D. W. Johnson and S. E. Lindberg, Atmospheric deposition and forest nutrient cycling. A synthesis of the Integrated Forest Study, 1992.

R. A. Susott, Characterization of the thermal properties of forest fuels by combustible gas analysis, Forest Science, vol.28, issue.2, pp.404-420, 1982.

N. Yamazoe and T. Seiyama, Sensing mechanism of oxide semiconductor gas sensors

K. I. Lundstrom, M. S. Shivaraman, C. M. Svensson, and L. Lundkvist, A hydrogen???sensitive MOS field???effect transistor, Applied Physics Letters, vol.26, issue.2, pp.55-57, 1975.
DOI : 10.1063/1.88053

G. Lu and N. Miura, Noboru Yamazoe, High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode, Sensors and Actuators B, pp.35-36, 1996.

I. Lundstom, S. Shivaraman, L. Stiblert, and C. Svenson, Hydrogen in Smoke detected by the palladium-gat-field-effect transistor, Rev.Sci.Instrum, pp.47-738, 1976.

K. S. Novoselov, A. K. Gim, S. V. Morozov, D. Jian, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

M. Pumera, A. Ambrosi, A. Bonanni, E. L. Chang, and H. L. Poh, Graphene for electrochemical sensing and biosensing, TrAC Trends in Analytical Chemistry, vol.29, issue.9, pp.954-965, 2010.
DOI : 10.1016/j.trac.2010.05.011

Y. H. Wu, T. Yu, and Z. , Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications, Journal of Applied Physics, vol.108, issue.7, pp.71301-0713039, 2010.
DOI : 10.1063/1.3460809

C. Soldano, A. Mahmood, and E. , Production, properties and potential of graphene, Carbon, vol.48, issue.8, pp.2127-2150, 2010.
DOI : 10.1016/j.carbon.2010.01.058

E. Massera, V. L. Ferrara, M. Miglietta, T. Polichetti, I. Nasti et al., Gas sensors based on graphene, Chemistry Today, pp.29-39, 2010.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje et al., Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chemical Physics Letters, vol.467, issue.4-6, pp.344-347, 2009.
DOI : 10.1016/j.cplett.2008.11.039

H. W. Kroto, J. R. Heath, S. C. O-"-brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, pp.162-163, 1985.
DOI : 10.1038/318162a0

S. Iijima and . Helical, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, p.16602, 2008.
DOI : 10.1103/PhysRevLett.100.016602

J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16, pp.163513-163516, 2007.
DOI : 10.1063/1.2789673

J. Wang, C. Chen, and Y. Kawazoe, New carbon allotropes with helical chains of complementary chirality connected by ethane-type ? conjugation, Sci.Rep, vol.3, p.3077, 2013.

F. Jean-noel and G. M. Oliver, Introduction to the Physical Properties of Graphene, 2008.

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-192, 2007.
DOI : 10.1142/9789814287005_0002

M. F. Cranciun, S. Russo, M. Yamamoto, and S. Tarucha, Tuneable electronic properties in graphene, Nano Today, vol.6, issue.1, pp.42-60, 2011.
DOI : 10.1016/j.nantod.2010.12.001

C. Daniela, V. D. Marcano, J. M. Kosynkin, J. M. Berlin, A. Sinitskii et al., Improved synthesis of graphene oxide, ACS Nano, vol.4, pp.4806-4814, 2010.

S. De and J. N. Coleman, Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?, ACS Nano, vol.4, issue.5, pp.2713-2720, 2010.
DOI : 10.1021/nn100343f

D. S. Hecht, L. Hu, and G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, vol.23

A. B. Kuzmenko, E. Van-heumen, F. Carbone, and D. Van-der-marel, Universal Optical Conductance of Graphite, Physical Review Letters, vol.100, issue.11, p.117401, 2008.
DOI : 10.1103/PhysRevLett.100.117401

A. Kumar and C. Zhou, The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?, ACS Nano, vol.4, issue.1, pp.11-14, 2010.
DOI : 10.1021/nn901903b

X. Yan, X. Cui, B. Li, and L. Li, Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics, Nano Letters, vol.10, issue.5, pp.1869-1873, 2010.
DOI : 10.1021/nl101060h

B. H. Hong and G. Y. Yeom, Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell, Applied Physics Letters, vol.97, pp.32113-32116, 2010.

Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan et al., Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting, Carbon, vol.48, issue.11, pp.3308-3311, 2010.
DOI : 10.1016/j.carbon.2010.05.017

M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Recent development of carbon materials for Li ion batteries, Carbon, vol.38, issue.2, p.183, 2000.
DOI : 10.1016/S0008-6223(99)00141-4

J. S. Gnanaraj, M. D. Levi, E. Levi, G. Salitra, D. Aurbach et al., Comparison Between the Electrochemical Behavior of Disordered Carbons and Graphite Electrodes in Connection with Their Structure, Journal of The Electrochemical Society, vol.148, issue.6, pp.525-536, 2001.
DOI : 10.1149/1.1368096

Y. P. Wu, C. Jiang, C. Wan, and R. Holze, Anode materials for lithium ion batteries by oxidative treatment of common natural graphite, Solid State Ionics, p.283, 2003.

