximated conjugate-gradient algorithm above will replace the reso-
lution of (9.3).

One of the main advantages of this method is that there is no need to assemble the whole mapping (θ, ξ) 7→
J1
′′ (Ω; θ, ξ). We only need to compute mappings ξ 7→ J1

′′ (Ω; θ, ξ) for a given θ.

9.3 Thickness optimization

For the thickness optimization of a plate, we consider only the following load case with a thickness varying between
hm = 0.1 and hM = 1. With a Lagrange multiplier Λ = 5 we aim at minimizing the following Lagrangian

L(h) = J(h) + ΛV (h),

where J is the compliance for the considered load case and V is the volume of the shape. The force applied is unitary,
the Young’s modulus and the Poisson’s coefficient are defined by E = 1 and ν = 0.3.

The shape is characterized by the thickness map hp, and the descent direction v takes place in L∞(Ω;R). Then at
iteration p ∈ N, for a time t, the update of the shape reads

hp+1 = max
(

min(hp + tv, hM ), hm

)
,

so that the update stays in L∞(Ω; [hm;hM ]).

Ω

D

ΓD

ΓN

Γ

Figure 9.1: Boundary condition for the arch.

As regards the optimization method, we will compare the gradient method (see Section 9.1.2) to different second-
order methods (see Section 9.1.1) where the second-order derivative - namely lp,2 - is computed exactly or only
approximated. At first we consider the Newton method with the exact Hessian. Secondly, we try the Newton
method with two approximations of the Hessian. These approximations are presented in Section 9.2.3 (respectively
Section 9.2.1) and referred to as the Inexact Newton’s method (respectively the BFGS-like method). The different
optimal thicknesses are represented in Figure 9.2, and the final numerical values are given in Table 9.2.

Iterations Lagrangian

Gradient 330 18.301767

Newton 12 18.243249

Inexact Newton 147 18.301749

BFGS-like 174 18.301782

Table 9.2: Convergence table.

For each method, we denote by Ω∞ the final shape. We also define Ω× as being the final shape for which the
objective function is minimal. The numerical experiments are done with FreeFem [71]. The exact second-order method
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Figure 9.2: Final domains. Gradient method (top left), Newton’s method (top right), Inexact Newton’s method
(bottom left) and BFGS-like method (bottom right).
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Figure 9.3: Convergence of L(Ω)− L(Ω∞) (left) and L(Ω)− L(Ω×) (right) with respect to the number of iterations.
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converges much more rapidly to a shape whose objective function is much better than with the other method. Thus,
we will no plot the convergence of L(Ω)− L(Ω×) for this method.

We can observe that the Newton method converges way faster than the other methods, and to the best of all final
shapes. The other two second-order methods also seem to converge more rapidly than the gradient method but the
improvement is less impressive.

9.4 Discrete optimization

Now we consider the case of discrete optimization of Chapter 8. Like previously, we consider the minimization of a
Lagrange function

L(Ω) = J1(Ω) + ΛV (Ω),

where J1 is the compliance for the load case of Figure 9.1, and the Lagrange multiplier is fixed to Λ = 0.1. The applied
point load is also g = 1, with a Young modulus E = 1 and a Poisson’s coefficient ν = 0.3.

The shape is modeled by the level-set method. The descent direction is found by a gradient-like equation (9.4) or
the Newton’s equation (9.3). Similarly to the optimize-then-discretize framework for shape optimization, the shape
derivatives depend only on the values on the boundary of the velocity field. Therefore, the direction found by the
gradient-like or Newton’s method has to be extended to the whole computational domain. This is done by a classical
regularization technique (Method 10.2.3). The shape is updated by the Hamilton-Jacobi transport equation, with a
time parameter given by a backtracking line search. The numerical scheme used for the transport equation is the
one of Section 4.2.2. We do not give many details here about the optimization method and refer to Section 10.2 and
Section 10.3. The principle is exactly the same, and the only difference is the expression of the derivatives.

In this framework for optimization, we will compare the gradient algorithm with two second-order methods : the
Newton method with the exact second-order derivative, and the approximate CG-Newton method.

9.4.1 Arch - initialization without holes

We consider the discretize-then-optimize approach for the minimization of the compliance under the same boundary
conditions as in Figure 9.1.

At first we consider the consistency of the derivative, in particular for the compliance criterion J1. For a given
shape Ωp, with a given velocity field v, we plot J1(Ω(p, t, v)) for different time steps t. We compare it to the linear
approximation J1(Ω) + tJ1(Ω; v). We can observe on Figure 9.4 that the derivative is consistent, in the sense that the
linear approximation is tangent to the real curve. This result was expected since the consistency is a priori the main
advantage of the discretize-then-optimize approach.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.11
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0.15
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J1(Ω)

exact function
linear approximation

Figure 9.4: Consistency of the derivative.

Now we can have a look at the final results for shape optimization in Table 9.4. The final values of the Lagrangian
are also similar, even if it is quite better with the gradient-like method. Looking at the iteration number, we can
also see that there is no gain in using the Newton method or an approximated second-order method. As concerns the
consistency of the approach, we also include in Table 9.4 an indicator of the decrease of the gradient. With v0 and
v∞ being the first and last directions taken by the optimization process, we consider the ratio

δL(Ω; v∞)

δL(Ω; v0)
. (9.14)
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This quantity is reported in the third column of Table 9.4. We can observe that it is rather small, meaning that at the
end there is no real hope to decrease the objective function. This indicates also that the discrete optimality conditions
are somehow reached.

The Figure 9.6 represents the initial shape and all final shapes. At first we can notice that the final shapes look all
the same. We denote Ω∞ each final shape, and Ω× the best of the three final shapes and plot the convergence curves
of L(Ω)− L(Ω∞) and L(Ω)− L(Ω×) (see Figure 9.5).
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Figure 9.5: Convergence of L(Ω)−L(Ω∞) (left) and L(Ω)−L(Ω×) (right) for Section 9.4.1 with respect to the number
of iterations.

The gradient method converges more rapidly to a better solution than the two second-order methods. We can
also see that the second-order methods do not perform well, and there is no interest in computing the second-order
derivatives. These last method converges indeed with more iterations to a shape that decreases less the objective
function.

9.4.2 Arch - initialization with holes

Here we consider the exact same minimization problem but with a different initialization. The initial design is plotted
at the top-left corner of Figure 9.7. Similarly to the previous example, we also report in Table 9.6 the final values of
the objective, the number of iterations, and the ratio

δL(Ω; v∞)

δL(Ω; v0)
. (9.15)

The conclusions are similar to the previous example. Indeed, there is no gain in computing second-order derivatives.

We keep the same notation as in the previous numerical example as concerns Ω∞ and Ω×, and plot the convergence
curve of L(Ω)− L(Ω∞) and L(Ω)− L(Ω×).
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Iterations Lagrangian Ratio (9.14)

Gradient 35 0.235502 5.620× 10−3

Newton 58 0.236085 3.000× 10−3

CG-Newton 33 0.236480 2.488× 10−2

Table 9.4: Convergence table for Section 9.4.1.

Figure 9.6: Final domains for Section 9.4.1. Gradient method (top left), Newton’s method (top right), Inexact
Newton’s method (bottom left) and BFGS-like method (bottom right).

Iterations Lagrangian Ratio (9.14)

Gradient 46 0.235509 1.433× 10−3

Newton 43 0.235991 4.685× 10−3

CG-Newton 43 0.236462 6.118× 10−3

Table 9.6: Convergence table for Section 9.4.2.
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Figure 9.7: Final domains for Section 9.4.2. Gradient method (top left), Newton’s method (top right), Inexact
Newton’s method (bottom left) and BFGS-like method (bottom right).

The non-efficiency of second-order derivatives is very questioning. Indeed, after discretization, the optimization
problem takes place in a finite-dimensional space where the Newton method as well as approximate second-order
methods have already proven to give superlinear convergence rate. There might be different explanations.

At first, we can wonder if the sufficient regularity required (see Section 1.2) is reached. There are many reasons why
this could not be the case. For example, if we consider the dependency of the density ρ with respect to the level-set
function φ, it is assumed that the level-set never vanishes at a node of the mesh (otherwise there are discontinuities
of the derivatives). This assumption is quite strong since there is no reason for the level-set not to vanish on a node,
or very close to a node of the mesh. Therefore, there should be discontinuities in the derivative of the density with
respect to the level-set, especially for second-order derivatives. Moreover we can have a look at the dependency of
the level-set on a velocity field through the Hamilton-Jacobi equation. The numerical scheme used might not be
sufficiently smooth since there are min and max functions.

As a conclusion, we could say that the discretize-then-optimize approach might be efficient for first-order algorithms,
since it appears to be consistent. However, for second-order optimization, the whole numerical method seems not to
be sufficiently smooth to lead to superlinear convergence.
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Figure 9.8: Convergence of L(Ω)−L(Ω∞) (left) and L(Ω)−L(Ω×) (right) for Section 9.4.2 with respect to the number
of iterations.
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Part III

Derivation along normal trajectories

”We are such stuff
as dreams are made on.”

W. Shakespeare
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Chapter 10

Shape derivation along normal
trajectories
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We recall from Section 3.2 that there are two variants for shape differentiation with the Hadamard method. The
first one - the displacement field method - consists in considering parametrization of shapes by vector fields. Given a
reference domain Ω ∈ Rd, a variation of this domain is of the type Ωθ = (Id + θ)(Ω) where θ is a smooth vector field
from Rd to Rd. There is also a second approach, called the speed method, based on shapes evolving along the flow of
a vector field. For a given vector field V defined from R+ × Rd to Rd, the evolving shape is defined for t ≥ 0 by

Ωt := {XV (t, x) | x ∈ Ω} ,

where XV is the solution (or flow) of the partial differential equation





∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
for t > 0 ,

XV (0, x) = x .

(10.1)

We refer to Section 3.2 for more details on this two usual frameworks for computing shape derivatives, and the
respective structures of the second-order shape derivatives.

The present chapter is the subject of a joint work with G. Allaire and E. Cancès [9]. Its goal is to define a third
approach of Hadamard shape differentiation by considering again a family of shapes Ωt, evolving with time t ≥ 0
in the direction of the normal vector n(t) to the boundary ∂Ωt. This new approach is especially adapted to the
level-set method for shape and topology optimization [14], [15], [129] where the shape is indeed advected in its normal
direction by solving an eikonal or Hamilton-Jacobi equation. Following the lead of Osher and Sethian [97], a shape Ω
is represented by a level-set function φ which, by definition, satisfies





x ∈ Ω iff φ(x) < 0,

x ∈ ∂Ω iff φ(x) = 0,

x ∈ Rd \ (Ω ∪ ∂Ω) iff φ(x) > 0.

(10.2)

In other words, the boundary of Ω is given by the zero level-set {x ∈ Rd | φ(x) = 0}. Let v(t, x) be a smooth function
from R+×Rd into R. Evolving the shape Ωt with a normal velocity v is equivalent to solving the following eikonal or
Hamilton-Jacobi equation 




∂ϕ

∂t
(t, x) + v(t, x) |∇xϕ(t, x)| = 0,

ϕ(0, x) = φ(x).
(10.3)

For t ≥ 0, the shape Ωt is recovered as the set of negative values of ϕ(t, ·), namely Ωt = {x ∈ Rd | ϕ(t, x) < 0}.
Here we give a rigorous definition of shape differentiation for such evolutions. The key ingredient is the method of

149
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bicharacteristics for solving (10.3) when its solution ϕ is smooth. It is well known [102] that smooth solutions of (10.3)
can be computed by solving the following system of two ordinary differential equations





dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
,

(10.4)

where H(t, x, p) = v(t, x)|p| is the Hamiltonian defined on R+ × Rd × Rd. For smooth evolutions1, an equivalent
definition of Ωt is then ∂Ωt = {x(t) solution of (10.4) with x(0) ∈ ∂Ω}. By using (10.4) we can introduce a new
definition of shape derivative which is different from the two previous ones (note that (10.4) cannot be put under the
simpler form (10.1)). It turns out that the first-order shape derivatives for all three variants are the same and it is
only the second-order shape derivative which is different and simpler with our approach since it does not involve any
tangential displacement of the boundary as in the two previous methods. Our main theoretical result is Theorem
10.1.4.

There are two main applications of the knowledge of second-order derivatives. The most obvious one is the definition
of the Newton algorithm. We explore this issue in Section 10.3. We are not the first ones to study second-order shape
derivatives and the Newton algorithm for shape optimization. Let us mention the stability results in [48], [50], and
the numerical algorithms in [95], [104]. Much more is even known in the context of control theory [78]. Another
application of second-order derivative is presented in Section 10.2 for the first time, to the best of our knowledge.
It turns out to be useful for the extension of a descent direction, merely known on the boundary ∂Ω, to the entire
space Rd, as required for solving the Hamilton-Jacobi equation (10.3). The main idea is that the structure of the
second-order shape derivative gives a hint on the choice of the normal derivative of the extension on ∂Ω. Our numerical
experiments indicate that this idea leads to better extensions in the sense that the convergence of the optimization
process is improved.

This chapter is organized as follows. Section 10.1 describes the proposed new setting of shape differentiation when
the shape evolves in its normal direction which is the typical case in the level-set method for shape optimization. In
Section 10.2 we take advantage of the structure of the second-order shape derivative to present new extension methods
for a descent direction, from ∂Ω to Rd. Section 10.3 is concerned with optimization algorithms presented in Section 9.1
and how to use them in the current framework. Technical details as well as numerical examples will be discussed later
in Chapter 11 and Chapter 12.

10.1 Shape derivation with respect to normal evolution

In this section we introduce a new variant of shape differentiation which makes sense for domains that evolve in the
direction of their normal vector, as it is the case in the level-set method [97], [46] (see also Figure 10.1). Note that
the case of a normal evolution is a priori not covered by the flow of equation (10.1) since it is not always obvious
that there exists a velocity field V which stays parallel to the normal vector for times t > 0, even if it is so at the
initial time t = 0 (in the sense of : orthogonal to the ”vertical” direction n0). There are simple examples of initial
geometries and normal flows : indeed, take an initial disk with a radial velocity. But it is easy to construct instances
of non-normal flows too. Take for example an initially flat part of the boundary (with constant unit normal n0) with
a velocity V (x) which is everywhere parallel to n0 and affine (non-constant) with respect to the tangential variable
(x − (x · n0)n0). Clearly, for any later time t > 0, the boundary is not anymore flat since points on the initially flat
part move with different velocities. Therefore, the unit normal to this part of ∂Ω(t) is no longer parallel to n0 and
thus to V . By a blow-up argument, this simple example can be extended to more general situations (at the price of
some technicalities). Nevertheless, the arguments below prove the existence of at least one normal velocity V (which
is not explicit in terms of the initial boundary), as stated in Remark 10.1.6. The main new idea here is to introduce a
set of two coupled ordinary differential equations (the so-called bicharacteristics) which are equivalent to the level-set
equation, in the case of smooth domains. We first recall the method of bicharacteristics for solving Hamilton-Jacobi
equations, of which the level-set equation is a particular case.

10.1.1 Bicharacteristics method for solving Hamilton-Jacobi equation

Let H(t, x, p) : R+ × Rd × Rd → R be a smooth function, called a Hamiltonian in this context. For (t, x) ∈ R+ × Rd,
we consider the scalar first-order partial differential equation

∂tφ(t, x) +H
(
t, x,∇xφ(t, x)

)
= 0, (10.5)

with unknown φ : R+ × Rd → R. Usually, (10.5) is complemented by initial and boundary conditions. Here, ∂t, ∇x
and ∇p respectively denote the derivation with respect to the first variable, the following d and the last d variables of
R+ × Rd × Rd. We recall a classical result for solving (10.5).

1The Hamiltonian H(t, x, p) = v(t, x)|p| is not smooth at p = 0 but it is not an issue as explained in Remark 10.1.3.
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Figure 10.1: Normal motion of a shape

Lemma 10.1.1 ([102, Lemma 5.I.2]). Let τ > 0 and O be an open set of Rd. Assume that φ is a smooth solution of
(10.5) for (t, x) ∈ [0, τ ]×O, and that (x(t), p(t)), defined from R+ into Rd × Rd, solves





dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
.

(10.6)

If p(0) = ∇xφ(0, x(0)), then p(t) = ∇xφ
(
t, x(t)

)
as long as (t, x(t)) ∈ [0, τ ] × O. Furthermore, let t 3 R+ 7→

(y(t), r(t)) ∈ R× R be the solution of





dy

dt
(t) = −∂tH

(
t, x(t), p(t)

)
,

dr

dt
(t) = y(t) + p(t) · ∇pH

(
t, x(t), p(t)

)
,

(10.7)

with y(0) = ∂tφ(0, x(0)), r(0) = φ
(
0, x(0)

)
. Then y(t) = ∂tφ(t, x(t)) and r(t) = φ

(
t, x(t)

)
as long as (t, x(t)) ∈

[0, τ ]×O.

Remark 10.1.2. Equation (10.6) is a Hamiltonian system, called the bicharacteristics system of (10.5), which admits
global solution in time since the value of the Hamiltonian function H

(
t, x(t), p(t)

)
is conserved along the flow. Lemma

10.1.1 roughly states that, in order to find a smooth solution of the Hamilton-Jacobi equation (10.5), it is enough to
solve the Hamiltonian system (10.6). This construction breaks down as soon as the projection on the configuration
space Rd of the bicharacteristics (x(t), p(t)) in the phase space Rd × Rd cross, implying that φ

(
t, x(t)

)
is multivalued.

In such a case, (10.5) has no smooth solution and one should resort to the notion of viscosity solutions [46]. However,
for short time τ there exists a unique smooth solution of (10.5) [102]. Note that (10.7) is decoupled from (10.6) and
is just a kind of post-processing phase of the bicharacteristics method.

For the sake of completeness, we provide a proof of Lemma 10.1.1.

Proof. To simplify the notation we write ż(t) instead of
dz

dt
(t). Let φ be a smooth solution of (10.5) on [0, τ ]×O and

define X(t) : [0, τ ]→ Rd the solution of the following ordinary differential equation (o.d.e.)





Ẋ(t) = ∇pH
(
t,X(t),∇xφ

(
t,X(t)

))
,

X(0) = x(0),
(10.8)

which exists, at least for short times, by virtue of the Cauchy-Lipschitz theorem. Let Y, P,R be defined by

Y (t) = ∂tφ
(
t,X(t)

)
, P (t) = ∇xφ

(
t,X(t)

)
, R(t) = φ

(
t,X(t)

)
.
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We now prove that X,Y, P,R coincide with x, y, p, r. By rewriting (10.8) and differentiating the definitions of Y, P,R,
we obtain

Ẋ(t) = ∇pH
(
t,X(t), P (t)

)
, Ẏ (t) = ∂ttφ

(
t,X(t)

)
+ ∂t∇xφ

(
t,X(t)

)
· Ẋ(t),

Ṗ (t) = ∂t∇xφ
(
t,X(t)

)
+∇2

xφ
(
t,X(t)

)
Ẋ(t), Ṙ(t) = ∂tφ

(
t,X(t)

)
+∇xφ

(
t,X(t)

)
· Ẋ(t).

With the definition of Y, P and the o.d.e. for X, we already get an o.d.e. for R, similar to that for r in (10.7),

Ṙ(t) = Y (t) + P (t) · ∇pH
(
t,X(t), P (t)

)
.

Differentiating the Hamilton-Jacobi equation (10.5) with respect to t and x respectively leads to

∂ttφ+ ∂tH + ∂t∇xφ · ∇pH = 0, and ∂t∇xφ+∇xH +∇2
xφ∇pH = 0. (10.9)

Evaluating (10.9) at
(
t,X(t)

)
(for small time, we are sure that X(t) ∈ O), and using Ẋ = ∇pH, we get

∂ttφ+ ∂t∇φ · Ẋ = −∂tH, and ∂t∇φ+∇2
xφẊ = −∇xH,

which are exactly the o.d.e.’s, similar to those for y and p,

Ẏ (t) = −∂tH
(
t,X(t), P (t)

)
, and Ṗ (t) = −∇xH

(
t,X(t), P (t)

)
.

As a result, (x, y, p, r) and (X,Y, P,R) satisfy the same differential system with the same initial condition since
X(0) = x(0) and p(0) = ∇xφ(0, x(0)) by assumption. Therefore (x, y, p, r) = (X,Y, P,R) and, furthermore, from the
equivalent definitions of Y, P,R we deduce

y(t) = ∂tφ
(
t, x(t)

)
, p(t) = ∇xφ

(
t, x(t)

)
, r(t) = φ

(
t, x(t)

)
.

A particular case of (10.5), which is crucial for the level-set method, is the eikonal equation corresponding to the
Hamiltonian H(t, x, p) = v(t, x)|p| where v is a smooth function from R+ × Rd into R. In other words, we specialize
(10.5) to the case {

∂tφ(t, x) + v(t, x) |∇xφ(t, x)| = 0,
φ(0, x) = φ0(x),

(10.10)

where φ0 is a smooth function, satisfying for some smooth bounded open set Ω0,





φ0(x) < 0 if x ∈ Ω0,
φ0(x) = 0 if x ∈ ∂Ω0,
φ0(x) > 0 if x ∈ Rd \ (Ω0 ∪ ∂Ω0).

The evolution of the eikonal equation defines a family of domains Ωt :

Ωt :=
{
x ∈ Rd | φ(t, x) < 0

}
.

Applying Lemma 10.1.1 to (10.10), in the case of smooth solutions, yields ṗ = ∇xφ and

ẋ = ∇pH = v
∇xφ
|∇xφ|

= v n (10.11)

because the derivative of the function |p| is p/|p| and ∇xφ/|∇xφ| defines a smooth extension of the unit exterior normal
vector n to the boundary ∂Ωt. We thus recover from (10.11) that the level-set equation (10.10) corresponds to an
evolution with a normal velocity v.

Furthermore, if we restrict the solutions of the Hamiltonian system (10.6) to those initial positions x(0) ∈ ∂Ω0,
with p(0) = ∇xφ0(x(0)), then the boundary of Ωt can be obtained simply by

∂Ωt = {x(t) solution of (10.6) with x(0) ∈ ∂Ω0} ,

without the necessity to solve the other o.d.e.’s (10.7).

Remark 10.1.3. Although the function Rd 3 p 7→ |p| ∈ R is not smooth at 0 (contrary to our assumption), it is not
a problem for the level-set method which focuses only on the evolution of the zero level-set (the shape boundary) where
p = ∇xφ is proportional to the normal vector to the boundary and thus does not vanish, at least for small times when
the initial value p(0) is uniformly bounded away from 0. In other words, the non-smooth function |p| can be regularized
near 0 without changing the evolution of the zero level-set.
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10.1.2 Derivation along normal trajectories

We now introduce our new variant of the Hadamard method of shape differentiation, based on the Hamiltonian system
(10.6).

Theorem 10.1.4. Let k ≥ 1, E : Ok+2 → R be twice differentiable at Ω0 ∈ Ok+2 and v(t, x) be a Ck scalar
function from R+ × Rd into R. Let φ0 be the signed distance function associated to Ω0. For some time τ > 0, let
φ ∈ Ck+2

(
[0, τ ]× Rd

)
be a smooth solution (see Remark 10.1.5) of

{
∂tφ(t, x) + v(t, x) |∇xφ(t, x)| = 0,
φ(0, x) = φ0(x).

(10.12)

Define Ωt :=
{
x ∈ Rd | φ(t, x) < 0

}
and ε(t) := E

(
Ωt
)
. Then ε is twice differentiable at 0 and it holds

ε′(0) = l1
(
v(0, ·)

)
and ε′′(0) = l2

(
v(0, ·), v(0, ·)

)
+ l1(Ẑv,v(0, ·)),

with the same linear form l1 and bilinear form l2, defined on ∂Ω, as in Theorem 3.2.15, and where Ẑv,v = ∂tv + v∂nv
with ∂nv = n · ∇xv.

Remark 10.1.5. As already said in Remark 10.1.2, (10.12) may not have smooth solutions for all times, even if
the Hamiltonian H and the initial data are smooth. Nevertheless, there always exists a small enough time τ > 0
such that there exists a unique classical (smooth) solution of (10.12). To obtain solutions for all times, Crandall and
Lions [46] introduced the notion of viscosity solutions for Hamilton-Jacobi equations, which yields the uniqueness and
global-in-time existence of such solutions.

Remark 10.1.6. Once again, the first-order shape derivative in Theorem 10.1.4 is the same as in the two variants
of the Hadamard method, discussed in Section 3.2. However, the second-order derivative is different from the previous
ones in Theorems 3.2.15 and 3.2.19. The family of shape evolutions along the normal direction is somehow smaller than
the previous two classes of shape evolutions since it completely eliminates the possibility of tangential displacements.
Therefore, the second-order derivative is simpler in the present new setting. The formula of the second-order derivative
in Theorem 10.1.4 coincides with that of Theorem 3.2.19 if one can find a vector field V (t, x) such that V (t, x) =
v(t, x)n(t, x), where n(t, x) is the unit normal vector to the evolving shape Ωt. The existence of such a vector field
was a priori not obvious but it is actually provided by the method of bicharacteristics in Lemma 10.1.1. Indeed, after
solving (10.6), it is enough to take V (t, x) = ∇pH(t, x, p(t)), where H(t, x, p) = v(t, x)|p|. Note that such a velocity
field V depends strongly on the initial shape Ω0 and that it is far from being explicit.

Proof. We apply the result of Section 10.1.1 with H(t, x, p) = v(t, x)|p|. By definition, we have ε(t) = E
(
Ωt
)

=

E
(
x(t, ·)− Id

)
where x(t, x0) is the solution of (10.6) with x(0) = x0. Arguing as in the proof of Theorem 3.2.19 and

using Theorem 3.2.15, the shape derivatives are given by the chain rule

ε′(t) = E ′
(
x(t, ·)− Id; ẋ(t, ·)

)
,

ε′′(t) = E ′′
(
x(t, ·)− Id; ẋ(t, ·), ẋ(t, ·)

)
+ E ′

(
x(t, ·)− Id; ẍ(t, ·)

)
.

In (10.11) we already computed ẋ(t, x0) = v(t, x0) n(t, x0) and thus ε′(0) = l1

(
ẋ(0, ·) · n

)
= l1

(
v(0, ·)

)
. To obtain the

second-order derivative, we remark that, by definition the tangential component of ẋ(0, ·) vanishes, i.e., ẋ(0, ·)Γ = 0
(or ẋ(0, ·) is a normal vector), which implies Zẋ(0,·),ẋ(0,·) = 0 (where Z is defined in (3.15)) and thus

E ′′
(
x(0, ·)− Id; ẋ(0, ·), ẋ(0, ·)

)
= l2

(
ẋ(0, ·) · n, ẋ(0, ·) · n

)
,

so that
ε′′(0) = l2

(
ẋ(0, ·) · n, ẋ(0, ·) · n

)
+ l1

(
ẍ(0, ·) · n

)
. (10.13)

It remains to compute ẍ, starting from ẋ(t, ·) = v(t, ·) n(t, ·). We first compute the time derivative of n = p/|p| :

ṅ =
ṗ

|p| − p
(p · ṗ)
|p|3 .

Since ṗ = −∇xH = −|p|∇xv, p = ∇φ and n =
∇xφ
|∇xφ|

, we get

ṅ = −∇xv +
p

|p|3 |p| (∇xv · p) = −∇xv + (∇xv · n) n.

Here n is an extension in Rd of the unit exterior normal to ∂Ωt. If we restrict ourselves to the boundary ∂Ωt,
this implies that ṅ = −∇Γv. By using a suitable extension of ∇Γv , this result is valid everywhere in Rd. Then,
differentiating ẋ(t, ·) = v(t, ·) n(t, ·) we deduce

ẍ =
(
∂tv +∇xv · ẋ

)
n + vṅ = ∂tv n + v

(
∇xv · n

)
n− v∇Γv, (10.14)

which implies ẍ(0, ·) · n = ∂tv + v
(
∇xv · n

)
since ∇Γv · n = 0. This proves the desired result.
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10.1.3 Comparison with the existing derivation frameworks

Now there are three frameworks for shape derivation with the Hadamard method. We briefly sum up the differences
between them. In each case, time variations of the shape can be put under the form

Ωt = X(t,Ω),

where X : R+ × Rd → Rd. Thus, the time derivatives in the directions d1, d2 : R+ × Rd → R of a shape-dependent
function E can be written as

d

dt
E ◦X = l1(d1),

d2

dt2
E ◦X = l2(d1, d2) + l1(Z),

(10.15)

where Z : Rd → R.

Displacement field method

For the displacement field method, a transformation of a shape is given by a diffeomorphism θ : Rd → Rd. The
time-dependent transformation map X is given by (see Figure 10.2)

X(t,Ω) = (Id + tθ)(Ω).

In that case, for θ, ξ : Rd → Rd the shape derivatives read like in (10.15) with d1 = θ · n, d2 = ξ · n and

Z = Zθ,ξ =
(

(ξΓ · ∇Γ) n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

The shape derivatives can be recovered by a time-dependent variation (see also Section 3.2.3), but the derivatives are
really computed with respect to the velocity fields θ, ξ.

x+ θ(x)

x

Ω

(
Id + θ

)
Ω

Figure 10.2: Transformation of a shape by Id + θ

Speed method

For the speed method, with velocity V : R+ × Rd → Rd the transformation of a reference domain is given by XV

which is defined by a set of characteristics in [0, τ ].





∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
for t > 0 ,

XV (0, x) = x .

(10.16)

The shape derivatives in the directions V, V have the same structure as in (10.15) with d1 = V (0) · n, d2 = V (0) · n
and

Z = Z̃V =
(
∂tV + (V · ∇)V

)
· n + ZV,V .

Contrary to the displacement field method, the trajectories are taken into account here (see Figure 10.3).
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XV

(
τ, x
)

x

Ω

XV

(
τ,Ω

)

Figure 10.3: Transformation of a shape by XV

Variation along normal trajectories

In the case of evolution along normal trajectories, the transformation map is implicit and given by a bicharacteristics
system. With a velocity v : Rd → R, φ solution to

∂tφ(t, x) +H
(
t, x,∇xφ(t, x)

)
= 0, (10.17)

and x, p solution to 



dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
,

(10.18)

where p(0) = ∇xφ(0, x(0)) and x(0) ∈ Rd (see Lemma 10.1.1), the transformation map is given by

Xv(t, x(0)) = ∇pH
(
t, x(t), p(t)

)
.

The shape derivatives in the directions v, v still have the same structures with d1 = d2 = v and

Z = Ẑv,v = ∂tv + v∂nv.

In this framework, similarly to the speed method, the trajectories are taken into account for computing derivatives.

