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Chapter 1

Introduction

Operator Representation in Geometry Processing

A challenging issue in geometry processing is the wide range of data structures. Discrete
geometry is encoded in various ways mostly depending on the acquisition procedure
and the application domain. Raw data from a scanner are stored as noisy point-clouds;
physically-based simulation is typically done on simplicial complexes; animators and
architectural geometry practitioners traditionally work with quad meshes. However,
standard problems in geometry processing, such as shape matching, deformation transfer
and deformation analysis, should be solved regardless of the representation. Most of
the time each community provides their own solutions with respect to their native data
which often do not allow cross-data analysis. This leads to the necessity of de�ning a
framework agnostic to the underlying structure.

The basic idea of the functional representation framework, �rst introduced in [88],
is to reach for the most common denominator of geometry analysis, namely real-valued
functions. Functions have been historically used and well-studied in many contexts
providing a large literature to rely on. For example di�erential operators have been
de�ned on triangle and tetrahedral meshes (Finite Element Method [19], Discrete Exterior
Calculus [52]), polygonal surfaces [3] and point-clouds (meshfree methods based on Radial
Basis Functions or Moving Least Squares [46]) to name just a few. Moreover many of these
methods come with convergence and stability analysis. Consequently functional operators
can be implemented in many situations while studying a single continuous theory. As an
example in [34] the authors propose an algorithm to compute geodesic distances based
on the Laplace-Beltrami operator allowing them to exhibit results on radically di�erent
data structures. This �exibility is also one key of the success of spectral methods and
global descriptors such asGlobal Point Signature [105], Heat Kernel Signature [119] and
Wave Kernel Signature [5].

The baseline idea developed in this thesis is to represent standard tools for deformable
surfaces (di�eomorphisms, intrinsic distortions, tangent and extrinsic vector �elds) as
operators acting on functions, following the intuition that their discretizations have been
well-studied and are easily comparable across data structures. The starting point of the
thesis is the functional map representation for di�eomorphisms, and shape di�erences,
representing intrinsic distortions. We propose in Chapter5 a novel method, robust to
noise and large deformations, to solve shape matching problems with functional maps.
Chapters 6, 7 and 8 are providing di�erent answers to an open problem in this framework:
the conversion of operator-based representation to point-based representation. Namely,
given a functional map we propose an algorithm to convert it to a continuous vertex-to-
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vertex assignment or given shape di�erence operators we suggest solutions to �nd the
underlying deformed surfaces.

Functional Maps

The space of di�eomorphisms is challenging to handle in both continuous and discrete
settings. In the simple case of two triangle meshes, the simplest representation consists
of assigning a vertex on the �rst shape to a vertex on the second shape. However when
dealing with di�erent number of vertices this makes, for example, the computation
of its inverse di�cult. A more complete description is therefore needed. The most
straightforward answer is to consider a piecewise linear map with the possibility of
mapping vertices inside triangles. This way it is possible to compute the map and its
inverse consistently. Such a description of discrete di�eomorphism has been used in
practice [2, 1] but su�ers some drawbacks as it cannot be stored compactly and often
leads to challenging optimization problems.

In this context representing the mapping ' as the linear composition operators
f 7! f � ' provides a �exible alternative globally agnostic to change of connectivity and
easily de�ned on various types of data. Functional maps are a simpli�ed and compact
representation of correspondences as they are often computed between reduced function
bases. They can be stored as matrices and analyzed using standard linear algebra tools.
Follow-up works (e.g. [100, 101, 64, 96]) focus on computations of functional maps
between shapes with unknown correspondences by minimizing various kinds of distortion
with guiding functional constraints. However, functional constraints are often unreliable
in case of large or non-isometric deformation and do not fully describe the mapping. We
propose a supervised learning method to identify the most trustworthy set of constraints
and the part of the surface on which the functional map is accurate. Another challenge
of the operator representation is the problem of obtaining a point-to-point map from
a functional map. The current methods [88, 102] do not ensure that resulting map is
continuous and may lead to �aws in the map. To overcome this issue we restrict the
conversion to continuous maps by using an adequate representation of vector �elds as
operators.

Shape Di�erences

Representing metric distortion can be challenging when dealing with heterogeneous data.
The shape di�erence operators [106] take advantage of the functional map representation
to provide a coordinate free encoding of the metric distortion up to isometric deformation.
Those operators act linearly on functions and separate local area change and angle
modi�cation, even if those changes are noisy and not easy to de�ne directly across
di�erent data structures, function correspondences induce a notion of smoothness up to a
certain level-of-details.

Shape di�erence operators were originally presented as analysis tools since they can
be used for comparison and composition of deformations across shapes. Interestingly
the space of shape di�erences seems ��at" and well behaved. For instance in Figures7.7
and 7.9 (see also Figure 3 in [106]) a collection of surfaces, represented as a collection



3

of operators, is mapped to a low dimensional space with a simple Principal Component
Analysis. Yet the embedding accurately depicts the degrees of freedom of the deformation.
This remark along with interesting algebraic properties lead to the intuition that operators
are more convenient to describe deformations than Euclidean embeddings.

In this thesis we attempt to use the shape di�erence operators for deformation
synthesis and for exploring the space of deformable surfaces. This only prior work by
Boscaini and al. in [15] reconstructs an embedded surface from an operator representing
the intrinsic structure of the shape. However, this approach is limited as it does not
take into accounts extrinsic information. We explore di�erent ways of encoding extrinsic
curvature information as operators with theoretical guarantees of completeness.

Thesis Summary

This thesis focuses on processing deformable surfaces in the operator representation
framework. The study is split in two parts coinciding with the analysis of two types of
operators: functional maps and shape di�erences.

Shape to Deformation

The goal of this part is to �nd a mapping between two given shapes. We are in
particular interested in �nding correspondences between intrinsic structures. To make the
problem more tractable we will assume a restrictive deformation model of nearly-isometric
deformations. This question is closely related to theshape matchingproblem using only
intrinsic features.

The shape matching problem for nearly-isometric deformation has been presented
as the �rst application of the functional representation in [88] and is still the most
active research direction in this �eld. One reason of this success is the description of a
challenging problem as a least squares system. The initial formulation takes into account
the isometric distortion and some given functional correspondences often obtained from
descriptors (HKS, WKS) stable under mild deformation. However, the resulting map can
su�er artifacts due to false or noisy correspondences and misleading spectral interpolation.
Many variations have been proposed to improve the quality of the results [100, 64, 96]),
to allow partial matching [ 101] and to exploit the cycle consistency in map networks [54]

In Chapter 5 we take a slightly di�erent approach: instead of modifying the original
formulation we aspire to obtain the best results with respect to the input. The possibly
unreliable functional constraints imply that the correspondences need to be sorted and
weighted and that the resulting functional map is reliable only on a subspace of functions.
Our main contribution is a supervised learning algorithm able to compute a set of weights
jointly assessing the utility of each descriptor and identify the most accurately mapped
functions.

Once a reliable functional map is computed, another challenge is to convert it to a
classical point-to-point map used in most applications. The original article suggested a
procedure that can be described as anIterative Closest Point algorithm in the spectral
domain. Although it has been improved upon by some follow-up work [102], major issues
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remain: the existence of internal symmetries and the absence of global constraints linking
nearby points lead to discontinuities in the resulting map. In Chapter 6 we provide
a method to restrict the conversion process to continuous maps. While this problem
is challenging with standard analysis tools, it becomes much more tractable with the
operator representation. The outcome is a provably smooth conversion of a functional
map using vector �eld �ow.

Overall, the main contribution of this �rst part is a complete pipeline for shape
matching problems in the functional map framework: from the computation of reliable
maps to a �nal point-to-point correspondence.

While the �rst part is aimed at �nding similarities across near-isometric shapes,
in the second part, our goal is to quantify and manipulate di�erences in the form of
non-isometric distortion. In particular we are interested in a complete representation of
surfaces as operators.

Deformation to Shape

Shape di�erences enjoy many interesting algebraic properties. In particular they allow
the transfer, composition and addition (in special cases) of deformations. Thus, exploring
and creating new intrinsic deformation is relatively easy in this representation as it only
requires matrix manipulations. The only missing step to produce embedded surfaces is a
conversion from the functional characterization to a surface embedding. Namely, given
a base shape and shape di�erences, �nd the deformed surface. This problem is closely
related to recovering the shape from its Laplacian operator which is known to be possible
theoretically but for which very few computational methods are available. This thesis
attempts to �ll this hole with two di�erent approaches.

The �rst development in Chapter 7 starts with the remark that the discrete metric
on triangle meshes (edge length) can be recovered from shapes di�erences by solving a
set of linear equations. It follows that in the case of noisy and limited information the
metric can be recovered through two convex optimization problems. However, intrinsic
information alone is not su�cient to recover an embedded surface as multiple solutions
exist. We investigate the possibility of using o�set surfaces to encode curvatures. The
outcome is a complete characterization of triangle meshes through functional operators
allowing us to deform surfaces according to shape di�erence operators and a corresponding
continuous theory.

The second development in Chapter8 introduces a functional characterization of
extrinsic vector �elds. To do so we introduce a unique shape di�erence accountable
for all intrinsic changes. Then we consider the operator associated to an in�nitesimal
displacement. This way deformation �elds are characterized by the distortion they induce
on the metric. Interestingly they enjoy similar properties as shape di�erences (composition,
transfer) enabling signi�cantly simpler deformation reconstruction compared to the
previous method. We provide theoretical proofs of informativeness in both continuous
and discrete cases.

This thesis constitues a �rst step toward using functional representation for charac-
terization of deformable surfaces and deformation synthesis.
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Chapter 2

Introduction en français

L'une des di�cultés rencontrées dans le traitement de forme 3D est la large gamme
de structures de données. Les formes 3D et autres géométries discrètes sont codées de
diverses manières dépendant principalement de la méthode d'acquisition et du domaine
d'application. Les données brutes provenant d'un scanner sont stockées sous forme de
nuages de points souvent bruités ; les simulations physiques s'e�ectuent habituellement sur
des complexes simpliciaux ; les modeleurs 3D ainsi que la communauté de la géométrie ar-
chitecturale travaillent traditionnellement avec des maillages quadrangulaires. Cependant,
de nombreux problèmes standards liés au traitement de la géométrie, tels que la mise
en correspondance de formes, le transfert de déformations et l'analyse de déformations,
doivent être résolus indépendamment de la représentation utilisée. La plupart du temps
chaque communauté fournit ses propres solutions vis-à-vis de ses données de base qui,
souvent, ne sont pas adaptables aux autres types de représentation. Cela nous conduit à
la nécessité de dé�nir un cadre d'analyse indépendant des structures sous-jacentes.

L'idée à l'origine de la représentation fonctionnelle, d'abord introduite dans [88],
est de revenir au dénominateur commun dans l'analyse de la géométrie, à savoir les
fonctions à valeurs réelles. Les fonctions dé�nies sur la géométrie ont été historiquement
utilisées et étudiées de manière approfondie dans de nombreux contextes fournissant une
abondante littérature sur laquelle se reposer. Par exemple, les opérateurs di�érentiels ont
été dé�nis sur des maillages triangulaires et tétraédriques (Méthode des Eléments Finis
[19], Discrete Exterior Calculus [52]), sur des maillages polygonaux [3] et des nuages de
points (méthodes �sans maillage" basées sur des fonctions de base radiale ou Moving
Least Squares [46]) pour n'en citer que quelques-uns. De plus, beaucoup de ces méthodes
vont de paire avec une analyse de leur convergence et de leur stabilité. Par conséquent les
opérateurs fonctionnels peuvent être mis en ÷uvre dans de nombreuses situations tout en
se référant à une théorie unique. A titre d'exemple, dans [34] les auteurs proposent un
algorithme pour calculer les distances géodésiques grâce à l'opérateur de Laplace-Beltrami.
Ils obtiennent ainsi des résultats sur des structures de données radicalement di�érentes.
Cette �exibilité est également l'une des clés du succès des méthodes spectrales et des
descripteurs globaux tels queGlobal Point Signature [105], Heat Kernel Signature [119]
et Wave Kernel Signature [5].

L'idée de base développée dans cette thèse est de représenter des outils standards
pour les surfaces déformables (di�éomorphismes, distorsions intrinsèques, champs de
vecteurs tangents et extrinsèques) par des opérateurs agissant sur des fonctions, suivant
l'intuition que leurs discrétisations ont été préalablement étudiées et sont facilement
comparables quelles que soient les structures de données considérées. Le point de départ
de cette thèse est la représentation fonctionnelle des di�éomorphismes appeléeApplication
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Fonctionnelle (ou �Functional Map" en anglais), et des distorsions intrinsèques nommées
Opérateurs de Déformation(ou �Shape Di�erences" en anglais). Nous présentons dans
le Chapitre 5 une nouvelle méthode, robuste aux bruits et aux grandes déformations,
pour trouver des correspondances entre surfaces en utilisant une approche fonctionnelle.
Les Chapitres6, 7 et 8 fournissent des réponses di�érentes à un problème ouvert dans
le cadre fonctionnel : la conversion de la représentation à base d'opérateurs vers une
représentation ponctuelle. Plus précisément, étant donné une application fonctionnelle,
nous proposons un algorithme pour la convertir en une a�ectation continue de sommet à
sommet ou à partir d'un opérateur de di�érence de forme, nous proposons des solutions
pour retrouver la surface déformée sous-jacente.

Applications fonctionnelles

L'espace des di�éomorphismes est di�cile à appréhender que ce soit dans le cadre continu
ou discret. Considérons deux maillages triangulaires, la représentation la plus simple
consisterait à attribuer à chaque sommet de la première forme un sommet de la seconde.
Toutefois, lorsque l'on considère deux maillages avec un nombre di�érent de sommets le
calcul de l'application inverse devient di�cile. Une description plus complète est donc
nécessaire. Une possibilité serait de considérer une application linéaire par morceaux
permettant d'assigner des sommets à l'intérieur des triangles. De cette façon, il est possible
de calculer le di�éomorphisme et son inverse de façon cohérente. Une telle description
discrète a été mise en ÷uvre notamment dans [2, 1] mais possède quelques inconvénients
car elle ne peut-être stockée de manière compacte et conduit souvent à des problèmes
d'optimisations non-convexes di�ciles à appréhender.

Dans ce contexte, représenter l'application' qui lie deux formes géométriques par
l'opérateur de compositionf 7! f � ' fournit une alternative globalement indi�érente
au changement de connectivité et facilement dé�nie sur di�érents types de données.
Les applications fonctionnelles sont des représentations simpli�ées et compactes des
correspondances car elles sont souvent calculées entre des bases de fonctions de tailles
réduites. Elles peuvent être stockées sous forme de matrices et analysées à l'aide d'outils
d'algèbre linéaire standards. Les travaux qui ont suivis (par exemple [100, 101, 64,
96]) se concentrent sur des calculs d'applications fonctionnelles entre surfaces dont la
mise en correspondance est inconnue. Pour ce faire ils minimisent di�érents types de
distorsions intrinsèques auxquelles s'ajoutent des contraintes fonctionnelles. Cependant,
ces contraintes fonctionnelles sont souvent peu �ables en cas de déformations importantes
ou non-isométriques et ne décrivent les correspondances entre les surfaces que de façon
incomplète. Nous proposons donc une méthode d'apprentissage supervisée pour identi�er
l'ensemble des contraintes le plus digne de con�ance et la partie de la surface sur laquelle
l'application fonctionnelle est la plus précise. Un autre dé� de cette représentation
fonctionnelle est le problème de l'obtention d'une application point-à-point à partir
d'un opérateur. Les méthodes actuelles [88, 102] ne garantissent pas que l'application
résultante soit continue et peuvent conduire à des défauts de continuité. Pour surmonter
ces problèmes, nous limitons la conversion à des applications continues en utilisant une
représentation adéquate des champs de vecteurs par des opérateurs.
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Opérateurs de déformation

Représenter les distorsions de la métrique peut être di�cile lorsqu'il s'agit de traiter des
données de provenances variées. Lesopérateurs de déformation[106] tirent parti de la
représentation fonctionnelle pour fournir un encodage des distorsions intrinsèques faisant
abstraction du plongement de la surface dans l'espace ambiant. Ces opérateurs agissent
linéairement sur les fonctions et font la distinction entre les modi�cations de volumes et
l'évolution des angles. Ces changements sont locaux, facilement perturbables et di�ciles
à dé�nir correctement selon les di�érentes structures de données. Toutefois les opérateurs
de déformation parviennent à les rendre stables et facilement analysables.

Les opérateurs de déformation ont été initialement présentés comme des outils d'ana-
lyse, car ils peuvent être utilisés pour comparer et composer des déformations. Il est
intéressant de remarquer que l'espace généré par ces opérateurs semble �plat" et stable.
Par exemple les Figures7.7 et 7.9 (voir aussi Figure 3 dans [106]) représentent une
collection de surfaces, interprétée comme une collection d'opérateurs, est envoyée dans
un espace euclidien de petite dimension grâce à une simple analyse en composantes
principales. Ce plongement décrit précisément les degrés de liberté des déformations.
Cette remarque ainsi que des propriétés algébriques intéressantes conduisent à l'intuition
que les opérateurs sont plus commodes pour décrire des déformations intrinsèques que
l'analyse directe d'un plongement dans l'espace euclidien.

Dans cette thèse, nous tentons d'utiliser les opérateurs de déformation pour synthétiser
et explorer l'espace des surfaces déformables. L'unique travail préalable par Boscaini et
al. dans [15] retrouve le plongement d'une surface à partir d'un opérateur représentant la
structure intrinsèque de la forme. Cependant, cette approche est limitée car elle ne prend
pas en compte les informations extrinsèques. Nous explorons di�érentes façons de stocker
les informations données par la courbure en utilisant des opérateurs fonctionnels.

Résumé de la thèse

Cette thèse porte sur le traitement de surfaces déformables dans le cadre d'une représen-
tation fonctionnelle. L'étude est divisée en deux parties qui coïncident avec l'analyse de
deux types d'opérateurs : les applications fonctionnelles et les opérateurs de déformation.

Des surfaces aux déformations

Le but de cette partie est de trouver des correspondances entre deux formes données. Nous
nous intéressons en particulier aux informations délivrées par la structure intrinsèque de
ces formes. Pour rendre le problème plus abordable, nous nous plaçons dans un modèle
restrictif en ne considérant que des déformations quasi-isométriques.

Trouver des correspondances entre formes 3D pour des déformations quasi-isométriques
fut présentée comme la première application de la représentation fonctionnelle par [88]
et est toujours la direction de recherche privilégiée dans ce domaine. L'une des raisons
de ce succès étant que ce problème, di�cile de prime abord, devient un système des
moindres carrés dans cette nouvelle représentation. La formulation la plus basique prend
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en compte la distance à l'isométrie et des correspondances fonctionnelles, souvent obtenues
à partir de descripteurs globaux (HKS, WKS) restant stables même après de légères
déformations. Cependant, l'application résultante peut avoir des artefacts dus à de
mauvaises correspondances fonctionnelles, à des perturbations ou à une interpolation
spectrale trompeuse. De nombreuses variantes ont été proposées pour améliorer la qualité
des résultats [100, 64, 96]) a�n de permettre des correspondances partielles [101] ou de
tirer parti de cohérences cycliques dans des réseaux de di�éomorphismes [54].

Dans le Chapitre 5 nous prenons une approche légèrement di�érente : au lieu de
modi�er la formulation initiale, nous tentons d'obtenir les résultats optimaux à partir des
données initiales. Les contraintes fonctionnelles, potentiellement peu �ables, nous obligent
à trier et à pondérer ces correspondances. Par ailleurs, l'application fonctionnelle résultante
n'est �able que sur un sous-espace de fonctions qu'il nous appartient d'identi�er. Notre
principale contribution est un algorithme d'apprentissage supervisé capable de calculer
un ensemble de pondérations évaluant conjointement l'utilité de chaque descripteur et
capable de déterminer les fonctions les plus �dèlement transférées par l'application.

Une fois calculées les applications fonctionnelles o�rent un autre dé� qui consiste à
les convertir en une représentation ponctuelle, utilisée dans la plupart des applications.
L'article original propose une méthode qui peut être comprise comme l'algorithmeIterative
Closest Point appliqué au domaine spectral. Bien qu'il ait été amélioré par des articles
postérieurs [102], un problème majeur demeure : l'existence de symétries internes et
l'absence de contraintes globales reliant les points proches les uns des autres conduisent à
des discontinuités dans l'application résultante. Dans le Chapitre6 nous fournissons une
méthode pour restreindre ce processus de conversion aux seules applications continues.
Ce problème, di�cile en utilisant des outils d'analyse standards, devient beaucoup
plus abordable en utilisant une représentation fonctionnelle. Ce problème, di�cile en
utilisant des outils d'analyse standards, devient beaucoup plus abordable en utilisant une
représentation fonctionnelle. Le résultat est la conversion d'une application fonctionnelle
vers une application continue en utilisant le �ot d'un champ de vecteurs.

Ainsi, la contribution principale de cette première partie est une procédure complète
pour résoudre les problèmes de mise en correspondance de formes dans le cadre d'une
représentation fonctionnelle : du calcul d'une application fonctionnelle �able à une
correspondance ponctuelle entre surfaces.

Alors que la première partie vise à trouver des similarités entre des formes quasi-
isométriques, dans la deuxième partie notre objectif est de quanti�er et de manipuler des
distorsions non-isométriques de la métrique. En particulier, nous nous intéressons à une
représentation complète des surfaces par des opérateurs fonctionnels.

Synthèse de formes et représentation fonctionnelle

Les opérateurs de déformation jouissent de nombreuses propriétés algébriques intéres-
santes. En particulier, ils permettent le transfert, la composition et l'addition (dans
des cas particuliers) de déformations. Ainsi, l'exploration et la création de nouvelles
déformations intrinsèques sont aisées dans cette représentation car elles ne nécessitent
que des manipulations de matrices. L'unique étape manquante est la conversion d'une



11

caractérisation fonctionnelle des déformations en un plongement dans l'espace euclidien.
Plus précisément, étant donné une forme de base et un opérateur de déformations, il nous
faut retrouver la surface déformée. Ce problème est étroitement lié à la reconstruction
d'une forme à partir de son laplacien, connu pour être théoriquement possible bien que
peu d'algorithmes soient actuellement disponibles pour le résoudre. Cette thèse tente de
combler ce vide par deux approches di�érentes.

Le premier développement, présent dans le Chapitre7, commence avec la remarque que
la métrique discrète d'un maillage triangulaire (longueur des arêtes) peut être récupérée à
partir des opérateurs de déformations, et ce, en résolvant un système d'équations linéaires.
Il en résulte que dans le cas d'informations bruitées et limitées la métrique peut être
récupérée grâce à deux problèmes d'optimisations convexes. Cependant, l'information
intrinsèque n'est pas su�sante pour obtenir le plongement d'une surface car il existe
plusieurs solutions à ce problème. Dans ce Chapitre nous étudions donc la possibilité
d'utiliser des surfaces parallèles pour encoder la courbure. Il en ressort une caractérisation
complète des maillages triangulaires par des opérateurs fonctionnels ainsi que des garanties
théoriques de reconstruction.

Le deuxième développement inclut dans le Chapitre8 introduit une caractérisation
fonctionnelle des champs de vecteurs extrinsèques. Pour cela, nous introduisons un opéra-
teur de déformation unique, responsable de tous les changements de la métrique. Ensuite,
nous considérons l'opérateur associé à un déplacement in�nitésimal. De cette façon, les
champs de déformation sont caractérisés par la distorsion qu'ils induisent sur la métrique.
Ils jouissent de propriétés similaires aux opérateurs de déformations (composition, trans-
fert), tout en permettant une reconstruction des déformations nettement plus simple que
la méthode précédente.

Cette thèse constitue une première étape vers l'utilisation de la représentation fonc-
tionnelle pour la caractérisation des surfaces déformables et la synthèse de déformation.
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Cette thèse est en partie basée sur les publications suivantes :
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vector �eld �ow , in Proceedings of the Eurographics Symposium on Geometry
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� E. Corman, S. Solomon, M. Ben-Chen, L. Guibas and M. Ovsjanikov ,
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Chapter 3

Context in Di�erential Geometry
and its Discrete Equivalents

This chapter introduces the main mathematical tools that will be used throughout
the thesis. A brief overview of di�erential geometry focused on intrinsic geometry
is provided. We put emphasis on the role of the metric tensor and the pullback
metric in the de�nitions of di�erential operators. This chapter also provides a brief
remainder of the Finite Element Method applied to the discretization of common
di�erential operators. This chapter can be skipped by readers familiar with the
continuous theory.

3.1 Di�erential Geometry

The study of surface deformations is central in this thesis. Therefore some notions and
terminology from di�erential geometry are recalled here. The aim of this section is to
introduce the notions of metric tensor and more importantly of pullback metric by a
di�eomorphism. The pullback metric accounts for the intrinsic distortion underlying a
mapping between shapes. This will be a key tool for our analysis of surface deformations
as it allows a classi�cation of mappings according to their impact on the local structure.

To represent di�eomorphisms and distortions as operators on functions, we will need
some basic di�erential operators such as gradients and Laplacians. We will focus on the
change of variables which is equivalent to a change of metric in di�erential operators. This
remark allows us to construct operators provably informative of the intrinsic structure
and explain the leading role of the Laplace-Beltrami operator in geometry processing.

This basic introduction to di�erential geometry is greatly inspired by [ 78, 103]. The
Einstein summation convention is sometimes used to lighten the notations. Repeated
indices imply a summation, i.e. gij f j means

P
j gij f j . Moreover when dealing with

tensors upper indices denote an element of the inverse matrixA ij = ( A � 1) ij .

3.1.1 Manifold

In practice we will most of the time deal with surfaces inR3. However, operations on
intrinsic informations (e.g. transport, composition of distortion) may lead to metric
tensors which do not correspond to embedded surfaces and are only meaningful for general
manifolds. Thus, it is important to start with abstract de�nitions.

A topological manifold M is a space such that each point has a neighborhood
di�eomorphic to Rn . To introduce di�erential calculus, it is necessary to always refer
to the Euclidean space where derivatives are well-de�ned. To do so we introduce a
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local parametrization of M called an atlas. An atlas on M is a countable collection
of pairs (U� ;  � ) named charts where U� are sets coveringM and  � : U� ! Rn are
homeomorphisms acting as local parametrizations.

Since the setsU� cover the entire manifold some points maybe found in two di�erent
charts. If U� and U� overlap then one can change the coordinate system by means of the
transition map:

 �� =  � �  � 1
� :  � (U� \ U� ) !  � (U� \ U� ):

Note that  �� maps an open set ofRn to an open set ofRn , so at a point p in U� \ U�

one can decompose this mapping in terms of coordinates(x1(p); : : : ; xn (p)) with respect
to U� and (y1(p); : : : ; yn (p)) with respect to U� . Two systems of coordinates are linked
by:

yi (p) =  �� (x1(p); : : : ; xn (p)) i :

A transition map and two coordinate systems are represented in Figure3.1.
This formulation is convenient as it allows us to use standard di�erential calculus in

Rn to study the properties of a curved surface. In particular the Jacobian matrix of ��

will appear in coordinate change for vector �elds (Section3.1.3).
The charts introduce a local structure on the manifold. However, to have a di�erential

manifold we need to ensure that the local properties are consistent among themselves.

De�nition 3.1.1 A topological manifold M equipped with an atlasS = ( U� ;  � ) is called
di�erential manifold if all its coordinate changes  �� are C1 maps.

U�

U�

M

 �

 �

 ��

x1

x2 y2

y1

Figure 3.1 � Two charts and a transition map on a manifold M .
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3.1.2 Tangent Vectors and Local Coordinates

Tangent vectors are a �rst step to introduce local intrinsic structure on a manifold. Let
f : M ! R be a real valued function on a di�erential manifold. If, for all coordinate
systems(U;  ) in an atlas, f �  � 1 :  (U) � Rn ! R is a C1 function on  (U) then f is
by de�nition a C1 function on M .

Now let (U;  ) be a coordinate system around a pointp 2 M and (x1; : : : ; xn ) the
coordinate functions with respect toU. The derivative of f in the direction x i denoted
@i f is naturally de�ned as:

@i f =
@(f �  � 1)

@xi
�  2 C1 (M ):

In case of a surface inR3, the gradient of a function is tangent to this surface.
Moreover, the set of all possible directions for function derivatives de�nes the set of all
tangent vectors. By analogy, the applicationVp : C1 (M ) ! R acting on di�erentiable
functions at point p 2 M :

Vp(f ) =
nX

i =1

Vi (p)@i f jp; (3.1)

is understood as a vector tangent to the manifold. Thelocal coordinatesof the vector
Vi (p) 2 R depend on the chart(U;  ) and correspond to the derivative in the canonical

directions @
@xi

�
�
�
p
. We denoteTpM , the set of all tangent vectors at point p, de�ned as

the set of all linear combinations of the basis
�

@
@xi

�
�
�
p

�

i
. The canonical basis satis�es the

property @xj
@xi

= � ij .
A vector �eld on M is a smooth assignment of a tangent vectorsVp 2 TpM at each

point p. Namely V is a C1 vector �eld if:

V (f ) 2 C1 (M ); 8f 2 C1 (M ):

We denote the set of smooth vector �eldsV(M ).