E. Frackowiak and F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, vol.40, issue.10, p.1775, 2002.
DOI : 10.1016/S0008-6223(02)00045-3

E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, vol.37, issue.1, p.61, 1999.
DOI : 10.1016/S0008-6223(98)00187-0

S. H. Ng, J. Wang, Z. P. Guo, J. Chen, G. X. Wang et al., Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochimica Acta, vol.51, issue.1, pp.51-74, 2005.
DOI : 10.1016/j.electacta.2005.04.045

C. Wang, D. Li, C. O. Too, and G. G. Wallace, Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries, Chemistry of Materials, vol.21, issue.13, pp.2604-2606, 2009.
DOI : 10.1021/cm900764n

J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, and B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Physical Chemistry Chemical Physics, vol.12, issue.1
DOI : 10.1039/c1cp21915d

H. J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon et al., Multilayer Graphynes for Lithium Ion Battery Anode, The Journal of Physical Chemistry C, vol.117, issue.14, pp.6919-6923, 2013.
DOI : 10.1021/jp3105198

D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang et al., Li Storage Properties of Disordered Graphene Nanosheets, Chemistry of Materials, vol.21, issue.14, pp.3136-3142, 2009.
DOI : 10.1021/cm900395k

Y. Liu, V. I. Artyukhov, M. Liu, A. R. Harutyuntan, and B. I. Yakobson, Feasibility of Lithium Storage on Graphene and Its Derivatives, The Journal of Physical Chemistry Letters, vol.4, issue.10, pp.1737-1742, 2013.
DOI : 10.1021/jz400491b

B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, vol.113, issue.20, pp.638-654, 2009.
DOI : 10.1039/b904116h

K. S. Novoselov, A roadmap for graphene, Nature, vol.335, issue.7419, pp.490192-200, 2012.
DOI : 10.1038/nature11458

F. H. Koppens, T. Mueller, . Ph, A. C. Avouris, M. S. Ferrari et al., Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nature Nanotechnology, vol.4, issue.10, 2014.
DOI : 10.1038/nphoton.2007.3

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. &spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene, Applied Physics Letters, vol.92, issue.4, p.42116, 2008.
DOI : 10.1063/1.2837539

D. Brida, Ultrafast collinear scattering and carrier multiplication in graphene, Nature Communications, vol.71
DOI : 10.1038/ncomms2987

J. M. Dawlaty, Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible, Applied Physics Letters, vol.93, issue.13, p.131905, 2008.
DOI : 10.1063/1.2990753

R. R. Nair, Fine structure consistant defines visual transparency of graphene

A. B. Kuzmenko, E. Van-heumen, F. Carbone, and D. Van-der-marel, Universal Optical Conductance of Graphite, Physical Review Letters, vol.100, issue.11, p.117401, 2008.
DOI : 10.1103/PhysRevLett.100.117401

Z. Q. Li, Dirac charge dynamics in graphene by infrared spectroscopy, Nature Physics, vol.4, issue.7, pp.532-535, 2008.
DOI : 10.1103/PhysRevLett.99.016803

F. Wang, Gate-Variable Optical Transitions in Graphene, Science, vol.320, issue.5873, pp.206-209, 2008.
DOI : 10.1126/science.1152793

I. Meric, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, vol.97, issue.11, pp.654-659, 2008.
DOI : 10.1038/nnano.2008.268

F. Xia, Ultrafast graphene photodetector, Nat Nano, issue.412, pp.839-843, 2009.
DOI : 10.1038/nnano.2009.292

URL : http://arxiv.org/abs/0912.4794

F. Xia, Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor, Nano Letters, vol.9, issue.3, pp.1039-1044, 2009.
DOI : 10.1021/nl8033812

T. Mueller, F. Xia, and P. Avouris, Graphene photodetectors for high-speed optical communications, Nature Photonics, vol.10, issue.5, pp.297-301, 2010.
DOI : 10.1038/nphoton.2010.40

M. Liu, A graphene-based broadband optical modulator, Nature, vol.327, issue.7349, pp.47464-67, 2011.
DOI : 10.1038/nature10067

B. Sensale-rodrigues, Unique prospects for graphene-based terahertz modulators, Applied Physics Letters, vol.99, issue.11
DOI : 10.1063/1.3636435