Xv

(
τ, x
)

x

Ω

Ωτ := Xv

(
τ,Ω

)

Figure 10.4: Transformation of a shape by Xv

10.2 Extension of the shape derivative

In this section we discuss a first application of the formula for the second-order shape derivative, which is concerned
with the problem of extending the shape derivative or the normal velocity in the eikonal equation (10.12) from the
shape boundary to the entire space Rd. Indeed, as stated in Theorems 3.2.15, 3.2.19 and 10.1.4, the first-order shape
derivative is of the type E ′ (0; θ) = l1 (θ · n) where l1 is a linear form on Ck

(
∂Ω
)

(k ≥ 1). In full generality, l1 can be
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represented by a distribution. Nevertheless, in many practical cases, it is smoother, meaning that it can be represented
by a function j ∈ L1(∂Ω;R). For simplicity, we assume it is the case. Thus, there exists an integrand j(x), depending
on the function E and defined only on the boundary ∂Ω, such that

E ′ (0; θ) = l1 (θ · n) ≡
ˆ
∂Ω

j (θ · n) .

A possible descent direction is to choose (θ · n) = −j (other choices are possible, see [15], [32], [53]). In the sequel we
call vγ a descent direction, a function from ∂Ω into R such that

l1(vγ) =

ˆ
∂Ω

j vγ ≤ 0 . (10.19)

A priori, vγ is defined only on ∂Ω, while the level-set method requires to solve (10.12) with a velocity vγ defined
everywhere in Rd. Therefore, one needs to extend vγ from ∂Ω to Rd. This issue is discussed in [15], [32], [53] and here
we propose new approaches based on the following Ansatz. For small t ≥ 0, according to Theorem 10.1.4, we write
the second-order Taylor expansion

E
(
Ωt
)

= ε(t) = ε(0) + t l1(vγ) +
1

2
t2
(
l2
(
vγ , vγ

)
+ l1(∂tvγ + vγ∂nvγ)

)
+O(t3). (10.20)

For simplicity we restrict ourselves to time-independent descent directions, namely ∂tvγ = 0. Taking into account the
bilinear form l2 in (10.20) is at the basis of the Newton algorithm which will be discussed in the next section. For the
moment we focus on the other second-order term and our main idea is to build an extension of vγ such that

l1(vγ∂nvγ) ≤ 0. (10.21)

To enforce (10.21), and since vγ is already bound to satisfy (10.19), we can choose a suitable normal derivative ∂nvγ .
We propose here two new extension methods based on this idea and we recall a third classical method which, under
some variants, can be found in [15], [32], [53].

Method 10.2.1. Given a descent direction vγ on ∂Ω, we compute its extension v(t, x) to Rd as the solution of the
following linear transport equation





∂tv + sign(φ)
(
n · ∇xv − 1

)
= 0 in [0, τ ]× Rd,

v(t, x) = vγ on ∂Ω,
v(0, x) = 0 on Rd\∂Ω,

(10.22)

where n is an extension of the unit outer normal (cf. Remark 3.2.16) and φ is a level-set function for Ω. The
stationary solution v of (10.22) satisfies

n · ∇xv = ∂nvγ = 1 in Rd, and v = vγ on ∂Ω.

Thus, we obtain l1(v) = l1(vγ) and l1(v∂nv) = l1(v) = l1(vγ) ≤ 0.

As already said in Remark 3.2.16, there exists a smooth extension of the unit outer normal n in the neighborhood
of ∂Ω [72]. A global smooth extension is easily deduced if the unit norm constraint is not enforced away from ∂Ω.
In numerical practice, the extension of n is given by ∇xφ

|∇xφ| where φ is the level-set function (such an extension is not

smooth on the skeleton of the shape Ω). Equation (10.22) is very much inspired from the classical re-initialization (or
redistanciation) technique in the level-set algorithm. In particular, the velocity being opposed on each side of ∂Ω, it
implies that the information from the boundary condition vγ is carried away from ∂Ω. It is not mathematically clear

that there exists a stationary solution of (10.22). In numerical practice (with our choice n = ∇xφ
|∇xφ| ), we always find

one and, in any case, since the extension is only needed locally close to ∂Ω, we could stop the time evolution of (10.22)
as soon as the characteristics associated to the velocity sign(φ)n have reached a certain distance away from ∂Ω. The
same comments apply to the following alternative extension method.

Method 10.2.2. Let vγ be a descent direction defined on ∂Ω. Assume that an extension of the product jvγ is already
known in Rd (we keep the same notation jvγ for the extension). We compute another extension v(t, x) of vγ as a
solution of the linear transport equation





∂tv + sign(φ)
(
n · ∇xv + jvγ

)
= 0 in [0, τ ]× Rd,

v(t, x) = vγ on ∂Ω,
v(0, x) = 0 on Rd\∂Ω,

(10.23)

where φ is a level-set function for Ω. The stationary solution v of (10.23) satisfies

n · ∇xv = −jvγ in Rd, and v = vγ on ∂Ω.

Thus, we obtain l1(v) = l1(vγ) and

l1(v∂nv) = l1(−jv2
γ) = −

ˆ
∂Ω

j2v2
γ ≤ 0.
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Eventually, for the sake of comparison, we recall a standard regularization and extension approach which can be
found in [15], [32], [53].

Method 10.2.3. Let vγ be a descent direction defined on ∂Ω. We compute an extension v(x) of vγ as a solution of
the following variational problem on Rd

η2

ˆ
Rd
∇v · ∇w +

ˆ
∂Ω

vw =

ˆ
∂Ω

vγw, ∀w ∈ H1
(
Rd
)
, (10.24)

where η > 0 is a small parameter (typically of the order of a few mesh cell diameters in numerical practice). In
practice too, the full space Rd is replaced by a bounded computational domain. On the one hand, the solution v is not
strictly speaking an extension of vγ since vγ 6= v on ∂Ω. On the other hand, the direction v is more regular than vγ
on ∂Ω. In the case of the obvious descent direction vγ = −j, one can check that the solution v of (10.24) remains a
descent direction since

l1(v) =

ˆ
∂Ω

jv = −
ˆ
∂Ω

vγv = −
(
η2

ˆ
Rd
|∇v|2 +

ˆ
∂Ω

v2
)
≤ 0.

Remark 10.2.4. Method 10.2.3 can be used to compute the extension of jvγ which is assumed to be already known at
the beginning of Method 10.2.2. Even though such an extension is not equal to jvγ on ∂Ω, one can show by the same
argument that Method 10.2.2 produces again an extension satisfying l1(v∂nv) ≤ 0.

10.3 Optimization method

The Newton method as well as the gradient method have already been introduced in Section 9.1 for general shape
optimization problems. Here we consider the case of shape optimization with the level-set method, and give some
more details on these two methods.

We consider the unconstrained minimization of an objective function E(Ω) over all possible shapes Ω ⊂ Rd.
Starting from an initial shape Ω0, we build an iterative sequence (Ωp)p∈N in order to minimize the objective function
E(Ω). For a given iteration number p, we denote by φp the level-set function associated to ∂Ωp. To build the new
shape Ωp+1 from Ωp, we solve the Hamilton-Jacobi equation

{
∂tφp+1(t, x) + vp(x) |∇xφp+1(t, x)| = 0,

φp+1(0, x) = φp(x).
(10.25)

For any pseudo-time or descent parameter t ≥ 0 we define an associated shape

Ω(t, vp) =
{
x ∈ Rd | φp+1(t, x) < 0

}
.

The new shape is defined as Ωp+1 = Ω(tp, v
p) where tp > 0 is chosen in order to decrease the reduced objective

function t 7→ E (Ω(t, vp)).
In (10.25) the normal velocity vp is a descent direction (properly extended to Rd by one of the three methods

presented in Section 10.2), evaluated at Ωp with a gradient or the Newton method that we now describe. The linear
and bilinear forms l1 and l2, defined in Theorem 3.2.15, depend on the shape Ωp (cf. the explicit examples in Chapter 7
or Chapter 12). In this section, we denote them by lp,1 and lp,2 for the corresponding shape Ωp.

10.3.1 Newton’s algorithm

Thanks to the scaling invariance Ω( tα , αv
p) = Ω(t, vp) the parameter tp is chosen equal to 1. Then, for small enough

v, the following quadratic approximation holds true

E
(
Ω(1, v)

)
' E(Ωp) + lp,1(v) +

1

2

(
lp,2(v, v) + lp,1(v∂nv)

)
,

where only the traces of v and ∂nv on ∂Ωp play a role. The Newton method intends to minimize this quadratic
approximation in order to obtain the descent direction vp. We now observe that, on ∂Ωp, v and ∂nv may be considered
as independent variables and that ∂nv does not enter the advection equation (10.25). Therefore, ∂nv can be used only
in an extension process of the shape derivative (as explained in the previous section) and it makes sense to minimize
separately in v and ∂nv (although other choices are possible). First, we solve the following problem, referred to as the
Newton problem

min
v ∈ C1,∞(∂Ωp;R

) lp,1(v) +
1

2
lp,2(v, v). (10.26)

Second, knowing the optimal vp in (10.26), we should minimize lp,1(vp∂nv) with respect to ∂nv. This linear problem
does not have a solution, and this is precisely the content of the previous section. Note that, if we impose a trust-region
constraint (say ‖∂nv‖L2(∂Ωp;R) ≤ m), then this linear problem has a solution ∂nv which is proportional to jv and we
are back to Method 10.2.2 for extending the descent direction away from ∂Ω. Another possibility could be to first
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extend v by Method 10.2.3 and then consider ∂nv to be the image of the extended v by the Dirichlet-to-Neumann map.
It results in a quadratic approximation featuring only v. It is not clear how it can be implemented in practice but, at
least, it shows that there are different ways of extracting useful information from the second-order approximation of
the objective function.

Like it is said in the general case (see Section 9.1), the Newton problem (10.26) has no reason to be bounded, and
to have a finite minimum. Indeed, the Hessian operator lp,2 usually depends on the normal vector and the curvature
and therefore may not be positive definite. In such a case, the minimal value of (10.26) could be −∞. As a result, the
Newton problem (10.26) is replaced by a trust-region variant (see for example [92, Section 6.4], [131]) that writes :

min
v ∈ C1,∞(∂Ωp;R

)
,

‖v‖L∞(∂Ωp;R) ≤ vM ,

lp,1(v) +
1

2
lp,2(v, v) , (10.27)

for some finite positive bound vM . When the solution vp to (10.27) satisfies a strict bound ‖vp‖L∞(∂Ω;R) < vM , then

it is also a solution of (10.26) and it satisfies Newton’s equation

lp,2(vp, w) = −lp,1(w) ∀w ∈ C1,∞(∂Ωp;R
)
.

With a good descent direction vp, we also have to look for a good descent step tp. We use for that the usual backtracking
procedure of Algorithm 9.1.1.

Now we recall the Newton algorithm in this context.

Algorithm 10.3.1. Newton’s algorithm

1. Initialization Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in ]0, 1[.

2. Newton’s direction Compute the solution vp of (10.27).

3. Extension Compute an extension of vp with one of the three methods detailed in Section 10.2.

4. Time Step Compute a time step tp with Algorithm 9.1.1.

5. Update Set Ωp+1 = Ω(tp, v
p) and p = p+ 1. If

ˆ
∂Ωp

|vpγ |2 ≤ ε or tp ≤ η stop. Else return to step 2.

Remark 10.3.2. Like explained in Remark 9.1.3, when the bilinear map lp,2 is not positive definite, the direction vp

solution to (10.27) may not be a descent direction. In such a case, we replace vp by its opposite.

10.3.2 Gradient algorithm

In the context of shape optimization with the level-set method, the gradient-like descent direction is computed as the
solution to

min
v ∈ C1,∞(∂Ωp;R

)
,

‖v‖L∞(∂Ωp;R) ≤ vM

lp,1(v) +
1

2

ˆ
∂Ωp

v2. (10.28)

The L∞ (∂Ωp;R) bound is added for the same reason explained in Section 9.1, that is in order to ease the comparison
with the Newton method.

In this context we write the gradient algorithm.

Algorithm 10.3.3. Gradient algorithm

1. Initialization Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in ]0, 1[.

2. Gradient direction Compute the solution vp of (10.28).

3. Extension Compute an extension of vp with one of the three methods detailed in Section 10.2.

4. Time Step Compute a time step tp with Algorithm 9.1.1.

5. Update Set Ωp+1 = Ω(tp, v
p) and p = p+ 1. If

ˆ
∂Ωp

|vp|2 ≤ ε or tp ≤ η stop. Else return to step 2.
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Both gradient and Newton’s algorithms are based on shape derivatives which are written in terms of boundary
integrals. It is therefore crucial to compute these integrals accurately to obtain efficient optimization methods. We
first recall the standard procedure in the level-set method for structural optimization which is based on the so-
called approximate Dirac mass for the boundary. Then we introduce a better approximation using a piecewise linear
reconstruction of the boundary, in the spirit of earlier results of Min and Gibou [84, 85].

11.1 Dirac mass function

11.1.1 Principle

Given a level-set function φ, we can define a sign and a characteristic function.

Definition 11.1.1. Let φ : Rd → R, and Ω a shape defined by the zero level-set of φ. We define the sign function s
by 




s(x) = 1 if φ(x) > 0,
s(x) = 0 if φ(x) = 0,
s(x) = −1 otherwise.

(11.1)

This gives access to the Heaviside function defined by

χ =
1

2
(1− s). (11.2)

Now we can also introduce a Dirac mass concentrated on the boundary, seen as the weak derivative (in the sense
of distributions) of the sign function.

Definition 11.1.2. Let Ω ∈ O2 be a subset of a bounded open set D ⊂ Rd. Let also Cc be the set of functions in
C∞ (D;R) with compact support in D. We denote by δ∂Ω the single-layer distribution defined by

∀ψ ∈ Cc, 〈δ∂Ω, ψ〉 =

ˆ
∂Ω

ψ .

The distribution δ∂Ω is called the Dirac mass concentrated on the boundary of Ω.

Lemma 11.1.3. Let Ω ∈ O2. The gradient of the sign function, seen as a distribution of Cc
d satisfies

∀ψ ∈ Ccd, 〈∇s, ψ〉 = 2 〈δ∂Ω, (ψ · n)〉 .

159
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Proof. With ψ ∈ Ccd one has

ˆ
D
sdiv(ψ) = −

ˆ
Ω

div(ψ) +

ˆ
D\Ω

div(ψ),

= −2

ˆ
∂Ω

ψ · n +

ˆ
∂D

ψ · n.

The support of the function ψ being compact in D, this leads to

ˆ
D
sdiv(ψ) = −2

ˆ
∂Ω

ψ · n,

and therefore

〈∇s, ψ〉 = 2 〈δ∂Ω, (ψ · n)〉 .

This has a numerical interest since, with a regularization of the sign function, an approximation of its gradient
allows one to compute a regular approximation of the Dirac mass δ∂Ω.

Remark 11.1.4. Let sn ∈ C∞ (D) be a sequence of smooth functions converging in the sense of the distributions to
s. In other words

∀ψ ∈ Cc, lim
n→∞

ˆ
D
snψ =

ˆ
D
sψ.

Now let ñ be an extension of the outer normal to Ω and define δn by

δn =
1

2
∇sn · ñ.

For all ψ ∈ Cc, we have

ˆ
D
sndiv(ψñ) = −

ˆ
D
∇sn · (ψñ) = −2

ˆ
D
δnψ.

Since

lim
n→∞

ˆ
D
sndiv(ψñ) =

ˆ
D
sdiv(ψñ) = −〈∇s, ψñ〉 ,

and

〈∇s, ψñ〉 = 2 〈δ∂Ω, ψ〉 ,
we get

lim
n→∞

ˆ
D
δnψ = 〈δ∂Ω, ψ〉 .

Therefore, the sequence δn converges to δ∂Ω in the sense of distributions.

We also recall that for any Lipchitz domain Ω, the signed distance function dΩ to Ω is defined by

∀x ∈ Rd, dΩ(x) =




−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ Rd\ (Ω ∪ ∂Ω) .

(11.3)

Introducing a small regularization parameter ε > 0, we can compute an approximation of the sign function by

s1,ε =
dΩ√
d2

Ω + ε2
.

Since the gradient of s1,ε is directed along ∇dΩ (the direction is independent of ε) which is an extension of the outer
normal, we can consider

δ1,ε =
1

2
∇s1,ε · ñ =

1

2
|∇s1,ε|, (11.4)

which has the same convergence property as the approximation δn introduced in Remark 11.1.4. Boundary integrals
can then be approximated as ˆ

∂Ω

f '
ˆ
D
δ1,εf,

and the previous remark ensures the convergence of the approximation. Finally, using a finite difference scheme and
standard quadrature formulas makes this last approximation fully discrete (see [15] for details).
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In the literature [100, 107] we could also find another approximation for the signed distance function

s2,ε =
φ√

φ2 + h2
∣∣∇φ

∣∣2 + ε2

. (11.5)

Instead of (11.4), we could also have written (see [15, 43]) ∇s = 2δn. Therefore we can take

δ2,ε =
1

2
|∇s2,ε|, (11.6)

that leads to another approximation of the Dirac mass.
Now, with these two approximations of the Dirac mass δ∂Ω, we consider the consistency of the methods for

computing boundary integrals.

11.1.2 Lack of consistency

Computing boundary integrals with the Dirac mass function is very practical from a numerical point of view, since
with finite difference it is possible to compute an approximation of the weak derivative of the sign function. However,
it seems that this approach is not numerically consistent. We recall that consistency is the difference between the
continuous model and the numerical model. A priori only the discretize-then-optimize approach is known to be
consistent. Therefore, it would not be very surprising to derive from other approaches models that are not perfectly
consistent. But it appears that the numerical error introduced by the use of a Dirac function concentrated on the
boundary to compute shape derivatives can be very large.

Let us consider the following example.

Example 11.1.5. Let (a0, b0) ∈ R2 and f be given by

f(x, y) = (x2 + y2)5 − 2a5
0Re

(
(x+ iy)5

)
+ a10

0 − b10
0

= (x2 + y2)5 − 2a5
0(x5 − 10x3y2 + 5xy4) + a10

0 − b10
0 . (11.7)

We consider the minimization problem
inf

Ω∈O2

E(Ω), (11.8)

where

E(Ω) =

ˆ
Ω

f(x) dx,

is the objective function to be minimized. We start from an initial shape Ω0 given by the zero value of

φ(x, y) = ((x− a1)2 + y2)((x+ a1)2 + y2)− b41,
and take

a0 = 0.95, b0 = 0.953, a1 = 0.5, b1 = 0.51.

This simple model will also be further explored for consistency considerations in Section 11.3.2, and for numerical
optimization in Section 12.1. Here we focus only on the consistency (like in Section 9.4.1) of the shape derivative
computed with a Dirac approximation at the initial shape. The initial shape is the one displayed in Figure 11.1. For
θ ∈ C1,∞(R2;R2), the first-order shape derivative of the function E is given by

E′ (Ω; θ) =

ˆ
∂Ω

f(x) (θ · n) (x) dx.

Now for a velocity field v defined on ∂Ω by vγ and extended with Method 10.2.3, we consider for t ∈ [0, τ ]

Ωt = Ω(t, v) =
{
x ∈ R2 | φ(t, x) < 0

}
,

where φ is solution to the following Hamilton-Jacobi equation
{

∂tφ(t, x) + v(x) |∇xφ(t, x)| = 0,

φ(0, x) = φ0(x),
(11.9)

and φ0 is the signed distance function to Ω0. For different values of the time parameter τ , and vγ given by the solution
to the gradient equation (10.28), we plot in Figure 11.2 the two curves

t 7→ E(Ωt),

t 7→ E(Ω0) + tE′ (Ω0; v) ,

where the first-order derivative is approximated by

E′ (Ω0; v) '
ˆ
D
δi,εfv.

We take D =] − 1.15, 1.15[ that is endowed with a square mesh of size 120 × 120. The size of a cell is then h = 2.3
120 .

For the Dirac approximation, we take ε = h
20 . We can observe that the linear approximation computed with to the

Dirac mass approximation is far from being tangent to the curve t 7→ E(Ωt).



162 CHAPTER 11. COMPUTING BOUNDARY INTEGRALS

Figure 11.1: Initial shape.
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Figure 11.2: Consistency of the derivative with δ1,ε (left) and δ2,ε (right) with h = 2.3
120 and ε = h

20 .

11.2 Approximation with a linear interpolation method

The previous Dirac mass approach is very simple to implement in practice but may not be consistent enough in some
cases. We therefore introduce another approach to evaluate boundary integrals. The main idea is to reconstruct a
piecewise linear approximation of the boundary and compute exactly the boundary integral for a linear interpolation
of the integrand (or for products of linear interpolations). There have been many works on improving the computation
of surface integrals in the context of the level-set method [19], [59], [84], [120]. Here we follow an idea of Min and
Gibou [84, 85] and we compute boundary integrals like for building mass and stiffness matrices in a finite element
method.

11.2.1 Principle

In numerical practice we work in 2-d with a regular square mesh Qh of the computational domain in which all
admissible shapes are included (extension to the 3-d case is conceptually simple although more cumbersome than in
2-d). Like in Chapter 8, each rectangular cell (whose nodes are denoted ii for i ∈ J1, 4K) is divided in four triangles
separated by its diagonals (see Figure 11.4).

Let Th be the resulting triangular mesh. The level-set function φ is discretized on the square mesh. To obtain
its P1 finite element interpolation on the triangular mesh Th we simply assign to the additional node at the center
of each square (denoted further by C in the figures) the average value of the level-set at the four corner nodes. This
consists in considering φ as being in Q1(Qh;R), and in taking I1

Th(φ) its linear interpolation on Th, where I1
Th is the

linear interpolation operator for the Lagrange finite element (see Definition 5.1.2). By definition, I1
Th(φ) coincides

with φ on each node of Th. Once we have a P1 interpolation φh = I1
Th(φ) of φ on the triangular mesh, it is standard

to obtain a discretization Ωh of Ω which is defined by Ωh = {x ∈ Rd |φh(x) < 0}. By construction, the boundary of
Ωh is piecewise linear (more precisely it is the continuous union of line segments in each triangle). To compute an
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approximation of an integral on ∂Ω, we compute the exact integral on ∂Ωh of an interpolation of the integrand.

Remark 11.2.1. The use of a virtual node C is suggested by the non-uniqueness of domains whose level-set functions
take given values on the nodes of a square (see Figure 11.3). This does not occur on a triangle.

+ −

+−

+ −

+−

Figure 11.3: Non-uniqueness of a shape (grid domain) for a given level-set function defined by its values at the four
corners of a square.

Let us start by describing the linear approximation of the boundary. An element that is not crossed by the
boundary does not contribute to the boundary integral. In the sequel, we only focus on elements that are intersected
by the boundary. They are characterized by the fact that the sign of φ is not the same on the four nodes of the
element. With the additional node, a cell is divided in four similar triangles Ti (i ∈ J1, 4K). Figure 11.4 shows a square
cell, and the subdividing triangles. It also shows all the possible ways for the domain Ω to intersect a triangle.

In each triangle τ = ABC we can compute a linear interpolation of φ and then the straight line Dτ := τ ∩ ∂Ωh as
the curve φh = 0. We denote by P1,P2, or P3 the intersection points of Dτ and the boundary of the triangle, depending
on whether they are respectively on [A,C], [B,C] or [A,B]. The edges intersected by Dτ - [A,C], [B,C] or [A,B] -
are entirely determined by the sign of φh at the nodes A, B and C. Now we choose a Cartesian coordinate system
of the triangle, so that Dτ can be parametrized by the x-coordinate (see Figure 11.5). Depending on the choice of
coordinate system, we are looking for the plane Pτ ⊂ R3 containing the points

(a)





(
0, 0, φ(C)

)
(√

2
2 , 0, φ(A)

)
(

0,
√

2
2 , φ(B)

) (b)





(
0, 0, φ(B)

)
(√

2
2 , 0, φ(C)

)
(√

2
2 ,
√

2
2 , φ(A)

) (c)





(
0, 0, φ(A)

)
(

1, 0, φ(B)
)

(
1
2 ,

1
2 , φ(C)

) (11.10)

This is exactly the linear interpolation of φ given by I1
Th . We recall that with the operator I1

Th , the values of φ and
φh at the nodes A, B or C are the same. Let ax+ by + cz + d = 0 be an equation of Pτ . Taking c = 1 leads to

(a)





a =
√

2
(
φ(C)− φ(A)

)

b =
√

2
(
φ(C)− φ(B)

)

c = 1
d = −φ(C),

(b)





a =
√

2
(
φ(B)− φ(C)

)

b =
√

2
(
φ(C)− φ(A)

)

c = 1
d = −φ(B),

(c)





a = φ(A)− φ(B)
b = φ(A) + φ(B)− 2φ(C)
c = 1
d = −φ(A).

(11.11)

Now we have the equation of the straight-line Dτ , intersection of Pτ with the plane of equation z = 0. Since φ is
almost a signed distance function, it is reasonable to assume that φh does not vanish identically in the triangle. The
equation of Dτ is then ax+by+d = 0. The orientation of the triangle is made so that b 6= 0 (see Figure 11.5). Now we
have explicitly, for each possible configuration, the equation of the linear approximation of the boundary depending
only on the values of φh on the nodes of the triangle. Since the value of φ at node C depends linearly on its values at
nodes ii, the equation of Dτ can be written only in terms of φ(ii).

We also want to integrate a field v ∈ Q1(Qh;R) on the boundary. We will explicitly integrate its linear interpolation
on Th : I1

Th(v). This interpolation coincides with v on every node of Th. Similarly to the approximation of φ, we find
the equation of I1

Th(v) :

I1
Th(v)(x, y) = −dv − bvy − avx,

where, depending on the choice of the orientation

(a)





av =
√

2
(
v(C)− v(A)

)

bv =
√

2
(
v(C)− v(B)

)

cv = 1
dv = −v(C)

(b)





av =
√

2
(
v(B)− v(C)

)

bv =
√

2
(
v(C)− v(A)

)

cv = 1
dv = −v(B)

(c)





av = v(A)− v(B)
bv = v(A) + v(B)− 2v(C)
cv = 1
dv = −v(A)

(11.12)
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Figure 11.4: All possible configurations of a triangle cut by the level-set function.
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Figure 11.5: Choice of coordinate system for the triangle ABC in the cases (a), (b) and (c) in (11.10) .

Knowing the equation of Dτ we can parametrize it with a function r. We denote (xi, yi),(xj , yj) the coordinates of
Pi,Pj , xmin = min(xi, xj) and xmax = max(xi, xj). Since the coordinate system of the triangle is chosen such that
b 6= 0, we can write Dτ = r

(
[xmin, xmax]

)
, where r(t) =

(
t,−db − a

b t
)

with a, b and d given by (11.11). Then

ˆ
Dτ

I1
Th(v) ds =

ˆ xmax

xmin

(
I1
Th(v) ◦ r(t)

)
|r′(t)|2 dt. (11.13)

Now the contribution of the triangle to the boundary integral is expressed only in terms of the values of v and of
φ at the nodes A, B, C. Like φ(C), the value of v(C) can be written only in terms of v(ii) for i ∈ J1, 4K, so that
the elementary contribution (11.13) can be written only in terms φ(ei) and v(ei) for i ∈ J1, 4K. Summing all the
contributions on each cell, we get the total boundary integral after rescaling by the size of the mesh h (in our the

parametrization of the triangle, the lengths of the edges are 1,
√

2
2 ,
√

2
2 , instead of h, h

√
2

2 , h
√

2
2 ).

In order to get more accuracy, for v1, v2, v3 ∈ Q1(Qh;R) and vi,h = I1
Th(vi), we also compute explicitly the

boundary integrals

ˆ
Dτ

v1,h v2,h v3,h ds =

ˆ xmax

xmin

(
v1,h ◦ r(t)

)(
v2,h ◦ r(t)

)(
v3,h ◦ r(t)

)
|r′(t)|2 dt, (11.14)

in terms of φ(ii), and vj(ii) for i ∈ J1, 4K and j ∈ J1, 3K. With the same principle, we can also compute bulk integrals.
We denote by Ωh the linear approximation of the shape; note that ∀τ ∈ Th, ∂Ωh∩ τ = Dτ . Then we can also compute
explicitly ˆ

τ∩Ωh

v1,h v2,h v3,h dx. (11.15)

11.2.2 Criteria evaluations

We can then compute for each triangle τ of the mesh Th, the third-order tensors defined for v1, v2, v3 ∈ Q1(Qh;R) by

(vj(ii))i∈J1,4K, j∈J1,3K 7−→
ˆ

Dτ

I1
Th(v1) I1

Th(v2) I1
Th(v3) ds,

(vj(ii))i∈J1,4K, j∈J1,3K 7−→
ˆ
τ∩Ωh

I1
Th(v1) I1

Th(v2) I1
Th(v3) dx,

(11.16)

where I1
Th(vi) ∈ P1(Th;R) are the linear functions that coincide with vi on each node of Th. The operator I1

Th is the
linear interpolation operator for the Lagrange finite element (see Definition 5.1.2). We are now able to compute usual
criteria and their gradients.

Volume

For the volume criterion, we only need to compute

V (Ω) =

ˆ
Ω

1,

and the respectively linear and bilinear maps l1, l2 defined for w1, w2 ∈ C1
(
Rd;R

)
by

l1(w1) =

ˆ
∂Ω

w1,

l2(w1, w2) =

ˆ
∂Ω

Hw1 w2,
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that characterize the first and second-order shape derivatives (we recall that H is the mean curvature of the boundary).
To that end, we assemble a volume mass matrix M , and a boundary mass matrix MΓ. For w1, w2 ∈ Q1(Qh;R),

we define W1,W2 by W1 = (w1(e1), · · · , w1(eNh))
T

and W2 = (w2(e1), · · · , w2(eNh))
T

where (ei)1≤i≤Nh is the set of
nodes of Q1(Qh;R). The mass matrices M,MΓ are defined by

W1
TMW2 =

∑

τ∈Th

ˆ
τ∩Ωh

I1
Th(w1) I1

Th(w2) dx,

W1
TMΓW2 =

∑

τ∈Th

ˆ
Dτ

I1
Th(w1) I1

Th(w2) ds.

In order to get the value of the volume, it suffices to take w1 = w2 = 1 and to compute W1
TMW2. The first-order

shape derivative is also obtained by computing MΓW1 with W1 = 1.
For the bilinear map of the second-order derivative, it suffices similarly to assemble the matrix H defined by

W1
THW2 =

∑

τ∈Th

ˆ
Dτ

I1
Th(Hh) I1

Th(w1) I1
Th(w2) ds. (11.17)

We recall that the curvature H is defined by divΓn. Thus, with finite difference scheme, one can get Hh an approxi-
mation of the curvature.

Thus, we have

V (Ω) ' ETME,

l1(w1) 'W1
TMΓE,

l2(w1, w2) 'W1
THW2,

where E ∈ RNh with E = (1, · · · , 1).
Finally, in order to ease the numerical aspects, we use the mass-lumping approximation (see Section 5.2) for M ,

MΓ and H. The error analysis stays the same than in the classical case (see Lemma 5.2.2).
Let us also mention that the boundary mass matrix MΓ (or more precisely its mass-lumping approximation) is

used in the optimization method : in the gradient algorithm for computing a descent direction (10.28), or for the
extension of the descent direction in Method 10.2.3.