3.1.3 Mappings

Along this thesis we will study relations between manifolds through mappings. LetM
and N be two di�erential manifolds, ' : N ! M is a map between them. Since the map
is not real-valued we have to take into account the parametrizations fromM and N to
introduce a di�erential structure.

De�nition 3.1.2 The map ' : N ! M is a C1 map if for all charts (U;  ) on N and
(V; #) on M , the functions # � ' �  � 1 : Rn ! Rn are of classC1 (Rn ).

Local coordinate systems(x1(p); : : : ; xn (p)) around p 2 N and (y1(' (p)) ; : : : ; yn (' (p)))
around q = ' (p) 2 M are linked by the mapping ' :

yi (' (p)) = # � ' �  � 1(x1(p); : : : ; xn (p)) i : (3.2)
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Di�erential map

A C1 map not only describes pointwise correspondences but also map tangent vectors
from one surface to another. The distortion of a tangent space is determined by the
Jacobian of the mappingd' p.

Using the chain rules for derivatives, Equation(3.2) yields a change of coordinates
formula or pushforward of tangent vector �elds:

d' p

�
@

@xi

�
=

nX

j =1

@yj
@xi

@
@yj

; (3.3)

where d' denote the di�erential map or Jacobian of the transformation. Therefore,
a map not only relates points but also tangent spaces. The di�erential map de�nes a
linear mapping between the tangent space onN at point p and the tangent space onM
at point ' (p):

d' p : TpN ! T' (p)M:

Categories of mappings

Mappings are categorized according to the properties of the di�erential map:

� Immersion: At each point p 2 N the Jacobian is injective. It implies that the
image of the manifold ' (N ) can intersect itself so it may not be a submanifold of
M .

� Embedding: ' is immersion and also a homeomorphism fromN onto ' (N ). In this
case no self-intersection can occur and the image' (N ) is a submanifold ofM .

� Di�eomorphism : ' : N ! M is a bijection and its inverse' � 1 : M ! N is a C1

map. These requirements are stronger than for embeddings, in particular it implies
that the Jacobian is bijective and that N; M have the same intrinsic dimension.

3.1.4 Riemannian Manifold

Metric tensor

The metric tensor extends the notion of scalar product inRn to tangent vectors. It is
important to recall that general metric tensors can be arbitrarily chosen and are not
necessarily induced by the embedding of a surface. The choice of the metric determines
the specifying of the tangent plane, thus, specifying distances on the manifold and many
di�erential operators.

De�nition 3.1.3 A Riemannian metric is a family of bilinear forms de�ned at each
point p of the di�erential manifold M by:

gp : TpM � TpM ! R:
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As Euclidean scalar products the metric should be symmetric, positive de�nite at
each point. Moreover, a Riemannian metric varies smoothly on the manifold: for all
di�erentiable vector �elds V; U on M , p 7! gp(Vp; Up) is a smooth function from M to R.

Given a system of local coordinates(x1; : : : ; xn ) around p, the set
�

@
@x1

; : : : ; @
@xn

�
is

a basis of the tangent spaceTpM . So, the metric can be written as a matrix ofRn� n :

gij (p) := gp

 
@

@xi

�
�
�
�
p

;
@

@xj

�
�
�
�
p

!

:

Thus, the metric tensor can be interpreted as a Gramian matrix of tangent vectors.
Geometrically the square root of the determinant is the volume of the parallelotope
de�ned by the basis @

@xi
. Therefore, the quantity

p
det(g) can be understood as a local

volume or area on the manifold.
Given two tangent vectors V; U 2 TpM their scalar product is computed as a usual

bilinear form within the coordinate system:

gp(V; U) =
X

ij

Vi gij Uj :

Surface in R3

An important example that will be frequently used in this thesis is the case whereM is
an embedded surface ofR3. In this con�guration, the ambient Euclidean scalar product
h:; :i naturally induces a metric on the surface. Given a chart(U;  ) in the neighborhood
of p 2 M , the mapping F =  � 1 :  (U) � R2 ! U � M � R3 maps an open subset of
R2 to an open subset ofR3. Therefore @F

@xi
(p) is a vector of R3 tangent to the surface at

p and can be identi�ed with a basis of TpM . The induced metric in this basis is:

gij (p) =
�

@F
@xi

(p);
@F
@xj

(p)
�

: (3.4)

Many local coordinates expressions can be replaced by vectors in the ambient space.
For instance the scalar productg(V; U) can be replaced byh�V ; �Ui where �V is the tangent
vector V expressed in the global coordinate system. To avoid heavy notations we will
consider the change of coordinates implicit when using the ambient scalar product.

Geodesic distance

The metric is a local quantity determining lengths of vectors. It induces a global structure
on the manifold enabling us to measure distances between points. The geodesic distance
is de�ned as the shortest path between two points on a manifold.

The application c : [0; 1] ! M is a parametrized curve onM . Its velocity c0 is a
tangent vector whose length can be computed with the metricg. The arc length L(c) of
the curve c is de�ned by similarity with the Euclidean case:

L (c) :=
Z 1

0

q
gc(t ) (c0(t); c0(t))d t:
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The geodesic distanced : M � M ! [0; + 1 ) is the minimum over all curves onM :

d(p; q) := min
c:[0;1]! M

L(c) subject to c(0) = p; c(1) = q:

Figure 3.2 shows an example of geodesic distance �eld on a surface.

Figure 3.2 � Isolines of the geodesic distance, computed with the spectral method [34].

The pullback metric

The pullback metric is a key tool for analyzing metric distortion. Namely, given an
immersion ' : N ! M between the di�erential manifolds M and N , we are able to
expressgM , the metric tensor onM , as a distorted metric onN . This new tensor encodes
the distortion of the tangent space by the underlying deformation' .

De�nition 3.1.4 The pullback of a metric onM , denoted' ?gM , is de�ned as the action
of the tensor on the pushforward tangent vectors:

(' ?gM )p(V; U) = gM
' (p) (d' (V ); d' (U)) ; 8V; U 2 TpN:

Given a coordinate system, Equation(3.3) leads to a local expression of the pullback
metric:

(' ?gM ) ij (p) =
@yk
@xi

gM
kl (' (p))

@yl
@xj

:

The Jacobian of the immersion distorts the bilinear form in a symmetric way. If ' is
an immersion, the tensor' ?gM is a metric on N .

Three types of mappings are de�ned according to the intrinsic properties they preserve
(local areas, angles, geodesic distances). Figure3.3 shows examples of deformation of the
plane.

� Area preserving map. A di�eomorphism is said to be area preserving if local
areas are preserved:

det(' ?gM )p = det( gN )p; 8p 2 N:
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� Conformal map. A di�eomorphism ' : N ! M is said to be conformal if there
exists a positive function h 2 C1 (M ), sometimes called the conformal factor, such
that:

h(q)( ' ?gM )p = gN
p 8p 2 N:

Such deformations preserve angles between curves but a�ect local areas. A classical
example of such deformation are the Möbius transformations which span all the
bijective conformal maps from the sphere to itself.

� Isometry. A conformal and area preserving di�eomorphism is an isometry. In this
case, the pullback metric agrees with the metric onN :

(' ?gM )p = gN
p 8p 2 N:

A map is an isometry if and only if geodesic distances are preserved, namely
dM (' (p); ' (q)) = dN (p; q), as proven by the Myers�Steenrod theorem [83].

(a) Initial grid (b) Area-preserving (c) Conformal (d) Isometry

Figure 3.3 � Three categories of mapping according to the intrinsic property they preserve.

3.1.5 Integral on Manifold

Area preserving maps are naturally related to integral on manifold. In fact, a change of
variables in integral is equivalent to using the measure induced by the pullback metric
[78].

Volume form

First, we introduce the volume form d� g de�ned locally by: d� g =
p

det(g) dx1^� � �^ dxn .
The volume form induces a Borel measure� g :

� g(U) =
Z

U
d� g ; 8U � M:

Note that � will abusively stand for the local area
p

det(g) instead of the measure.
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Given a chart (U� ;  � ) and a coordinate system(x1; : : : ; xn ) the integral is then
de�ned through its mapping to the Euclidean space:

Z

U�

f (p) d� g(p) =
Z

 � (U� )
(f

p
det(g)) �  � 1

� (x1; : : : ; xn ) dx1 : : : dxn :

Pushforward measure

Let ' : N ! M be a di�eomorphism between two manifolds andgN a metric on N . The
pushforward measure' ?� gN is a measure onM standing for the change of variables:

Z

M
f d(' ?� gN ) :=

Z

N
f � ' d� gN :

Applying the change of coordinate formula for volume form [78] leads to Proposition
3.1.5.

Proposition 3.1.5 The volume form induced by the pushforward measure is the volume
form corresponding to the pullback metric:

d(' ?� gN ) = d � ( ' � 1 )? gN :

When ' is area preserving, integrals are left untouched by a change of variables:
Z

M
f d� gM =

Z

N
f � ' d� gN ; 8f integrable:

Inner product

Let f; g : M ! R be smooth functions onM . The space of square integrable functions
with respect to the volume form d� g is de�ned as:

L 2(M; g) =
�

f : M ! R integrable :
Z

M
f 2 d� g < 1

�
:

This space is equipped with the inner producthf; g i (M; g)
L 2 :=

R
M fg d� g inducing the

norm kf k(M; g)
L 2 :=

�
hf; f i (M; g)

L 2

� 1
2 . Mention of the metric and the manifold is sometimes

omitted to avoid heavy notation

3.1.6 Gradient, Divergence and Laplacian

Gradient, divergence and Laplacian are three fundamental di�erential operators to
study intrinsic geometry. Their de�nitions entirely rely on the underlying metric tensor.
Moreover, as we will see later, they also fully specify the metric structure of the manifold.
For this reason, the Laplacian is a key tool in geometry processing and computer graphics.
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In particular it has been used for: fairing and compression (e.g. [59]), geodesic computation
(e.g. [34]) and global descriptors (e.g. [99, 119, 5]) to name just few applications.
Two properties explain this success: its invariance under isometric deformation and its
eigenfunctions comparable to a Fourier basis on manifolds.

For a more comprehensive study of the Laplace-Beltrami operator in di�erential
geometry we refer the interested reader to [103].

Laplace-Beltrami operator

The directional derivative V (f ) is the action of a tangent vector on a function. It can
also be thought of as the scalar product between a �xed vector and the function gradient.
Thus, the gradient can be de�ned as the tangent vector satisfying:

V (f ) = g(V;r f ); 8V 2 V(M ):

Given a local coordinate system we can writeVi @i f = Vi gij gjk @k f , so the components
of the gradient are given by: (r f ) i = gij @j f .

The gradient depends on the inverse metric tensor. As our main topic is intrinsic
geometry, it is interesting to relate the pushforward gradient with the pullback metric.

Lemma 3.1.6 Let ' : N ! M be a di�eomorphism between two di�erential manifolds
and gN a metric on N . The pushforward of the gradient is equal to the gradient de�ned
by the pullback metric:

d' p
�
r gN (f � ' )

�
= r ( ' � 1 )? gN f (' (p)) :

Proof Given local coordinates(x1; : : : ; xn ) around p 2 N and (y1; : : : ; yn ) around q =
' (p) 2 M , a direct computation yields:

d' p
�
r gN (f � ' )

�
= d ' p

�
gij

N
@

@xj
(f � ' )

@
@xi

�

= gij
N

@
@xj

(f � ' )
@yk
@xi

@
@yk

= gij
N (' � 1(q))

@yl
@xj

@f
@yl

(q)
@yk
@xi

@
@yk

= (( ' � 1)?gN ) ij (q)
@f
@yj

(q)
@

@yi
= r ( ' � 1 )? gN f (q):

�

This simple lemma expresses the idea that instead of using the di�erential map
to transfer gradients of functions from N to M , one can transfer intrinsic information
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and then compute gradients locally with respect to this metric. Computing a the
di�erential map may be challenging when considering meshes with di�erent triangulation
but transferring metrics, as we will see later, is more tractable since it is can be done by
pullback of the Laplacian.

For manifolds without boundaries the Laplacian can be de�ned through the integration
by parts identity:

Z

M
g(r g;r f ) d� g = �

Z

M
g� f d� g : (3.5)

The Laplacian is therefore a symmetric and negative de�nite operator on smooth
functions. The expression in local coordinates relies heavily on the metric:

� f =
1

p
det(g)

@i

� p
det(g)gij @j f

�
:

Eigen-decomposition

The Laplace-Beltrami operator has a countable set of eigenfunctions:

� g � i = � i � i ;

where the eigenvalues are negative and decreasing0 = � 0 � � 1 � � � � � � i . Moreover,
if M is a smooth manifold the eigenfunctions are in�nitely di�erentiable functions.
Moreover they provide an orthonormal basis ofL 2(M; g) ordered from low to high
frequency, as the total integral of the gradient equals the absolute value of the eigenvalue.
Meaning that if

R
M f 2 d� g < 1 then f can be written has a linear combination of the

functions f � i gi � 0:

f = lim
k! + 1

kX

i =0

hf; � i i
(M; g)
L 2 � i :

In the computer graphics literature, the basis f � i gi � 0 is often understood as a
generalization of Fourier basis on Manifolds. An example is shown in Figure3.4. They
are sometimes referred to asmanifolds harmonics [121].

Commutativity with isometries

The Laplacian heavily depends on the metric. Like gradients, change of variables in
Laplace-Betrami operators is equivalent to changing the metric tensor.

Lemma 3.1.7 Let ' : N ! M be a di�eomorphism between manifolds andg a metric
on N , then:

� g(f � ' ) = (� ( ' � 1 )? g f ) � '; 8f 2 C1 (M ):
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� 2 � 3 � 4 � 5 � 6

Figure 3.4 � Example of Laplace-Beltrami eigenfunctions computed on a surface. The
�rst eigenfunction, not represented here, is constant.

Proof To lighten the notations we denoteg? the pullback metric (' � 1)?g. Given the
local coordinates(x1; : : : ; xn ) around p 2 N and (y1; : : : ; yn ) around q = ' (p) 2 M , the
Laplace-Beltrami operator can be transported fromN to M using Lemma3.1.6:

Z

N
g � ' � g(f � ' ) d� g = �

Z

N
gp (r g(g � ' ); r g(f � ' )) d � g(p)

= �
Z

N
gp

�
d' � 1

' (p) (r g? g) ; d' � 1
' (p) (r g? f )

�
d� g(p)

= �
Z

M
g' � 1 (q)

�
d' � 1

q (r g? g) ; d' � 1
q (r g? f )

�
d� g? (q)

= �
Z

M
g? (r g? g;r g? f ) d� g?

=
Z

M
g� g? f d� g?

=
Z

N
g � ' (� g? f ) � ' d� g :

The fundamental lemma of calculus of variations leads to the equality between the
functions. �

As a consequence of Lemma3.1.7, the Laplace-Beltrami operator commutes with
isometries. Moreover, the converse also holds: the Laplacian determines the metric up to
isometries. This property is well-known in the computer graphics community and makes
this operator very attractive for shape analysis. For instance, Proposition3.1.8 ensures
that the Heat Kernel Signature [119] and Wave Kernel Signature [5] fully encode intrinsic
information.

Proposition 3.1.8 Let ' : N ! M be a bijection between manifolds then it is an
isometry if and only if:

� gN (f � ' ) = (� gM f ) � '; 8f 2 C1 (N ):
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Proof We prove the necessary and su�cient conditions separately:

� Assuming that ' is an isometry and using Lemma3.1.7 lead to the equalities
� gM f = � ( ' � 1 )? gN f =

�
� gN (f � ' )

�
� ' � 1.

� Now suppose that the Laplacians commute with the map' . The operators on
both manifolds are therefore isospectral and the eigenfunctions of one operator are
eigenfunctions of the other after composition with' . It follows that the heat kernel
[103], de�ned as ht (p; q) =

P
i � 0 exp(t� i )� i (p)� i (q), is preserved by the map:

hN
t (p; q) = hM

t (' (p); ' (q)) ; 8p; q 2 N; 8t > 0:

This equality holds true if and only if ' is an isometry, as detailed in [119].

�

3.2 Discretization

To be de�ned correctly, di�erential operators require smooth surfaces. Obviously, in a
discrete setting smoothness has to be rede�ned since most of the data (scanner, MRI)
are point clouds or meshes. We will limit our theoretical study to triangular meshes.
Although in practice the functional map framework is stable across data representations,
all of the results presented in this thesis assume that the data comes in the form of triangle
meshes. Therefore, in this section we show how di�erential operators are approximated
using the standard Finite Element Method.

3.2.1 Discrete Manifold

Triangle meshes are composed of three sets(X ; E; F ) creating a discrete manifold. The
set of vertices X whose elementsx i 2 Rn are points in space. The set ofedgesE linking
two vertices together forming an undirected graph. If a pair(i; j ) belongs toE then the
edge vector is denotedeij = x j � x i where the order of the indices de�ne the orientation.
We require an additional structural element that is the graph should be composed only
by triangles such that an edge is shared by only two triangles. Atriangle is de�ned by
the indices of three vertices(i; j; k ) belonging to the setF . Each side consists of an edge,
so f (i; j ); (j; k ); (k; i )g belongs toE. The notations are summarized in Figure3.5a.

Meshes are thought of a piecewise linear approximations of a smooth manifold. When
re�ned by adding sample points, the approximation error should decrease and eventually
go to zero. On such discrete structure it seems natural to consider only piecewise linear
functions. So, a discrete functionf is de�ned as an assignment of a scalar value per
vertex f : X ! R and extended linearly inside triangles. For a pointp inside the triangle
(x i ; x j ; xk ) the interpolation is expressed using thehat basiscomposed of the functions
B i de�ned in Figure 3.5b:

f (p) = f i B i (p) + f j B j (p) + f kBk (p):

The measure� (T) denotes the area of triangleT and ` ij = kx i � x j k the edge length.
These two quantities will be used to describe the intrinsic structure of a discrete manifold.



3.2. Discretization 25

x j

x ixk

x l

� ij

� ij

Tiljwij

` ik

Tijk ` il

` jl

` jk

(a) Discrete manifold

1

x i

xk

jeij

ejk

ETijk

(b) Hat basis function and local basis

Figure 3.5 � Notations used for the Finite Element Method.

3.2.2 Finite Element Method and Cotangent Weight Formula

For a short but e�cient introduction to �nite elements for computer graphics the reader
may enjoy [16] Chapter 3.

Inner product

Once the interpolation is written with the hat basis we can de�ne the discrete inner
product h:; :i L 2 by computing the integration of piecewise linear functions. Functions on
vertices are elements ofRX so the inner product is a symmetric de�nite matrix A, called
mass matrix, of sizejX j � jX j . The element A ij is then the inner product betweenB i

and B j :

A ij =
X

T 2F

Z

T
B i (p)B j (p)dp:

For computational e�ciency it is sometimes preferable to use thelumped mass matrix.
This matrix is diagonal whose elements are

P
j A ij .

Gradient

Piecewise-linear functions are only di�erentiable inside triangles. Therefore, the discrete
gradient takes as input a function de�ned at vertices and outputs a vector per triangle.
By linearity, it is enough to compute the gradient of the hat functions to �nd the gradient
of any function [16]:

r f (x) =
1

2� (Tijk )
R 90�

ETijk

�
f k � f j

f i � f j

�
; (3.6)

where R 90�
is the counterclockwise rotation by90� around the normal and ETijk =�

x j � x i ; xk � x j
�

contains a local basis of edges.

Laplacian operator

The discretization of the Laplace-Beltrami operator L is obtained by discretizing the
inner product

R
M hr f; r gi d� represented by thesti�ness matrix W 2 RjX j�jX j and is
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deduced fromW by integration by parts (Equation (3.5)) so L = A � 1W. The discrete
inner product follows the discrete gradient in Equation3.6:

g> W f =
X

T 2F

1
4� (Tijk )

�
gk � gj

gi � gj

� >

E >
T ET

�
f k � f j

f i � f j

�
: (3.7)

After rearranging the terms the matrix becomes a graph Laplacian:

(W f ) i =
X

j � i

wij (f i � f j );

wij =

8
>>><

>>>:

1
8� (Tijk ) (`2

ij � `2
jk � `2

ki ) (i; j ) 2 E
+ 1

8� (Tijl ) (`2
ij � `2

jl � `2
li );

�
P

k� i wki ; i = j
0; else:

(3.8)

The cotangent weight formula, a more popular expression of the Laplacian in the
computer graphics community, is obtained by remarking thatcot � ij = 1

4� (Tijk ) (� `2
ij +

`2
jk + `2

ki ). So the weight at an edge(i; j ) 2 E reads:

wij = �
1
2

(cot � ij + cot � ij ): (3.9)

where � ij and � ij are the angles opposite of the edge.

Eigenfunctions

Given the discrete Laplacian, �nding the eigen-decomposition is done by solving the
generalized eigenvalue problem:

W � = A�� ; subject to � > A� = I;

where � is the matrix of eigenvalues. SinceW is symmetric and A is positive de�nite,
there exists a solution with non-negative eigenvalues. The matricesA and W are sparse
so this problem is solved e�ciently by standard sparse solvers.

3.2.3 Discrete Local Coordinates

Although the Finite Element Method has a nice interpretation as an approximation of
a function space by piecewise linear functions, it does not relate immediately to the
continuous concept of metric and local charts. In this section we make one link between
those two worlds.

The metric tensor expressed as a matrix of edge lengths was �rst introduced in 1961
in [98] by Regge. It was originally intended for the study of discrete general relativity.
This �eld is often referred as Regge calculus. For an accessible introduction see [60].
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Discrete gradient

Triangle faces provide a straightforward analog of tangent spaces as each triangle can
be easily mapped to a 2D plane. Of course, unlike the continuous case, the transitions
between coordinates are not smooth. In this section, we are going to construct the
gradient operator from directional derivatives.

The directional derivative of a piecewise linear functionf in the direction of an edge
is, by de�nition, given by the classical �nite di�erence formula:

�
r f;

eij

keij k

�
=

f j � f i

keij k
:

We denoteET = ( eij ; ejk ) a particular coordinate system at a given triangle. Inside
a triangle the derivative of f can only be computed along the edges, therefore we store

them in the matrix @f=
�

f j � f i

f k � f j

�
. Given a vector V in the discrete tangent space and

its decomposition in local coordinateV = ET � , the directional derivative is expressed
through a matrix multiplication:

V (f ) = � > @f= hr f; V i :

This formulation is the discrete counterpart of Equation (3.1). In the direction of the
local basis we have the equality:E >

T r f = @f. To obtain a gradient we need to invert
ET knowing that gradients are tangent vectors. To do so we are going to use the metric
induced by the ambient space de�ned by:

gT := E >
T ET ;

as suggested by Equation (3.4). This leads to the following de�ning Proposition.

Proposition 3.2.1 Given a local coordinate systemET = ( eij ; ejk ) in triangle T, the
gradient in local coordinate readsg� 1

T @f and in the global coordinate system:

r f = ET g� 1
T @f:

In this discussion we merely computed the derivative of a piecewise linear function
therefore it should correspond to the Finite Element Method.

Discrete metric

The metric tensor possesses several properties that will prove useful in Chapters7 and 8
when converting functional representation of deformation into embedded surfaces.

Proposition 3.2.2 Given a local frameET = ( eij ; ejk ) the metric tensor gT = E >
T ET

is symmetric positive de�nite and its determinant is such that:

det(gT ) = 4 � (T)2:
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Moreover the metric tensor can be rewritten exclusively in term of edge lengths:

gT =
1
2

�
2`2

ij `2
ki � `2

ij � `2
jk

`2
ki � `2

ij � `2
jk 2`2

jk

�
:

Proof The discrete metric is by de�nition symmetric positive de�nite for non-degenerate
triangles. The computation of the determinant follows Heron's formula.

The second statement comes from the fact that the edges sum to zeroeij + ejk + eki = 0
so:

`2
ki = heij + ejk ; eij + ejk i = `2

ij + `2
jk + 2heij ; ejk i :

�

Equivalence with Finite Element Method

The discretization using the Finite Element Method, Equation (3.6), and using the local
coordinates, Proposition3.2.1, are the same. First let's recall this simple property satis�ed
by every invertible symmetric matrix in R2� 2:

g� 1
T =

1
4� (T)2 D > gT D; where D =

�
0 1

� 1 0

�
: (3.10)

Starting from Proposition 3.2.1 and using Equation (3.10) lead directly to the conclu-
sion:

r f = ET g� 1
T @f

=
1

2� (T)
(

1
2� (T)

ET D > E >
T )ET D@f

= �
1

2� (T)
R 90�

ET D@f:

The inner product matrix W also enjoys a formulation in terms of local coordinate
equivalent to Equation (3.7):

g> W f =
X

T 2F

�
gj � gi

gk � gj

� >

g� 1
T

�
f j � f i

f k � f j

�
� (T):

Extension to simplicial complexes

One advantage of Regge calculus is that metric tensors and gradients can be easily de�ned
for higher dimensional simplicial complexes. Moreover, they are still computable (but
not necessarily meaningful) for non-manifold triangulations while being equivalent to the
Finite Element Method in nicer scenarios.
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x1 x2

x3

x4

ES3

Figure 3.6 � Local basis in a tetrahedra.

For example in Figure 3.6 a k-simplex Sk is de�ned by k + 1 vertices (x1; : : : ; xk+1 ).
The �rst k edges form the local basis:ESk = ( x2 � x1; : : : ; xk+1 � x1). The discrete
metric tensor gSk = E >

Sk
ESk is expressed locally using the edge lengths:

gij =
�

`2
1i ; i = j

1
2(`2

ij � `2
1i � `2

1j ); i 6= j:
; 1 � i; j � k:

The volume of the simplex is accessible through the determinant of the metric by
� (Sk ) =

p
det(gSk )=k!. The gradient inside the simplex is now computed with the

formula:

r f = ESk g� 1
Sk

0

@
f 2 � f 1

: : :
f k � f 1

1

A :

Given a pure simplicial k-complexS, the inner product matrix W can be assembled
using the following rule:

g> W f =
X

Sk 2S

0

@
g2 � g1

: : :
gk � g1

1

A

>

g� 1
Sk

0

@
f 2 � f 1

: : :
f k � f 1

1

A � (Sk ):





Chapter 4

Operator Representation

This chapter reviews two tools of the operator based representation framework:
functional maps [88], representing di�eomorphisms, and shape di�erences [106],
encoding the intrinsic deformation. The next chapters of this thesis explore the
possibilities o�ered by these representations therefore this introduction attempts
to give a complementary background to the reader and highlight open problems
in this framework. We focus the presentation on the theoretical properties of
these operators and how they are preserved after discretization. Although most of
the results discussed here were already provided in the original papers, some are
novel and not mentioned in follow-up works. In particular, Theorem 4.1.1 gives
a characterization of composition operators never used in computer graphics and
Propositions 4.2.3 and 4.2.4 describe the precise conditions in which compositions
and summations are allowed for shape di�erences.

4.1 Functional Map

Real-valued functions are easily generated on many types of shapes (coordinate functions,
descriptors) plus they enjoy interesting algebraic structure as they can be added, multiplied
and composed with maps. To take advantage of this structure one can represent a
di�eomorphism ' : N ! M as a composition operatorC' acting on real-valued functions:

C' : L 2(M ) �! L 2(N )
f 7�! f � ':

Instead of studying directly the deformation induced by ' , composition operators
assess the changes in the space of square-integrable functionsL 2 de�ned on the manifolds
M and N . These operators have been studied and used in many �elds including dynamical
systems (Koopman operator theory [51]) and functional analysis [112]. The immediate
property of this point of view is that a composition acts linearly with respect to functions.
In the discrete settings, composition are therefore represented by matrices, meaning
that the space of di�emorphisms can be analyzed with standard linear algebra tools.
Of course, all linear operators do not represent a composition (for examplef 7! 0 is
not a composition) but it suggests a convexi�cation of the space of di�eomorphisms as
linear mappings. In computer graphics composition operators were �rst introduced in
[88] under the name offunctional maps. They were originally used in intrinsic shape
matching problems and led to many follow-up works. Two directions are now prevalent:
either to make better use of the structure of the space (e.g. [101, 100, 90]) or to extend
the functional representation to other quantities (e.g. metric distortion [106], tangent
vector �elds [6], �uid mechanics [8]).
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In this section the term composition operator refers to the composition with an
underlying map and should not be mistaken forfunctional map designating a linear
operator acting on real-valued functions.

