. Si, On peut noter dans les deux bandes un élargissement des cycles diurnes (une durée plus longue) à mesure que la latitude augmente, ainsi qu'une nette diminution du flux de fluorescence avec la latitude, imputable à l'augmentation de l'angle de visée du satellite mais également au fait que l'éclairement diminue avec l'augmentation de la latitude, plus encore à l'équinoxe et en hiver Les figures 4.7a et 4.7b montrent l'influence sur les cycles diurnes de fluorescence de l'augmentation combinée de la latitude et de la longitude des points observés On remarque simplement une combinaison des variations observées lorsque l'on fait varier la latitude et la longitude, avec une constance : dans la bande O 2 -A, en raison de l'absorption plus importante de l'atmosphère, la diminution des flux est plus importante à mesure que l'on s'éloigne du nadir que dans la bande O 2 -B. Ces différentes figures (4.5a à 4.7b) nous renseignent sur la variabilité des cycles diurnes induite par les conditions de mesure (jour de l'année et direction de visée du satellite) pour un couvert donné. On a vu que trivialement l'approche de l'hiver diminuait les flux de fluorescence à mesure que la latitude augmentait, mais aussi que l'augmentation de l'angle de visée du satellite (liée à l'augmentation de la latitude ou de la longitude du point observé), en augmentant l'épaisseur d'atmosphère traversée et en s'éloignant de la normale à la surface, diminuait également les flux. L'augmentation de la longitude du point observé a aussi une influence sur la forme des cycles diurnes à cause d'effets de structure du couvert faisant ressortir la dissymétrie du cycle diurne vu depuis le satellite. On verra plus encore l'importance de ces effets dans la suite en étudiant l'influence de la structure du couvert sur les flux mesurés par le satellite. À la variation de la configuration spatio-temporelle de mesure (jour de l'année et position du point observé) étudiée avec un couvert standard, on ajoute ici les variations du type de couvert (contenu en chlorophylle, LAI et distribution angulaire des feuilles) afin d'étudier les effets de structure ; les résultats qui suivent concernent donc tous les couverts simulés, une déformation importante des cycles diurnes. Ici, les cibles ne reçoivent pas le même rayonnement en raison de leurs latitudes différentes Les figures 4.8a et 4.8b représentent les distributions des flux de fluorescence dans le fond des bandes O 2 -A et O 2 -B, respectivement à 760,7 nm et 687,3 nm. On entend ici par distribution toutes les valeurs prises par les flux de fluorescence mesurés par le satellite dans toutes les simulations : pour différents angles de visée du satellites, jours de l'année, contenus en chlorophylle, LAI et valeurs du paramètre représentant la distribution angulaire des feuilles au sein du couvert (?). Il est à noter qu'il n'y a pas de raison que les distributions de flux représentent celles qu'un satellite pourrait rencontrer, en effet ces distributions correspondent à un ensemble de couverts (défini mesuré en provenance de la cible pour en retrouver les composantes dont fait partie la fluorescence. Les indices de rendement que j'ai étudiés sont utilisés en pratique dans les mesures de fluorescence passive. Les simulations que j'ai faites ? sur des plages spectrales assez étendues ? pourraient permettre de calculer d'autres indices et d'étudier comment ils réagissent aux effets de structure. De meilleurs indices permettraient de calculer un rendement de fluorescence à partir des flux mesurés sans qui n'auraient pas de variations propres pouvant masquer celles du rendement réel du couvert

G. Agati, Z. G. Cerovic, and I. Moya, «The Effect of Decreasing Temperature up to Chilling Values on the in vivo F685/F735 Chlorophyll Fluorescence Ratio in Phaseolus vulgaris and Pisum sativum: The Role of the Photosystem I Contribution to the 735 nm Fluorescence Band», Photochemistry and Photobiology, vol.72, issue.22, pp.75-840031, 2000.