Compliance

For the compliance criterion, we will consider here the framework of the scalar thermal model (see Section 2.1.4). The
criterion reads

J1(Ω) =

ˆ
Ω

|∇u|2,

where u ∈ H1(Ω;R) solves 


−div (∇u) = 0 in Ω,

∂nu = g on ΓN ∪ Γ,
u = 0 on ΓD,

(11.18)

for g ∈ H2(Ω) with g = 0 on Γ. With the Hilbert space V =
{
p ∈ H1(Ω;R) | p = 0 on ΓD

}
, we recall that the

variational formulation reads 



find u ∈ V such that ,

∀p ∈ V,
ˆ

Ω

∇u · ∇p =

ˆ
ΓN

gp.
(11.19)

We also recall that, for w1, w2 ∈ C1(Rd,R), when only the part Γ can be optimized, the linear and bilinear maps l1
and l2 that characterize the first and second-order shape derivatives are defined by

l1(w1) = −
ˆ

Γ

|∇u|2w1

l2(w1, w2) = 2

ˆ
Ω

∇u′w1
· ∇u′w2

−
ˆ

Γ

(
H|∇u|2 + ∂n|∇u|2

)
w1 w2,

where for w ∈ H1(Ω;R), u′w is defined by





−div (∇u′w) = 0 in Ω,
∂nu

′
w = 0 on ΓN ,

∂nu
′
w = div (w∇Γu) on Γ,
u′w = 0 on ΓD.

(11.20)
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From a numerical point of view, we look for an approximate solution uh of (11.18) in Q1(Qh;R). Thus, the partial
derivatives of uh - ∂xuh, ∂yuh - are linear in each triangular element τ of Th. For uh, ph ∈ Q1(Qh;R), with U,P defined

by U = (uh(e1), · · · , uh(eNh))
T

and P = (ph(e1), · · · , ph(eNh))
T

we can introduce the stiffness matrix Ah defined by

PTAhU =
∑

τ∈Th

ˆ
τ∩Ωh

∂xuh ∂xph + ∂yuh ∂yph.

It is common for the stiffness matrix to use an ersatz material (see [15] for details), so that it prevents this matrix
from being ill-conditioned. In the same spirit, with an ersatz material with thermal conductivity ε � 1, we replace
the matrix Ah by the matrix Aε such that

PTAεU = PTAhU + εPTAD\Ω,hU,

where the matrix AD\Ω,h defined by

PTAD\Ω,hU =
∑

τ∈Th

ˆ
τ∩
(
D\
(

Ωh∩∂Ωh

)) ∂xuh ∂xph + ∂yuh ∂yph,

is nothing but the stiffness matrix associated to the complementary domain of Ω in D.
If we denote G = (g(e1), · · · , g(eNh))

T
, where the source term g is assumed to be in Q1(Qh;R), the variational

formulation (11.19) now reads {
find U ∈ RNh , such that ,

∀P ∈ RNh , PTAεU = PTMΓG,
(11.21)

where Nh is the dimension of Q1(Qh;R).

In order to compute the gradient, we may proceed similarly. Once the state uh is computed by (11.21), we just
have to compute l1 for wh ∈ Q1(Qh;R). Thanks to (11.16), given that ∂xuh, ∂yuh are linear in each triangle τ of Th,
we numerically compute the first-order shape derivative with

l1(wh) ' −
∑

τ∈Th

ˆ
Dτ∩Γh

(
(∂xuh)2 + (∂yuh)2

)
I1
Th(wh),

where Γh is the linear approximation of Γ.

As concerns the second-order derivative of the compliance, it is somehow more tricky. We start by writing the
variational formulation for (11.20) :





find u′w ∈ V, such that ,

∀p ∈ V,
ˆ

Ω

∇u′w · ∇p = −
ˆ

Γ

w∇u · ∇p. (11.22)

It suffices to use an integration by part on the right-hand side, and the fact that, since ∂nu = 0 on Γ, we have
∇Γu = ∇u. As usual, thanks to (11.16) we can assemble a matrix F (uh) such that for wh, ph ∈ Q1(Qh;R)

PTF (uh)W = −
∑

τ∈Th

ˆ
Dτ∩Γh

(
∂xuh ∂xph + ∂yuh ∂yph

)
I1
Th(wh). (11.23)

Thus, the discretization of the variational formulation (11.22) reads
{

find Uw ∈ RNh , such that ,

∀P ∈ RNh , PTAεUw = PTF (u)W.
(11.24)

As a result, for w1,h, w2,h ∈ Q1 (Qh;R) we can approximate the first term of l2 by

l2(w1,h, w2,h) = Uw1

TAεUw2

=
(
A−ε 1F (uh)W1

)T
Aε

(
A−ε 1F (uh)W2

)

= W1
TF (uh)

T
A−1
ε F (uh)W2.

For the last part of the second-order derivative, |∇uh| is a priori not continuous from one triangle of Th to another
one. Therefore, with this linear interpolation framework it is not possible to compute its normal gradient. We then
have to proceed differently. Thus, we compute the term Hh|∇uh|2 +∂n

(
|∇uh|2

)
with finite difference and proceed like

(11.17) to get the bilinear map.

Remark 11.2.2. This numerical method for computing boundary integrals is more precise than the approximation
with a Dirac function. It is more time consuming but the additional burden is completely negligible in front of the CPU
time required for the finite element analysis.

Remark 11.2.3. For the displacement criterion in the framework of the elastic model, we can proceed in exactly the
same way.
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11.2.3 Error analysis

After having introduced a numerical method for computing boundary integrals, we are concerned with its error analysis.
There are two sources of error. First, errors can originate from the approximation of the integrand in (11.16). These
errors are due to the difference between I1

Th(v) and v for v ∈ C0
(
Rd;R

)
. The analysis of these errors is classical for

finite element methods. Therefore, we will rather focus on the other source of numerical error, originated by the linear
approximation of the domain. A shape Ω is represented implicitly by a level-set function φ. The linear approximation
Ωh of the shape Ω is done implicitly by a linear interpolation of the level-set, that is

Ωh =
{
x ∈ D | I1

Th(φ)(x) < 0
}
.

We can find similar error estimates on boundary integrals than the ones we consider here, for example in the framework
of the boundary elements method [76, 82]. The main difference is that most of the time, the approximated shape is a
polygonal domain that coincides with the triangulation. This means that the boundary is made of edges of the mesh.
In our case, the approximated shape is defined implicitly by the interpolation of a level-set function, and thus the
mesh is not adapted to the triangulation. As a result, the boundary has a priori no chance to be made of edges of the
mesh, which is another source of error.

We start by recalling that when there exists a point where the gradient of the level-set function does not vanish,
the boundary of a shape can be defined (at least locally) explicitly by the graph of a function.

Proposition 11.2.4. Let φ ∈ Ck
(
R2;R

)
. Let (x0, y0) ∈ R2 such that φ(x0, y0) = 0, and assume that ∂yφ(x0, y0) 6= 0.

For r > 0 and (x, y) ∈ B
(
(x0, y0), r

)
we introduce

Tx(y) = y −
(
∂yφ(x0, y0)

)−1
φ(x, y).

Then if r is sufficiently small, there exists ϕ in Ck
(
B(x0, r);R

)
such that ∀(x, y) ∈ B

(
(x0, y0), r

)
,

φ(x, y(x)) = 0⇔ y = ϕ(x), (11.25)

and ϕ(x) is the unique fixed point of B(y0, r) 3 y 7→ Tx(y).

Proof. For (x, y) ∈ B
(
(x0, y0), r

)
we have

dTx(y) = Id−
(
∂yφ(x0, y0)

)−1
∂yφ(x, y),

and dTx0(y0) = 0. The continuity of dT ensures that if r is sufficiently small

∀(x, y) ∈ B
(
(x0, y0), r

)
, |dTx(y)| ≤ 1

2
.

Therefore Tx is a contraction with constant 1
2 , and

|Tx(y)− y0| ≤ |Tx(y)− Tx(y0)|+ |Tx(y0)− y0|

≤ 1

2
|y − y0|+

∣∣∣
(
∂yφ(x0, y0)

)−1
φ(x, y0)

∣∣∣ .

Since φ is continuous and φ(x0, y0) = 0, when r is sufficiently small we have
∣∣∣
(
∂yφ(x0, y0)

)−1
φ(x, y0)

∣∣∣ ≤ r

2
.

We then get |Tx(y)− y0| ≤ r and
Tx
(
B(y0, r)

)
⊂ B(y0, r).

Picard’s fixed point theorem then ensures the existence of ϕ(x) the unique fixed point of Tx, and that ϕ is of class
Ck.

Thanks to this implicit function theorem, the shape as well as its linear approximation can be represented (at least
locally) by the graph of a function. Assuming that the level-set φ and its linear approximation coincide at some point,
we can get an error estimate on the two different graphs.

Corollary 11.2.5. Let φ, φh ∈ Ck
(
R2;R

)
. Let (x0, y0) ∈ R2, such that φ(x0, y0) = φh(x0, y0) = 0. Assume that

∂yφ(x0, y0) 6= 0 and ∂yφh(x0, y0) 6= 0. Then there exists r > 0 and two functions ϕ and ϕh in Ck
(
B(x0, r);R

)
, such

that ∀(x, y) ∈ B
(
(x0, y0), r

)
,

φ(x, y) = 0⇔ y = ϕ(x), and φh(x, y) = 0⇔ y = ϕh(x) (11.26)

and
1

2
|ϕ(x)− ϕh(x)| ≤

∣∣∣∣
((
∂yφh(x0, y0)

)−1 −
(
∂yφ(x0, y0)

)−1
)
φh(x, y)

+
(
∂yφ(x0, y0)

)−1
(
φh(x, y)− φ(x, y)

)∣∣∣∣
(11.27)
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Proof. For (x, y) ∈ R2 we introduce

Tx(y) = y −
(
∂yφ(x0, y0)

)−1
φ(x, y)

Sx(y) = y −
(
∂yφh(x0, y0)

)−1
φh(x, y)

Since ∂yφ(x0, y0) 6= 0 and ∂yφh(x0, y0) 6= 0, there exists r > 0, ϕ,ϕh ∈ Ck
(
B(x0, r);R

)
such that (11.25) is satisfied

(we have two radii r1, r2, for φ and φh and we take min{r1, r2} ), and also such that for x ∈ B(x0, r), the functions
B(y0, r) 3 y 7→ Tx(y) and B(y0, r) 3 y 7→ Sx(y) are contractions with constant 1

2 . Now we have for x ∈ B(x0, r)

|ϕ(x)− ϕh(x)| ≤ |Tx
(
ϕ(x)

)
− Sx

(
ϕh(x)

)
|

≤ |Tx
(
ϕ(x)

)
− Sx

(
ϕ(x)

)
|+ |Sx

(
ϕ(x)

)
− Sx

(
ϕh(x)

)
|

≤ |Tx
(
ϕ(x)

)
− Sx

(
ϕ(x)

)
|+ 1

2
|ϕ(x)− ϕh(x)|

Therefore
|ϕ(x)− ϕh(x)| ≤ 2|Tx

(
ϕ(x)

)
− Sx

(
ϕ(x)

)
|.

Since

Tx
(
ϕ(x))− Sx

(
ϕ(x)

)
=
(
∂yφh(x0, y0)

)−1
φh(x, y)−

(
∂yφ(x0, y0)

)−1
φ(x, y)

=

((
∂yφh(x0, y0)

)−1 −
(
∂yφ(x0, y0)

)−1
)
φh(x, y)

+
(
∂yφ(x0, y0)

)−1
(
φh(x, y)− φ(x, y)

)
,

we have the expected result.

Remark 11.2.6. Coming back to Remark 5.1.4 and taking p = +∞, we have for all φ ∈ C1
(
Rd;R

)
∩ L∞

(
Rd;R

)

∥∥φ− I1
Th(φ)

∥∥
L∞(Rd;R)

≤ ch2 ‖φ‖L∞(Rd;R) . (11.28)

We also have ∥∥∇φ−∇I1
Th(φ)

∥∥
L∞(Rd;R)

= O(h).

The level-set function is often taken close to a signed distance function dΩ that satisfies |∇dΩ| = 1. Therefore, it is
possible to choose a coordinate system (x, y) such that both the partial derivatives of φ and I1

Th(φ) in the direction y
are away from 0. As a consequence we have by (11.27) in the proof of Corollary 11.2.5

|ϕ(x)− ϕh(x)| ≤ O(h)φh(x, y) +O(h2). (11.29)

Finally if we take r = O(h) in this proof, since φ is close to a distance function and φ(x0, y0) = 0 we also have
φ(x, y) = O(h) and therefore

|ϕ(x)− ϕh(x)| = O(h2) (11.30)

for x, y ∈ B
(
(x0, y0), r

)
.

Remark 11.2.7. We can also mention that the linear interpolation I1
Th is piecewise C1, and C1 in each cell τ of the

mesh Th. Since the estimate (11.30) is only local, it can be obtained on each domain of regularity of I1
Th . Therefore

the regularity assumption in Corollary 11.2.5 can be replaced by the same piecewise regularity assumption.

(x0, y0)

x0

φ φh

0 r

Figure 11.6: Interpolation error between φ and φh.

Now assuming that the second-order accuracy of (11.30) is satisfied, we can get an approximation error on boundary
integrals.
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Proposition 11.2.8. Let φ ∈ Ck
(
Rd;R

)
and φ1

Th(φ) its P1-interpolation on Th. Let (x0, y0) ∈ Rd such that
φ(x0, y0) = φ1

Th(φ)(x0, y0). According to Corollary 11.2.5, there exists r > 0, ϕ and ϕh defined on [0, r] such that

∀(x, y) ∈ [0, r]×B(y0, r), φ(x, y) = 0⇔ y = ϕ(x) and I1
Th(φ)(x, y) = 0⇔ y = ϕh(x).

Let now assume that on [x0, r],

|∇ϕ| = O(h) and |∇ϕh| = O(h). (11.31)

We denote γ and γh the respective boundaries parametrized by T : [0, r] 3 t 7→ (t, ϕ(t)) and Th : [0, r] 3 t 7→ (t, ϕh(t)).
Then, for v ∈ C1(Rd;R), we have ∣∣∣∣

ˆ
γ

v(x) dx−
ˆ
γh

v(x) dx

∣∣∣∣ = O(rh2). (11.32)

Proof. Let ε be defined by

ε =

ˆ
γ

v(x) dx−
ˆ
γh

v(x) dx.

We have by a change of variable

ε =

ˆ
[0,r]

(
v ◦ T (x)|∇T (x)| − v ◦ Th(x)|∇T (x)|

)
dx,

≤
∣∣∣∣∣

ˆ
[0,r]

(
v ◦ T (x)− v ◦ Th(x)

)
|∇Th(x)| dx+

ˆ
[0,r]

v ◦ Th(x)
(
|∇T (x)| − |∇Th(x)|

)
dx

∣∣∣∣∣ .

Since v is of class C1, it is Lipschitz. Therefore, there exists L > 0 such that

∀X,Y ∈ ([0, r]×B(y0, r))
2
, |v(X)− v(Y )| ≤ L|X − Y |.

Thus, for x ∈ [0, r], we have

∣∣∣v ◦ T (x)|∇T (x)| − v ◦ Th(x)
∣∣∣ ≤ L|T (x)− Th(x)|
≤ L|ϕ(x)− ϕh(x)|
= O(h2)

As a consequence, the first term of ε is of third-order with respect to h :

ˆ
[0,r]

(
v ◦ T (x)− v ◦ Th(x)

)
|∇Th(x)| dx = O(rh2).

Now we can also write

|∇T (x)| =
√

1 + |∇ϕ(x)|2,
|∇Th(x)| =

√
1 + |∇ϕh(x)|2.

Thus,

|∇T (x)| − |∇Th(x)| = |∇ϕ(x)|2 − |∇ϕh(x)|2√
1 + |∇ϕ(x)|2 +

√
1 + |∇ϕh(x)|2

,

which is of order two with respect to h, whenever |∇ϕ| = O(h) and |∇ϕh| = O(h) :

|∇T (x)| − |∇Th(x)| = O(h2).

Since v is continuous and bounded, we finally obtain that

|ε| = O(rh2).

Remark 11.2.9. In Proposition 11.2.8, the assumption that |∇ϕ| as well as ∇ϕh are of order O(h) is not that strong.
We can choose the coordinate system such that on x0 we have ∇ϕ(x0) = 0. Thus, ∇ϕ stays of order h in [0, r], and
since the error between ∇ϕ and ∇ϕh is of the same order, we also have ∇ϕh = O(h).
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Remark 11.2.10. Finally it remains to sum up all these estimates. We assume that there exists finite families
(xi, yi)1≤i≤N , (ri)1≤i≤N , ϕi : [0, ri]→ R and ϕh,i : [0, ri]→ R such that

∀1 ≤ i ≤ N, φ(xi, yi) = I1
Th(φ)(xi, yi) = 0, (11.33)

∀1 ≤ i ≤ N, ∀(x, y) ∈ [0, ri]×B(yi, ri), φ(x, y) = 0⇔ y = ϕi(x) (11.34)

∀1 ≤ i ≤ N, ∀(x, y) ∈ [0, ri]×B(yi, ri), φh(x, y) = 0⇔ y = ϕh,i(x). (11.35)

We also assume that
{(x, y) ∈ Rd | ∃i ∈ J0, NK, x ∈ [0, ri] and y = ϕi(x)} ⊃ ∂Ω, (11.36)

and
∀1 ≤ i ≤ N, |∇ϕi| = O(h) and |∇ϕh,i| = O(h).

Adding all the error estimates (11.32) leads to

∣∣∣∣
ˆ
∂Ω

v −
ˆ
∂Ωh

v

∣∣∣∣ =

N∑

i=1

riO(h2). (11.37)

Since for regular domains
∑N
i=1 ri can be chosen of the same order as the measure of ∂Ω, we finally get

∣∣∣∣
ˆ
∂Ω

v −
ˆ
∂Ωh

v

∣∣∣∣ = O(h2).

Remark 11.2.11. When the function φ is in Q1(Qh;R2), it is linear on each edge of a cell K. Thus it coincides with
its P1 interpolation I1

Th(φ) on the edges. Thus the boundaries ∂Ω and ∂Ωh intersect on the edges of the cell (points
A or C in Figure 11.7). Since Ω ∈ Q1(Qh;R) the zero level-set of φ is a hyperbola in the cell K. It might be at most

V3V4

V2V1

A

B C

Ch

O(h2)

∂Ωh

∂Ω

Figure 11.7: Interpolation error between φ and φh in cell K.

divided in two parts like in the case described in Figure 11.3. Let us denote γ one of this part. Since φ is in Q1 there
exists a coordinate system and a graph such that

(x, y) ∈ γ ⇔ y = ϕ(x).

This means that the graph given by the implicit function theorem works for the whole part γ. We can also choose the
coordinate system such that there exists x0 where ∇ϕ(x0) = 0. Then, since ϕ is smooth and the cell is of size h we
have easily |∇ϕ| = O(h) in the cell. Knowing that the boundaries of Ω and Ωh coincide on the edges of the cell we
can use Proposition 11.2.8 to conclude that in a cell, the integration error is of order O(h3). Therefore we can sum
over all the cells crossed by the boundary, and conclude that the global integration error is of order O(h2).

11.3 Accuracy and consistency comparison

We have seen in Section 11.1 that the computation of a boundary integral with the help of a Dirac function concentrated
on the boundary may not be sufficiently consistent. We introduced therefore in Section 11.2 another numerical method
for computing boundary integrals, based on linear interpolation. Now we aim at comparing the respective consistencies
and accuracies of the two methods.
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11.3.1 Accuracy

In order to check that this computation is relevant, we first compute the perimeters of a circle of radius 1 and of two
squares. The first square - referred to as square1 - is such that its size is exactly a multiple of the mesh size, so that
its boundary is always on the edges of the mesh. The number of cells on each edge of the square is given by 2b 0.85

h c.
The second square - referred to as square2 - has a side of size 1.96. The boundary is not made of edges of elements of
the mesh. The size of the mesh is (100× 100), and the working domain is of size 2.3× 2.3 thus h is given by h = 2.3

100 .

For the approximations of the Dirac mass, the parameter ε is defined by ε = h
20 . We compare the linear interpolation

Figure 11.8: Shapes for consistency study.

method (introduced in Section 11.2) respectively with the quadrature methods using the approximations δ1,ε and δ2,ε
of Dirac mass δ∂Ω given by (11.4) and (11.6). The results are shown in Table 11.1.

Theoretical perimeter Linear interpolation method Approximation δ1,ε Approximation δ2,ε
circle 6.283185 6.282757 6.602255 6.262644

square1 6.808000 6.808000 6.781012 6.762995
square2 7.840000 7.811479 7.793377 7.761437

Table 11.1: Numerical computation of perimeters for h = 2.3
100 and ε = h

20 .

We can observe that using the linear interpolation framework for computing boundary integrals seems to be much
more accurate than using an approximation if the Dirac mass δ∂Ω. It is also noticeable that in the case of square1

when the boundary is part of the edges of the mesh, the linear interpolation method leads to an exact computation of
the boundary. This was expected since when the level-set function vanishes on two vertices of an element, the length
of the boundary is exactly the length of the edge.

In order to complete the validation of the numerical method we study on the same cases the evolution of the error
on the perimeter when decreasing the mesh size h. We can compare the convergence of the absolute error for different
methods, in logarithmic scale. In figures 11.9, 11.10, 11.11 we respectively plot the convergence of the error compared
to the decrease of h the size of the mesh for the circle, the first square and the second square.

In the case of the circle, the linear interpolation method of Section 11.2 seems to be second-order in accordance
with the theoretical results obtained in Section 11.2.3. We can also see that the accuracy of the computation with
the Dirac approximation δ1,ε is not very satisfactory. For the first square, in Figure 11.10, the curve for the linear
interpolation method is not plotted since the numerical error is always reduced to the machine precision. However, in
the case of the square whose boundary does not consist of edges of the mesh, all approximation methods seem to have
the same rate of convergence. We can also observe that the linear interpolation method is not second-order any more.
This could be explained by the fact that the shape has corners that are not accurately captured by the set of edges of
the mesh. Therefore in a cell containing a corner, the linear interpolation of the level-set is not accurate, leading to a
larger global error.



11.3. ACCURACY AND CONSISTENCY COMPARISON 173

Figure 11.9: Absolute error on the circle.

Figure 11.10: Absolute error on the first square.
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Figure 11.11: Absolute error on the second square.
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11.3.2 Consistency

Secondly, we want to check that for a function vanishing on the boundary, the boundary integral vanishes. For this
purpose, we go back to Example 11.1.5. The objective function to be minimized reads

E(Ω) =

ˆ
Ω

f,

where f is defined by (11.7). We recall from Section 3.3.1 and Section 7.1.2 that when Ω is sufficiently regular,
Ω 7→ E(Ω) is shape-differentiable. In that case, for v, w ∈ C1(Rd;R), the linear and bilinear maps l1 and l2 that
characterize the shape derivatives of E read

l1(v) =

ˆ
∂Ω

fv,

l2(v, w) =

ˆ
∂Ω

(
Hf + ∂nf

)
vw.

We also recall that Ω? = {x ∈ Rd | f(x) < 0} is the optimal shape for the minimization of E. By construction, we
have f = 0 on ∂Ω?. We compare the approximate values of ‖f‖L2(∂Ω0;R) and ‖f‖L2(∂Ω?;R) = 0 obtained by the linear

interpolation method (Section 11.2) and the two approximations of the Dirac mass δ∂Ω0
and δ∂Ω? (Section 11.1). For

a mesh of size h = 2.3
120 and a small parameter ε = h

20 , the results are given in Table 11.2.

Linear approximation Approximation δ1,ε Approximation δ2,ε
‖f‖L2(Ω0;R) 1.907891 10−1 1.972436 10−1 1.560282 10−1

‖f‖L2(Ω?;R) 5.049777 10−10 2.065797 10−1 2.163689 10−1

Table 11.2: Approximation of ‖f‖L2(Ω0;R) and ‖f‖L2(Ω?;R).

With the linear interpolation method, the value of the L2-norm of f on ∂Ω? is almost zero, whereas with the
approximations δ1,ε, δ2,ε of the Dirac mass, the integral of f2 on ∂Ω? is even larger than on ∂Ω0. The L2-norm of f on
the boundary is a norm of the first-order shape derivative. Therefore with the approximations of the Dirac mass, the
gradient does not decrease between the initial and optimal shape. Usually an optimization process is stopped when
the gradient is close enough to zero. In this case with the approximations δ1,ε, δ2,ε of the Dirac mass, such a stopping
criterion may never be satisfied.

Let us focus on the first approximation of the Dirac mass δ1,ε, with the same parameters h = 2.3
120 , ε = h

20 . We can
compare the values of f(x)δ1,ε(x) on the domain D for the initial and optimal shapes. At the optimal shape (bottom
of Figure 11.12) we can see that the quantity δ1,εf goes rapidly from positive values to negative values of roughly the
same magnitudes when crossing the interface ∂Ω?. Its zero level-set coincides with the interface ∂Ω?. But summing
over D leads to a non-zero value.
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Figure 11.12: Values of f(x)δ1,ε(x) at the initial shape (top) and at the optimal shape (bottom) for h = 2.3
120 and

ε = h
20 .

Now we proceed as in Section 11.1.2 to compare the consistency of the linear interpolation method with the
consistency of the Dirac approximation. Like in Section 11.1.2, we take vγ given by the solution to the gradient
equation (10.28), v being the extension of vγ by Method 10.2.3. For different values of the final time τ of resolution
of the Hamilton-Jacobi equation we plot in Figure 11.14 the values of

τ 7→ E(Ωτ ),

τ 7→ E(Ω0) + τE′ (Ω0; v) ,

τ 7→ E(Ω0) + τE′ (Ω0; v) +
1

2
τ2E′′ (Ω0; v, v) .

In order to ease the reading for the comparison we plot again in Figure 11.13 what gave the approximations δ1,ε,
δ2,ε of the Dirac mass for the same example (see Section 11.1.2).

We can now observe in Figure 11.14 that the linear approximation of E where the boundary integrals are computed
with the linear interpolation method of Section 11.2 is tangent to the real curve t 7→ E(Ωt). This means that
the approach is consistent, since the numerical computation of the continuous derivative coincides with the exact
derivative. We can also see that the quadratic approximation is roughly relevant. In order to look at the second-order
approximation we also plot in Figure 11.15 the following curves for the linear interpolation method

τ 7→ E(Ωτ )− E(Ω0)− τE′ (Ω0; v) , (11.38)

τ 7→ E(Ωτ )− E(Ω0)− τE′ (Ω0; v)− 1

2
τ2E′′ (Ω0; v, v) . (11.39)

We can observe on the right picture of Figure 11.15 that both the first-order and second-order approximation look to
converge superlinearly to zero with respect to τ . The superlinear convergence of the first-order approximation could
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be explained by the fact that the curvature in the given direction is rather small, as we can see in Figure 11.14. Finally
we can say that the linear interpolation method for computing boundary integrals is both accurate and consistent.
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Figure 11.13: Consistency of the derivative with δ1,ε (left) and δ2,ε (right) for h = 2.3
120 and ε = h

20 .
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Figure 11.14: Consistency of the derivative with the linear interpolation method.

11.4 Shapes defined by level-sets

In this section we are concerned with the fact that every shape with piecewise linear boundary cannot be represented
with the piecewise linear interpolation of a level-set function.

Definition 11.4.1. For a mesh Th, we denote by Oh the set

Oh = {Ωh ⊂ Rd | ∃φ ∈ P1(Th,R), Ωh = φ−1
(
]−∞, 0[

)
}.

The set Oh is not the set of domains whose boundaries are piecewise linear. For example, let us consider a
triangular mesh. Figure 11.16 shows different configurations of a domain with piecewise linear boundary intersecting
two triangles. Only the first two (a and b) are domains of Oh. Indeed, let us assume there exists φ ∈ P1 such that
in the configuration c, Ω = φ−1

(
]−∞, 0[

)
. We observe that the boundary in the triangle ABD is parallel to the line

AB. Therefore, φ(A) = φ(B). As a result, the boundary of Ω in the triangle ABC is necessary parallel to AB (as an
application of Thales theorem).
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We have introduced a new framework for shape differentiation, and shown how it can be used for the definition of a
Newton-like methods. It was also seen that the structure of the second-order shape derivative along normal trajectories
gives indication on how we can compute extensions of velocity fields defined on a boundary in the perspective of
shape optimization. In this chapter we are concerned with the comparison of the newly defined Newton method
(Algorithm 10.3.1) with an adapted gradient method (Algorithm 10.3.3). We also want to compare the extension
methods (namely Method 10.2.1, and Method 10.2.2) induced by the structure of the second-order shape derivative
with a usual method (Method 10.2.3) for defining velocity fields on the whole space. This is the subject of the first two
sections where we consider first the case of an example without partial differential equation and then some mechanical
examples.

Finally we are also interested with the question of approximating the second-order shape derivative instead of
computing it exactly. Therefore we compare the different approximation methods of Section 9.2 to the gradient-like
method (Algorithm 10.3.3).

12.1 Comparison of algorithms and extensions on PDE-free examples

12.1.1 Setting of the problem

Let f ∈ C2(Rd;R). We consider the minimization problem introduced in (11.1.5)

inf
Ω∈O2

E(Ω), (12.1)

where

E(Ω) =

ˆ
Ω

f(x) dx

is the function to be minimized. We recall from Proposition 3.3.5 that the optimal shape is given by

Ω? = {x ∈ Rd | f(x) < 0}. (12.2)

179
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Since f is smooth, the objective function E is twice shape-differentiable at any Ω ∈ O2. The shape derivatives in
directions θ, ξ ∈ C2,∞(∂Ω;R2) in the sense of Theorem 3.2.15 are given by the linear and bilinear maps

l1(θ) =

ˆ
∂Ω

(θ · n) f,

l2(θ, ξ) =

ˆ
∂Ω

(θ · n) (ξ · n)
(
Hf + ∂nf

)
,

where H(x) is the curvature of ∂Ω at x ∈ ∂Ω.

Remark 12.1.1. In this example it is also important to note that the computation of the second shape derivative is
not very expensive. We only need to compute Hf + ∂nf on the boundary. In this very specific case, the computation
time of the descent directions are similar for the Newton and gradient algorithms.

In the following examples, we will always take the initial shape given by the set of negative values of

φ(x, y) = ((x− a1)2 + y2)((x+ a1)2 + y2)− b41,

with

a1 = 0.5, b1 = 0.51.

This shape is plot in Figure 12.1

Figure 12.1: Initial shape for the PDE-free example.

We now discuss some implementation issues. We use a single regular square mesh Qh for the Hamilton-Jacobi
equation and the evaluation of the objective function. The Hamilton-Jacobi equation is coupled with the transport
equation for the redistanciation of the level-set. Both equations are solved with a second-order finite difference scheme.
In these PDE-free examples, choosing the transport equation or the fast-marching method for the redistanciation of
the level-set does not have much impact on the consistency (see Section 12.2.3). The objective function is computed
with the linear interpolation approach for computing bulk and boundary integrals (see Section 11.2 for details). These
algorithms are implemented in Scilab [34] with some routines (concerning the evaluation of the objective function and
their gradients) in C.

