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Abstract
This thesis is about some boundary integral operators de�ned on the unit disk in three-

dimensional spaces, their relation with the exterior Laplace and Helmholtz problems, and their
application to the preconditioning of the systems arising when solving these problems using
the boundary element method.

We begin by describing the so-called integral method for the solution of the exterior Laplace
and Helmholtz problems de�ned on the exterior of objects with Lipschitz-regular boundaries,
or on the exterior of open two-dimensional surfaces in a three-dimensional space. We describe
the integral formulation for the Laplace and Helmholtz problem in these cases, their numer-
ical implementation using the boundary element method, and we discuss its advantages and
challenges: its computational complexity (both algorithmic and memory complexity) and the
inherent ill-conditioning of the associated linear systems.

In the second part we show an optimal preconditioning technique (independent of the
chosen discretization) based on operator preconditioning. We show that this technique is
easily applicable in the case of problems de�ned on the exterior of objects with Lipschitz-
regular boundary surfaces, but that its application fails for problems de�ned on the exterior
of open surfaces in three-dimensional spaces. We show that the integral operators associated
with the resolution of the Dirichlet and Neumann problems de�ned on the exterior of open
surfaces have inverse operators that would provide optimal preconditioners but they are not
easily obtainable. Then we show a technique to explicitly obtain such inverse operators for
the particular case when the open surface is the unit disk in a three-dimensional space. Their
explicit inverse operators will be given, however, in the form of a series, and will not be
immediately applicable in the use of boundary element methods.

In the third part we show how some modi�cations to these inverse operators allow us
to obtain variational explicit and closed-form expressions, no longer expressed as series, that
also conserve some characteristics that are relevant for their preconditioning e�ect. These
explicit and closed forms expressions are applicable in boundary element methods. We obtain
precise variational expressions for them and propose numerical schemes to compute the integrals
needed for their use with boundary elements. The proposed numerical methods are tested using
identities available within the developed theory and then used to build preconditioning matrices.
Their performance as preconditioners for linear systems is tested for the case of the Laplace
and Helmholtz problems for the unit disk. Finally, we propose an extension of this method
that allows for the treatment of cases of open surfaces other than the disk. We exemplify
and study this extension in its use on a square-shaped and an L-shaped surface screen in a
three-dimensional space.

Finally, the methods developed are used in an application example. Based on techniques
and assumptions from geometrical optics, we propose improvements to existing methods for
the imaging of underground reectivity using ground penetrating radar. Because they rely on
assumptions from geometrical optics, these methods have to tested by means of computational
simulations, resulting in the resolution of a massive number of direct problems. A complexity
analysis shows how the proposed preconditioning techniques can signi�cantly reduce the algo-
rithmic complexity of the global problem. Finally, the resolution capability of the proposed
imaging methods are tested in di�erent scenarios of practical interest.

Keywords: Exterior Laplace problem, exterior Helmholtz problem, boundary integral
equations, boundary element methods, operator preconditioning, optimal preconditioning, screen
problems, crack problems.
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R�esum�e
Cette th�ese s'inscrit dans le sujet des op�erateurs int�egraux de fronti�ere d�e�nis sur le disque

unitaire en trois dimensions, leurs relations avec les probl�emes externes de Laplace et Helmholtz,
et leurs applications au pr�econditionnement des syst�emes lin�eaires obtenus en utilisant la
m�ethode des �el�ements �nis de fronti�ere.

On d�ecrit d'abord les m�ethodes int�egrales pour r�esoudre les probl�emes de Laplace et de
Helmholtz en dehors des objets �a fronti�ere r�eguli�ere lipschitzienne, et en dehors des sur-
faces bidimensionnelles ouvertes dans un espace tridimensionnel. La formulation int�egrale des
probl�emes de Laplace et de Helmholtz pour ces cas est d�ecrite formellement. La mise en �uvre
d'une m�ethode num�erique utilisant la m�ethode des �el�ements �nis de fronti�ere est �egalement
d�ecrite. Les avantages et les d�e�s inh�erents �a la m�ethode sont abord�es : la complexit�e du
calcul num�erique (de m�emoire et algorithmique) et le mauvais conditionnement inh�erent des
syst�emes lin�eaires associ�es.

Dans une deuxi�eme partie on expose une technique optimale de pr�econditionnement (in-
d�ependante de la discr�etisation) sur la base des op�erateurs int�egraux de fronti�ere. On montre
comment cette technique est facilement r�ealisable dans le cas de probl�emes d�e�nis en dehors
d'un objet r�egulier �a fronti�ere lipschitzienne, mais qu'elle pose des probl�emes quand ils sont
d�e�nis en dehors d'une surface ouverte dans un espace tridimensionnel. On montre que les
op�erateurs int�egraux de fronti�ere associ�es �a la r�esolution des probl�emes de Dirichlet et Neumann
d�e�nis en dehors des surfaces ont des inverses bien d�e�nies. On montre �egalement que celles-ci
pourraient conduire �a des techniques de pr�econditionnement optimales, mais que ses formes
explicites ne sont pas faciles �a obtenir. Ensuite, on montre une m�ethode pour obtenir de tels
op�erateurs inverses de fa�con explicite lorsque la surface sur laquelle ils sont d�e�nis est un disque
unitaire dans un espace tridimensionnel. Ces op�erateurs inverses explicites seront, cependant,
sous forme de s�eries, et n'auront pas une adaptation imm�ediate pour leur utilisation dans des
m�ethodes des �el�ements �nis de fronti�ere.

Dans une troisi�eme partie on montre comment certaines modi�cations aux op�erateurs in-
verses mentionn�es permettent d'obtenir des expressions variationnelles explicites et ferm�ees,
non plus sous la forme de s�eries, en conservant certaines caract�eristiques importantes pour
l'e�et de pr�econditionnement cherch�e. Ces formes explicites sont applicables aux m�ethodes
des �el�ements �nis fronti�ere. On obtient des expressions variationnelles pr�ecises et on propose
des calculs num�eriques pour leur utilisation avec des �el�ements �nis fronti�ere. Ces m�ethodes
num�eriques sont test�ees en utilisant di��erentes identit�es obtenues dans la th�eorie d�evelopp�ee, et
sont ensuite utilis�ees pour produire des matrices pr�econditionnantes. Leur performance en tant
que pr�econditionneurs de syst�emes lin�eaires associ�es �a des probl�emes de Laplace et Helmholtz
�a l'ext�erieur du disque est ainsi test�ee. En�n, on propose une extension de cette m�ethode pour
couvrir les cas des surfaces diverses. Ceci est �etudi�e dans les cas pr�ecis des probl�emes ext�erieurs
�a des surfaces en forme de carr�e et en forme deL dans un espace tridimensionnel.

Finalement, les m�ethodes d�evelopp�ees sont utilis�ees dans un exemple d'application. Sur
la base de techniques et hypoth�eses de l'optique g�eom�etrique, on propose des am�eliorations �a
des m�ethodes existantes pour l'imagerie de la r�eectivit�e du sous-sol en utilisant le radar �a
p�en�etration de sol. �Etant bas�ees sur des hypoth�eses de l'optique g�eom�etrique, ces m�ethodes
doivent être �evalu�ees par simulations num�eriques, ce qui entrâ�ne la r�esolution d'un nombre tr�es
important de probl�emes directs. Une analyse de complexit�e montre comment les techniques
de pr�econditionnement propos�ees peuvent r�eduire la complexit�e algorithmique du probl�eme
global. En�n, la capacit�e de r�esolution des m�ethodes propos�ees pour la formation des images
du sous-sol est �evalu�ee pour di��erents sc�enarios d'int�erêt.

Mots-cl�es : Probl�eme ext�erieur de Laplace, probl�eme ext�erieur de Helmholtz, �equations
int�egrales de fronti�ere, m�ethode des �el�ements �nis de fronti�ere, pr�econditionnement par op�era-
teurs, pr�econditionnement optimal, probl�emes des surfaces ouvertes, probl�emes de �ssures.
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Resumen
Esta tesis trata sobre operadores integrales de contorno de�nidos sobre el disco unitario

en tres dimensiones, su relaci�on con los problemas exteriores de Laplace y de Helmholtz, y su
aplicaci�on al precondicionamiento de sistemas lineales generados utilizando el m�etodo de los
elementos �nitos de frontera.

Inicialmente se describen los llamados m�etodos integrales para la resoluci�on de problemas de
Laplace y Helmholtz en el exterior de objetos de frontera regular Lischitziana y de super�cies
abiertas bi-dimensionales. Se describe la formulaci�on integral de los problemas de Laplace
y Helmholtz para estos casos, su implementaci�on num�erica utilizando el m�etodo de elementos
�nitos de frontera, y se discuten las ventajas y los desaf��os intr��nsecos a m�etodo: su complejidad
computacional (de memoria y algort��mica), y el inherente mal condicionamiento de los sistemas
lineales asociados.

En una segunda parte se expone una t�ecnica de precondicionamiento �optimo (independiente
de la discretizaci�on), basado en operadores integrales de contorno, y se muestra como esta
t�ecnica es f�acilmente realizable en el caso de problemas de�nidos en el exterior de un objeto
de frontera regular Lipschitziana, pero no as�� cuando el problema se de�ne en el exterior
de una super�cie abierta en tres dimensiones. Se mostrar�a que los operadores integrales de
contorno asociados a la resoluci�on de los problemas de Dirichlet y de Neumann de�nidos en el
exterior de super�cies tienen inversas bien de�nidas. Se mostrar�a tambi�en que estas inversas
podr��an dar origen a t�ecnicas de precondicionamiento �optimo, pero que su forma expl��cita
no es f�acil de obtener. A continuaci�on se mostrar�an formas de obtener dichos operadores
inversos de forma expl��cita cuando la super�cie es un disco unitario en un espacio tridimensional.
Estos operadores inversos expl��citos estar�an dados, sin embargo, en forma de series, y no ser�an
apropiados para el uso inmediato en m�etodos de elementos �nitos de frontera.

En una tercera parte mostraremos c�omo algunas modi�caciones a los operadores inversos
mencionados permiten obtener expresiones variaciones expl��citas y cerradas, ya no en forma
de series, conservando algunas caracter��sticas relevantes para el efecto precondicionador. Estas
formas expl��citas cerradas s�� son aplicables en m�etodos de elementos �nitos de frontera. Se
obtienen expresiones variaciones precisas y se proponen c�alculos num�ericos para su uso con ele-
mentos �nitos de frontera. Estos m�etodos num�ericos se prueban utilizando distintas identidades
aseguradas en la teor��a desarrollada y se utilizan para producir matrices precondicionantes. Su
desempe~no en la mejora del condicionamiento de los sistemas lineales asociados a los problemas
de Laplace y Helmholtz en el exterior del disco es exhibido. Finalmente, se propone una ex-
tensi�on de este m�etodo que permite cubrir casos de dominios exteriores a super�cies de diversos
tipos, la que se ejempli�ca y estudia en problemas exteriores a super�cies cuadradas y en forma
de L en un espacio en tres dimensiones.

Finalmente, los m�etodos desarrollados se utilizan en un ejemplo de aplicaci�on. Basados
t�ecnicas y supuestos de la �optica geom�etrica, se proponen mejoras a m�etodos existentes para
la formaci�on de im�agenes de reectividad del subsuelo utilizando radares de penetraci�on de
suelo. Al basarse en supuestos de la �optica geom�etrica, estos m�etodos deben evaluarse median-
te simulaciones f��sicas computacionales, lo que resulta en la resoluci�on de un n�umero masivo de
problemas directos. Un an�alisis de complejidad muestra c�omo las t�ecnicas propuestas de pre-
condicionamiento reducen signi�cativamente la complejidad alg�oritmica del problema global.
Finalmente, la capacidad de resoluci�on de los m�etodos propuestos para hacer im�agenes se
eval�uan en distintas situaciones de inter�es.

Palabras clave: Problema exterior de Laplace, problema exterior de Helmoltz, ecuaciones
integrales de contorno, m�etodo de elementos �nitos de frontera, precondicionamiento por ope-
radores, precondicionamiento �optimo, problemas de super�cies abiertas, problemas de �suras.
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Chapter 1

Wave Propagation, Boundary
Integral Equations, Boundary
Element Methods, and
Computational Complexity

In this chapter we will treat the subject of wave propagation, its mathematical modeling
in some speci�c cases, some common numerical strategies to solve wave propagation problems,
their advantages and challenges.

In this chapter we lay down the framework for the results of the following chapters. The
chapter covers a wide range of subjects in a succinct manner aiming to provide a summarized
view of the domains relevant to the research work undertaken in this thesis. It contains de�ni-
tions, notations, and results from previous research to be used in later chapters. It also serves
to illustrate the motivation of this research through highlighting the advantages, and especially
the challenges, this approach poses. The reader can skip the di�erent sections of this chapter
depending on its familiarity with the subjects treated.

We will begin by establishing the Helmholtz equation and its relation to the Laplace equa-
tion and to wave propagation phenomena in several areas of physics providing motivation and
examples. We will then state a precise formulation of a relevant family of problems arising
in wave propagation along with some geometrical and functional framework. Next, we will
present the integral equation approach, that allows to solve some partial di�erential equations
recasting them as integral equations on the boundaries of the propagation domains. We will
present variational formulations for the boundary integral equations, a boundary discretization
method, and the boundary element method which will give rise to discrete variational formu-
lations posed on �nite-dimensional spaces. We will show how this allows for the construction
of Galerkin matrices leading to linear systems that can solve the discrete variational problem.
Finally, we will address the main di�culties of this method, regarding computational complex-
ity and accuracy, which will serve as an introduction to the following chapter where we provide
a strategy to tackle these issues.

The de�nitions, propositions and theorems have been taken from di�erent classic sources
on the subject, such as [51], [57], [48]. Notation follows roughly that of [51]. Notation and
results concerning the surface discretization, triangular meshes, and boundary elements spaces
presented in this chapter have also been taken from [61].

1



1.1 The Helmholtz equation in physics

We will briey provide a few examples of the use of the Helmholtz equation in the mathe-
matical modeling of wave propagation phenomena. These examples will quickly show a wide
range of possible applications in science and engineering, which will serve as motivation and
background for the work undertaken and reported in this document. These examples follow
those presented in [51, Section 1.2] and [64, Section 1.2].

Wave propagation phenomena in three-dimensional space are governed at each point by the
hyperbolic wave equation,

�
@2u
@t2

(x ; t) + c2� u(x ; t) = 0 for x 2 R3; and t 2 R+ ; (1.1)

where u is a function describing a quantity that is preserved over time and overR3, and c the
wave velocity of the propagation medium.

A time-harmonic solution, of frequency f , to the wave equation can be sought using Fourier
transforms, slightly abusing notation, with the time dependency convention

u(x ; t) = Re
�

u(x )e� i!t 	
; (1.2)

where the quantity ! = 2 �f is called the pulsation of the time-harmonic wave. Functionu is
now a solution to the Helmholtz equation:

�
�
� u(x ) + k2u(x )

�
= 0 for x 2 R3; (1.3)

where k = !=c is called the wave number.

The Laplace equation is a limit case of the Helmholtz equation, in which the frequencyf
is zero. Thus,k is also zero, yielding:

� � u(x ) = 0 for x 2 R3: (1.4)

The Helmholtz equation arises naturally in the mathematical modeling of numerous wave
propagation phenomena that are intrinsically time-harmonic. Additionally, the use of Fourier
transforms allows us to perform time-harmonic calculations for frequenciesf over a given band
so we can then compute the transient wave behavior. In the rest of this section we develop
examples of some of the most classic physical models for wave phenomena using the Helmholtz
equation.

1.1.1 Acoustic waves

Let us consider a gas in which a pressure wave is traveling. The total pressure on each
point is described by a function pT (x ; t), the total density by a function � T (x ; t), and the total
velocity by a function vT (x ; t). The conservation of mass can be expressed as

d� T

dt
(x ; t) + div ( � T vT ) (x ; t) = 0 ; (1.5)

and the conservation of momentum as

d
dt

(� t v t ) (x ; t) +
��!
grad (pt ) (x ; t) = 0 : (1.6)

Being interested in the perturbations of the pressure, we express the total pressure, density,
and wave velocity as background valuesp0, � 0, and v0 plus perturbations p, � , and v:

vT = v0 + v; pT = p0 + p; and � T = � 0 + �: (1.7)
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We will assume that the gas is perfect. Assuming that the gas is also at rest, i.e. that
v0 = 0, and using a �rst order linearization of (1.5) and (1.6) (refer to [64, Section 1.2.1]
or [39, Sections 1.1.1 & 1.1.2]) yields the system of equations

8
>>><

>>>:

� 0
@v
@t

(x ; t) +
��!
grad p(x ; t) = 0 ;

1
c2

@p
@t

(x ; t) + � 0div v(x ; t) = 0 ;

(1.8)

wherec =
p

R sT is the wave velocity,  the adiabatic index of the gas,Rs its speci�c constant,
and T its absolute pressure. Assuming that the propagating wave is time-harmonic, and using
(1.2) as p(x ; t) = Re

�
p(x )e� i!t

	
and as v(x ; t) = Re

�
v(x )e� i!t

	
we can rewrite the system

(1.8) as

8
>><

>>:

� i!� 0v(x ) +
��!
gradp(x ) = 0 ;

�
i!
c2 p(x ) + � 0div v(x ) = 0 :

(1.9)

Applying divergence to the �rst equation and eliminating div v yields a Helmholtz equation
for the pressure variation p:

�
�
� p(x ) + k2p(x )

�
= 0 ; (1.10)

where k = !=c is the wave number.

1.1.2 Elastic waves

The elastic equation describes the displacement of points inside an elastic object when a lin-
ear approximation is used in the case of small displacements. Letu (x ; t) = ( u1(x ; t); u2(x ; t); u3(x ; t))
be the three-dimensional displacement at pointx and time t. Let the strain tensor " for the
object be

" ij (u ) =
1
2

�
@uj
@xi

+
@uj
@xi

�
: (1.11)

The strain tensor is related to the stress tensor� by the Lam�e parameters � and � as

� ij (u ) = 2 �" ij (u ) + � j
i �

3X

k=1

" kk (u ); (1.12)

where � j
i is the Kronecker delta.

Given the density � , the conservation of momentum can be expressed as

�
@ui
@t2

(x ; t) �
3X

j =1

@�ij
@xj

(u ) (x ; t) = 0 : (1.13)

Using (1.2) as u(x ; t) = Re
�

u (x ; t)e� i!t
	

, if the displacement is time-harmonic, we can
rewrite the last equation as

�! 2ui (x ) +
3X

j =1

@�ij
@xj

u(x ) = 0 ; (1.14)

which, in vectorial notation, can be expressed as
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�! 2u(x ) + � � u (x ) + ( � + � )
��!
grad div u (x ) = 0 : (1.15)

If the displacement u has null divergence, i.e. divu = 0, the object is incompressible
and the previous equation can be rewritten as a Helmholtz equation for the time-harmonic
displacement:

� u (x ) + k2u(x ) = 0 ; (1.16)

where the wave number isk = !
p

�=� . These are the so-called shearing waves, or S waves.