G. Anderson, A. Berk, P. Acharya, M. Matthew, L. Bernstein et al., «MODTRAN4: Radiative transfer modeling for remote sensing», dans SPIE proceedings series, pp.176-183, 2000.
DOI : 10.1117/12.410338

S. Apostol, J. Briantais, N. Moise, Z. G. Cerovic, and I. Moya, «Photoinactivation of the photosynthetic electron transport chain by accumulation of over-saturating light pulses given to dark adapted pea leaves», Photosynthesis Research, vol.67, issue.3, pp.215-227, 2001.
DOI : 10.1023/A:1010676618028

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent et al., Interference-filter-stabilized external-cavity diode lasers, Optics Communications, vol.266, issue.2, 2006.
DOI : 10.1016/j.optcom.2006.05.011

URL : http://arxiv.org/abs/physics/0605046

O. Björkman, B. Et, and . Demmig, Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta, vol.25, issue.4, pp.489-504, 1987.
DOI : 10.1007/BF00402983

S. Bowers, R. Et, and . Hanks, REFLECTION OF RADIANT ENERGY FROM SOILS, Soil Science, vol.100, issue.2, pp.130-138, 1965.
DOI : 10.1097/00010694-196508000-00009

C. Buschmann, E. Nagel, K. Szabo, and L. Kocsányi, Spectrometer for fast measurements of in vivo reflectance, absorptance, and fluorescence in the visible and near-infrared, Remote Sensing of Environment, vol.48, issue.1, pp.18-24, 1994.
DOI : 10.1016/0034-4257(94)90110-4

W. L. Butler, Energy Distribution in the Photochemical Apparatus of Photosynthesis, Annual Review of Plant Physiology, vol.29, issue.1, 1978.
DOI : 10.1146/annurev.pp.29.060178.002021

G. Campbell, «Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions» Agricultural and Forest Meteorology, pp.10-1016, 1990.

G. Campbell, F. Et, and . Van-evert, «Light interception by plant canopies: efficiency and architecture», Resource capture by crops, pp.35-52, 1994.

G. A. Carter, J. H. Jones, R. J. Mitchell, and C. H. Brewer, Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a fraunhofer line radiometer, Remote Sensing of Environment, vol.55, issue.1, pp.89-92, 1996.
DOI : 10.1016/0034-4257(95)00192-1

J. Cavender-bares, S. Apostol, I. Moya, J. Briantais, and F. A. Bazzaz, «Chilling-Induced Photoinhibition in Two Oak Species: Are Evergreen Leaves Inherently Better Protected Than Deciduous Leaves ?, Photosynthetica, vol.36, issue.4, pp.587-596, 2000.
DOI : 10.1023/A:1007000406399

Z. G. Cerovic, Y. Goulas, M. Gorbunov, J. M. Briantais, L. Camenen et al., Fluorosensing of water stress in plants: Diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a ??-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and kalancho??, Remote Sensing of Environment, vol.58, issue.3, pp.10-1016, 1996.
DOI : 10.1016/S0034-4257(96)00076-4

Y. Cheng, E. M. Middleton, Q. Zhang, K. F. Huemmrich, P. K. Campbell et al., Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a??Cornfield, Remote Sensing, vol.6, issue.12, pp.2072-4292, 2013.
DOI : 10.1117/12.690036

F. Daumard, Contribution à la télédétection passive de la fluorescence chlorophyllienne des végétaux, phdthesis, Ecole Polytechnique X. URL https://pastel.archives-ouvertes.fr/pastel-00563244/ document, p.50, 2010.

F. Daumard, S. Champagne, A. Fournier, Y. Goulas, A. Ounis et al., «A field platform for continuous measurement of canopy fluorescence», Geoscience and Remote Sensing, IEEE Transactions on, vol.48, issue.69, pp.3358-3368, 2010.