4.1.1 Mathematical Properties

All results presented here were �rst stated in [88] except for Theorem4.1.1. Although
this fundamental property is well-known in operator theory [112], it has not been used in
a computer graphics context. A more comprehensive study and careful computations can
be found in [112].

Characterization

A functional map is a linear operator between function spaces. A �rst question is what
characteristic properties a linear operator should satisfy to be a composition operator.
The following theorem provides an answer through a single property of the composition:
the composition of a multiplication is the multiplication of the compositions.

Theorem 4.1.1 Let C : L 2(M ) ! L 2(N ) be a non-zero linear operator. Then, there
exists a map' : N ! M such that C = C' if and only if:

C(fg ) = C(f )C(g); 8f; g 2 L 2(M ):

A sketch of the proof is formally reproduced here as it helps building an intuition
(for a complete version see [112] Theorem 2.1.13). The necessary condition is obviously
satis�ed by a composition operator. The su�cient condition is proven in three steps. The
�rst part is to show that the image of an indicator function on M is an indicator function
on N . Second,C must de�ne a homomorphism� between algebras of measurable sets
and third � induces a di�eomorphisms' .

Let � U be the indicator function of a measurable setU � M . The necessary condition
of Theorem 4.1.1 yields:

C(� U ) = C(� 2
U ) = C(� U )C(� U ) = ( C(� U ))2:

Therefore C(� U ) is also an indicator function. Any measurable setU � M is mapped
to a set V � N through C, de�ning an map between sets by:� (U) = V .

Let U1 and U2 be two disjoint subsets ofM , then:

C(� U1 [ U2 ) = C(� U1 + � U2 ) = C(� U1 ) + C(� U2 ) = � V1 + � V2 :

Thus the image of a union of sets by� is the union of the images. Similarly� preserves
intersections and di�erences between sets. So it can be shown that� is a homomorphism
between� -algebras.

Finally, it follows, using a technical property of Borel sets (Theorem 2.1.12 in [112]),
that there exists a measurable transformation' such that � (U) = ' � 1(U).
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Algebraic properties

Many algebraic properties of the space of di�eomorphisms are naturally transferred to
the space of composition operators. In a slightly simpler form, however, since we are
dealing with linear operators.

The most basic property we can hope for is composition of mappings. Obviously, a
composition of two mappings is also a composition operator sinceC' (C (f )) = f �  � ' =
C � ' (f ). Thus, a composition of mappings becomes a composition of linear operators
and we have proved the following:

Proposition 4.1.2 Let ' : N ! M and  : M ! O be mappings between manifolds
then their composition is the composition of the composition operators:

C' � C = C � ' :

As a consequence of Proposition4.1.2, an invertible mapping ' becomes an invertible
composition operator by noting that C' � C' � 1 (f ) = f .

Corollary 4.1.3 Let C' : L 2(M ) ! L 2(N ) be a composition operator thenC' is invert-
ible if and only if ' is invertible. Moreover, we have:

C � 1
' (f ) = C' � 1 (f ); 8f 2 L 2(N ):

Intrinsic information

Composition operators contain valuable information about the intrinsic structure of the
manifold. For example Proposition 3.1.5 states that the pushforward measure describes
the area distortion of the underlying deformation. Introducing the composition operator
in the change of variables formula leads to the equality:

hC' (f ); C' (g)i M
L 2 =

Z

M
fg

s
det(( ' � 1)?gN )

det(gM )
d� gM : (4.1)

Thus the linear operator
�
C?

' � C'
�

(f ) : L 2(M ) ! L 2(M ), where the adjoint operator
C?

' is de�ned by hC?
' (f ); gi L 2 (M ) = hf; C ' (g)i L 2 (N ) , accounts for the multiplication of a

function by the ratio of local areas. Thus,C?
' � C' is an operator representation of the

area distortion which will reappear in Section4.2.
Proposition 3.1.8 completes the intrinsic information given by composition operators:

composition operators representing isometries should commute with the Laplacian.

Theorem 4.1.4 Let C' : L 2(M ) ! L 2(N ) be a composition operator then,
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� ' is area preserving if and only if:

C?
' (C' (f )) = f; 8f 2 L 2(M ):

� ' is an isometry if and only if:

C' (� N f ) = � M C' (f ); 8f 2 L 2(M ); � N f 2 L 2(N ):

Theorem 4.1.4 shows that composition operators fully characterize intrinsic geometry.
However, as such, we cannot use them to compare metrics of di�erent manifolds since by
de�nition compositions start and end at di�erent function spaces. For intrinsic distortion
analysis we will prefer theshape di�erence operators introduced in Section4.2.

4.1.2 Discrete Functional Maps

In the discrete setting the spaceL 2 is replaced by an approximation with piecewise linear
functions � a standard choice in FEM. A function is then a vector in RjX j assigning a
real value per vertex. Therefore, functional maps will be understood as matrices. Let
(� M

1 ; : : : ; � M
jX j ) be an orthonormal basis of such a space (i.e.� >

i A� M
j = � ij whereA is the

mass matrix), then any function f is uniquely de�ned by the coe�cients aM
i = f > AM � M

i

in the decomposition f =
P jX j

i =1 aM
i � M

i . The functional map is represented by a matrix
transporting coe�cients on M to coe�cients on N :

C' (f ) =
jX jX

j =1

aM
j C' (� M

j ) :=
jX jX

i;j =1

Cij aM
j � N

i :

The elements ofC' are by de�nition the coe�cients of the functions C' (� M
j ) when

decomposed in the orthonormal basis� N . This leads to the scalar products:

Cij := ( � N
i )> AN PMN � M

j ; 1 � i; j � jX j :

where AN is the mass matrix anN and PMN assigns vertices onM to vertices on N .
Let � M be the matrix containing all the basis functions � M

i , the discrete functional map
reads:

CMN = � >
N AN PMN � M : (4.2)

Representing a given vertex-to-vertex assignment by a functional map is usually done
in two steps:

1. Compute a basis (or an orthonormal family) of piecewise linear functions onM
and N ,

2. Use Equation (4.2) to obtain CMN .

This representation is �exible as the choice of basis can be adapted to each application.
However, this is still an ongoing research topic. Some authors for example suggest a
compactly supported basis [87]. In this thesis, we will mostly focus on the popular choice
of the basis of eigenfunctions of the Laplace-Beltrami operator.
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Discrete properties

Every matrix does not represent a valid functional map since it has to satisfy Proposition
4.1.1, namely the composition of a product should be a product of the compositions.
In fact, the product of two piecewise linear functions is not piecewise linear. So, this
property cannot hold exactly when considering classic Finite Elements. This problem
will not be discussed further in this thesis even thought it could improve the operator
representation of mappings.

Nevertheless many of the other properties are still satis�ed exactly at the condition
that the basis span the entire space of discrete functions, namely� > A� = I and
�� > A = I . Using Equation (4.2) the following operations hold:

� A composition of mappings becomes a multiplication of matrices as suggested by
Proposition 4.1.2:

CP N CMP = (� >
N AN PP N � P )(� >

P AP PMP � M )

= � >
N AN PP N PMP � M

= CMN :

� Proposition 4.1.3 remains true sinceCNM = � >
M AM P � 1

MN � N is the inverse of the
functional map CMN = � >

N AN PMN � M .

� Theorem 4.1.4 is still valid in a discrete sense if the meshes have same connectivity.

Proposition 7.4.1 in Chapter 7 states that the mass matrix uniquely determines the
triangle areas. SoC>

MN CMN is the identity matrix if and only if M and N have
same triangle areas.

The main theorem in [137] proves that the sti�ness matrix uniquely de�nes the
edge length up to global scaling. This strong result is mostly due to the rigidity
of triangle meshes. In particular,CMN

�
� >

M WM � M
�

=
�
� >

N WN � N
�

CMN if and
only if M and N have identical triangle inner angles.

In practice a basis spanning the full space is not desirable as it requiresjX j func-
tions when shapes can contain several dozen thousand vertices. Besides, if the discrete
manifolds have di�erent connectivity, an accuracy up to a triangle is not relevant in
many applications. It is often a better choice to use a small (compared to the number of
vertices) family of smooth functions so the functional map is resilient to discretization
noise.

Reduced basis

The eigenfunctions of the Laplace-Beltrami operator form a basis of the space of square-
integrable functions. Moreover, they are naturally ordered according to their smoothness
since they are minimizers of the Dirichlet's energy [125].

Therefore, we set our reduced basis to be the �rstk eigenfunctions of the Laplace-
Beltrami operator. We are not considering the full function space but only a reduced space
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of smooth functions. This way we are compressing the information into akN � kM matrix
by keeping only the low frequency structure of the di�eomorphism. Nevertheless, this
basis has several interesting properties regarding the representation of nearly isometric
deformations. Since the Laplacian commutes with isometries, nearly isometric maps are
represented by nearly diagonal matrices. Furthermore, a recent paper by Rodolà and al.
[101] remarks that even when large parts of a shape are missing the functional map has a
slanted-diagonal structure, making this representation useful for challenging problems
such as partial matching. Figure4.1 shows examples of functional maps in three cases.
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Figure 4.1 � The �rst two rows represent three maps via color correspondence and the
third their corresponding functional maps computed with 40 eigenfunctions. Three test
cases are organized in three columns: a nearly isometric map is represented by an almost
diagonal functional map, a partial matching becomes a slanted-diagonal matrix and a
non-isometric (but almost conformal) map which do not exhibit a very sparse structure.

Regarding algebraic operations on functional maps, all the discrete properties men-
tioned above still hold but only in a reduced space of functions. In the reduced basis
of the LB eigenfunctions the functional map acts as a low-pass �lter onM and on N .
Two failure cases can be identi�ed depending onkN and kM the size of the bases. First
scenario, the function do not lie in the span of� M so the projection onto the basis
distorts the function. The projection, however, is well transferred toN . Second scenario,
f is represented by the family� M but the transfer induces high frequency distortions
lying outside of the span of� N . IncreasingkN solves this issue. Figure4.2 illustrates
the e�ect of varying kM and kN on function transfer. In conclusion, a function f is
accurately transferred if f and PMN f are well represented in their respective basis. We
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can characterize this subspace by:
n

f 2 RjX j : f 2 span(� M ); PMN f 2 span(� N )
o

:

The problem of identifying the subspace of stable functions is tackled in Chapter5.

k M = 5 k M = 50 k M = 100

k
N

=
5

k
N

=
50

k
N

=
10

0

kM

k N

f f � ' C MN f wrt kN ; kM L 2 relative error

Figure 4.2 � Left: The function f on M and its exact transfer onN . Middle: Representa-
tion of the function CMN f on the shapeN when the functional map CMN is computed
for varying kN and kM . Right: The relative error kf � ' � CMN f kN

L 2 =kf � ' kN
L 2 for

various values ofkN and kM . This experiment highlights the e�ect of basis sizeskN and
kM on the transfer of a function by a functional map. WhenkM < k N the function is
badly represented onM but the projection is well transferred to N . When kN < k M the
function is well represented onM but the projection is badly transferred to N .

Other problems in the functional map framework

In this section we have only considered the problem of representing a given mapping
between surfaces. The study of approximating an unknown functional map with minimal
distortion using functional correspondences is covered in Chapter5.

One of the challenge in this framework is to convert a functional map into a point-to-
point map used in many applications. In [88] the authors propose a way to solve this
problem by transferring highly localized functions. However, those functions are not well
represented in a reduced basis introducing noise and destroying the smoothness of the
recovered map. We propose a way to address this issue in Chapter6.

4.2 Shape Di�erences

Characterization and operations on deformations are a fundamental tools in geometry
processing with many applications, including deformation design, shape search and the
organization of shape collections. The composition operator introduced in the previous
section provides a lot of information on the intrinsic structure of a di�eomorphism as
shown in Theorem4.1.4. However, composition is not a convenient tool to compare
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mappings or metrics. For example, ifM and N1; N2 are shapes, by de�nition the
functional maps ending points are respectivelyL 2(N1) and L 2(N2). As such it seems
di�cult to compare the deformation between M and N1 with the deformation from M to
N2 without a map linking N1 to N2. Moreover, an isometric deformation does not change
the metric but is represented by a functional map di�erent from identity. Thus, we need
a representation of intrinsic deformation invariant under composition with isometries.

The shape di�erences address some of these issues. They are operators acting on
functions and representing the intrinsic distortion induced by a given functional map.
They are also symmetric allowing comparison between deformations and invariant under
isometric composition.

4.2.1 De�nition

Introduced by [106], the shape di�erence operators describe a shape deformation by
considering the change of two inner products between functionshf; g i M

L 2 :=
R

M fg d�
and hf; g i M

H 1
0

:=
R

M g(r f; r g) d� . Namely, given a pair of shapesM; N and a functional

map C' : L 2(M ) ! L 2(N ) the authors introduce the area-based and conformal shape
di�erence operators DA : L 2(M ) ! L 2(M ) and DC : H 1

0 (M ) ! H 1
0 (M ) respectively, as

linear operators acting on (and producing) real-valued functions onM implicitly via the
following equations:

hf; D A (g)i M
L 2 := hC' (f ); C' (g)i N

L 2 8f; g 2 L 2(M )

hf; D C (g)i M
H 1

0
:= hC' (f ); C' (g)i N

H 1
0

8f; g 2 H 1
0 (M ): (4.3)

By H 1
0 (M ) we denote the function space of square integrable functions withL 2(M )

gradients and zero integrals:

H 1
0 (M ) =

�
f 2 L 2(M ) :

Z

M
kr f k2 d� < + 1 ;

Z

M
f d� = 0

�
:

This space seems natural when studying the conformal shape di�erence sinceDC

maps any constant function to zero. When equipped of the scalar producth:; :i L 2 + h:; :i H 1
0
,

H 1
0 is a Hilbert space.

The bilinear form (f; g ) 7! hf; g i M
H 1

0
is continuous and coercive thanks to the Wirtinger's

inequality [20]. Moreover, for a giveng in H 1
0 (M ) the linear form f 7! hC' (f ); C' (g)i N

H 1
0

is continuous assuming thatC' represents a composition with a di�eomorphism. All
conditions of the Lax-Milgram theorem [20] are satis�ed therefore there exists a unique
DC (g) satisfying De�nition 4.3. The existence and uniqueness of the area-based shape
di�erence are guaranteed by the same argument.

It is important to note that the de�nition of shape di�erences does not require a
composition operator but merely a functional map (i.e. a linear map between function
spaces). The properties derived in the following, however, assumes there exists an
underlying di�eomorphism ' : N ! M .
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4.2.2 Fundamental Properties

As shown by [106] those operators fully characterize intrinsic deformations. More precisely,
the following equivalences link properties of the mapping to properties of the operators.

Theorem 4.2.1 Given a pair of surfacesM; N and a di�eomorphism ' : N ! M with
the functional representationC' , the followings hold for all functionsf in H 1

0 (M ):

� ' is area-preserving if and only ifDA (f ) = f ,

� ' is conformal if and only if DC (f ) = f ,

� ' is an isometry if and only if DA (f ) = f and DC (f ) = f .

The last item is a direct consequence of the �rst two. The �rst item has already been
proven by Theorem4.1.4. Besides Equation(4.1) provides a direct representation of the
operator DA :

DA (f ) =

s
det(( ' � 1)?gN )

det(gM )
f; 8f 2 L 2(M ): (4.4)

The proof of the second item requires a technical lemma proven in [109] and reproduced
here has it will be useful later on (in particular in Chapter 8). Lemma 4.2.2 generalizes
the fundamental lemma of calculus of variations to symmetric tensors.

Lemma 4.2.2 Let (M; g) be a Riemannian manifold (possibly with Lipschitz boundary)
and let A be a di�erentiable symmetric 2-tensor �eld on M . Then A is the null tensor if
and only if:

Z

M
g(r f; A r g) d� g = 0 ; 8f; g 2 C1 (M ):

The proof of the last point follows after a few computations.

Proof of Theorem 4.2.1
Let gN be the metric on N and let g? denote (' � 1)?gN the pullback metric on M .

Using Lemma3.1.6 and the de�nition of the pullback metric, we have:

hC' (f ); C' (g)i N
H 1

0
=

Z

N
gN

p

�
d' � 1

' (p) (r g? f ) ; d' � 1
' (p) (r g? g)

�
d� g(p)

=
Z

M
gN

' � 1 (q)

�
d' � 1

q (r g? f ) ; d' � 1
q (r g? g)

�
d� g? (q)

=
Z

M
g? (r g? f; r g? g) d� g? :
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The scalar product g? (r g? f; r g? g) is rearranged to gM
�
r gM f; A r gM g

�
where

A ij = ( g?) ik gkj and gM is the metric on M . The de�nition of the pushforward measure
leads to the equation:

hC' (f ); C' (g)i N
H 1

0
=

Z

M
gM �

r gM f; � A r gM g
�

d� gM ; � =

s
det(g?)
det(gM )

: (4.5)

We are now ready to prove the equivalence.

� Suppose that ' is conformal then gM = � g?. In Equation (4.5) it implies that
� A ij = � ij so DC is the identity operator.

� Suppose thatDC is identity then using De�nition (4.3) and Equation (4.5) lead to:

Z

M
gM �

r gM f; (Id � � A )r gM g
�

d� gN = 0 ; 8f; g:

Thanks to Lemma 4.2.2 we conclude thatgM = � g?.

�

Shape di�erences are interpreted as ratio of intrinsic quantities. The area-based
operator is the ratio between the local area of the pullback metric with the local area of
the reference metric. A similar explanation applies to the conformal operator, Equation
(4.5) allows us to rewrite De�nition ( 4.3):

Z

M
hr f; r DC (g)i d� =

Z

M
hr f; B r gi d�;

B ij =

s
det(( ' � 1)?gN )

det(gM )
(( ' � 1)?gN ) ik gM

kj : (4.6)

Thus, DC describes the ratio of the pullback metric and the reference metric weighted
by the local area. The tensorB is immune to multiplication of the metric by a positive
function, so this measurement of distortion cannot be used to assess area changes. In
that senseDA and DC are orthogonal and complementary when describing intrinsic
deformations.

The shape di�erence operators are de�ned by the mean of a di�eomorphism but
Equations (4.5) and (4.6) rely only weakly on it. So these operators can be extended to
(and should be thought as) comparison of an arbitrary metric, not necessarily induced by
an embedded surface, with the reference metric.

4.2.3 Algebraic Properties

The results of this section, namely Propositions4.2.3 and 4.2.4, are novel and do not
appear in the original paper [106] or any follow-up papers.
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Linear combination

Unlike composition operator there is no known de�ning property equivalent to Theorem
4.1.1. However, Equations(4.4) and (4.6) provide a sense of the structure of the shape
di�erence space.

Equation (4.4) tells us that the area-based shape di�erence is a multiplication operator
associated to a positive function. Thus multiplying DA by a positive scalar represents a
global scaling of the target metric. Moreover adding two area-based shape di�erences
results in a linear operator representing a shape di�erence. However, the underlying
metric may not correspond to an embedded surface.

For the conformal operator the situation is even simpler. From Equation(4.6) we take
out that this operator is characteristic of a 2-tensor with determinant one. In general
linear combinations do not produce a valid conformal shape di�erence.

Besides those algebraic considerations, the space of shape di�erences is vast as it
represents any metric distortion. At the moment, constraining shape di�erences to
represent the metric of an embedded surface is an open question.

Deformation support

The addition between operators is only possible in case of non-overlapping deformations.
As a consequence of Theorem4.2.1, the set 
 � M supports a deformation represented
by the operator D (area or conformal-based) if and only if:

D (f ) = f; 8f 2 H (M ) : Suppf \ 
 = ? ;

where Suppf = f p 2 M : f (p) 6= 0g denotes the support of a real-valued func-
tion on M . The following proposition speci�es necessary conditions for summation of
deformations.

Proposition 4.2.3 Let D1; D2 : H (M ) ! H (M ) be two shape di�erence operators with
respective supports
 1 and 
 2 such that 
 1 \ 
 2 = ? , then the linear operator:

D+ (f ) = D1(f ) + D2(f ) � f; 8f 2 H (M );

is the shape di�erence operator corresponding to the deformationD i on 
 i and to an
isometry elsewhere.

Proof The proof is restricted to the case of conformal shape di�erence as it is very
similar for the area-based one. Using Equation(4.6) the operator D+ is separated into a
sum of three integrals:

hf; D + (g)i M
H 1

0
=

Z


 1

hr f; B 1r gi d� +
Z


 2

hr f; B 2r gi d� +
Z


 c
1 [ 
 c

2

hr f; r gi d�:

Since the support of these integrals are disjoint they can be written as a single integral:

hf; D + (g)i M
H 1

0
=

Z

M
hr f; B r gi d�;
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where B is the smooth tensor onM de�ned by:

B (p) =

8
<

:

B 1(p); p 2 
 1

B 2(p); p 2 
 2

Id(p); p 2 
 c
1 [ 
 c

2:

�

Composition of di�eomorphisms

Another possible operation on shape di�erence operators is the composition of two
(possibly overlapping) deformations. As the property introduced here applied to both
types of operators we will denoteD the operator corresponding to eitherDA or DC and
H the function spaceL 2 or H 1

0 .
The following proposition was proved in a restricted discrete setting for one operator

in the original article [106].

N M

P

' � �

� '

L2(N ) L2(M )

L2(P)

C' � �

C� C'

Figure 4.3 � Left: the point-to-point maps �; ' linking manifolds M; N; P . Right: dual
representation as functional maps.

Proposition 4.2.4 Assuming that D ' : H (M ) ! H (M ) represents the distortion of
the metric between the surfacesM and P induced by the di�eomorphism ' : P ! M
and D � : H (P) ! H (P) the distortion between the surfacesP and N linked through
� : N ! P (see Figure4.3).

The distortion D ' � � : H (M ) ! H (M ) associated to' � � : N ! M is given by:

D ' � � = D ' � C � 1
' � D � � C' :

Proof The proof relies only on De�nition ( 4.3). Let f; g be a pair functions in H (M ):
D

f; D ' � � (g)
EM

H
= hC' � � (f ); C' � � (g)i N

H

=
D

C' (f ); D � (C' (g))
EP

H

=
D

f; D '
�

C � 1
'

�
D � (C' (g))

��E M

H
:

�
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Proposition 4.2.4 con�rms the intuition that the shape di�erences are invariant under
composition with isometries. Suppose that the di�eomorphism� is an isometry then
Theorem 4.2.1 tells us that D � is the identity operator on H (P). Using the composition
formula we conclude that the distortion of the composition is equal to the distortion
induced by ' alone:

D ' � � = D ' � C � 1
' � D � � C' = D ' :

The shape di�erence operators associated to the inverse mapping' � 1 can be computed
from D ' using the composition formula: D ' � 1 � ' = D ' � 1

� C' � D ' � C � 1
' . Formally, we

have:

D ' � 1
= C' � (D ' ) � 1 � C � 1

' :

Distortion pullback

An attractive property of this framework is the possibility to transport a distortion from a
shape to another. Given a shape di�erence on shapeP and a functional map betweenM
and P, we would like to describe an equivalent distortion of the metric onM . Intuitively,
the operator D ? = C � 1

' � D � � C' is a good candidate for the pullback of the shape
di�erence D � encoding the metric deformation fromgP to (� � 1)?gN . It follows from
Proposition 4.2.4 that D ? is characteristic of the same distortion but after a pullback on
M , namely it compares(' � 1)?gP with (( ' � � ) � 1)?gN .

This operator pullback suggested various experiments in the original shape di�erence
article [106]. For example the authors �nd similar deformations across di�erent shapes
collections. Given a collection of cats in di�erent positions the pullback shape di�erences
are used to identify similar poses in a collection of lions.

4.2.4 Discrete Shape Di�erences

In the discrete setting, a functional map is de�ned by Equation (4.2). Thus, given
orthonormal bases� M and � N , De�nition ( 4.3) yields the matrices DA ; DC 2 RkM :

DA = C>
MN CMN ;

DC =
�

� >
M WM � M

� � 1
C>

MN

�
� >

N WN � N

�
CMN :

We recover the interpretation of shape di�erences as ratios. The area-based shape
di�erence is the ratio between mass matrices and the conformal operator compares
sti�ness matrices.

When the basis is restricted to the �rst eigenfunctions of the Laplacian, the conformal
shape di�erence has a slightly simpler expression ([106] Section 5 Option 2):

DC = � � 1
M C>

MN � N CMN ;

where � is the diagonal matrix storing the eigenvalues of the Laplacian.
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Source Deformed Area Conformal

Figure 4.4 � Most distorted functions corresponding to the area and conformal-based
shape di�erences for a nearly isometric deformation of the armadillo.

When represented by matrices the shape di�erences can be analyzed by standard
linear algebra tools. For example, the eigenvalues o�er a quanti�cation of the distortion.
According to Theorem 4.2.1, an eigenvalue close to one is associated to an eigenfunction
highlighting isometric areas. Figure4.4 shows the most distorted function in the simple
deformation scenario.

Discrete properties

Theorem 4.2.1 is satis�ed by the discretization. More precisely, in Chapter7, we show
that one can recover the discrete metric (edge lengths) from both shape di�erences by
solving two linear systems of equations. In fact, this chapter proposes a solution to the
broader problem of �nding embedded surfaces from operators.

The algebraic operations of addition and composition described by Propositions4.2.3
and 4.2.4 hold true for a smooth subspace of functions. This is a direct consequence of
Section 4.1.2 showing that the algebraic properties of functional maps are preserved after
discretization.

As for functional maps, basis reduction can generate artifacts depending on the basis
sizeskM on M and kN on N . A low kN leads to a bad representation of hight frequency
distortions since some functions in� M are not represented in� N after transfer. So the
shape di�erences unjustly map to zero some functions. It follows that eigenvalues (and
eigenfunctions) lower the one are less reliable than eigenvalues greater than one. A low
kM implies that � M contains only low frequency functions so the shape di�erences tend
to smooth hight frequency deformation. Overall Figure4.5 shows that a tradeo� has to
be found betweenkM and kN to represent correctly the distortion at a certain level of
detail.

4.3 Organization of the Thesis

The rest of the thesis is organized in two parts. The �rst part is dedicated to the
computation and analysis of functional maps, in particular applied to shape matching
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Figure 4.5 � Left: The function f on M and its image by the conformal shape di�erence
de�ned between the source and target meshes. Middle: Representation of the function
DC (f ) when the functional map is computed for varyingkN and kM . Right: The relative
error between DC (f ) computed with a functional map for various values ofkN and
kM and the exact conformal shape di�erence. This experiment highlights the e�ect of
basis sizeskN and kM on the conformal shape di�erence operator. WhenkM < k N the
shape di�erence cannot represent high frequency distortion. WhenkN < k M the shape
di�erence may represent parasite distortion due to the troncation of the basis.

problems. In Chapter 4 we have assumed that the underlying di�eomorphism was
given as a point-to-point correspondence so the functional map is an approximation of
a composition operator. Chapter5 tackles the converse problem: given two shapes we
try to compute the functional map that �ts a particular deformation model, namely the
one that minimizes the intrinsic distortion. For this purpose we provide a supervised
learning algorithm able to select features and identify functions that jointly produce
the best functional map. To complete our tour on shape matching problems we move
on to converting a functional map to a point-to-point representation. Although this
problem was already considered in the original article, it gave no guarantee of recovering a
continuous map. Chapter6 suggests a solution based on repairing a given di�eomorphism
by a vector �eld �ow.

The second part explore intrinsic deformation through the prism of shape di�erences.
As proven in the previous section shape di�erences completely characterize the metric in
the continuous setting. Chapter 7 expents the analysis to triangular meshes by proposing
an algorithm to recover edge lengths from operators. Furthermore, shape di�erences are
blind to some curvature deformations hence giving an incomplete description of embedded
surfaces. A possible solution explored in Chapter7 is to encode the metric of an o�set
surface leading to a coordinate free description of triangular meshes by four operators.

Shape di�erence operators were introduced for analysis purposes. However, their
interesting algebraic structure makes them suitable for exploration and synthesis of new
deformations. In Chapter 7 a �rst step is made in the direction of deforming shapes using
an operator-based representation with one drawback: to obtain embedded surfaces we
need �rst to extract the metric information and then reconstruct the mesh by solving an
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Multidimensional scaling problem which is computationally expensive and error prone.
Chapter 8 looks at this problem from another angle and studies a characterization of
deformation �elds up to isometric deformation. For this, we �rst introduce a uni�ed shape
di�erence that fully characterizes all intrinsic changes. Then we consider the operator
associated to an in�nitesimal displacement, and characterize deformation �elds by the
distortion they induce on the metric. Interestingly these operators enjoy similar properties
as shape di�erences (composition, transfer), which enable signi�cantly simpler deformation
reconstruction compared to the previous method, and enable novel deformation synthesis
applications. We provide theoretical proofs of informativeness in both continuous and
discrete settings.