We use the gradient algorithm 10.3.3 or the Newton algorithm 10.3.1, and the corresponding quadratic problems
(10.27), (10.28) are solved by using Ipopt [128]. We take the domain D as D = [−1.15, 1.15], and mesh it with a mesh
of size 120 × 120. This consists in taking the mesh parameter h as h = 2.3

120 . The numerical parameters ε, η for both
algorithms 10.3.3 and 10.3.1 are set to ε = η = 10−6. In this PDE-free example the two stopping criteria (with ε or
η) can stop the algorithm. The descent direction is a priori defined only on ∂Ω, and we need to extend it to the entire
domain D in order to solve the Hamilton-Jacobi equation (10.25). We compare the three extension methods proposed
in Section 10.2.

The computation of the matrix discretizing the Hessian operator, and more precisely the bilinear form l2, is
somehow tricky. When computing derivatives, the shape Ω is assumed to be smooth. In numerical practice, the
optimal structures may exhibit corners, i.e., are not smooth. In such a case the mean curvature H = divΓ n is not well
defined. To mitigate this effect, we truncate the value of the discretized version of H by a maximum (absolute) value
of the order of 1/h where h is the mesh size.
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12.1.2 Cassini curve

First we consider the case when the objective function E is defined by the following function f

f(x, y) = (x2 + y2)5 − 2a5
0Re

(
(x+ iy)5

)
+ a10

0 − b10
0

= (x2 + y2)5 − 2a5
0(x5 − 10x3y2 + 5xy4) + a10

0 − b10
0 ,

where

a0 = 0.95, b0 = 0.953.

Figure 12.2: Final domains for the gradient algorithm for the problem of Section 12.1.2 with, from left to right,
extension Method 10.2.3, Method 10.2.1 and Method 10.2.2.

Figure 12.3: Final domains for the Newton algorithm for the problem of Section 12.1.2 with, from left to right,
extension Method 10.2.3, Method 10.2.1, and Method 10.2.2.

The final shapes are plotted in Figure 12.2 and Figure 12.3, and the final value of the Lagrangian and the number
of iterations needed to get convergence are transcripted in Table 12.1. We denote Ω∞ the final shape for each method,
and Ω× the best of all six final shapes (which are very similar) obtained by the various numerical methods. The shape
Ω× is very close to Ω? (defined by (12.2)). In this example, according to Table 12.1, the shape Ω× is obtained by
the gradient method with extension Method 10.2.3. We keep this notation in the sequel. Due to the line search, each
iteration may need several evaluations of the objective function. Therefore, we also give the number of evaluations
needed to get convergence. In order to have an idea on how the first-order optimality condition is satisfied, we
additionally compute

E′ (Ω∞; v∞)

E′ (Ω0; v0)
=

ˆ
∂Ω∞

fv∞

ˆ
∂Ω0

fv0
, (12.3)

where v is the descent direction taken by the algorithm. This quantity is referred to as Gradient ratio in Table 12.1.
In Figure 12.4 and Figure 12.5 we plot respectively the convergence of E(Ω)− E(Ω×) and E(Ω)− E(Ω∞).
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We can see that the Newton method, whatever the choice of extension, converges always in fewer iterations (and
evaluations) than the gradient method. The gain is also in terms of computation time, since here the computation
time of a descent direction is similar for the gradient and Newton algorithms (see Remark 12.1.1). Comparing the
convergence curves, we can also conclude that both the second-order derivative and the choice of extension improve the
gradient method with extension Method 10.2.3. We can also look at the gradient ratio defined by (12.3) in Table 12.1,
and see that for all methods, this ratio tends to zero. This means that the first-order optimality condition is not far
from being reached.

Gradient Newton

Extension 10.2.3

Lagrangian -0.28092703 -0.28092666

Iterations 99 31

Evaluations 458 69

Gradient ratio 4.298× 10−6 4.432× 10−6

Extension 10.2.1

Lagrangian -0.28092641 -0.28092682

Iterations 70 10

Evaluations 222 33

Gradient ratio 2.275× 10−5 4.125× 10−6

Extension 10.2.2

Lagrangian -0.28092667 -0.28092701

Iterations 76 11

Evaluations 390 31

Gradient ratio 1.580× 10−5 1.977× 10−6

Table 12.1: Performance of each algorithm for the problem of Section 12.1.2.

Finally we are also concerned with the rate of convergence. Theoretically, the Newton method should be second-
order (see Theorem 1.2.4). To that end, we compare the evolution of the error to the optimal shape from one iteration
to the other. More precisely, for the Newton method we expect to observe that for p ∈ N

|E(Ωp+1)− E(Ω∞)| ≤ C|E(Ωp)− E(Ω∞)|α, (12.4)

with α = 2, which would lead to

log
(
|E(Ωp+1)− E(Ω∞)|

)
≤ log(C) + α log

(
|E(Ωp)− E(Ω∞)|

)
.

To that end, we plot on Figure 12.6 the evolution of log
(
|E(Ωp+1)−E(Ω∞)|

)
with respect to log

(
|E(Ωp)−E(Ω∞)|

)
.

We also plot the linear regressions (thanks to a least square resolution) of this curve, and register the slope α of the
linear regression in Table 12.2. We do it also for the gradient method, and all extension methods.

Remark 12.1.2. According to Theorem 1.2.4 we should observe the second-order convergence rate on the error between
Ωp and Ω?. However, since there is no natural norm for evaluating the difference between to shapes, we focus on the
error on the objective function. When the second-order derivative of E is positive definite at the optimal shape, we
can prove that the convergence rate on the objective (12.4) is the same as the convergence rate on the data Ω (such as
in Theorem 1.2.4).

Gradient Newton

Extension 10.2.3 0.97 1.60

Extension 10.2.1 0.86 1.97

Extension 10.2.2 0.91 1.43

Table 12.2: Slopes of the linear regressions of Figure 12.6.

We can observe on Figure 12.6 that the convergence rate for the Newton method is higher than the rate for the
gradient method. Looking at Table 12.2, we can see that the slope of the linear regression is about 1 for the gradient
method, and about 1.5 or 2 for the Newton method. This confirm that the Newton method for this example is at least
super linear and that the gradient method has only a first-order convergence rate.
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Figure 12.4: Convergence of E(Ω)− E(Ω×) for the problem of Section 12.1.2.
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Figure 12.5: Convergence of E(Ω)− E(Ω∞) for the problem of Section 12.1.2.
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Figure 12.6: Linear regressions of the error with the best shape for the problem of Section 12.1.2. The extension is made
with Method 10.2.3 (top-left), Method 10.2.1 (top-right), and Method 10.2.2 (bottom). Evolution of E(Ωn+1)−E(Ω∞)
with respect to E(Ωn)− E(Ω∞).
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12.1.3 Cardioid

Now we consider the case where the objective function E is defined by the following function f that describes a
cardioid :

f(x, y) = (x2 + y2 − ax)2 − a2(x2 + y2),

with a = 0.6.

We plot all final shapes in Figure 12.7 and Figure 12.8. We can observe that they all look very similar. With the
Newton method though, the cusp seems to be better captured. Thus, we can observe in Table 12.3 that the final value
for the objective function E is always better with the Newton method. In this example, the shape Ω× is obtained by the
Newton method with extension Method 10.2.2. The plots of the convergence curves E(Ω)−E(Ω×) and E(Ω)−E(Ω∞)
respectively in Figure 12.9 and Figure 12.10 also indicate that the Newton method allows significant gains in terms of
iterations compared to the gradient method. We also see that the use of Method 10.2.1 or Method 10.2.2 instead of
Method 10.2.3 improves the convergence for both the Newton and gradient methods.

Figure 12.7: Final domains for the gradient algorithm for the problem of Section 12.1.3 with, from left to right,
extension Method 10.2.3, Method 10.2.1 and Method 10.2.2.

Figure 12.8: Final domains for the Newton algorithm for the problem of Section 12.1.3 with, from left to right,
extension Method 10.2.3, Method 10.2.1, and Method 10.2.2.

For the rate of convergence, we can see on Figure 12.11 an in Table 12.4 that the gradient method converges
linearly. However, the rate of convergence for the Newton method is not as close to 2 as in the test case presented
in Section 12.1.2. The convergence of the Newton method remains superlinear, but is not quadratic. This could be
explained by the singularity of the optimal shape due to the cusp. Therefore, the second-order shape derivative - that
depends on the curvature - is not well-conditioned and may not be sufficiently regular for preserving the quadratic
convergence rate.
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Gradient Newton

Extension 10.2.3

Lagrangian -0.16016584 -0.16016598

Iterations 53 25

Evaluations 298 83

Gradient ratio 1.311× 10−7 8.690× 10−9

Extension 10.2.1

Lagrangian -0.16016559 -0.16016598

Iterations 49 9

Evaluations 62 32

Gradient ratio 6.124× 10−7 4.554× 10−8

Extension 10.2.2

Lagrangian -0.16016581 -0.16016598

Iterations 39 12

Evaluations 257 54

Gradient ratio 2.886× 10−7 2.152× 10−8

Table 12.3: Performance of each algorithm for the problem of Section 12.1.3.
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Figure 12.9: Convergence of E(Ω)− E(Ω×) for the problem of Section 12.1.3.

Gradient Newton

Extension 10.2.3 0.98 1.08

Extension 10.2.1 0.92 1.06

Extension 10.2.2 0.93 1.11

Table 12.4: Slopes of the linear regressions of Figure 12.11.
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Figure 12.10: Convergence of E(Ω)− E(Ω∞) for the problem of Section 12.1.3.
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Figure 12.11: Linear regressions of the error with the best shape for the problem of Section 12.1.3. The extension is
made with Method 10.2.3 (top-left), Method 10.2.1 (top-right), and Method 10.2.2 (bottom). Evolution of E(Ωn+1)−
E(Ω∞) with respect to E(Ωn)− E(Ω∞).
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12.1.4 Rotated Square

Here, the objective function E is defined by the following function f that describes a square :

f(x, y) = max
(
x2 − a2; y2 − a2

)
,

with a = 0.6. We also change the coordinate system by rotating it by an angle of π
4 . Therefore, the orientation of

the mesh changes with respect to the shape. In particular, the singularity of the boundary is not on a vertex of the
mesh, and the directions of the corner are no longer aligned with an edge of the mesh. Therefore, the square will not
be exactly captured by the level-set representation.

We plot all final shapes in Figure 12.12 and Figure 12.13. The performance of each algorithm is given in Table 12.5,
and the convergence curves E(Ω)−E(Ω×) and E(Ω)−E(Ω∞) are respectively plotted in Figure 12.14 and Figure 12.15
In this example, we can first observe that the gradient method and the Newton method converge similarly. Whatever
the choice of extension, they require almost the same number of iterations to converge. We can also see that the choice
of extension by Method 10.2.1 or Method 10.2.2 improves the convergence - compared when the extension is given by
Method 10.2.3 - for both the gradient or the Newton method.

Figure 12.12: Final domains for the gradient algorithm for the problem of Section 12.1.4 with, from left to right,
extension Method 10.2.3, Method 10.2.1 and Method 10.2.2.

Figure 12.13: Final domains for the Newton algorithm for the problem of Section 12.1.4 with, from left to right,
extension Method 10.2.3, Method 10.2.1, and Method 10.2.2.

These first observations are not in favor of the Newton method for this example. It indeed appears that there is no
gain - for this particular case - in computing the second-order shape derivatives. Looking at the convergence rates in
Figure 12.16 and Table 12.6 also confirms this impression. Even if for the Newton method the slope (see Table 12.6)
is - for two extension methods - close to 1.2, it can be seen as a numerical artifact. The slope is indeed computed by a
least square minimization, and looking at the evolution of the real error (in the Newton case in Figure 12.16) we can
see that it is very erratic, and that it is close to the gradient error. We conjecture here that this is the singularity of
the corner that cause the loss of the second-order rate of convergence.
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Gradient Newton

Extension 10.2.3

Lagrangian -0.25902578 -0.25902570

Iterations 26 18

Evaluations 89 60

Gradient ratio 7.899× 10−7 4.934× 10−7

Extension 10.2.1

Lagrangian -0.25902529 -0.25902538

Iterations 10 9

Evaluations 39 36

Gradient ratio 6.353× 10−6 2.028× 10−6

Extension 10.2.2

Lagrangian -0.25902577 -0.25902561

Iterations 9 10

Evaluations 50 53

Gradient ratio 1.042× 10−6 1.026× 10−6

Table 12.5: Performance of each algorithm for the problem of Section 12.1.4.
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Figure 12.14: Convergence of E(Ω)− E(Ω×) for the problem of Section 12.1.4.

Gradient Newton

Extension 10.2.3 1.28 1.23

Extension 10.2.1 0.88 1.02

Extension 10.2.2 0.87 1.21

Table 12.6: Slopes of the linear regressions of Figure 12.16.
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Figure 12.15: Convergence of E(Ω)− E(Ω∞) for the problem of Section 12.1.4.
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Figure 12.16: Linear regressions of the error with the best shape for the problem of Section 12.1.4. The extension is
made with Method 10.2.3 (top-left), Method 10.2.1 (top-right), and Method 10.2.2 (bottom). Evolution of E(Ωn+1)−
E(Ω∞) with respect to E(Ωn)− E(Ω∞).
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12.2 Comparison of algorithms and extensions on mechanical examples

12.2.1 Setting of the problem

We consider the case of the elastic model described in Section 2.1.5. Let Ω ∈ Rd be a smooth bounded open set, filled
with a homogeneous isotropic material, with Hooke’s tensor A, and Lamé’s coefficients λ, µ. For a symmetric tensor
ζ, we have Aζ = 2µζ + λTr(ζ)Id. We consider a partition of the boundary of Ω as

∂Ω = Γ ∪ ΓN ∪ ΓD ,

where ΓN and ΓD remain unchanged, whereas Γ is the part to be optimized. We introduce a working domain D
containing all admissible shapes. For g ∈ H1(D;Rd) such that g = 0 on Γ, we consider the following boundary
problem, with unknown u : 




−div
(
Aε(u)

)
= 0 in Ω,

u = 0 on ΓD,
Aε(u)n = g on ΓN ,
Aε(u)n = 0 on Γ,

(12.5)

with the strain tensor ε(u) =
1

2

(
∇u+ (∇u)T

)
. We introduce the Hilbert space

V =
{
u ∈ H1(Ω;Rd) | u = 0 on ΓD

}
.

The variational formulation of (12.5) is





find u ∈ V such that

∀ϕ ∈ V,
ˆ

Ω

Aε(u) : ε(ϕ) =

ˆ
ΓN

g · ϕ. (12.6)

Our aim is to minimize an objective function subject to a volume constraint. We focus on two criteria, the compliance
J1 defined by

J1(Ω) =

ˆ
Ω

Aε(u) : ε(u) =

ˆ
ΓN

g · u,

and the least square displacement criterion error defined by

J2(Ω) =

√ˆ
Ω

k|u− u0|2,

where k ∈ L∞(D) and u0 ∈ L2
(
Ω;Rd

)
. In the following examples for J2, we shall take u0 = 0 and k will be the

characteristic function of a thin neighborhood of ΓN . The volume is defined as

V (Ω) =

ˆ
Ω

1 dx.

For simplicity, in the sequel, we shall fix the Lagrange multiplier Λ > 0 for the volume constraint and minimize,
without any constraint, the Lagrangian L defined by

L(Ω) = J(Ω) + ΛV (Ω),

where J is either J1 or J2. Optimizing without constraints the Lagrangian L allows us to focus exclusively on the
comparison between the gradient and the Newton algorithms.

12.2.2 Shape derivatives and implementation issues

When the shape Ω and the boundary load g are sufficiently smooth, the objective function and the volume are
shape-differentiable [72], [15]. We recall without proofs these shape derivatives.

Proposition 12.2.1. Assume that Ω is of class C3. Then, the volume V (Ω) is twice shape-differentiable. For
θ, ξ ∈ C2,∞(Rd;Rd

)
, the maps l1, l2 (defined in Theorem 3.2.15) corresponding to the derivatives of V (Ω) are defined

by

l1(θ) =

ˆ
∂Ω

(θ · n) and l2(θ, ξ) =

ˆ
∂Ω

H (θ · n) (ξ · n) ,

where H = divΓ n is the mean curvature of the boundary.

The formulas for first-order shape derivatives of the compliance and the least square criteria are classical results
in shape optimization, and can for example be found in [15]. For the second-order shape derivatives, all calculations
are made in Chapter 7.



192 CHAPTER 12. NUMERICAL EXAMPLES

Proposition 12.2.2. Assume that Ω is of class C3 and that ΓD and ΓN are fixed. Then, the compliance J1 is twice
shape-differentiable. For θ, ξ ∈ C2,∞(Rd;Rd

)
, the maps l1, l2 corresponding to the derivatives of J1 are defined by

l1(θ) = −
ˆ

Γ

(θ · n)Aε(u) : ε(u),

l2(θ, ξ) = 2

ˆ
Ω

Aε(u′θ) : ε(u′ξ)−
ˆ

Γ

(θ · n) (ξ · n)

(
HAε(u) : ε(u) + ∂n

(
Aε(u) : ε(u)

))
,

where H is the mean curvature of the boundary Γ and u′θ is the solution of





−div
(
Aε(u′θ)

)
= 0 in Ω,

u′θ = 0 on ΓD,
Aε(u′θ)n = 0 on ΓN ,
Aε(u′θ)n = divΓ

(
(θ · n) Aε(u)

)
on Γ.

(12.7)

For the least square criterion, we denote J̃2(Ω) = (J2(Ω))
2

=

ˆ
Ω

k|u − u0|2. In order to ease the reading, we give

the derivatives of J̃2 instead of J2.

Proposition 12.2.3. Assume that the domain Ω is of class C3. The least square criterion J̃2 is twice shape-
differentiable. For θ, ξ ∈ C2,∞(Rd;Rd

)
, the map l1 corresponding to the first shape derivative of J̃2 is defined by

l1(θ) =

ˆ
Γ

(θ · n)

(
k|u− u0|2 +Aε(u) : ε(p)

)
,

where the adjoint state p is the solution to





−div
(
Aε(p)

)
= −2k(u− u0) in Ω,

p = 0 on ΓD,
Aε(p)n = 0 on ΓN ,
Aε(p)n = 0 on Γ.

(12.8)

The load g, the target displacement u0 as well as the shape Ω are assumed to be sufficiently regular so that p ∈
H2
(
Ω;Rd

)
. The map l2 corresponding to the second-order shape derivative of J̃2 is defined by

l2(θ, ξ) =

ˆ
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p) + 2

ˆ
Ω

k u′θ · u′ξ

+ 2

ˆ
Γ

k(u− u0)
(

(θ · n)u′ξ + (ξ · n)u′θ

)

+

ˆ
Γ

(θ · n) (ξ · n)
(
∂nJ +HJ

)
,

where H is the mean curvature o the boundary Γ, u′θ is the smooth solution to (12.7) and

J = k|u− u0|2 +Aε(u) : ε(p) .

Let us now focus on some implementation issues. We use a single regular square mesh Qh (the value of h is detailed
in each example) for both the Hamilton-Jacobi equation and the linearized elasticity systems, like (12.5), (12.7), (12.8).
The Hamilton-Jacobi equation is solved by a second-order finite difference scheme, and the level-set is redistanciated
with the fast-marching procedure Section 4.3.2. The elasticity equations are solved by Q1 finite elements with an
ersatz material approach for the void region (see Section 11.2 for details). These algorithms are implemented in Scilab
[34] with some routines (concerning the evaluation of the objective function and their gradients) in C.

Like for the PDE-free examples, we use the gradient algorithm 10.3.3 or the Newton algorithm 10.3.1, and the
corresponding quadratic problems (10.27), (10.28) are solved by using Ipopt [128]. Here we set the numerical param-
eters ε, η for both algorithms 10.3.3 and 10.3.1 to ε = η = 10−5. Even if we can observe a decrease on the L2-norm
of the descent direction, it appears that - in the following examples - it is always the criterion on the descent step
that stops the algorithms. The descent direction is still only defined on ∂Ω and needs to be extended for solving the
Hamilton-Jacobi equation. We compare the three extension methods proposed in Section 10.2.

The most tricky part is the computation of the matrix discretizing the Hessian operator, and more precisely the
bilinear form l2. Note that the discretization of the linear form l1 (or the first-order derivative) is standard [15]. A
first remark concerns the assumed smoothness of the shape Ω for deriving the above formulas. Like explained in
Section 12.1 or in Section 3.3.7, the optimal structures may not be smooth. Thus, the curvature H = divΓ n is not
well defined, and therefore its numerical value is truncated by a maximum (absolute) value of order 1/h. A second
remark deals with the computation of normal derivatives of Aε(u) : ε(u) or J in the formulas for l2. When u and p
are Q1, we need to interpolate their gradients as Q1 finite elements before computing these normal derivatives. The
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third and most important comment is about the matrix arising from the discretization of l2. It is a full matrix of size
proportional to the number of nodes belonging to the mesh cells cut by the boundary ∂Ω. Therefore its storage is
a real issue, at least for 3-d problems, (see Section 12.4). A possible cure could be to store only elements which are
above some threshold, in absolute value. Furthermore, the evaluation of the Hessian matrix requires the knowledge
of the shape derivatives of the displacement, namely u′θ and u′ξ. For a given θ ∈ P1

(
Th;R2

)
, computing u′θ amounts

to solving the linear system with the stiffness matrix and the right-hand side parametrized by θ in (12.7). In 2-d, the
stiffness matrix is already factorized for the computation of u. There are as many different right-hand sides as the
number of nodes in the vicinity of the boundary (this number is usually much smaller than the number of cells in the
mesh). This computation of the Hessian is not too expensive if the stiffness matrix is factorized and stored, what can
be easily done in 2-d. However, in 3-d, when iterative solvers are used, the computational cost may be problematic.
For example in 2-d, and without any performance optimization (using Scilab), for a mesh of size 120 × 60 (as used
in the next section) the computation of the Hessian requires about 5s of CPU time, whereas the computation of the
gradient requires about 100ms of CPU time.

12.2.3 Consistency issue with the redistanciation

In the level-set method, the motion of the shape is tracked by the resolution of a Hamilton-Jacobi equation. For
numerical reasons, it is convenient to take the signed distance function to ∂Ω as level-set function. This resolution of
the Hamilton-Jacobi equation does not ensures that the level-set function stays a distance function. Therefore, the
level-set is often redistanciated (see Section 4.3) to prevent it from being too steep or too flat.

However, it appears that the redistanciation process may have negative effects on the consistency of the derivatives.
It is well known that the resolution of the transport equation (see Section 4.3.1) for the redistanciation of the level-set
does not conserve exactly the boundary of the shape. This was not problematic for the previous PDE-free examples
in Section 12.1. In the mechanical examples, we rather choose the fast-marching method (see Section 4.3.2) instead,
and we will see that there are still numerical issues.

For example, we take the case of the compliance criterion on the following example of the arch with an initial
shape with holes. As usual, with v given by the extension (by Method 10.2.3) of the solution to the gradient equation
(10.28), we plot the following functions

τ 7→ J1(Ωτ ),

τ 7→ J1(Ω0) + τJ1
′ (Ω0; v) ,

τ 7→ J1(Ω0) + τJ1
′ (Ω0; v) +

1

2
τ2J1

′′ (Ω0; v, v) .

In Figure 12.17, we compare the consistency of the derivatives depending on whether the transport equation is coupled
to a redistanciation process or not. On the right picture of Figure 12.17 (when the level-set is redistanciated during
the advection) we can see that there is a bump in the curve τ 7→ J1(Ωτ ) at τ = 0. To the contrary, when there is
no redistanciation, the derivatives are consistent. The redistanciation acts as if a constant error were added to this
curve. In the right picture, the error added by the redistanciation is negative : the value J1(Ω0) is above the curve
τ 7→ J1(Ωτ ). It is not problematic since the objective is to be minimized. Thus, any small positive time step τ lead to
a decrease of the criterion J1. However, the error may be positive like in Figure 12.18. Even if this last figure is just
a cartoon illustrating the idea, such a case sometimes occurs. In that case, the shape Ω0 is seen as a local minimum
of the criterion J1. Thus, the line-search may not find any time step to decrease the criterion. This may lead to the
termination of the optimization process for a shape not optimal at all.

Thus, the fast-marching method also seems to modify the zero level-set. It appears that the initial computation
of the distance function for nodes in the vicinity of the boundary is based on linear approximations. Thus, this could
lead to slight modifications of the boundary. This question is further considered in Section 14.3.

The modification of the shape induced by the redistanciation process is also the reason why it could be interesting
to consider instead the approach of Adalsteinsson and Sethian [3] that we briefly introduced in Section 4.3.3.
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Figure 12.17: Consistency without (left) or with (right) redistanciation.

Figure 12.18: Positive additional error due to redistanciation.
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12.2.4 Arch

As a first test case, we consider an arch under boundary conditions described by Figure 12.19. We consider a working
domain of size 2× 1 with a square mesh of size 120× 60. Thus the value of h is h = 1

60 . For both the compliance and
the least square criteria, the applied force is a point load (0,−1) applied at the middle of the bottom boundary. It is
classical for numerical experiments to apply a point load. However, for second-order optimization, this may not be a
very good idea since the state u is probably not regular enough to apply the differentiability results of the previous
section. The Young modulus and the Poisson coefficient are respectively E = 1.0 and ν = 0.3. In the definition of the
Lagrangian, the Lagrange multiplier is Λ = 20 for the initialization with holes and Λ = 8 for the initialization without
holes.

Ω

D

ΓD

ΓN

Γ

Figure 12.19: Boundary condition for the arch.

Least square criterion - Initialization with holes

In this example we consider the least square error criterion with target displacement (0, 0) on the boundary ΓN . Since
both components of the displacement are minimized on ΓN this least square objective function is different from the
compliance. The initial shape is the one of Figure 12.20.

Figure 12.20: Initial shape for the arch.

Like previously, we denote Ω∞ the final shape for each method, and Ω× the best of all six final shapes (which are
plotted in Figure 12.21 and Figure 12.22). The final value of the Lagrangian and the number of iterations (a maximum
number iteration is set to 200) needed to get convergence are transcripted in Table 12.7. Due to the line search, each
iteration may need several finite element computations for the evaluation of the criterion. Therefore, we also give the
number of finite element computations needed to get convergence. We also register in this table the Gradient ratio

defined by
L′ (Ω∞; v∞)

L′ (Ω0; v0)
(12.9)

In this first example one can observe that the best shape is obtained with the Newton method and the extension
Method 10.2.3. The convergence of L(Ω) − L(Ω×) and L(Ω) − L(Ω∞) are plotted respectively in Figure 12.23 and
Figure 12.24. Looking at Figure 12.24 we see that all the Newton method converge with fewer iterations than the
gradient methods. In this case, the choice of the extension method does not lead to major changes in the behavior of
the algorithms and the final results.

Finally we consider the convergence rate for the error with respect to the final value for each algorithm (Figure 12.25
and Table 12.8). This indicator is as well deceptive here. We can see that the rates of convergence are similar for
all methods, and around 1. There can be many reasons for that. First, all final shapes have corners. Like in the
case of the square in Section 12.1.4 this singularity in the boundary is probably responsible for the degradation of the
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Figure 12.21: Final domains for the gradient algorithm for the least square criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.20 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

Figure 12.22: Final domains for the Newton algorithm for the least square criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.20 with, from left to right, extension Method 10.2.3,
Method 10.2.1, and Method 10.2.2.

Gradient Newton

Extension 10.2.3

Lagrangian 26.65396800 26.15282400

Iterations 199 27

FE 2533 74

Gradient ratio 1.038× 10−1 1.209× 10−2

Extension 10.2.1

Lagrangian 26.69840400 26.22945200

Iterations 199 23

FE 2233 68

Gradient ratio 1.383× 10−1 1.458× 10−2

Extension 10.2.2

Lagrangian 26.74557000 26.24563200

Iterations 199 24

FE 2477 84

Gradient ratio 8.366× 10−2 1.694× 10−2

Table 12.7: Performance of each algorithm for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Figure 12.23: Convergence of L(Ω) − L(Ω×) for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Figure 12.24: Convergence of L(Ω)− L(Ω∞) for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Figure 12.25: Linear regressions of the error with the best shape for the least square criterion on the arch problem of
Section 12.2.4 and initialization with the shape of Figure 12.20. The extension is made with Method 10.2.3 (top-left),
Method 10.2.1 (top-right), and Method 10.2.2 (bottom). Evolution of L(Ωn+1)−L(Ω∞) with respect to L(Ωn)−L(Ω∞).

Gradient Newton

Extension 10.2.3 1.00 1.07

Extension 10.2.1 1.00 1.04

Extension 10.2.2 1.01 1.06

Table 12.8: Slopes of the linear regressions of Figure 12.25.
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convergence rate. Secondly, the linear rate of convergence for the Newton method may come from the non-existence of
optimal shapes. The second-order rate of convergence is indeed based on the assumption that the first-order optimality
conditions are satisfied. When this condition is not satisfied - which is the case when there is no existence of an optimal
shape - the second-order rate of convergence can naturally not be observed. Then we could also say that the low rate of
convergence is due to the optimize-then-discretize approach. There are always optimal shapes for the discrete models,
but in general they do not satisfy the first-order optimality condition, which could also explain the non-quadratic rate
of convergence.

It appears that the observations on the rate of convergence are always the same in all the mechanical examples we
consider here : both Newton’s and gradient method have a linear rate of convergence. Thus, we will plot the rates of
convergence only for this example.

Least square criterion - Initialization without holes

Figure 12.26: Initial shape for the arch.

Figure 12.27: Final domains for the gradient algorithm for the least square criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.26 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

Secondly we consider the same example but the initialization differs since it has no holes. All final shapes are
displayed in Figure 12.27 and Figure 12.28 The final values of the Lagrangian and the number of iterations needed
to get convergence are transcripted in Table 12.9. The best shape Ω× is obtained with the Newton method and the
extension of Method 10.2.1. This case is particular since the latter method requires the largest number of iterations to
converge. In Figure 12.29 and Figure 12.30 we respectively plot the convergence of L(Ω)−L(Ω×) and L(Ω)−L(Ω∞).
We can see in Figure 12.29 that at the twentieth iteration, the current shape is already better that all final shapes
of the other methods. If we leave this method apart, the Newton method converges to shapes that give nearly the
optimal objective in fewer iterations than the gradient method. Of course, the final convergence of L(Ω) to L(Ω∞) is
very fast but it is a lure since, by definition, L(Ω∞) is the limit value of L(Ω). Nevertheless, the convergence histories
of Figure 12.29 and Figure 12.30 are good measures of convergence speed for the early iterations.
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Figure 12.28: Final domains for the Newton algorithm for the least square criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.26 with, from left to right, extension Method 10.2.3,
Method 10.2.1, and Method 10.2.2.