F. Daumard, Y. Goulas, S. Champagne, A. Fournier, A. Ounis et al., Continuous Monitoring of Canopy Level Sun-Induced Chlorophyll Fluorescence During the Growth of a Sorghum Field, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.11, pp.4292-4300
DOI : 10.1109/TGRS.2012.2193131

URL : https://hal.archives-ouvertes.fr/hal-01111225

F. Daumard, Y. Goulas, A. Ounis, R. Pedrós, and I. Moya, Measurement and Correction of Atmospheric Effects at Different Altitudes for Remote Sensing of Sun-Induced Fluorescence in Oxygen Absorption Bands, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.9, pp.5180-5196
DOI : 10.1109/TGRS.2015.2418992

F. Daumard, I. Moya, Y. Goulas, A. Ounis, and C. , «GFLEX: Monitoring the Diurnal Time Course of Vegetation Dynamics with Geostationary Observations», 2014.

M. Drush and . Team, «FLEX Report for Assessment», cahier de recherche SP-1313, p.91, 2008.

H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, Fluorescence lidar multicolor imaging of vegetation, «Fluorescence lidar multicolor imaging of vegetation», pp.2471-2479, 1994.
DOI : 10.1364/AO.33.002471

R. Emerson, R. Chalmers, and C. Cederstrand, SOME FACTORS INFLUENCING THE LONG-WAVE LIMIT OF PHOTOSYNTHESIS, Proceedings of the National Academy of Sciences of the United States of America, pp.133-151, 1957.
DOI : 10.1073/pnas.43.1.133

S. Evain, J. Flexas, and I. Moya, A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence, Remote Sensing of Environment, vol.91, issue.2, p.134, 2004.
DOI : 10.1016/j.rse.2004.03.012

S. Evain, A. Ounis, F. Baret, Y. Goulas, J. Louis et al., «Passive vegetation fluorosensing using atmospheric oxygen absorption bands», Recent advances in quantitative remote sensing, pp.16-20, 2002.

J. Flexas, J. Briantais, Z. Cerovic, H. Medrano, and I. Moya, Steady-State and Maximum Chlorophyll Fluorescence Responses to Water Stress in Grapevine Leaves, Remote Sensing of Environment, vol.73, issue.3, pp.283-297, 2000.
DOI : 10.1016/S0034-4257(00)00104-8

J. Flexas, J. Escalona, S. Evain, J. Gulías, I. Moya et al., Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants, Physiologia Plantarum, vol.104, issue.2, pp.231-240, 2002.
DOI : 10.1038/44842

A. Fournier, F. Daumard, S. Champagne, A. Ounis, Y. Goulas et al., Effect of canopy structure on sun-induced chlorophyll fluorescence, ISPRS Journal of Photogrammetry and Remote Sensing, vol.68, pp.112-120, 2012.
DOI : 10.1016/j.isprsjprs.2012.01.003

URL : https://hal.archives-ouvertes.fr/hal-01111699

F. Franck, P. Juneau, and R. Popovic, Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1556, issue.2-3, pp.2-3, 2002.
DOI : 10.1016/S0005-2728(02)00366-3

C. Frankenberg, J. B. Fisher, J. Worden, G. Badgley, S. S. Saatchi et al., New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophysical Research Letters, vol.95, issue.2, pp.91-92, 2011.
DOI : 10.1029/2011GL048738

J. Fraunhofer, «Bestimmung des Brechungs-und des Farbenzerstreungs-Vermögens verschiedener Glasarten, Bezug auf die Vervollkommnung achromatischer Fernröhre», Annalen der Physik, p.33, 1817.

J. P. Gastellu-etchegorry, V. Demarez, V. Pinel, and F. Zagolski, «Modeling radiative transfer in heterogeneous 3-D vegetation canopies», Remote Sensing of Environment, pp.131-156, 1996.