Part I

Shape to Deformation

This �rst part is dedicated to the computation and analysis of functional maps.
Namely, we use feature selection to improve solutions of shape matching problems in
Chapter 5 and then propose an algorithm to convert functional maps to continuous
point-to-point maps in Chapter 6.





Chapter 5

Supervised Descriptor Learning for
Non-Rigid Shape Matching

In this chapter, we present a novel method for computing correspondences between
pairs of non-rigid shapes. Unlike the majority of existing techniques that assume a
deformation model, such as intrinsic isometries,a priori and use a pre-de�ned set
of point or part descriptors, we consider the problem oflearning a correspondence
model given a collection of reference pairs with known mappings between them. Our
formulation is purely intrinsic and does not rely on a consistent parametrization or
spatial positions of vertices on the shapes. Instead, we consider the problem of �nding
the optimal set of descriptors that can be jointly used to reproduce the given reference
maps. We show how this problem can be formalized and solved for e�ciently by
using the recently proposed functional maps framework. Moreover, we demonstrate
how to extract the functional subspaces that can be mapped reliably across shapes.
This gives us a way to not only obtain better functional correspondences, but also to
associate a con�dence value to the di�erent parts of the mappings. We demonstrate
the e�ciency and usefulness of the proposed approach on a variety of challenging
shape matching tasks.

5.1 Introduction

Finding high quality correspondences is a key component in many tasks including
statistical shape analysis [49], deformation transfer [118] and interpolation (morphing)
[61] among others. While a number of e�cient techniques have been proposed to address
the problem of rigid alignment [120], the problem of general non-rigid shape matching
remains di�cult.
Most existing methods for �nding correspondences between non-rigid shapes rely on ana
priori deformation model, which speci�es the space of �reasonable� maps between shapes.
Perhaps the most popular and widely used such model is that of approximate intrinsic
isometries [22, 74], where the mapping is assumed to preserve geodesic distances between
all pairs of points on the shapes. A more general possibility is to consider conformal
deformations, which are only assumed to preserve angles [69, 62] or to parameterize the
space of possible maps using a �xed deformation model [138]. Although these techniques
can produce good results when the deformation satis�es thea priori model, they can
fail badly as soon as even moderate deviations from the model are introduced. This
is especially critical since many natural deformations, such as articulated motion of
humans or animals are known to induce potentially signi�cant geodesic distortion [106].
Incorporating the possibility for such distortion into a deformation model is challenging
especially using a purely axiomatic (theoretical) approach.
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Rather than trying to devise a theoretical deformation model capable of adapting to
known deformations, several communities have tackled this challenge by using a data-
driven approach, where the space of �reasonable� maps or deformations is learned from
a set of examples, e.g. [29]. Since obtaining example deformations is often signi�cantly
easier than devising a uni�ed theoretical deformation model, such an approach allows the
resulting techniques to remain �exible yet e�cient in the particular settings where they
are applied.
Most data-driven approaches for devising a deformation model, however, rely heavily
on a consistent parametrization of the deformation domain (e.g. on a �xed grid in
Euclidean space), and perform statistical analysis on the positions of vertices of the
shapes [30, 14, 37, 43]. When computing correspondences between pairs of surfaces in
3D, such parametrization is often unavailable and moreover, shapes can undergo severe
deformations which are di�cult to capture using purely extrinsic approaches.
In this chapter, we propose a purely intrinsic method for exploiting prior correspondence
information between pairs of shapes to �nd better correspondences between a reference
shape and a new previously unseen instance. Rather than doing the learning over, e.g.,
the positions of the vertices on the shapes, we propose to �nd the optimal set ofpoint
descriptors that can be jointly used to reproduce the given reference maps. While such
an optimization is, in general, very complicated, since even to evaluate how well the
descriptors can reproduce a given map would require a full solution of the shape matching
problem, we show how this problem can be formalized and solved for e�ciently by using
the recently proposed functional maps framework [88]. Moreover, we demonstrate how
to extract the functional subspaces that can be mapped reliably across shapes. This
gives us a way to not only obtain better functional correspondences, but also to associate
a con�dence value to the di�erent parts of the mappings. Our approach is also quite
general since it can be used as a preprocessing step of other methods using functional
maps [90, 54, 6] in order to improve the quality of the results and help to handle di�cult
deformation. Note that in this chapter we focus on the shape matching problem which is
the most developed application of the functional maps.

5.1.1 Related Work

Non-rigid shape matching is a very-well developed area and its complete overview is
beyond the scope of this chapter (see, e.g., [21, 127] for recent surveys of this �eld).
We therefore concentrate on the work directly related to ours, namely near-isometric
shape matching with special emphasis on approaches that utilise prior knowledge for
establishing correspondences between pairs of shapes.
The vast majority of techniques for non-rigid shape matching implicitly make use of a
deformation model for �nding correspondences between geometric shapes. Perhaps the
most common model in the context of intrinsic (i.e., not relying on vertex positions and
not assuming approximate alignment) approaches is approximate isometries, introduced
by Bronstein et al. [22] and Mémoli [74]. This model has been used by a large number of
methods, (e.g., [55, 123, 89, 107, 88] among many others) that all assume that the sought
correspondences must approximately preserve pairwise geodesic distances. Another set of
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approaches is based on a more relaxed model, conformal mappings, used by, e.g., [69, 62]
where only angles are assumed to be preserved. Other techniques, such as the one used
by Zhang et al. [138] explicitly deform a shape using a �xed deformation model to �nd
correspondences between non-rigid shapes.
All of these approaches use a model givena priori to �nd correspondences, which can be
problematic if the real deformations do not agree with the given model. Interestingly,
it has recently been observed [106] that even articulated motion of humans can induce
noticeable isometric distortion, which could explain some of the di�culties encountered
by previously proposed techniques.
In contrast, other works have proposed tolearn an appropriate deformation model from
a set of examples, and then use this model for shape matching. Perhaps the best-known
example of this approach are Active Shape and Active Appearance Models [29, 30] and
their variants (see, e.g., [43]) used widely in Computer Vision. In a similar vein, techniques
in Statistical Shape Analysis [37] use the distribution of positions of pre-speci�ed landmark
points in 3D to learn a statistical deformation model over which inference can be made.
Related techniques are commonly used in medical imaging and Morphometrics [14] and in
Geometry Processing communities, e.g. [4, 49] among many others. However, all of these
methods assume the existence of a common domain over which learning can be made, and
which most often is done using vertex coordinates of either landmark points or all points
on a �xed reference shape. In the context of intrinsic shape matching, where shapes lack
labeled landmark points and can undergo severe deformations, vertex coordinates are
often not relevant, limiting the applicability of such techniques.
Rather than relying on vertex positions, recent methods have considered using derived
properties such as point or triangledescriptors for learning. Thus, Kalogerakis et al.
[58] and Van Kaick et al. [126] have proposed using a set of example shapes to train
classi�ers for part segmentation and labeling, which can then be used to establish part-
level correspondences. Similarly, Chen et al. [26] explore the predictive power of various
descriptors for detecting distinctive landmark (schelling) points identi�ed by users. These
methods, while similar to ours in learning on the level of descriptors do not, however,
speci�cally address the shape matching problem.
Perhaps most closely related to ours are recent works by Litman et al. [71] and Rodolà et
al. [100], where the authors use a set of examples to learn the most informative descriptors
that are used directly in the context of shape matching. Our approach is fundamentally
di�erent, however, since rather than trying to identify descriptors that can distinguish
di�erent points, we propose to �nd the optimal descriptor set that can be used tojointly
produce the entire map across shapes. We thus avoid the problem of obtaining consistent
correspondences present in these approaches (and obtained during post-processing), since
consistency is incorporated directly in the learning stage. Crucially, we use the recently
proposed functional map representation [88] that allows us to formulate the learning
problem purely intrinsically, while permitting to directly control and optimize for the
in�uence of descriptors on the quality of the �nal map.

Goals Given a collection of (training) shapes with known correspondences our goal is
to identify the most informative descriptor set that can be used to solve the non-rigid
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shape matching problem on new (test) instances. Besides we want to learn where are the
most stable correspondences.

5.2 Consistent Functional Maps

Our method is based on the functional map representation introduced in [88]. In this
section, we give a brief overview of the representation and the method used in [88] to
construct a functional map for a given pair of shapes.
While our method is general, throughout the chapter we assume that all shapes are
represented as triangle meshes, and all functions are expressed as vectors in the basis of
the eigenfunctions of the Laplace-Beltrami operator. This basis needs to be computed
beforehand on each shape. The objective is to output a uniquely de�ned functional map.

5.2.1 Functional Map Representation

The functional map representation is based on the observation that given two surfaces
M 0 and M i ; a point-to-point map ' i : M i ! M 0 induces a map between function spaces
Ci : L 2(M 0) ! L 2(M i ), where L 2(M ) is the set of square integrable functions de�ned on
the surfaceM . The functional map Ci is de�ned by composition with ' i as Ci f = f � ' i .
The operator Ci is a linear transformation and given a basis it can be represented as a
matrix in the discrete setting. This matrix can be easily computed if the map' is known.
The basic method described in [88] approximates the functional map Ci using a set of
linear constraints. The �rst type of constraints is given by a set of pairs of functions,
which we refer to below as �probe functions�, that are expected to be preserved by the
deformation. The second is a regularization term coming from the deformation model.
This leads to the least squares problem:

X i = arg min
C

kCG0 � Gi k2
F + � kC � W k2

F ; (5.1)

where k:kF denotes the Frobenius norm. The use and meaning of each term will be
detailed in the following paragraphs.

Probe Functions

The probe functions can be represented by two matricesG0 and Gi , where each pair
of corresponding columns represents a pair of functionsg0; gi such that Ci g0 � gi is
expected to hold for the unknownCi : In practice we normalize the corresponding column
so that each column has the sameL 2 norm and g0; gi contain the coe�cients of the probe
functions in a given basis (e.g. LB eigenfunctions) . Thus, the functional map should
verify CG0 � Gi . In the context of isometric matching the probe functions are given by
classical descriptors, such as the HKS [119], or WKS [5].
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Regularization

In addition to the probe function constraints, the authors of [88] have proposed a
regularization using the assumption that the deformation is nearly isometric. This
assumption is equivalent to the commutativity of Ci with the Laplace-Beltrami operator,
namely Ci � 0 = � i Ci . In the discrete setting the eigenfunctions of the Laplace-Beltrami
operator are used as function basis. Thus, this equation can be written asCi � W = 0
where �� " denotes the component-wise multiplication and the matrix W is de�ned by
Wkl = � i

k � � 0
l with � i

k the kth eigenvalue of the Laplace-Beltrami operator on the surface
M i .
Other assumptions on the deformation model can be used. For example in [65] the
authors regularize the shape mathcing problem by imposing that the map should be
area-preserving implying that the matricesCi are a-orthonormal as explained in Chapter4.
However, this assumption is weaker and leads to a non-convex problem more challenging
to incorporate in our supervised learning algorithm.

Uniqueness of the solution. In practice the eigenvalues of the Laplace-Beltrami
operator of two di�erent shapes are always numerically di�erent except for the zero
eigenvalues. Thus, the only zero coe�cient ofW is W11 which weights the coe�cient C11

of the functional map. Since the corresponding eigenfunctions are constant,C11 maps
the constant functions of L 2(M 0) into the constant functions of L 2(M i ). The coe�cient
C11 should always be one. Therefore, sinceW is non zero everywhere, the solution of
(5.1) is unique without any assumptions onG0.
However, the probe functionsG0 and Gi are in practice composed of symmetric functions,
so we cannot hope to have information about the antisymmetric functions. Nevertheless,
the problem (5.1) still has a unique solution that might simply map the antisymmetric
functions poorly.

5.2.2 Main Challenge

In the original article [ 88] the probe functions are assumed to be given, so how to
choose them was not discussed. As mentioned in introduction, this choice can already be
challenging. For example in Figure5.1a the smoothed Gaussian curvature computed on
two di�erent meshes provides a decent functional correspondence. At the same time, in
Figure 5.1b the logarithm of the Gaussian curvature, while intrinsic in theory, does not
result in a useful correspondence.
One option to identify the best descriptors would be to simply �nd the most stable
probe functions in the example (training) set, by learning spectral descriptors [71] for
example. However, some descriptors (e.g., the constant function) can be stable without
at all being informative. More importantly, however, as can be seen from Equation (5.1),
the descriptors in�uence the resulting functional mapsX i jointly . As an example, if a
correspondence is described by several probe functions the resulting functional map will
tend to respect this constraint while other meaningful correspondences will be arbitrarily
put aside due to their low redundancy. So picking the best descriptors independently will
not necessarily result in high quality maps.
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(a) Smoothed Gaussian curvature. (b) Logarithm of the absolute value of Gaussian
Curvature.

Figure 5.1 � Probe functions computed independently on two shapes. One carries
meaningful information (a) and the other is misleading (b).

Thus, the key idea developed in this chapter is to introduce weights for probe functions,
over which learning can be done. As explained below, the probe function constraint will be
replaced by: kCG0D � Gi Dk2

F where D is an unknown diagonal matrix of weights.. The
weights D will be optimized so that the weighted descriptors are jointly as informative as
possible. This will allow us to improve the quality of the functional maps and to extract
the most stable functional subspaces.

5.2.3 Algorithm Outline

We propose a two-step method described in following two sections and summarized in
Figure 5.2. Given collection of shapes, we learn the most informative set of weightsD by
solving an optimization problem. We then extract a functional basis whose components
are ordered by quality of correspondence. When given a previously unseen shape, we use
this information to compute a high-quality functional map using the optimal weights and
to discard the badly mapped functions by reducing the functional space.

5.3 Selection of the Best Functional Correspondences

The idea developed here is to assign a weight to each pair of probe functions. These
weights can then be tuned according to their consistency in the matching. Sincea priori
there is no reason to choose one probe function over another, we propose to learn the
optimal weights given a training set of shapes.
As input we need a set ofn triangulated meshes with known correspondences representing
the same object undergoing a set of deformations. Our main assumption is that the
optimal weights on the probe functions should be stable across the shapes in the collection.
Thus, if we are given a new deformation of the same shape, the learned weight should
also select the consistent probe functions. The output of our algorithm will be a set of
weights for the probe functions, which, as we will show below, can then be used to �nd
correspondences between new, unseen shape instances.



5.3. Selection of the Best Functional Correspondences 55

Gi YD ?Probe
Functions

Weight Op-
timization

Basis
Learning

Training
Shapes

D ?

Learning

GN +1 X p
N +1X N +1 (D ?)Probe

Functions
Weighted
Functional

Map

Space
Reduction

New
Shape

Testing

CiFunctional
Maps

Learnt
Weight

X i (D ?)

CiFunctional
Maps

Y

Learnt
Basis

Section 4Section 3

Figure 5.2 � Pipeline of the proposed algorithm with the corresponding section. Top:
learning from a given collection. Bottom: processing a new shape.

5.3.1 Weighting the probe functions

As described above, our main idea is to introduce a set of weights on the functional
correspondences to measure their usefulness in �nding a relevant map by using a diagonal
matrix D . For a given weight matrix D , the linear constraints given by the probe functions
becomeCG0D = Gi D. We can then de�ne the function X i (D ), which maps a given
sets of weights to the corresponding functional map, via the solution of the optimization
problem:

X i (D ) = arg min
C

kCG0D � Gi Dk2
F + � kC � W k2

F (5.2)

We choose here to �x� and tune D. We could also try to tune all the parameters (� and
D) but the coe�cients would be de�ned up to a multiplicative constant and C(D) may
no longer be well-de�ned when� is equal to zero.
Since all the functional maps start from the reference shapeM 0, this shape obviously
plays special role in our method. Ideally we would like to take as reference the most
�average� shape of the collection. Following this idea, a simple procedure is presented in
[111] to �nd the shape of the collection which minimizes the average isometric distortion.
However, in our experiments we chose the symmetric standing pose as reference. Note
that an interesting future work would be to use a more complex graph of correspondences
between the shapes of a collection and impose cycle consistency as proposed in [54].
As discussed in the previous sectionX i (D ) is well-de�ned and di�erentiable. Note that
the weight matrix D has a global e�ect on X i (D ), and the problem (5.2) cannot be
separated in terms of the individual components ofD .
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5.3.2 Finding the best weights

Our goal is to �nd a set of weights which will provide a relevant set of functional maps.
The main hypothesis is that the weights should be stable across deformations that belong
to the same category. That is, the most relevant probe functions for the training shape
pairs will also be well-suited to �nd a functional map to new unseen shapes in that
category.

Learning from a given collection. We assume that we are given a collection ofn
nearly isometric deformations of the same object with known functional mapsCi . The
optimal weights D ? are the ones that produce an approximationX i (D ) that is closest to
the ground truth Ci . Thus, we want to solve the following optimization problem:

D ? 2 arg min
D

nX

i =1

kX i (D ) � Ci k; (5.3)

where the sum is over the set of given training mapsCi . Interestingly, the optimization
problem 5.3 is closely related to optimal control problems as the functional mapsX i (D )
are themselves solutions of an optimization problem. Similar setting appears in [71] where
a feedback loop is used to achieve a supervised dictionary learning.
Note that the choice of the norm is important. We would like the functional map X i (D ) to
match Ci over as-large-as possible functional subspace. This is equivalent to minimizing
the rank of the di�erence X i (D ) � Ci . Thus, the important quantities are the singular
values of the di�erencesX i (D ) � Ci .
The naive choice of the squared Frobenius norm is not well suited for our problem since
kAk2

F = k� (A)k2
2 where � (A) is the vector containing the singular values of the matrix

A. Therefore this norm would give a large weight to the biggest singular values, which
correspond to the worst-matched functional subspaces. Among these subspaces is the
space of antisymmetric functions that we have no hope of mapping since the probe
functions give us very little information about this subspace. At the same time, the small
singular values have little in�uence on the minimization whereas they are the ones we
would like to optimize.

The choice of the norm. To tackle the rank minimization problem we choose the
following norm which is a regularization of the l0-norm:

kAk� =
nX

i =1

� (A)2
i

� (A)2
i + �

: (5.4)

Note that the problem (5.3) is di�erentiable as long as k:k� is di�erentiable. The gradient
can be computed e�ciently using the Jacobian matrix of the singular values as expressed in
[92]. In practice, we solve this optimization problem using a standard L-BFGS algorithm.
The choice of� can have a big impact on the results. In fact since we are using a gradient
descent method the big singular values are in the �at part ofk:k� therefore their gradient
will be granted a small weight. On the contrary the singular values in the slope will have
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a big in�uence on the minimization. So with an � too small only a few singular values will
be minimized but with an � too large many singular values will not be well minimized.
We chose the parameter� such that at the initialization 80 percent of the singular values
satisfy � 2

i
� 2

i + � � 0:9.

5.4 Basis function extraction

Since the probe functions can give redundant information in some shape parts and
incomplete information in others, the resulting functional map will map some subspaces
of L 2(M 0) with more con�dence than others. Using a collection of shapes we would like
to extract the most stable subspaces.
For this purpose we propose to use the learned optimal weightsD and the resulting
estimated functional mapsX i (D ) and to identify stably mapped functional subspaces by
comparing X i (D ) to the reference mapsCi : The input here is the same as in the previous
section. We needn shapes with known ground truth functional maps Ci and a set of
consistent probe functionsGi . The output will be Y an orthonormal basis ofL 2(M 0)
ordered with decreasing con�dence. As we demonstrate in Section5.5, in most cases this
order remains stable even for maps that are estimated to previously unseen shapes.

5.4.1 Identifying stable subspaces

The best mapped functiony0 2 L 2(M 0) is such that X i y0 is the closest toCi y0 for all i .
Such function is solution of the problem:

y0 2 arg min
y2 L 2 (M 0 ); kyk=1

nX

i =1

k(X i � Ci )yk2
F

We can then iteratively de�ne an orthonormal basis of L 2(M 0) ordered by decreasing
accuracy in the mapping, by solving the following problem:

yn+1 2 arg min
y2 L 2 (M 0 ); hy;y j i =0 8j � n

nX

i =1

k(X i � Ci )yk2
F

Such a basis can be e�ciently computed by considering the singular value decomposition
of the matrix:

B =

0

@
X 1 � C1

: : :
X n � Cn

1

A = U� V t :

It is well-known that yj must be equal to singular vectors corresponding to thej th

smallest singular value ofB . We can, therefore, form a new orthonormal basisY of
L 2(M 0) composed of the singular vectors ofB by increasing singular values. This allows
us to quantify the quality of the mapping of a functional subspace by looking at the
singular values ofB : the smaller the singular values are, the better the mapping.
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5.4.2 Functional map to a test shape using a reduced basis

Now if we are given a new unseen shapeM n+1 that does not belong to the training
set, we �rst compute its probe functions and store them in a matrix Gn+1 . We then
compute the functional map X n+1 by using the previously solved for weight matrixD .
Finally, since we know that X n+1 contains some badly mapped subspaces (for example the
antisymmetric functions), by using Yp the p �rst column of Y , we compute the reduced
map X p

n+1

X p
n+1 = X n+1 Yp : L 2(M 0) \ L 2(Im( Yp)) ! L 2(M n+1 ):

5.5 Experimental Results

5.5.1 Functional correspondences

The probe functions used to solve the problem in Eq. (5.2) are given by various descriptors
computed on each shape:

� Heat Kernel Signature [119] for multiple values of t

� Wave Kernel Signature [5] at three di�erent energies

� Gaussian and Mean Curvature

� Logarithm of the absolute value of Gaussian and Mean Curvature

� Mesh Saliency [67]

The HKS, WKS and Mesh Saliency are computed at various scales to ensure a wide
variability. We process the curvature functions to obtain a family of descriptors. Since
the curvatures can have very high peaks we take the logarithm of their absolute value to
put more weight on the small curvatures areas. The family of functions is then created
by considering the solution of the Heat Di�usion Equation at various times when each
function is used as initial heat distribution over the surface.

5.5.2 Isometric Shape Matching

TOSCA Dataset. Our method is a tool which can be used in addition to other
methods using the functional framework in order to improve the approximation of the
functional maps. As several methods using functional maps [88, 90] have been shown to
be more e�cient than the state-of-the-art methods, we compare our trained maps to the
baseline �original� method described in [88].
We have evaluated our method on the shape matching benchmark TOSCA [21]. For
each shape class we use all the available shapes for training, except one for testing
and we choose the standard undeformed pose as shapeM 0. We compare three ways of
weighting the probe functions: a single weight for all the functions, a weight per category
of descriptors and one weight per probe function.
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For all the experiments we express all functions in the basis given by the �rst50
eigenfunctions of the Laplace-Beltrami operator. We compute50 probe functions divided
in 9 categories (WKS is divided in three categories with tree di�erent energies) of
descriptors. We take5 functions per category except for the Mesh Saliency where10
functions are computed. Since all the shapes in TOSCA have an internal symmetry, we
cannot hope to recover the entire functional map, and thus Eq. (5.4) is a reasonable
choice of norm.
The experiments follow the pipeline shown in Figure5.2. First we learn the optimal
weights and extract the ordered basis using the training set of shapes. Second we are
given an unknown shape. We use the optimal weights to compute the functional map
and the extracted basis to suppress the badly mapped function subspaces. The L-BFGS
algorithm used to solve the optimization problem in Eq. (5.3) is initialized with the naive
functional maps solution of (5.1) with � = 10 � 3. We compare all of the functional maps
and subspaces computed with our method to the baseline �naive� map, obtained using
the identity matrix D , which correspond to the original method described in [88].

Performance The proposed approach was implemented in MATLAB. Note that the
number of vertices of each shape has no e�ect on the performance since all the functions
are expressed in a reduced functional basis. The most time consuming task in our pipeline
is the training part which requires to solve a di�cult non-linear optimization problem
(5.3). The processing cost is dominated by the computation of the gradient of the energy,
which is done by solving two linear systems for each shape of the training set at each
iteration. However, the contributions of each shape to the gradient are independent so
this can be done in parallel. The learning process with a training set of10 shapes took
about 45 min on an Intel i7 processor without parallelization.

Optimal Weights Figure 5.3 (left) shows the weights obtained after solving the
problem in Eq. (5.3) with a training set composed of 9 cats. To demonstrate the
importance of weighting the probe functions on the quality of the functional map, we
study the distribution of the singular values of the di�erence X n+1 (D ) � Cn+1 for the
di�erent learned weights. In Figure 5.3 (right) each curve depicts the percentage of
singular values below the threshold given on thex-axis. For the perfect map, all singular
values would be zero. As can be seen, the functional maps with the optimal weights have
a bigger concentration of small singular values than the naive functional map. Therefore
there exists a bigger functional subspace on which these functional maps provide a good
approximation of the ground truth. Note that the naive map has no small singular values
and is indeed a very bad approximation.

Stable subspaces From the naive maps and functional maps with optimal weights,
we extract four function bases ordered by decreasing stability. The most stable functions
for each case are shown in Figure5.4. Even the most stable functions from the naive
maps are not mapped very accurately since they are very bad approximation of the
groundtruth. For the other bases the functions seem consistent with the information we
would expect from descriptors as HKS and WKS: a distinction between �at area (body)
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Figure 5.3 � Left: Optimal weights for di�erent strategies after training with 9 cats.
Right: E�ect of the di�erent weights on the distribution of the singular value of the
di�erence X n+1 (D ) � Cn+1 .

and salient area (legs, tail, head). Note that even with only one weight we are able to
retrieve meaningful stable areas.
We also evaluate the extracted functional basis by computing the di�erence between the
ground truth map and our approximation on the unseen shape:

� i = k(X n+1 (D ) � Cn+1 )yi k2; (5.5)

where yi is the i th function of the extracted basis. We compare this error for the three
weighting strategies with the naive map in Figure5.5 (left). The extracted basis was
ordered by decreasing quality on the training set. Note that this order is still preserved
on the unknown shape for the25 �rst functions of the basis. Most of all we are able to
identify the worst mapped subspaces, which can be safely removed.
Despite only estimating the functional maps on a subspace of the full functional space,
we converted them to point-to-point correspondences using the method described in [88].
Figure 5.5 right compares the quality of the point-to-point correspondences before and
after reducing the space dimension from50 to 25. We obtain better results with our
learned weight than with the naive map. For the weighted maps, the reductions perform
better or similarly than the full maps. Thus our basis extraction manages to identify
correctly the most stable subspaces. For the naive map our reduction space strategy fails
as there is no well-mapped subspace.

5.5.3 Non-Isometric Shape Matching

Until now we have assumed the deformation to be nearly isometric. Our algorithm to
�nd the optimal set of probe functions and the extraction of the most stable subspaces do
not contain any explicit knowledge of the type of deformation. In fact, this assumption is
only used to construct the least-squares problem (5.1). Which means that our framework
can be adapted to any kind of deformation model as long as we have a consistent
way of computing a functional map form probe functions and a reduced basis that is
approximately stable.
To test this case, we consider a man or a gorilla and12 women in di�erent poses from
the TOSCA dataset. The ground truth functional maps are computed using a thousand
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(a) (b) (c) (d)

Figure 5.4 � Visualization of the �rst component of the extracted basis. First row: the
reference shape. Second row: transfer using di�erent functional maps: (5.4a) naive map,
(5.4b) unique weight, (5.4c) one weight per category of function, (5.4d) one weight per
functions.

user-picked correspondences. The meshes have di�erent number of vertices and di�erent
connectivity. We train our method on 10 poses and use the last for testing.

The resulting problem is very noisy for two reasons. First, the ground truth functional
maps are computed from sparse correspondences, and therefore can be inaccurate on
some functional subspace. However, the use of a collection of shape for training allows us
to remove this noise. Second, since all the probe functions used are designed for isometric
deformation, few are going to contain useful information.

In order to introduce a wide variability of functions we pre-compute on each shape50
basis functions,310 probe functions and we put a weight on each probe function. The
optimization algorithm is initialized as in the previous experiment. Figure 5.7 (left) shows
the most stable functions learned from the training maps. Each of these functions is
also mapped to a previously unseen pose using the �ground truth� map converted to a
functional map. Note that the functions are badly transferred, due to the incompatibility
of the LB basis and the noise in the input maps. Compare this with Figure5.7 (right)
where the probe functions have been weighted using our method. The stable functions
indicate the head, the hands and the feet to be the most stable area. Besides, these
functions are correctly mapped on a new shape usinga computedfunctional map with
the learned weights. Clearly, the fact that we use a collection helps removing the noise of
the input data. Thus, our method is able to correctly identify the most stable functional
subspace under mild assumptions on the underlying deformation.
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Figure 5.5 � Left: Accuracy of the extracted function basis measured with Eq. (5.5). Right:
Comparison between full map (plain lines) and reduced map (dash lines). Symmetric
correspondences are considered correct.