Gradient Newton

Extension 10.2.3

Lagrangian 18.21257000 18.24514840

Iterations 48 18

FE 482 79

Gradient ratio 3.963× 10−2 1.006× 10−2

Extension 10.2.1

Lagrangian 18.13401440 17.99718920

Iterations 64 156

FE 620 1072

Gradient ratio 3.367× 10−2 5.717× 10−4

Extension 10.2.2

Lagrangian 18.22399400 18.21113520

Iterations 41 30

FE 387 175

Gradient ratio 3.710× 10−2 1.228× 10−3

Table 12.9: Performance of each algorithm for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Figure 12.29: Convergence of L(Ω) − L(Ω×) for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Figure 12.30: Convergence of L(Ω)− L(Ω∞) for the least square criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Compliance - Initialization without holes

Next we consider the compliance for the arch, for an initialization without holes. All final shapes are plotted in
Figure 12.31 and Figure 12.32. In Table 12.10 we can see the final values of the Lagrangian and the number of
iterations needed to converge. We also plot the convergence of L(Ω) − L(Ω×) and L(Ω) − L(Ω∞) respectively in
Figure 12.33 and Figure 12.34.

Figure 12.31: Final domains for the gradient algorithm for the compliance criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.26 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

Figure 12.32: Final domains for the Newton algorithm for the compliance criterion on the arch problem of Section 12.2.4
and initialization with the shape of Figure 12.26 with, from left to right, extension Method 10.2.3, Method 10.2.1, and
Method 10.2.2.

The extension 10.2.1 leads to the best shapes for both Newton’s and gradient method, but it has a great cost in
terms of iterations. Excepting these two results, the best shape is obtained by the Newton method with extension
10.2.2. In this case there is not much difference - for the Newton method - between the extensions 10.2.3 and 10.2.2.

We can also mention the number of finite element computations, corresponding to FE in Table 12.10. For the
Newton method, there is much less finite element computations. This means that the line search for the Newton
method is much less time consuming. Thus, the time step is closer to 1 which is the ideal time step for an exact
Newton’s method.
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Gradient Newton

Extension 10.2.3

Lagrangian 18.21268880 18.21041280

Iterations 55 18

FE 574 88

Gradient ratio 4.358× 10−2 1.908× 10−4

Extension 10.2.1

Lagrangian 18.13557280 17.96468880

Iterations 60 35

FE 575 90

Gradient ratio 3.239× 10−2 3.025× 10−4

Extension 10.2.2

Lagrangian 18.22403080 18.19544320

Iterations 39 21

FE 353 105

Gradient ratio 3.783× 10−2 4.065× 10−4

Table 12.10: Performance of each algorithm for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Figure 12.33: Convergence of L(Ω) − L(Ω×) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Figure 12.34: Convergence of L(Ω) − L(Ω∞) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.26.
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Compliance - Initialization with holes

We still minimize the compliance but with an initialization with holes like in Figure 12.20. In this example, we take the
opportunity to report, not only the total number of iterations and finite element analyses, but also the total number of
linear system solves. In the case of the gradient algorithm, each finite element analysis corresponds to one and only one
linear system to solve (for compliance minimization there is no adjoint equation). However, for Newton’s algorithm,
at each iteration we compute the Hessian matrix, which requires to solve as many equations (12.7) as the number
of degrees of freedom on the boundary ∂Ω. Solving (12.7) amounts to solve a linear system with the same rigidity
matrix as the state equation (12.5). Therefore, if the rigidity matrix is factorized once per iteration, the additional
cost of the Newton algorithm is just a large number of back-and-forth substitutions. Factorizing the rigidity matrix,
and thus minimizing the overhead of Newton’s algorithm is possible in 2-d but is clearly a problem in 3-d. We recall
that, for the moment, we do not try to minimize the CPU and memory costs of Newton’s algorithm.

Figure 12.35: Final domains for the gradient algorithm for the compliance criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.20 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

Figure 12.36: Final domains for the Newton algorithm for the compliance criterion on the arch problem of Section 12.2.4
and initialization with the shape of Figure 12.20 with, from left to right, extension Method 10.2.3, Method 10.2.1, and
Method 10.2.2.

The final shapes are plotted in Figure 12.35 and Figure 12.36, while the performance of the different algorithms are
detailed in Table 12.11. We also plot the convergence of L(Ω)−L(Ω×) and L(Ω)−L(Ω∞) respectively in Figure 12.37
and Figure 12.38. The behavior of the different optimization methods is almost the same as for the minimization
of the displacement criterion in the case of the arch. Even if the best shape is obtained with gradient method and
extension Method 10.2.3, the change of extension method seems to accelerate a bit the convergence. The Newton
method converges anyway faster than the gradient method for this case, and whatever the choice of extension.
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Gradient Newton

Extension 10.2.3

Lagrangian 26.22108415 26.26417000

Iterations 181 34

FE 2024 97

FE total 2025 51894

Gradient ratio 9.319× 10−2 6.547× 10−3

Extension 10.2.1

Lagrangian 26.31501400 26.29651600

Iterations 190 28

FE 1920 74

FE total 1921 43270

Gradient ratio 6.157× 10−2 1.239× 10−2

Extension 10.2.2

Lagrangian 26.38028800 26.34791200

Iterations 133 26

FE 1400 79

FE total 1401 40556

Gradient ratio 8.374× 10−2 1.340× 10−2

Table 12.11: Performance of each algorithm for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Figure 12.37: Convergence of L(Ω) − L(Ω×) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Figure 12.38: Convergence of L(Ω) − L(Ω∞) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20.
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Compliance - Initialization with holes and a finer mesh of size 200× 100

To assess the mesh dependency, or scalability, of Newton’s algorithm, compared to the gradient algorithm, we run the
same test case as in Section 12.2.4, but on a finer mesh of size 200×100 (while the previous one was 120x60). Starting
from the same initialization, the final domains are the same (but with different values of the Lagrangian).

Figure 12.39: Final domains for the gradient algorithm for the compliance criterion on the arch problem of Sec-
tion 12.2.4 and initialization with the shape of Figure 12.20 on a finer mesh of size 200× 100 with, from left to right,
extension Method 10.2.3, Method 10.2.1 and Method 10.2.2.

Figure 12.40: Final domains for the Newton algorithm for the compliance criterion on the arch problem of Section 12.2.4
and initialization with the shape of Figure 12.20 on a finer mesh of size 200 × 100 with, from left to right, extension
Method 10.2.3, Method 10.2.1, and Method 10.2.2.

The final shapes are plotted in Figure 12.39 and Figure 12.40, while the performance of the different algorithms
are detailed in Table 12.12. The convergence of L(Ω)− L(Ω×) and L(Ω)− L(Ω∞) are finally plotted in Figure 12.41
and Figure 12.42. Compared to the coarser mesh of the previous example, the number of iterations and finite element
analyses has roughly doubled for the Newton method. Since the number of cells has doubled in each space direction
too, the number of degrees of freedom on the boundary ∂Ω has roughly doubled. Therefore it is not a surprise that
the number of linear system solves for Newton’s algorithm has approximately quadrupled. In any case, it is clear
that the cost of Newton’s algorithm may turn out to be prohibitive for fine meshes, motivating the development of
inexact (but cheaper) Newton’s strategies. This example is also very interesting since the final shapes obtained with
the Newton method are rather different from the one obtained with the gradient method. Even if the final values of
the objective functions are lower with the gradient method, the Newton method converge always (for this example)
much more rapidly.
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Gradient Newton

Extension 10.2.3

Lagrangian 26.75750760 26.88574747

Iterations 320 49

FE 3500 95

FE total 3501 127656

Gradient ratio 4.711× 10−2 7.702× 10−3

Extension 10.2.1

Lagrangian 26.75589302 26.92230720

Iterations 349 50

FE 3373 92

FE total 3374 133390

Gradient ratio 4.026× 10−2 1.243× 10−2

Extension 10.2.2

Lagrangian 26.76955930 26.87542852

Iterations 343 51

FE 3808 120

FE total 3809 136709

Gradient ratio 3.748× 10−2 6.372× 10−4

Table 12.12: Performance of each algorithm for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20 on a finer mesh of size 200× 100.
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Figure 12.41: Convergence of L(Ω) − L(Ω×) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20 on a finer mesh of size 200× 100.



210 CHAPTER 12. NUMERICAL EXAMPLES

0 50 100 150 200 250 300 350
10−4

10−3

10−2

10−1

100

101

102
L(Ω)− L(Ω∞)

Gradient Ext 10.2.3
Gradient Ext 10.2.1
Gradient Ext 10.2.2
Newton Ext 10.2.3
Newton Ext 10.2.1
Newton Ext 10.2.2

Figure 12.42: Convergence of L(Ω) − L(Ω∞) for the compliance criterion on the arch problem of Section 12.2.4 and
initialization with the shape of Figure 12.20 on a finer mesh of size 200× 100.
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12.2.5 Cantilever

Our second and last test case is a cantilever. The working domain and the mesh have the same size as in the case of
the arch, i.e., 2 × 1 and 120 × 60. The value of h is also 1

60 . For both the compliance and the least square criteria,
the applied force is a point load (0,−0.1) applied at the middle of the right boundary. The Young modulus and the
Poisson coefficient are still respectively E = 1.0 and ν = 0.3.

Ω

D

Figure 12.43: Cantilever

Least square criterion - Initialization with holes

We first consider the least square error on a cantilever for an initialization with holes (see Figure 12.44). The criterion
is similar to the case of the arch, since we take the same target displacement, i.e u0 = (0, 0) on ΓN . In the definition
of the Lagrangian, the Lagrange multiplier is Λ = 16.

Figure 12.44: Initial shape for the cantilever.

Figure 12.45: Final domains for the gradient algorithm for the least square criterion on the cantilever problem of
Section 12.2.5 and initialization with the shape of Figure 12.44 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

The final shapes are plotted in Figure 12.45 and Figure 12.46, while the performance of the different algorithms are
detailed in Table 12.13. The convergence of L(Ω)−L(Ω×) and L(Ω)−L(Ω∞) are respectively plotted in Figure 12.47
and Figure 12.48. The best shape is obtained with the Newton algorithm and extension Method 10.2.2. In this example,
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Figure 12.46: Final domains for the Newton algorithm for the least square criterion on the cantilever problem of
Section 12.2.5 and initialization with the shape of Figure 12.44 with, from left to right, extension Method 10.2.3,
Method 10.2.1, and Method 10.2.2.

Gradient Newton

Extension 10.2.3

Lagrangian 19.65491920 19.18934280

Iterations 51 45

FE 551 102

Gradient ratio 9.179× 10−2 8.860× 10−3

Extension 10.2.1

Lagrangian 19.62798240 19.15956200

Iterations 45 35

FE 408 91

Gradient ratio 1.010× 10−1 6.978× 10−3

Extension 10.2.2

Lagrangian 19.70648800 19.11006840

Iterations 38 37

FE 385 101

Gradient ratio 1.163× 10−1 4.350× 10−3

Table 12.13: Performance of each algorithm for the least square criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.
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Figure 12.47: Convergence of L(Ω)− L(Ω×) for the least square criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.
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Figure 12.48: Convergence of L(Ω)− L(Ω∞) for the least square criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.
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compared to the gradient method, the Newton method converges always more rapidly to a shape for which the final
value of the objective function is smaller. We could also notice that, for the Newton method, the two extensions given
by Method 10.2.1 and Method 10.2.2 lead to smaller objective values for the final shapes than with the extension
of Method 10.2.3. Comparing the curves of the Newton method, we can also conclude that the improvement of the
second-order method relies on the computation of the Hessian but also on the choice of the extension which has a
great influence on the result.

Compliance - Initialization with holes

Now we consider the compliance for the cantilever with an initialization with holes (see Figure 12.44). In the definition
of the Lagrangian, the Lagrange multiplier is Λ = 1.

Figure 12.49: Final domains for the gradient algorithm for the compliance criterion on the cantilever problem of
Section 12.2.5 and initialization with the shape of Figure 12.44 with, from left to right, extension Method 10.2.3,
Method 10.2.1 and Method 10.2.2.

Figure 12.50: Final domains for the Newton algorithm for the compliance criterion on the cantilever problem of
Section 12.2.5 and initialization with the shape of Figure 12.44 with, from left to right, extension Method 10.2.3,
Method 10.2.1, and Method 10.2.2.

The final shapes are plotted in Figure 12.49 and Figure 12.50, while the performance of the different algorithms
are detailed in Table 12.14. The convergence curves of L(Ω) − L(Ω×) and L(Ω) − L(Ω∞) are respectively plotted
in Figure 12.51 and Figure 12.52. In this example, the Newton method performs quite well since for each extension
method, the convergence needs fewer iterations and leads to a shape whose objective function is lower. We can also
have a look at the number of evaluations - FE in Table 12.14 - and see that with the Newton method the number of
finite element computation is much less important. We also recall that the number of finite element computations in
the field FE of Table 12.14 corresponds to the number of different shapes on which the criterion is evaluated during the
optimization process. For a mechanical criterion, this means that the stiffness matrix has to be assembled as many
times.

Looking at the quantity denoted by Gradient ratio in Table 12.14, we can also notice a negative value for the
Newton method with extension of Method 10.2.2. This means that the direction found by the quadratic subproblem
(10.27) is not a descent direction. Since at the beginning, v0 is always a descent direction (at least in practice), it
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Gradient Newton

Extension 10.2.3

Lagrangian 1.56474350 1.53127160

Iterations 50 41

FE 544 86

Gradient ratio 8.573× 10−2 8.504× 10−3

Extension 10.2.1

Lagrangian 1.56163040 1.52958940

Iterations 50 46

FE 467 89

Gradient ratio 7.330× 10−2 6.576× 10−3

Extension 10.2.2

Lagrangian 1.57032030 1.53543090

Iterations 54 25

FE 648 71

Gradient ratio 8.033× 10−2 −9.638× 10−3

Table 12.14: Performance of each algorithm for the compliance criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.

0 10 20 30 40 50 60
10−4

10−3

10−2

10−1

100 L(Ω)− L(Ω×)

Gradient Ext 10.2.3
Gradient Ext 10.2.1
Gradient Ext 10.2.2
Newton Ext 10.2.3
Newton Ext 10.2.1
Newton Ext 10.2.2

Figure 12.51: Convergence of L(Ω) − L(Ω×) for the compliance criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.
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means that at this last iteration (like it is mentioned in Remark 10.3.2), the direction v∞ is replaced by its opposite
for the line search procedure. However, in this case, it appears that it does not permit to improve the current shape,
meaning that the algorithm reached the best possible shape.
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Figure 12.52: Convergence of L(Ω)− L(Ω∞) for the compliance criterion on the cantilever problem of Section 12.2.5
and initialization with the shape of Figure 12.44.
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12.3 Mechanical examples for approximation of the second-order shape
derivative

The Newton method in shape optimization may be extremely time consuming. The computation of the second-order
shape derivative of a criterion depending on a state equation (see Section 9.2 Section 12.2.2) indeed requires to solve
as many linear systems as the number of nodes in the vicinity of the boundary. The time cost tends to be extremely
important especially in three-dimensional cases (see Section 12.4). Thus, we are now concerned with the question
of approximating the Hessian instead of computing it exactly. We will explore the different methods proposed in
Section 9.2 on different examples. In that section different approximation methods were introduced : the BFGS-like
and inexact Newton’s method, the incomplete LU method, and the approximate CG-Newton method. It appears that
the BFGS-like as well as the inexact Newton’s method did perform well for the case of thickness optimization (see
Section 9.3). However, for the geometric optimization we consider here, these methods stops at the first iterations
of the optimization process whereas the shape can easily be still improved. The direction found by these methods
can become very erratic (see Figure 12.53). Thus, even if numerically the first-order derivative in this direction is
negative, this direction may not permit to decrease the objective function. Therefore, we will focus here on the last

Figure 12.53: Descent direction at iteration 5 for the inexact Newton’s method applied to the minimization of the
compliance on the arch problem with initialization with the shape of Figure 12.26.

two methods. We will also consider another kind of approximation referred to as the mass-lumping approximation,
that we start by describing.

12.3.1 Mass-lumping approximation

The mass-lumping method (see Section 5.2) is well-known for approximation of mass matrices. With a given mass
matrix M is consists in building a diagonal matrix M̃ where the diagonal is given by the vector Me, with e =
(1, · · · , 1)

T
. Here we will apply this method to the approximation of the Hessian matrix : we replace the matrix

H of the second-order derivative by the diagonal matrix whose diagonal is given by He. The main advantage is to
reduce significantly the computational cost. We detail it in the case of the compliance criterion. We recall that the
second-order shape derivatives write

l2(θ, ξ) = 2

ˆ
Ω

Aε(u′θ) : ε(u′ξ)−
ˆ

Γ

(θ · n) (ξ · n)

(
HAε(u) : ε(u) + ∂n

(
Aε(u) : ε(u)

))
,

where H is the mean curvature on the boundary and u′θ is the solution of





−div
(
Aε(u′θ)

)
= 0 in Ω,

u′θ = 0 on ΓD,
Aε(u′θ)n = 0 on ΓN ,
Aε(u′θ)n = divΓ

(
(θ · n) Aε(u)

)
on Γ.

(12.10)
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It can also be written like

l2(θ, ξ) = −2

ˆ
Γ

(θ · n)Aε(u) : ε(u′ξ)−
ˆ

Γ

(θ · n) (ξ · n)

(
HAε(u) : ε(u) + ∂n

(
Aε(u) : ε(u)

))
.

The second integral in this expression is not expensive to compute. To the contrary, the first integral implies to solve as
many linear system with as the number of nodes in the vicinity of the boundary. With mass-lumping approximation,
there is only one linear system to solve for computing u′1. Then, the first integral of l2 is replaced by

ˆ
Γ

(θ · n) (ξ · n)Aε(u) : ε(u′1).

There is a priori no reason for this approximation to be especially accurate, but it has at least two majors interest.
First, this approximation of the Hessian is not time consuming since it requires only one linear system solve. Secondly,
the resulting Hessian matrix is diagonal. Therefore, it eases the resolution of the sub-problem (10.27) for finding a
descent direction.

12.3.2 Consistency of the approximations

Like in Section 11.1.2 and Section 11.3.2 we want first to evaluate the consistencies of the different approximations
of the second-order shape derivative. We focus on the example of the arch introduced in Section 12.2.4, with the
compliance (J1) and the least square displacement (J2) criterion.

For the approximate CG-Newton method, the direction vγ is found by Algorithm 9.2.4. For the incomplete
LU or mass-lumping method, the direction vγ is the solution to (10.27) where the bilinear map lp,2 is replaced by
its approximation. The extension of the boundary field vγ to the whole computational domain D is made with
Method 10.2.3. Denoting by τ the final time of resolution of the Hamilton-Jacobi equation, we compare the following
functions

τ 7→ Ji(Ωτ ),

τ 7→ Ji(Ω0) + τJi
′ (Ω0; v) ,

τ 7→ Ji(Ω0) + τJi
′ (Ω0; v) +

1

2
τ2Ji

′′ (Ω0; v, v) ,

(12.11)

where J̃ ′′i is the approximation of the second-order shape derivative under consideration. Like in Section 11.3.2, we
also plot the following curve for the consistency of the second-order approximation.

τ 7→ Ji(Ωτ )− Ji(Ω0)− τJi′ (Ω0; v) , (12.12)

τ 7→ Ji(Ωτ )− Ji(Ω0)− τJi′ (Ω0; v)− 1

2
τ2J̃ ′′i (Ω0; v, v) . (12.13)

For both the compliance and least square displacement criteria, on the example of the arch, it appears that most
of the time, the quadratic approximation of the objective in the direction taken by the chosen algorithm is rather
consistent.

We start by the consistency of the second-order derivative of the compliance criterion. Figure 12.54 and Figure 12.55
correspond to the CG-Newton approximation; Figure 12.56 and Figure 12.57 correspond to the exact computation
of the Hessian, Figure 12.58 and Figure 12.59 correspond to the LU-approximation and finally Figure 12.60 and
Figure 12.61 correspond to the mass-lumping approximation. In these figures, we plot the curves (12.11) at different
iterations of each algorithm. Looking at the consistency along the iterations, it is not possible to say that one method
is more consistent that another. For each method, there are always shapes for which the method is consistent, and
shapes for which the method is not really consistent.

The behavior of the approximations of the second-order derivative of the displacement criterion is more or less the
same. However, sometimes it happens that the approximation of the second-order derivative has the wrong sign, like
in Figure 12.62 for the displacement minimization. The potential lack of consistency may thus explain that on some
examples in Section 12.3.3 or in Section 12.3.4 the approximated Newton’s method with approximated Hessian may
not be really efficient.
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Figure 12.54: Shape at iteration 18 for the compliance minimization and consistency for the approximate CG-Newton
method.
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Figure 12.55: Plot of the curves (12.12) and (12.13) with respect to the time τ in linear (left) and log (right) scales
for the iteration 18 with the CG-Newton method.
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Figure 12.56: Shape at iteration 6 for the compliance minimization and consistency for the Newton method with exact
Hessian.
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Figure 12.57: Plot of the curves (12.12) and (12.13) with respect to the time τ in linear (left) and log (right) scales
for the iteration 6 with the Newton method.
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Figure 12.58: Shape at iteration 9 for the compliance minimization and consistency for the incomplete LU approxi-
mation on the Hessian.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Approximation error

linear approximation
quadratic approximation

10−2 10−1 100
10−4

10−3

10−2

10−1 Approximation error

linear approximation
quadratic approximation

Figure 12.59: Plot of the curves (12.12) and (12.13) with respect to the time τ in linear (left) and log (right) scales
for the iteration 9 with the incomplete LU approximation method.



12.3. MECHANICAL EXAMPLES FOR APPROXIMATIONOF THE SECOND-ORDER SHAPE DERIVATIVE223

Figure 12.60: Shape at iteration 3 for the compliance minimization and consistency for the mass-lumping approxima-
tion on the Hessian.
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Figure 12.61: Plot of the curves (12.12) and (12.13) with respect to the time τ in linear (left) and log (right) scales
for the iteration 3 with the mass-lumping approximation method.
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Figure 12.62: Shape at iteration 18 for the displacement minimization and consistency for the mass-lumping approxi-
mation on the Hessian.
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12.3.3 Arch

Compliance - Initialization with holes

We first consider the same example as in Section 12.2.4 but with a Lagrange multiplier fixed to Λ = 12. We can first
observe that the final shapes in Figure 12.63 and Figure 12.64 look all the same. The final values of the objective
function in Table 12.15 are also similar.

We can also observe that all the second-order methods converge with fewer iterations than the gradient method, and
that the Newton method is the one that needs the minimum number of iterations to converge. Thus, the approximation
methods converge on this example with fewer iterations than the gradient method, and with more iterations than the
Newton method. This is exactly the behavior we could expect from ”good” approximation methods.

Figure 12.63: Final domains for the gradient (left) and Newton (right) algorithms for the compliance criterion on the
arch problem of and initialization with holes.

Figure 12.64: Final domains for the compliance criterion on the arch problem of and initialization with holes for the
Newton algorithms with incomplete LU (left), mass-lumping (center) and CG-Newton (right) approximation.

Compliance - Initialization without holes

Now we take the example of the arch when the initial shape does not have any hole, like in Section 12.2.4. The
Lagrange multiplier is fixed to Λ = 6. Here, all final shapes (displayed in Figure 12.67 and Figure 12.68) as well as the
final values (reported in Table 12.16) of the objective function are similar. However, the behavior of the approximation
methods is not exactly the same as in Section 12.3.3. We can indeed see that the incomplete LU approximation method
converges even faster than the exact Newton method. The best final shape is obtained by the approximate CG-Newton
method, but at the price of many iterations : it needs as many iterations than the gradient method. The convergence
of L(Ω) − L(Ω×) as well as L(Ω) − L(Ω∞) are displayed in Figure 12.69 and Figure 12.70. In Figure 12.69 we can
see that the objective value with this method is smaller than the one obtained with the gradient method only at the
very last iterations. However, the speed of convergence for the approximate CG-Newton method (observed in this
same figure) is rather important at the end of the optimization process. Thus, it could be interesting to first use the
gradient at the beginning of the optimization and switch to a second-order approximate method for the last iterations.
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Iterations Lagrangian Gradient ratio FE

Gradient 113 21.008393 4.339× 10−2 1082

Newton 30 21.016384 6.747× 10−3 77

CG-Newton 37 20.976707 2.289× 10−2 96

Mass-Lumping 85 21.035564 4.049× 10−3 251

LU 45 21.014296 2.166× 10−3 141

Table 12.15: Performance of each algorithm for the compliance criterion on the arch problem of and initialization with
holes.
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Figure 12.65: Convergence of L(Ω)−L(Ω×) for the compliance criterion on the arch problem of and initialization with
holes.

Iterations Lagrangian Gradient ratio FE

Gradient 32 16.248986 6.120× 10−2 283

Newton 15 16.250842 3.934× 10−4 77

CG-Newton 34 16.232746 4.657× 10−2 117

Mass-Lumping 60 16.261552 7.348× 10−3 301

LU 13 16.249782 8.036× 10−4 68

Table 12.16: Performance of each algorithm for the compliance criterion on the arch problem and initialization without
holes.
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Figure 12.66: Convergence of L(Ω) − L(Ω∞) for the compliance criterion on the arch problem of and initialization
with holes.

Figure 12.67: Final domains for the gradient (left) and Newton (right) algorithms for the compliance criterion on the
arch problem and initialization without holes.
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Figure 12.68: Final domains for the compliance criterion on the arch problem and initialization without holes for the
Newton algorithms with incomplete LU (left), mass-lumping (center) and CG-Newton (right) approximation.
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Figure 12.69: Convergence of L(Ω)−L(Ω×) for the compliance criterion on the arch problem and initialization without
holes.
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Figure 12.70: Convergence of L(Ω)−L(Ω∞) for the compliance criterion on the arch problem and initialization without
holes.
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12.3.4 Cantilever

Compliance - Initialization with holes

In this last example, we take the case of the cantilever like in Section 12.2.5, and consider the compliance criterion.
The Lagrange multiplier is fixed to Λ = 0.5. The final shapes are represented in Figure 12.71 and Figure 12.72, while
the performance of the different algorithms are detailed in Table 12.17. The convergence curves of L(Ω)−L(Ω×) and
L(Ω)− L(Ω∞) are respectively plotted in Figure 12.73 and Figure 12.74.

Figure 12.71: Final domains for the gradient (left) and Newton (right) algorithms for the compliance criterion on the
cantilever problem and initialization with holes.

Figure 12.72: Final domains for the compliance criterion on the cantilever problem and initialization with holes for
the Newton algorithms with incomplete LU (left), mass-lumping (center) and CG-Newton (right) approximation.

Here the Newton method with exact Hessian still converges with fewer iterations than the gradient method. Their
resulting final shapes lead to similar values of the objective function. With the approximate CG-Newton method,
the convergence is rather fast, but if we look at Figure 12.73, we observe that the speed is smaller than the gradient
method. Moreover, the final shape has a greater value of the objective function. To the contrary, for the mass-lumping
approximation, the convergence is rather slow, and the final shape is not as good as with the gradient method. Finally,
the incomplete LU approximation leads to the best final shape (with the smallest value of the objective function),
with fewer iterations than the gradient method.
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Iterations Lagrangian Gradient ratio FE

Gradient 79 1.119020 6.048× 10−2 847

Newton 14 1.125227 −3.023× 10−3 58

CG-Newton 11 1.132158 5.422× 10−1 59

Mass-Lumping 103 1.120791 1.691× 10−2 480

LU 48 1.112262 5.381× 10−3 185

Table 12.17: Performance of each algorithm for the compliance criterion on the cantilever problem and initialization
with holes.
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Figure 12.73: Convergence of L(Ω)− L(Ω×) for the compliance criterion on the cantilever problem and initialization
with holes.
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Figure 12.74: Convergence of L(Ω)− L(Ω∞) for the compliance criterion on the cantilever problem and initialization
with holes.
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12.4 Numerical experiments in 3d

After considering the Newton method for two-dimensional examples, we would like to see if the method could also be
efficient for three-dimensional cases. To that end, we will consider the cantilever example, the same as in Section 12.2.5
but in a three-dimensional version. These few 3-d numerical tests have been done thanks to a work with G. Michailidis,
A. Faure and M. Albertelli that we thank for.

The method for computing boundary integrals (see Chapter 11) that was used in the previous section has not
been implemented for three-dimensional cases. Therefore, we were only able to use approximations of the Dirac mass
δ∂Ω for computing these integrals. Thus, we have encountered the same consistency problems as already described.
As a consequence, the directions found by the different algorithms did not always permit a decrease of the objective
function. In such a case, the line search procedure leads to the termination of the optimization process whereas the
shape may not be optimal at all.

For example, for the minimization of the compliance with the gradient method on the cantilever example, we plot
the final shape in Figure 12.75. In this example, the mesh is of size 60×30×30. We can observe that this shape could
still be further optimized. This could be explained by either the coarsity of the mesh or by the lack of consistency of
the numerical approach.

Figure 12.75: Cantilever

We also tried to use the Newton method on this same example. The final result of the optimization process does
not reflect the efficiency of the Newton method because of the lack of consistency. However, it is still interesting
to implement it to evaluate the computational cost of the evaluation of the exact second-order derivatives. In this
example where the mesh is rather small, the computation of the second-order derivative takes about a couple of hours
(on a computer with 12 cores with frequency 2.9GHz, and with 192Go of memory). Moreover, since the resulting
Hessian is not sparse, the resolution of the quadratic problem (10.27) takes also a lot of time, still about an hour.

Our implementation can certainly be improved, in particular with parallelization of the code. The computation of
the second-order derivative indeed implies to solve many times linear systems involving the same matrix. Thus, the
parallelization of the code could really decrease the time cost of this computation.

However, if the mesh is to be refined for larger problems, the use of the exact second-order derivative seems to be
out of reach. Thus, it again rises the question of approximating the Hessian in an efficient and consistent way.

12.5 Concluding remarks

In this chapter, we provide different numerical experiments on the proposed second-order optimization method. The
analysis of the results leads to some general remarks :

PDE-free example

• The first numerical example is concerned with a PDE-free case when the objective function depends on the shape
only through the integration domain. In this example, the second-order method outperforms the gradient-like
method when the shape remains regular.

• When singularities develop on the boundary of the shape, the quadratic rate of convergence may be completely
lost.
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• However, even if the shape has singularities, changing the method of extension of the velocity from the boundary
to the entire computational domain also improves the speed of convergence for both the gradient and Newton
methods.

Accuracy and consistency

• It is important to use a redistanciation process in the level-set method. However, when it is used in the resolution
of the advection equation, it may create artificial local optima which can cause the stopping of the optimization
algorithm. This is mainly due to the fact that the redistanciation process may change the position of the
boundary. Thus, it seems important to find either numerical schemes that keep the boundary unchanged - at
least for distance functions - or to use redistanciation-free methods for the advection.

• The consistent and accurate computation of the derivatives is necessary for obtaining high rates of convergence.
As it will be seen in Chapter 15, the accuracy required is higher on the first-order derivative than on the second-
order one : in the particular example that is presented there, the error on the first-order derivative has to
converge quadratically to zero. Thus, it means that the first step to get a quadratic rate of convergence is to
have an accurate and consistent computation of the first-order derivatives.