B. Genty, J. Briantais, and N. R. Baker, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, BBA) -General Subjects, pp.10-1016, 1989.
DOI : 10.1016/S0304-4165(89)80016-9

B. Genty, S. Et, and . Meyer, Quantitative Mapping of Leaf Photosynthesis Using Chlorophyll Fluorescence Imaging, Australian Journal of Plant Physiology, vol.22, issue.2, pp.277-284, 1995.
DOI : 10.1071/PP9950277

Y. Goulas, Z. G. Cerovic, A. Cartelat, and I. Moya, Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence, Applied Optics, vol.43, issue.23, pp.4488-4496, 2004.
DOI : 10.1364/AO.43.004488

Y. Goulas, A. Fournier, F. Daumard, S. Champagne, A. Ounis et al., Marloie et I. Moya. 2017, «Gross primary production of a wheat canopy correlates with far red sun-induced chlorophyll fluorescence but not with red fluorescence»

Y. Goulas, A. Ounis, F. Daumard, F. Baret, M. Chelle et al., 2014, «Assessment of canopy fluorescence yield with airborne passive and active measurements: the CALSIF project», 5th International Workshop on Remote Sensing of Vegetation Fluorescence, pp.22-24

L. Guanter, L. Alonso, L. Gómez-chova, M. Meroni, R. Preusker et al., 2010, «Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands», Journal of Geophysical Research: Atmospheres, vol.115, issue.303, p.135, 2009013716.

G. Guyot, Signatures spectrales des surfaces naturelles, Télédétection satellitaire, Paradigme, ISBN 978-2-86878-032-4. URL https, 1992.

S. Jacquemoud, F. Et, and . Baret, «PROSPECT: A model of leaf optical properties spectra», Remote sensing of environment, pp.75-91, 1990.

S. Jacquemoud, S. Ustin, J. Verdebout, G. Schmuck, G. Andreoli et al., Estimating leaf biochemistry using the PROSPECT leaf optical properties model, Remote Sensing of Environment, vol.56, issue.3, pp.194-202, 1996.
DOI : 10.1016/0034-4257(95)00238-3

J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov et al., 2013, «Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2», Atmospheric Measurement Techniques, p.28

J. Joiner, Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp et al., First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, vol.8, issue.3, pp.637-651, 2011.
DOI : 10.5194/bg-8-637-2011

URL : http://doi.org/10.5194/bgd-7-8281-2010

H. Kautsky, A. Et, and . Hirsch, Neue Versuche zur Kohlens???ureassimilation, Die Naturwissenschaften, vol.103, issue.48, pp.964-964, 1931.
DOI : 10.1007/BF01516164

. Kelvinsong, «Français : Schème d'un chloroplaste.», URL https://commons.wikimedia.org/wiki/ File:Chloroplast_(standalone_version)-fr.svg, p.16, 2013.

M. Kitajima, W. L. Et, and . Butler, Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.376, issue.1, pp.105-115, 1975.
DOI : 10.1016/0005-2728(75)90209-1

O. Kooten and J. F. Snel, The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynthesis Research, vol.894, issue.3, pp.147-150, 1990.
DOI : 10.1007/BF00033156

G. Krause, E. Et, and . Weis, Chlorophyll Fluorescence and Photosynthesis: The Basics, Annual Review of Plant Physiology and Plant Molecular Biology, vol.42, issue.1, pp.313-349, 1991.
DOI : 10.1146/annurev.pp.42.060191.001525

G. H. Krause, E. Et, and . Weis, Chlorophyll fluorescence as a tool in plant physiology, Photosynthesis Research, vol.77, issue.4, pp.139-157, 1984.
DOI : 10.1007/BF00028527

D. W. Lawlor, Photosynthesis: molecular, physiological and environmental processes Longman scientific & technical, 1993.

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, and J. A. Miehé, Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System, Journal of Plant Physiology, vol.148, issue.5, pp.10-1016, 1996.
DOI : 10.1016/S0176-1617(96)80081-2

URL : https://hal.archives-ouvertes.fr/in2p3-00015980

H. K. Lichtenthaler, J. A. Et, and . Miehé, Fluorescence imaging as a diagnostic tool for plant stress, Trends in Plant Science, vol.2, issue.8, pp.89954-89956, 1997.
DOI : 10.1016/S1360-1385(97)89954-2

J. Louis, Z. G. Cerovic, and I. Moya, Quantitative study of fluorescence excitation and emission spectra of bean leaves, Journal of Photochemistry and Photobiology B: Biology, vol.85, issue.1, p.69, 2006.
DOI : 10.1016/j.jphotobiol.2006.03.009

L. González and M. D. , «In-the-field water stress detection in a vineyard using active and passive optical measurements», URL https, p.119, 2014.