Q. Bao, Broadband graphene polarizer, Nature Photonics, vol.5, issue.7, pp.411-415, 2011.
DOI : 10.1038/nprot.2009.240

I. Crassee, Giant Faraday rotation in single- and multilayer graphene, Nature Physics, vol.41, issue.1, pp.48-51, 2011.
DOI : 10.1103/PhysRevLett.104.256802

E. A. De-souza, Wavelength-division multiplexing with femtosecond pulses, Optics Letters, vol.20, issue.10
DOI : 10.1364/OL.20.001166

B. R. Koch, Mode locked and distributed feedback silicon evanescent lasers, Laser & Photonics Review, vol.14, issue.7, pp.355-369, 2009.
DOI : 10.1002/lpor.200810033

F. Schedin, Detection of individual gas molecules adsorbed on graphene, Nature Materials, vol.88, issue.9, pp.652-655, 2007.
DOI : 10.1038/nmat1967

P. Dutta and P. M. Horn, noise, Reviews of Modern Physics, vol.53, issue.3, pp.497-516, 1981.
DOI : 10.1103/RevModPhys.53.497

URL : https://hal.archives-ouvertes.fr/in2p3-00446076

E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, vol.324, pp.1312-1314, 2009.

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-578, 2010.
DOI : 10.1038/nnano.2010.132

V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain et al., All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide, Angewandte Chemie International Edition, vol.23, issue.12, pp.2154-2157, 2010.
DOI : 10.1002/anie.200905089

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced Graphene Oxide Molecular Sensors, Nano Letters, vol.8, issue.10, pp.3137-3140, 2008.
DOI : 10.1021/nl8013007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.567.8356

I. Eisele, T. Doll, and M. Burgmair, Low power gas detection with FET sensors, Sensors and Actuators B: Chemical, vol.78, issue.1-3, pp.19-25, 2011.
DOI : 10.1016/S0925-4005(01)00786-9

M. Qazi, T. Vogt, and G. Koley, Trace gas detection using nanostructured graphite layers, Applied Physics Letters, vol.91, issue.23, pp.233101-233103, 2007.
DOI : 10.1063/1.2820387

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje et al., Graphene-like nano-sheets for surface acoustic wave gas sensor applications, Chemical Physics Letters, vol.467, issue.4-6, pp.344-347, 2009.
DOI : 10.1016/j.cplett.2008.11.039

Y. Yao, X. Chen, H. Guo, and Z. Wu, Graphene oxide thin film coated quartz crystal microbalance for humidity detection, Applied Surface Science, vol.257, issue.17, pp.7778-7782, 2011.
DOI : 10.1016/j.apsusc.2011.04.028

J. D. Fowler, M. J>allen, V. C. Tung, Y. Yang, R. B. Kaner et al., Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, vol.3, issue.2, pp.301-306, 2009.
DOI : 10.1021/nn800593m

J. Yi, J. M. Lee, and W. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors, Sensors and Actuators B: Chemical, vol.155, issue.1, pp.264-269, 2011.
DOI : 10.1016/j.snb.2010.12.033

G. Singh, A. Choudhary, D. Haranath, A. G. Joshi, N. Singh et al., ZnO decorated luminescent graphene as a potential gas sensor at room temperature, Carbon, vol.50, issue.2, pp.385-394
DOI : 10.1016/j.carbon.2011.08.050

S. J. Sun and C. Y. Lin, Hybrid-graphene gas sensor ???Model simulation, EPL (Europhysics Letters), vol.96, issue.1, pp.10002-10006, 2012.
DOI : 10.1209/0295-5075/96/10002

T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo et al., Solution-processed ZnO-chemically converted graphene gas sensor, Materials Letters, vol.64, issue.22, pp.2479-2482, 2010.
DOI : 10.1016/j.matlet.2010.08.027

X. L. Wei, Y. P. Chen, W. L. Liu, and J. X. Zhong, Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons, Physics Letters A, vol.376, issue.4, pp.559-562, 2012.
DOI : 10.1016/j.physleta.2011.10.055

F. Niu, J. M. Liu, L. M. Tao, W. Wang, and W. G. Song, Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing, Journal of Materials Chemistry A, vol.3, issue.20, pp.6130-6133, 2013.
DOI : 10.1039/c3ta11070b

E. W. Hill, A. Vijayaragahvan, and K. Novoselov, Graphene Sensors, IEEE Sensors Journal, vol.11, issue.12, pp.3161-3170, 2011.
DOI : 10.1109/JSEN.2011.2167608

M. Pumera, A. Ambrosi, A. Bonanni, E. L. Chang, and H. L. Pho, Graphene for electrochemical sensing and biosensing, TrAC Trends in Analytical Chemistry, vol.29, issue.9, pp.954-965, 2010.
DOI : 10.1016/j.trac.2010.05.011