An interesting type of solutions is the irrotational time-harmonic waves, thus writable as
u =

��!
grad ' . Using the vectorial identity � v =

��!
grad div v �

��!
curl

��!
curl v , equation (1.15) can be

written as
�! 2u(x ) + ( � + 2 � )

��!
grad div (u (x )) � �

��!
curl

��!
curl u (x ) = 0 ; (1.17)

which means that, if u =
��!
grad ' , then ' must necessarily satisfy

�! 2' + ( � + 2 � )� ' = 0 : (1.18)

This is a Helmholtz equation for a wave numberk = !
p

�= (� + 2 � ). These are the so-called
pressure wave, or P waves.

1.1.3 Electromagnetic waves

We will show that the Helmholtz equation can also model an interesting range of electro-
magnetic wave propagation phenomena. Let us consider a homogeneous medium free of charges
with electrical permittivity � and magnetic permeability � . The behavior of the electric and
magnetics �elds E and H is then governed by Maxwell's equations:

8
>>><

>>>:

� �
@E
@t

(x ; t) +
��!
curl H (x ; t) = 0 ;

�
@H
@t

(x ; t) +
��!
curl E (x ; t) = 0 :

(1.19)

Taking the divergence of both equations yields

@
@t

div E (x ; t) =
@
@t

div H (x ; t) = 0 ; (1.20)

which implies that
div E (x ; t) = div H (x ; t) = 0 ; (1.21)

if div E (x ; 0) = div H (x ; 0) = 0. Using again the identity � v =
��!
grad div v �

��!
curl

��!
curl v , and

taking
��!
curl on both equations, we can obtain

8
>>><

>>>:

@2E
@t2

(x ; t) � c2� E (x ; t) = 0 ;

@2H
@t2

(x ; t) � c2� H (x ; t) = 0 ;

(1.22)

where c = 1=
p

�� is the wave velocity.

Using (1.2) as E (x ; t) = Re
�

E (x )e� i!t
	

and H (x ; t) = Re
�

H (x )e� i!t
	

, we obtain
Helmholtz equations for the electric and the magnetic �elds when they are considered to be
time-harmonic:
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8
<

:

� E (x ) + k2E (x ) = 0 ;

� H (x ) + k2H (x ) = 0 :
; (1.23)

where k = !=c = !
p

�� is the wave number.
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1.2 Problem domains, boundaries, and Sobolev spaces

In this section, we will provide a geometrical and a functional setting for much of the rest of
this document. We will begin by describing the types of domains that will be considered for the
development of the results that will be treated in the subsequent chapters. These domains will
be mainly classi�ed according to the regularity of their boundaries, for which we will provide
a precise de�nition. We will also provide a characterization of the functional spaces that will
be relevant to the analysis of the problems to be considered in these domains.

1.2.1 Domains and boundaries

Throughout this thesis we will consider a precise range of problems, those consisting of a
wave propagating on the exterior of a connected and bounded obstacle embedded in three-
dimensional space. This obstacle will be most notably distinguished by the regularity of its
boundary. If the obstacle is represented by the set of pointsO � R3 with boundary � = @O,
we will distinguish between obstacles with Lipschitz-regular boundary � and obstacles whose
boundary isn't Lipschitz-regular. Roughly speaking, a Lipschitz-regular boundary � of an
obstacleO � R3 is a surface that can be represented locally by the graph of a Lipschitz-regular
function [48, page 89]. We will provide a more precise description of this notion in the following
de�nition.

De�nition 1.2.1 (Lipschitz-regular surfaces [48, De�nition 3.28]). A Lipschitz-regular surface
� = @O, boundary of an obstacleO in R3, is a surface for which exist �nite families of sets
f Wi g

N
i =1 and f 
 i g

N
i =1 having the following properties:

1. The family f Wi g
N
i =1 is a �nite open cover of � , i.e., each Wi is an open subset ofR3 and

� �
S N

i =1 Wi .

2. Each 
 i can be transformed to a Lipschitz hypograph by a rigid motion, i.e., by a rotation
plus a translation.

3. The set O satis�es Wi \ O = Wi \ 
 i for i = 1 :::N .

We will also speak of a Lipschitz-regular obstacle whenever an obstacle has a boundary
that is a Lipschitz-regular surface. This kind of object allows for the use of special analysis
tools that will provide signi�cant advantages in modeling wave propagation phenomena, and
in developing numerical methods able to produce numerical simulations.

Cusps, cracks, and screens are examples of surfaces that are not Lipschitz-regular. The
screens are the focus of much of the work presented in this thesis, and will be described in
more detail. A large family of surfaces that are not Lipschitz-regular is produced when, locally,
parts of two Lipschitz-regular surfaces are joined with an angle of zero degrees. Surfaces that
are not Lipschitz-regular appear naturally when modeling many problems of practical interest,
but unfortunately they deprive us of many of the useful analytical tools that are available
for cases that consider only Lipschitz-regular surfaces. These domains that are not Lipschitz-
regular have a more complex geometry when applied to the modeling of physical phenomena.
This will be a major subject in the next chapters of this document.

A particular case of obstacles that are not Lipschitz-regular, especially relevant for the work
presented here, are the so-called screens. They are open surfaces inR3. These obstacles can
be viewed as objects that have collapsed and thus have no interior (int(O) = ? ) but only
external boundary. The boundary will in turn have a one-dimensional manifold (a curve) as
boundary (@� 6= ? ) . We will consider an orientation for surfaces � de�nable a.e. We will
denote with signs + and - this orientation, respectively signaling the exterior and interior sides
if � is a closed surface (in the case of the boundary of an obstacle), or an upper and lower
side in the case of an open surface, i.e., in the case of a screen. We will also de�ne, a.e., a
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unit vector, denoted by n , normal to surface � and pointing towards the exterior or the upper
side, according to the case. Figure 1.1 illustrates a transformation that can give rise to screen
obstacles and the elements identi�ed so far.

Figure 1.1: Illustration of the collapse of a Lipschitz-regular obstacleO into a screen �, showing
its orientation and unit normal vector.

Two cases are of special interest: Lipschitz-regular obstaclesO of boundary �, and screen
obstacles �. We will take interest in what is called the exterior problem. In the case of
Lipschitz-regular obstaclesO with Lipschitz-regular boundaries � = @O, the problem domain
will be 
 O = R3 n O with boundaries �, and what will be called the in�nity. Similarly, in
the case of screen obstacles � , the problem domain will be denoted by 
� = R3 n � with
boundaries � and the in�nity. Many problems in physics can be modeled specifying conditions
at the boundaries of the problem's domain, i.e. on � and at in�nity, the latter one meaning a
speci�cation of the behavior of a solution asymptotically far from the obstacle.

It will be useful to consider a notion of regularity wider than that of Lipshitz-regularity.
In the context of De�nition 1.2.1 a surface � will be further called of class Ck , or k-regular,
if there is a di�eomorphism � i of classCk with inverse of classCk mapping each covering set
Wi onto the unit ball such that the set Wi \ � is mapped onto its equatorial plane [51, Section
2.5.2].

1.2.2 Elementary di�erential geometry

It will be useful to de�ne certain surface di�erential operators for functions de�ned on
su�ciently smooth surfaces, as the ones that will be used in the rest of this document. These
operators will appear later in the study of variational forms of boundary integral operators
that will be relevant for the treatment of the Laplace and Helmholtz problems. Let us begin
de�ning the distance from a point to a given set in R3.

De�nition 1.2.2 (Distance function). For every point x in R3, we denote by dist(x ; A) the
distance of x to the set A:

dist (x ; A) = inf
y 2 A

kx � yk : (1.24)

The most relevant application for this function will be the measurement of the distance
from a point x to a surface �, i.e. dist ( x ; �), and the distance from a point on the surface,
x 2 �, to the edge of that surface whenever it is open, i.e. dist (x ; @�). We will use this notion
of distance to de�ne the tubular neighborhood of a surface.

De�nition 1.2.3 (Tubular neighborhood [51, Section 2.5.6]). A collection of points, denoted
� " , whose distance to a surface� is less than" > 0 is a tubular neighborhood of� de�ned as

� " =
�

x 2 R3 : dist (x ; �) � "
	

: (1.25)
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The imposition of regularity conditions on � will allow us to de�ne orthogonal projections
and liftings that will be needed in the de�nition of some surface di�erential operators.

Proposition 1.2.1 (Orthogonal surface projection [57, Example 8.1.8] [22, Lemma 14.16]). If
� is a k-regular surface with k � 2, then there exists" > 0 and a tubular neighborhood� " of �
such that the mapping

 : � � (� "; " ) ! � " ;  (x ; s) = x + sn x for x 2 � ; (1.26)

is a Ck� 1 di�eomorphism. Thus, the orthogonal projection P� : � " ! � is well de�ned by

P� (x + sn x ) = x for x 2 � ; and s 2 (� "; " ): (1.27)

For a function u de�ned on a 2-regular surface �, we will consider the lifting u � P� . We
denote this function, in the scope of this section, byeu = u � P� .

De�nition 1.2.4 (Surface di�erential operators
��!
curl � and

��!
grad � ). We introduce the tangential

gradient,
��!
grad � , de�ned by

��!
grad � u =

��!
grad (eu) ; (1.28)

and the tangential curl,
��!
curl � , de�ned by

��!
curl � u =

��!
curl (eun ) ; (1.29)

for a function u de�ned on a surface � with n being its unit normal.

Remark 1.2.1 (Alternative expression for
��!
curl � ). Considering the vector calculus identity

��!
curl ( v) =

��!
grad  � v +  

��!
curl v for a �eld v and a scalar �eld  on R3, the de�nition of the

tangential curl is equivalent to
��!
curl � u =

��!
grad � u � n ; (1.30)

where n is the unit normal to � (and thus
��!
curl n = 0 ).

1.2.3 Sobolev spaces

In this subsection we will de�ne the functional spaces in which the di�erent problems to
be treated will be considered. These functional spaces are called Sobolev spaces and are the
natural spaces of functions in which to solve variational formulations of partial di�erential
equations [4, Section 4.1]. This is due to the fruitful energy analysis in mathematical physical
modeling and the capacity of the Sobolev spaces to treat this concept together with a formal
framework for integration.

We will consider a variety of Sobolev spaces de�ned on propagation domains and in the
surface of obstacles, either Lipschitz-regular or screens. We will focus on de�nitions directly
applicable to the cases to be treated in the next chapter. For results of wider reach and greater
detail, the reader is referred to [48, Chapter 3], [19, Chapter 7], and [51, Section 2.5.2]. The
following exposition follows that of [61, Section 1.1].

Let us consider the following norms.

De�nition 1.2.5 (L 2-norm). Let us consider a function u measurable on a setS 2 R3. The
L 2-norm k�kL 2 (S) of u on S is de�ned as

kukL 2 (S) =

0

@
Z

S

juj2dS

1

A

1=2

: (1.31)
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De�nition 1.2.6 (Sobolev-Slobodeckii norm). Let u be a function de�ned on a surface� in
R3, the Sobolev-Slobodeckii normj�j H 1=2 (�) of u is de�ned as

jujH 1=2 (�) =

0

@
Z

�

Z

�

ju(x ) � u(y )j2

kx � yk3 d�( x )d�( y )

1

A

1=2

: (1.32)

De�nition 1.2.7 (H 1=2 Sobolev norm for functions de�ned on surfaces). Let u be a function
de�ned on a surface � in R3. The H 1=2(�) Sobolev normk�kH 1=2 (�) of u is de�ned as

kukH 1=2 (�) =
�

kuk2
L 2 (�) + juj2H 1=2 (�)

� 1=2
: (1.33)

Before proceeding to the de�nition of the Sobolev spaces that will be used in the rest of
this document, let us consider the extension of an open surface onR3.

De�nition 1.2.8 (Closed extensione� of an open surface � in R3). Given an open surface�
(i.e. @� 6= ? ) embedded inR3, let us consider the closed extensione� as the Lipschitz-regular,
closed surface (i.e.@e� = ? ) such that � � e� .

Let us now de�ne the Sobolev spaces that will be directly relevant for de�nitions to be
presented in the rest of this chapter, and for the results presented in subsequent ones.

De�nition 1.2.9 (Positive order Sobolev spaces de�ned on surfaces inR3). For an open or
closed surface� embedded inR3 we de�ne the following spaces:

1. The Sobolev spaceH 1=2(�) is the closure of spaceC1 (�) using the norm k�kH 1=2 (�) .

2. The Sobolev spaceH 1=2
0 (�) is the closure of spaceC1

0 (�) using the norm k�kH 1=2 (�) .

3. The Sobolev spaceeH 1=2(�) is the subspace ofH 1=2(e�) of functions with support on � :
eH 1=2(�) =

n
u 2 H 1=2(e�) : supp( u) � �

o
. If � is closed,e� = � and H 1=2(�) = eH 1=2(�) .

Remark 1.2.2. It follows from the previous de�nition that eH 1=2(�) � H 1=2
0 (�) .

We will de�ne negative order Sobolev spaces using duality, for which we will de�ne the
duality pairing. It is a standard practice to represent the duality pairing of Sobolev spaces as
inner products in L 2 even if the elements are no longerL 2-integrable [19, Section 7.4].

De�nition 1.2.10 (Duality pairing) . Let f 2 V 0 and g 2 V be functions in dual spaces, with
V and V 0 de�ned over a surface� , and possiblyf =2 L 2(�) . We will compute the duality pairing
between dual Sobolev spaces as inner products inL 2(�) using density as

hf; g i V 0;V = lim
n!1

(f n ; g)L 2 (�) = lim
n!1

Z

�

f n (x )g(x )d�( x ); (1.34)

where f f ng1
n=1 � L 2(�) is a sequence such that

lim
n!1

kf � f nkV 0 = 0 : (1.35)

Notation 1.2.1. We also use the following notation for duality pairings referring only to the
domain of integration:

hf; g i � = hf; g i V 0;V : (1.36)

We now use the duality pairing to de�ne negative order Sobolev spaces on surfaces.
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De�nition 1.2.11 (Negative order Sobolev spaces de�ned on surfaces inR3). For an open or
closed surface� embedded inR3 we use duality pairing to de�ne the following spaces:

1. The Sobolev spaceH � 1=2(�) =
�

eH 1=2(�)
� 0

, with norm

kukH � 1=2 (�) = sup
06= v2 eH 1=2 (�)

j hu ; vi L 2 (�) j

kvkH 1=2 (�)
: (1.37)

2. The Sobolev spaceeH � 1=2(�) =
�
H 1=2(�)

� 0
, with norm

kuk eH � 1=2 (�) = sup
06= v2 H 1=2 (�)

j hu ; vi L 2 (�) j

kvkH 1=2 (�)
: (1.38)

If � is closed,e� = � and eH � 1=2(�) = H � 1=2(�) .

Proposition 1.2.2 (Tilde spaces' inclusions [61, Equation (1.6)]). It is easy to use the de�ni-
tion of the norms to state the following inclusions:

1. eH 1=2(�) � H 1=2(�) ;

2. eH � 1=2(�) � H � 1=2(�) .

When � is an open surface (a screen) spacesH 1=2(�) and H � 1=2(�) are no longer dual to
each other. This will prove to be challenging to some preconditioning methods based on oper-
ator preconditioning with opposite order operators for �rst kind boundary integral equations.
It is this fact that deprives us from using well established operator preconditioning techniques
in the case of screen obstacles. Its implications will be made clearer during this chapter, and
will be formally stated in the next one.

When studying problems on unbounded domains, exterior to Lipschitz-regular obstacleO
or screen �, it will be natural to consider weighted Sobolev spaces that will take into account
prescribed behaviors on functions asymptotically far fromO. Let us consider the following
spaces.

De�nition 1.2.12 (The weighted Sobolev spaceW 1;� 1(
) [51, Section 2.5.4]) . Given an un-
bounded exterior domain,
 = R3 nO for a bounded Lipschitz-regular obstacleO or 
 = R3 n�
for a screen � , we de�ne the space

W 1;� 1(
) =
�

u :
u
f

2 L 2(
) ;
@u
@xi

2 L 2(
)
�

; (1.39)

with f (x ) =
q

1 + kx k2.

De�nition 1.2.13 (The weighted Sobolev spaceW H (
) [51, Section 2.6.2]) . Given an un-
bounded exterior domain,
 = R3 nO for a bounded Lipschitz-regular obstacleO or 
 = R3 n�
for a screen � , we de�ne the space

W H (
) =
�

u :
u
f

2 L 2(
) ;
1
f

@u
@xi

2 L 2(
) ;
@u
@r

� iku 2 L 2(
)
�

; (1.40)

with f (x ) =
q

1 + kx k2.

Remark 1.2.3 (Restriction to bounded domains). For a bounded subset
 B of the exterior
domain 
 from De�nition 1.2.13, the restriction of functions from the weighted Sobolev spaces
to 
 B coincides with H 1(
 B ). That is, for a bounded part of 
 , W 1;� 1(
) and W H (
) coincide
with H 1

loc(
)

The weighted Sobolev spaces are Hilbert spaces, unlikeH 1
loc(
) which is only of Fr�echet type.

Coinciding locally with H 1
loc(
) will be an important feature of the weighted Sobolev space that

will provide us with a meaningful way of referring to the value of the limits of functions on 

as they approach surface �. This will be treated formally in the next subsection.
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1.2.4 Traces and jumps

In this subsection we will summarize some results about the relation between a function
de�ned on an exterior propagation domain and the limit of its value approaching the boundary
of an obstacle, be it Lipschitz-regular or a screen. We will de�ne the so-called trace operator,
which will provide this limit value. The main tool presented in this subsection will be the
trace theorem, which will provide regularity estimates for a function de�ned on surface � as a
result of this limit process. We will begin by giving a simple de�nition for the trace operator,
following [19, Section 7.5]. De�nitions and results with greater reach, beyond the scope of the
work presented in this document, can be found in [48, page 100] and [38, Section 4.2].

De�nition 1.2.14 (Trace operator). Given a Lipschitz-regular surface� in R3, we de�ne the
external and internal zeroth order trace operators �

� : H 1
loc(R3 n �) ! H 1=2(�) as

 �
� u(x ) = lim

" ! 0�
u(x � "n x ) (1.41)

for x in � , and n x the external unit normal at x . Similarly, we de�ne the �rst order trace
operator,  �

� � @
@n : H 1

loc(R3 n �) ! H � 1=2(�) as

 �
�

@u
@n x

(x ) = lim
" ! 0�

@
@n x

u(x � "n x ): (1.42)

Theorem 1.2.1 (Trace theorem [19, Section 7.5] [51, Theorem 2.5.3]). The trace operator  �
�

maps continuously the spaceH 1
loc(R3 n �) , onto H 1=2(�) . The trace operator  �

� � @
@n maps

continuously the spaceH 1
loc(R3 n �) , onto H � 1=2(�) .

We will be interested in the di�erence of the traces of opposite sides of a surface. The jump
operators will provide us with the functions describing this quantity.