L. González and M. D. , «Seguimiento del estrés hídrico en la vid mediante técnicas de fluorescencia de la clorofila y otros métodos ópticos», URL https, p.134, 2014.

K. Maxwell, G. Et, and . Johnson, «Chlorophyll fluorescence?a practical guide», Journal of experimental botany, vol.51, pp.345-659, 2000.
DOI : 10.1093/jexbot/51.345.659

J. C. Mcfarlane, R. D. Watson, A. F. Theisen, R. D. Jackson, W. L. Ehrler et al., Plant stress detection by remote measurement of fluorescence, Applied Optics, vol.19, issue.19, p.27, 1980.
DOI : 10.1364/AO.19.003287

M. Meroni, R. Et, and . Colombo, «Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer», Remote Sensing of Environment, 2006.

N. Moise, I. Et, and . Moya, Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves:, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1657, issue.1, pp.33-46, 2004.
DOI : 10.1016/j.bbabio.2004.04.001

URL : http://doi.org/10.1016/j.bbabio.2004.04.003

N. Moise, I. Et, and . Moya, Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1657, issue.1, pp.47-60, 2004.
DOI : 10.1016/j.bbabio.2004.04.003

URL : http://doi.org/10.1016/j.bbabio.2004.04.003

I. Moya, L. Camenen, S. Evain, Y. Goulas, Z. Cerovic et al., «A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence», pp.186-197, 2004.

I. Moya, L. Camenen, G. Latouche, C. Mauxion, S. Evain et al., «An instrument for the measurement of sunlight excited plant fluorescence», Photosynthesis: mechanisms and effects, pp.4265-4270, 1998.

I. Moya, Y. Goulas, G. Guyot, B. Bertolini, and G. Schmuck, «Control of the physiological state of vegetation cover by remote sensing of fluorescent emission in the blue and red visible spectrum regions (contrôle de l'état physiologique des couverts végétaux par télédétection des émissions de fluorescence dans les régions bleue et rouge du spectre visible), ESA, Physical Measurements and Signatures in Remote Sensing, p.31, 1991.

I. Moya, H. Loayza, and M. D. González, «A simple micro-lidar for vegetation monitoring», 2016.

I. Moya, A. Ounis, N. Moise, and Y. Goulas, «First airborne multiwavelength passive chlorophyll fluorescence measurements over La Mancha (Spain) fields», Second recent advances in quantitative remote sensing, pp.820-825, 2006.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.285-296, 1975.
DOI : 10.1109/TSMC.1979.4310076

A. Ounis, S. Evain, J. Flexas, S. Tosti, and I. Moya, «Adaptation of a PAM-fluorometer for remote sensing of chlorophyll fluorescence», Photosynthesis Research, vol.68, issue.2, pp.113-120, 2001.
DOI : 10.1023/A:1011843131298

G. C. Papageorgiou and . Et-govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis, p.67, 2004.
DOI : 10.1007/978-1-4020-3218-9

R. Pedrós, Y. Goulas, S. Jacquemoud, J. Louis, and I. Moya, FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model, Remote Sensing of Environment, vol.114, issue.1, pp.155-167, 2010.
DOI : 10.1016/j.rse.2009.08.019

E. Pfündel, «Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence», Photosynthesis Research, vol.56, issue.19, pp.1006032804606-185, 1023.