B. Lang, A LEED study of the deposition of carbon on platinum crystal surfaces, Surface Science, vol.53, issue.1, pp.317-321, 1975.
DOI : 10.1016/0039-6028(75)90132-6

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nature Physics, vol.93, issue.1, p.36, 2007.
DOI : 10.1088/0953-8984/3/S/016

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber et al., N-Doping of Graphene Through Electrothermal Reactions with Ammonia, Science, vol.324, issue.5928, p.768, 2009.
DOI : 10.1126/science.1170335

P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco et al., Organic functionalisation and characterisation of single-walled carbon nanotubes, Chemical Society Reviews, vol.17, issue.8, pp.2214-2230, 2009.
DOI : 10.1039/b518111a

URL : https://hal.archives-ouvertes.fr/hal-00431810

S. F. Hou, M. L. Kasner, S. J. Su, K. Patel, and R. Cuellari, Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene, The Journal of Physical Chemistry C, vol.114, issue.35, pp.14915-14921, 2010.
DOI : 10.1021/jp1020593

H. Jaegfeldt, T. Kuwana, and G. Johansson, Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide, Journal of the American Chemical Society, vol.105, issue.7, p.1805, 1983.
DOI : 10.1021/ja00345a021

Y. Xu, H. Bai, G. Lu, C. Li, and G. Q. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, Journal of the American Chemical Society, vol.130, issue.18, p.5856, 2008.
DOI : 10.1021/ja800745y

Y. L. Zhao and J. F. Stoddart, Noncovalent Functionalization of Single-Walled Carbon Nanotubes, Accounts of Chemical Research, vol.42, issue.8, pp.1161-1171, 2009.
DOI : 10.1021/ar900056z

P. V. Kamat, Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles, The Journal of Physical Chemistry B, vol.106, issue.32, p.7729, 2002.
DOI : 10.1021/jp0209289

M. C. Daniel and D. Astruc, Gold Nanoparticles:?? Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, vol.104, issue.1, p.293, 2004.
DOI : 10.1021/cr030698+

Q. Zhang, J. Xie, J. Yang, and J. Lee, Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation, ACS Nano, vol.3, issue.1, p.139, 2009.
DOI : 10.1021/nn800531q

Z. Luo, L. Somers, Y. Dan, T. Ly, N. Kybert et al., Size-Selective Nanoparticle Growth on Few-Layer Graphene Films, Nano Letters, vol.10, issue.3, p.777, 2010.
DOI : 10.1021/nl9026605

X. Z. Zhou, X. Huang, X. Y. Qi, S. X. Wu, C. Xue et al., In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces, The Journal of Physical Chemistry C, vol.113, issue.25, pp.10842-10846, 2009.
DOI : 10.1021/jp903821n

S. Mao, G. H. Lu, K. H. Yu, Z. Bo, and J. H. Chen, Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle-Antibody Conjugates, Advanced Materials, vol.94, issue.32, pp.3521-3526, 2010.
DOI : 10.1002/adma.201000520

C. S. Lee, C. S. Costel, W. Moujahid, B. Lebental, M. Chaigneau et al., Syntehsis of conducting transparent few-layer graphene directly on glass at 450 C, Nanotechnolgoy, pp.23-265603, 2012.

K. S. Novoselov, A. K. Gaim, S. V. Morozov, D. Jian, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

K. Novoselov and A. Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Physica Scripta, vol.146, pp.146-014006, 2012.
DOI : 10.1088/0031-8949/2012/T146/014006

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, Insulator to semi-metal transition in graphene oxide, Journal of Physical Chemistry C, vol.133, pp.15768-15771, 2009.

M. Lotya, Y. Hernadez, P. J. King, R. J. Smith, L. S. Nicolosi et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, Journal of the American Chemical Society, vol.131, issue.10, pp.3611-3620, 2009.
DOI : 10.1021/ja807449u

C. Nethravathi and M. Rjamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, vol.46, issue.14, 1994.
DOI : 10.1016/j.carbon.2008.08.013

V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker et al., Graphene based materials: Past, present and future, Progress in Materials Science, vol.56, issue.8, pp.1178-1271, 2011.
DOI : 10.1016/j.pmatsci.2011.03.003

C. Qin, Production of Graphene by Liquid-Phase Exfoliation of Intercalted Graphite

J. Hass, W. A. De-heer, and E. H. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics: Condensed Matter, vol.20, issue.32, 2008.
DOI : 10.1088/0953-8984/20/32/323202

A. Mattausch and O. Pankratov, Ab initio study of graphene on SiC, Phys. Rev. Lett, pp.99-076802, 2007.

W. Norimatsu and M. Kusunoki, Epitaxial graphene on SiC{0001}: advances and perspectives, Physical Chemistry Chemical Physics, vol.5, issue.8, pp.3501-3511, 2014.
DOI : 10.1039/c3cp54523g

J. Kedzierski, P. L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast et al., Epitaxial Graphene Transistors on SiC Substrates, Epitaxial graphene transistors on SiC substrates, pp.2078-2085, 2008.
DOI : 10.1109/TED.2008.926593

J. Wintterlin and M. L. Bocquet, Graphene on metal surfaces, Surface Science, vol.603, issue.10-12, pp.1841-1852, 2009.
DOI : 10.1016/j.susc.2008.08.037

R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.325, pp.1312-1314, 2009.