De�nition 1.2.15 (Jump operator). Given an oriented surface� in R3 we de�ne the jump
operator [ � �] as

[ � u] =  +
� (u) �  �

� (u); (1.43)

and the jump operator
�
 �

@
@n �

�
as

�
 �

@u
@n

�
=  +

�
@u
@n

�  �
�

@u
@n

: (1.44)

The trace operator and the trace theorem will allow us to de�ne boundary conditions on
� for the problems of interest. Imposing boundary conditions on the limit values of a function
will give rise to the so-called Dirichlet problems, while imposing boundary conditions on the
limits of the normal derivatives of a function will give rise to the so-called Neumann problems.
We will detail the Dirichlet and Neumann problems for the Laplace and Helmholtz equations
in the following section.
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1.3 Laplace and Helmholtz problems

In this section we will de�ne the problems that will be treated in the rest of this document.
These problems will be, for a propagation domain 
O on the exterior of a Lipschitz-regular ob-
ject O, the Dirichlet or Neumann, Laplace or Helmholtz partial di�erential equation problems.
Likewise, for a propagation domain 
 � on the exterior of a screen obstacle �, the symmetric
or anti-symmetric, Dirichlet or Neumann, Laplace or Helmholtz partial di�erential equation
problems. We will use the domain characterization, functional framework, and the trace oper-
ators de�ned on previous Section 1.2 to provide precise de�nitions of these problems. Before
proceeding to the formal de�nition of the aforementioned partial di�erential equation problems,
we will describe the di�erent kinds of boundary conditions that can be prescribed on functions,
and in particular the conditions for a searched solution asymptotically far from an obstacle.

1.3.1 Boundary and in�nity conditions

De�nition 1.3.1 (Dirichlet boundary conditions) . Given an orientable surface� embedded in
R3, a function de�ned on a domain 
 � = R3 n � , can be set to comply with Dirichlet boundary
conditions, on either side of � by prescribing the identities

 +
� u = g+ and  �

� u = g� on � ; (1.45)

for functions g� de�ned on � .

De�nition 1.3.2 (Neumann boundary conditions). Given an orientable surface� embedded in
R3, a function de�ned on a domain 
 � = R3 n� , can be set to comply with Neumann boundary
conditions on either side of � by prescribing the identities

 +
�

@u
@n

= ' + and  �
�

@u
@n

= ' � on � ; (1.46)

for functions ' � de�ned on � .

De�nition 1.3.3 (Conditions at in�nity [51, Section 2.2] [19, Section 11.3]). Let us consider a
function u de�ned on an exterior domain 
 O (for Lipschitz-regular obstacles) or 
 � (for screen
obstacles). For a point x far from the origin, let us express it asu(r ), with r = kxk. We will
say that it complies with the Sommerfeld radiation condition, or outgoing wave condition, if

lim
r !1

r






@u
@r

� iku




 = 0 : (1.47)

Remark 1.3.1 (Radiation condition and physical solutions). Commonly, given Dirichlet or
Neumann boundary conditions on the surface of an obstacle, two possible solutions complying
with the Helmholtz equation on the exterior domain. Being a time-harmonic formulation, both
incoming and outgoing waves satisfy it. The imposition of a condition like that of De�nition
1.3.3, called the Sommerfeld radiation condition, eliminates one of them, leaving only the one
that physically represents an outgoing wave of �eld.

1.3.2 Exterior partial di�erential equation problems for Lipschitz-regular
obstacles

We will precisely de�ne the problems that will treated throughout the rest of this document.
In this subsection we will specify the ones posed on domains exterior to a Lipschitz-regular
obstacleO.
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Laplace problems

Let us de�ne the following problems related to the Laplace partial di�erential equation posed
on the exterior of a Lipschitz-regular obstacleO of boundary � = @O, i.e. on 
 O = R3 n O.

Problem 1.3.1 (Dirichlet Laplace problem for a Lipschitz-regular obstacle).

Given g 2 H 1=2(�) , �nd u 2 W 1;� 1(
 O ) such that
8
<

:

� � u(x ) = 0 ; for x 2 
 O ;

 +
� u(x ) = g(x ); for x 2 � :

(1.48)

Problem 1.3.2 (Neumann Laplace problem for a Lipschitz-regular obstacle).

Given ' 2 H � 1=2(�) , �nd u 2 W 1;� 1(
 O )=R such that
8
>><

>>:

� � u(x ) = 0 ; for x 2 
 O ;

 +
�

@u
@n x

(x ) = ' (x ); for x 2 � :
(1.49)

Helmholtz problems

Let us de�ne the following problems related to the Helmholtz partial di�erential equation
posed on the exterior of a Lipschitz-regular obstacleO of boundary � = @O, i.e. on 
 O = R3nO.

Problem 1.3.3 (Dirichlet Helmholtz problem for a Lipschitz-regular obstacle).

Given g 2 H 1=2(�) and k 2 C, �nd u 2 W H (
 O ) such that

8
>>>><

>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 O ;

 +
� u(x ) = g(x ); for x 2 � ;

(1:47) is satis�ed.

(1.50)

Problem 1.3.4 (Neumann Helmholtz problem for a Lipschitz-regular obstacle).

Given ' 2 H � 1=2(�) and k 2 C, �nd u 2 W H (
 O ) such that
8
>>>>>><

>>>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 O ;

 +
�

@u
@n x

(x ) = ' (x ); for x 2 � ;

(1:47) is satis�ed.

(1.51)

1.3.3 Exterior partial di�erential problems for screen obstacles

In this subsection we will specify the partial di�erential equation problems that will be
posed on domains exterior to screen a �, i.e., on exterior domains 
� = R3 n�. These problems
will have a wider variety of interesting de�nitions because of the physical relevance of the cases
where the given Dirichlet or Neumann trace data are set symmetrically or anti-symmetrically
on opposite sides of �.
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Laplace problems

Let us de�ne the following problems related to the Laplace partial di�erential equation
posed on the exterior of screen �, i.e. on 
 � = R3 n �.

Problem 1.3.5 (Symmetric Dirichlet Laplace problem for a screen obstacle).

Given g 2 H 1=2(�) �nd u 2 W 1;� 1(
 � ) such that
8
<

:

� � u(x ) = 0 ; for x 2 
 � ;

 �
� u(x ) = g(x ); for x 2 � :

(1.52)

Problem 1.3.6 (Anti-symmetric Dirichlet Laplace problem for a screen obstacle).

Given g 2 eH 1=2(�) �nd u 2 W 1;� 1(
 � ) such that
8
<

:

� � u(x ) = 0 ; for x 2 
 � ;

 �
� u(x ) = � g(x ); for x 2 � :

(1.53)

Problem 1.3.7 (Symmetric Neumann Laplace problem for a screen obstacle).

Given ' 2 eH � 1=2(�) �nd u 2 W 1;� 1(
 � )=R such that
8
>><

>>:

� � u(x ) = 0 ; for x 2 
 � ;

�
 �

@u
@n x

(x )
�

= ' (x ); for x 2 � :
(1.54)

Problem 1.3.8 (Anti-Symmetric Neumann Laplace problem for a screen obstacle).

Given ' 2 H � 1=2(�) �nd u 2 W 1;� 1(
 � )=R such that
8
>><

>>:

� � u(x ) = 0 ; for x 2 
 � ;

 �
�

@u
@n x

(x ) = ' (x ); for x 2 � :
(1.55)

Helmholtz problems

Let us now de�ne the following problems related to the Helmholtz partial di�erential equa-
tion posed on the exterior of screen �, i.e. on 
 � = R3 n �.

Problem 1.3.9 (Symmetric Dirichlet Helmholtz problem for a screen obstacle).

Given g 2 H 1=2(�) and k 2 C �nd u 2 W H (
 � ) such that

8
>>>><

>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 � ;

 �
� u(x ) = g(x ); for x 2 � ;

(1:47) is satis�ed.

(1.56)

Problem 1.3.10 (Anti-symmetric Dirichlet Helmholtz problem for a screen obstacle).
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Given g 2 eH 1=2(�) and k 2 C �nd u 2 W H (
 � ) such that

8
>>>><

>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 � ;

 �
� u(x ) = � g(x ); for x 2 � ;

(1:47) is satis�ed.

(1.57)

Problem 1.3.11 (Symmetric Neumann Helmholtz problem for a screen obstacle).

Given ' 2 eH � 1=2(�) and k 2 C �nd u 2 W H (
 � ) such that
8
>>>>>><

>>>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 � ;

�
 �

@u
@n x

(x )
�

= ' (x ); for x 2 � ;

(1:47) is satis�ed.

(1.58)

Problem 1.3.12 (Anti-Symmetric Neumann Helmholtz problem for a screen obstacle).

Given ' 2 H � 1=2(�) and k 2 C �nd u 2 W H (
 � ) such that
8
>>>>>><

>>>>>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 
 � ;

 �
�

@u
@n x

(x ) = ' (x ); for x 2 � ;

(1:47) is satis�ed.

(1.59)

In the rest of this chapter, we will focus on the problems de�ned on exterior domains for
Lipschitz-regular obstacles. These results will later be extended for the screen obstacles in the
next chapter, where we will deal with the challenges posed by the screen geometry.
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1.4 Fundamental solutions and boundary integral operators

This section will mark a depart from the pure partial di�erential equations approach to
introduce Green's functions and their associated boundary integral equations. These are the
main tools that will allow us to recast the considered problems, posed on exterior domains,
as integral equation problems posed on boundary surfaces or screens. These tools characterize
the framework for the results of this thesis, that is, the so-called integral equation methods.

We will begin by de�ning the Green's function for the two partial di�erential operators
considered, the Laplace and the Helmholtz partial di�erential operators (following the exposi-
tion presented in [19, Section 11.1]). We will then use this Green's function to de�ne boundary
integral operators. We will show relevant properties of these operators that will later allow us
to formulate the exhibited problems as integral equation ones. The presentation of the results
for the boundary integral operators follow the exposition of [51, Chapter 3].

1.4.1 Fundamental solutions and Green's functions

A fundamental solution for a partial di�erential operator P, linear, with constant coe�cients
and de�ned in the space of distributions

�
C1

0 (R3)
� 0, is a distribution E that satis�es

PE = � 0 in
�
C1

0 (R3)
� 0

; (1.60)

together with radiation or decay conditions, where� 0 is the Dirac delta function located at the
origin. Fundamental solutions are of interest because their convolution with a data functionf ,
i.e. u = E � f , when it has sense, is a solution toPu = f . If we no longer consider the Dirac
delta function centered at the origin, but at a point x 2 R3, i.e. � x , the solution G(x ; y ) to
PG(x ; y ) = � x (y ) is called the Green's function for the operatorP.

The Green's functions for the Laplace and Helmholtz operators are of great interest because
they allow us to express functions in 
 O (the exterior of a Lipschitz-regular obstacle) or in 
 �

(the exterior of a screen) using their traces on boundary �. Let us consider the free space
Green's function for the Helmholtz di�erential operator for wave number k 2 C as the function
that solves:

�
�

� y Gk (x ; y ) + k2Gk (x ; y )
�

= � x (y ): (1.61)

The solution to (1.61) that satis�es conditions at in�nity given in De�nition 1.3.3 is

Gk (x ; y ) =
eikky � x k

4� ky � x k
: (1.62)

The Green's function for the Laplace operator results from takingk = 0, as

G0(x ; y ) =
1

4� ky � x k
: (1.63)

Likewise, the derivatives of the Green's function for the Helmholtz operator is

��!
grad y Gk (x ; y ) =

eikky � x k

4�
(1 � ik ky � x k)

y � x

ky � x k3 ; (1.64)

and for the Laplace operator, makingk = 0,

��!
grad y G0(x ; y ) =

y � x

4� ky � x k3 : (1.65)

We have that
��!
grad x G(x ; y ) = �

��!
grad y G(x ; y ), for all k, including k = 0.

16



Remark 1.4.1 (The Green's function in R2). In R2, the Green's function for the Helmholtz
operator is

Gk (x ; y ) =
i
4

H (1)
0 (k ky � x k) ; (1.66)

where H (1)
0 is the Hankel function of the �rst kind [19, Section 6.4]. The Green's function for

the Laplace operator in R2 is

G0(x ; y ) = �
1

2�
ln ky � x k : (1.67)

Equation (1.66) satis�es conditions at in�nity prescribed for R2 [19, Equation 11.25].

1.4.2 Boundary integral operators

Using the Green's function for the Helmholtz di�erential operators, we will de�ne the
following boundary integral operators.

De�nition 1.4.1 (Boundary integral operators de�ned on a surface �) . Let � be a surface
embedded inR3 and q be a function de�ned on � . We will de�ne the following boundary
integral operators:

1. The single layer or weakly singular operator:

�
Skq

�
(y ) =

Z

�

Gk (x ; y )q(x )d�( x ): (1.68)

2. The double layer operator:

�
Dkq

�
(y ) =

Z

�

@
@n x

Gk (x ; y )q(x )d�( x ): (1.69)

3. The transpose double layer operator:

�
(Dk ) � q

�
(y ) =

Z

�

@
@n y

Gk (x ; y )q(x )d�( x ) (1.70)

4. The hypersingular operator:

�
N kq

�
(y ) =

Z

�

@2

@n x @n y
Gk (x ; y )q(x )d�( x ): (1.71)

Theorem 1.4.1 (Traces of the weakly singular or single layer operator [51, Theorem 3.1.2,
part 1]) . Let q be a function de�ned on � and let u(y ) = ( Sq)(y ) for y 2 R3. Then:

1. Function u is continuous across� :  +
� u =  �

� u and [ � u] = 0 .

2. The normal derivates ofu at � are

 �
�

@u
@n y

(y ) = �
q(y )

2
+

Z

�

@
@n y

G(x ; y )q(x )d�( x ); for y 2 � : (1.72)

Theorem 1.4.2 (Traces of the double layer operator [51, Theorem 3.1.2, part 2]). Let ' be a
function de�ned on � and let u(y ) = ( D' )(y ) for y 2 R3. Then :
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1. The normal derivate of function u is continuous across� :  +
�

@u
@n =  �

�
@u
@n , and

�
 �

@u
@n

�
=

0.

2. The traces of u at � are

 �
� u(y ) = �

' (y )
2

+
Z

�

@
@n x

G(x ; y )' (x )d�( x ); for y 2 � : (1.73)

Remark 1.4.2 (Normal derivative of Du). The normal derivate of Du from Theorem 1.4.2
is given by operatorN from De�nition 1.4.1. Its associated kernel admits a strong singularity
equivalent tokx � yk� 3 and it is not integrable. We will consider it to be an improper integral
to be calculated as a �nite part integral or in a weak sense.

Finally, let us state the Calder�on Identities for the de�ned boundary integral operators.

Theorem 1.4.3 (Calder�on Identities [51, Theorem 3.1.3]). When a surface � is closed and
Lipschitz-regular, the boundary integral operators from De�nition 1.4.1 satisfy the following
operator identities:

Dk � S k = Sk � (Dk ) � ; (1.74)

N k � D k = ( Dk ) � � N k ; (1.75)

Dk � D k � S k � N k =
1
4

I ; (1.76)

(Dk ) � � (Dk ) � � N k � S k =
1
4

I ; (1.77)

where I is the identity operator.

Remark 1.4.3 (Laplace as a special case of the Helmholtz case). All the results presented in
this subsection apply to the Laplace case by settingk = 0 .
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1.5 Boundary integral equations and variational formulations
for Lipschitz-regular obstacles

Using the previously de�ned boundary integral operators from De�nition 1.4.1, the partial
di�erential equation problems can be recast as boundary integral equation problems posed
on bounded surfaces instead of on unbounded propagation domains. This becomes a crucial
advantage when seeking computational methods to solve these problems, as the domain to be
discretized now becomes �nite. Without recourse to these so-called boundary integral equation
methods, the alternatives are the use of the so-called domain methods. These domain methods
discretize the propagation domain after truncating it at an often large distance from the obstacle
and imposing absorbing boundary conditions of perfectly matched layers on this new �ctitious
boundary. This poses additional di�culties when estimating the existence and properties of the
searched solutions and often require greater computational resources. The integral equation
approach does eliminate these problems for a wide range of relevant cases, but introduces new
ones that will be addressed in the �nal section of this chapter, and treated in the rest of this
thesis.

1.5.1 Boundary integral equations for the exterior problems

Using the properties of the de�ned boundary integral operators, we can pose the partial
di�erential equation problems as integral equation problems for the case of Lipschitz-regular
obstacles. The case of screen obstacles will require special treatment and will be introduced in
the next chapter. Let O be a Lipschitz-regular obstacle of boundary � = @O. In order to solve
the exterior partial di�erential equation problem, we will associate it with an internal problem
posed on the interior of O. Let us denote by � the jump of the Dirichlet trace and by � the
jump of the Neumann trace across �:

� (y ) = [  � u] (y ) and � (y ) =
�
 �

@u
@n

�
(y ); for y 2 � : (1.78)

The properties of the boundary integral operatorsS and D from Theorems 1.4.1 and 1.4.2
will allow us to establish important identities. Let us consider the following function de�ned
on R3 n �:

u(y ) = Sk � (y ) � D k � (y ); for y 2 R3 n � : (1.79)

This function has an interesting property, as stated by the following theorem.

Theorem 1.5.1 (Integral representation theorem [51, Theorem 3.1.1]). For a Lipschitz-regular
obstacleO, for a given wave numberk 2 C, let u be a function such that

8
><

>:

�
�
� u + k2u

�
= 0 ; in O;

�
�
� u + k2u

�
= 0 ; in R3 n O:

(1.80)

Let us denote the jump of the traces ofu across � as in (1.78). Then, for y =2 � , u can be
written as

u(y ) = Sk � (y ) � D k � (y ): (1.81)

We will use this theorem, central to the so-called boundary integral equation approach and
methods, to reformulate the exterior Dirichlet and Neumann problems for the Laplace and
Helmholtz equations. We will do so for the case of Lipschitz-regular obstacles. When used
for the case of screen obstacles, its use will demand more speci�city, especially regarding the
spaces used. This will be a starting point of the subsequent chapters.

19



Dirichlet problem for a Lipschitz-regular obstacle

Let us focus on the Dirichlet exterior Laplace or Helmholtz problem, i.e. Problem 1.3.1 or
Problem 1.3.3. Let us propose the following associated interior problem:

Problem 1.5.1 (Associated interior Dirichlet problem) . Given g 2 H 1=2(�) , and k 2 C
(possibly zero), �nd u 2 W 1;� 1(O) such that

8
><

>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 O ;

 �
� u(x ) = g(x ); for x 2 � :

(1.82)

If we consider the previous interior Problem 1.5.1 together with the exterior one, Problem
1.3.3 or Problem 1.3.1 fork = 0, we get that the jump of the Dirichlet traces is

[ � u] (x ) = � (x ) = 0 ; for x 2 � : (1.83)

If we consider the jump of the Neumann traces,
�
 �

@u
@n

�
(x ) = � (x ); for x 2 � ; (1.84)

Theorem 1.5.1 tells us that

u(x ) =
�

Sk �
�

(x ); for x =2 � ; (1.85)

is a solution to the interior Problem 1.5.1, and particularly to the exterior Problem 1.3.3 or
Problem 1.3.1 whenk = 0. Also, Theorem 1.4.1 assures the continuity ofu across �, which
tells us that

 +
� u = g: (1.86)

This provides us with an integral equation for � , which we can later used to �nd the solution
to the exterior problem. This allows us to recast Problem 1.3.3, or Problem 1.3.3 ifk = 0, as
a new integral equation problem.