Two-dimensional mechanical examples

• For the two-dimensional mechanical examples, the general behavior is not that pronounced. For all the presented
examples, the Newton method converges more rapidly than the gradient method in the following sense : for a
given same number of iterations the value of the objective function is lower with the Newton method than with
the gradient method. Sometimes, the Newton method takes more iterations to converge, but in that case, the
final value of the objective function is much smaller.

• However, even if the Newton method converges more rapidly than the gradient method, the rates of convergence
remain always linear.

• This linear rate of convergence of the Newton method might come from the irregularity of the final shapes. In the
present examples, when the shape is irregular, the second-order derivative is computed by cutting off the value
of the curvature. This may not be the best way to use a second-order information when the shape is not regular.
Thus, the question of using the second-order derivative on irregular shapes should be further investigated.

• The choice of extension between Method 10.2.1, Method 10.2.2 or Method 10.2.3 improves for most cases the
convergence of the Newton method. Method 10.2.1 seems to be the one that finds the best shapes but at the
cost of many iterations. Method 10.2.2 seems to offer a good compromise between the final value of the objective
function and the number of iterations needed to reach convergence. However, the choice of extension method
does not seem to have a major impact on the convergence of the gradient method.

Approximation of the second-order derivative

• We considered three different approximations of the second-order derivative of the compliance. On the three
examples presented, only the incomplete LU approximation method seems to outperform the gradient method.
The two other methods may sometimes be more efficient than the gradient method, but they do not seem as
reliable as the incomplete LU approximation.

However, let us mention different pros and cons of these three methods.

• There are two main advantages of the mass-lumping approximation : it is absolutely not expensive since it
requires only the solution of one boundary-value problem, and secondly the resulting Hessian matrix is diag-
onal, meaning that the computation of a descent direction is also not expensive. However, in the way it was
implemented and used, it does not seem to give efficient convergence results.

• The CG-Newton approximation seems to have better convergence properties than the mass-lumping approxima-
tion. This method has the advantage not to assemble the full Hessian of the criterion. From a discrete point of
view, it only requires matrix-vector product computations : it is a matrix-free method. However, it is not clear
how to use this method in the case when there are constraints in the optimization problem.

• The incomplete-LU approximation seems to perform quite well on the different examples. It has the advantage
to keep the same structure as the exact second-order derivative : only the inverse of the stiffness matrix is
approximated. However, the resulting Hessian matrix is still full, meaning that the resolution of the quadratic
subproblem for computing a descent direction may remain expensive.

• Thus the question of approximating the second-order derivative of a mechanical criterion requires also further
investigations.
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Three-dimensional case

• The main conclusion of the three-dimensional numerical experiments is that the use of an exact second-order
derivative of mechanical criteria is, for the moment, out of reach in three-dimensional cases. It would require
new ingredients from high performance computing to become viable in terms of CPU and memory cost.
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Part IV

Numerical analyses

”J’ai beaucoup travaillé.
Quiconque travaillera

comme moi pourra
faire ce que j’ai fait.”

J.-S. Bach
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Chapter 13

Full discretization of a shape
optimization algorithm
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The main goal of this chapter is to analyze a full discretization of a shape optimization algorithm with the level-
set method. For the sake of clarity, the discussion focuses on the two-dimensional case (d = 2). The algorithm to
be described here is a classic gradient method applied to a basic optimization problem : the minimization of the
compliance of a structure with a fixed penalization on the volume. We detail the computation of boundary integrals
(especially for the derivatives of the criteria) with the approximation of a Dirac mass δ∂Ω (see Section 11.1). This is not
the most consistent and accurate way of computing boundary integrals, but this is the most simple (see Chapter 11).
For other criteria, all needed ingredients are given with the simple example here. It is indeed explained how to compute
solutions to boundary-value problems, as well as boundary and volume integrals, which should suffice to compute any
relevant criteria.

At first we recall the main background for optimization of the compliance under a volume constraint, and intro-
duce some useful notation. Then we list all steps of the shape optimization algorithm we consider, and detail all
corresponding numerical computations.

13.1 A simple case

13.1.1 Model problem

We consider the framework of the elastic model described in Section 2.1.5 that we recall briefly. Let Ω ⊂ Rd be a
bounded open set. Its boundary ∂Ω is assumed to be regular, and ΓD, ΓN , Γ is a partition of it : ∂Ω = ΓD ∪ ΓN ∪ Γ.
The two boundary parts ΓD and ΓN are fixed whereas Γ is the part to be optimized. We introduce a working domain
D = [0, 1]2 and impose that every admissible shape Ω is included in D : Ω ⊂ D. For a given g ∈ H2(D;Rd) such that
g = 0 on Γ, we consider the following boundary-value problem, with unknown u ∈ H1(Ω;Rd).





−div
(
Aε(u)

)
= 0 Ω,

u = 0 ΓD,
Aε(u)n = g ΓN ,
Aε(u)n = 0 Γ,

(13.1)

where

Aξ = 2µξ + λTr(ξ)Id, ε(u) =
1

2

(
∇u+∇uT

)
.
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In order to compute u we introduce the variational space V = {w ∈ H1(Ω;Rd) | u = 0 on ΓD}. The variational
formulation of (13.1) is then to find u ∈ V such that

∀w ∈ V,
ˆ

Ω

Aε(u) : ε(w) =

ˆ
ΓN

g · w.

The compliance and volume respectively read

J(Ω) =

ˆ
Ω

Aε(u) : ε(u), V (Ω) =

ˆ
Ω

1.

The shape derivatives in the direction θ ∈ C1,∞ (Rd;Rd
)

are

J ′ (Ω; θ) = −
ˆ

Γ

Aε(u) : ε(u) (θ · n) , V ′ (Ω; θ) =

ˆ
Γ

(θ · n) .

We denote the shape gradients of the compliance and the volume by

jJ = −Aε(u) : ε(u), jV = 1. (13.2)

For Λ > 0 a fixed Lagrange multiplier, the aim is to minimize

L(Ω) = J(Ω) + ΛV (Ω).

The shape Ω is represented via a level-set function φ : D → R such that




φ(x) < 0 x ∈ Ω,
φ(x) = 0 x ∈ ∂Ω,
φ(x) > 0 x ∈ D\(Ω ∩ ∂Ω).

13.1.2 Notations

Let Nx, Ny ∈ N∗ and ∆x =
1

Nx
, ∆y =

1

Ny
. The square D = [0, 1]2 is endowed with a Cartesian grid Qh with steps

∆x in the x-direction and ∆y in the y-direction. For a numerical quantity φ defined at the vertices of the grid, and
for any i, j ∈ Z, we denote by φi,j the value assigned to the node xij := (i∆x, j∆y). We also recall the following finite
differences quantities

D+x
i,j φ =

φi+1,j − φi,j
∆x

, D−xi,j φ =
φi,j − φi−1,j

∆x
,

D+y
i,j φ =

φi,j+1 − φi,j
∆y

, D−yi,j φ =
φi,j − φi,j−1

∆y
,

D±xi,j φ =
φi+1,j − φi−1,j

2∆x
, D±yi,j φ =

φi,j+1 − φi,j−1

2∆y
.

and

∇+
i,jφ =

[
max

(
max(D−xi,j φ, 0);−min(D+x

i,j φ, 0)
)2

+ max
(

max(D−yi,j φ, 0);−min(D+y
i,j φ, 0)

)] 1
2

,

∇−i,jφ =

[
max

(
max(D+x

i,j φ, 0);−min(D−xi,j φ, 0)
)2

+ max
(

max(D+y
i,j φ, 0);−min(D−yi,j φ, 0)

)] 1
2

.

13.2 Algorithm

The level-set function φ is from now on the variable to be optimized. Starting from a function φp we describe the step
φp → φp+1.

Algorithm 13.2.1. Optimization algorithm

1. Initialization : set φi,j = φpi,j and choose a threshold η > 0.

2. Redistanciation : apply Algorithm 13.2.2 to φ (see Section 13.2.1).

3. Computation of the density function (see Section 13.2.2).

4. Evaluation of the criterion Lh and its gradients ∇Lh, (see Section 13.2.3).

5. Computation of a descent direction W̃ (see Section 13.2.4).

6. Line search (see Section 13.2.6).
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13.2.1 Redistanciation of the level-set

The objective of the redistanciation is to make the level-set function close to a signed distance function. The level-set
φp is replaced by φ(T, ·) with T = 5

2∆x, the solution to

{
∂tφ(t, x) + s(φ)(t, x)

(
|∇xφ(t, x)| − 1

)
= 0,

φ(0, x) = φp(x),
(13.3)

with s being the sign function. The numerical scheme for this step is the same as in Section 4.2.2 :

Algorithm 13.2.2. Redistanciation algorithm

1. Initialization : set φ0
i,j = φpi,j and si,j =

φni,j(
φni,j
)2

+ 0.5(∆x2 + ∆y2)Ni,j + 10−8(∆x2 + ∆y2)

2. For n in 0, · · · , 4

• Ni,j =
1

2

((
D+x
i,j φ

n
)2

+
(
D−xi,j φ

n
)2

+
(
D+y
i,j φ

n
)2

+
(
D−yi,j φ

n
)2)

,

• dt =
1

2
min

(
∆x,∆y

)
,

• φn+1
i,j = φni,j − dt

(
max(si,j , 0)∇+

i,jφ
n + min(si,j , 0)∇−i,jφn − si,j

)
.

• Set n := n+ 1.

3. Set φi,j = φ4
i,j.

We can notice that the approximation of the sign function s corresponds to the discretization of s2,ε in Section 11.1.
We could also have chosen another approximation for the sign function. In this algorithm, the time-step dt is chosen
as dt = 1

2 min(∆x,∆y) in order to ensure that the CFL condition is satisfied. The loop corresponding to step 2 of this
algorithm is only performed with n ∈ J0, 4K for numerical reasons. The redistanciation is used for the resolution of the
Hamilton-Jacobi advection equation. It prevents the level-set from being too steep or too flat in the vicinity of the
boundary. Finding the stationary solution of (13.3) is time consuming and not necessary, since the first iteration of
the loop (step 2) correspond to the redistanciation in the neighborhood of of the boundary. Finally, taking n ∈ J0, 4K
corresponds to take a final time T = 5dt = 5

2∆x for (13.3).

13.2.2 Density function, Dirac mass on the boundary

We denote K ∈ Qh an element of the Cartesian grid and introduce the finite element space Q1

(
Qh;R2

)
of dimension

Nh. We introduce a density function ρ defined on each element of the mesh, that plays the role of the characteristic
function of Ω. It is computed with the help of φ on each element by

ρK =





1 if K ⊂ Ω,
0 if K ⊂ D\Ω,
|K ∩ Ω|
|K| else.

We consider the approximation of the sign function given by s2,ε defined by (11.5), with ε = 10−8(∆x2 + ∆y2) (we
could also have chosen s1,ε). Thus, the discrete sign function reads

si,j =
φi,j

φ2
i,j + 0.5(∆x2 + ∆y2)Ni,j + 10−8(∆x2 + ∆y2)

, (13.4)

where

Ni,j =
1

2

((
D+x
i,j φ

)2
+
(
D−xi,j φ

)2
+
(
D+y
i,j φ

)2
+
(
D−yi,j φ

)2)
.

The Dirac function is approximated by δ2,ε = 1
2 |∇s2,ε|, and therefore we take

δi,j =
1

2

( (
D±xi,j s

)2
+
(
D±yi,j s

)2 ) 1
2

.
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13.2.3 Evaluation of the criteria and their shape gradients

Volume

The volume of the shape and its shape derivative are defined by

V (Ω) =

ˆ
Ω

1, V ′(Ω; θ) =

ˆ
∂Ω

θ · n.

The discrete approximation of the volume is

V h =
∑

K∈Qh

ρK∆x∆y.

The discrete approximation of the shape gradient - ∇V h ∈ RNh - is defined by

∀i, j ∈ Z, ∇V hi,j = 1.

Compliance

With u solution to (13.1), the compliance is defined by

J(Ω) =

ˆ
Ω

Aε(u) : ε(u), J ′(Ω; θ) = −
ˆ

Γ

(θ · n) Aε(u) : ε(u).

We do exactly like in Section 8.2. With AQh being the elementary stiffness matrix of Q1, and G the components of
the source term in Q1, we search U ∈ RNh - the components of the interpolation of u in Q1 - such that for all P ∈ RNh

∑

K∈Qh

ρKU|K
TAQhP|K = GT P.

Once U is computed the compliance is obtained with

Jh =
∑

K∈Qh

ρKU|K
TAQhU|K .

The numerical shape gradient of the compliance, ∇Jh ∈ RNh , is computed with

∇Jhi,j = − 1

nij

∑

K⊃xi,j

ρKU|K
TAQhU|K ,

where ni,j is the number of elements containing xi,j .

Lagrangian

We obviously have
Lh = Jh + ΛV h, ∇Lhi,j = ∇Jhi,j + Λ∇V hi,j .

13.2.4 Descent direction

Here we aim at computing a descent direction W̃ ∈ RNh . We start with the definition of the set of nodes of the
boundary.

Boundary

Let BΓ be the set of nodes that are in an element crossed by the boundary. A node is then in BΓ if it is in a cell where
the sign of the level-set function changes on the four vertices. We can approximate it like :

BΓ =



xi,j | ∃K ∈ Qh, xi,j ∈ K and

∣∣∣∣∣∣
∑

xk,l∈K
sk,l

∣∣∣∣∣∣
6= 4



 ,

where s is defined by (13.4).

Trace on the boundary

Now we compute a direction W ∈ RNh that is set to zero outside BΓ. The numerical resolution of the gradient
equation (10.28) consists in finding W ∈ RNh such that Wi,j = 0 if xi,j /∈ BΓ and that is solution to

min
|Wi,j | ≤ vM

1

2

∑

xi,j∈BΓ

δi,jW
2
i,j∆x∆y +

∑

xi,j∈BΓ

δi,j∇Lhi,jWi,j∆x∆y. (13.5)

It now remains to compute an extension of W from BΓ to the whole computational domain. We detail here the discrete
version of the extensions presented in Section 10.2.
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Extension with Method 10.2.1

We want to find W̃ ∈ RNh such that ∂nW̃ = 1 and W̃ = W on BΓ. This consists in solving

{
∂tw̃(t, x) + s(φ)(t, x)

(
∂nw̃(t, x)− 1

)
= 0,

w̃(0, x) = w(x).
(13.6)

From a numerical point of view, we do

Algorithm 13.2.3. Extension

1. Initialization : set W 0
i,j = Wi,j, si,j =

φni,j(
φni,j
)2

+ 0.5(∆x2 + ∆y2)Ni,j + 10−8(∆x2 + ∆y2)

and Si,j =

((
∇±xi,j s

)2
+
(
∇±yi,j s

)2
+ 10−3

) 1
2

.

2. For n in 0, · · · , 20

• Ni,j =
1

2

((
D+x
i,j φ

)2
+
(
D−xi,j φ

)2
+
(
D+y
i,j φ

)2
+
(
D−yi,j φ

)2)
,

• dt =
1

2
min

(
∆x,∆y

)

• If xi,j /∈ BΓ set

Wn+1
i,j = Wn

i,j − dt
(

min(D±xi,j φi,j , 0)

Si,j
D+x
i,j W

n +
max(D±xi,j φi,j , 0)

Si,j
D−xi,j W

n

+
min(D±yi,j φi,j , 0)

Si,j
D+y
i,jW

n +
max(D±yi,j φi,j , 0)

Si,j
D−yi,jW

n − si,j
)
.

• Set n := n+ 1.

3. Set W̃i,j = W̃ 20
i,j .

In this algorithm, the loop at step 2 is performed with n ∈ J0, 20K. This amounts to extend the velocity W only
in a neighborhood of the boundary. The extended velocity will be used for the resolution of the advection equation
(see Section 13.2.5). In the advection, there is a bound on the number of iterations that can be performed. This
is suggested by the fact that the boundary of the shape Ωp+1 given by φp+1 should stay in a neighborhood of the
boundary of Ωp. The propagation of the boundary (or zero level-set) is directed by the values of the extended velocity
on this front. Thus, only the values of the velocity in this neighborhood matter for the advection. Therefore, there is
no need to extend the velocity in the whole computational domain, which would be time consuming.

Extension with Method 10.2.3

For a scalar quantity vγ defined on the boundary ∂Ω, the idea is to find v such that for all w ∈ H1(R2;R)

η

ˆ
R2

∇v∇w +

ˆ
∂Ω

vw =

ˆ
∂Ω

vγw.

From a numerical point of view, we take η = 4∆x∆y in order to ensure that the regularization by the Laplace operator
will be efficient at least in a neighborhood of the boundary of size 2

√
∆x∆y. We also respectively denote M∆, M

the matrix of the Laplace operator and the mass matrix in Q1(Qh,R2), i.e for v, w in Q1(Qh,R2) with components
W1,W2 ∈ RNh

W1
TM∆W2 =

ˆ
R2

∇w1∇w2, W1
TMW2 =

ˆ
R2

w1w2.

Now let assume that we have W ∈ RNh solution to (13.5). With the help of the approximated Dirac function (see
Section 13.2.2) we build a diagonal matrix D such that for m = iNx + j, Dm,m =

√
δi,j . Now we are looking for

W̃ ∈ RNh such that for all P ∈ RNh ,

PT
(
ηM∆ +DM D

)
W̃ = PTDM DW.
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13.2.5 Advection through the Hamilton-Jacobi equation

The update of the shape in the direction w̃ is performed through the Hamilton-Jacobi equation, that is

{
∂tφ(t, x) + w̃(x) |∇xφ(t, x)| = 0,
φ(0, x) = φp(x).

(13.7)

At first we compute the time and time step parameters for the transport equation. The parameter ∆T is a priori
given.

Algorithm 13.2.4. Hamilton-Jacobi transport equation

1. Initialization : set φ0
i,j = φi,j.

2. Set dt0 =
1

2
min

(
∆x,∆y

)
and N =

⌈
max(W̃ )∆T

dt0

⌉
.

3. Set dt =
∆T

N
and N = min(N, 10).

4. For n in 0, · · · , N

• if n ≡ 0 (mod 5), apply Algorithm 13.2.2 to φ.

• φn+1
i,j = φni,j + dt

(
max(W̃i,j , 0)∇+

i,jφ+ min(W̃i,j , 0)∇−i,jφ
)

.

• Set n := n+ 1.

5. Apply Algorithm 13.2.2 to φ.

13.2.6 Line search

We describe the line search procedure in a direction W̃ .

Algorithm 13.2.5. Line search

1. Set ∆T = 1.

2. Let φT be the result of the transport equation (see Section 13.2.5) for ∆T , W , φ.

3. Compute the density function ρT for φT (see Section 13.2.2).

4. Evaluate the criterion LhT for ρT (see Section 13.2.3).

5. If ∆T ≤ η terminate the optimization. Else If LhT > Lh + 10−3∆T
∑
i,j∈Z∇Lhi,jWi,jδi,j, set ∆T :=

∆T

2
and go

to 2. Else set φ = φT and stop.
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The numerical scheme (see Section 4.2.2 or also Algorithm 13.2.4) used for solving the Hamilton-Jacobi equation
is well-known for being very diffusive. The eikonal equation can be solved with the same scheme or with another
method, namely the fast-marching method. In view of the Newton method for optimization we aim in this section at
analyzing the numerical effect of these schemes on an optimization method. At first we recall the scheme for solving the
Hamilton-Jacobi and the eikonal equation in 1D. The choice to work in dimension 1 allows us to make all calculations
possible explicit. It appears that even with a basic PDE-free example, a gradient method for shape optimization may
not have the expected behavior and may not converge. Secondly we consider the case of the fast-marching method and
present an example to show that computing distances is not necessary a stable procedure, meaning distance functions
are not necessarily fixed points of the method.

14.1 The one-dimensional transport equation

At first we recall the scheme for the resolution of the transport equation in the one-dimensional case.

14.1.1 The Hamilton-Jacobi transport equation

In this section we discuss the numerical analysis of the discretization scheme for the following Hamilton-Jacobi equation
in space dimension one : {

∂tφ+ v|∇φ| = 0 on [0, T ]× [0, 1],
φ(0, ·) = φ0 on R, (14.1)

with periodic boundary conditions, where the scalar field v and the initial condition φ0 are given.

Notation. Let N ∈ N? and h = 1
N . The segment [0, 1] is endowed with a Cartesian grid with steps h. For a numerical

quantity φ defined at the vertices of the grid and i ∈ J0, NK, φi denotes the value assigned to the node xi := ih. In this
context we introduce the respective upwind and downwind difference quantities :

D+
i φ =

φi+1 − φi
h

, D−i φ =
φi − φi−1

h
. (14.2)

For solving the Cauchy problem, a usual approximation consists in solving the following explicit finite difference
scheme {

∀n ∈ N, i ∈ Z, φn+1
i = φni −∆t

(
max(vi; 0)∇+

i φ
n + min(vi; 0)∇−i φn

)
,

∀i ∈ Z, φ0
i = φ0(ih).

(14.3)

245
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The upwind and downwind discretizations of |∇φ|, denoted respectively by ∇+
i φ and ∇−i φ, are defined by

∇+
i φ = max

(
max(D−i φ; 0);−min(D+

i φ; 0)
)
, (14.4)

∇−i φ = max
(
max(D+

i φ; 0);−min(D−i φ; 0)
)
, (14.5)

(14.6)

if i ∈ J1, N − 1K and

∇+
0 φ = −min(D+

0 φ; 0), (14.7)

∇−Nφ = −min(D−Nφ; 0). (14.8)

(14.9)

Now for i ∈ J1, N − 1K we detail in Figure 14.1 all the possible configurations for φi−1, φi, φi+1, ∇+
i φ and ∇−i φ :

14.1.2 The eikonal equation

When the level-set function is expected to be a signed distance function, the resolution of the Hamilton-Jacobi
transport equation needs to be coupled with a redistanciation procedure. This is described in Algorithm 13.2.4. The
redistanciation of the level-set prevents it from being either too flat or too steep which could be source of numerical
errors.

In the one-dimensional case, the scheme for the redistanciation algorithm 13.2.2 reads

{
∀n ∈ N, i ∈ Z, φn+1

i = φni −∆t
(
max(si; 0)∇+

i φ
n + min(si; 0)∇−i φn − si

)
,

∀i ∈ Z, φ0
i = φ0(ih),

(14.10)

where si is the numerical quantity corresponding to the sign of φi.

14.2 A PDE-free 1-D example

Let R 3 x 7→ f(x) ∈ R be a regular function equal to +∞ at ∞, and for Ω a bounded open set of R,

E(Ω) =

ˆ
Ω

f(x) dx (14.11)

that we aim at minimizing. The minimum solution is obviously the set of negative values of f . We recall that the
shape derivative of f reads, for θ smooth enough

E′ (Ω; θ) =

ˆ
∂Ω

(θ · n) f.

The direction θ defined by θ|∂Ω = −f|∂Ω is theoretically always a descent direction.

14.2.1 Effect of the redistanciation

At first let us consider the effect of the redistanciation process on the level-set. Let us assume that the interface ∂Ω is
in the cell [ih, (i+ 1)h] with i ∈ J1, N − 1K, and, without loss of generality that φi < 0 and φi+1 > 0. We also assume
that the discretization of the sign function is exact, more precisely that si = −1 and si+1 = 1 (this is not exactly the
case if we take the approximation used in Algorithm 13.2.2). Let n ∈ N and φn be one iterate of Algorithm 13.2.2.
We have for all j ∈ J0, NK

φn+1
j = φnj − dt

(
max(sj ; 0)∇+

j φ+ min(sj ; 0)∇−j φ− sj
)

Proposition 14.2.1. Let dt be such that h ≥ 2 dt. Assume that for n ∈ N, φn satisfies

∀j ≥ l, φnj ≥ φnl .

Then, the same inequalities hold for φn+1. Moreover we have the relations

φn+1
i+1 + φn+1

i = φni+1 + φni , (14.12)

D+
i φ

n+1 − 1 =
(
D+
i φ

n − 1
)(

1− 2
dt

h

)
. (14.13)
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1 2 3

i− 1 i i+ 1 i− 1 i i+ 1 i− 1 i i+ 1

D−i φ < 0 D+
i φ > 0

∇+
i φ = 0 ∇−i φ = D+

i φ
D−i φ < 0 D+

i φ > 0
∇+
i φ = 0 ∇−i φ = −D−i φ

D−i φ > 0 D+
i φ > 0

∇+
i φ = D−i φ ∇−i φ = D+

i φ

4 5 6

i− 1 i i+ 1 i− 1 i i+ 1 i− 1 i i+ 1

D−i φ > 0 D+
i φ > 0

∇+
i φ = D−i φ ∇−i φ = D+

i φ
D−i φ < 0 D+

i φ < 0
∇+
i φ = −D+

i φ ∇−i φ = −D−i φ
D−i φ < 0 D+

i φ < 0
∇+
i φ = −D+

i φ ∇−i φ = −D−i φ

7 8

i− 1 i i+ 1 i− 1 i i+ 1

D−i φ > 0 D+
i φ < 0

∇+
i φ = −D+

i φ ∇−i φ = 0
D−i φ > 0 D+

i φ < 0
∇+
i φ = D−i φ ∇−i φ = 0

Figure 14.1: All possible different configurations for ∇+
i φ and ∇−i φ in 1-D.

Proof. If φn is non-decreasing, the finite difference quantities ∇+
i φ, ∇−i φ are given by cases 3 or 4 of Figure 14.1. Let

j ∈ N such that sj > 0. We therefore have

φn+1
j = φnj − dt

(
D−j φ

n − 1
)
,

φn+1
j+1 = φnj+1 − dt

(
D−j+1φ

n − 1
)
,
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and

φn+1
j+1 − φn+1

j = φnj+1 − φnj − dt
(
D−j+1φ

n −D−j φn
)
,

=
(
φnj+1 − φnj

)
− dt

h

(
(φnj+1 − φnj )− (φnj − φnj−1)

)
,

=
(
φnj+1 − φnj

)(
1− dt

h

)
+
dt

h
(φnj − φnj−1).

Since dt satisfies the CFL condition h ≥ 2 dt and φn is non-decreasing, then φn+1 is also non-decreasing for all j
such that φnj ≥ 0. For all j such that φnj ≤ 0 we can do exactly the same. It remains to look at i ∈ N such that
φni < 0 < φni+1. We have

φn+1
i = φni − dt

(
si∇−i φn − si

)
,

φn+1
i+1 = φni+1 − dt

(
si+1∇+

i+1φ
n − si+1

)
.

The finite difference quantities ∇+
i φ

n, ∇+
i+1φ

n are still given by cases 3 or 4 of Figure 14.1. Therefore

φn+1
i = φni + dt

(
D+
i φ

n − 1
)
,

φn+1
i+1 = φni+1 − dt

(
D−i+1φ

n − 1
)
,

which leads to

φn+1
i+1 − φn+1

i =
(
φni+1 − φni

)
+ dt

(
2−D−i+1φ

n −D+
i φ

n
)
,

φn+1
i+1 + φn+1

i =
(
φni+1 + φni

)
+ dt

(
D−i+1φ

n −D+
i φ

n
)
.

Since

D−i+1φ
n = D+

i φ
n =

φni+1 − φni
h

,

this leads to

φn+1
i+1 − φn+1

i =
(
φni+1 − φni

)
+ 2dt

(
1−D+

i φ
n
)
, (14.14)

φn+1
i+1 + φn+1

i = φni+1 + φni . (14.15)

Equation (14.14) can be also rewritten as

D+
i φ

n+1 − 1 =
(
D+
i φ

n − 1
)(

1− 2
dt

h

)
,

D+
i φ

n+1 = D+
i φ

n

(
1− 2

dt

h

)
+ 2

dt

h
.

Since dt satisfies the CFL condition h ≥ 2dt and φn is non-decreasing we obtain that φn+1 is also non-decreasing.

This first statement of Proposition 14.2.1 indicates that if we start from a non-decreasing function φ0, for every
n ∈ N the function φn will also be non-decreasing. This property implies that the finite difference quantities ∇+

i φ,
∇−i φ correspond to cases 3 or 4 of Figure 14.1. Therefore the intermediate result established in the previous proof,
that is for i such that φni < 0 < φni+1

φn+1
i+1 + φn+1

i = φni+1 + φni ,

remains true at each step n ∈ N. This equality means that in the cell containing the zero level-set, the conserved
quantity is not the position of the interface but the mean value φni+1 + φni . In other words, the transport equation for
solving the eikonal equation does not keep the interface unchanged in the redistanciation procedure.

14.2.2 The advection equation

Now we analyze the numerical scheme for the advection equation (Algorithm 13.2.4) coupled with the redistanciation
algorithm. Let z ∈]0, 1[, φ0 and v, two numerical quantities defined at the vertices of the mesh by

∀j ∈ N, φ0
j = xj − z, vj = −f(xj).

Let Ω0 ⊂ [0, 1] the (relatively to [0, 1]) bounded open set defined as the negative set of φ0, that is Ω0 = [0, z[. The
level-set φ0 is a signed distance function to the boundary of Ω0. Given the shape derivative of the objective function
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J , v is a discretization of a descent direction for J . Advecting in the direction given by v corresponds to solving the
following Hamilton-Jacobi transport equation

{
∂tφ+ v|∇φ| = 0 on [0, T ]× R,
φ(0, ·) = φ0 on R. (14.16)

We recall the discretization scheme for the resolution of this equation. In order to ease the numerical calculation, we
changed a little the fourth step of this algorithm compared to Algorithm 13.2.4. Indeed, the redistanciation algorithm
is now applied each time, whereas it was supposed to be applied only one every five times. This ensures that at each
step the level-set keeps being a distance function, but this is more consuming in terms of CPU time. The CPU time
consideration is the only reason why the redistanciation process is not be applied at each step in practice. We also
assume that the parameter ∆T is a priori given. Its value does not change the numerical analysis.

Let i be such that φ0
i < 0 < φ0

i+1. Since φ0 is a distance function, let α0 ∈ [0, 1] be such that

φ0
i = −α0h, φ0

i+1 = (1− α0)h.

Let us now recall the structure of the numerical algorithm for solving the advection equation.

Algorithm 14.2.2. Advection equation

1. Initialization : set φ0
i,j = φi,j.

2. Set dt0 =
1

2
h and N =

⌈
max(v)∆T

dt0

⌉
.

3. Set dt =
∆T

N
and N = min(N, 10).

4. For n in 0, · · · , N

(a) Apply Algorithm 13.2.2 to φ.

(b) φn+1
i = φni − dt

(
max(vi, 0)∇+

i φ+ min(vi, 0)∇−i φ
)

.

5. Apply Algorithm 13.2.2 to φ.

Let us first consider the first iteration in the loop (step 4) of this algorithm. With Proposition 14.2.1 it is
straightforward to see that the first redistanciation does not change the level-set. Thus, for the first iteration of this
algorithm, we can skip step 4a. We denote by φ1/2 the level-set after step 4b and φ1,k the level-set after step 4a (of
the next iteration) where k ∈ N is the number of iterations in the redistanciation process. We have

φ
1/2
i = φ0

i − dt vi,
φ

1/2
i+1 = φ0

i+1 − dt vi+1.