5.6 Conclusion

In this work, we presented a method to learn the most informative descriptors for non-rigid
shape matching, from a given set of shape correspondences. Our method is purely intrinsic
and allows us to obtain high quality consistent correspondences to new, unseen shapes,
and to identify the most reliably mapped functional subspaces. The approach is �exible
and can potentially be applied to scenarios that lack a good theoretical deformation model,
as demonstrated by meaningful even non isometric deformation. One of its weaknesses is
a relatively high cost for the training due to the non-convex nature of the energy. In the
future, we plan to explore more e�cient optimization strategies.
In this chapter we proposed an e�cient method to compute functional maps. However in
many practical scenarios, one would like to obtain pointwise correspondences between the
given shapes. Thus, in the following chapter we present a method for converting functional
maps to point-to-point correspondences, that enforces continuity in the resulting map.
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Stable functions before training. Stable functions after training.

Figure 5.6 � Visualization of the �rst two components of the extracted basis on the
reference shape (man) then mapped to the unseen shape (woman) using the functional
map without optimization (left) and with the learned weight (right).

Stable functions before training. Stable functions after training.

Figure 5.7 � Visualization of the �rst two components of the extracted basis on the
reference shape (gorilla) then mapped to the unseen shape (woman) using the functional
map without optimization (left) and with the learned weight (right).





Chapter 6

Continuous Matching via Vector
Field Flow

In this chapter we present a new method for non-rigid shape matching designed
to enforce continuity of the resulting correspondence. Our method is based on the
functional map representation, which allows e�cient manipulation and inference but
often fails to provide a continuous point-to-point mapping. We address this problem
by exploiting the connection between the operator representation of mappings and
�ows of vector �elds. In particular, starting from an arbitrary continuous map
between two surfaces we �nd an optimal �ow that makes the �nal correspondence
operator as close as possible to the initial functional map. Our method also helps to
address the symmetric ambiguity problem inherent in many intrinsic correspondence
methods when matching symmetric shapes. We provide practical and theoretical
results showing that our method can be used to obtain an orientation preserving
or reversing map starting from a functional map that represents the mixture of the
two. We also show how this method can be used to improve the quality of maps
produced by existing shape matching methods, and compare the resulting map's
continuity with results obtained by other operator-based techniques.

6.1 Introduction

Computing correspondences or mappings between 3D shapes is one of the key building
blocks in many areas of digital geometry processing, including deformation transfer
[118], shape interpolation (morphing) [61] and statistical shape analysis [49] among many
others. This problem is particularly challenging in the case of shapes undergoing non-rigid
deformations, where the notion of the optimal map may be di�cult to de�ne and optimize
for.
As mentioned in the previous chapter, most of the successful global methods proposed to
�nd correspondences between pairs of non-rigid shapes in the recent years have relied on
a variant of the conformal [131, 69, 62] or fully isometric [22, 123, 107, 88] deformation
models, which assume that either the angles or the geodesic distances between pairs of
points are approximately preserved by the mapping. Although such models have very
appealing theoretical properties, using them directly can often lead to di�cult non-linear,
non-convex optimization problems [22]. Therefore, most recent works in this direction
have concentrated on �nding a low-dimensional parameterization of the space of mappings,
that allows for e�cient optimization techniques (e.g. [ 69, 89, 23]).
Among such low-dimensional representations of the space of correspondences, one par-
ticularly appealing approach is based on the framework of functional maps [88], which
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consider mappings as linear operators between the corresponding function spaces. One of
the weaknesses of the functional map representation, however, is that by representing
mappings as correspondences between functions, it requires an additional post-processing
step to obtain a point-to-point map after computing the optimal functional map. The
basic approach for this conversion step, proposed in [88] and used in most follow-up
works, assigns points by considering the mapping between the corresponding Dirac delta-
functions. Since each delta-function is mapped independently, however, this approach
can (and most often does) introduce signi�cant artifacts and discontinuities into the
�nal point-to-point mapping (see the �rst two columns of Figure 6.6). This makes the
resulting correspondences unusable in settings that require continuity of the mapping,
such as texture transfer. Additional pair-wise terms can potentially be introduced in the
conversion procedure, but this would require creating variables for points with poten-
tially very expensive consistency constraints, which very quickly loses the appeal of the
functional map framework, and reduces to direct optimization.
In this context, we propose a novel method for converting a functional map to a point-to-
point map, which guarantees continuity and does not rely on any pairwise consistency
constraints, making it computationally e�cient. Our main idea is to represent the target
point-to-point map as a composition of an arbitrary continuous map between the two
surfaces and a �ow associated with an unknown vector �eld on one of them. By relying on
the recently proposed operator representation of vector �elds [6], we show that the optimal
vector �eld can be computed e�ciently entirely within the functional map framework, and
the computation of the �nal map requires a single discretization of vector �eld advection.
We also employ the supervised learning technique presented in Chapter5 that not only
helps to obtain better functional maps but also helps to identify functional subspaces
where the map is reliable, which signi�cantly helps to improve the �nal point-to-point
map.
Our method also helps to address the symmetric ambiguity problem inherent in many
intrinsic correspondence methods when matching symmetric shapes. We provide practical
and theoretical results showing that our method can be used to obtain an orientation
preserving or reversing map starting from a functional map that represents the mixture
of the two. Finally, we test our method on a shape collection and show that we can
produce maps that are both continuous and have smaller geodesic distortion compared
to the results obtained by existing techniques.

6.2 Related Work

Below we concentrate on the recent works that are directly related to ours, consisting of
methods for global near-isometric shape matching with special emphasis on approaches
that guarantee the continuity of the resulting maps.
As mentioned in the introduction, most of the existing techniques for non-rigid shape
matching use a deformation model for �nding correspondences between 3D shapes. The
two most common models in this setting include approximate intrinsic isometries and
conformal mappings. The former model, which was originally introduced by Bronstein
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et al. [22] and Mémoli [74] assumes that pairwise geodesic distances are approximately
preserved by the deformation. The �rst works that use this assumption lead to continuous
maps by design, but result in very challenging optimization problems that are di�cult
to solve with more than a small number of points [22]. As a result, many follow-up
techniques have used a relaxed version of the isometric mapping assumption, which
result in more manageable optimization problems, but can often fail to guarantee a low
distortion continuous mapping (e.g., [55, 123, 89, 107, 23]). Furthermore, an additional
challenge in using the isometric model assumption is that exact intrinsic isometries are
extremely rare, both in theory [44] and in practice, since most deformable shapes induce
some amount of distortion.

Another set of successful techniques, which are more widely applicable than those based on
the isometric mapping assumption are those that assume that the mapping is conformal,
and thus only preserves angles (e.g., [48, 131, 56, 69, 62]). These techniques are appealing
because a conformal mapping is known to exist between any pair of shapes with the same
topology, but also because the set of such mappings can be parameterized relatively easily
by using a canonical domain, such as a sphere for genus zero surfaces. Moreover, the
resulting maps obtained by these approaches are typically continuous. At the same time,
conformal mappings can often induce large area distortion, which can result in unrealistic
correspondences between non-rigid shapes, which limits their use signi�cantly.

A recent set of approaches that overcome the above-mentioned challenges to some extent
is based on the functional map representation, introduced in [88]. As mentioned above,
this framework is based on representing maps as linear operators acting on real-valued
functions, and which can be encoded compactly by small-sized matrices in the discrete
setting by using a multi-scale basis. Although the original approach and the follow-up
works, including [65, 96], all implicitly use the isometric deformation assumption, they
have been shown to be very robust to small non-isometric distortions, by extensive use of
strong geometric and linear-algebraic regularization techniques. Moreover, several recent
works have shown how this framework can be used in the supervised learning setting,
where functional maps between unseen shapes can be obtained by exploiting information
present in a small set of example maps including [100] and Chapter 5.

Despite its practical appeal, one of the limitations of the functional map framework, is
that a post-processing step is necessary to convert a functional map to a point-to-point
one. The method used in [88] is based on mapping Dirac delta functions. However as the
points are considered independently the continuity of the resulting map is not ensured.
This problem can be particularly prominent in shapes that contain intrinsic symmetries,
which contain at least two equally good solutions for the optimal functional map, and
the computed one is at best a linear blending of the two.

Note that, closely related to our technique, especially in the use of �ows for computing
continuous maps (di�eomorphisms) is the LDDMM framework [10, 76], widely used in
the medical imaging community. Unlike these methods, however, our approach is purely
intrinsic and operates directly on the surface of the target model, rather than deforming
a template in space.
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Contributions In this chapter we propose a novel method for converting a functional
map into a point-to-point one, which combines the strengths of the functional map
framework that allows to compute low-distortion functional maps, with those of the
conformal mapping approaches, which produce continuous correspondences. Namely,
starting from a map computed using the state-of-the-art conformal-based Blended Intrinsic
Map approach [62], we modify it by computing the optimal vector �eld, whose �ow,
composed with the original map, would result in a functional map as close as possible to
the given one. By using the recently proposed operator representation of vector �elds
[6] and the connection between advection and matrix exponentiation, we propose an
e�cient optimization approach for computing the optimal vector �eld entirely within
the functional map framework. Moreover, we show theoretically that this approach
is guaranteed to produce the correct continuous map when the input functional map
represents a blending of the orientation preserving and reversing maps under certain
assumptions, and demonstrate this projection step in practice.

6.3 Functional Maps Conversion

Once the functional map C is computed following the pipeline proposed in [88] or by
Chapter 5, the goal of the second step is to convert it to a point-to-point map. The
method proposed in [88] and reused in most of the follow-up work consists in �nding
the nearest neighbors of the images of Dirac-delta functions onM by C among the
Dirac functions on N . Namely, for each pointp 2 M , the map: ' (p) is computed as via
' (p) = arg minq jj � q � C� pjj ; where � p is an indicator function on point p, written in the
appropriate basis.

6.3.1 Main Challenges

While both steps described above are very e�cient in practice, the second stage has a
very serious limitation, in that it processes each point independently, meaning that the
�nal map ' may not be (and often is not) continuous. The �rst two columns of Figure
6.6 provide examples of discontinuous maps resulting from this conversion.
To illustrate this phenomenon, let us assume that the target shapeN has an orientation-
reversing (re�ectional) intrinsic symmetry S : N ! N: In this case, there exist at least
two equally good potential solutions for Eq. (5.1) and similarly, each point x may have
several candidate correspondences.
In practice the functional constraints are often not su�cient to resolve symmetric am-
biguities, in large part because most robust descriptors are invariant under intrinsic
isometries. The best we can hope for when approximatingC' is an exact functional map
for symmetric functions (i.e. f , s.t. f � S = f ) and a noisy or zero functional map for
antisymmetric functions (i.e. f � S = � f ). Since our approximations are obtained by
solving a linear system, most likely a solution of the least squares problem will be a linear
blending between the orientation preserving and reversing functional map:

C �
' = (1 � � )C' + �C ' � S (6.1)
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Figure 6.1 � Left: the unknown continuous map ' C is a composition of the input ' 0 and
the �ow � t

V of a vector �eld V . Right: dual representation as functional maps.

Note that � = 0 :5 implies that all antisymmetric functions are mapped to zero.

The conversion ofC to a point-to-point map in itself gives no guaranty of continuity in
the resulting map. Since each Dirac function of a pointx is treated independently it can
be mapped indi�erently to its image ' � 1(x) or to its symmetric alternative S(' � 1(x)) .
Moreover this process is not designed to be stable under the blending noise� , as in (Eq.
6.1).

In this context, the key idea developed in this chapter is to construct a point-to-point
map from the functional map C by following a procedure that guaranteescontinuity,
while being robust to blending noise. In particular, starting from an arbitrary continuous
map betweenM and N , we �nd an optimal vector �eld, whose �ow makes the �nal
correspondence operator as close as possible to the given (e.g., computed) functional map.
Since the �ow of a vector �eld provides a continuous, and orientation-preserving map,
the �nal correspondence is both continuous and has the orientation of the initial map. As
we show below, this can signi�cantly improve the quality of the resulting point-to-point
map, while remaining computationally tractable and avoiding expensive second-order
pairwise constraints.

6.3.2 Algorithm Overview

The algorithm proposed in this chapter takes as input a functional mapC : L 2(M ) !
L 2(N ) and an arbitrary continuous map ' 0 : N ! M . It then outputs a continuous
point-to-point map ' C : N ! M .

As mentioned above, the main idea of our algorithm is to construct the map' C by
composing' 0 with the �ow � t

V of a well-chosen vector �eldV (see Figure6.1). We will
choose the vector �eldV such that � t

V � ' 0 represented as a functional map is as close as
possible to the input C. This can be done e�ciently by representing � t

V as an operator
(Section 6.4) and then solving a small-scale optimization problem as explained in Section
6.5. To �nd the map ' C we solve a system of ODEs with a simple solver (Section6.6).

The main steps of the proposed algorithm are described in Algorithm1.
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Algorithm 1: Functional Map Conversion

Input : C : L 2(M ) ! L 2(N ) functional map
' 0 : N ! M initial continuous map

Output : ' C : C converted into a continuous map
1 Find Optimal Vector �eld (Section 6.5);
2 Convert ' 0 to a functional map C' 0 ;
3 Solve: a? 2 arg min

a2 Rn
kC' 0 exp (

P n
i =1 ai DVi ) � Ck� ;

4 Set: V :=
P n

i =1 a?
i DVi ;

5 Compute ' C (Section 6.6);
6 Solve: d

dt �
t
V (p) = V

�
� t

V

�
p)) ; � 0

V (p) = p 2 N ;
7 return ' C := � 1

V � ' 0;

6.4 Family of Di�eomorphisms

In this section we construct a family of di�eomorphisms which mapN onto M and derive
their representation as functional maps. The point-to-point map which converts the given
functional map C will be chosen among this family.

Vector �eld �ow Given a family of tangent vector �elds f Vi g1� i � n on M , we let V be
the space spanned by the linear combinations of theVi . Any vector �eld V 2 V , de�nes
a one-parameter family of maps� t

V : M ! M called the �ow of V . The �ow is formally
de�ned as the unique solution to the di�erential equation:

d
dt

� t
V (p) = V

�
� t

V

�
p)) ; � 0

V (p) = p 2 N: (6.2)

Given an arbitrary di�eomorphism ' : N ! M we construct a family of di�eomorphisms
T parametrized by t 2 R and a 2 Rn :

' t
a(p) = � t

Va
� ' (p); Va =

nX

i =0

ai Vi (6.3)

Remark that the orientation of a map ' t
a 2 T is given by the orientation of ' since the

�ow of a vector �eld is orientation preserving.

Functional Representation of the family The family of mappings T has an easy
representation in the functional map framework as explained in [6]. This is because, a
vector �eld V on a smooth manifold can be represented as an operatorDV acting on a
function f :

DV (f )(p) = hVp; r f (p)i p: (6.4)

Since the action ofDV is linear, the operator is conveniently represented as a matrix in
the discrete setting.
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It is well known that gt = f � � t
V is the unique solution of the PDE:

@g
@t

(t; p) = DV (g)( t; p); g(0; p) = f (p):

A key property of the operator representation of vector �elds, introduced in [6] is that
for analytic functions the functional map C� t

V
is represented by the exponential of the

operator DV since one has:

C� t
V

f := f � � t
V = exp( tD V )( f )

Since map composition is achieved via matrix multiplication in the functional representa-
tion, this yields a simple way of describing our family of di�eomorphismsT . Let ' t

a 2 T
then

C' t
a

= C' exp

 

t
nX

i =1

ai DVi

!

: (6.5)

6.5 Optimal vector �eld

6.5.1 Optimization Problem

Our main idea, developed in the section, is to project the input functional mapC onto
the appropriate set of di�eomorphisms T . Namely our goal is to �nd a vector �eld
V 2 V such that the operator representation (6.5) of ' t

a is as-close-as possible toC. This
projection is easily written thanks to the operator representation, and computationally it
reduces to solving the optimization problem:

min
a2 Rn

kC' exp

 
nX

i =1

ai DVi

!

� Ck� ; (6.6)

for an appropriate choice normk:k� . Here we note brie�y that the norm is chosen to be
di�erentiable as indicated in Section 5.3.2.
In practice, the problem (6.6) can be solved using a �rst order method such as the
L-BFGS algorithm. The main di�culty in �nding the gradient of the objective function
lies in the computation of derivative of exp (

P n
i =1 ai DVi ) in the direction Vj . While there

exists a vast literature on approximating the exponential of a matrix (for a survey see
[77]), to the best of our knowledge few methods address the problem of computing the
directional derivative of the matrix exponential, which is conceptually non-trivial. As
we show in Lemma6.5.1, however, the directional derivative can be obtained as a block
of the matrix exponential of a bigger operator. Note that if there aren vectors in the
family of vector �elds we have to computen matrix exponentials.

Lemma 6.5.1 The directional derivative dH etA de�ned as

dH etA = lim
h! 0

�
1
h

(exp (t(A + hH )) � exp (tA ))
�

;
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is one block in the matrix exponential of a bigger operator:
�

etA B t

dH etA Ct

�
= exp

�
tA 0
tH tA

�

Proof Let x0 be an arbitrary vector in Rn and x(t) = exp (tA ) x0, it is well known that
x(t) satis�es the ODE:

x0(t) = Ax (t); x(0) = x0:

Moreover xh(t) = exp ( t(A + hH )) x0 is solution of

x0
h(t) = ( A + hH )xh(t); xh(0) = x0:

We denotey(t) the directional derivative in the direction H :

y(t) := lim
h! 0

�
1
h

(exp (t(A + hH )) � exp (tA )) x0

�

:= lim
h! 0

�
1
h

(xh(t) � x(t))
�

:

After computing y0(t) we conclude thaty(t) is the unique solution of the ODE
�

x0(t) = Ax (t); x(0) = x0

y0(t) = Ay(t) + Hx (t); y(0) = 0

Expressing the solution as an exponential of a matrix leads to the results.�

6.5.2 Properties

One of the advantages of the formulation of the problem of �nding the optimal point-to-
point map from a functional map via Eq. (6.6) is that it makes no assumptions on the
input map C. This is particularly important since, as mentioned above, in the presence of
intrinsic symmetries the functional map C can, even in the best case, be a linear blending
of the functional representation of an orientation-preserving and orientation-reversing
map. However, one potential problem is that the presence of the �noisy� part in the
functional map can adversely a�ect the �nal output map ' obtained by optimizing Eq.
(6.6).
Fortunately, both in theory and in practice this is not the case. Namely, under some
suitable assumptions, the orientation-preserving ground-truth functional map, must be
a local minimum of the problem (6.6) even when the functional mapC is given by the
symmetry blending de�ned at (6.1). In particular, as we show in the Lemma6.5.2, C'

must be a local minimum of Eq. (6.6) under some assumptions.

Lemma 6.5.2 If the norm k:k� = k:k2
F is the squared Frobenius norm, the set of vector

�elds considered V is divergence-free and the initial transformation ' approximately
isometric, then C' must be a local minimum of Eq. (6.6).
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Proof The �rst order necessary condition for C' to be a local minimum reads:

8dC' 2 T (C' ); hdC' ; C' � C �
' i F = 0 ;

where T (C' ) is the tangent space of the set of all functional map at the pointC' . This
tangent space has a simple expression. Let's consider a small perturbation ofC' by the
�ow � t

V induced by the vector �eld V 2 V applied to an arbitrary function f :

lim
t ! 0

1
t

�
C� t

V � ' f � C' f
�

= lim
t ! 0

1
t

�
f � � t

V � ' � f � '
�

=
d
dt

(f � � t
V � ' ) jt=0

= hV;r f i � '

= C' (DV (f )) :

Additionally the deformation is nearly isometric so C>
' � C' � 1 see Theorem4.1.4. The

necessary condition becomes:

8V 2 V ; (1 � � )hDV ; I � C' � S� ' � 1 i F � 0:

Remark that the mapping ' � S � ' � 1 : M ! M is an intrinsic symmetry on M . Now
suppose that the basis function is composed only by even and odd functions with respect
to the symmetry S. Therefore the functional map associated to an internal symmetry is
a diagonal matrix with 1 and � 1 on the diagonal corresponding to the symmetric and
antisymmetric eigenfunctions. SoI � C>

' CSC' is approximatively a diagonal matrix.
By assumption the vector �eld V is divergence free therefore represented by a skew-
symmetric operator DV as explained in [6]. Since the result does not depend on the basis
C' is a critical point of ( 6.6). �

6.5.3 Practical Choice of the Norm

As stated beforeC is not reliable for antisymmetric functions. Therefore there is some
function subspace on whichC and C' exp (t

P n
i =1 ai DVi ) cannot agree. The choice of the

norm k:k� in the problem (6.6) is of critical importance. Similarly to setting in Chapter 5
above, the naive choice of the squared Frobenius norm is not well-suited for this problem
since it is the sum of the squared singular values. As such, it will give a large weight on
badly matched function subspace and a small weight on well matched function subspace.
However, since typically we have almost no information about antisymmetric functions so
the optimization problem based on this problem will put a lot of e�ort matching functions
that we cannot hope to match and few matching interesting subspace. A better choice
for k:k� is a regularization of the nuclear norm. We choose

kAk� = kAYpk�;? (6.7)

where Yp is a basis ofp functions that we want to focus on obtained using the approach
described in Chapter5 and based on Chapter5. In the unsupervised setting we choseYp
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to be the identity. The norm k:k�;? is a de�ned by
P n

i =1

q
� 2

i + � the � i are the singular
values of the matrix. With this norm, we give smaller weight to the subspaces that are
di�cult to align and focus on task we are able to complete.
The parameter � makes the functionk:k�;? di�erentiable and should be small and is taken
at 10� 3. Note that the Jacobian matrix of the singular values is easily computable as
explained in [92].

6.6 Vector Field Flow on Manifold

Once the optimal vector �eld V is found using the procedure described above, we obtain
the �nal point-to-point map by composing the initial map ' with the �ow of V . To
compute this �ow, we need to solve the system of equations (6.2) on the given triangle
mesh. In principle any advection solver will work with our method. However since
computing the �ow is known to be potentially di�cult, we implemented our own solution.
The implementation we use gives a coarse approximation of the �ow and might not be
accurate for very large deformations. For more accurate solution of this problem we refer
to [97, 84] which provide more guaranties of continuity of the �ow and faster convergence.
In all of our applications we assume that the shapes are given as triangulated meshes
and the vector �eld is given as a single vector per face. Given this representation, we
assume that that the vector �eld is constant per face and is interpolated at the edges.
Three main situations can occur: the current point could be at inside face, an edge or a
vertex.

At a Face Since inside a face the vector �eld is assumed to be constant, we follow it
until we reach an edge or a vertex (Figure6.2 from p0 to p1).

At an Edge When a point is at an edge, we try to cross the face we did not come from
(Figure 6.2 from p1 to p2). If the point did not move we follow the edge by interpolating
the vector �eld from the two neighboring faces and end up at a vertex (Figure6.2 from
p2 to p3).

At a Vertex When the point is at a vertex, we try to follow the vector of each of the
neighboring faces and choose the one that goes the furthest. If the point cannot move,
we try to follow the neighboring edges, using interpolated directions and to potentially
end up at another vertex (Figure 6.2 from p3 to p4).

6.7 Results

For all the experiments we express all functions in the basis given by the �rst150
eigenfunctions of the Laplace-Beltrami operator. We choose a family of50 tangent vector
�elds for the Vi given by the �rst eigenfunctions of the 1-form Laplace-de Rham operator,
constructed following the procedure described in [41].
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Figure 6.2 � Example of a path trace starting point at p0.
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Figure 6.3 � Impact of the noisy functional map C �
' on the point-to-point correspondences

for various values of� .

We have evaluated our method for computing point-to-point correspondences on the
shapes on the benchmarks of Anguelov and al. [4] and of Bronstein and al. [21]. In all
of the cases, the input continuous map' 0 is the result of the BIM algorithm [ 62]. This
map is most of the time continuous but can be very distorted in some areas. We will
show that our method is able to detect the distorted areas and correct them.

6.7.1 Symmetry Blending

As stated above a plausible perturbation for the input functional map C is given by
equation (6.1). We test our method whenC is the linear blending of the ground-truth
functional map and the ground-truth orientation reversing functional map for various
values of � . In this experiment Yp, in Equation 6.7, is the identity matrix. For this
experiment we choose a pair of shapes from the SCAPE dataset.

The graph shown in Figure6.3 shows the percentage of correspondences with a geodesic
error smaller than a threshold. Of course the closerC �

' is to the ground-truth map the
better are the correspondences. However our results are robust even when the target
functional map is an exact blending of the direct and symmetric map and are always better
than the map coming from BIM. Thus, even when the assumptions of our theoretical
observation are not ful�lled, our method can successfully retrieve meaningful information
from noisy data.
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(a) SCAPE: average from 7 pairs
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(b) TOSCA: average from 5 pairs

Figure 6.4 � Improvement of the BIM map using our method.

6.7.2 Error using a computed functional map

In a more realistic scenario, rather than using a ground-truth functional map, we compute
it via the inference pipeline described in Chapter5. In this section the experiments
are conducted on several pairs of shapes: 7 human pairs (SCAPE) and 5 animal pairs
(TOSCA). The functional map C is computed using the least squares problem (5.1), where
each functional constraints is weighted. The weights are learned by solving problem (5.3)
using the algorithm described in Chapter5 which also outputs a matrix Yp corresponding
to the p best mapped functions, where we letp equal to 70. The training set is composed
of 8 randomly chosen meshes for the SCAPE example and 4 meshes for the TOSCA
centaur example. We compute 310 functional constraints equally distributed among these
categories:

� Heat Kernel Signature [119],

� Wave Kernel Signature [5] at three di�erent variances,

� Gaussian and Mean Curvature,

� Logarithm of the absolute value of Gaussian and Mean Curvature,

� Mesh Saliency [67].

We compare our approach with BIM, that serves as' 0, and with the functional map
C converted to point-to-point map using the method proposed in [88]. The graph in
Figure 6.4 shows the percent of correspondences which have geodesic error smaller than
a threshold in average for SCAPE and TOSCA. In this case, we only accept direct
correspondences as correct, and consider symmetric points as wrong. Note that our
method shows quality improvement over Blended Intrinsic Maps. The direct conversion of
C have some point with very large geodesic error due to points mapped to their symmetric
counterparts.
We evaluate the continuity of our map with two measures of distortion. First the maximum
radius corresponding to a geodesic ball of given size. For a map' this is formally given
by the function:

r (t) 7! max
dN (p;q)� t

dM (' (p); ' (q)) ; (6.8)
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(a) Maximal distortion computed with Eq. ( 6.8)
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Figure 6.5 � Comparison of the distortion induced by various for a pair of centaur
(TOSCA).

where dN is the geodesic distance onN . If the map is nearly isometric r should be
close to identity. We compare this measure for di�erent mapping in Figure6.5a for one
example from TOSCA. Our method is comparable to BIM and to the ground truth in
terms of continuity while the direct conversion of C show some very large distortions.
Second we compare the ratio between the triangle's area before and after deformation.
Since the deformations in our examples are almost isometric this ratio should be close
to one. The graph in Figure 6.5b shows the percent of triangles which have an area
ration smaller than a threshold. We show only the ratio greater than one since most of
the discontinuous behavior is due to large jumps. The area ratio of the exact mapping
are concentrated around one which is consistent with the fact that the deformation is
nearly isometric. Again the direct conversion ofC show some very large area distortions
compare to BIM and our method.
This lack of continuity is con�rmed by Figure 6.6 which provides on two examples
a visualization of the point-to-point mapping using color correspondence. The direct
conversion of the functional map shows some artifacts due to the blending between
orientation preserving and orientation reversing maps.
Our method successfully repairs the areas distorted by BIM as shown on Figure6.7
for two di�erent matching problems. In this example the BIM maps transfer poorly
functions from the source meshes to the target meshes while our method corrects these
incorrect matches by providing a more accurate transfer. A visualization of the optimal
vector �eld is provided on Figure 6.8 for the human example. The vector �eld on Figure
6.8b corresponds to the displacement needed to repair the BIM map, the action of this
correction can be seen on the upper row of Figure6.7.

6.7.3 Parameters Dependence

In practice we consider only a small family of vector �elds based on the �rst eigenfunctions
of 1-form Laplace-de Rham operator. Therefore in this setting our method will be more
e�cient in repairing low frequency distortion rather than recovering a high frequency
deformation that cannot be represented by the �ow of low frequency vector �eld. Of
course the bigger is the vector �eld basis the better will be the repairs, and the slower
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(a) (b) (c)

(d) (e) (f)

Figure 6.6 � Visualization of the point-to-point mapping through color correspondence.
The texture of the �rst column ( 6.6a, 6.6d) are transferred to the second using the direct
conversion of a functional map (6.6b, 6.6e) and to the third using our method (6.6c, 6.6f).

will be the method. In the experiments we presented the dimension of the vector �eld
family can be reduced to40 without in�uencing too much the point-to-point map.
Another critical parameter is the number of eigenfunctions we choose to represent the
functional map C and C' 0 . If the deformation is nearly isometric a small number is
su�cient as the functional map C is almost diagonal. These considerations also apply to
the initial map ' 0: a very distorted map is badly approximated by a small number of
eigenfunctions and can severely in�uence our method. We found that lowering the size a
the function basis under150 degrades rapidly the quality of the results.
In principle our method should work for non-isometric deformations provided we are
given high-quality functional map as input. To obtain such a map, the choice of the
functional basis would have to be modi�ed in order to successfully encode the functional
map in a reduced basis. This direction is left as an interesting future work.