Problem 1.5.2 (Boundary integral equation problem for the Dirichlet exterior partial di�er-
ential equation problem). Given g 2 H 1=2(�) , and k 2 C (possibly zero), �nd � 2 H � 1=2(�)
such that

Sk � (x ) = g(x ); for x 2 � ; (1.87)

and use it to determine
u(x ) =

�
Sk �

�
(x ); for x 2 R3 n O: (1.88)

This assures us that the solution to Problem 1.5.2 is also the solution to Problem 1.3.3 or
Problem 1.3.1 whenk = 0.

Neumann problem for a Lipschitz-regular obstacle

Let us focus on the Neumann exterior Laplace or Helmholtz problem, i.e. Problem 1.3.2 or
Problem 1.3.4. Let us propose the following associated interior problem:

Problem 1.5.3 (Associated interior Neumann problem). Given ' 2 H � 1=2(�) , and k 2 C
(possibly zero), �nd u 2 W 1;� 1(O) such that

8
>><

>>:

�
�
� u(x ) + k2u(x )

�
= 0 ; for x 2 O ;

 �
�

@u
@n x

(x ) = ' (x ) for x 2 � :

(1.89)
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If we consider the previous interior problem, Problem 1.5.3, together with the exterior one,
Problem 1.3.4 or Problem 1.3.2 ifk = 0, we get that the jump of the Neumann traces is

�
 �

@u
@n

�
(x ) = � (x ) = 0 ; for x 2 � : (1.90)

If we consider the jump of the Dirichlet traces,

[ � u] (x ) = � (x ) for x 2 � ; (1.91)

Theorem 1.5.1 tells us that

u(x ) = �
�

Dk �
�

(x ) for x =2 � ; (1.92)

is a solution to the interior Problem 1.5.3, and particularly to the exterior Problem 1.3.4 or
Problem 1.3.2 if k = 0. Also, Theorem 1.4.2 assures the continuity of the normal derivative of
Dk , which tells us that

 +
�

@u
@n

= '; (1.93)

This provides us with an integral equation for � , which we can later use in (1.92) to �nd
the solution to the exterior problem. This allows us to recast Problem 1.3.4 as a new integral
equation problem.

Problem 1.5.4 (Boundary integral equation problem for the Neumann exterior partial di�er-
ential equation problem). Given ' 2 H � 1=2(�) , and k 2 C (possibly zero), �nd � 2 H 1=2(�)
such that

�
@

@n x
Dk � (x ) = �N k � (x ) = ' (x ); for x 2 � ; (1.94)

and use it to determine

u(x ) = �
�

Dk �
�

(x ); for x 2 R3 n O: (1.95)

This assures us that the solution to Problem 1.5.4 is also the solution Problem 1.3.4 or
Problem 1.3.2 if k = 0.

1.5.2 Bilinear forms and variational formulation

Let us de�ne the bilinear forms induced by the boundary integral operators associated with
the Dirichlet and Neumann exterior problems.

De�nition 1.5.1 (Bilinear forms for Sk and N k ). Let us de�ne the following bilinear forms
induced by the weakly singular operatorSk and the hypersingular operatorN k :

aws
k (�; � t ) =

D
Sk � ; � t

E

�
; (1.96)

ahs
k (�; � t ) =

D
�N k � ; � t

E

�
: (1.97)

These bilinear forms are suitable for variational formulations for Problems 1.5.2 & 1.5.4, as
the following theorems will show.

Theorem 1.5.2 (The bilinear form induced by Sk is coercive [51, Theorems 3.3.1 & 3.4.1]).
The boundary integral equation (1.87) from Problem 1.5.2 admits the following variational
formulation 8

><

>:

Given g 2 H 1=2(�) ; �nd � 2 H � 1=2(�) such that

8� t 2 H � 1=2(�)
�
aws

k (�; � t ) =


g ; � t

�
�

�
:

(1.98)

The associated operatorSk is an isomorphism from H � 1=2(�) onto H 1=2(�) when � k2 is not
an eigenvalue of the interior Dirichlet Problem 1.5.1 for the Laplacian. This also holds for
k = 0 .
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Theorem 1.5.3 (The bilinear form induced by N k is coercive [51, Theorems 3.3.2 & 3.4.2]).
The boundary integral equation (1.94) from Problem 1.5.4 admits the following variational
formulation 8

><

>:

Given ' 2 H � 1=2(�) ; �nd � 2 H 1=2(�) such that

8� t 2 H 1=2(�)
�
ahs

k (�; � t ) =


' ; � t

�
�

�
:

(1.99)

The kernel of N k is not integrable, but can be computed as an improper integral and has the
following expression:

ahs
k (�; � t ) =

Z

�

Z

�

Gk (x ; y )
� ��!

curl � �;
��!
curl � � t

�
d�( x )d�( y )

� k2
Z

�

Z

�

Gk (x ; y )� (x )� t (y ) (n x ; n y ) d�( x )d�( y ):
(1.100)

The associated operatorN k is an isomorphism from H 1=2(�) onto H � 1=2(�) when � k2 is not
an eigenvalue of the interior Neumann Problem 1.5.3 for the Laplacian andk 6= 0 . For k = 0
operator N 0 is an isomorphism from H 1=2(�) =R onto H � 1=2

0 (�) , the subspace ofH � 1=2(�)
whose elements satisfyh' ; 1i � = 0 .

In the following section we will see how to discretize the integration domain � in order
to consider subspaces of the Sobolev trace spaces and formulate �nite-dimensional variational
formulations.
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1.6 Surface discretization, boundary element method, and Galerkin
matrices

In this section we will de�ne the way in which a surface � is discretized in order to form the
boundary element spaces. These spaces will be �nite-dimensional subspaces of the Sobolev trace
spacesH 1=2(�) and H � 1=2(�), and will serve to de�ne �nite-dimentional variational formula-
tions that will provide approximations to the solutions of the in�nite-dimensional variational
formulations associated with the boundary integral equations forSk and N k .

1.6.1 Primal and dual meshes

Let � be a surface, open or closed, embedded inR3. Let us also consider a triangular
approximation � h indexed by a discretization parameterh. Figure 1.2 illustrates a triangular
approximation for an open and a closed surface.

Figure 1.2: Conformal triangular approximation � h of a closed (left) and an open (right) surface
embedded inR3.

Notation 1.6.1 (Indexing by the discretization parameter h). We will index a triangular
approximation of a surface � either by � h or � NT , referencing the discretization parameterh
or the number of trianglesNT .

De�nition 1.6.1 (Conformal triangular approximation) . A triangular approximation � h of
a surface � is conformal if it is a connected set, and if the intersection of any two di�erent
triangles of � h is either void, a set triangle vertices, or a full triangle edge.

De�nition 1.6.2 (Triangular mesh). A triangular mesh Th (or TNT ) for the conformal tri-
angular approximation � h (or � NT ) of a surface � embedded inR3, open or closed, is the set
of:

� The set of NT triangles t i (indexed by i ) that compose its triangular approximation � h :
f t i g

NT
i =1 .

� The set of NE edgesei (indexed by i ) that compose its triangular approximation � h :
f ei g

NE
i =1 .

� The set of NV vertices v i (indexed by i ) of the triangles that compose its triangular
approximation � h : f v i g

NV
i =1 .

If surface � is open, i.e. @� 6= ? , the triangular mesh Th will also include the set ofN 0
V

internal vertices v0
i (indexed byi ):

�
v0

i

	 N 0
V

i =1 .
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Notation 1.6.2 (Triangular mesh indexing). We will denote indistinctly a triangular mesh
indexing it by a discretization parameter h, or by the numberNT of triangles that composes it
as TNT .

Notation 1.6.3 (Referencing elements of a triangular mesh). We will adopt the simpli�ed
notation: t i 2 Th will reference the i-th triangle from Th , ei 2 Th will reference the i-th edge
from Th , v i 2 Th will reference the i-th vertex from Th , and v0

i 2 Th will reference the i-th
internal vertex from Th if surface � is open.

De�nition 1.6.3 (Triangle elements). For each triangle t i of a triangular mesh Th we identify
the following elements:

� The set of its three verticesTt ! v (t i ) := f v i
1; v i

2; v i
3g.

� The set of the six non-intersecting sub-triangles resulting from dividingt i using all its

medians as delimiters (barycentric re�nement): Tt ! t̂ (t i ) :=
n

t̂ i
j

o6

j =1
.

� The set of the six pairwise non-intersecting sub-triangles resulting from dividingt i in

halves using its medians as delimiters:Tt ! ~t (� i ) :=
n

~t i
j

o6

j =1
.

Figure 1.3: Example of a trianglet i (left) of a triangular mesh with its sub-triangles t̂ i
j (center)

and sub-triangles~t i
j (right).

De�nition 1.6.4 (Vertex elements). For each vertex v i of a triangular mesh Th we identify
the following elements:

� The set of trianglest for which v i is a vertex: Tv ! t (v i ) = f t 2 Th : v i is a vertex of tg.

� The set of sub-triangleŝt for which v i is a vertex: Tv ! t̂ (v i ) = f t̂ 2 Th : v i is vertex of t̂g.

De�nition 1.6.5 (Triangle measurements). Let us de�ne the following measurements related
to a triangle t i of a triangular mesh Th :

� Its area A i :

A i =
Z

t i

dti (x ): (1.101)

� Its cell size hi :
hi =

p
A i : (1.102)
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� Its diameter di :
di = sup

x ;y 2 t i

kx � yk: (1.103)

De�nition 1.6.6 (Maximal and minimal cell sizes). For a triangular mesh Th we de�ne the
maximal and minimal cell sizes as

hmax = max
i =1 :::N T

hi and hmin = min
i =1 :::N T

hi : (1.104)

De�nition 1.6.7 (Regular triangular mesh). A family of triangular meshes Th is said to be
regular if for every triangle t i for every mesh there is always a constantCR such that

0 < C R �
hi

di
� 1: (1.105)

De�nition 1.6.8 (Locally quasi-uniform triangular mesh). A family of triangular meshes Th

is said to be locally quasi-uniform if for every pair of trianglest i and t j , there is a constantCL

such that for every mesh in the family

hi

hj
� CL ; (1.106)

whenever trianglest i and t j are adjacent, i.e., when they share an edge or a vertex.

De�nition 1.6.9 (Globally quasi-uniform triangular mesh). A family of triangular meshes Th

is said to be globally quasi-uniform if there is a constantCG such that for every mesh in the
family

hmax

hmin
� CG: (1.107)

We will use the de�ned mesh to build a new one called dual mesh. The name is motivated
by the fact that we will use it to de�ne spaces that will be subspaces of the space dual to the
one that we will de�ne on the �rst and primal mesh.

De�nition 1.6.10 (Dual mesh). We will call eTh the dual mesh of the triangular meshTh to
the set of polygonal-wise elements associated with theNV vertices of Th , f L i g

NV
i =1 , where an

element L i associated with the vertexr i is de�ned as the union of the subtriangleŝt that have
r i as vertex:

L i =
[

t̂ 2 Tv ! t̂ (r i )

t̂: (1.108)

We will use meshTh to de�ne subspaces ofH 1=2(� h) and eTh to de�ne subspaces ofH � 1=2(� h).

1.6.2 Boundary element spaces and discrete variational formulations

In this section we will use the discretized surface �h of � and the triangular meshes Th

and eTh to de�ne �nite-dimensional subspaces ofH 1=2(� h) and H � 1=2(� h), which we will use to
compute approximations to the solutions to the integral equations associated withSk and N k .
The space discretization for the case of open surfaces, i.e. screen obstacles, will be treated in
the next chapters.

Let Pn denote the space of bivariate polynomials of a degree less than or equal ton. Let
us also consider the triangular meshTh for the triangular approximation � h of �.

De�nition 1.6.11 (The Vh �nite-dimensional space). Let Vh � H 1=2(� h) be the �nite-dimensional
space

Vh = f v � C(� h) : for every triangle t 2 Th ( vjt 2 P1)g : (1.109)
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De�nition 1.6.12 (A basis for Vh). Let us consider as basis forVh the set

f � i g
NV
i =1 such that, for i = 1 :::NV we have� i (v j ) =

(
1 if j = i;

0 if j 6= i:
(1.110)

De�nition 1.6.13 (The Wh �nite-dimensional space). Let Wh � H � 1=2(� h) be the space

Wh =
n

w � L 2(� h) : for every elementL 2 eTh ( wjL 2 P0)
o

: (1.111)

De�nition 1.6.14 (A basis for Wh). Let us consider as basis forWh the set

f � i g
NV
i =1 such that, for i = 1 :::NV we have� i (x ) =

(
1 if x 2 L i ;

0 if x =2 L i ;
(1.112)

where L i is the element of eTh associated with the vertexv i .

De�nition 1.6.15 (Local mesh size associated with basis functions). For a basis function
associated with a vertexv i 2 Th , be it � i or � i , we will denote byĥi its local mesh size, de�ned
as

ĥi =
1

jTv ! t (v i )j

X

t l 2 Tv ! t (v i )

hl ; (1.113)

the average of the cell size of the triangles making up its support.

Using the de�ned basis functions, a function � h 2 Vh(� h) can be determined by the set of
coe�cients f � h

i gNV
i =1 :

� h(x ) =
NVX

i =1

� h
i � i (x ); for x 2 � h : (1.114)

Likewise, a function � h 2 Wh(� h) can be determined by the set of coe�cients f � h
i gNV

i =1 :

� h(x ) =
NVX

i =1

� h
i � i (x ); for x 2 � h : (1.115)

We can use this decomposition to de�ne �nite-dimensional versions of the variational for-
mulations established for the boundary integral equations associated with operatorsSk and
N k .

De�nition 1.6.16 (Finite dimensional variational formulations) . Let us de�ne the following
�nite-dimensional variational formulation associated with the variational formulation (1.98),
associated with the boundary integral equation forSk :

8
>>>><

>>>>:

Given gh 2 Vh ; �nd the set of coe�cients f � h
i gNV

i =1 such that

for j = 1 :::NV :
NVX

i =1

� h
i aws

k (� i ; � j ) = hgh ; � j i � h
:

(1.116)

Similarly, let us de�ne the following �nite-dimensional variational formulation associated
with the variational formulation (1.98), associated with the boundary integral equation forN k :

8
>>>><

>>>>:

Given ' h 2 Wh ; �nd the set of coe�cients f � h
i gNV

i =1 such that

for j = 1 :::NV :
NVX

i =1

� h
i ahs

k (� i ; � j ) = h' h ; � j i � h
:

(1.117)
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Slightly abusing notation, we have kept the notationaws
k and ahs

k although they now refer to
bilinear forms induced by operatorsSk and N k de�ned over the discretized surface� h . Addi-
tionally, �nite-variational formulation (1.117) has to be augmented with a parameters � 2 R+

when k = 0 to assure that the solution� h belongs to a subspace ofH 1=2
0 (� h):

8
>>>><

>>>>:

Given ' h 2 Wh ; �nd the set of coe�cients f � h
i gNV

i =1 such that

for j = 1 :::NV :
NVX

i =1

� h
i ahs

0 (� i ; � j ) + � h� i ; 1i � h
h� j ; 1i � h

= h' h ; � j i � h
:

(1.118)

1.6.3 Boundary element computations and Galerkin matrices

In this subsection we will de�ne the way in which the Galerkin matrices associated with
�nite-dimensional variational formulations (1.116) and (1.117) are computed.

De�nition 1.6.17 (Galerkin matrices associated withSk and N k ). Let us de�ne the Galerkin
matrices associated with boundary integral operatorsSk and N k on the conformal triangular
approximation � h for a surface � . We denote byNV the number of vertices of the meshTh for
� h . We de�ne Sh 2 CNV � NV as

Sh
k [i; j ] = aws

k (� i ; � j ) =
D

Sk � i ; � j

E

� h

; for i; j = 1 :::NV : (1.119)

We de�ne N h
k 2 CNV � NV as

N h
k [i; j ] = ahs

k (� i ; � j ) =
D

�N k � i ; � j

E

� h

; for i; j = 1 :::NV : (1.120)

In the case of the Laplace problem, whenk = 0 matrix N h
k has to be augmented, as indicated in

(1.118) to account for the kernel space of operatorN 0. In that case, we de�ne N h
0 2 CNV � NV

as

N h
0 [i; j ] = ahs

0 (� i ; � j ) =


�N 0� i ; � j

�
� h

+ � h� i ; 1i � h
h� j ; 1i � h

; for i; j = 1 :::NV : (1.121)

with a parameter � 2 R+ .

These Galerkin matrices allow us to pose linear systems to solve the �nite-dimensional
variational formulations for the integral equations that allow us to �nd solutions to Laplace and
Helmholtz problems, on the exterior of a Lipschitz-regular obstacle, with Dirichlet or Neumann
boundary conditions. Despite the advantages that this approach brings to the treatment of
such problems, most particularly in unbounded domains, we will see that it comes at a cost.
In the next section we will explain and quantify this cost. It will become evident that the
challenges posed by the boundary integral equation approach must be addressed, which will
end this introductory chapter by motivating the work undertaken in the subsequent ones.
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1.7 Memory complexity, algorithmic complexity and accuracy

The main advantage of the approach outlined in this chapter, that of the boundary integral
equations and the boundary element method, is that they can tackle partial di�erential equation
problems posed on unbounded domains in a more natural way. They also need less degrees
of freedom, in comparison to domain methods, when used to solve cases with small boundary
surface to propagation volume ratios. However, other problems inherent to the boundary
integral equation and boundary element methods are introduced. In this section we will discuss
and quantify these disadvantages.

Through this section we will consider the case of a Lipschitz-regular obstacle 
, of bound-
ary @
 = � that has been discretized in a mesh � h . The number of basis functions spanning
the discrete boundary element spaces used, i.e. the number of degrees of freedom of the linear
equation to be solved, will be denoted asNdof . We will consider the case of a numerical simu-
lation where the maximum frequency of the propagating wave isf max , in a linear homogeneous
medium with wave propagation velocity v. Three quantities of a given mesh are of interest
when determining the size of the linear system, the number of unknownsNdof : the number
of triangles NT , the number of verticesNV and the number of edgesNE . The presented vari-
ational formulations will give rise to a linear system with Galerkin matrix A and right-hand
side vector b, thus giving to consideration the systemAx = b.

The approach presented is intended for single frequency problems, but the concept of a
maximum frequency f max comes into consideration when a Fourier analysis is used for solving
transient waves using several frequencies on a frequency range.

1.7.1 Wave frequency and mesh re�nement

The relation between maximum wave frequency and mesh re�nement comes from the ne-
cessity to accurately represent the oscillatory behavior of the computed solution of the traces
de�ned on surface � h . Depending on the application, di�erent criteria are used.