C. Mattevi, H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem., vol.466, issue.10, pp.3324-3334, 2011.
DOI : 10.1039/C0JM02126A

Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, vol.93, issue.11, pp.113103-113106, 2008.
DOI : 10.1063/1.2982585

G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li et al., Graphene sheets via microwave chemical vapor deposition, Chemical Physics Letters, vol.467, issue.4-6, pp.361-364, 2009.
DOI : 10.1016/j.cplett.2008.11.059

J. L. Qia, W. T. Zheng, X. H. Zheng, X. Wang, and H. W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition, Applied Surface Science, vol.257, issue.15, pp.6531-6534, 2011.
DOI : 10.1016/j.apsusc.2011.02.069

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim et al., Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD, Carbon, vol.93, pp.93-393, 2015.
DOI : 10.1016/j.carbon.2015.05.035

Y. Han, L. Zhang, X. Zhang, K. Ruan, L. Cui et al., Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications, J. Mater. Chem. C, vol.12, issue.1
DOI : 10.1002/adma.201301603

R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Lett, vol.9, issue.12, 2009.

Y. Lin, C. Jin, J. Lee, S. Jen, K. Suenaga et al., Clean Transfer of Graphene for Isolation and Suspension, ACS Nano, vol.5, issue.3, pp.2362-2368, 2011.
DOI : 10.1021/nn200105j

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker et al., Toward Clean and Crackless Transfer of Graphene, ACS Nano, vol.5, issue.11, pp.9144-9153, 2011.
DOI : 10.1021/nn203377t

H. Seiler, Secondary electron emission in the scanning electron microscope, Journal of Applied Physics, vol.54, issue.11, pp.1-18, 1983.
DOI : 10.1063/1.332840

M. Park, T. Kim, and C. Yang, Thickness contrast of few-layered graphene in SEM, Surface and Interface Analysis, vol.124, issue.2, 2012.
DOI : 10.1002/sia.4995

V. Kochat, A. N. Pal, E. S. Sneha, A. Sampathkumar, A. Gairola et al., High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy, Journal of Applied Physics, vol.110, issue.1, pp.14315-14320, 2011.
DOI : 10.1063/1.3608062

L. Dong, R. Reddy-sanganna, Z. Gari, M. M. Li, S. Craig et al., Graphene-supported platinum and platinum???ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, vol.48, issue.3, pp.48-781, 2010.
DOI : 10.1016/j.carbon.2009.10.027

A. A. Grigorieva and . Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, pp.666-669, 2004.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.14095-14107, 2000.
DOI : 10.1103/PhysRevB.61.14095

A. C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, vol.64, issue.7, p.75414, 2001.
DOI : 10.1103/PhysRevB.64.075414

R. P. Vidano, D. B. Fischbach, O. Shifting, W. Excitation, . For et al., Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Communications, vol.39, issue.2, pp.341-344, 1981.
DOI : 10.1016/0038-1098(81)90686-4

F. Tuinstra and J. Kenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, p.1126, 1970.
DOI : 10.1063/1.1674108

R. J. Nemanich and S. A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Physical Review B, vol.20, issue.2, p.392, 1979.
DOI : 10.1103/PhysRevB.20.392

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

C. Andrea, D. M. Ferrari, and . Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology, p.8, 2013.

F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat Mater, vol.6, pp.198-201, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00135075

. Dasa, . Pisanas, . Chakrabortyb, . Piscanecs, S. K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.77, issue.4, pp.210-215, 2008.
DOI : 10.1038/nnano.2008.67

F. Reinert and S. Hufner, Photoemission spectroscopy???from early days to recent applications, New Journal of Physics, vol.7, p.97, 2005.
DOI : 10.1088/1367-2630/7/1/097

D. W. Turner, C. Baker, A. D. Brundle, C. R. Molecular-photoelectron, and . Spectroscopy, Molecular Photoelectron Spectroscopy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.268, issue.1184, pp.7-31, 1970.
DOI : 10.1098/rsta.1970.0059

D. W. Turner and M. I. Jobory, Determination of Ionization Potentials by Photoelectron Energy Measurement, The Journal of Chemical Physics, vol.37, issue.12, pp.3007-3015, 1962.
DOI : 10.1063/1.1733134

C. Nordling, E. Sokolowski, and K. Siegbahn, Precision Method for Obtaining Absolute Values of Atomic Binding Energies, Physical Review, vol.105, issue.5, pp.1676-1683, 1957.
DOI : 10.1103/PhysRev.105.1676

A. D. Baker and D. Betteridge, Photoelectron Spectroscopy. Chemical and Analytical Aspects, 1972.

W. Spieer, Photoemissive, photoconductive, and optical absorption studies of alkaliantimony compounds, Phys. Rev, vol.112, p.114, 1958.