6.7.4 Performance

For performance evaluation the computation times are given in the Table6.1 in various
cases. All the experiments have been performed on laptop with a1:4 GHz processor
and 4Go memory without parallelization. The timings are given for the two steps of the
method: solving the problem (6.6) and tracing the �ow lines. The time spent solving
the optimization problem is almost independent of the number of vertices. The size of
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(a) (b) (c)

(d) (e) (f)

Figure 6.7 � Transfer of a function on the source meshes6.7a and 6.7d to the target
meshes using BIM6.7b and 6.7ecompared to our method6.7c and 6.7f.

Mesh Vertices Optimization Flow
Horse 19248 369s 29.4s
Dog 25290 300s 20.4s
Centaur 15768 381s 39.0s
SCAPE 12500 231.8s 30.8s

Table 6.1 � Average CPU time of each step for di�erent mesh size.

this problem depends only on the number of computed eigenfunctions of the Laplace-
Beltrami operator and on the dimension of the vector �eld family, which are constant in
all experiments. Note that the computation of the �ow does not scale linearly with the
number of the vertices. This is explained by the fact we compute a composition with the
BIM map which may map many vertices to a single point.

6.8 Conclusion, Limitations and Future Work

In this chapter we presented a method for non-rigid shape matching that is designed
to output continuous maps. Our approach combines the strengths of conformal-based
approaches, which often guarantee continuity with the functional map framework, which
can enable low-distortion maps on the space of functions. Key to our method is enforcing
continuity via the �ow of a vector �eld, which allows our method to remain e�cient by



80 Chapter 6. Continuous Matching via Vector Field Flow

(a) (b)

Figure 6.8 � Visualization of the direction of the optimal vector �eld corresponding to
the experiment 6.7c: complete shape6.8a and close-up on the face6.8b.

avoiding expensive pairwise vertex constraints. One of the limitations of our method
is that we only approximate the �ow of a single vector �eld, whereas in practice, for
complex motions, a combination of �ows may be necessary. Extending our method to such
cases is possible, while taking care of the robustness and non-accumulation of numerical
errors. We are also planning to wider arrays of initial maps and ways to incorporate the
continuity directly in the optimization of the functional maps.



Part II

Deformation to Shape

In the previous two chapters we showed how one can compute a mapping between
deformable shapes. In this part, we take a more careful look at the link between the
deformation of shapes and the induced metric distortion. In particular we aim at
creating a characterization of surface embeddings within the operator representation
framework �t for synthesis and exploration of intrinsic and extrinsic deformations.
Namely, in Chapter 7 we propose an algorithm to convert shape di�erences to
embedded surfaces. In Chapter8 we take a di�erent point of view and introduce a
characterization of deformation �elds up to isometric deformation.





Chapter 7

Functional Characterization of
Intrinsic and Extrinsic Geometry

We propose a novel way to capture and characterize distortion between pairs
of shapes by extending the recently proposed framework of shape di�erences built
on functional maps. We modify the original de�nition of shape di�erences slightly
and prove that, after this change, the discrete metric is fully encoded in two shape
di�erence operators and can be recovered by solving twolinear systems of equations.
Then, we introduce an extension of the shape di�erence operators using o�set surfaces
to capture extrinsic or embedding-dependent distortion, complementing the purely
intrinsic nature of the original shape di�erences. Finally, we demonstrate that a set
of four operators iscomplete, capturing intrinsic and extrinsic structure and fully
encoding a shape up to rigid motion in both discrete and continuous settings. We
highlight the usefulness of our constructions by showing the complementary nature of
our extrinsic shape di�erences in capturing distortion ignored by previous approaches.
We additionally provide examples where we recover local shape structure from the
shape di�erence operators, suggesting shape editing and analysis tools based on
manipulating shape di�erences.

7.1 Introduction

One classic approach to comparing surfaces separates metrics of similarity intointrinsic
and extrinsic measurements. Intrinsic quantities are those that can be expressed exclu-
sively in terms of distances along the surface, whereas extrinsic quantities are those that
must be de�ned using an embedding into space and/or surface normals. A crowning result
of classical di�erential geometry describes local geometry in terms of two quantities: the
�rst and second fundamental forms, which capture the intrinsic Gaussian and extrinsic
mean curvatures, respectively [13].
Considerable research in geometry processing has been dedicated to measuring intrinsic
and extrinsic curvature in an attempt to replicate this attractive characterization of shape.
From a practical standpoint, however, this task remains challenging for potentially noisy
or irregular meshes considered in geometry processing. After all, surface curvature is
a second-derivative quantity whose approximation on a piecewise-linear mesh requires
considerable discretized adaptation and molli�cation to deal with noise. Measurement
of curvature aside, algorithms for recovering geometry from discrete curvatures remain
di�cult to formulate, leading to potentially non-invertible discretizations.
In this chapter, we formulate an alternative characterization of surface geometry better
suited for analysis, comparison, and synthesis tasks in the discrete setting. Several
desiderata inform our design; a suitable framework for representing shape should
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� capture and distinguish intrinsic and extrinsic geometry,

� express shape properties in a multiscale fashion to distinguish noise and �ne-scale
detail from large-scale structure,

� come from a smooth theory of shape to provide insensitivity to tessellation,

� be naturally expressible on continuous surfaces and on triangle mesh discretizations,
and

� admit an inverse operator for reconstructing the embedded shape.

In short, we wish to pass from pointwise embeddings to a �dual� space featuring a more
democratic treatment of intrinsic and extrinsic shape properties.
We approach this task by extending the theory ofshape di�erences, introduced by
Rustamov et al. [106] for purely intrinsic comparisons of shape structure. Rather than
de�ning a shape in isolation, their construction characterizes shape by considering the
distortion or di�erence of the target shape from a �xed source shape given a functional map
between them [88]. Shape di�erences are couched in the language of functional analysis,
indirectly measuring changes in angles and distances through the e�ects of these changes on
inner products of functions and their gradients. They are written as linear operators whose
restriction to a multiscale basis like the Laplace�Beltrami eigenfunctions distinguishes
features at di�erent levels of detail and allows for straightforward discretization via
piecewise-linear �nite elements (FEM).
We modify and extend this framework to derive a shape representation that is complete,
encoding both the intrinsic and the extrinsic distortion without loss of information in
both the continuous and discrete cases. To this end, we begin by reexamining the
discretization of shape di�erences on triangle meshes. We modify the original de�nition
of discrete area-based shape di�erence and prove an analog of a continuous property
mentioned in [106] that shape di�erences fully capture intrinsic structure. Inspired by
this fully-discrete result, we proceed to ask whether shape di�erences also can capture
extrinsic structure. Towards this goal, we de�ne an additional pair of shape di�erences
on a thickened surface that captures extrinsic geometry. We then show that our full set
of di�erences is su�cient to reconstruct a shape up to rigid motion in the discrete setting,
under mild assumptions.
Our discussion concludes by closing the loop between shape di�erences and embeddings.
In particular, we provide algorithms for recovering a shape embedding given a combination
of intrinsic and extrinsic shape di�erences. Our algorithms are guaranteed to succeed
in the presence of complete information under weak genericity conditions; when shape
di�erences have been truncated to a smaller basis, we suggest regularizers to recover
reasonable estimates of the missing data via convex optimization.
To summarize, our main contributions are:

� Theoretical discussion establishing that properly modi�ed shape di�erence operators
from [106] fully encode the intrinsic metric of a triangle mesh. Unlike more direct
representations of meshed edge lengths, these operators enjoy connection to smooth
theory�providing some degree of tessellation invariance�as well as multiscale
approximation in the Laplace-Beltrami basis.
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� A novel set of shape di�erences aimed at capturing and characterizingextrinsic or
embedding-dependent information, with an associated observation that generically
this set of shape di�erences is complete and encodes shapes up to rigid motion.

� A set of approaches for recovering geometric structure and an embedding from
the shape di�erences that reduce to a sequence of linear solves with theoretical
guarantees of recovery in the presence of complete information, and which we apply
to shape editing operations based on manipulating shape di�erences.

We demonstrate the usefulness of these contributions on a variety of tasks, ranging from
the analysis of cloth simulations by using our novel shape di�erence operators, sensitive
to changes in extrinsic structure, to the transfer of shape structure such as geodesic
distances more accurately, compared to using functional maps, and �nally to recovering
shape embedding even in the presence of approximate functional correspondences.

7.2 Related Work

Representation and manipulation of extrinsic and intrinsic structure is a vast theme
pervading the geometry processing literature. We refer to [16] for discussion of the basic
questions of representation and interaction with continuous di�erential geometry. Here,
we highlight research linked to our particular approach.

Functional maps Our goal of using functional maps to characterize local and global
geometry builds upon the machinery ofshape di�erences[106]; see Ÿ7.4 for a summary.
Rustamov and colleagues [106] show that in the case of smooth surfaces, shape di�erences
fully encode intrinsic geometry. They do not, however, pursue a corresponding analysis
for the discrete case. Furthermore, their work focuses solely on intrinsic geometry and
hence cannot characterize extrinsic bending, critical for describing di�erences between
nearly-isometric shapes like articulated bodies and cloth.

Shape-from-Laplacian Recovering structure from intrinsic shape di�erences is closely
linked to recovering structure from Laplacian operators. Both in the continuous [103] and
discrete [137] cases, the Laplace-Beltrami operator fully encodes intrinsic surface geometry,
namely the Riemannian metric for smooth manifolds and edge lengths for discrete meshes.
For triangle meshes, de Goes and colleagues [35] provide convex machinery for recovering
the intrinsic structure of the mesh; their encoding of intrinsic structure using only
Laplacian matrices is more compact than our pair of area and conformal shape di�erences,
at the cost of a nonlinear objective sensitive to incomplete information.
The theoretical and practical contributions proposed in this chapter provide considerable
insight beyond the fundamental mathematical contributions in these other works. Specif-
ically, the convex optimizations in [137, 35] operate in the case ofcomplete, noise-free
information . They cannot be used for projection-style problems, e.g. �nding the closest
set of edge lengths to a noisy input Laplacian approximation or to �nding an intrinsic
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structure consistent with a truncated spectral approximation of the full operator. Addi-
tionally, we show how to use related machinery to encode extrinsic bending rather than
only edge lengths.

Encoding extrinsic geometry A natural question is whether intrinsic structure can
be used to reconstruct a surface embedding up to a global rigid transformation. Numerous
examples of isometric smooth surface pairs disprove this notion in the continuous case [66].
While exact isometries of triangle meshes are rare with the exception of inward/outward
�popping� of valence-three vertices, near-isometries can often arrise and have sign�cant
di�erences in the embedding, making shape recovery from intrinsic data like edge lengths
a numerically ill-conditioned problem; these near-isometries appear because small vari-
ations in the input edge lengths can lead to large changes in the resulting embedding.
Nevertheless, Boscaini and colleagues [15] provide an algorithm for recovering a surface
embedding inR3 from shape di�erences or equivalent structures. They apply the SMA-
COF algorithm [68] for multidimensional scaling to generate an extrinsic embedding that
replicates shape di�erences in a least-squares sense. As an alternative, [91] propose an
algorithm for embedding from local approximations of the metric tensor; we will use an
extension of this algorithm in Ÿ7.7.3. Both of these methods, however, operate using only
intrinsic information and are subject to the ambiguity and instability caused by isometry
invariance.
Adding extrinsic information to a shape representation allows it to be embedded inR3 up
to rigid motion. In theory, the Gauss�Codazzi equations fully characterize surfaces from
the �rst and second fundamental forms [13] (see [24, pg. 236]). In geometry processing,
[40] reconstructs surfaces from prescribed principal curvatures, while [42] use nonlinear
optimization methods to recover shape from dihedral edge lengths. These methods and
many subsequent techniques employ nonlinear least-squares �ts with few guarantees or
characterization of their behavior. Wang, Liu, and Tong [132] propose a linear technique
for embedding meshes from their edge lengths, dihedral angles, and axes of rotation
across mesh faces.
In this chapter, we make use of o�set surfaces to introduce extrinsic information to the
shape di�erence representation. O�set surfaces have appeared in geometry processing for
some related tasks, including cage generation [11] and shape optimization for printing [82].
While techniques like [57] are needed to generate �clean� o�set surfaces for geometry
editing purposes, in our case self-intersection and related artifacts are acceptable since
the o�set surface is not used for display but rather for geometric computation. [28, 53]
provide curvature theories for discrete surfaces using o�set geometry.

7.3 Overview

Our two main goals are to modify and extend the de�nition of the shape di�erence
operators of Rustamov [106] so as to capture extrinsic distortion and to facilitate shape
inference, i.e. to recover the metric and potentially the embedding of a target shape,
given a base shape and a collection of shape di�erences.
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We achieve these goals in several stages. The main ingredient for constructing both
smooth and discretized shape di�erences is the computation of inner products between
functions. So, rather than working directly with shape di�erences, we largely focus on
matrices of functional inner products, which can be constructed on a single shape rather
than a pair. Hence, after reviewing the smooth construction of shape di�erences (Ÿ4.2),
we reexamine the discretization of intrinsic inner products on triangle meshes and show
how a simple modi�cation of the area-based inner product fully encodes intrinsic geometry
in an easily-inverted fashion (Ÿ7.4.1).
We then capture extrinsic shape structure by introducing two operators built from intrinsic
inner products on o�set surfaces of a base shape (Ÿ7.5). We accompany our construction
with theoretical characterization of the new information provided by extrinsic products
(Ÿ7.5.3) and conclude by making explicit how our constructions involving inner product
matrices apply to the construction of di�erencesbetweenshapes (Ÿ7.6). In this section,
we also consider how truncating shape di�erences written in the Laplace�Beltrami basis
a�ects the linear systems we pose.
With our new de�nitions and analysis in place, we propose optimization procedures for
recovering intrinsic and extrinsic shape structure from the shape di�erence operators,
potentially expressed in a reduced basis (Ÿ7.7). While the basic machinery for recovering
metric information from shape di�erences is purely linear, we propose the use of more
general convex optimization tools that add resilience to noise and incomplete information
by explicitly enforcing the triangle inequality and/or smoothness. We conclude by
demonstrating the ability of our constructions to capture and characterize extrinsic
distortion ignored by previous approaches (Ÿ7.8.1). We furthermore apply our methods
to recovering the metric and shape embedding and to facilitating novel shape editing
operations via manipulating shape di�erence operators (Ÿ7.8.4).

7.4 Structure of Discrete Inner Products

By examining the derivation of formulas for computing shape di�erences, we can reveal
how they are related to local surface geometry. This analysis not only elucidates the
information encoded in a given shape di�erence but also will inform our design of
algorithms for recovering shape embeddings from shape di�erences.

7.4.1 Discrete Inner Products

Each quantity above is straightforward to discretize in the language of �nite elements
over a triangle mesh; see [19, 108, 116] for general introductions to this approach. To
this end, supposeM is represented using a connected, orientable, and manifold triangle
mesh with vertices setX and triangles setF . We model functions as vectorsf 2 RjX j

interpolated to triangle interiors in piecewise-linear fashion.
We will begin our �ne-grained examination of shape di�erences by posing functional inner
products on these meshes in terms of discrete geometry. Our ultimate goal is to show
that before truncation in a basis, the area-based and conformal inner product matrices
completely encode the intrinsic structure of meshed geometry. This property is also
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stated in [106] in the continuous case; their discretization, however, does not admit such
completeness due to the use of lumped area weights, as explained below.
Consider a single triangleT 2 F on M , and supposef and g are a�ne functions on T;
in other words, f and g are evaluated in the interior of T via barycentric interpolation
of the three scalar valuesf 1; f 2; f 3 and g1; g2; g3 de�ned on the vertices of the triangle.
Multiplying these functions and integrating reveals that the inner product of f and g on
T is given by

hf; g i T
L 2 =

� (T)
12

�
f 1 f 2 f 3

�
0

@
2 1 1
1 2 1
1 1 2

1

A

0

@
g1

g2

g3

1

A ;

where � (T) is the area ofT and f i ; gi denote the values off; g on vertex vi . As a sanity
check, taking f i = gi = 1 8i recovers the area ofT. This is the exact L 2 inner product
of f and g de�ned over the meshed surface using piecewise-linear interpolation, without
mass lumping commonly introduced in �nite element discretizations; this distinction is
critical for our construction.
Taking inner products over all of M requires summing over trianglesT. If f; g 2 RjX j ,
then hf; g i M

L 2 is given by f > Ag, where

Avw =
1
12

�

8
<

:

2
P

T � v � (T) when v = wP
T � e � (T) when e = ( v; w)

0 otherwise,
(7.1)

where T � v denotes iteration over triangles adjacent tov and T � (v; w) denotes
iteration over triangles adjacent to edge(v; w): This jX j � jX j �Galerkin mass matrix� A
is nondiagonal but positive de�nite, integrating products of piecewise linear functions
exactly. See e.g. [116, Chapter 10, (32)] for an example of its appearance in �nite elements.
We can think of A as a linear operatorA(� ) : RjF j ! RjX j�jX j that constructs the
area-based functional inner product matrixA given a vector � 2 RjF j of triangle areas.
We can show that A(�) is invertible in the following sense:

Proposition 7.4.1 SupposeM has a boundary or at least one interior vertex with odd
valence. Then,A(� ) uniquely determines� , recoverable via a linear solve.

Proof Equation (7.1) gives A as a linear function of � (�). Hence, we must show that
this formula is invertible.
First we show how to recover the area of a single triangle onM . By the second row
of (7.1), given A we have the sum of triangle areas adjacent to any edge ofM . If M has
a boundary, we then know the areas of the boundary triangles. Otherwise, takev with
odd valence, and enumerate its adjacent triangles asT1; : : : ; Tk for odd k. Since we know
the sums of adjacent areas, we have a linear system to recover� (T1); : : : ; � (Tk ):

0

B
B
B
B
B
@

1 1
1 1

. . . . . .
1 1
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1

C
C
C
C
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� (T1)
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...
� (Tk )

1
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=
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Figure 7.1 � Notation for the conformal product W .

Consider carrying out forward substitution on the matrix. In each iteration, only the
bottom row changes, from(1; 0; : : : ; 0; 1) to (0; � 1; 0; : : : ; 0; 1), then to (0; 0; 1; 0; : : : ; 0; 1)
and so on with alternating sign. Whenk is odd, in the last step the1 is augmented to
a 2, making the �nal row (0; : : : ; 0; 2). In other words, the matrix reduces to an upper
triangular matrix with nonzero diagonal, which is invertible.
Hence, in either case we can recover� (T) for at least oneT. The remaining areas can be
computed by �ood �lling outward from T; given the area on one side of an edge and the
sum of the adjacent areas, the adjacent area is recovered by subtraction.�

The proof of this proposition and others below is in the appendix. A proposition of this
nature doesnot hold if masses are lumped down the diagonal ofA. This observation is
intuitive in that a triangle mesh has approximately two times the number of triangles as
vertices.
If f and g are piecewise-linear functions onM , then their gradients are piecewise-constant
and expressible using one vector per triangle. Taking dot products of these gradients and
integrating over M shows that hf; g i M

H 1
0

= f > W g, where

Wvw =
1
8

�

8
>><

>>:

� (T) � 1(`2
vw � `2

v � `2
w)

+ � (T0) � 1(`2
vw � `02

v � `02
w )

when v � w

�
P

u� v Wuv when v = w
0 otherwise.

(7.2)

Notation for the v 6= w case is shown in Figure7.1; e � v denotes an edgee adjacent
to vertex v, and `uv is the length of the corresponding edge. This matrix is the familiar
cotangent Laplacian matrix cast in terms of edge lengths and triangle areas; this form
also appears e.g. in [15]. Comparing (7.1) and (7.2), scaling the edge lengths of a mesh
by some factor � will correspondingly scaleA by � 2 while W will be left unchanged;
unless otherwise noted, we scale meshes in our experiments to have unit surface area to
remove dependence on global scaling.
A crucial observation that we make here is that if the triangle areas encoded in� are
�xed then the mapping W (`2; � ) : RjEj ! RjX j�jX j taking squared edge lengths̀ 2 2 RjEj

to a conformal inner product matrix W is linear. Note also that W is fully determined
by its values Wvw for v � w. Thus, if we represent the list of inner productsWvw as
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a vector c in RjEj then for a �xed set of area weights� , there exists a matrix B � such
that c = B � `2. The entries of B � are, of course, given in Eq.7.2. In the pipeline that
we propose below, we will �rst recover the triangle areas and then use those to recover
edge lengths from the corresponding inner products. The following proposition shows
that �generically� the matrix B � is invertible. I.e., the set of weights� for which B � is
singular has measure 0.

Proposition 7.4.2 Assume that the meshM is manifold without boundary. Then, for
almost all choices of areas� , the mapW (`2; � ) uniquely determines̀ , which is recoverable
via a linear solve.

Proof By construction W(`; � ) takes squared edge lengths̀ and outputs the matrix
W. Extracting elements of W corresponding to edges onM yields a linear operator
B : RjEj ! RjEj with matrix

B ij =
1
8

8
<

:

� (Ti ) � 1 + � (T0
i )

� 1 if i = j
� � (T) � 1 if i , j are edges ofT
0 otherwise.

Here, indicesi; j refer to edges onM ; for a given edgei , we label its adjacent trianglesTi

and T0
i . Remark that B can be written as a weighted sum:B =

P
k

1
8 � (Tk ) � 1B k ; where

eachB k is a matrix such that:

B k
ij =

8
<

:

1 when i = j , and i belongs to trianglek.
� 1 when i; j are edges of trianglek.
0 otherwise.

It is easy to see that the intersection of the kernels of allB k is empty, sinceB k is non-
singular when restricted to the values on edges of trianglek. Moreover, by considering
the determinant of B as a multivariate polynomial with real coe�cients, we conclude that
B is either singular for any choice of values of� (Tk ) � 1, or for a �nite set of coe�cients,
which thus have measure zero.
To complete the proof we note that if B is singular for any choice of values of� (Tk ) � 1,
then the matrix pencil B =

P
k akB k is singular (i.e., B is singular for any choice of

coe�cients ak ). Using Lemma 3.4 from [80] and the fact that B k are symmetric, we see
that in that case for every choice ofak , there must exist a vectorx such that xT B kx = 0
for every B k , and Bx = 0 : Now, given the values ofx on some triangle, this means that
its values on the adjacent triangle are either uniquely determined by the corresponding
two equations (one linear, one quadratic), or these equations cannot be satis�ed. By
inspecting the resulting equalities, it is easy to see that at least two of the values on every
triangle must be equal, and by considering any closed loop of triangles, these equations
cannot be consistent for every choice of weightsak . Thus, B cannot be a singular matrix
pencil, and thereforeB is invertible for almost any choice of values� (Tk ) � 1: �

This proposition implies that the linear map W (`2; � ) is invertible for a small (possibly
zero) perturbation of any set of area weights� . Nevertheless, there exist cases in which
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Figure 7.2 � A mesh for which W (`2; � ) is not invertible when � = 1.

the squared edge lengths are not recoverable via inversion of the linear mapW(`2; � )
for a �xed set of area weights. One example of such a shape is shown in Figure7.2,
consisting of two tetrahedra glued at their bases. In this case, all the triangles have equal
area weights, and it can be seen that the resulting linear system is singular. We also
remark that the condition of no boundary is necessary in the Prop.7.4.2 above, as it is
possible to construct meshes for which the mapW (`2; � ) is singular for all choices of�
(e.g., a pair of triangles glued along a shared edge). For all the meshes that we tried in
practice (Ÿ7.8), we have observed that the resulting system is both invertible and typically
well-conditioned. We leave the formulation of the necessary and su�cient conditions on
the mesh and the weights� for the invertibility of W (`2; � ) as a question for future work.

7.5 Encoding Extrinsic Structure

Intrinsic inner products capture the metric tensor (�rst fundamental form) of a surface,
so to complete our representation we show how a related structure can be used to encode
its second fundamental form. In keeping with previous discussion, we will use additional
inner product matrices to derive a multiscale representation of this missing information.
While there exist many possible ways to measure extrinsic distortion, this �functional�
language facilitates a connection between continuous and discrete characterizations and
uni�es our treatment of intrinsic and extrinsic distortion.
These added structures complement the area-based and conformal products by making
our representation of a shape unique up to rigid motion. In addition to providing a
lossless representation of surface geometry in the presence of complete information, we
demonstrate how the new products can capture and encode geometric relationships that
are not captured by purely intrinsic analysis.

7.5.1 Extrinsic Alternatives

In discrete language, the inner product matricesA(� ) and W(`2; � ) determine the
edge lengths of a triangle mesh but not its dihedral angles, illustrated in Figure7.3(a).
Additionally providing dihedral angles is su�cient to recover a mesh up to rigid motion.
There are many expressions of extrinsic shape that potentially encode these angles; before
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�
`

`

(a) Dihedral angle (b) Dual edge length

Figure 7.3 � Two potential ways to encode extrinsic mesh structure.

presenting our �nal solution, we mention a few straightforward alternatives to explain
why they are less desirable.
At the most basic level, any technique encoding one value per edge of a triangle mesh
could be used to represent dihedral angles. For instance, since the angles are in a vector
� 2 RjEj, we could use an analog of Proposition7.4.2 to store them in the matrix W (� ; � ).
This matrix roughly corresponds to taking products of functional gradients under the
second fundamental formh as

R
h(r f; r g) dA. The resulting matrix is not positive

semide�nite, however, which prevents the de�nition of a smooth analog via the Riesz
Representation Theorem (which applies only to positive de�nite inner products) and
causes numerical issues due to departure from the cone of semide�nite matrices. Dihedral
angles also are known only up to a period of2� , providing potential for ambiguity in
the expression of the vector� . Lastly, if the mesh is �at, a de�nition based on dihedral
angles will lead to a degenerate inner product.
In an attempt to bring back the positive de�niteness enjoyed by the intrinsic formulation,
we might attempt to encode the edge lengths of adual mesh, shown in Figure7.3(b).
These lengths indirectly encode dihedral angles up to sign but are unable to distinguish
between inward and outward folding directions, as shown in the �gure. Obvious techniques
for disambiguating the inward and outward folds generally accompany edge lengths with
signs, reintroducing the problems discussed in the previous paragraph.
An alternative construction might de�ne extrinsic shape di�erences via the Gauss map, or
map from a surface into the unit sphere based on normal direction; see [75] for an example
in geometry processing. While the Gauss map is used in classical di�erential geometry
to derive extrinsic properties of surfaces, we �nd it to be unstable within the shape
di�erence framework. In particular, the image of the Gauss map is composed of many
overlapping spherical triangles that change rapidly from vertex to vertex. Projection of
this information into low-frequency Laplace-Beltrami bases tends to remove the majority
of the meaningful geometric signal. In a sense, however, we can view the o�set surface
construction proposed below as a means of smoothing out this construction.
Before proceeding, we should remark that strictly speaking it may not be necessary to
provide extrinsic information at all. According to a classical result by Gluck [44], almost
all triangulated simply connected closed surfaces are rigid. Although this result might
imply that triangle edge lengths are, in general, su�cient to reconstruct the mesh up
to rigid motion, this is only true if the metric is known exactly; moreover, it is highly
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` decreases
` increases

Figure 7.4 � Edge lengths change according to curvature of the o�set surface.

nontrivial to recover an embedding even if one is known to exist. When the edge-lengths
are perturbed or are approximated, the corresponding embedding might either not exist or
be very far from the desired shape. As we show below, the presence of explicit information
about the extrinsic distortion can greatly help in both direct and inverse problems and is
largely complementary to the intrinsic distortion addressed by prior methods in practice.