If f max is the maximum wave frequency andv is the wave velocity, the shortest wavelength
� min in the simulated scenario will be

� min =
v

f max
: (1.122)

Depending on the application (simulation of near-�eld or far-�eld phenomena, for example)
a number n� of basis functions, typically between 5 and 10, must be assured by each wavelength
[64, Section 6.2.1]. This means that the largest edgehmax on the mesh must comply with

hmax �
� min

n�
=

v
n� f max

: (1.123)

In the limit case of compliance with the basis-per-wavelength criterion (hmax = v=(n� f max )),
and if the mesh is regular in the sense of De�nition 1.6.9 (hmax � CGhmin ), the following in-
equality holds:

hmax =
c

n� f max
� CGhmin : (1.124)

The number NT of triangles of mesh �h is bounded by

NT �
j� h j

h2
min =2

; (1.125)

where j� h j is the area of the discretized mesh surface �h . Again in the limit case of compliance
with the basis-per-wavelength criterion (hmax = v=(n� f max )), and if the mesh is regular in the
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sense of De�nition 1.6.9, the number of triangles can be further bounded by

NT �
2C2

G j� h j n2
�

v2 f 2
max : (1.126)

If the mesh is conformal, counting three edges for each triangle gives a global counting of
edges where each one has been taken into consideration twice, thus relating the number triangles
NT and the number of edgesNE like NE = 3=2NT . If � h is non-intersecting polyhedral mesh
in R3, the Euler Characteristic applies, i.e.,

NV � NE + NT = 2 ; (1.127)

thus providing the number of nodes of the mesh:

NV =
1
2

NT + 2 : (1.128)

These two results provide us with limits to the number of edges and nodes for a frequency
f max :

NE �
C2

G j� h j n2
�

3v2 f 2
max and NE �

C2
G j� h j n2

�

v2 f 2
max + 2 : (1.129)

Since the number of basis functionsNdof will be a combination of multiples of NV , NE

and/or NT , the size of the linear system can always be limited in order byf 2
max .

1.7.2 Memory complexity

The Galerkin matrices produced by the boundary element method are symmetric and can
be stored by saving the elements in, .e.g., the upper triangular part of the matrix. If the linear
system hasNdof degrees of freedom and the computations use a data type that requires an
amount mt of memory to be stored, then the amount of memoryNmem required to store the
matrix is

Nmem = mt
Ndof (Ndof + 1)

2
: (1.130)

1.7.3 Algorithmic complexity

The algorithmic complexity of the resolution of the linear system is the amount of indi-
vidual number operations Nsolve required to solve it. Using iterative methods, the algorithmic
complexity is then the number of operations involved in a matrix-vector multiplication NM � v

times the number of iterations N item required by the iterative solver.

The number of individual number operations NM � v involved in the multiplication of a
Ndof � Ndof matrix by a Ndof vector is N 2

dof multiplications and ( Ndof � 1)2 sums, adding up
to NM � v = 2N 2

dof � 2Ndof + 1 individual operations.

The number of iterations N iter required by an iterative method depends on the condition
number of the matrix of the linear system; it grows with it.

De�nition 1.7.1 (Condition number of a matrix) . The condition number a matrix is a measure
of how much can the result of a multiplication by a vector change, for a small changes in this
vector. It depends on the norm used to measure this change. For a matrixA 2 CN � N , the
2-norm condition number is de�ned as

cond2 (A ) =
� max (A )
� min (A )

; (1.131)

where � min (A ) and � max (A ) are the minimal and maximal singular values ofA .
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The following theorem about the conditioning of the Galerkin matrices arising from the
boundary element method will present us with a challenge.

Theorem 1.7.1 (Ill-conditioning of BEM matrices [57, Lemmas 4.5.1 & 4.5.2]). Let � h be a
polygonal curve inR2 or polyhedral surface inR3, and Th a conformal, regular mesh for it. The
Galerkin matrices Sk

h and N k
h , associated with the boundary integral operatorsSk and N k , are

ill-conditioned in the sense that there exists a constantCcond such that

cond2

�
Sk

h

�
� Ccond h� 1

min and cond2

�
N k

h

�
� Ccond h� 1

min : (1.132)

It is known that for the conjugated gradient method, for example, to reach a relative
reduction of " , there is a constantCcg(" ) such that the number of iterations required is N iter =
Ccg(" )

p
cond2(A ) [24, Theorem 11.3.3]. For other iterative methods for the resolution of the

associated linear system, the dependency of the number of iterations on the condition number
of system matrix A is harder to determine, although it grows with it as the mesh is re�ned.
Some common iterative solvers used linear system arising from the boundary element method
are the GMRES and the BiCGSTAB methods [43,45,66].

1.7.4 Accuracy

When computing the solution of a linear systemAx = b, the relative error of the computed
solution will depend on the relative error in the numerical computation of A and b, and the
condition number of A as stated in the following theorem.

Theorem 1.7.2 (Accuracy lost due to ill-conditioning [24, Section 2.6.2]). When solving the
linear system Ax = b but with a perturbed matrix and right hand vector, i.e.,

~A = A + � A and ~b = b + � b; (1.133)

the relative error of the solution depends on the conditioning of matrixA and the perturbations
as:

kx � ~x k
kx k

�
cond2(A )

1 � cond2(A ) k� A k
kA k

�
k� A k
kA k

+
k� bk
kbk

�
; (1.134)

where ~x is the solution of the perturbed system~A ~x = ~b.

1.7.5 Overall complexity and accuracy

The overall situation concerning the di�culties inherent to the boundary integral equation
and boundary element method approach can be summarized in the following table, Table 1.1,
using asymptotic notation (Big O, or Bachmann-Landau notation).

Table 1.1: Summary of the computational cost and relations between di�erent quantities de-
termining it, expressed in terms of the maximum frequencyf max , number of degrees of freedom
Ndof and minimum mesh cell sizeh.

Computational
Cost

f max Ndof h

Ndof O
�
f 2

max

�
1 O

�
h� 2

�

Nmem O
�
f 4

max

�
O

�
N 2

dof

�
O

�
h� 4

�

NM � v O
�
f 4

max

�
O

�
N 2

dof

�
O

�
h� 4

�

The situation depicted in the previous table stresses the challenges that the integral method
introduces. Unaddressed, these di�culties greatly limit the applicability of this approach,
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especially to endeavors that require the solution of multiple direct problems (automatic control,
automated design, some inversion problems, etc.). Numerical accuracy will also prove to be
a challenging point in the application of the integral approach, as the example from the next
section will illustrate.

1.7.6 An illustrative example

In this subsection we will shortly illustrate the di�culties quanti�ed in this section by
means of an example. Let us consider the problem of computing the acoustic scattering by a
rigid ball of one meter in radius in an unbounded scenario at normal propagation conditions:
v = 343:2m/s at 1 atmosphere of pressure and 20oC of temperature. The following �gures
will describe the evolution of the main quantities describing the complexity of the numerical
problem for di�erent required maximum frequencies within the audible range.

Figure 1.4: Evolution of the computational complexity with the rise of the required maxi-
mum frequency for the example problem: memory complexityNmem (left) and algorithmic
complexity NM � v (right) versus maximum required frequency f max .
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Figure 1.5: Evolution of the conditioning and the relative error of the linear system with the
re�nement of the mesh used for the example problem: condition number cond2(A ) (left) and
relative error kx � ~x k=kx k (right) versus the discretization parameters h considering di�erent
errors in the computation of the system matrix and right-hand side vector.

Algorithmic complexity NM � v and memory complexity Nmem can be managed with accel-
eration/compression techniques, such as the Fast Multipoles Method [25,26,52,55], the Panel
Clustering Method [31,32,56,57], and the Hierarchical Matrix Method [9,28{30] with Adaptive
Cross Approximations [5, 8, 10, 65]. The Hierarchical Matrix and ACA approach is very exi-
ble, being able to tackle the problem for multiple integral kernels with the same computational
implementation, and allows for reduced complexity:

Nmem = O (Ndof logNdof ) = O
�
f 2

max log f max
�

; (1.135)

NN � v = O (Ndof logNdof ) = O
�
f 2

max log f max
�

: (1.136)

However, conditioning and thus N iter remains a problem, and thus, for the accelera-
tion/compression given as example we still could encounter an elevated number of iterations
and undesired inaccuracies.

Although it still allows for an increase in the frequency of simulation for a �xed com-
putational capacity, this in turn stresses the importance of controlling the error due to ill-
conditioning through preconditioning.

The subject of preconditioning will be treated in the next chapters. When the obstacle has
a Lipschitz-regular surface there are robust and well-known methods. This isn't the situation
for non-Lipschitz objects, for which we will propose a novel technique.
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Chapter 2

Operator Preconditioning and
Screen Obstacles

In this chapter we will develop a preconditioning strategy for the linear systems arising from
Galerkin discretizations of boundary integral equations related to the Laplace and Helmholtz
problems for a screen obstacle presented in Subsection 1.3.3. This present chapter can be
roughly divided into two parts: 1) Sections 2.1, 2.2, 2.3 and 2.4, and 2) Sections 2.5, 2.6 and
2.7.

In the �rst part we will describe the main theoretical tool for the devising of preconditioning
strategies in general, and for screen obstacles and Lipschitz-regular obstacles in particular. We
will show how this tool immediately provides a viable preconditioning method for Lipschitz-
regular domains and we will point out where it fails when applied to screens. Then, a brief
explanation will be provided on previous results adapting this strategy for a curve screen
embedded inR2. A geometrical and a functional framework will then be provided in the case
of a canonical surface screen embedded inR3, the unit disk, which will be the main and starting
case for further developments beyond this chapter.

In the second part we will establish the existence of operators that are the inverses to the
boundary integral operators associated with the boundary integral equations that are used to
solve the Dirichlet and Neumann problems. It will be also shown that their explicit form is
not easily attainable, thus preventing their immediate use in building preconditioning methods
using the boundary element method. We will develop tools to build basis functions for the
functional trace spaces involved. This will lead to a rewriting, in the form of series expansions,
of the involved integral operators, which in turn will allow for series representations of their
inverses, whose existence will have been already proven. A spectral method for the resolution
to the boundary integral equations will also be developed. Using the series expansions forms in
a spectral method will illustrate, in a straightforward manner, how the devised preconditioning
strategy yields an optimal preconditioning method and optimally preconditioned matrices, de-
spite not being suited for the more versatile boundary element method. These results will pave
the way for the introduction of new boundary integral operators, resulting from modi�cations
made to the ones proposed in this chapter. These new and modi�ed integral operators, to be
developed in the next chapter, will have explicit variational forms that will be suited for use in
boundary element methods.
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2.1 Operator preconditioning

When solving a linear systemAx = b, where the matrix A is ill-conditioned, i.e., where
the value cond2(A ) is high (in a sense given by Theorem 1.7.2 according to the context), a
preconditioning method must be used to tackle the problems that come with ill-conditioning
(increased number of iterations required by an iterative solver and poor numerical accuracy). A
preconditioning method provides a matrix M such that the matrix MA has a much lower con-
dition number and thus the linear systemMAx = Mb does not su�er from the aforementioned
problems.

There are di�erent strategies based on di�erent rationales that deliver a wide gamut of
preconditioning methods with di�erent performances (a good collection of them can be found
in [15]). In the context of Galerkin matrices arising from variational formulations such as
the ones for the boundary integral equations described in the previous chapter, it was seen in
Section 1.7 that conditioning worsens with mesh re�nement (and thus higher frequencies in
numerical wave simulations). The following theorem will suggest a strategy suitable for that
context, and capable of providing optimal preconditioning.

Theorem 2.1.1 (Operator preconditioning [16], [35]). Let V and W be reexive Banach spaces.
Let a 2 L(V � V;C), b 2 L(W � W; C) and d 2 L(V � W; C) be continuous sesquilinear

forms, with norms kak, kbk, and kdk respectively. Finally, let Vh = span
�

f � i g
N
i =1

�
� V and

Wh = span
�

f � i g
N
i =1

�
� W be �nite-dimensional subspaces of the same dimension on which

the following inf-sup conditions are ful�lled:

8uh 2 Vh sup
vh 2 Vh

ja(uh ; vh)j
kvhkV

� cakuhkV ; (2.1)

8qh 2 Wh sup
wh 2 Wh

jb(qh ; wh)j
kwhkW

� cbkqhkW ; (2.2)

8vh 2 Vh sup
wh 2 Wh

jd(vh ; wh)j
kwhkW

� cdkvhkV : (2.3)

Let us de�ne the following Galerkin matrices: A [i; j ] = a(� i ; � j ), B [i; j ] = b(� i ; � j ), and
D [i; j ] = d(� i ; � j ), and let us de�ne the preconditioning matrix M = D � 1BD � H . The spectral
condition number of the preconditioned matrix MA has the following bound:

cond2 (MA ) �
kakkbkkdk2

cacbc2
d

; (2.4)

where D � H is the inverse of the conjugate transpose of matrixD .

Remark 2.1.1 (Optimality of preconditioning) . The bound from equation (2.4) is independent
of the choice of bases for the spaces involved. In particular, the bound does not depend on the
dimension of the chosen �nite-dimensional subspaces.

A general situation is attempting to solve a functional equation Pv = w posed over a
domain 
, with P : V ! W , when one space is the dual of the other. We take interest in the
bilinear form a(v; vt ) =



Pv; vt

�

 for the variational formulation, for functions v; vt 2 V . If

Vh = span
�

f � i g
N
i =1

�
� V is an N-dimensional discretization of the space for the variational

formulation, the problem can be solved via a linear system of equationsAx = b, with A [i; j ] =
a(� i ; � j ). Theorem 2.1.1 is a tool that allows us to formulate an optimal preconditioning
strategy, as it will be stated in the following de�nition.

De�nition 2.1.1 (Optimal preconditioning strategy) . For a Galerkin matrix A arising from
the variational formulation associated with the functional equationPv = w with P : V ! W
(with V being the dual ofW or vice versa), with variational formulation a(v; vt ) =



Pv; vt

�



using Vh = span
�
f � i gN

i =1

�
, an optimal preconditioning strategy is:
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1. Find Q : W ! V that will induce a coercive bilinear form b(w; wt ) =


Qw; wt

�

 , for

w; wt 2 W .

2. Take the bilinear form d to be the duality pairing betweenV and W and �nd a N-
dimensional discretization of the spaceW , Wh = span

�
f � i g

N
i =1

�
� W , such that it

also renders the duality productd(�; � ) = h�; � i 
 coercive for any � 2 Vh and � 2 Wh .

3. Build matrices B and D from bilinear forms b and d, and assembleM = D � 1BD � H

as stated in the theorem.

4. Precondition the linear system yieldingMAx = Mb .

This particular preconditioning strategy is one among many other possibilities within the scope
of Theorem 2.4.

Remark 2.1.2 (Candidates for Q). Di�erent problems naturally provide operators that will
ful�ll the role of operator Q as stated in the optimal preconditioning strategy. In the context of
boundary integral equations linked to wave propagation phenomena, the weakly singular, and the
hypersingular boundary integral operators �t the roles ofP and Q if the obstacle is Lipschitz-
regular. More generally, given an operatorP, an inverse Q = P � 1 (if available), is a useful
choice.

Remark 2.1.3 (Complexity of inversion) . The computation of matrix M involves the inversion
of matrix D , for which the a priori algorithmic complexity is O

�
N 3

�
. This consideration

becomes especially relevant when the purpose of the preconditioning is the reduction of the overall
algorithmic complexity of the resolution to a linear system. However, for many spectral and
boundary element discretizations, using appropriate bases' numbering techniques can produce
sparse and bandedD matrices that are much easier to invert.
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2.2 Preconditioning for Lipschitz-regular obstacles

In this section we will show how the optimal preconditioning strategy can be used to yield
methods that will achieve optimal preconditioning of the linear system associated with an
integral equation in the context of a Helmholtz or Dirichlet problem for a Lipschitz-regular
obstacle. We will see that when the obstacle is Lipschitz-regular, the second operator needed
for the strategy is naturally available. We will also see that the preconditioning matrix built
for the Laplace case, is also an optimal preconditioner for the Helmholtz case.

Let us begin by establishing the following result.

Proposition 2.2.1 (Stability of the pairing of the bases of �nite-dimensional spaces [61, Section
2.2]). Let � h be conformal triangular approximation of a closed surface� and let Th and eTh be
primary and dual triangular meshes for it. Let us consider the sets of basis functionsf � i g

NT
i =1

and f � i g
NT
i =1 as de�ned in De�nition 1.6.12 and De�nition 1.6.14. If we assume that Th is

locally quasi-uniform, and that for every triangle t l 2 Th there is a constant C such that the
associated local mesh sizes for the functions associated with its vertices (refer to De�nition
1.6.15) satisfy

51
7

�

0

@
X

v i 2 Tt ! v (t l )

ĥi

X

v i 2 Tt ! v (t l )

1

ĥi

1

A

1=2

� C > 0; (2.5)

then, the following inf-sup condition is satis�ed:

sup
j =1 :::N V

�
�
�h� i ; � j i � h

�
�
�

k� j kH � 1=2 (� h )
� cd k� i kH 1=2 (� h ) ; for i = 1 :::NV : (2.6)

Remark 2.2.1 (The discretization from Subsection 1.6.2 satis�es conditions of Theorem 2.1.1).
Condition (2.5) is easy to meet and, as we shall see indirectly in the next subsection, is met by
the discretization described in Subsection 1.6.2. The consequence of the previous proposition is
estimate (2.6), which allows to satisfy condition (2.3) from Theorem 2.1.1

2.2.1 Laplace problem

For a Lipschitz-regular obstacle 
 of boundary � = @
 let us consider a conformal trian-
gular approximation � h . It was shown in Theorem 1.5.3 that operator N 0 : H 1=2(� h)=R !
H � 1=2(� h) de�nes an isomorphism, and that it induces coercive bilinear form inH 1=2(� h)=R.
Similarly, it was shown in Theorem 1.5.2 that operator S0 : H � 1=2(� h) ! H 1=2(� h) de�nes an
isomorphism and that it induces a coercive bilinear form inH � 1=2(� h).

Additionally, it was shown in Subsection 1.2.3 that spacesH 1=2(� h) and H � 1=2(� h) are
dual to each other if the surface is Lipschitz-regular, and that they can be discretized into
N-dimensional spacesVh and Wh using P0 Lagrange basesf � i g

N
i =1 and P1 basesf � i g

N
i =1 . Fur-

thermore, it was shown in Proposition 2.2.1 that their basis functions comply with stability
estimates speci�ed in (2.3) from Theorem 2.1.1 if the bilinear formd is taken to be the duality
product between H 1=2(� h) and H 1=2(� h).