D. Briggs, P. Martin, and . Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 1983.

L. E. Davis, Modern Surface Analysis: Metallurgical Applications of Auger Electron Spectroscopy (AES) and X-ray Photoelectron Spectroscopy (XPS), Warrendale: The Metallurgical Society of AIME, 1980.

L. C. Feldman, W. James, and . Mayer, Fundamentals of Surface and Thin Film Analysis, Upper Saddle River, 1986.

.. Prepared-graphene, PECVD interfacial graphene growth (LPICM), p.68

C. S. Lee, C. S. Costel, W. Moujahid, B. Lebental, M. Chaigneau et al., Syntehsis of conducting transparent few-layer graphene directly on glass at 450 C, Nanotechnolgoy, pp.23-265603, 2012.

D. Pierucci, H. Sediri, M. Hajlaoui, E. Velez-fort, Y. Dappe et al., Self-organized Metal-Semi-Conductor Epitaxial graphene layer on Off-axis 4H-SiC, Nano Research, issue.0001, 2104.
DOI : 10.1007/s12274-014-0584-y

R. Piner, A. Valamakanni, I. Jung, E. Tutuc, S. K. Banerjee et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, pp.1312-1314, 2009.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Li et, Nano Lett, issue.912, pp.4359-4363, 2009.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker et al., Toward Clean and Crackless Transfer of Graphene, ACS Nano, vol.5, issue.11, pp.9144-9153, 2011.
DOI : 10.1021/nn203377t

Y. Lin, C. Jin, J. Lee, S. Jen, K. Suenaga et al., Clean Transfer of Graphene for Isolation and Suspension, ACS Nano, vol.5, issue.3, pp.2362-2368, 2011.
DOI : 10.1021/nn200105j

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker et al., Toward Clean and Crackless Transfer of Graphene, ACS Nano, vol.5, issue.11, pp.9144-9153, 2011.
DOI : 10.1021/nn203377t

K. S. Novoselov, Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666, 2004.
DOI : 10.1126/science.1102896

K. S. Novoselov, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, issue.30, p.10451, 2005.
DOI : 10.1073/pnas.0502848102

D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

M. Gautam and A. H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition, Materials Science and Engineering: C, vol.31, issue.7, pp.31-1405, 2011.
DOI : 10.1016/j.msec.2011.05.008

H. Xu, Y. Chen, J. Zhang, and H. Zhang, Investigating the Mechanism of Hysterisis Effect in Graphene Electrical Field Device Fabricated on SiO 2 Substrates using Raman Spectroscopy, pp.2833-2840, 2012.

K. V. Klitzing and J. H. Smet, Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions, Nano Lett, vol.10, pp.1149-1153, 2010.

K. V. Timm-lohmann, J. H. Klitzing, and . Smet, Four-Terminal Magneto-Transport in Graphene p-n Junctions Created by Spatially Selective Doping, Nano Letters, vol.9, issue.5, 1973.
DOI : 10.1021/nl900203n

J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16
DOI : 10.1063/1.2789673

J. Moser, A. Verdaguer, D. Jimenez, A. Barreiro, and A. Bachtold, The environment of graphene probed by electrostatic force microscopy, Applied Physics Letters, vol.92, issue.12, p.123507, 2008.
DOI : 10.1063/1.2898501

A. Berholts, T. Kahro, A. Floren, H. Alles, and R. Jaaniso, Photo-activated oxygen sensitivity of graphene at room temperature, Applied Physics Letters, vol.105, issue.16, p.163111, 2014.
DOI : 10.1063/1.4899276

S. Cengiz and . Ozkan, Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers, Nanotechnology, vol.22, p.355701, 2011.

G. Chen, T. M. Paronyan, and A. R. Harutyunyan, Sub-ppt gas detection with pristine graphene, Applied Physics Letters, vol.101, issue.5, p.53119, 2012.
DOI : 10.1063/1.4742327

D. Pribat and Y. H. Lee, Negative and Positive Persistent Photoconductance in Graphene, Nano Lett, vol.11, pp.4682-4687, 2011.