7.5.2 O�set Surfaces

Our construction of an extrinsic shape representation is an extension of the dual mesh
idea from Ÿ7.5.1 that does not su�er from sign ambiguity. Instead, we are able to rely
upon the positive de�niteness of inner product matrices directly to encode both intrinsic
and extrinsic information. In short, rather than encoding a metric and its derivative, we
encode a metric and a slightly deformed metric, both of which admit natural positive
de�nite representations.
The intuition for our construction is illustrated in Figure 7.4. Suppose we wish to recover
the embedding of the blue torus. As discussed in the previous section, it may be di�cult
to reconstruct the torus purely from its list of edge lengths. Instead, suppose we generate
an o�set surface by displacing each vertex and face along its outward normal a �xed
distance t. The operation is extrinsic, since the mesh moves through the surrounding
space, modulating edge lengths̀ based on the curvature of the surface. The edge lengths
in the interior of the torus shrink while the edge lengths on the exterior expand, e�ectively
distinguishing the bend direction.
In the continuous case, we can formalize the e�ect of o�setting a surface as follows:

Proposition 7.5.1 SupposeM is a compact orientable Riemannian 2-manifold without
boundary. Consider a family of immersionsFt : U � R2 ! M t � R3 satisfying

@Ft
@t

(p) = nt (p); 8(p; t) 2 U � R+ ;

wherent denotes the outward unit normal ofM t := Ft (U). At all time t the normal nt

remains equals to the normaln0 of M 0 := M .
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Moreover, if gij (t) := h@Ft
@xi

; @Ft
@xj

i is the metric of the embedded surface andh ij (t) :=

h@Ft
@xi

; @n
@xj

i is its second fundamental form, then

gij (t) = gij + 2 th ij + t2h il glm hmj and � t = (1 + tH + t2K )�;

where H := ( gij h ij )t=0 is the mean curvature, 2K := H 2 � (gij h jk gkl h il )t=0 is the
Gaussian curvature att = 0 and � t :=

p
det g(t):

Proof First let's show that the normal vector is constant during the �ow. The vector
n is unit norm therefore @t hnt ; nt i = 2h@t nt ; nt i = 0 meaning that @t nt belongs to the
tangent of M t . Since any tangent vectorV can be written V = hV; @i F i gij @j F , we have

@nt
@t

=
�

@nt
@t

;
@Ft
@xi

�
gij (t)

@Ft
@xj

= �
�

nt ;
@nt
@xi

�
gij (t)

@Ft
@xj

= 0 :

As consequence the immersion has the following closed form expression at all time:
Ft = tn 0 + F0. Therefore the metric is quadratic with respect to time:

gij (t) =
�

@Ft
@xi

;
@Ft
@xj

�
=

�
t
@n0
@xi

+
@F0
@xi

; t
@n0
@xj

+
@F0
@xj

�

= gij + 2 th ij + t2
�

@n0
@xi

;
@n0
@xj

�
:

The proposition statement is obtained using the Gauss�Weingarten relations linking@i n
with the second fundamental form. Because the normal is unit norm@i n is a tangent
vector whose expression is given by:

@n0
@xi

=
�

@n0
@xi

;
@F0
@xj

�
gjk @F0

@xk
= h ij gjk @F0

@xk
:

The evolution of the local area is obtained by a direct computation of the determinant of
metric tensor. �

Results of this nature are fairly well-known for o�set surfaces and sometimes referred to
as Steiner formula; see e.g. [94] for related discussion. Informally, the proposition shows
that the second fundamental form ofM is encoded through the change in metric while
the surface is being o�set along its normal directions. In case of surfaces, a closed form
expression forh can be derived. preciselly, there is only one square root of 2-matrices
(out of four) satisfying @t gij = 2h ij at time zero:

h ij (t) =
1

� t t
gij (t) +

1
t

�
� t

� t
� 1

�
gij ; � � < t < �

where � t = � (t)=�; and � t =
q

gij gij (t) + 2 � t :

When M is an oriented triangle mesh, there are many potential constructions of discrete
o�set surfaces, and several likely would su�ce for the proofs in this chapter. For
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Bottom layer Top layer

Figure 7.5 � Topology of o�set mesh.

mathematical simplicity, we choose the construction in Figure7.5. On the left we show
triangles of the original meshM in blue. On the right, we de�ne the topology of the
o�set mesh in red, which contains a vertex for every vertex ofM and every triangle ofM .
For a �xed constant t > 0, we place the vertices distancet aboveM along its face/vertex
normals; any reasonable de�nition of a unit-length vertex normal su�ces. O�set vertices
associated with triangles are placed directly above the barycenter of the triangle.

7.5.3 Recovery of Embedding

In the end, we encode the geometry accompanying a �xed triangle mesh topology using
four structures: the intrinsic area-based and conformal inner product operators and the
same operators for the o�set surfaces with �xed normal o�set distancet > 0. We denote
the o�set surface of M as M t . In this section, we show�at least before truncation�that
these four di�erence matrices are su�cient for fully reconstructing a shape.
The challenge of reconstructing a triangle mesh from its edge lengths arguably comes
from the fact that there are many ways to glue together two adjacent triangles by �xing
di�erent dihedral angles. Rigidity may imply that only one such embedding exists, but it
is not obvious from local relationships. In contrast, an orientedtetrahedral mesh is easy
to reconstruct from its list of edge lengths simply by gluing individual tetrahedra face by
face.
Hence, our intuition for why a mesh plus its o�set are enough to reconstruct the mesh
comes from a volumetric perspective. This intuition is con�rmed by Proposition 7.5.1
and the Gauss�Codazzi equations, since o�set geometry provides extrinsic curvature
information, which in turn determines an embedding. We chose the topology of the o�set
mesh (Figure7.5) speci�cally to allow for a canonical �thickening� of the o�set slice into
a tetrahedral mesh, shown in Figure7.6. Using mesh-based shape di�erences, we can
recover the edge lengths of the bottom and top layers of the thickening. By construction
of the o�set mesh, we are able to recover the lengths of the interior edges of the thickening,
e�ectively proving the following proposition:
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Mesh (blue) and o�set (red) Thickening

Upward-facing Mesh edge Downward-facing

Figure 7.6 � Canonical thickening (top right) of a triangle mesh (top left); types of
tetrahedra in the thickening (bottom).

Proposition 7.5.2 Suppose a meshM satis�es the criteria in Propositions 7.4.1 and 7.4.2.
Given the topology ofM , the area-based and conformal product matricesA(� ) and W (`2; � )
of M , and the area-based and conformal product matricesA t (� t ) and W(`2

t ; � t ) of M t ,
the geometry ofM can (almost always) be reconstructed up to rigid motion.

Proof The previous propositions show that� , � , � t , and � t are (almost always) su�cient
to recover the edge lengths of the base and o�set surfaces. The remaining edges of the
canonical thickening are between the inner and outer layers and are recoverable essentially
by convention. Speci�cally:

� The edges along surface normals are lengtht by de�nition.

� The bottom edge lengths of the �upward-facing� tetrahedra (Figure7.6) are known
because they are on the base surfaces. The remaining edges of these tetrahedra can
be computed because the upward-facing tetrahedron is generated via normal o�set
from the barycenter of the base triangle by a distancet.

� �Mesh edge� tetrahedra are adjacent to �upward-facing� tetrahedra and outer faces
of the thickening and hence have edge lengths �xed by their neighbors' construction.

� Similarly, �downward-facing� tetrahedra have one normal edge of lengtht, and
the remaining edges are on the outer surface or adjacent to an �upward-facing�
tetrahedron.

The embedding of a single oriented tetrahedron is �xed up to rigid motion given its edge
lengths, so the proposition follows by gluing the tetrahedra of the canonical thickening
according to the topology of the construction. �

7.5.4 Discussion

We pause to summarize the theoretical development in the previous sections. We began
by reconsidering the construction of inner products and shape di�erences from �rst-order
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�nite elements. When area elements are not lumped, we showed that inner product
matrices fully determine the edge lengths of a mesh and that they can be recovered by
solving two linear systems of equations: one for recovering the triangle areas, and the other
for recovering the edge lengths. Moreover, generically, both systems are non-singular.
In both the continuous and discrete cases, these intrinsic measurements are not enough
to distinguish isometric shapes. Even worse, the space of near-isometric shapes can be
very large. Hence, we propose generating an o�set surfaceM t from a mesh or surfaceM .
In the continuous case, the geometry ofM t determines theextrinsic structure of M by
encoding its second fundamental form. In the discrete case, combining edge lengths ofM
with edge lengths ofM t fully determines M up to rigid motion. The main development
is that we can completely determine a shape using functional inner products via the
constructions above.
Our theoretical contributions deal with the noise-free, non-truncated case. Roughly, they
show that if intrinsic/extrinsic shape di�erences were computed from an embedded mesh
M with �xed topology, then the embedding ofM almost always can be covered from
those di�erences up to rigid motion. We evaluate sensitivity to noise and the possibility
of recovering geometry from truncated shape di�erences empirically in Ÿ7.8.

7.6 From Inner Products to Shape Di�erences

With the goal of working with quantities that exist when meshes are not in vertex-for-
vertex correspondence, we shift from working with matrices of inner products to shape
di�erences. This shift is needed to propose algorithms in Ÿ7.7 for estimating the dense
structure of a target mesh given a source mesh and an approximate relationship between
the source and the target, represented as a functional map computed e.g. using assorted
correspondence techniques.

7.6.1 Discrete Shape Di�erences

We begin by considering two meshesM and N in vertex-for-vertex correspondence, with
areas� M ; � N 2 RjF j and squared edge lengths̀2

M ; `2
N 2 RjEj. Based on the continuous

de�nitions in Ÿ4.2, the �full� area-based and conformal shape di�erence between meshes
M and N are [106, Ÿ5, �option 1�]

DA = A(� M ) � 1A(� N )
DC = W (`2

M ; � M ) � 1W (`2
N ; � N ):

(7.3)

A straightforward corollary of the discussion in Ÿ7.4.1 is that these two di�erences
completely determine the edge lengths and triangle areas ofN given the geometry of
M . Notice the �rst relationship is still linear in � N and the second in`2

N , preserving the
proposed system of equations for reconstruction.
Similarly, the extrinsic di�erences are simply the shape di�erences between the o�set
surfaces:

D E
A = A(� M t )

� 1A(� N t )
D E

C = W (`2
M t

; � M t )
� 1W (`2

N t
; � N t ):

(7.4)
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The discussion in Ÿ7.5.3 implies that the tuple (DA ; DC ; D E
A ; D E

C ) is su�cient to recon-
struct N up to rigid motion given M .

7.6.2 Source-Truncated Correspondence

More commonly, suppose� 2 RjX j� k contains the orthonormal Laplace�Beltrami basis
of M , truncated to k functions. Assuming M and N are still in vertex-for-vertex
correspondence, we can write �reduced� shape di�erences as

D �
A = � > A(� N )�

D �
C = diag( �f � M

i g)+ � > W (`2
N ; � N )� ;

(7.5)

where the eigenvalues of the Laplacian onM are� M
i . These di�erences no longer determine

angles and edge lengths exactly but still encode a multiscale notion of geometry that
is valuable for understanding the relationships betweenM and N ; extrinsic di�erences
can be de�ned analogously from the o�set surface. We can still de�ne linear systems for
computing � N and `2

N from DA , DC , � M , and `2
N using these relationships, although

they are unlikely to be full-rank for small k; we provide regularizers in the next section.
These truncated di�erences essentially correspond to removing rows and/or columns from
the full shape di�erences after writing them in the Laplace�Beltrami eigenbasis. Such
a computation can be useful for multiscale analysis of surface deformations, in which
vertex-for-vertex correspondence is known but high-frequency changes may not be useful
to analyze. What remains, however, is to consider the case whenM and N are not in
vertex-for-vertex correspondence and both have incomplete bases.

7.6.3 Source- and Target-Truncated Correspondence

Suppose we are given truncated bases� M 2 RjX M j� kM and � N 2 RjX N j� kN for the
eigenspaces ofM and N , respectively, and a functional map matrix C 2 RjX N j�jX M j

taking functions written in the � M basis on M to functions in the � N basis on N .
Following [106, Ÿ5], we de�ne shape di�erences in this case as

D � M ;� N

A = C> C

D � M ;� N

C = diag( �f � M
i g)+ C> diag(�f � N

i g)C:
(7.6)

Whereas the truncated shape di�erences in(7.5) contain a limited window of values from
the full shape di�erence matrix, in this �nal case the non-truncated entries of the shape
di�erence matrices also undergo some change. This is because even if a function onM is
in the column space of� M , it will not be transported fully to N by the functional map
C due to removal of high frequencies.
These shape di�erences are discretizations of analogous linear operators in the smooth
setting. For this reason, even though the di�erences in(7.6) no longer satisfy exact
equality relationships like those in(7.5) for recovering areas� N and squared edge lengths
`2

N from shape di�erences and the geometry ofM , we will poseapproximate relationships
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D � M ;� N

A � (� M )> A(� M  N )� M

D � M ;� N

C � diag(�f � M
i g)+ � M > W (`2

M  N ; � M  N )� M :
(7.7)

The unknown variables � M  N and `2
M  N can be thought of as �pullbacks� of the metric

of N to that of M , in the sense that they attempt to assign areas and edge lengths
to the topology of M to mimic inner products on N . The �rst condition is linear in
� M  N 2 RjF M j and the second in`2

M  N 2 RjEM j .
Since the shape di�erences in(7.6) are the most realistic test cases, we will assume in
our experiments that truncated shape di�erences are computed in this fashion unless
noted otherwise. That is, we will assume that we are given a source- and target-truncated
shape di�erence. The experiments in Ÿ7.8.2 verify that this approximation is reasonable
as long askM and kN are su�ciently large.

7.7 Recovery of Intrinsic and Extrinsic Structure

Having established theoretical aspects of intrinsic and extrinsic shape di�erences, we now
provide algorithms for recovering a shapeN given a base shapeM and shape di�erences
to N and its o�set. First, we recover triangle areas from the base and o�set surfaces
from corresponding area-based shape di�erences. With these areas �xed, we then recover
edge lengths, which were shown in Ÿ7.5.3 to completely determine the surface.
Both steps can be carried out using linear solves when shape di�erences are not truncated.
When dealing with truncated or inexact functional maps, we augment the optimization
with constraints ruling out unreasonable structures. We also show how to apply existing
techniques for recovery of an embedding from edge lengths of the surface and its o�set.

7.7.1 Triangle Area Computation

We �rst show how to recover areas of triangles given an area-based shape di�erence.
Our approach is an extension of the basic linear technique outlined in the proof of
Proposition 7.4.1, extended to deal with truncation and noise.
Following Ÿ7.6, supposeDA is the area-based shape di�erence betweenM and N in the
Laplace�Beltrami basis � M . Recall that our goal is to pull the geometry of N back
to the mesh ofM . Hence, the the area-based di�erence fromM to the reconstructed
target shapeN � should satisfy D �

A = � >
M A(� N )� M : If the reduced basis� M on M has

k functions, this linear system for � N has k2 equations andjFj unknowns. So, we need
at least k �

p
jFj to have a well-posed system.

The quality of the solution found by solving this system without regularization depends
on two factors: the quality of DA and the conditioning of the resulting linear problem.
We �nd that both limitations are improved considerably by introducing a nonnegativity
constraint, leading to the following optimization problem for � N :

min� N k� >
M A(� N )� M � DA k2

Fro
s.t. � N (T) � 0 8 triangles T 2 F :

(7.8)
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We solve this and other convex programs using the Mosek toolbox [79]. When the system
is highly underdetermined, we additionally add a regularizing viscosity term"k� N � � M k2

2
for small " > 0, under the assumption that triangle areas should change minimally unless
there is evidence to do otherwise; we set" = 10 � 4 in all the experiments in this chapter.

7.7.2 Edge Length Computation

Now that we can compute triangle areas, we can recover edge lengths. As in the last
section, we start from Proposition7.4.2 to propose a basic linear system for squared edge
lengths and then provide regularization techniques for dealing with inexact or truncated
di�erences.
The conformal shape di�erence encodes the transformation of the cotangent Laplacian
through the deformation. Again borrowing from Ÿ7.6, the geometry ofN can be pulled
back to M via the following linear condition on squared edge lengths̀2

N given �xed areas
� N :

diag(� � M
i )DC = � >

M W (`2
N ; � N )� M : (7.9)

Solving this linear system of equations for̀ 2
N depends critically on the approximated

areas� N ; numerical or discretization error from the method in Ÿ7.7.1 invalidates this
step, regardless of the quality ofDC : To provide resilience to this issue and to noise in
DC , we add constraints to this system ruling out unrealistic edge lengths̀2

N .
To de�ne a triangulation, the squared edge lengths̀ 2

N must be nonnegative; furthermore,q
`2

N (T) must respect the triangle inequality in each mesh triangleT. We enforce the
latter constraint via the following proposition:

Proposition 7.7.1 The symmetric matrix E de�ned by

E =
1
2

0

@
2x1 x3 � x1 � x2 x2 � x1 � x3

x3 � x1 � x2 2x2 x1 � x2 � x3

x2 � x1 � x3 x1 � x2 � x3 2x3

1

A

is positive semide�nite if and only if x1, x2, x3 are nonnegative and their square roots
satisfy the triangle inequality.

Proof We denote(e1; e2; e3) the canonical basis and the indicesf i; j; k g 2 f 1; 2; 3g.
If

p
xk �

p
x i + p x j , then there exist three points (v1; v2; v3) which de�ne an embedding

of a triangle. Let E be the matrix with columns v3 � v2, v1 � v3 and v2 � v1 then
E = E > E. The matrix E is therefore positive semide�nite.
SinceE is symmetric positive semide�nite, the Cauchy-Schwartz inequality holds. Ex-
panding the expression(ei + ej )> E(ei + ej ) yields

(ei + ej )> E(ei + ej ) = x i + x j + 2e>
i Eej

� x i + x j + 2
p

x i x j

� (
p

x i +
p

x j )2:

At the same time, a direct computation shows(ei + ej )> E(ei + ej ) = xk which implies
that

p
xk �

p
x i + p x j . �
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We also can link squared edge lengths to the computed triangle areas� N (T). This link
is provided by the submatricesEk de�ned as

Ek =
1
2

�
2x i xk � x i � x j

xk � x i � x j 2x j

�
;

where f i; j; k g = f 1; 2; 3g: With this de�nition in place, we leverage the following proposi-
tion:

Proposition 7.7.2 E is positive semide�nite if and only if xk � 0 for all k 2 f 1; 2; 3g
and det(E3) � 0: Moreover, if E � 0, then det(Ek ) = 4 � N (T)2:

Proof Starting with the second statement, direct computation of the determinant shows

4 det(Ek ) =
�
x1 x2 x3

�
0

@
� 1 1 1
1 � 1 1
1 1 � 1

1

A

0

@
x1

x2

x3

1

A :

When the x i 's are squared triangle edge lengths, this is a formulation of Heron's area
formula.
The �rst statement is proved using a well-known theorem on positive block matrices
(property of Schur complements) [18]: E � 0 if and only if E3 � 0 and

2x3 �
�

x2 � x1 � x3

x1 � x2 � x3

� >

E � 1
3

�
x2 � x1 � x3

x1 � x2 � x3

�
� 0:

Notice that

Ek

�
1
1

�
= �

1
2

�
x j � x i � xk

x i � x j � xk

�
;

and hence the �rst condition is met wheneverx3 � 0. Moreover, E3 is a 2 � 2 matrix
and therefore is positive semide�nite if and only if x1 � 0, x2 � 0 and det(E3) � 0. �

Enforcing constraints derived from these relationships in the computation of edge lengths
from a shape di�erence leads to the following optimization problem:

min`2
N

k� >
M W (`2

N ; � N )� M � diag(� � M
i )DC k2

Fro

s.t. `2
N � 0

det(E3(T)) = 4 � N (T)2 8 triangles T 2 F :

This problem, however, is large and non-convex due to the determinant constraint. A
convex relaxation is possible by noticing that the cone of symmetric positive semide�nite
matrices with determinant � 1 is convex; this observation derives from the convexity of
the function A 7! � log(det A)) [18]. So, the former problem can be relaxed to a convex
problem:

min`2
N

k� >
M W (`2

N ; � N )� M � diag(� � M
i )DC k2

Fro

s.t. `2
N � 0

det(E3(T)) � 4� N (T)2 8 triangles T 2 F :
(7.10)
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The determinant constraint is handled using the rotated quadratic cone optimization in
the Mosek toolbox [79]. While (7.10) contains a relaxation of the full set of constraints,
we �nd empirically that this relaxation generally is tight; we leave it to future work to
prove conditions for �exact recovery� akin to those in [38] for mesh alignment problems.
As in Ÿ7.7.1, we can additionally regularize by adding"0k`2

N � `2
M k2

2 to the objective; our
experiments use"0 = 10 � 4:.

7.7.3 Global Extrinsic Reconstruction

At this point, we have presented algorithms for recovering edge lengths for the entire
canonical thickening de�ned in Ÿ7.5.3. As suggested in the proof of Proposition7.5.2,
if these edge lengths are computed without error, the thickening can be reconstructed
greedily; then, the embedding ofN from M is the inner envelope of this thickening.
In reality, the squared edge lengths iǹ 2

N likely exhibit numerical error. For this reason,
we employ the algorithm in [91] for reconstructing a triangle mesh given its edge lengths.
We adapt their approach to take into account the tetrahedra de�ned by the o�set surface,
by using the same ARAP-style deformation energy, de�ned on each triangle facet of
each tetrahedron, and using the same alternating optimization strategy. We note, in
particular, that this approach does not require embedded surfaces to be manifold, and
can easily incorporate edges shared by more than two triangles, which only changes the
computation of the gradient of the energy. Hence this allows us to reconstruct the entire
set of triangles in the canonical thickening rather than the inner or outer surfaces only.
We provide the thickening of M as a starting point for their alternating optimization
algorithm. Whereas their method is subject to isometric ambiguity when embedding
manifold meshes, reconstructing the entire thickened structure reduces ambiguity and
more reliably provides an extrinsically correct embedding.

7.8 Experiments

In this section we illustrate the utility of the constructions presented above in a variety of
practical application scenarios. We start by showing how the extrinsic shape di�erences
can be useful for shape exploration and analysis, by complementing the information
provided by the intrinsic di�erences of Rustamov et al. [106]. We then show how our
metric and shape recovery methods can be used to both infer shape structure and
ultimately recover the embedding from approximate, truncated shape di�erences.

7.8.1 Shape Space

An example application of shape di�erences that doesnot rely on exact reconstruction of
local geometry involves the extraction of variability within a collection of related shapes.
Suppose we choose an arbitrary base shape and compute its shape di�erence matrices
with the remaining shapes in a collection. Then, a simple low-dimensional description of
shape variability is to do PCA on the collection of matrices, resulting in the embedding
of each shape as a point in PCA space.
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Figure 7.7 � PCA on collections of shape di�erences reveals the axes of variability within
a collection; each shape on the left is colored the same as its corresponding points in the
plots. The area-based and conformal di�erences are unable to distinguish the inward and
outward bumps in the top example, leading to clusters of four points.

Figure 7.8 � Human models from Figure 7.7 sorted by the �rst PCA dimension for
area-based shape di�erences (top) and area-based di�erences including an o�set surface
(bottom). The di�erences without o�sets distinguish body type, while the di�erences
with o�sets distinguish pose.

We use PCA experiments to illustrate the power of our proposed extrinsic di�erences.
For instance, Figure 7.7 illustrates embeddings of two-parameter shape collections into
the plane using the procedure above (kM = 50; kN = 100). The top row illustrates
the need for extrinsic di�erences most clearly. Here, we generate cubes with smooth
bumps, smoothly varying from an inward bump to an outward bump. Intrinsic shape
di�erences are identical for inward and outward bumps, leading to PCA embeddings
that cluster sets of four shapes together. Adding extrinsic information disambiguates the
embedding problem, separating the clustered points. Similarly, the extrinsic area-based
shape di�erence best separates the parametric human models evenly among the two axes
(57:2% variability along the principal axis, 38:3% along the secondary axis); interestingly,
conformal shape di�erences among o�set surfaces do not exhibit much variability for this
particular class of surfaces.
Figure 7.8 highlights how intrinsic and extrinsic shape di�erences can measure di�erent
properties of shape. We sort the collection of human models by the one-dimensional
embeddings (x-axis) of intrinsic (top) and extrinsic (bottom) area-based shape di�erences
(kM = 50; kN = 100). The intrinsic shape di�erences distinguish the body type of the
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Figure 7.9 � PCA on shape di�erences applied to recovering the sequence of animated
frames for a simulated piece of cloth (top) and galloping horse (bottom).

model and are invariant to the pose of the arms and legs; this ordering re�ects the
property that articulated deformations of humans are nearly isometric. Complementing
this embedding, the extrinsic di�erences distinguish pose and are less sensitive to body
type. This property is also visible in Figure 7.7 since the area-based embeddings without
and with the o�set are transposed from one another.
Figure 7.9 shows a similar experiment applied to shapes from individual frames of
animation sequences. Both intrinsic and extrinsic shape di�erences are able to recover the
cyclic structure of a galloping horse animation; this indicates that the galloping motion
contains both intrinsic and extrinsic deformation modes. Contrastingly, the intrinsic
di�erences severely underperform in recovering an animated sequence of deforming cloth.
The physics of cloth naturally avoids intrinsic stretching and shearing, maintaining
the initial developable structure. Thus, intrinisic shape di�erences provide little-to-no
information, while the extrinsic di�erences capture the evolution of the animation.
From a wider perspective, the experiments in this section reveal the value of explicitly
representing both intrinsic and extrinsic deformation in navigating datasets of 3D surfaces.
A sizable fraction of geometry processing algorithms, including the original work on shape
di�erences, focuses on shape exploration based exclusively on intrinsic structure. Yet,
motions like the deformation of a piece of cloth cannot be captured by this representation.
While cloth deformation may be an extreme example, based on these results we advocate
inclusion of both intrinsic and extrinsic structures in shape analysis rather than discarding
the extrinsic information.

7.8.2 E�ects of Truncation

The propositions in this chapter show that discrete shape di�erences completely encode
geometric structure when they are written in a full basis. For many applications, however,
we approximate shape di�erences in a truncated low-frequency spectrum. While the
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Figure 7.10 � E�ects of truncation on computation of mesh structure. See Ÿ7.8.2 for
discussion.

e�ects of this truncation are di�cult to characterize mathematically, in this section we
evaluate the e�ects of this approximation numerically.
There are two potential sources of truncation error in the twice-truncated di�erences
discussed in Ÿ7.6.3: The choice ofkM and the choice ofkN : As mentioned in Ÿ7.6.3 these
two parameters have slightly di�erent e�ects; decreasingkM corresponds to removing
rows or columns of the shape di�erence matrices, while decreasingkN can a�ect the
values of the entries.
Figure 7.10 illustrates the results of an experiment varyingkM and kN for intrinsic shape
di�erences and using the pipeline described in Ÿ7.7 to recover areas and edge lengths;
recall that this technique extracts areas and edge lengths onN using calculations onM .
We choose a pair of meshes with a ground-truth map to avoid additional error due to
map approximation (jXM j = jXN j = 1000).
Each color plot shows the relative error of assorted quantities extrapolated from the
truncated shape di�erences: face areas (� ), edge lengths (̀), truncated eigenvalues
(f � gkN

i =1 ), full eigenvalues (f � gjX j
i =1 ), and entries of the Laplacian (� ). We assumekN � kM ,

providing the upper-triangular structure of the plots; the vertical axis representskM

(range: kM 2 [60; 500]) and the horizontal axis representskN (range: kN 2 [60; 500]). We
choose" so that the viscosity regularizer contributes< 10% of the optimal objective.
These plots show that even truncated shape di�erences can be used to extract per-face and
per-edge information about the mesh using our pipeline. Even with15% of the Laplacian
eigenvectors, we can relatively reliably extract the face areas and edge lengths of the
target mesh. Even on challenging tasks like recovering thefull spectrum of the target
mesh�beyond the eigenvalues used to compute the shape di�erence�our algorithm has
some success.
The choice of kN is particularly important. Intuitively, this phenomenon might be
explained by the fact that modulating kN changes the values in the shape di�erence
matrices rather than just their size. The top row of the matrix also exempli�es a pattern
we observed across our experiments; below a certain value forkM , there is not enough
information to get a meaningful indication of local geometry from the shape di�erence
matrices.

7.8.3 Intrinsic Recovery

The experiments in Ÿ7.8.2 illustrate a remarkable observation, that we are able to recover
local information about the target of a shape di�erence from a truncated shape di�erence.
That is, the nonnegativity and semide�nite constraints proposed in Ÿ7.7 paired with
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Figure 7.11 � Our machinery can be used to pull back Laplacian operators from a target
mesh to a source. Here, we use a truncated functional map (100 Laplace�Beltrami basis
functions on source, 200 on target) to compute revised edge lengths on the source mesh.
Eigenfunctions of the Laplacian before and after edge length adjustment are shown with
eigenvalues; boxed columns provide examples where the eigenfunction changes structure
signi�cantly.

regularization are su�cient to avoid the null space of the truncated linear systems for
recovering areas and edge lengths.

As the cotangent Laplacian of a triangle mesh (with or without area weights) is an
intrinsic structure,we can use our computed vectors� and ` to pull back the Laplacian
operator from N to M .

This technique is illustrated in Figure 7.11. In this experiment, we compute shape
di�erences from a 100� 200 functional map to compute � and ` on the source surface;
we then use(7.2) to construct a new Laplacian operator onM using � and ` pulled back
from N and show eigenfunctions of the resulting operator. Not only do the eigenvalues of
the pulled-back Laplacian better approximate the Laplace�Beltrami eigenvalues ofN , but
qualitatively the eigenfunctions of the pulled-back Laplacian exhibit more structure in
common with the eigenfunctions ofN . Boxed examples in Figure7.11 show particularly
striking di�erences between the source and reconstructed eigenfunctions.