Being in compliance with the hypotheses of Theorem 2.1.1, we follow the optimal pre-
conditioning strategy from De�nition 2.1.1 and consider the following matrices to perform a
numerical experiment in the case of a spherical obstacle 
 =f x 2 R3 : kx k < 1g with surface
� = f x 2 R3 : kx k = 1g in R3, which we will mesh � into a triangular mesh � h for a particular
value of h as shown in Figure 2.1. We consider the following Galerkin matrices (cf. De�nition
1.6.17):

A S0 [i; j ]=


S0� i ; � j

�
� h

; B N 0 [i; j ] =


N 0� i ; � j

�
� h

+ � h� i ; 1i � h
h� j ; 1i � h

; for � 2 R+ ;
(2.7)
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and
D [i; j ] = h� i ; � j i � h

: (2.8)

Using these Galerkin matrices, let us assemble the following preconditioning matrices as
indicated by the theorem:

M S0 = D � 1A S0 D � H ; and M N 0 = D � 1B N 0 D � H : (2.9)

In the next �gure, Figure 2.1, we show the evolution of the condition number for the
Galerkin matrices A S0 and B N 0 as a function of the discretization parameter together with
the condition number for the preconditioned matrices M N 0 A S0 and M S0 B N 0 .

Figure 2.1: A triangular mesh discretization � h of the spherical surface � taken as an example
for a given discretization parameter h (left), and the evolution of the condition number of
matrices A S0 , B N 0 , and M N 0 A S0 (or M S0 B N 0 ) for diminishing values of h.

It is remarkable that, as predicted by Theorem 1.7.1, the condition number is roughly
O

�
h� 1

�
for the unpreconditioned matrices, whereas the preconditioned matrices attain optimal,

absolutely bounded, condition numbers.

2.2.2 Helmholtz problem

The Helmholtz case can be viewed as a perturbed case of the Laplace problem. We will use
this fact to show that preconditioners built for the Laplace problem can also precondition the
Galerkin matrices arising in the Helmholtz problem. Let us �rst note that the Green's function
for the Helmholtz problem can be expressed as the integral kernel for the Laplace case plus a
more regular function. Indeed, for x ; y 2 �:

Gk (x ; y ) = G0(x ; y ) + Rk (x ; y ); (2.10)

with

Rk (x ; y ) =
eikkx � y k � 1
4� kx � yk

: (2.11)

Thus, the weakly singular boundary integral operator can be written as the sum of two
operators,
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Sk = S0 + P k ; (2.12)

with P k being a convolution operator with kernelRk , and thus a compact operator relative toS0

[57, Lemma 3.9.8]. Then, the bilinear form associated withSk will be a compact perturbation
of the one induced byS0, which will not a�ect the preconditioning strategy [36, Section 2.4].

Similarly, we know from Theorem 1.5.3 that the bilinear form induced by N k can be rewrit-
ten using Sk as

D
�N ku; v

E

� h

=
D

Sk ��!
curl � h u;

��!
curl � h v

E

� h

; (2.13)

which, by the same argument, can be written as a compact perturbation of the bilinear form
associated withN 0:

D
�N ku; v

E

� h

=
D

S0��!
curl � h u;

��!
curl � h v

E

� h

+
D

P k ��!
curl � h u;

��!
curl � h v

E

� h

: (2.14)

As before, the bilinear form induced byN k is then a compact perturbation of the bilinear
form induced by N 0.

These results indicate that the preconditioning matricesM S0 and M N 0 from the previous
subsection can also be used to precondition the Galerkin matrices arising in the case of the
Helmholtz problem. In what follows, we will put this idea to the test through a numerical
example.

Let us consider the following two Galerkin matrices arising in the case of the Helmholtz
problem:

A Sk [i; j ] =
D

Sk � i ; � j

E

� h

; and B N k [i; j ] =
D

N k � i ; � j

E

� h

: (2.15)

Let us also take the previously considered preconditioning matrices built using the bilinear
forms associated with operatorsS0 and N 0. Figure 2.2 shows the condition number of the
Galerkin matrices associated with the Helmholtz problem for, e.g., a wavenumberk = 0 :3 and
its evolution with diminishing discretization parameter h.

Figure 2.2: Evolution of the condition number of the Galerkin matrix for the Dirichlet
Helmholtz problem A Sk with and without preconditioning using the Neumann Galerkin ma-
trix M N 0 (left). Evolution of the condition number of the Galerkin matrix for the Neumann
Helmholtz problem B N k with and without preconditioning using the Dirichlet Galerkin matrix
M S0 (left).
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Remark 2.2.2 (Optimality of the preconditioning after a transient) . Figure 2.2 shows optimal
preconditioning after an initial transient region due to the misrepresentation of the wave-like
characteristics of the trace functions when using large cells in comparison to the wavelength.

Given that the Laplace Galerkin matrices are enough to precondition the Helmholtz case
we will drop the consideration for the Helmholtz case, and we will retake it at the end of this
chapter when we test the developed preconditioning method for wave propagation phenomena.
Consistently, we will change the notation to ease the exposition with focus on the Laplace case.

Notation 2.2.1 (Weakly singular and hypersingular kernel notation). In what follows, and
unless speci�ed otherwise, we will adopt the following simplifying notations. The weakly singular
integral kernel for the Laplace case will be written as:

K ws(x ; y ) = G0(x ; y ): (2.16)

Similarly, the hypersingular integral kernel for the Laplace case will be written as:

K hs(x ; y ) =
@2

@n x @n y
G0(x ; y ): (2.17)

Consequently, the wavenumber superscript indicator will be dropped, implicitly indicating that
k = 0 :

S = S0 and N = N 0: (2.18)

In what follows we will focus on the preconditioning of the matrices associated with the
Laplace operator. In the next section we will make clear why this approach can't be used
directly in the case of the screen obstacles. In this chapter we will describe this application
problem, and in the next chapter we will develop a strategy to tackle it.
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2.3 Boundary integral equations for the screen problem

In this section we will show some well established results that will provide the functional
framework relevant to the integral equations associated with screen obstacles. We will underline
the main di�erence between the case when 
 is a Lipschitz-regular obstacle and the case
of screen obstacle, remarking the new and challenging mapping properties of the involved
boundary integral operators.

We start by noting that between the four cases at hand for the screen problem, both the
anti-symmetric Dirichlet (Problem 1.3.6) and symmetric Neumann (Problem 1.3.7), can be
solved straightforwardly without need of recourse to boundary integral equations.

Proposition 2.3.1 (Solutions to the anti-symmetric Dirichlet problem and the symmetric
Neumann problem). Given the symmetric Neumann data' (i.e. [ � @n u] = ' ), the solution
to the Symmetric Neumann Problem 1.3.7 can be computed without solving a boundary integral
equation. It can be computed by applying the weakly-singular operator to the Neumann data:

u(y ) = ( S' ) (y ) =
Z

�

1
4� kx � yk

' (x )d�( x ); 8y 2 
 � : (2.19)

Similarly, given anti-symmetric Dirichlet data g (i.e.  �
� u = � g), the solution to the Anti-

symmetric Dirichlet Problem 1.3.6 can be computed without solving a boundary integral equa-
tion; it can be computed by applying the double layer operator to the Dirichlet data:

u(y ) = � (Dg) (y ) = �
Z

�

@
@n x

�
1

4� kx � yk

�
g(x )d�( x ); 8y 2 
 � : (2.20)

Proof The solution u = S' is continuous across �, and the jump properties of the weakly sin-
gular operator (see Theorem 1.4.1) yields [ � @u=@n ] = ' , which satis�es boundary conditions
of the Symmetric Neumann Problem 1.3.7.

The solution u = �D g has a discontinuity across �, given by Theorem 1.4.2: [ � u] = g,
satisfying the boundary conditions given of the Anti-Symmetric Dirichlet Problem 1.3.6.

�

Remark 2.3.1 (Focus on the symmetric Dirichlet and the anti-symmetric Neumann problems).
Given that the anti-symmetric Dirichlet and the symmetric Neumann problem do not require
solving a boundary integral equation, and thus a linear system needing preconditioning, from
now on we will focus only on the integral operator preconditioning associated with the symmetric
Dirichlet and anti-symmetric Neumann problems.

Lemma 2.3.1 (Jump of the trace for the solutions of the symmetric Dirichlet and anti-symmet-
ric Neumann problems [62, Lemma 2.2]). Let u 2 W 1;� 1(
 � ) be the solution to the symmetric
Dirichlet Laplace problem. Then, the jump of the Neumann trace on� is such that

� =
�

@u
@n

�
2 eH � 1=2(�) : (2.21)

If u 2 W 1;� 1(
 � ) is the solution to the anti-symmetric Neumann Laplace problem, then the
jump of the Dirichlet trace on � is such that

� = [ u] 2 eH 1=2(�) : (2.22)

The next two theorems provide us with boundary integral equations that relate the traces
of the searched solution with the given data. These integral equations are the same as for the
case of Lipschitz-regular obstacles.
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Theorem 2.3.1 (Boundary integral equation for the symmetric Dirichlet problem [62, Theorem
2.5]). A function u 2 W 1;� 1(
 � ) is the solution to the symmetric Dirichlet problem if and only
if � = [ @u=@n ] 2 eH � 1=2(�) is the solution to boundary integral equation problem

S� = g; (2.23)

for g 2 H 1=2(�) :

Theorem 2.3.2 (Boundary integral equation for the anti-symmetric Neumann problem [62,
Theorem 2.6]). A function u 2 W 1;� 1(
 � ) is the solution to the anti-symmetric Neumann
problem if and only if � = [ u] 2 eH 1=2(�) is the solution to boundary integral equation problem

� N � = '; (2.24)

for ' 2 H � 1=2(�) :

Theorem 2.3.3 (Potential computation of the solution to the Dirichlet and Neumann problems
[62, Lemma 2.4]). Once the jumps of the Dirichlet and Neumann traces have been found, the
solution to the symmetric Dirichlet and anti-symmetric Neumann problems can be computed
as

u = S� � D �: (2.25)

Remark 2.3.2 (Vanishing jump of the traces). In the case of the symmetric Dirichlet problem
( �

� u = g), the jump of the Dirichlet traces is zero, i.e. � = 0 , and thus the solution to
the problem becomesu = S� once � has been calculated. In the case of the anti-symmetric
Neumann problem ( �

� @u=@n = ' ), the jump of the Neumann traces is zero, i.e. � = 0 , and
thus the solution to the problem becomesu = �D � once � has been calculated.

The following theorem describes a key feature of the traces of the solutions to the symmetric
Dirichlet and anti-symmetric Neumann problems for screen obstacles. This important feature
will be present throughout this chapter and will be considered later as a hint for the proposal
of many of the techniques involved in the preconditioning method.

Theorem 2.3.4 (Behavior of trace jumps at the edge of the screen [62, Theorem 2.9]). The
jump of the Neumann trace of the solution to the symmetric Dirichlet Laplace problem, i.e.
� 2 eH � 1=2(�) , behaves, at edge@� of the screen, like

� (y ) � 1=
p

dist (@� ; y ); (2.26)

and the jump of the Dirichlet trace of the solution to the anti-symmetric Neumann Laplace
problem, i.e. � 2 eH 1=2(�) , behaves, at edge@� of the screen, like

� (y ) �
p

dist (@� ; y ); (2.27)

where dist(@� ; y ) is the distance to the edge of the screen@� from a point y 2 � in the vicinity
of the edge.

The core of the problem with operator preconditioning when a Lipschitz-regular obstacle 

of boundary � collapses into a screen, an object of void interior and non-Lipschitz boundaries,
is that the mapping properties of the weakly singular and the hypersingular boundary integral
operators degenerate. They continue to map trace spaces onto their duals, but these spaces no
longer coincide with the ones where the other operator induces coercive bilinear forms. When
the boundary � is Lipschitz-regular, there are two spaces in consideration, 1)H 1=2(�) where N
induces a coercive bilinear form, and 2)H � 1=2(�) where S also induces a coercive bilinear form.
These are mutual dual spaces. When the obstacle collapses into a screen, and its boundary
is no longer Lipschitz-regular, there are now four spaces in consideration, two associated with
each boundary integral operator. OperatorS maps eH � 1=2(�) onto H 1=2(�), to which it is the
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dual. On the other hand N maps eH 1=2(�) into its dual H � 1=2(�). The two operators involved
in the integral equations needed to solve the two problems, do not share spaces (either as image
or pre-image) where they can induce coercive bilinear forms, and thus they no longer furnish
optimal preconditioners. Additionally, Calder�on Identities no longer hold, which were useful in
achieving low condition numbers (besides being bounded) when the preconditioning strategy
was applied in Section 2.2.

Di�erent approaches have been tried to tackle or to bypass this problem. Despite the fact
that the Calder�on Identities no longer hold for screen boundaries, the weakly singular and
the hypersingular boundary integral operators do precondition each other to some degree, as
proposed in [49], although not in an asymptotically optimal manner, with the spectral condition
number growing as O(jloghj). Another approach, called generalized Calder�on formula for
open boundaries, provides good preconditioning tools [44], but no asymptotical estimations
are available.

A family of strategies are based in the use of inverses to the boundary integral operators,
when available. Finding the inverse operators toS and N is, in general, a di�cult task.
Recently, explicit variational expressions for the inverses have been found by Carlos Jerez-
Hanckes and Jean-Claude N�ed�elec, along with precise space mapping properties and Calder�on-
type identities for the segment screen (� = ( � 1; 1) � f 0g) in R2 [41]. These inverse operators
induce linear, continuous, and coercive bilinear variational forms in the dual spaces for each
operator, and thus provide a means to build preconditioning Galerkin matrices [36]. These
results have also been proven to be extensible to the boundary integral operators linked to
the Helmholtz equation and to curves other than the segment via a su�ciently regular curve
transformation. More recently, explicit expressions for the inverse have been found for the case
where the screen obstacle is the unit disk inR3 but only for N [37]. In this chapter we will
propose inverses forS and N in series form.
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2.4 Preconditioning for the segment obstacle in R2

In this section, we will briey describe how the optimal preconditioning strategy was de-
veloped in the past into a preconditioning method for the case of a straight segment screen
in R2 for the symmetric Dirichlet and the anti-symmetric Neumann problems. This case will
illustrate the di�culties encountered when dealing with screens and will provide insight and
suggestions to the treatment of the tridimensional case. This aforementioned strategy was
reported in [36].

2.4.1 Geometrical and functional setting

The canonical curve screen chosen inR2 was the straight segment, which was de�ned as
the set � = I � f 0g, with I = ( � 1; 1). The propagation domain is named 
 � . Function
w(x) =

p
1 � x2 was de�ned for x 2 I , which captures the behavior of the jump of the traces

at the edges of the screen (i.e.x = � 1; 1) as revealed in Theorem 2.3.4.

Lemma 2.3.1 provides the relevant spaces where the boundary integral equations are posed:
eH 1=2(�) and eH � 1=2(�). As a reminder, these spaces are de�ned as in [61, Section 1.1]:

eH � 1=2(�) �
�

H 1=2(�)
� 0

and H � 1=2(�) �
�

eH 1=2(�)
� 0

: (2.28)

Gelfand triples [57, Proposition 2.5.2] provide us the following inclusion relations:

eH 1=2(�) � L 2(�) � H � 1=2(�) ; H 1=2(�) � L 2(�) � eH � 1=2(�) : (2.29)

2.4.2 Direct and inverse operators and kernels for the symmetric Dirichlet
and the anti-symmetric Neumann problems

Among the four original screen problems (Problems 1.3.5, 1.3.6, 1.3.7 and 1.3.8), the anti-
symmetric Dirichlet and symmetric Neumann problems have straightforward solutions as shown
in Proposition 2.3.1. The other two problems, the symmetric Dirichlet and anti-symmetric
Neumann problems, can be rewritten as boundary integral equations. The direct operators
associated with these integral equations are known to beS and N , as stated in Theorems 2.3.1
and 2.3.2 respectively. For the symmetric Dirichlet boundary integral equation, the kernel of
the integral operator is the same as for theS boundary integral operator in two dimensions:

K ws
s (x; y) = �

1
2�

log jx � yj; for x; y 2 I: (2.30)

The variational formulation for the associated boundary integral equation is

8
>>><

>>>:

For g 2 H 1=2(�) ; �nd � 2 eH � 1=2(�) such that for all � t 2 eH � 1=2(�) ;



S�; � t �

� = �
Z

�

Z

�

1
2�

log jx � yj� (x)� t (y)dxdy =
Z

�

g(y)� t (y)dy:
(2.31)

For the anti-symmetric Neumann boundary integral equation, the integral kernel of the
integral operator is the same as for theN boundary integral operator in two dimensions:

K hs
as (x; y) =

1
2�

1
jx � yj2

; for x; y 2 I: (2.32)

The variational formulation for associated boundary integral equation is
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8
>>><

>>>:

For ' 2 H � 1=2(�) ; �nd � 2 eH 1=2(�) such that for all � t 2 eH 1=2(�) ;



�N �; � t �

� = �
Z

�

Z

�

1
2�

1
jx � yj2

� (x)� t (y)dxdy =
Z

�

' (y)� t (y)dy:
(2.33)

In the development of the preconditioning strategy for the segment screen, as reported
in [41], explicit variational forms were developed for the inverse operatorsS� 1 and N � 1. For
the symmetric Dirichlet problem, a symmetric hypersingular boundary integral operator S� 1,
with integral kernel K hs

s , was determined. Likewise, for the anti-symmetric Neumann problem,
a weakly-singular boundary integral operator N � 1, with integral kernel K ws

as , was found. The
explicit forms of these kernels are shown in Table 2.1.

Table 2.1: Explicit forms of the integral kernels of the operators linked to the boundary integral
equations in two dimensions.

Kernel Symmetric Dirichlet Anti-symmetric Neumann

Weakly singular K ws
s (x; y) = � 1

2� log jx � yj K ws
as (x; y) = � 1

2� log 2jx� yj
(x� y)2+( w(x)+ w(y)) 2

Hypersingular K hs
s (x; y) = 1� xy

w(x)w(y)
1

(x� y)2 K hs
as (x; y) = 1

2�
1

jx� yj2

2.4.3 Series form of the integral kernels for the direct and inverse operators

These developments were achieved using polynomial bases (�rst kindTn , and second kind
Un Tchebyshev polynomials), allowing for series expressions of the integral kernels. Table 2.2
shows the series expression of the integral kernels for the direct and inverse integral operators
involved in the symmetric Dirichlet and anti-symmetric Neumann problems.

Table 2.2: Series forms of the integral kernels of the operators linked to the boundary integral
equations in two dimensions.

Kernel Symmetric Dirichlet Anti-symmetric Neumann

Weakly singular K ws
s (x; y) = log 2 +

1P

n=1

2
n Tn (x)Tn (y) K ws

as (x; y) =
1P

n=1

w(x)w(y)
n Un� 1(x)Un� 1(y)

Hypersingular K hs
s (x; y) =

1P

n=1
2n Tn (x)Tn (y)

w(x)w(y) K hs
as (x; y) =

1P

n=1
2nUn� 1(x)Un� 1(y)

Remark 2.4.1 (Kernel singularities at the edge of the screen). It is remarkable that the series
expressions of the integral kernels explicitly show their behaviour near the edges of the segment
screen. This will provide relevant hints in the development of similar inverse operators for the
disk screen in R3, showing that the key feature is the relation between the singularities of the
jump of the traces (the unknown of the integral equations) and the behavior of the kernel at the
edge the screen.