Therefore

φ
1/2
i+1 − φ

1/2
i = h− dt (vi+1 − vi),

φ
1/2
i+1 + φ

1/2
i = (1− 2α0)h− dt (vi+1 + vi).

Now comes the redistanciation algorithm. The relations given by Proposition 14.2.1 lead to

φ1,k
i+1 + φ1,k

i = φ
1/2
i+1 + φ

1/2
i ,

φ1,k
i+1 − φ1,k

i

h
− 1 =

(
φ

1/2
i+1 − φ

1/2
i

h
− 1

)(
1− 2dt

h

)k
,

that is

φ1,k
i+1 + φ1,k

i = (1− 2α0)h− dt (vi+1 + vi),

φ1,k
i+1 − φ1,k

i = h− dt(vi+1 + vi)

(
1− 2dt

h

)k
.

Therefore we conclude that

φ1,k
i = −α0h− dt

2
(vi+1 + vi) +

dt

2
(vi+1 − vi)

(
1− 2dt

h

)k
,

φ1,k
i+1 = (1− α0)h− dt

2
(vi+1 + vi)−

dt

2
(vi+1 − vi)

(
1− 2dt

h

)k
.
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When dt =
h

2
this leads to

φ1,k
i = −α0h− h

4
(vi+1 + vi),

φ1,k
i+1 = (1− α0)h− h

4
(vi+1 + vi).

We could also have assumed that the redistanciation was performed with k =∞ which means that the gradient of the
level-set is 1. This would have given the same result for φ1,k

i and φ1,k
i . Therefore, after one iteration, the parameter

α0 is updated as

α1 = α0 +
1

4
(vi+1 + vi).

Now let us assume that the optimal position of the interface is in the cell [ih, (i + 1)h]. In particular we have
f(xi) < 0 < f(xi+1). The direction given by the gradient - namely vi = −f(xi) - is a descent direction and does not
depend on the level-set. Therefore, after k iterations of the gradient algorithm, the parameter α becomes

αk = α0 +
k

4
(vi+1 + vi). (14.17)

This implies that the zero level-set is attracted by one of the points ih or (i+ 1)h depending on whether vi+1 + vi is
positive or negative. If after an iteration, the zero level-set stays in another cell, it will soon go back to the optimal
cell since the mean value of the direction would not be zero. And it would again be attracted by the same edge of the
cell.

14.2.3 Numerical example

This is exactly what we can observe in practice. For example, we take the segment [0, 1] and a mesh parameter
h = 10−3. We take z? = 0.4003 and z0 = 0.4004. We also consider f(x) = x− z? and the objective function E defined
by (14.11). We start from an initial domain Ω0 defined by the initial level-set function : φ0(x) = x − z0. For the
redistanciation algorithm as well as the Hamilton-Jacobi transport equation, we consider periodic boundary conditions
for the level-set. We take v : [0, 1]→ R defined by ∀x ∈ [0, 1], v(x) = −f(x). Thus we have E′ (Ω; v) < 0, whenever Ω
is not a critical point for E.

We can first apply the algorithm described in Section 13.2. In that case the position of the interface, denoted by z,
converges to z?, which is indeed the expected result. However, we can notice that the stopping criterion is always the
second step of the line search algorithm Algorithm 13.2.5, meaning that this procedure does not find a time step that
allows to decrease the objective function. In Section 14.2.2, we saw that the descent direction given by the first-order
derivative doesn’t seem to converges to zero, and that implies that the position of the interface - at z - tends to be
attracted by a node of the mesh. This can be observed on this example. To that end, we skip the line search in the
algorithm and always take the same small time step : ∆T = 20h in the spirit of the gradient algorithm with a fixed
step (see Section 1.2.1).

0 20 40 60 80 100 120 140

−5

−4

−3

−2

−1
×10−8 − 8.011999×10−2 E(Ω)

with line search
without line search

0 20 40 60 80 100 120 140
10−7

10−6

10−5

10−4

10−3 z − z?

with line search
without line search

Figure 14.2: Evolution of the objective function (left) and error with the theoretical optimal solution (right).

We can first observe on Figure 14.2 that the algorithm with the line search procedure converges to the theoretical
solution. We can also see that when there is no line search, the objective function tends to increase at the end of
the optimization, and that the position of the interface z does not converge to the theoretical solution z?. It appears
theoretically that advecting the level-set with the velocity v = −f makes the interface z be attracted by a node of the
mesh. Thus we also plot the evolution of

z − h
⌊
z?

h

⌋
.
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0 20 40 60 80 100 120 140
10−7

10−6

10−5

10−4

10−3
z − hbz?h c

with line search
without line search

Figure 14.3: Convergence to a node of the mesh.

In the case where there is no line search we can indeed observe on Figure 14.3 that the solution z converges to

h

⌊
z?

h

⌋
which is one of the node of the cell containing z?. This also explains that we cannot really hope for the

first-order shape derivative to vanish, and why this is always the line search algorithm that provides the practical
stopping criterion.

Finally we could also make a remark on how the descent direction v is computed. Let us recall that in most
practical case, the first-order shape derivative of a function E can be represented by a function j ∈ L1(∂Ω;R), with

∀θ ∈ C1,∞(Rd;R), E′ (Ω; θ) =

ˆ
∂Ω

(θ · n) j.

In such a case, the function j can be called the shape gradient. For the present example, the restriction of R 3 x 7→ f(x)
to the boundary of the shape is the shape gradient. The choice ∀j ∈ N, v(xj) = −f(xj) seemed therefore natural.
However, with (14.17) and Figure 14.3 we observe that the interface converges to a node of the mesh instead of the
theoretical optimal solution. The error of order h is not a real problem about the optimality of the final shape.
However, it shows that this approach for computing shape derivative is not really consistent. Moreover, the relation
(14.17) depends only on the values of v at the nodes xi and xi+1 where i is such that the interface is in the cell
[ih, (i + 1)h]. Thus it does not depend on the choice of extension for the descent direction v, and it also does not
depend on an approximation by a Dirac function. This last observation could also be in favor of the method presented
in Section 11.2 for computing boundary integrals, and therefore shape derivatives.

14.3 The fast-marching method

The fast-marching method is another alternative for solving the eikonal equation (see Section 4.3.2) on a Cartesian
grid. It is a priori known for preserving the position of the boundary of the shape. It turns out that this property is
true in the one-dimensional case, but not exactly in higher-dimensional spaces.

Let us consider the two-dimensional case. The main idea is to use a propagating front from the initial boundary.
At each step of the propagation, the nearest external value to the front is updated by solving the following upwind
equation

max
(
D+x
i,j φ; 0

)2
+ max

(
D−xi,j φ; 0

)2
+ max

(
D+y
i,j φ; 0

)2
+ max

(
D−yi,j φ; 0

)2
= 1.

It appears that the procedure is well defined in the sense that there is always a unique solution to this equation (see
[109] for example). The numerical trouble comes from the fact that the fast-marching procedure is not a projection.
Precisely, starting from a level-set function φ0, either solution to the eikonal equation or not, we denote φ1 the solution
to the eikonal equation with the fast-marching method initialized with φ0. We apply again the fast-marching method
to φ1 and denote the result by φ2. It appears that there is no reason why φ2 should be the same that φ1. The issue
comes from the initialization of the algorithm. It consists in computing the ‘exact’ distance to the boundary assuming
that the level-set is linear in each cell. We explain this with the help of an example.

Let φ0 be a level-set function with

φ0(A) = −2h

3
, φ0(B) =

h

3
, φ0(C) = −2h

3
,

φ0(D) =
h

3
, φ0(E) =

h

3
,
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Figure 14.4: Example for the non-conservation of the boundary by the fast-marching method.

where the position of the points are given by Figure 14.4. Assuming that φ0 is linear in each direction, we write

CO

h
= − φ0(C)

φ0(E)− φ0(C)
=

2

3
,

CN

h
= − φ0(C)

φ0(D)− φ0(C)
=

2

3
.

This leads to a domain Ω0 such as represented by Figure 14.4. Now we start computing the solution φ1 to the eikonal
equation for Ω0. The value assigned to the node C - namely φ1(C) - is the distance CQ, i.e the distance of C to the
boundary. This leads to

φ1(C) = −2
√

2

3
h.

Similarly, the values assigned to A, B, D and E are

φ1(A) = −2

3
h, φ1(B) =

h

3
, φ1(D) =

h

3
, φ1(E) =

√
2

3
h.

The upwind propagation of the front will not change the value of φ1 at these nodes. Now we do the same computation
starting from φ1. This leads to

CO

h
= − φ1(C)

φ1(E)− φ1(C)
=

2

3
,

CN

h
= − φ1(C)

φ1(D)− φ1(C)
=

2
√

2

2
√

2 + 1
.

Therefore, the distance CQ turns out to be

CQ =
2
√

2h√
18 + (2

√
2 + 1)2

,

which is the value that is assigned at C for φ2.
This elementary example shows that the fast-marching method is not always a projection. The problem is that

for computing a distance to the boundary, the level-set is assumed to be linear in each cell. Even if it is true, this
property is not satisfied by the first computed distance φ1. Indeed for the domain Ω0 represented in Figure 14.4, if
φ1 is the exact distance to the boundary, it is not linear on the segment [C,D]. Therefore computing again a distance
function from φ1 can not lead to the same result.

In the one-dimensional case this problem does not occur. The signed distance function is obviously piecewise
linear on the whole domain, therefore the fast-marching method would be exact. However, this does not have a great
interest, since once the position of the boundary is known - let say at z - the distance to the boundary has the very
simple expression : dΩ(x) = |x− z|.
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In order to perform a complete numerical analysis of a shape optimization problem, we consider a one-dimensional
case. A shape is defined as an open subset of the space Rd (d ∈ {1, 2, 3}). When d = 1, a convex open set of R is an
interval and is uniquely determined by the two bounds of the interval. Contrary to topology optimization, geometric
optimization considers a shape with a fixed topology. In the one-dimensional case, when the shape is a convex bounded
set with one connected component, geometric optimization reduces to parametric optimization where the unknowns
are the two boundaries of the interval. Although this case is somehow degenerate for geometric optimization (there
is no question about the regularity of the boundary of the shape), the similarity with the parametric case allows one
to thoroughly analyze the numerical schemes. The simplicity of the case makes the computations easier, and most of
them, can be performed explicitly.

In this chapter we will consider a shape optimization problem where the shape is an interval and can be parametrized
by a single parameter z. The minimization of a compliance or a least square criteria such as in Chapter 12 would
lead to a too much simple problem. Thus, we will focus on the least square displacement criterion with a non-zero
target displacement u0. First we will start by describing the continuous problem, and its explicit optimal solution.
Then we will give the exact solution of a discretized version of this problem, and give some numerical analysis on
the error with the continuous optimal solution. Secondly, we will consider the derivatives of these problems in a
parametric and a shape variation (see Section 2.2.3) frameworks and see that, in this particular case, they are the
same. Then we will focus on the analysis of the rates of convergence of a Newton method for the continuous model, the
discretize-then-optimize and optimize-then-discretize approaches (see Section 1.3). We will see in particular that the
continuous model converges in one iteration (since the problem is quadratic), the discretize-then-optimize approach
has a quadratic convergence whereas the optimize-then-discretize approach is only linear when it converges. We will
also analyze the impact on the rate of convergence of errors on the first and second-order derivatives. Finally we will
make some numerical experiments to confirm the theoretical results obtained.
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15.1 The continuous problem

Let us consider Ω =]0, 1[ and z ∈ [0, 1]. We denote Ω1 :=]0, z[ and Ω2 :=]z, 1[. Let also α1, α2 ∈ R?+ and define
[0, 1] 3 x 7→ αz(x) with

αz(x) =





α1 if x ≤ z,
α2 otherwise.

(15.1)

Notation. For any function ψ defined on Ω, we denote by ψi its restriction to Ωi, i.e ψi := ψ|Ωi . We also denote by
[ψ] the jump of ψ at z : [ψ] := ψ1(z−)− ψ2(z+).

We also introduce

γz =
1

αz
, γ1 =

1

α1
, γ2 =

1

α2
, [γ] = γ1 − γ2. (15.2)

Let now uz ∈ H1(]0, 1[;R) be the solution to the following problem





−dx
(
αzdxu

z
)

= 0 in Ω,
(
αzdxu

z
)
(1) = 1,

uz(0) = 0,

(15.3)

where we use the notation dxu
z(x) =

duz

dx
(x).

z

α1 α2

Figure 15.1: Boundary conditions for (15.3).

Given a target displacement u0 > 0 we consider the objective function J defined by

J(z) = |uz(1)− u0|2. (15.4)

and the optimization problem

min
z∈[0,1]

J(z). (15.5)

Proposition 15.1.1. There exists a unique solution uz to (15.3) in H1(]0, 1[;R). It is given by

uz(x) =





γ1x if x ≤ z,
γ2 + [γ]x if x > z,

(15.6)

where γ2 and [γ] are defined by (15.2). Therefore, the objective function reads

J(z) =
(
γ2 + [γ]z − u0

)2

, (15.7)

and the solution to (15.5) is obtained at z? with

z? =
u0 − γ2

[γ]
. (15.8)

Proposition 15.1.2. With V =
{
v ∈ H1(]0, 1[;R) | v(0) = 0

}
, the variational formulation of (15.3) reads





find uz ∈ V, such that

∀v ∈ V,
ˆ 1

0

αz dxu
z dxv = v(1).

(15.9)
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15.2 The discretized problem

Let N ∈ N? and h = 1
N . The segment [0, 1] is endowed with a Cartesian grid with steps h.

Notation. For x ∈ R we denote by bxc the unique element of Z such that bxc ≤ x < bxc+ 1. We also define dxe by
the unique element of Z such that dxe − 1 < x ≤ dxe.

For z ∈ [0, 1] let ηzh = z
h −

⌊
z
h

⌋
. Let also 〈αzh〉, αzh be defined by 〈αzh〉 := ηzhα1 + (1− ηzh)α2 and

αzh(x) =





αz(x) if x ≤ h
⌊
z
h

⌋
or x > h

⌈
z
h

⌉
,

〈αzh〉 otherwise.
(15.10)

This choice for αzh corresponds to a P0 interpolation of αz. We can either notice that αzh(x) = αz(x) whenever x is
outside the grid cell containing z. In the cell containing z, we take the convex combination given by the position of z
in this cell, since by definition of ηzh

z = (1− ηzh)h
⌊ z
h

⌋
+ ηzhh

⌈ z
h

⌉
.

We can also check that, when z is on a vertex of the grid, ηzh = 0 and

αzh(x) =





α1 if x ≤ z
α2 else.

Notation. For a numerical quantity φ defined at the vertices of the grid and i ∈ J0, NK, φi denotes the value assigned
to the node xi := ih. Similarly, for a P0 quantity ψ and i ∈ J1, NK, ψi denotes the value assigned in the cell ](i−1)h, ih].
In the case of αzh it reads αzh,i = αzh(ih).

We introduce a finite element variational space Vh = {vh ∈ P1([0, 1];R) | vh(0) = 0}. The solution to (15.3) in
P1(Vh;R) is also solution to the following variational formulation





find uzh ∈ Vh, such that

∀vh ∈ Vh,
ˆ 1

0

αzh dxu
z
h dxvh = vh(1).

(15.11)

The target displacement u0 being the same as in the continuous case, we consider the objective function Jh defined by

J(z) = |uzh(1)− u0|2. (15.12)

and the optimization problem
min
z∈[0,1]

Jh(z). (15.13)

Proposition 15.2.1. There exists a unique solution uzh ∈ Vh solution to (15.11). It satisfies

uzh,0 = 0, (15.14)

uzh,i = iγ1h, ∀i ≤
⌊ z
h

⌋
, (15.15)

uzh,i = uzh,N − γ2h (N − i) , ∀i ≥
⌈ z
h

⌉
, (15.16)

uzh,N = γ2 + [γ]z + h

(
1

〈αzh〉
−
(
ηzhγ1 + (1− ηzh)γ2

))
. (15.17)

Therefore, the discretized objective function reads

Jh(z) =

(
γ2 + [γ]z + h

(
1

〈αzh〉
−
(
ηzhγ1 + (1− ηzh)γ2

))
− u0

)2

.

Proof. The existence and uniqueness result for (15.11) is given by the Lax-Milgram theorem on Vh. In order to get
the explicit expression of the solution we detail the computation of the linear system. Let (ψj) be the basis functions
of Vh. For i ∈ J0, NK and j /∈ {i− 1, i, i+ 1} we get

ˆ 1

0

(ψi)
2 =

2

h
if 1 ≤ i ≤ N − 1, and

ˆ 1

0

(ψN )2 =
1

h
,

ˆ 1

0

ψiψi+1 = − 1

h
if i < N,

ˆ 1

0

ψiψi−1 = − 1

h
if i > 0,

ˆ 1

0

ψiψj = 0.
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Let uzh be the solution to (15.11). For vh ∈ Vh we have

ˆ 1

0

αzh dxu
z
h dxvh = vh,N .

With uzh(0) = vh(0) = 0 it reads

1

h

(
αzh,1 u

z
h,1 v

z
h,1 +

N∑

i=2

αzh,i
(
uzh,i v

z
h,i + uzh,i−1 v

z
h,i−1 − uzh,i vzh,i−1 − uzh,i−1 v

z
h,i

))
= vh,N .

Being true for every vh ∈ Vh, it leads to the following system




(αzh,1 + αzh,2)uzh,1 − αzh,2uzh,2 = 0,

(αzh,i + αzh,i+1)uzh,i − αzh,iuzh,i−1 − αzh,i+1u
z
h,i+1 = 0, ∀i, 1 < i < N − 1

αzh,N (uzh,N − uzh,N−1) = h.

(15.18)

When αzh is given by (15.10), (15.16) is straightforwardly obtained by recursion. A recursion also gives

∀i, i+ 1 ≤
⌊ z
h

⌋
, uzh,i =

i⌊
z
h

⌋uz
h,b zhc. (15.19)

For j =
⌈
z
h

⌉
we can also write the middle equation of (15.18) with i = j and i = j − 1. Combined with (15.19) and

(15.16) it leads to





(
αzh,j−1

j − 1
+ αzh,j

)
uzh,j−1 − αzh,juzh,N = −αzh,j(N − j)γ2h,

−αzh,juzh,j−1 + αzh,ju
z
h,N = αzh,j(N − j)γ2h+ αzh,j+1γ2h

(15.20)

Now it remains to recall that

ηzh = z − h
⌊ z
h

⌋
, αz

h,d zhe = ηzhα1 + (1− ηzh)α2, Nh = 1,

to get the final result.

Remark 15.2.2. One can observe that the solution to (15.11) can be written as

uzh,i = h

i∑

k=1

1

αzh,i
, ∀i ≤ N. (15.21)

Moreover, this does not depend on the fact that αzh,i is constant for i < b zhc or i ≥ d zhe.

Proposition 15.2.3. There exists a unique solution z?h to (15.13). It reads

z?h = z0 + η?hh, (15.22)

where

η?h =
1

[α]

(
1

γ2 + [γ]Z
− α2

)
, Z =

z?

h
−
⌊
z?

h

⌋
, z0 = h

⌊
z?

h

⌋
,

and z? is given by (15.8).

Proof. Let z?h be defined by z?h = z0 + η?hh with

η?h =
1

[α]

(
1

γ2 + [γ]Z
− α2

)
, Z =

z?

h
−
⌊
z?

h

⌋
, z0 = h

⌊
z?

h

⌋
,

and z? =
u0 − γ2

[γ]
. We can easily check that ηzh ∈ [0, 1]. Thus, one can write

u
z?h
h (1)− u0 = γ2 + [γ]z?h + h


 1〈

α
z?h
h

〉 −
(
η?hγ1 + (1− η?h)γ2

)

− u0,

= γ2 + [γ]z0 − u0 + hη?h[γ] + h


 1〈

α
z?h
h

〉 −
(
η?hγ1 + (1− η?h)γ2

)

 .
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Since Z =
z?

h
− z0

h
and z? =

u0 − γ2

[γ]
, we obtain

u
z?h
h (1)− u0 = −h[γ]Z +

h

η?h[α] + α2
− hγ2. (15.23)

The definition of η?h by η?h =
1

[α]

(
1

γ2 + [γ]Z
− α2

)
leads to

(η?h[α] + α2)(γ2 + [γ]Z) = 1.

As a result, we get

u
z?h
h (1)− u0 = 0.

Therefore, z?h so defined is a minimum of Jh and Jh(z?h) = 0. As a consequence any minimum satisfies Jh(z) = 0,
which is the same as uzh(1) = u0 (Jh is straightforwardly non-negative).

Let now y be minimum of Jh. We have then uyh(1) = u0. Denoting ŷ = h
⌊y
h

⌋
, we have y = ŷ + ηyhh and

uyh(1)− u0 = γ2 + [γy]ŷ − u0 + hηyh[γy] + h

(
1

〈αyh〉
−
(
ηyhγ1 + (1− ηyh)γ2

))
.

Thus, we obtain

uyh(1)− u0 = [γy](ŷ − z?) +
h

ηyh[αyh] + α2
− hγ2.

Since uyh(1) = u0, we have

z? − ŷ =
h

[γy]

(
1

ηyh[αyh] + α2
− γ2

)

= − hγ2η
y
h

ηyh[αyh] + α2

[αyh]

[γyh]
.

But, since
[αyh]

[γyh]
= −α1α2 we obtain

z? − ŷ =
hα1η

y
h

ηyh[αyh] + α2
= h

α1η
y
h

ηyhα1 + (1− ηyh)α2
.

Therefore, z? − ŷ ∈ [0, h]. As a consequence we have ŷ = z0. Finally we can then write the difference between uyh(1)
and u0 like in (15.23) which gives

−h[γy]Z +
h

ηyh[αy] + α2
− hγ2 = 0.

Since [αy] = α1 − α2 is independent of y we obtain that

ηyh = ηzh = η?h,

which proves that y = z which is the unique minimum of Jh.

Both the numerical and continuous optimization problems have unique solutions. Since their explicit expressions are
given by Proposition 15.1.1 and Proposition 15.2.3 it is possible to get the approximation error due to the discretization.

Proposition 15.2.4. Let z? and z?h be the unique solutions to (15.5) and (15.13), that are respectively given by (15.8)
and (15.22). Let εh = z?h − z?. Then εh = O(h). More precisely

|εh| ≤
∣∣∣∣
√
α2 −

√
α1√

α2 +
√
α1

∣∣∣∣h,

and this bound is optimal.

Proof. With Z =
z?

h
−
⌊
z?

h

⌋
, the approximation error εh reads

εh = h(η?h − Z),

=
h

[α]

(
1

γ2 + [γ]Z
− α2 − [α]Z

)
.
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Let ∆ : [0, 1] 3 Z 7→ 1

[α]

(
1

γ2 + [γ]Z
− α2 − [α]Z

)
. It is straightforward to see that ∆(0) = ∆(1) = 0. Studying the

variations of ∆, its extremum is attained for Zw =

√
α1√

α1 +
√
α2

, and

∆(Zw) =

√
α2 −

√
α1√

α2 +
√
α1
,

which leads to the expected result.

15.3 Differentiation

Before solving iteratively the optimization problems (15.5), (15.13) mentioned in the previous section we need to
specify in which framework the optimization takes place, and consider the corresponding derivatives. At first we
consider the parametric case where the variable is z ∈ [0, 1] and secondly we focus on the shape variation framework
where the variable is the domain Ω1.

Notation. The notation for the different frameworks for differentiation is to be specified. Let [0, 1] 3 z 7→ v(z) ∈ R
assumed to be smooth. For the parametric case of differentiation, when the variable is z we denote the first and second
derivatives of v by dzv and d2

zzv. When we focus on the shape variation framework, for θ, ξ in W 1,∞
0 ([0, 1]), we denote

the first shape derivatives at 0 of v in the direction θ by v′(Ω1; θ) or v′θ and the second-order shape derivative in
directions θ, ξ by v′′(Ω1; θ, ξ).

15.3.1 Parametric framework

In the parametric case, the optimization variable is z ∈ [0, 1]. Therefore the derivatives needed for an optimization
process are the usual scalar derivatives in R of a scalar function.

Continuous problem

Here we aim at minimizing [0, 1] 3 z 7→ J(z) where J is defined by Proposition 15.1.1 :

J(z) =
(
γ2 + [γ]z − u0

)2

.

Proposition 15.3.1. The function [0, 1] 3 z 7→ J(z) is twice differentiable in [0, 1] with

dzJ(z) = 2[γ]
(
γ2 + [γ]z − u0

)
, (15.24)

d2
zzJ(z) = 2[γ]2. (15.25)

Discretized problem

In the discretized case, the objective is to minimize [0, 1] 3 z 7→ Jh(z) where Jh is defined by Proposition 15.2.1 :

Jh(z) =

(
γ2 + [γ]z + h

(
1

〈αzh〉
−
(
ηzhγ1 + (1− ηzh)γ2

))
− u0

)2

,

with ηzh = z
h −

⌊
z
h

⌋
and 〈αzh〉 := ηzhα1 + (1− ηzh)α2.

Proposition 15.3.2. Assume that ηzh 6= 0. The function [0, 1] 3 z 7→ ηzh is differentiable with dzη
z
h = 1

h . Therefore,
the function [0, 1] 3 z 7→ Jh(z) is twice differentiable with

dzJh(z) = −2

(
[γ](z − z?) +

h

ηzh[α] + α2
− hηzh[γ]− hγ2

)
[α]

(ηzh[α] + α2)
2 , (15.26)

d2
zzJh(z) = 2

[α]2

(ηzh[α] + α2)
4 + 4

(
[γ]
z − z?
h

+
1

ηzh[α] + α2
− ηzh[γ]− γ2

)
[α]2

(ηzh[α] + α2)
3 . (15.27)

When
⌊ z
h

⌋
=

⌊
z?

h

⌋
one has with the definition of Proposition 15.2.3 for Z and η?h

z − z? = h(ηzh − Z), γ2 + [γ]Z =
1

η?h[α] + α2
, Z =

z?

h
−
⌊
z?

h

⌋
.
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Therefore, for all z ∈]0, 1[ such that
⌊ z
h

⌋
=

⌊
z?

h

⌋
, we have

uzh(1)− u0 = [γ](z − z?) +
h

ηzh[α] + α2
− hηzh[γ]− hγ2, (15.28)

= h

(
1

ηzh[α] + α2
− 1

η?h[α] + α2

)
, (15.29)

and

dzJh(z) = −2h

(
1

ηzh[α] + α2
− 1

η?h[α] + α2

)
[α]

(ηzh[α] + α2)
2 , (15.30)

d2
zzJh(z) = 2

[α]2

(ηzh[α] + α2)
4 + 4

(
1

ηzh[α] + α2
− 1

η?h[α] + α2

)
[α]2

(ηzh[α] + α2)
3 . (15.31)

15.3.2 Shape variation framework

The main idea in this section is to compute derivatives following the Hadamard method for shape differentiation
(Section 2.2.3). Taking Ω1 as a reference domain, a variation of it is considered of the form Ω1,θ := (Id + θ) (Ω1),
where Id is the identity operator from R to R and θ is a scalar field on R. There are two main points to notice. First,
due to the non-continuity of the parameter αz through the interface between Ω1 and Ω2, u is not differentiable at z.
Therefore, there are shape differentiability results for the Lagrangian derivatives of u but not its Eulerian derivatives.
The existence of the Lagrangian or Eulerian derivatives when the coefficients of the differential operator have jumps
has already been studied [10, 99]. The one-dimensional case considered here is simpler but the differentiability results
are similar.

Differentiation of the mechanical problem

We consider identity perturbations with θ ∈ W 1,∞
0 ([0, 1]) small. With Ω1,θ defined by Ω1,θ := (Id + θ) (Ω1) we can

also define Ω2,θ by Ω2,θ :=]0, 1[\Ω1,θ. We introduce [0, 1] 3 x 7→ αθ(x) such that αθ = αz ◦ (Id + θ). When θ = 0, we
have αθ = αz. Let also V :=

{
v ∈ H1(]0, 1[) | v(0) = 0

}
, uθ be the solution to





find uθ ∈ V, such that

∀v ∈ V,
ˆ 1

0

αθ dxuθ dxv = v(1),
(15.32)

and Uθ = uθ ◦ (Id + θ). The derivatives (under existence assumption) of uθ are the Eulerian derivatives whereas those
of Uθ are the Lagrangian ones. It appears that even if αθ is not continuous at the interface between Ω1,θ and Ω2,θ, Uθ
is differentiable with respect to θ. This is not the case of uθ due to the discontinuity of dxuθ through the interface.
If uθ were of class C1 with respect to θ, writing the derivative at θ = 0 would lead to u′θ = U ′θ − dxu θ. This implies
that the shape differentiability of uθ is strongly related to the regularity of uθ as the solution to (15.3) (see also [72,
Remarque 5.3.6] for more details).

Proposition 15.3.3. Let θ ∈ W 1,∞
0 ([0, 1]) and uθ the solution to (15.32). Let also Uθ = uθ ◦ (Id + θ). Then Uθ is

differentiable with respect to θ and its derivative at 0 in the direction θ, denoted by U ′θ, is solution to





find U ′θ ∈ V, such that

∀v ∈ V,
ˆ 1

0

αz dxU
′
θ dxv =

ˆ 1

0

αzdxu dxv dxθ,
(15.33)

Furthermore, for θ ∈W 1,∞
0 ([0, 1]) and (U ′θ)ξ = U ′θ ◦ (Id + ξ), (U ′θ)ξ is differentiable with respect to ξ and its derivative

at 0 in the direction ξ - denoted as (U ′θ)
′
ξ - is solution to





find (U ′θ)
′
ξ ∈ V, such that

∀v ∈ V,
ˆ 1

0

αz dx(U ′θ)
′
ξ dxv =

ˆ 1

0

αzdxU
′
θ dxv dxξ

+

ˆ 1

0

αzdxU
′
ξ dxv dxθ − 2

ˆ 1

0

αzdxu dxv dxθ dxξ.

Proof. The main argument in this proof is the implicit function theorem. By assumption, uθ satisfies

∀v ∈ V,
ˆ

Ω1,θ∪Ω2,θ

αθ dxuθ dxv = v(1).
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We also denote V = v ◦ (Id + θ). After a change of variable this leads to

∀V ∈ V,
ˆ

Ω1∪Ω2

αz dxUθ(Id + dxθ)
−1 dxV (Id + dxθ)

−1|det(Id + dxθ)| = V (1).

Applying the implicit function theorem (see [72, Théorème 5.5.1] for more details), we deduce that Uθ is differentiable
with respect to θ. Writing the first-order Taylor expansion with respect to θ leads to

Uθ = u+ U ′θ + o(θ),

(Id + dxθ)
−1 = Id− dxθ + o(θ),

|det(Id + dxθ)| = Id + dxθ,

and

V (1) =

ˆ 1

0

αzdxu dxV +

ˆ 1

0

αzdxU
′
θ dxV −

ˆ 1

0

αzdxu dxV dxθ + o(θ).

The function u being solution to (15.3) we get the expected result. The proof for the differentiability of U ′θ is the
same.