Figure 7.12 illustrates an application of recovering edge lengths from truncated shape
di�erences. Without constructing an embedding, we use pulled-back edge lengths to
compute two commonly-used intrinsic functions: single-source geodesic distances and the
wave kernel signature [5]. Our edge lengths enable computation of these functions on the
source mesh using the metric of the target, given a functional map between them. As a
baseline, computing these functions on the target and pulling them back to the source
using the functional map (right column) is less accurate; this is due to truncation of the
functional map, which removes high frequencies e.g. at the center point of the geodesic
function.
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d = 0 d = 0 :0163 d = 0 :0421
Source Target Exact Reconstruction Functional map
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d = 0 d = 0 :0417 d = 0 :1594
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Figure 7.12 � Our technique can be used to recover the pullback metric and therefore
compute geodesic distances without direct access to the target mesh. We compare
three geodesic pullbacks on the source mesh: the exact pullback using point-to-point
correspondence, the geodesic computed by reconstruction of the metric from the shape
di�erences, and the pullback of the geodesic function using a functional map. For each
pullback we compute theL 2 distance d to the exact version. Our method achieves better
reconstructions than the direct usage of a functional map.

7.8.4 Reconstruction

Figures 7.13, 7.14and 7.15 illustrate experiments in which geometry is reconstructed after
estimating local structure from shape di�erences. To highlight our method's e�ectiveness
on extrinsic motion, we show behavior on human shapes and cloth simulation data.
Figure 7.13applies our method to reconstructing models of humans from shape di�erences.
From a coarse human base mesh (jXM j = jXN j = 502;; M = 100; kN = 200 in truncated
experiments), we recover various poses. We compare reconstructions using only the
intrinsic shape di�erence (right of each pair) to reconstructions using intrinsic and
extrinsic di�erences together (left of each pair); we also compare using a truncated basis
for shape di�erences (second column) to using a full basis (third column). As a baseline, we
compare to [15], which uses only intrinsic geometry (rightmost column). Reconstruction
from intrinsic information shows considerable artifacts due to the non-uniqueness of the
solution of the embedding problem. Our provably complete intrinsic/extrinsic description
is much more stable and close to the solution. The truncation of the basis, discussed
in Ÿ7.8.2, tends to smooth out the sharp creases as they are represented as high frequency
features.
In Figure 7.14, we interpolate between frames of an animation sequence (jXM j = jXN j =
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dH = 0 :036 dH = 0 :054 dH = 0 :013 dH = 0 :030 dH = 0 :058

dH = 0 :083 dH = 0 :140 dH = 0 :023 dH = 0 :116 dH = 0 :147

dH = 0 :064 dH = 0 :110 dH = 0 :0153 dH = 0 :105 dH = 0 :132
Source Target Intrinsic Intrinsic Intrinsic Intrinsic Intrinsic [ 15]

Extrinsic � Extrinsic � �
Truncated Truncated Full Full Full

Figure 7.13 � Mesh recovery from a source mesh and shape di�erences, with (left) and
without (middle) the extrinsic shape di�erence. Intrinsic mesh recovery using a concurrent
method (right). The distance to the target dH is measure by the Hausdor� distance on
the prealigned point cloud.

1089; kM = 100; kN = 200). After running a cloth simulation with coarse time steps,
we compute the shape di�erence between subsequent frames (t 2 [0; 1]). We then use
the method in Ÿ7.7.3 to construct plausible motion between the frames by interpolating
linearly between the computed shape di�erences (t = 0 :5). We further extrapolate the
motion beyond the t 2 [0; 1] range to t = 1 :5, e�ectively exaggerating the deformation
between the frames. As expected, the extrinsic shape di�erences allow for reconstruction
of largely isometric cloth motion.
Figure 7.15 illustrates a more challenging experiment (jXM j = 669; jXN j = 1089; kM =
60; kN = 180). In this case, we reconstruct the same cloth simulation sequence but vary
the topology of the source and target meshes. Now it is impossible to pull back the
deformation exactly to the new mesh topology, but we still reconstruct plausible motion,
with the notable exception of artifacts near the boundary of the patch.

7.8.5 Timings

Figure 7.16 shows timings by stage for our pipeline, applied to meshes of various sizes
and topologies. We employ a simplistic single-threaded implementation inMatlab ,
using the Mosek toolbox [79] in the CVX library for convex optimization [ 45]; for this
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0:5 1 1:5
Source Target Interpolation Factor

Figure 7.14 � Mesh recovery and interpolation from a source mesh and the intrin-
sic/extrinsic shape di�erences. The target meshes come from a cloth simulation sequence.

0:5 1 1:5
Source Target Interpolation Factor

Figure 7.15 � Mesh recovery and interpolation. The source mesh has di�erent connectivity
than the target. The target meshes come from a cloth simulation sequence.

reason, the timings should be viewed as relatively pessimistic upper bounds. Even so,
our implementation�including semide�nite constraints, regularization, and the like�can
handle meshes of up to several thousand vertices.

7.9 Discussion & Conclusion

In this chapter, we introduced a new way to express intrinsicand extrinsic shape
information through functional shape di�erences. Not only do we prove that discrete
shape di�erences can be used to recover shape, but we also extend to characterizing
shapes up to rigid motion rather than isometry. Our four shape di�erences together�two
intrinsic and two extrinsic�comprise a powerful description of shape that applies to
a wide range of variability, including not only non-isometric shapes but also models
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# Eigen- Intrinsic metric
functions jV j jF j jE j Area Edge

Human 100 502 1000 4500 4.7s 9.0s
Cloth HD 200 1089 2048 3136 20.6s 79.8s
Cloth LD 60 669 1256 1924 6.0s 3.8s

Faces 180 588 1097 1687 8.5s 18.8s
Horse 160 752 1500 2250 10.1s 80.1s

# Eigen- O�set metric Reconst.
functions jV j jF j jE j Area Edge Tets.

Human 100 1502 3000 4500 16.5s 310.9s 195.6s
Cloth HD 200 3135 6016 9150 430.5s 1833.0s 912.6s
Cloth LD 60 1925 3688 5612 31.5s 73.2s 412.7s

Faces 180 1682 3208 4892 177.3s 709.6s 204.2s
Horse 160 2252 4500 6750 293.1s 666.6s 447.5s

Figure 7.16 � Performance measured on a 2015 iMac 3.3GHz.

dH = 0 :119 dH = 0 :069 dH = 0 :064 dH = 0 :036 dH = 0 :023
Source Target kM = 20 kM = 40 kM = 60 kM = 80 kM = 100

Figure 7.17 � Example of failure in mesh recovery from a source mesh and shape di�erences.
As the size of the shape di�erence increases more details are added to the reconstructed
deformation. At kM = 100 and above we achieve a high-quality reconstruction.

obtained from physical simulation and animation. We also show that the inverse problem
of recovering shape structure from shape di�erences can be meaningful even in the
under-determined truncated case.
While this work o�ers the possibility of direct application in pipelines for shape search,
embeddings of shape space, and approximate reconstruction, it also suggests myriad
avenues for future research. On the theoretical side, a better understanding of the
e�ect of Laplace�Beltrami eigenfunction truncation may provide better guidance for the
minimal-sized shape di�erences needed to reconstruct a shape; spectral truncation is a
common part of the geometry processing pipeline, so any relevant theory would have the
potential to a�ect understanding of many existing algorithms.
On the practical side, the primary limitation of our proposed reconstruction methods
is the introduction of semide�nite constraints in computing the squared edge lengths̀ ;
multi-scale or lighter-weight optimization methods would enable application to larger-scale
meshes. Furthermore, the regularization proposed for recovery of� and ` in Ÿ7.7 is very
generic and can be ine�ective for noisy or highly truncated shape di�erences. Application
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dH = 0 :128 dH = 0 :073 dH = 0 :065 dH = 0 :036 dH = 0 :023
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

No noise

dH = 0 :161 dH = 0 :161 dH = 0 :112 dH = 0 :109 dH = 0 :134
Source Target kN = 100 kN = 200 kN = 300 kN = 400 Full

Noisy shape di�rence

Figure 7.18 � Impact of the basis truncation on from a source mesh andnoisy shape
di�erences. In this experiment, we �x the number of basis functions on the source shape
to kM = 100 and reconstruct the embedding for variouskN . Top row: With no additional
noise, the quality of the embedding increases withkN . Bottom row: With added noise,
larger kN �which normally yields better transfer of high frequency deformation�does not
increase the quality of the reconstruction. The noisy shape di�erences do not correspond
to an actual embedding.

of machine learning techniques may allow for the characterization of edge length and
triangle area distributions speci�c to a given class of shapes, considerably reducing the
search space for our recovery algorithms.
Figures 7.17 and 7.18 show examples illustrating these potential avenues for improving
our pipeline. Figure 7.17 shows how reconstruction can fail when shape di�erences are
over-truncated; stronger regularizers might �ll in missing information when truncated
shape di�erences are insu�cient to recover edge lengths to high precision. Figure7.18
shows results of shape reconstruction in the presence of noise. Here, we add noise directly
to the shape di�erence matrix so that it no longer corresponds to an embedded surface.
At some point, increasingkN does not improve the reconstruction result, because noise
in the entries dominates added high-frequency shape information.





Chapter 8

Functional Characterization of
Deformation Fields

In this chapter we present a novel representation for in�nitesimal deformations
of 3D shapes, by considering the induced changes in the underlying metric. Unlike
traditional representations given, for example, by the in�nitesimal displacement
of each point, our framework allows to consider shape deformations as operators
acting on real-valued functions de�ned on the shapes. This enables a wide variety of
applications such as deformation design through precise control of metric distortion,
deformation analysis and transfer and even improved shape matching by considering
the composition of the deformation with other functional operators. Fundamentally,
our approach helps to establish a direct connection between extrinsic deformation
�elds and changes in intrinsic metric quantities, which can be useful in many
deformation processing scenarios.

Figure 8.1 � Example of deformation design using our framework where all objectives are
easily expressed as linear constraints. Left: A set of local constraints for the deformation
�elds on two di�erent shapes. Middle: The deformations are computed separately on
each shape to be as-isometric-as possible. Right: Joint deformation design with a soft
(functional) map and no pointwise correspondences between the shapes.

8.1 Introduction

Designing and analyzing shape deformations is a central problem in computer graphics
and geometry processing, with applications in scenarios such as shape manipulation
[135, 114], animation and deformation transfer [117], shape interpolation [61, 130], and
even anisotropic meshing [91] among myriad others. Traditionally, shape deformation
has been motivated by interactive applications in which the main goal is to design a
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deformation that satis�es some user-prescribed handle constraints while preserving the
main structural properties of the shape. In other applications, such as shape interpolation
and deformation transfer, that lack handle constraints, the goal is to design a global
deformation �eld that would satisfy some structural properties as well as possible.

In both types of applications, most deformation methods are based on specifying a
deformation energy and providing a method to optimize it. On the other hand, an-
other very productive line of work has demonstrated that by choosing an appropriate
representation for shape deformations, many tasks can become signi�cantly easier, and
in particular can help to enforce certain properties of the deformation �eld, which are
otherwise very di�cult to access and optimize for. In addition to the classical per-vertex
displacement vectors, such representations have included gradient-based deformations
[135, 136], Laplacian-based approaches [70, 115] and Möbius transformations in the
context of conformal deformations [33, 128] among others.

At the same time, several recent works have demonstrated that several basic operations in
geometry processing can be represented as linear operators acting on real-valued functions
de�ned on the shape. This includes the functional representation of mappings described
in Chapter 4 or correspondences [88, 96], representations of vector �elds as derivations
[95, 6] and formulation of shape distortion via shape di�erence operators introduced in
[106] and described in Chapter4. One advantage of these representations is that linear
operators can be naturally composed, which makes it easy to de�ne, for example, the
push-forward of a vector �eld with respect to a mapping, if both are represented as linear
operators, or to solve for Killing vector �elds, by composition between a derivation and
the Laplacian operator.

While tangent vector �elds are classically understood as operators (derivations) in
di�erential geometry, extrinsic vector �elds do not enjoy a similar property. Our main
goal is to provide a coordinate-free representation of extrinsic vector �elds (in�nitesimal
deformations) as functional operators, which will prove useful for analysis and design
of shape deformations. As we demonstrate below our representation greatly simpli�es
certain tasks such as deformation transfer, deformation symmetrisation and even the
computation of shape correspondences by composition with other operators. Moreover, it
provides an explicit link between in�nitesimal deformations and the changes in intrinsic
metric quantities, which can be useful in a variety of analysis and deformation processing
tasks.

For example, consider two shapes shown in Fig.8.1 (left). By using our framework, it is
possible to combine local extrinsic deformation constraints with intrinsic objectives such
as constructing a deformation �eld that is as-isometric-as-possible (center). Moreover, our
coordinate-free representation allows to relate deformations on multiple shapes, enabling
deformation transfer and joint design even when only soft (functional) correspondences
are known.
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8.2 Related Work

Shape deformation is one of the oldest and best-researched topics in computer graphics
and geometry processing. We therefore only mention works most directly related to ours
and refer the interested reader to surveys including [85, 17] and Chapter 9 in [16].
A multitude of methods exists for surface deformation starting with the seminal work
of [122], its early follow-ups including [25, 133] and the multi-scale variants, such as
[140, 63, 47] among many others. Similarly to our approach, many of these techniques
are based on optimizing the so-called elastic thin shell energy that measures stretching
and bending, and which is often linearized for e�ciency. In the majority of cases, the
deformation is represented explicitly as an extrinsic vector �eld de�ned on a surface,
making deformation transfer di�cult in the absence of precise pointwise correspondences.
A number of methods have proposed alternative representations for deformation �elds,
which greatly simplify certain tasks in design and analysis. This includes gradient-based
techniques [135, 136] which consider the deformation �eld by aligning its gradient with a
set of local per-triangle transformations. By working in gradient space, constraints can be
posed independently on the triangles and then optimized globally by solving the Poisson
equation. Similarly, Laplacian-based techniques [115, 70, 86] are based on de�ning shape
deformations by manipulating per-vertex di�erential coordinates (Laplacians) in order
to match some target Laplacian coordinates. Such di�erential coordinates enable direct
editing of the local shape properties, which can be especially bene�cial for preserving
and manipulating the high-frequency details of the surface. However, these coordinates
are typically not rotationally invariant and additional steps are necessary to introduce
invariance [115, 70, 93].
More recently, a number of methods have introduced representations for mesh deformations
speci�cally geared towards particular shape manipulations, such as computing conformal
transformations by designing special maps into the space of quaternions [33] or by using
face-based compatible Möbius transformations [128]. These techniques are rotationally
invariant and coordinate-free, while being restricted to special types of manipulations.
Another technique, closely related to ours, designs shape deformations by constructing a
continuous divergence-free vector �eld [129], and applying path line integration to obtain
a deformed shape. We also consider the e�ect of the deformation on the metric, but
both analyze the distortion of arbitrary extrinsic vector �elds and show how they can be
represented in coordinate-free way as linear functional operators.
Our approach of considering the deformation via its induced metric distortion is also
related to the work of [39] and [110] who manipulate shapes by explicitly editing their
curvature properties. Moreover, our use of the strain tensor in characterizing metric
distortion is closely related to the applications in various physically based deformation
scenarios including [124, 81] among many others (see also the surveys on physically based
elastic deformable models [85, 104]). Our approach is also related to the works that
aim to design as-isometric-as-possible shape deformations [139, 113, 73]. Similarly to
the latter work, however, our framework is general and allows an arbitrary prescribed
distortion, although our method works directly on surface representations and moreover
enables applications such as joint deformation design.
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Finally, our joint deformation design is related to the deformation transfer and inter-
polation techniques such as [117, 9] and [61] to name a few. However, we place special
emphasis on relating in�nitesimal deformations between shapes with only soft (or func-
tional) correspondences, which are often much easier to obtain than detailed point
matches.
In contrast to the majority of existing techniques our goal is to devise a coordinate-free
representation of in�nitesimal deformations as linear functional operators, by making an
explicit connection between the extrinsic deformations and the change in intrinsic metric
quantities. Thus, although we build on classical constructions such as the in�nitesimal
strain tensor, we show how they can be exploited to create a functional representation
of shape deformation, which can be used in conjunction with other operators. As we
demonstrate below, our representation is particularly useful for relating deformations that
exist on multiple shapes, with only soft correspondences between them. In particular, it
enables joint deformation design and transfer without triangle or point-to-point matches,
and allows to introduce extrinsic information in the computation of functional maps,
greatly increasing the applicability of these techniques in a wide range of application
scenarios.

8.3 Overview

Our main strategy for devising a functional representation of in�nitesimal deformation is
to consider the e�ect of the deformation on the intrinsic shape metric. Namely, we will
characterize the extrinsic vector �elds by the isometric distortion that they induce. For
this purpose we will start by considering the shape di�erence operators described above,
which provide a way to capture the isometric distortion induced by a map between two
shapes as a pair of linear operators acting on functions on one of the shapes. Thus, in
this chapter our motivation is to use the information contained in those operators to
design and synthesize shape deformations.
The �rst challenge presented by this approach is the fact that the shape di�erence
operators only contain intrinsic information which is typically not enough to specify an
embedding, and thus a deformation. To tackle this problem we restrict our attention
to in�nitesimal deformations which can be represented by extrinsic vector �elds, and
which, as we show under certain genericity conditions, are fully encoded by the isometric
distortion they induce.
Second, the de�nition of the shape di�erence operators introduced in [106] is divided
between an area and conformal-based distortions. While this distinction might be desirable
for deformation analysis, it is cumbersome for deformation synthesis since it would require
us to represent each extrinsic vector �eld via a pair of functional operators. For this reason
we introduce a uni�ed shape di�erence operator, that characterizes intrinsic distortion
fully.
Finally, although the shape di�erence operators characterise intrinsic distortion, design-
ing a deformation that would reproduce a given shape di�erence leads to challenging
optimization problems as shown in [15]. As we demonstrate below, our approach of
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considering in�nitesimal deformations greatly simpli�es the reconstruction procedure, by
allowing us to phrase it with a single linear system of equations.
To summarize, we proceed in three stages: �rst we introduce a uni�ed shape di�erence
operator that fully characterizes isometric distortion. Second, we show how extrinsic
vector �elds can be represented byin�nitesimal shape di�erence operators, which act
linearly on the real-valued functions, in the same way as shape di�erence operators.
Finally, we demonstrate that extrinsic vector �elds can be recovered from in�nitesimal
shape di�erence operators by solving a linear system of equations.
Our main contribution therefore include:

� De�ning a uni�ed shape di�erence operator that fully characterizes isometric
distortion.

� Introducing in�nitesimal shape di�erence operators as a way to represent extrinsic
vector �elds as operators acting on functions, represented as matrices in the discrete
setting.

� Showing how in�nitesimal shape di�erence operators can be used to naturally add
extrinsic information (second fundamental form) into the computation and analysis
of functional maps.

� Presenting various applications that demonstrate the usefulness of our representation,
in particular by showing how the in�nitesimal deformations can be analysed,
designed, transfered and used in map computation by exploiting the operator
representation.

8.4 Extrinsic Vector Fields as Operators

In this section we provide a coordinate-free representation of extrinsic vector �elds by
considering their action on the underlying shape metric. As mentioned in the previous
section, our main strategy will be to represent extrinsic vector �elds viain�nitesimal
shape di�erence operators. Therefore, we �rst de�ne a uni�ed isometric operator in
Section8.4.1. We then de�ne in�nitesimal shape di�erence operators in Section8.4.2and
list some of their key properties in Section8.4.3. Throughout this section we assume that
we are dealing with smooth surfaces without boundary embedded inR3: The appropriate
discretization of all the concepts introduced in this section will be given in Section8.5.

8.4.1 Isometric Shape Di�erence Operator

While the two shape di�erence operators de�ned in Chapter4 are very convenient to
separate measure (area) and conformal distortion, they also imply that two operators are
needed to fully characterize a deformation, which will be cumbersome for representing
extrinsic vector �elds. Moreover, these two operators are not commensurable sinceDA is
de�ned through products of functions, unlike DC which is a di�erential operator de�ned
through inner products of gradients. Thus, we introduce a single uni�ed shape di�erence
operator below.
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Uni�ed shape di�erence The main reason for whichDC is only sensitive to conformal
changes is that both the inner product and the integration are taken on the target shape.
To see this, let us re-write the conformal shape di�erenceDC by integrating on a �xed
domain using the pullback metric tensor as follows:

hf; D C (g)i M
H 1

0
=

Z

M
C' � 1 (hr C' (f ); r C' (g)i ) d( ' ?� N ):

This de�nition is equivalent to the one given in Eq. (4.3) in Chapter 4, but here we simply
highlight the integration with respect to the pushforward measured(' ?� N ) rather than
the measure onM itself. Here, the linear operatorC' � 1 is simply the functional map
with respect to the inverse di�eomorphism ' � 1. Since we are dealing with surfaces, the
change in the area will cancel out on the right, leavingDC only sensitive to conformal
changes.
To de�ne a uni�ed shape di�erence taking into account all intrinsic changes one should
compare the pullback metric to the metric on M while keeping the integrating measure
�xed. We thus propose a uni�ed shape di�erence operatorD I that fully characterizes
isometric distortion.

De�nition 8.4.1 Assuming that ' : N ! M is a di�eomorphism, the uni�ed shape
di�erence D I : H 1

0 (M ) ! H 1
0 (M ) is de�ned implicitly by:

hf; D I (g)i M
H 1

0
:=

Z

M
C' � 1 (hr C' (f ); r C' (g)i ) d� M :

The existence ofD I is once again guaranteed by the Lax-Milgram theorem inH 1
0 .

Moreover, as we claimed above, the following proposition shows that the uni�ed shape
di�erence fully characterizes isometric deformation.

Proposition 8.4.2 The following equivalence holds:

� D I (f ) = f for all f 2 H 1
0 (M ) if and only if ' is an isometry,

� D I = DC in H 1
0 (M ) if and only if ' is an area-preserving.

Proof Using Equation (4.5) we can rewrite De�nition 8.4.1:
Z

M
hr f; r D I (g)i d� =

Z

M
C � 1 (hr C(f ); r C(g)i ) d�

=
Z

M
hr f; A r gi d�

where A is a symmetric (1,1)-tensor de�ned asA ij = (( ' � 1)?gN ) ik gM
kj . This de�nition

allows us to prove both equivalences.
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� If ' is an isometry then (' � 1)?gN = gM so
Z

M
hr f; r D I (g)i d� M =

Z

M
hr f; r gi d�

Therefore D I (g) = g for all function g in H 1
0 .

If D I (f ) = f then
R

M hr f; r (Id � A )gi d� = 0 for all f; g 2 H 1
0 (M ). Lemma 4.2.2

tells us that ' is an isometry.

� If ' is an area-preserving thendet(( ' � 1)?gN ) = det(gM ) so the tensor �eld A is
equal to the tensor �eld B as de�ned in Equation 4.6.

If D I (f ) = DC (f ) then, using Lemma4.2.2, the equality holds between the tensor
A and B . We conclude that det(( ' � 1)?gN ) = det( gM ).

�

This new shape di�erence is de�ned up to isometric deformation and a pullback operation
can be de�ed to transport a shape di�erence on another manifold. More precisely,
Proposition 4.2.4 can be restated for the uni�ed shape di�erence.

Proposition 8.4.3 Assume that D '
I : H 1

0 (M ) ! H 1
0 (M ) represents the distortion of

the metric between the surfacesM and P induced by the di�eomorphism ' : P ! M
and D �

I : H 1
0 (P) ! H 1

0 (P) the distortion between the surfacesP and N linked through
� : N ! P. The distortion D ' � �

I : H 1
0 (M ) ! H 1

0 (M ) associated to' � � : N ! M is
given by

D ' � �
I = D '

I � C � 1
' � D �

I � C' :

Proof The proof relies only on De�nition 8.4.1:
Z

P
C'

�D
r f; r D ' � �

I (g)
E�

d� =
Z

P
C � 1

� (hr (f � ' � � ); r (g � ' � � )i ) d�

=
Z

P

D
r (f � ' ); r D �

I (g � ' )
E

d�

=
Z

P
C'

�D
r f; r D '

I

�
D �

I (g � ' ) � ' � 1
�E�

d�:

This yields the equality D ' � �
I (g) = D '

I

�
D �

I (g � ' ) � ' � 1
�

for all g 2 H 1
0 (M ). �

Example Computing D I is challenging when studying meshes with di�erent connectiv-
ity as it requires the map and its inverse. However, when using it to de�ne an operator
representation for in�nitesimal deformations, we will only be dealing with shapes with a
�xed connectivity, for which we are able to obtain an appropriate discretization. Moreover,
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even in the general case, we are able to approximate this quantity in order to compute it
using the functional map framework, as shown in Section8.5.
To illustrate the properties of the three shape di�erences we use a simple low-dimensional
description of a shape collection. Here we choose a �xed base shape and compute the
shape di�erence matrices with respect to the remaining shapes in a collection. Then, we
represent each shape by its shape di�erence matrix and plot them as points in PCA space.
Figure 8.2 represents the conformal deformation of a bunny into a sphere as viewed by
the three shape di�erences. As expected the conformal shape di�erence is almost identity
while the area and isometric shape di�erences both capture the distortion. In the second
experiment, shown in Figure8.2, we explore another collection obtained by the shearing
of a plane patch. As this deformation is area preserving, the area-based shape di�erence
provides no information, unlike the other two shape di�erences which are equal in this
case.

8.4.2 In�nitesimal Deformations as Operators

One aspect of the shape di�erence operators, highlighted in [106], that makes them
particularly useful for capturing and representing shape deformations is that both the

Conformal collection Shearing collection
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Figure 8.2 � Middle row: Approximately conformal deformation of a bunny into a sphere
(top row left). The PCA applied to shape di�erences con�rms the presence of large area
and isometric distortion in contrast to small conformal distortion. Bottom row: Area
preserving deformation of a plane (top row right). The area shape di�erence is almost
constant while conformal and isometric di�erences agree.
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domain and the range of these operators are functions on a �xed base shape. In other
words, although they are obtained by considering the distortion with respect to some target
shape, the �nal functional operators both act on and produce real-valued functions on the
base shape. Our main goal in this section is to consider a one-parameter family of shapes
M t , given by displacing the points of a base shape along some �xed deformation �eld.
This family of shapes will result in a one-parameter family of shape di�erence operators
(D I )t on the base shape, that we will use to de�ne the in�nitesimal shape di�erence
operator @(D I )t =@tat t = 0 , as a coordinate-free representation of the deformation �eld.

Deformations via Extrinsic Vector Fields Speci�cally, given a surfaceM embedded
in R3 we consider a familyM t of deformations ofM , parameterized by a scalart and
isometrically immersed by the local mappingsFt : U � R2 ! M t � R3. This family of
manifolds is generated by the displacement of the points along the smooth vector �eld
V (p) 2 TpM � TpM ? ' R3:

@Ft
@t

(p) = V (p); (p; t) 2 M � R+ ; (8.1)

where F0 is the local immersion ofM . We call V a displacement �eld, or, alternatively,
an extrinsic vector �eld to highlight the distinction with tangent vector �elds.
Our main goal below is to characterize extrinsic vector �elds as linear functional operators.
For this, as mentioned above, we consider the family of di�eomorphisms' t : M t ! M ,
given trivially via ' t (p) = Ft (p) � tV (p), and the associated functional mapsC' t mapping
functions from M 0 to M t . This creates a one parameter family of shape di�erence operators
D V

t (which can be taken either to be the area or conformal-based operators or the uni�ed
shape di�erence operator de�ned above). We then introduce the in�nitesimal shape
di�erence, as a functional representation of the deformation �eldV as follows:

De�nition 8.4.4 The functional representation of an extrinsic vector �eldV on a surface
M is given by the functional operatorE V :

E V :=
@DV

t

@t

�
�
�
�
t=0

(8.2)

We will call E V the in�nitesimal shape di�erence operator associated with the deformation
�eld V .

We will use E V
A ; E V

C and E V
I to denote the in�nitesimal shape di�erence operators arising

from the area-based, conformal and uni�ed shape di�erences respectively. Note that
although we characterize the properties of all three in�nitesimal shape di�erence operators,
in all practical applications we will only use E V

I as the functional representation of an
extrinsic vector �eld V . This is because this operator allows us to represent an extrinsic
vector �eld using a single linear operator, and moreover, as we show below, under certain
genericity conditions, in the discrete case,E V fully characterizesV up to rigid motion.
Remark that since E V is de�ned as a derivative of a one-parameter family of linear
operators acting on real-valued functions on a surface, both the range and the domain of
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