Having the integral kernels for the variational expressions of the inverse operators, Galerkin
matrices can be built once the spaces have been discretized. These matrices act as mutual
optimal preconditioners as has been reported in [36].

2.4.4 Series expansions of functions belonging to the Sobolev trace spaces

The polynomial bases mentioned in the previous subsection allow for the expression of the
functions of the Sobolev trace spaces in the form of series expansions. This will become a key
tool in the construction of bases for the trace spaces for disk screen inR3 in the next sections.
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It has been shown separately by E. Stephan and co-workers in [20, 33, 60] and more re-
cently in an more comprehensive exposition, in [41], that using polynomial bases forL 2(I ) and
the weight function w allows for the creation of bases for the Sobolev trace spaceseH 1=2(I ),
eH � 1=2(I ), H 1=2(I ), and H � 1=2(I ).

A function � in the space eH 1=2(I ) can be expanded on the basisf wUng1
n=0 :

� (x) =
1X

n=0

� nw(x)Un (x); � n =
2
�

Z

I
� (x)Un (x)dx: (2.34)

A function g in the spaceH 1=2(I ) can be expanded on the basisf Tng1
n=0 :

g(x) =
1X

n=0

gnTn (x); gn =
2
�

Z

I

g(x)Tn (x)
w(x)

dx: (2.35)

A function ' in the spaceH � 1=2(I ) can be expanded on the basisf Ung1
n=0 :

' (x) =
1X

n=0

' nUn (x); ' n =
2
�

Z

I
' (x)Un (x)w(x)dx: (2.36)

A function � in the space eH � 1=2(I ) can be expanded on the basisf w� 1Tng1
n=0 :

� (x) =
1X

n=0

� nw� 1(x)Tn (x); � n =
2
�

Z

I
� (x)Tn (x)dx: (2.37)

In the next sections we will adapt the results related to segment screen inR2 for the unit disk
screen inR3. With that goal in mind, we will specify a geometrical and functional framework
for that particular case and we will show the existence of operators that are inverses to the
ones involved in the boundary integral equations associated with the symmetric Dirichlet and
anti-symmetric Neumann problems.
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2.5 Geometrical and functional setting for the disk screen in
R3

From now on, we will focus on the case of a unit disk screen obstacle inR3. We will provide
a geometrical and a functional setting appropriate for this case.

2.5.1 Geometrical de�nitions

Let x = ( x1; x2; x3) 2 R3, with canonical coordinate system (̂e1; ê2; ê3), be a point, and let
us consider the split of the three-dimensional space into two half-spaces� � = f x 2 R3 : x3 7 0g,
with interface plane � given by x3 = 0. We take interest in disk D in R3:

D = f x 2 R3 : x3 = 0 ; x2
1 + x2

2 < 1g: (2.38)

We divide plane � in open disjoint sections D and � f = � n D. The problem domain for
the unit disk screen obstacle is denoted by 
D = R3 n D.

We also consider the unit sphereS in R3. The plane � divides the unit sphere into two
half-spheres which we denote byS+ (upper half-sphere), and S� (lower half-sphere). For a
point on the sphere, we consider the cylindrical coordinate system (�; � ), where � and � are the
classic Euler angles (� 2 [0; � ] and � 2 [0; 2� ]), and êr , ê� and ê� the local spherical coordinate
system for x 2 S:

8
<

:

x1(�; � ) = sin � cos�;
x2(�; � ) = sin � sin �;
x3(�; � ) = cos �;

�
� (x ) = � x = arccos (x3) ;
� (x ) = � x = arctan ( x2=x1) ;

(2.39)

8
<

:

êr (x ) = (sin � cos�; sin � sin �; cos� ) ;
ê� (x ) = (cos � cos�; cos� sin �; � sin � ) ;
ê� (x ) = ( � sin �; cos�; 0) :

(2.40)

For a point on the disk, represented in bi-dimensional Cartesian coordinates (x1; x2) 2 R2,
we consider the polar coordinate system (�; � ), where � 2 [0; 1) is the radius, and ê� and ê�

the local cylindrical coordinate system of a point x 2 D.

�
x1(�; � ) = � cos�;
x2(�; � ) = � sin �;

�
� (x ) = � x =

p
x2

1 + x2
2 = sin �;

� (x ) = � x = arctan ( x2=x1) ;
(2.41)

�
ê� (x ) = (cos �; sin � ) ;
ê� (x ) = ( � sin �; cos� ) :

(2.42)

For a point x 2 D we denote asx � 2 S� its vertical projection onto the upper and lower
half-spheres. Likewise, pointsx � 2 S� have a vertical projection x 2 D onto the disk.

It is noteworthy that with this de�nition, � = sin � is always non-negative. It will become
useful to de�ne a weight function w relating the radius � of a point x 2 D with the distance to
its vertical projections on unit sphere S,

w(� ) =
p

1 � � 2 = jcos� j ; (2.43)

such that, for x = ( �; � ) 2 D,

x � (�; � ) = ( � cos�; � sin �; � w(� )) : (2.44)

Finally, we will denote by ( �; �) the inner product in R2 and R3. When taking the inner
products of complex valued functions, we will use the conventions of taking the conjugate on
the second argument.
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Figure 2.3 resumes the de�nitions and relations comprising the elements of the geometrical
setting for the unit disk screen in R3.

Figure 2.3: Geometrical setting for disk screenD, upper S+ , and lower S� half-spheres and
other geometrical elements considered in this chapter.

Proposition 2.5.1 (Hypersingular integral kernel on disk D). The kernel of the hypersingular
boundary integral operator N has the following expression whenx ; y 2 D:

K hs(x ; y ) =
@2

@n x @n y

�
1

4� kx � yk

�
=

1

4� kx � yk3 : (2.45)

Proof
��!
grad x

�
1

4� kx � yk

�
= �

x � y

4� kx � yk3 : (2.46)

@
@n x

�
1

4� kx � yk

�
= n x �

��!
grad x

�
1

4� kx � yk

�
= �

n x � (x � y )

4� kx � yk3 : (2.47)

��!
grad y

@
@n x

�
1

4� kx � yk

�
= � 3

(n x � x )(x � y )

4� kx � yk5 + 3
(n x � y )(x � y )

4� kx � yk5 +
n x

4� kx � yk3 : (2.48)

n y �
��!
grad y

@
@n x

�
1

4� kx � yk

�
=

n x � n y

4� kx � yk3 � 3
(n x � (x � y )) ( n y � (x � y ))

4� kx � yk5 : (2.49)

This identity gives the desired results for the case of the disk, whenx ; y 2 D, an thus x3 =
y3 = 0 and n x = n y = (0 ; 0; 1)T . �

Proposition 2.5.2 (Hypersingular kernel on sphereS). The kernel of the hypersingular bound-
ary integral operator N has the following expression whenx ; y 2 S:

K hs(x ; y ) =
1

4� kx � yk3 +
1

16� kx � yk
: (2.50)

Proof We know from the proof of Proposition 2.5.1 that

@2

@n x @n y

�
1

4� kx � yk

�
=

n x � n y

4� kx � yk3 � 3
n x � (x � y )n y � (x � y )

4� kx � yk5 : (2.51)
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We remark the fact that, particularly for x ; y 2 S, we have that n x = x , n y = y and
kx k = kyk = 1. This allows for the following expressions for the distancekx � yk:

kx � yk2 = 2 � 2(x � y ) and kx � yk4 = 4 � 8(x � y ) + 4( x � y )2: (2.52)

We write the hypersingular kernel as,

@2

@n x @n y

�
1

4� kx � yk

�
=

(x � y ) kx � yk2 � 3x � (x � y )y � (x � y )

4� kx � yk5 : (2.53)

The development of the numerator using the previous identities gives the desired result:

(x � y ) kx � yk2 � 3x � (x � y )y � (x � y ) = 3 � 4(x � y ) + ( x � y )2 (2.54)

= 2 � 2(x � y ) +
�
1 � 2(x � y ) + ( x � y )2�

(2.55)

= kx � yk2 +
1
4

kx � yk4 : (2.56)

�

Proposition 2.5.3 (Relation between the weakly singular and the hypersingular integral ker-
nels on the disk). For x ; y 2 D, the kernelsK ws and K hs of the boundary integral operatorsS
and N on disk D are linked by the Laplace-Beltrami operator:

� DK ws = K hs: (2.57)

� D

�
1

4� kx � yk

�
=

1

4� kx � yk3 : (2.58)

Proof

� D (G(x ; y )) = div D

� ��!
gradDG(x ; y )

�
=

�
@2

@y21
+

@2

@y22

�
G(x ; y ) (2.59)

@
@xi

G(x ; y ) = �
x i � yi

4� kx � yk3 (2.60)

@2

@x2i
G(x ; y ) = �

1

4� kx � yk3 � (x i � yi )
@

@xi

 
1

4� kx � yk3

!

(2.61)

@
@xi

 
1

4� kx � yk3

!

= �
3(x i � yi )

4� kx � yk5 (2.62)

)
@2

@x2i
G(x ; y ) = �

1

4� kx � yk3 +
3(x i � yi )2

4� kx � yk5 (2.63)

)
�

@2

@x21
+

@2

@x22

�
G(x ; y ) = �

2

4� kx � yk3 +
3

�
(x1 � y1)2 + ( x2 � y2)2

�

4� kx � yk5 (2.64)

�
(x1 � y1)2 + ( x2 � y2)2�

= kx � yk2 : (2.65)

)
�

@2

@x21
+

@2

@x22

�
G(x ; y ) =

1

4� kx � yk3 : (2.66)

�

Remark 2.5.1 (Change of variables between the disk and the upper half-sphere for the surface
vector curl operator). The inner product in C3 for the curl of two functions u and v de�ned
on S is, in spherical coordinates:

� ��!
curl Su(x );

��!
curl Sv(y )

�
= @u(x )

@�x
@v(y )
@�y

+ cos (� x � � y )
�

@u(x )
@�x

@v(y )
@�y

+ cos� x cos� y
sin � x sin � y

@u(x )
@�x

@v(y )
@�y

�

+ sin ( � x � � y )
�

cos� y
sin � y

@u(x )
@�x

@v(y )
@�y

� cos� x
sin � x

@u(x )
@�x

@v(y )
@�y

�
:

(2.67)
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The inner product in C2 for the curl of two functions u and v de�ned on D is, in cylindrical
coordinates:

� ��!
curl Du(x );

��!
curl Dv(y )

�
= cos (� x � � y )

�
@u(x )
@�x

@v(y )
@�y

+ 1
� x � y

@u(x )
@�x

@v(y )
@�y

�

+ sin ( � x � � y )
�

@u(x )
@�x

1
� y

@v(y )
@�y

� 1
� x

@u(x )
@�x

@v(y )
@�y

� (2.68)

The change of variablesu(x ) = U(x + ) gives@U=@�= @u=@�, and � = sin � gives

@u
@�

=
1

cos�
@U
@�

=
1

w(� )
@U
@�

: (2.69)

Expressing one of the identities in the variables of the other through a change of variables allows
for the identi�cation of the following identity linking both:

� ��!
curl Du(x );

��!
curl Dv(y )

�
=

1
cos� x cos� y

� � ��!
curl SU(x + );

��!
curl Sv(y + )

�
�

@U(x + )
@�x

@V(y + )
@�y

�
: (2.70)

2.5.2 Functional setting

In this section we will recall some results from Section 1.2 for the particular case of disk
screenD embedded inR3.

Let us de�ne a function's restrictions over a half-space:

u� = uj � � : (2.71)

Let us also introduce the trace operators �
� : C1

0

�
� �

�
! � as

 �
� u = lim

� ! 0�
u(x1; x2; � ): (2.72)

Operators  �
� can be uniquely extended to the space of bounded linear operators from

H 1
loc(� � ) to H 1=2

loc (�) [48, Chapter 3]. Then, the trace operator of a subdomain � of � can be
de�ned as:

 �
� u =

�
 �

� u
� �
�
� : (2.73)

Let [ � ] =  +
� �  �

� be the jump operator across a surface � subset of plane �. We will
take particular interest in the case where � is D.

Additionally, we de�ne an orientation for the surface �, and denote by n x the unit normal
at x 2 � on the positive part of the surface, according to Subsection 1.2.1. In the case of
screenD the unit normal becomesn x = ê3 = (0 ; 0; 1) for x 2 D, thus de�ning the directional
derivative

@n x u =
@u
@x3

: (2.74)

We take interest in the functional spaces relevant for the description of the solutions to the
Laplace and Helmholtz problems in 
 D = R3 n D, and the trace spaces on screenD.

The natural Sobolev spaces considered for the Laplace and Helmoltz problems [4, Section
4.1], for a general problem domain 
, are H 1(
) if 
 � R3 is a bounded domain, orH 1

loc(
) if
not. Being the latter only of Fr�echet type, and being 
 D unbounded, we de�ne

W 1;� 1(
 D) =

(

u 2 C1
0 (
 D) :

u
p

1 + kxk2
2 L 2(
 D);

��!
gradu 2

�
L 2(
 D)

� 3

)

; (2.75)

de�ning a Hilbert space which coincides with H 1
loc(
 D) for bounded parts of 
 D [51, Section

2.5.4]. We will also consider the following subspace ofW 1;� 1(
 D):
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W 1;� 1
0 (
 D) =

�
u 2 W 1;� 1(
 D) :  �

D u = 0
	

: (2.76)

Gelfand triples [57, Proposition 2.5.2] provide us the following inclusion relations:

eH 1=2(D) � L 2(D) � H � 1=2(D); H 1=2(D) � L 2(D) � eH � 1=2(D): (2.77)

It is also remarkable that eH 1=2(D) � H 1=2
0 (D).

Using these geometrical de�nitions and the outlined functional framework, we will show in
the next section that boundary integral operators S and N do have inverses. Their existence
will be guaranteed by the Lax-Mailgram theorem, and thus an explicit form will not be readily
available. Their explicit form will then be the subject of the subsequent sections.
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2.6 Existence of inverse operators for the Dirichlet and Neu-
mann problems

As it was shown in Section 2.3, the Laplace problem for a screen can be posed as a bound-
ary integral equation on the surface of the screen. For the Dirichlet (Neumann) problem, and
given Dirichlet (Neumann) data, the problem amounts to �nding the unknown jump of the
Neumann (Dirichlet) trace solving the integral equation for the weakly-singular S (hypersin-
gular N ) operator. In this section we will show that in the case of disk screenD in R3, integral
operators S and N have inverses. We will also show, however, that these inverses do not have
a straightforward explicit form. We will undertake the task of �nding series expressions in the
following sections of this chapter.

This section regarding the existence of inverse operators is an adaptation forR3 of the
results derived for R2 in [41, Sections 2.6 & 2.7]. The exposition, order of the results and the
notation follow that of the mentioned reference.

2.6.1 Dirichlet Problems

Instead of directly considering the symmetric Laplace problem, we start by tackling a more
general Laplace problem with two di�erent Dirichlet conditions g� from above and below on
D. These boundary data lie in the Hilbert space

X =
n

g = ( g+ ; g� ) 2 H 1=2(D) � H 1=2(D) : g+ � g� 2 eH 1=2(D)
o

(2.78)

with norm
kgk2

X =

 g+


 2

H 1=2 (D) +

 g�


 2

H 1=2 (D) +

 g+ � g�


 2

eH 1=2 (D) : (2.79)

We also de�ne the Hilbert space for Neumann data as

Y =
n

' = ( ' + ; ' � ) 2 H � 1=2(D) � H � 1=2(D) : ' + � ' � 2 eH � 1=2(D)
o

; (2.80)

with norm
k' k2

Y =

 ' +


 2

H � 1=2 (D) +

 ' �


 2

H � 1=2 (D) +

 ' + � ' �


 2

eH � 1=2 (D) : (2.81)

Let us consider the general Dirichlet problem for the disk screen.

Problem 2.6.1. For g 2 X, �nd u 2 W 1;� 1(
 D) such that:

8
><

>:

� � u = 0 ; x 2 
 D; 
 +

D

 �
D

!

u = g; x 2 D:
(2.82)

Uniqueness of solutions

Any function u in W 1;� 1(
 D) can be split into its restrictions on � � :

u� = uj � � 2 W 1;� 1(� � ); (2.83)

with well de�ned traces  �
D u� 2 H 1=2

loc (D). By de�nition, if u is a solution to Problem 2.6.1,
then  �

D u� = g� with [  Du] 2 eH 1=2(D). Due to the regularity of the solution in the interior of

 D, we have that

�
 � f u

�
= 0 ; and

�
 � f @nu

�
= 0 : (2.84)
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By the extension theorem [48, Theorem 3.18], there exists a continuous operatorE+
� :

H 1=2(D) ! H 1=2(�) extending g+ over � satisfying

E+
� g+ 2 H 1=2(�) ; supp

�
E+

� g+ �
b � and

�
E+

� g+ � �
�
D = g+ : (2.85)

Furthermore, [g] 2 eH 1=2(D) so that its extension by zero in � f , f[g], belongs to H 1=2(�).

Let us de�ne E�
� g� = E+

� g+ � f[g], which is also continuous.E+
� g+ and E�

� g� also admit liftings
with compact support in the upper and lower half-spaces, given by the continuous operators
R � : H 1=2(�) ! W 1;� 1(� � ). Let us de�ne v� 2 W 1;� 1(� � ) using operator composition:

v� =
�
R � � E �

�

�
g� ; (2.86)

which has compact support on� � . We consider

v =
�

v+ if x 2 � + ;
v� if x 2 � � ;

(2.87)

so that v 2 W 1;� 1(
 D). This allows the de�nition of an operator A : X ! W 1;� 1(
 D) such
that v = Ag, and for which the following continuity inequality holds,

kAgkW 1; � 1 (
 D) � CA kgkX (2.88)

because of the continuity of all the composing operators. The continuity of the trace operators
provides the following result.

Lemma 2.6.1. If u 2 W 1;� 1(
 D) is such that  �
D u = g� with (g+ ; g� ) 2 X, there exists a real

positive constant CX such that

kgkX � CX kukW 1; � 1 (
 D) : (2.89)

Since by construction �
D v� = g� , it holds  �

D (u � v) = 0 and we can rewrite Problem 2.6.1
with a homogeneous Dirichlet condition:

Problem 2.6.2. Given v = Ag and f = � v 2
�

W 1;� 1
0 (
 D)

� 0
, �nd w in W 1;� 1

0 (
 D) such that

(
� � w = f; x 2 
 D;

 �
D w = 0 ; x 2 D:

(2.90)

Proposition 2.6.1. There is one and only one solutionw 2 W 1;� 1
0 (
 D) to Problem 2.6.2.