Remark 15.3.4. Since αz is constant in each domain Ω1 and Ω2, uθ is regular in each domain. The derivative of u
jumps at the interface, but elsewhere uθ is smooth (which can be checked with the explicit formula for uθ). Therefore,
taking the derivative with respect to θ at θ = 0, the relation u′θ = U ′θ − dxu θ indicates that the Eulerian derivative
exists at least at 1, and

u′θ(1) = U ′θ(1)− dxu(1) θ(1),

which, since θ(1) = 0 leads to

u′θ(1) = U ′θ(1). (15.34)

Lemma 15.3.5. According to Proposition 15.3.3, for θ ∈ W 1,∞
0 ([0, 1]), uθ is differentiable with respect to θ. The

Lagrangian derivative U ′θ satisfies also

αzdxU
′
θ = αzdxu dxθ.

Proof. Integrating by part the variational formulation for U ′θ (15.33) and taking the test function v with compact
support in [0, 1] leads to

dx
(
αzdxU

′
θ

)
= dx

(
αzdxu dxθ

)
.

Choosing a function v vanishing at z, 0 or 1 gives the result.

Differentiation of the objective function

Now we can consider the objective function J and its shape differentiability.

Proposition 15.3.6. The function J defined by J(Ω1) = (u(1) − u0)2 is shape-differentiable. For θ ∈ W 1,∞
0 ([0, 1])

its shape derivative in the direction θ reads

J ′(Ω1; θ) = [αz dxu dxp θ], (15.35)

where p is solution to 



dx
(
αzdxp

)
= 0 in Ω,

(
αzdxp

)
(1) = 2(u(1)− u0),

p(0) = 0.

(15.36)

The use of an adjoint state is not really necessary in this one-dimensional example. Indeed, one can easily notice
that the adjoint state satisfies p = 2(u(1) − u0)u. We nevertheless introduce the adjoint state in order to keep the
similarity with the way of computing shape derivatives in higher dimensions.

Proof. The differentiability of the objective function J sums up to the existence of the Eulerian derivative of u at 1.
Since u is smooth in the neighborhood of 1 one has for θ ∈W 1,∞

0 ([0, 1]),

u′θ(1) = U ′θ(1).

Therefore

J ′(Ω1; θ) = 2(u(1)− u0)U ′θ(1).
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The adjoint state p solution to (15.36) is solution of the following variational formulation




find p ∈ V, such that

∀v ∈ V,
ˆ 1

0

αz dxp dxv = 2(u(1)− u0)v(1).

Therefore, with v = U ′θ, one has

J ′(Ω1; θ) =

ˆ 1

0

αz dxp dxU
′
θ.

The variational formulation for U ′θ leads to

J ′(Ω1; θ) =

ˆ 1

0

αzdxu dxp dxθ.

Since u is smooth and αz constant on Ω1 and Ω2, one has d2
xxu = 0 and

ˆ 1

0

αzdxu dxp dxθ =

ˆ
Ω1∪Ω2

αzdxp dx(θdxu).

Integrating by parts with dx(αzdxp) = 0 and θ(1) = θ(0) = 0, this leads to

J ′(Ω1; θ) = [αdxp dxu θ]
z
0 + [αdxp dxu θ]

1
z,

= [αdxp dxu θ].

Lemma 15.3.7. The shape derivative of the objective function can also be rewritten as

J ′(Ω1; θ) = (αdxu(z))(αdxp(z))[γ]θ(z).

Proof. We have

[αdxp dxu θ] = α1dxp(z
−) dxu(z−)θ(z−)− α2dxp(z

+) dxu(z+)θ(z+).

Since αdxp, αdxu and θ do not jump at z this leads to

[αdxp dxu θ] = θ(z)(αdxp)(z)
(
dxu(z−)− dxu(z+)

)

= θ(z)(αdxp)(z)

(
1

α1

(
α1dxu(z−)− α2dxu(z+)

)
+ α2dxu(z+)

( 1

α1
− 1

α2

))

= θ(z)(αdxp)(z) (αdxp)(z) [γ].

It is interesting to compare here the results for the shape derivatives with some other results we can find in the
literature for higher-dimensional cases. In [99], Pantz considers the heat equation in R2 with discontinuous conductivity
(D). The domain Ω is composed of two domains Ω1 and Ω2 separated by an interface Γ such that Ω1 is an inside
domain, i.e ∂Ω1 = Γ and Γ ∩ ∂Ω = ∅. The partial differential equation reads





−div
(
Di∇u

)
= f in Ωi(i = 1, 2),

D2∇xun = g on ΓN ,

u = 0 on ΓD.

For the criterion J(Ω) =

ˆ
ω

|u− u0|2, the shape derivative in the direction θ ∈W 1,∞(Ω) reads (the convention for the

jump is taken in the other sense in the paper)

J ′(Ω; θ) = −[D]

ˆ
Γ

∇Γu∇Γp (θ · n) + [D−1]

ˆ
Γ

D∂nuD∂np (θ · n) .

Since in one dimension there is no tangential component, this formula is consistent with ours.

Proposition 15.3.8. The function J defined by J(Ω1) = (u(1) − u0)2 is twice shape-differentiable. For θ, ξ ∈
W 1,∞

0 ([0, 1]), the second-order shape derivative in the direction θ reads

J ′′(Ω1; θ, ξ) = 2 [αz dxu dxp θ] [αz dxu dxp ξ]. (15.37)

where p is solution to (15.36).



262 CHAPTER 15. A ONE-DIMENSIONAL OPTIMIZATION CASE

Proof. Let θ, ξ ∈W 1;∞
0 ([0, 1]). The objective function J is shape-differentiable by Proposition 15.3.6 and we have

J ′(Ω1; θ) = 2(u(1)− u0)U ′θ(1).

The second-order differentiability is also given by the shape differentiability of u and U ′θ stated in Proposition 15.3.3.
Therefore we have

J ′′(Ω1; θ, ξ) = 2(u(1)− u0)(U ′θ)
′
ξ(1) + 2U ′θ(1)U ′ξ(1).

Similarly to the proof of Proposition 15.3.6, one can prove that U ′θ(1) = [αz dxu dxp θ], and therefore

2U ′θ(1)U ′ξ(1) = 2 [αz dxu dxp θ] [αz dxu dxp ξ].

It remains to prove that the first part of J ′′ vanishes. The variational formulation for the adjoint state p ensures that

2(u(1)− u0)(U ′θ)
′
ξ(1) =

ˆ 1

0

αz dxp dx(U ′θ)
′
ξ.

With the help of the variational formulation for (U ′θ)
′
ξ, we get

2(u(1)− u0)(U ′θ)
′
ξ(1) =

ˆ 1

0

αzdxU
′
θ dxv dxξ +

ˆ 1

0

αzdxU
′
ξ dxv dxθ − 2

ˆ 1

0

αzdxu dxv dxθ dxξ,

which vanishes by virtue of Lemma 15.3.5.

Lemma 15.3.9. Similarly to Lemma 15.3.7, the second-order shape derivative may be rewritten as

J ′′(Ω1; θ, ξ) = 2(αzdxu) (αzdxp)[γ]2 θ(z)ξ(z).

Remark 15.3.10. Theoretically the solution u to (15.3) and the adjoint state p satisfy αdxu = 1 and p = 2(u(1)−u0)
everywhere. Therefore the shape derivatives of the objective function read

J ′(Ω1; θ) = 2(u(1)− u0)[γ]θ(z),

J ′′(Ω1; θ, ξ) = 2[γ]2 θ(z)ξ(z).

These are the exact same formulas as in the parametric case.

Remark 15.3.11. In the one-dimensional case, there is associativity on the variation of a shape by diffeomorphisms
of the form Id + θ. Thus, contrary to higher-dimensional cases (see Remark 3.2.14), the second-order derivative is
given by the derivative of the first-order derivative.

Discretization of the shape derivatives

In this section we detail the numerical approximation of the shape derivatives in view of the next section where we focus
on the numerical analysis of an optimization method. At first we check that the property αzdxu = 1 is numerically
true.

Lemma 15.3.12. Let uzh be the solution to (15.11). We have everywhere

αzhdxu
z
h = 1.

Proof. We have by Proposition 15.2.1, uzh ∈ P1 and

uzh,0 = 0,

uzh,i = iγ1h, ∀i ≤
⌊ z
h

⌋
,

uzh,i = uzh,N − γ2h (N − i) , ∀i ≥
⌈ z
h

⌉
,

uzh,N = γ2 + [γ]z + h

(
1

〈αzh〉
−
(
ηzhγ1 + (1− ηzh)γ2

))
.

Therefore, dxu
h is constant in each cell and, for each cell ](i− 1)h, ih[ with i ≤

⌊
z
h

⌋
or i >

⌈
z
h

⌉
, αzdxu

z
h = αz γz = 1.

It remains to check the formula for the cell ](i− 1)h, ih[ with i =
⌈
z
h

⌉
. We have

uzh,i−1 = (i− 1)γ1h,

uzh,i = uzh,N − (N − i)γ2h.
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Therefore, with dxuh(z) =
uh,i − uh,i−1

h
one has

hdxuh(z) = γ2 + [γ]z + h

(
1

〈αzh〉
−
(
ηzhγ1 + (1− ηzh)γ2

))
− (N − i)h γ2 − (i− 1)h γ1.

Since N h = 1 and z = hηzh + h(i− 1), this leads to

hdxuh(z) = [γ]z + h

(
1

〈αzh〉
−
(
ηzh[γ] + γ2

))
− i h [γ] + h γ1

= −h[γ] +
h

〈αzh〉
+ h[γ]

=
h

〈αzh〉
,

and

〈αzh〉dxuh(z) = 1,

αzh(z)dxuh(z) = 1.

Therefore the discretization of the shape derivatives gives rise to

J ′(Ω1; θ) ' 2(uh(1)− u0)[γ]θ(z),

J ′′(Ω1; θ, ξ) ' 2[γ]2 θ(z)ξ(z).

(15.38)

15.4 Optimization with the Newton method

Starting from an interface point z0 (n ∈ N) the optimization process consists in building a sequence zn (n ∈ N) that
minimizes the objective function, either J or Jh. The main objective of this section is to specify, for n ∈ N the relation
between zn and zn+1.

Algorithm 15.4.1. Newton’s Algorithm

1. Set n = 0. Choose z0 ∈ [0, 1] and a convergence threshold ε > 0

2. Compute a descent direction dzn.

3. Set zn+1 = zn + dzn.

4. Set n := n+ 1. If |zn − z?| ≤ ε (or |zn − z?h| ≤ ε for the discretized version) stop. Else go to step 2.

The Newton method is well known to converge quadratically under regularity conditions of the objective [92,
Theorem 3.7]. It means that we have an estimate (with C > 0)

|zn+1 − z?| ≤ C|zn − z?|2.

15.4.1 Parametric framework

When the variable is zn ∈ [0, 1] the Newton method consists in making a step dzn such that

d2
zzJ(zn) · dzn = −dzJ(zn), (15.39)

with a unitary time step. In the one-dimensional example considered here, the second-order derivative of J with
respect to J is 2[γ] which does not vanish. Therefore there is no singularity of the Hessian. This leads to the relation

zn+1 = zn − dzJ(zn)

d2
zzJ(zn)

.
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15.4.2 Shape variation framework

In the shape variation framework, we use the level-set method. The shape Ω1 is represented by a level-set function. Let
n > 0 and zn ∈ [0, 1]. We consider φn as the signed distance function to [0, zn] (which corresponds to the domain Ω1),
that is φn(x) = x− zn for x ∈ [0, 1]. In this context the relation between zn and zn+1 is not a priori straightforward,
since it is defined by the evolution of the level-set : φn → φn+1. The Newton method amounts to computing a
direction θn such that

∀ξ ∈W 1,∞
0 ([0, 1]), J ′′(Ω1; θn, ξ) = −J ′(Ω1; ξ).

The shape derivative formulas are a priori defined for θ, ξ ∈ W 1,∞
0 ([0, 1]) but one can notice that they depend only

on θ(z) and ξ(z). Therefore the Newton equation for the shape variation does not have a unique solution. This
problem disappears if we restrict the equation to the value of θ, ξ at z. In that case, the Newton equation is exactly
the same as (15.39) (with θn = dzn). Since the second-order derivative factor (2[γ]) does not vanish, there is a unique
solution in R. The solution θn to the Newton equation at zn has to be extended (see Section 10.2) to be used in the
Hamilton-Jacobi equation. Let vn be a constant extension of θn : ∀x ∈ [0, 1], vn(x) = θn. Let then φ be the solution
to the Hamilton-Jacobi equation 




∂tφ(t, x) + vn(x)|∇φ(t, x)| = 0,

φ(0, x) = φn.
(15.40)

The update of the level-set is defined as φn+1 = φ(1, ·). Since φn is assumed to be a signed distance function the
relation between φn and φn+1 becomes here : φn+1 = φn − vn. Then zn+1 is defined as the zero of the updated
level-set φn+1. We have obviously zn+1 = zn + θn.

Thus, for the continuous problem, both parametric and shape variation frameworks coincide. The derivatives as
well as the update of the variables correspond to the same operations.

15.5 Error analysis

We start by analyzing the continuous problem, with exact derivatives. Since the objective function is quadratic, we
can check that the Newton method converges in one iteration. Secondly we consider the rates of convergence for the
optimize-then-discretize and discretize-then-optimize approaches. Since for this particular problem, both parametric
and shape variation approaches coincide we will consider here only the case of the parametric approach.

15.5.1 Continuous framework

Proposition 15.5.1. The Newton method for solving (15.5) converges in one iteration.

Proof. For n ∈ N and zn ∈ [0, 1] the next iterate zn+1 is computed as

zn+1 = zn − dzJ(zn)

d2
zzJ(zn)

,

= zn − 2(uz
n

(1)− u0)[γ]

2[γ]2
,

= zn − uz
n

(1)− u0

[γ]
.

The solution uz
n

to (15.3) with z = zn satisfies

uz
n

(1) = γ2 + zn[γ],

and the optimal solution z? is defined by

z? =
u0 − γ2

[γ]
.

Therefore

zn+1 = zn − γ2 + zn[γ]− u0

[γ]
,

= zn − zn[γ]− z?[γ]

[γ]
,

= z?.

As a result, the algorithm converges in only one iteration.
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15.5.2 Optimize-then-discretize approach

The optimize-then-discretize approach consists in computing the derivatives of the continuous problem and to compute
the discretization of these derivatives. The continuous and discretized optimal solution z? and z?h are respectively
defined by (see Proposition 15.1.1 and Proposition 15.2.3)

z? =
u0 − γ2

[γ]
, z?h = z0 + hη?h, (15.41)

where

η?h =
1

[α]

(
1

γ2 + [γ]Z
− α2

)
, Z =

z?

h
−
⌊
z?

h

⌋
, z0 = h

⌊
z?

h

⌋
.

The update of zn with the Newton method is given by

zn+1 = zn + θn,

= zn − uzh(1)− u0

[γ]
.

Proposition 15.5.2. With the optimize-then-discretize approach, the evolution of the error satisfies

ηn+1 − η?h = (ηn − η?h)

(
1− α1 α2

(η?h[α] + α2)(ηn[α] + α2)

)
. (15.42)

Proof. After discretization, we assume that zn is close to the optimal continuous solution, and that

⌊
zn

h

⌋
=

⌊
z?

h

⌋
.

Therefore, (15.29) is valid :

unh(1)− u0 = h

(
1

ηn[α] + α2
− 1

η?h[α] + α2

)
,

which means that

[γ](zn+1 − zn) = h

(
1

η?h[α] + α2
− 1

ηn[α] + α2

)
.

Writing zn = z0 + ηnh with z0 = h

⌊
z?

h

⌋
, this leads to

[γ](ηn+1 − ηn) =

(
1

η?h[α] + α2
− 1

ηn[α] + α2

)
,

[γ](ηn+1 − η?h) = [γ](ηn − η?) +
(ηn − η?h)[α]

(η?h[α] + α2)(ηn[α] + α2)
,

ηn+1 − η?h = (ηn − η?h)


1 +

[α]
[γ]

(η?h[α] + α2)(ηn[α] + α2)


 .

Since the jump ratio between α and γ is

[α]

[γ]
=
α1 − α2

γ1 − γ2
= −α1 α2,

we finally get

ηn+1 − η?h = (ηn − η?h)

(
1− α1 α2

(η?h[α] + α2)(ηn[α] + α2)

)
. (15.43)

Remark 15.5.3. At first, with α1, α2 ∈ R+ there is a priori no reason why we should have
∣∣∣∣1−

α1 α2

(η?h[α] + α2)(ηn[α] + α2)

∣∣∣∣ = O(ηn − η?), (15.44)

which would ensure a second-order convergence rate as soon as |ηn − η?| � 1. In fact, the left-hand side has no
reason to converge to zero so that the expected convergence is at most linear. Moreover there is also no reason
why this term should be between −1 and 1, which would ensure that the sequence |ηn − η?| converges. Indeed, if

(ηnh [α] + α2) = (η?h[α] + α2) = α1 and α1 <
α2

2
we have

∣∣∣∣1−
α1 α2

(η?h[α] + α2)(ηn[α] + α2)

∣∣∣∣ > 1.

In such a case, the algorithm may even not converge to the optimal solution.
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15.5.3 Discretize-then-optimize approach

Contrary to the previous approach, the main idea here is to compute the discretized model first and then to deduce
the derivatives of the discrete model. We have

dzJh(zn) = −2h

(
1

ηn[α] + α2
− 1

η?h[α] + α2

)
[α]

(ηn[α] + α2)
2 ,

d2
zzJh(zn) = 2

[α]2

(ηn[α] + α2)
4 + 4

(
1

ηn[α] + α2
− 1

η?h[α] + α2

)
[α]2

(ηn[α] + α2)
3 .

In order to ease the reading we denote in this section

αn = ηn[α] + α2, α? = η?h[α] + α2.

Proposition 15.5.4. The discretize-then-optimize approach has a second-order rate of convergence.

Proof. The Newton equation gives

dzn =

h

(
1

αn
− 1

α?

)
[α]

(αn)2

[α]2

(αn)4
+ 2

(
1

αn
− 1

α?

)
[α]2

(αn)3

.

With zn+1 − zn = h(ηn+1 − ηn) = dzn, this reads

ηn+1 − ηn =

(
1

αn
− 1

α?

)
(αn)2

[α] + 2

(
1

αn
− 1

α?

)
[α](αn)

.

We also have

1

αn
− 1

α?
=

1

ηn[α] + α2
− 1

η?h[α] + α2

= (η? − ηn)
[α]

αn α?
.

Therefore

ηn+1 − ηn =
(η? − ηn)

[α]

α?
αn

[α] + 2(η? − ηn)
[α]2

α?

= (η? − ηn)

αn

α?

1 + 2(η? − ηn)
[α]

α?

.

Consequently

ηn+1 − η? = (ηn − η?)


1−

αn

α?

1 + 2(η? − ηn)
[α]

α?


 .

If η? − ηn is small, we can write

1−
αn

α?

1 + 2(η? − ηn)
[α]

α?

= 1− αn

α?
+ 2

αn

α?
[α]

α?
(η? − ηn) + o(η? − ηn).

We also have

1− αn

α?
= 1− ηn[α] + α2

η?[α] + α2

=
[αz]

α?
(η? − ηn).

Therefore

ηn+1 − η? = −(ηn − η?)2 [αz]

α?

(
1 + 2

αn

α?

)
+ o(ηn − η?)2.
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In the discretize-then-optimize framework, the convergence is then of order 2. This is totally expected since the
optimization takes place in a parametric case where the Newton method is known to converge quadratically.

15.5.4 Impact of numerical approximation on the convergence rate

In the optimize-then-discretize approach we saw that due to approximation errors the convergence was only first-order,
even with the Newton method. This is due to the approximation of the state u in the first-order derivative. In the
particular example presented above, it appears that there is no approximation error on the second-order derivative.
In this paragraph we focus on the continuous problem and assume that there is respectively a numerical error δ1 and
δ2 on the computation of the first and second-order derivatives of the criterion. In other words, we have

(dzJ)h = dzJ + δ1, (d2
zzJ)h = d2

zzJ + δ2.

Therefore, starting from zn with n ∈ N the next iterate is computed as

zn+1 = zn − (dzJ(zn))h
(d2
zzJ(zn))h

,

= zn − (uz
n

(1)− u0)[γ] + δ1(zn)

[γ]2 + δ2(zn)
.

Since uz
n

(1) = γ2 + zn[γ] and z? =
u0 − γ2

[γ]
this leads to

zn+1 = zn − (zn − z?)[γ] + δ1(zn)

[γ]2 + δ2(zn)
,

= zn − (zn − z?) [γ]

[γ]2 + δ2(zn)
− δ1(zn)

[γ]2 + δ2(zn)
,

= z? + (zn − z?) δ2
[γ]2 + δ2(zn)

− δ1(zn)

[γ]2 + δ2(zn)
.

Therefore

zn+1 − z? = (zn − z?) δ2(zn)

[γ]2 + δ2(zn)
− δ1(zn)

[γ]2 + δ2(zn)
.

First, let assume that the gradient is exactly computed, i.e δ1 = 0. We get

zn+1 − z? = (zn − z?) δ2(zn)

[γ]2 + δ2(zn)
.

Therefore, the second-order convergence rate is conserved if and only if δ2(zn) = O(zn − z?). On the other hand,
when δ2(zn) = 0, the convergence is quadratic if and only if δ1(zn) = O(zn − z?)2. In particular, we can observe that
it is much more important to have a precise computation of the gradient than of the second-order derivative to get
quadratic convergence.

15.6 Numerical experiments

We would like now to see if these theoretical results can be observed in numerical practice. We take

α1 = 0.5, α2 = 2, N = 104, h = 10−4, z0 =
1

3
.

We will compare the continuous, optimize-then-discretize and discretize-then-optimize approaches. The continuous
approach consists in minimizing the function J defined by (15.7) where the dependency with respect to z is explicit.
The optimize-then-discretize minimizes Jh = (uh(1)−u0)2 with the derivatives given by (15.38). Finally, the discretize-
then-optimize approach minimizes also Jh = (uh(1)− u0)2 but with the derivatives given by Proposition 15.3.1.

15.6.1 Case when z? = z?h

First, we take u0 = 0.5. It appears that the theoretical optimal solutions of the continuous model and of the discretized
model, that is respectively z? and z?h coincide. We run Algorithm 15.4.1 for the three approaches. In Figure 15.2 we
plot the evolution of the error z − z? along the iterations. We also plot the evolution of the error zn+1 − z? at the
iteration n+ 1 with respect to the error zn− z? at iteration n, like in Section 12.1.2. In the caption of Figure 15.2, the
optimize-then-discretize and discretize-then-optimize approaches are respectively referred to as OptDisc and DiscOpt.

In accordance with the theoretical results obtained in Section 15.5, we can observe that the continuous approach
converges in one iteration. The discretize-then-optimize approach has also a quadratic rate of convergence whereas
the optimize-then-discretize approach converges only linearly. In Table 15.1, we can indeed see that the slope of the
linear regression are respectively about two and one for these two approaches.
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15.6.2 Case when z? 6= z?h

According to Proposition 15.2.4, the error between z? and z?h should be only of order h. We also mentioned in
Remark 15.5.3 that the optimize-then-discretize approach may even not converge in some cases. We would like thus
find u0 such that ∣∣∣∣1−

α1 α2

(η?h[α] + α2)(ηn[α] + α2)

∣∣∣∣ > 1,

at least when n is sufficiently large. We then look for z? such that

α1 α2

(η?h[α] + α2)2
> 2. (15.45)

Since
1

η?h[α] + α2
= 2[γ] + γ2, taking Z >

√
2α1α2 − α1

α2 − α1
=: Z0 (we recall that Z = z?

h − b z
?

h c ) ensures that (15.45) is

satisfied (we can check that Z0 ∈ [0, 1]). Thus, we take Z = Z0 +
1

2
(1 − Z0). We then take u0 = (100 + Z)h[γ] + γ2

so that z? =
u0 − γ2

[γ]
and Z =

z?

h
−
⌊
z?

h

⌋
. Thus (15.45) is satisfied, and we can observe on Figure 15.3 that the

optimize-then-discretize approach does not converge. On the other hand, the continuous approach still converges in
one iteration to the theoretical continuous optimal solution z?. Similarly, the behavior of the discretize-then-optimize
approaches is not modified. It still converges to the theoretical discrete solution z?h with a quadratic, or at least
superlinear, rate : the slope of the linear regression on the error is 1.72.

In that particular example, we have Z 6= 0 and Z 6= 1, so that in accordance with the proof of Proposition 15.2.4,
the error between z? and z?h may not be zero. Indeed, we have

z? − z?h = 1.38× 10−5,

which is consistent with the fact that the error is of the order of h.

15.6.3 Impact of numerical approximation

Finally we consider the impact of numerical errors on the first and second-order derivatives on the rate of convergence.
In Section 15.5.4 we saw that the respective errors on the first and second-order derivatives should be respectively
of second and first-order with respect to zn − z? in order to keep the quadratic rate of convergence. To that end,
we consider two cases. For the first one, we add 0.1(zn − z?) to the first-order derivative. This case is referred to
as Test 1. For the second case, referred to as Test 2, we respectively add 0.1(zn − z?)2 and zn − z? to the first
and second-order derivatives. We now observe the convergence of the error with the optimal solution - zn − z? - and
the evolution of the rate of convergence and the respective linear regressions. We display the slopes of the linear
regressions in Table 15.3. Like it was theoretically anticipated, the addition of a first-order error on the first-order
derivative (case of Test 1) makes the rate of convergence go down to first-order. To the contrary, adding errors of
second and first-orders respectively to the first and second-order derivatives does not jeopardize the quadratic rate of
convergence.
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Figure 15.2: Evolution of the error to the optimal solution (left) and linear regression on this error (right).

OptDisc DiscOpt

Slope 0.97 1.92

Table 15.1: Slopes of the linear regression.
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Figure 15.3: Convergence of the error with the optimal solution.
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Figure 15.4: Convergence of the error with the optimal solution (left), and rates of convergence (right).

Test 1 Test 2

Slope 1.00 1.99

Table 15.3: Slopes of the linear regressions.
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Université Paris VII - Denis Diderot; Université Pierre et Marie Curie, 2013.
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[89] F. Murat and L. Tartar. Calcul des variations et homogénéisation. In Homogenization Methods : Theory and
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Résumé

Le but de cette thèse est de définir une méthode d’optimisation de formes qui conjugue l’utilisation de la dérivée
seconde de forme et la méthode des lignes de niveaux pour la représentation d’une forme. On considèrera d’abord
deux cas plus simples : un cas d’optimisation paramétrique et un cas d’optimisation discrète.

Ce travail est divisé en quatre parties. La première contient le matériel nécessaire à la compréhension de l’ensemble
de la thèse. Le premier chapitre rappelle des résultats généraux d’optimisation, et notamment le fait que les
méthodes d’ordre deux ont une convergence quadratique sous certaines hypothèses. Le deuxième chapitre répertorie
différentes modélisations pour l’optimisation de formes, et le troisième se concentre sur l’optimisation paramétrique
puis l’optimisation géométrique. Les quatrième et cinquième chapitres introduisent respectivement la méthode des
lignes de niveaux (level-set) et la méthode des éléments-finis.

La deuxième partie commence par les chapitres 6 et 7 qui détaillent des calculs de dérivée seconde dans le cas de
l’optimisation paramétrique puis géométrique. Ces chapitres précisent aussi la structure et certaines propriétés de la
dérivée seconde de forme. Le huitième chapitre traite du cas de l’optimisation discrète. Dans le neuvième chapitre on
introduit différentes méthodes pour un calcul approché de la dérivée seconde, puis on définit un algorithme de second
ordre dans un cadre général. Cela donne la possibilité de faire quelques premières simulations numériques dans le cas
de l’optimisation paramétrique (Chapitre 6) et dans le cas de l’optimisation discrète (Chapitre 7).

La troisième partie est consacrée à l’optimisation géométrique. Le dixième chapitre définit une nouvelle notion de
dérivée de forme qui prend en compte le fait que l’évolution des formes par la méthode des lignes de niveaux, grâce
à la résolution d’une équation eikonale, se fait toujours selon la normale. Cela permet de définir aussi une méthode
d’ordre deux pour l’optimisation. Le onzième chapitre détaille l’approximation d’intégrales de surface et le douzième
chapitre est consacré à des exemples numériques.

La dernière partie concerne l’analyse numérique d’algorithmes d’optimisation de formes par la méthode des lignes de
niveaux. Le Chapitre 13 détaille la version discrète d’un algorithme d’optimisation de formes. Le Chapitre 14 analyse
les schémas numériques relatifs à la méthodes des lignes de niveaux. Enfin le dernier chapitre fait l’analyse numérique
complète d’un exemple d’optimisation de formes en dimension un, avec une étude des vitesses de convergence.

Mots-clefs

optimisation par la méthode de Newton, algorithme d’optimisation de second ordre, optimisation de formes, level-set,
dérivée de forme, approximation par des schémas numériques.

Abstract

The main purpose of this thesis is the definition of a shape optimization method which combines second-order differ-
entiation with the representation of a shape by a level-set function. A second-order method is first designed for simple
shape optimization problems : a thickness parametrization and a discrete optimization problem.

This work is divided in four parts. The first one is bibliographical and contains different necessary backgrounds
for the rest of the work. Chapter 1 presents the classical results for general optimization and notably the quadratic
rate of convergence of second-order methods in well-suited cases. Chapter 2 is a review of the different modelings for
shape optimization while Chapter 3 details two particular modelings : the thickness parametrization and the geometric
modeling. The level-set method is presented in Chapter 4 and Chapter 5 recalls the basics of the finite element method.

The second part opens with Chapter 6 and Chapter 7 which detail the calculation of second-order derivatives
for the thickness parametrization and the geometric shape modeling. These chapters also focus on the particular
structures of the second-order derivative. Then Chapter 8 is concerned with the computation of discrete derivatives
for shape optimization. Finally Chapter 9 deals with different methods for approximating a second-order derivative
and the definition of a second-order algorithm in a general modeling. It is also the occasion to make a few numerical
experiments for the thickness (defined in Chapter 6) and the discrete (defined in Chapter 8) modelings.

Then, the third part is devoted to the geometric modeling for shape optimization. It starts with the definition of a
new framework for shape differentiation in Chapter 10 and a resulting second-order method. This new framework for
shape derivatives deals with normal evolutions of a shape given by an eikonal equation like in the level-set method.
Chapter 11 is dedicated to the numerical computation of shape derivatives and Chapter 12 contains different numerical
experiments.

Finally the last part of this work is about the numerical analysis of shape optimization algorithms based on the
level-set method. Chapter 13 is concerned with a complete discretization of a shape optimization algorithm. Chapter 14
then analyses the numerical schemes for the level-set method, and the numerical error they may introduce. Finally
Chapter 15 details completely a one-dimensional shape optimization example, with an error analysis on the rates of
convergence.

Keywords

Newton optimization method, second-order optimization algorithm, shape optimization, level-set, shape derivative,
numerical approximation schemes.