F. Pinto, A. Damm, A. Schickling, C. Panigada, S. Cogliati et al., 2016, «Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies», Plant, Cell & Environment, vol.39, issue.7

J. Plascyk, The MK II Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescence, Optical Engineering, vol.14, issue.4, pp.339-346, 1975.
DOI : 10.1117/12.7971842

J. A. Plascyk and F. C. Gabriel, The Fraunhofer Line Discriminator MKII-An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement, IEEE Transactions on Instrumentation and Measurement, vol.24, issue.4, pp.306-313, 1975.
DOI : 10.1109/TIM.1975.4314448

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne et al., CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands, Biogeosciences, vol.6, issue.7, pp.1181-1198, 2009.
DOI : 10.5194/bg-6-1181-2009

A. Rosema, J. F. Snel, H. Zahn, W. F. Buurmeijer, and L. W. Van-hove, The Relation between Laser-Induced Chlorophyll Fluorescence and Photosynthesis, Remote Sensing of Environment, vol.65, issue.2, pp.143-154, 1998.
DOI : 10.1016/S0034-4257(98)00020-0

A. Rosema, W. Verhoef, J. Schroote, and J. F. Snel, Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements, Remote Sensing of Environment, vol.37, issue.2, pp.10-1016, 1991.
DOI : 10.1016/0034-4257(91)90023-Y

M. Rossini, M. Meroni, M. Migliavacca, G. Manca, S. Cogliati et al., High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field, Agricultural and Forest Meteorology, vol.150, issue.9, pp.1283-1296, 2010.
DOI : 10.1016/j.agrformet.2010.05.011

D. U. Schreiber, D. W. Et, P. D. Bilger-Édité-par, H. Behnke, P. D. Lüttge et al., «Progress in Chlorophyll Fluorescence Research: Major Developments During the Past Years in Retrospect», dans Progress in Botany, 54 dans Progress in Botany/Fortschritte der Botanik, pp.151-173978, 1007.

U. Schreiber, J. Par, A. J. Amesz, H. J. Hoff, S. Gorkum et al., «Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer», dans Current topics in photosynthesis, édité, pp.259-270, 1986.

U. Schreiber, U. Schliwa, and W. Bilger, Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynthesis Research, vol.724, issue.1-2, pp.1-2, 1986.
DOI : 10.1007/BF00024185

K. Stamnes, S. Tsay, W. Wiscombe, and K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Applied Optics, vol.27, issue.12, pp.12-2502, 1988.
DOI : 10.1364/AO.27.002502

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. K. Allen et al., Climate change 2013: The physical science basis, p.15, 2014.

W. Verhoef, «Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model», Remote sensing of environment, pp.125-141, 1984.

W. Verhoef, «Extension of SAIL to model solar-induced canopy fluorescence spectra», Canada: Montreal, vol.68, p.70, 2004.

N. Vilfan, C. Van-der-tol, O. Muller, U. Rascher, and W. Verhoef, Fluspect-B: A model for leaf fluorescence, reflectance and transmittance??spectra, Remote Sensing of Environment, vol.186, p.72, 2016.
DOI : 10.1016/j.rse.2016.09.017

W. Wang, Z. Li, and H. Su, Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage, Agricultural and Forest Meteorology, vol.143, issue.1-2, 2007.
DOI : 10.1016/j.agrformet.2006.12.003

R. Watson, T. Hessin, R. Bigelow, and W. Hemphill, «Prediction of the Fraunhofer line detectivity of luminescent materials(crude and refined oils, effluents and vegetation), dans International Symposium on Remote Sensing of Environment, 9 th, pp.1959-1980, 1974.

P. Zarco-tejada, J. Berni, L. Suárez, G. Sepulcre-cantó, F. Morales et al., Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection, Remote Sensing of Environment, vol.113, issue.6, p.52, 2009.
DOI : 10.1016/j.rse.2009.02.016

P. J. Zarco-tejada, M. V. González-dugo, and E. Fereres, 2016, «Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture», Remote Sensing of Environment, vol.179