A. Siokou, F. Ravani, S. Karakalos, O. Frank, M. Kalbac et al., Surface refinement and electronic properties of graphene layers grown on copper substrate: An XPS, UPS and EELS study, Applied Surface Science, vol.257, issue.23, pp.9785-9790, 2011.
DOI : 10.1016/j.apsusc.2011.06.017

A. Politano, A. R. Marino, and G. Chiarello, Effects of a humid environment on the sheet plasmon resonance in epitaxial graphene, Physical Review B, vol.86, issue.8, p.85420, 2012.
DOI : 10.1103/PhysRevB.86.085420

U. Bangert, C. T. Pan, R. R. Nair, and M. H. Gass, Structure of hydrogen-dosed graphene deduced from low electron energy loss characteristics and density functional calculations, Applied Physics Letters, vol.97, issue.25, p.253118, 2010.
DOI : 10.1063/1.3526373

Z. Luo, J. Shang, S. Lim, D. Li, Q. Xiong et al., Modulating the electronic structures of graphene by controllable hydrogenation, Applied Physics Letters, vol.97, issue.23, p.233111, 2010.
DOI : 10.1063/1.3524217

J. H. Kang, Y. Park, K. B. Ko, H. Y. Kim, H. K. Kim et al., Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern, Nature communications, vol.4, pp.41452-41462, 1038.

V. Datsyk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis et al., Chemical oxidation of multiwalled carbon nanotubes, Carbon, vol.46, issue.6, 2008.
DOI : 10.1016/j.carbon.2008.02.012

D. Chen, T. Zhang, and H. Sun, Two-beam-laser interference mediated reduction, pattering and nanostructureing of graphene oxide for the production of a flexible humidity sensing device, Carbon, vol.50, pp.1667-1673, 2012.

O. Leenaerts, B. Partoens, and F. M. Peeters, Water on graphene: Hydrophobicity and dipole moment using density functional theory, Physical Review B, vol.79, issue.23, 2009.
DOI : 10.1103/PhysRevB.79.235440

K. Alexandrou and F. Farmakis, Alexandros Arapis, and Nikolaos Georgoulas, Yufeng Hao and James Hone, Ioannis Kymissis, Effect of vacuum thermal annealing to encapsulated graphene field effect transistors, J.Vac.Sci,Technol.B, vol.34, issue.4

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj et al., Probing Charge Transfer at Surfaces Using Graphene Transistors, Nano Letters, vol.11, issue.1, pp.11-132, 2011.
DOI : 10.1021/nl103015w

Q. Hua-wang1, &. Mark, and C. Hersam, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat.Chem, 0206.

Y. Si and E. T. Samulski, Synthesis of Water Soluble Graphene, Nano Letters, vol.8, issue.6, p.1679, 2008.
DOI : 10.1021/nl080604h

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nature Physics, vol.93, issue.1, pp.36-40, 2007.
DOI : 10.1088/0953-8984/3/S/016

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber et al., N-Doping of Graphene Through Electrothermal Reactions with Ammonia, Doping of Graphene Through Electrothermal Reactions with Ammonia, p.768, 2009.
DOI : 10.1126/science.1170335

A. Dimiev, B. K. Price, &. James, and M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, vol.458, issue.872, 2009.

P. Kian, Q. Loh, P. K. Bao, J. Ang, and . Yang, The chemistry of graphene, J.Mater.Chem, 2010.

Y. Huang, X. Dong, Y. Shi, C. M. Li, L. Li et al., Nanoelectronic biosensors based on CVD grown graphene, Nanoscale, vol.48, issue.8, pp.1485-1488, 2010.
DOI : 10.1002/adma.200904235

H. Jaegfeldt, T. Kuwana, and G. Johansson, Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide, Journal of the American Chemical Society, vol.105, issue.7, p.1805, 1983.
DOI : 10.1021/ja00345a021

W. Hu, Z. Dong-jin, R. Li, and J. Ma, Noncovalent modified graphene sheets with ruthenium(II) complexes used as electrochemiluminescent materials and photosensors, CARBON, vol.49, pp.4239-4245, 2011.

W. Miao, Electrogenerated Chemiluminescence and Its Biorelated Applications, Chemical Reviews, vol.108, issue.7, pp.2506-53, 2008.
DOI : 10.1021/cr068083a

D. Kim, Y. Lyu, H. Choi, I. Min, and W. Lee, Nafion-stabilized magnetic nanoparticles (Fe 3 O 4 ) for [Ru(bpy) 3 ] 2+ (bpy=bipyridine) electrogenerated chemiluminescence sensor, Chem Commun, issue.23, pp.2966-2974, 2005.

G. Meyer, Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces, Inorganic Chemistry, vol.44, issue.20, pp.6852-64, 2005.
DOI : 10.1021/ic0505908

H. Li, J. Chen, S. Han, W. Niu, X. Liu et al., Electrochemiluminescence from tris(2,2???-bipyridyl)ruthenium(II)???graphene???Nafion modified electrode, Talanta, vol.79, issue.2, pp.165-70, 2009.
DOI : 10.1016/j.talanta.2009.03.020

W. Zhang, H. Bai, Y. Zhang, Y. Sun, S. Lin et al., Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity, Materials Chemistry and Physics, vol.147, issue.3, pp.1140-1145, 2014.
DOI : 10.1016/j.matchemphys.2014.06.070

W. Hu, Z. Dong-jin, R. Li, and J. Ma, Noncovalent modified graphene sheets with ruthenium(II) complexes used as electrochemiluminescent materials and photosensors, Carbon, vol.49, pp.4239-4245, 2011.

T. Aukauloo and . Mallah, Efficient Conduction Modulation in Coordination Complex/SWCNT FET Devices Induced by Light Driven Vectorial Electron Transfer

M. Hissler, A. Harriman, A. Khatyr, and R. , Intramolecular Triplet Energy Transfer in Pyrene-Metal Polypyridine Dyads: A Strategy for Extending the Triplet Lifetime of the Metal Complex, Chemistry - A European Journal, vol.5, issue.11, p.3366, 1999.
DOI : 10.1002/(SICI)1521-3765(19991105)5:11<3366::AID-CHEM3366>3.0.CO;2-I

A. Basu, H. D. Gafney, and T. C. Strekas, Resonance Raman Spectra of Ruthenium(I1) Complexes of Bipyridine and Substituted Bipyridines: Ground-and

K. Prabal, G. D. Mallick, D. P. Danzer, J. R. Strommen, and . Kincaid, Vibrational Spectra and Normal-Coordinate Analysis of Tris(bipyridine)ruthenium(II, J

. Woodruff, Vibrational Spectroscopy of the Electronically Excited State, Time-Resolved, vol.5

M. A. Webb, F. J. Knorr, and J. L. Mchale, Resonance Raman spectrum of [Ru(bipyridine)3]2+ in water, acetonitrile and their deuterated derivatives: the possible role of solvent in excited-state charge localization, Journal of Raman Spectroscopy, vol.36, issue.6-7, pp.481-485, 2001.
DOI : 10.1002/jrs.733

P. Avouris, Z. H. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, vol.4, issue.10, p.605, 2007.
DOI : 10.1038/nature06037

Y. Shi, W. Fang, K. Zhang, W. Zhang, and L. Li, Photoelectrical Response in Single-Layer Graphene Tansistors, 2005.

A. Berholts, T. Kahro, A. Floren, H. Alles, and R. Jaaniso, Photo-activated oxygen sensitivity of graphene at room temperature, Applied Physics Letters, vol.105, issue.16, p.163111, 2014.
DOI : 10.1063/1.4899276

S. Cengiz and . Ozkan, Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers, Nanotechnology, vol.22, p.355701, 2011.

G. Chen, T. M. Paronyan, and A. R. Harutyunyan, Sub-ppt gas detection with pristine graphene, Applied Physics Letters, vol.101, issue.5, p.53119, 2012.
DOI : 10.1063/1.4742327

D. Pribat and Y. H. Lee, Negative and Positive Persistent Photoconductance in Graphene, Nano Lett, vol.11, pp.4682-4687, 2011.

X. Q. Zhang, Y. Y. Feng, S. D. Tang, and W. Feng, Preparation of a graphene oxide???phthalocyanine hybrid through strong ??????? interactions, Carbon, vol.48, issue.1, pp.211-216, 2010.
DOI : 10.1016/j.carbon.2009.09.007

M. Gautam and A. H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition, Materials Science and Engineering: C, vol.31, issue.7, pp.31-1405, 2011.
DOI : 10.1016/j.msec.2011.05.008

H. Xu, Y. Chen, J. Zhang, and H. Zhang, Investigating the Mechanism of Hysterisis Effect in Graphene Electrical Field Device Fabricated on SiO 2 Substrates using Raman Spectroscopy, pp.2833-2840, 2012.

A. Earl, K. F. Gulbransen, and . Andrew, Oxidation Studies on the Nickel-Chromium and Nickel-Chromium-Aluminum Heater Alloys, Journal of the Electrochemical Society, vol.106, issue.11, 1959.

M. R. Wootton and N. Birks, The oxidation of nickel-chromium alloys in atmospheres containing sulphur dioxide, Corrosion Science, vol.15, issue.1, pp.1-10, 1975.
DOI : 10.1016/S0010-938X(75)80024-2

W. D. Sylwestrowicz, I. Vaquila, M. C. Passeggi, J. , and J. Ferrón, Oxidation of Titanium Thin FilmsSoc:Solid-state science and technology Oxidation process in titanium thin films, J.Electrochem. Physical Review B, vol.122, issue.55 20, 1975.