Proof From (2.90), we have

�


� w ; wt �

W 1; � 1
0 (
 D) =



f ; w t �

W 1; � 1
0 (
 D) ; 8 wt 2 W 1;� 1

0 (
 D): (2.91)

Let BR be the open ball of radiusR > 0 centered at zero with boundary@BR and such that
supp(f ) b BR . Let � R = � \ BR and B �

R = � � \ BR be the upper and lower half-spheres
with boundaries @B�

R = � R [ (@BR \ � � ). For every wt 2 W 1;� 1
0 (
 D), it holds

�


� w ; wt �

W 1; � 1
0 (B �

R ) =
�
r w ; r wt �

B �
R

�
D

 @B�
R

@nw ;  @B�
R

wt
E

H 1=2 (@B�
R )

; (2.92)

and addition of both half-spheres contributions yields

�


� w ; wt �

W 1; � 1
0 (B R \ 
 D) =

�
r w ; r wt �

B R \ 
 D
�



 @BR @nw ;  @BR wt �

H 1=2 (@BR )
X

�

�


 �

R @nw ;  �
R wt �

H 1=2 (� R ) ; (2.93)
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By de�nition of W 1;� 1(
 D), when R tends to in�nity, the second term on the right-hand
side vanishes. The remaining boundary term over �R extends now over � wherein the splitting
into D and � f holds. Since �

D wt = 0 and  �
� f

wt =  � f wt , the duality products over D cancel
out and yield:

�


 +

� @nw ;  +
� wt �

H 1=2 (�) +


 �

� @nw ;  �
� wt �

H 1=2 (�) = �

�

 � f @nw
�

;  � f wt �
H 1=2 (� f )

: (2.94)

By the transmission conditions (2.84), the above contribution disappears to obtain:

� D (w; wt ) =
�
r w ; r wt �


 D
=



f ; w t �

W 1; � 1
0 (
 D) 8 wt 2 W 1;� 1

0 (
 D): (2.95)

The associated bilinear form is continuous and coercive onW 1;� 1
0 (
 D). Indeed, using semi-norm

properties for this space,

� D (w; w) = ( r w ; r w) 
 D
= jwj21;� 1;
 D

� c� 2 kwk2
W 1; � 1

0 (
 D) (2.96)

by [51, Theorem 2.5.11]. Thus, by the Lax-Milgram theorem, we have uniqueness ofw sincef
belongs to the dual space ofW 1;� 1

0 (
 D). �

This allows us to prove the following result.

Proposition 2.6.2. If g 2 X, then Problem 2.6.1 has a unique solution inW 1;� 1(
 D).

Proof Let w� denote the solution to Problem 2.6.2. Then, the solution to the original Problem
2.6.1 is u� = w� + v and is independent on the lifting v 2 W 1;� 1(
 D). Indeed, if we let
u�

i = w�
i + vi denote the solution for two di�erent liftings i = 1 ; 2, then it holds

(
� � ( u�

1 � u�
2) = 0 x 2 
 D;

 �
D (u�

1 � u�
2) = 0 x 2 D;

(2.97)

which has as a unique solutionu�
1 � u�

2 = 0 by Proposition 2.6.1. �

Average and jump decomposition

The solution to Problem 2.6.1 can be split as follows. To any functionu in W 1;� 1(
 D),
we associate restrictionsu� on � � belonging to W 1;� 1(� � ). Denote by �u� 2 W 1;� 1(Rd) the
mirror reection of u� over � � . Average and jump solutions de�ned overR3 are written as

8
><

>:

uavg =
�u+ + �u�

2
;

ujmp =
�u+ � �u�

2
;

associated with the data

8
><

>:

gavg =
g+ + g�

2
;

gjmp =
g+ � g�

2
:

(2.98)

Normal traces can also be similarly decomposed. Due to the orientation of the normal,
de�ne them as

(
 D@nuavg = 1

2 ê3 � r (�u+ � �u� );

 D@nujmp = 1
2 ê3 � r (�u+ + �u� );

associated with the values

(
uavg;

ujmp ;
(2.99)

and we have the associated Green's formula (as (r uavg ; r vjmp ) 
 D
= 0):

(r u ; r v) 
 D
= h D@nuavg ;  Dvavgi H 1=2 (D) + h D@nujmp ;  Dvjmp i eH 1=2 (D) ; (2.100)

for v 2 W 1;� 1(R2) split into average and jump parts.
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Proposition 2.6.3. The solution to the Dirichlet Problem 2.6.1, is such that its Neumann trace
at D belongs to the spaceY. There exists a unique Dirichlet-to-Neumann map DtN : X ! Y
satisfying

hDtN g ; gi X � C kgk2
X ; (2.101)

for g in X, and where the vector duality product is given by:

hDtN g ; gi X =


DtN gavg ; gavg

�
H 1=2 (D)

+


DtN gjmp ; gjmp

�
eH 1=2 (D)

: (2.102)

Proof By Proposition 2.6.2, a unique continuous applicationTD exists such that

TD : X �! W 1;� 1(
 D);
g 7�! u = TD g:

(2.103)

Due to the trace theorem, Theorem 1.2.1, one can construct a continuous operator

DtN =
�

 +
D

 �
D

�
� @n � T D : X �! H � 1=2(D) � H � 1=2(D);

belonging to Y since  +
D @nu �  �

D @nu 2 eH � 1=2(D). Parity decomposition follows by taking
duality with v split into average and jump parts using formula (2.100). �

Corollary 2.6.1. For g� = g 2 H 1=2(D), the corresponding solution to Problem 2.6.1 in
 D is
symmetric with respect to � . Moreover, there exists a unique Dirichlet-to-Neumann operator
DtN s : H 1=2(D) ! eH � 1=2(D) satisfying

hDtN sg ; gi H 1=2 (D) � C kgk2
H 1=2 (D) : (2.104)

Proof Sinceg = ( g; g), the di�erence g+ � g� = 0 lies trivially in eH 1=2(D) and g 2 X. Thus,
Proposition 2.6.3 holds but now the norm is

kgkX = 2 kgkH 1=2 (D) ;

and the duality product becomes

X

�



 �

D @nTD g ; g� �
D = 2 h[ D@nTD g] ; gi D ; (2.105)

where TD is given in (2.103) and factors two cancel out. We obtain the desired inequality by
de�ning DtN s = [  D@nTD I 2� 2] where I n� n is the identity matrix of dimension n. �

Corollary 2.6.2. For g� = � g 2 eH 1=2(D), the associated solution to Problem 2.6.1 is anti-
symmetric with respect to � and there exists a unique Dirichlet-to-Neumann operator DtNas :
eH 1=2(D) ! H � 1=2(D). Moreover, the energy inequality holds

hDtN asg ; gi eH 1=2 (D) � C kgk2
eH 1=2 (D) : (2.106)

Proof Let us de�ne g = ( g;� g). The di�erence g+ � g� lies trivially in eH 1=2(D) and g 2 X.
Thus, Proposition 2.6.3 holds with

kgkX = 2 kgk eH 1=2 (D) ;

with duality product

X

�



 �

D @nTD g ; g� �
eH 1=2 (D) = 2 h D@nTD g ; gi eH 1=2 (D) ; (2.107)

so that factors cancel and we obtain the desired inequality. �
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2.6.2 Neumann problems

As in the Dirichlet case, let us de�ne the general problem:

Problem 2.6.3. Given ' 2 Y, �nd u 2 W 1;� 1(R3) such that

8
><

>:

� � u = 0 ; x 2 
 D; 
 +

D @nu

 �
D @nu

!

= ' ; x 2 D:
(2.108)

Proposition 2.6.4. The Neumann Problem 2.6.3 has a unique solution in the spaceW 1;� 1(R3)
if and only if ' 2 Y.

Proof [cf. dem of Proposition 2.6.1] For ' = ( ' + ; ' � ) and u satisfying (2.108), we have the
following variational formulation:

� N (u; v) = ( r u ; r v)R3 =
X

�

�


' � ;  � v

�
H 1=2 (D) ; 8 v 2 W 1;� 1(R3): (2.109)

Clearly, the bilinear form � N is coercive and continuous. On the right hand side, the dual form
is well de�ned only if ' + � ' � 2 eH � 1=2(D), since  �

D v =  Dv 2 H 1=2(D). Consequently, if '
belongs toY, by the Lax-Milgram theorem, the problem has a unique solution in W 1;� 1(R3).
�

Proposition 2.6.5. The solution to the Neumann Problem 2.6.3, is such that its Dirichlet trace
at D belongs to the spaceX. There exists a unique Neumann-to-Dirichlet map NtD : Y ! X
satisfying

hNtD ' ; ' i Y � C k' k2
Y ; (2.110)

for ' in Y, and where the vector duality product is given by:

hNtD ' ; ' i Y =


NtD ' avg ; ' avg

�
eH � 1=2 (� c )

+


NtD ' jmp ; ' jmp

�
H � 1=2 (D)

: (2.111)

Proof By Proposition 2.6.4, a unique continuous applicationTN exists such that

TN : Y �! W 1;� 1(
 D);
' 7�! u = TN ' :

(2.112)

Due to the trace theorem, one can construct a continuous operator

NtD =
�

 +
D

 �
D

�
� T D : Y �! H 1=2(D) � H 1=2(D);

belonging to X since +
D u �  �

D u 2 eH 1=2(D). Parity decomposition follows by taking the duality
pairing with v split into average and jump parts using formula (2.100). �

The symmetric and anti-symmetric Neumann problems for the disk can be stated as follows:

Problem 2.6.4. Find us; uas 2 W 1;� 1(R3) such that

(
� � us = 0 ; x 2 
 D;

[ D@nus] = '; x 2 D;
and

(
� � uas = 0 ; x 2 
 D;

 �
D @nuas = '; x 2 D;

(2.113)

for data ' in the space eH � 1=2(D) and ' in H � 1=2(D) respectively.
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Corollary 2.6.3. The symmetric Neumann Problem 2.6.4 has a unique solution inW 1;� 1(R3)
if and only if ' 2 eH � 1=2(D). Thus, there exists a unique continuous and invertible Neumann-
to-Dirichlet operator, denoted NtD s : eH � 1=2(D) ! H 1=2(D). Moreover, the energy inequality
holds

hNtD s' ; ' i D � C k' k2
eH � 1=2 (D) : (2.114)

The inverse of this application is the operator DtNs de�ned in Corollary 2.6.1.

Proof Same as for Proposition 2.6.4 using

� N (u; v) = ( r u ; r v)R3 = h' ;  Dvi D ; 8 v 2 W 1;� 1(R3); (2.115)

and replacing ' + � ' � with ' . �

Corollary 2.6.4. The anti-symmetric Neumann problem 2.6.4 has a unique solution inW 1;� 1(R3)
if and only if ' 2 H � 1=2(D). Hence, there exists a unique continuous and invertible operator
NtD as : H � 1=2(D) ! eH 1=2(D) satisfying

hNtD as' ; ' i D � C k' k2
H � 1=2 (D) : (2.116)

The inverse of this application is the operator DtNas de�ned in Corollary 2.6.2.

Proof Follows the one for Proposition 2.6.5. OperatorTN becomes

TN : H � 1=2(D) �! W 1;� 1(R3);
' 7�! u = TN ':

and we can construct an operatorNtD as = [  D � T N ] with range in eH 1=2(D). Thus,

hNtD as' ; ' i D = ( r u ; r u)R3 = juj21;� 1;R3 � C1 k Duk2
eH 1=2 (D) ; (2.117)

by continuity of the lifting operator. This proves the invertibility of NtD as. Moreover, since
NtD as is also continuous, it holds

k' kH � 1=2 (D) =

 NtD � 1

as  Du



H � 1=2 (D) � C2 k Duk eH 1=2 (D) ; (2.118)

which combined with the previous inequality yields the desired result. �

2.6.3 Inverses

We will briey state the main conclusions of the present section in the following remarks.
They will state in further detail the fact that the boundary integral operators S and N are
Neumann-to-Dirichlet and Dirichlet-to-Neumann operators, that they have inverses, but that
they have so far been only expressed using abstract applications that solve the Dirichlet and
Neumann problems, and thus do not have yet explicit form.

Remark 2.6.1 (S is NtD s and N is DtN as). It can be seen from Theorem 2.3.1 and Corollary
2.6.1 that we can identify the boundary integral operatorS with the Neumann-to-Dirichlet
operator NtD s. Likewise, it can be seen from Theorem 2.3.2 and Corollary 2.6.4 that we can
identify the boundary integral operator N with the Dirichlet-to-Neumann operator DtN as.

Remark 2.6.2 (NtD s hasDtN s as inverse andDtN as hasNtD as as inverse). By construction,
for the symmetric Dirichlet problem, the Dirichlet-to-Neumann operator DtN s takes Dirichlet
data and provides the Neumann traces of the solution. Also, for the symmetric Neumann prob-
lem, the Neumann-to-Dirichlet operator NtD s takes Neumann data and provides the Dirichlet
traces of the solution. Operators DtNas and NtDas are linked in the same manner for the
anti-symmetric problems.

56



Remark 2.6.3 (DtN s and NtD as don't have explicit forms so far). In the previous development
presented in this chapter, operators DtNs and NtDas have been constructed using abstract
operators that solve Dirichlet and Neumann problems from given boundary data via the Lax-
Mailgram theorem, and thus do not have explicit form. Indeed, operator DtNs is built using
operator TD from (2.103) that takes Dirichlet data on D and provides the solution in the problem
domain 
 D. Likewise, operator NtDas is built using operator TN from Equation 2.112 that takes
Neumann data onD and provides the solution in the domain.

In their present form, inverse operators do not contribute to the optimal preconditioning
strategy because they do not have an explicit form usable in numerical methods resulting in a
Galerkin matrix. In what follows in this chapter we will �nd suitable explicit forms that can
be included in a preconditioning strategy. The following Table 2.3 summarizes the results so
far.

Table 2.3: Boundary integral operators S and N are identi�ed with NtD s and DtN as respec-
tively, for which DtN as and NtD s are identi�ed inverses, although not having explicit form.

BIO Closed form kernel D.-to-N./N-to-D. Mappings

S K ws NtD s eH � 1=2(D) ! H 1=2(D)

N K hs DtN as eH 1=2(D) ! H � 1=2(D)

S� 1 DtN s H 1=2(D) ! eH � 1=2(D)

N � 1 NtD as H � 1=2(D) ! eH 1=2(D)
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2.7 Series forms for the boundary integral operators and their
inverses

In this section we will develop bases for the functional spaces involved in the Dirichlet and
Neumann problems on the disk. This will allow us to rewrite boundary integral operatorsS
and N in series form, using series expressions of the integral kernels. This will allow for an
explicit expression for their inverses, also in series form.

The main tool for the development of disk basis functions will be the results for the case of
a boundary integral operators on the unit sphereS in R3. Firstly, the referred results for the
spherical case will be presented. Then, the basis disk functions will be de�ned in relation to the
ones on the sphere. This will allow for the de�nition of series expressions of the functions in the
spaces involved in the Dirichlet and Neumann problems. Finally, previously mentioned facts
about the already developed two-dimensional case, and some other well established results,
will suggest the construction of integral kernels that will de�ne four new boundary integral
operators. These boundary integral operators will be then identi�ed as the four operators from
the previous section, thus giving a series expression forS, N and their inverses.

2.7.1 Spherical Harmonics: symmetry and parity

In the present subsection we will establish some useful facts about bases for functions
de�ned on unit sphere S.

De�nition 2.7.1 (Spherical Harmonics). The 2l + 1 Spherical Harmonics of order l > 0 are
the functions Y m

l : S ! C de�ned as

Y m
l (�; � ) =  m

l eim� IP m
l (cos� ), for � l � m � l; (2.119)

where IP m
l is the Associated Legendre Function of orderl and degreem, and  m

l is a normal-
ization constant de�ned as

 m
l = ( � 1)m

r
l + 1=2

2�

s
(l � m)!
(l + m)!

: (2.120)

Proposition 2.7.1 (Hilbert basis for L 2(S) [51, Theorem 2.4.4]). The Spherical Harmonics
are a Hilbert basis (i.e. orthogonal and normal) for the Hilbert spaceL 2(S) endowed with the
natural inner product

(u; v)L 2 (S) =
Z

S

uvdS: (2.121)

It will be useful to de�ne angular momentum di�erential operators that will later simplify
the writing of many identities.

De�nition 2.7.2 (Angular momenta on the sphere [51, Section 2.4.1]). Let us consider the
following di�erential operations, called angular momenta, for a function u de�ned on the unit
sphereS:

L � u = e� i �
�

�
@u
@�

+ i
cos�
sin �

@u
@�

�
; and L 3u =

1
i

@u
@�

: (2.122)

Some properties regarding di�erential operators' action over Spherical Harmonics will also
be used.

Lemma 2.7.1 (Angular momenta action on the Spherical Harmonics [51, Theorem 2.4.4]). The
action of the angular momentum operators on the Spherical Harmonics provide the following
identities:

L � Y m
l =

p
(l � m)( l � m + 1) Y m� 1

l ; and L 3Y m
l = mY m

l : (2.123)
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Proposition 2.7.2 (Derivaties of the Spherical Harmonics). A Spherical Harmonic Y m
l has

the following derivatives:

@Yml
@�

=
1
2

�
e� i �

p
(l � m)( l + m + 1) Y m+1

l � ei �
p

(l + m)( l � m + 1) Y m� 1
l

�
; (2.124)

@Yml
@�

= �
i sin �
2 cos�

�
e� i �

p
(l � m)( l + m + 1) Y m+1

l + ei �
p

(l + m)( l � m + 1) Y m� 1
l

�
: (2.125)

Proof The computation of the derivatives of the Spherical Harmonics comes straightforwardly
from the application of the previous Lemma 2.7.1. �

The parity of a Spherical HarmonicsY m
l with respect to the variable x3 is the same as the

parity of l + m, and thus the spaces generated by the Spherical Harmonics can be split into
two subspaces according to parity.

De�nition 2.7.3 (Parity splitting of Spherical Harmonics) . Let us de�ne the two following
subsets of the set of Spherical Harmonics according to their parity:

Ys = f Y m
l : l � 0, � l � m � l , and l + m is eveng; (2.126)

Yas = f Y m
l : l � 0, � l � m � l , and l + m is oddg: (2.127)

Remark 2.7.1 (Parity and symmetry) . The Spherical Harmonics belonging toYs are symmet-
rical with respect to plane � , and their value is not zero for all points on the equator (x3 = 0 )
of sphereS. The Spherical Harmonics belonging toYas are anti-symmetric with respect to plane
� , and their values are zero on the equator.

Proposition 2.7.3 (Orthogonality in S+ ). If l1 + m1 and l2 + m2 have the same parity, the
following orthogonality identity holds:

Z

S+

Y m1
l1

(x )Y m2
l2

(x )dS+ (x ) =
1
2

� m1
m2

� l1
l2

: (2.128)

Proof

Z

S+

Y m1
l1

(x )Y m2
l2

(x )dS+ (x ) =  m1
l1

 m2
l2

�= 2Z

0

IP m1
l1

(cos� )IP m2
l2

(cos� ) sin �d�

2�Z

0

ei( m1 � m2 )� d�

(2.129)

=  m1
l1

 m2
l2

2�� m1
m2

1Z

0

IP m1
l1

(t)IP m2
l2

(t)dt: (2.130)

Since l1 + m1 and l2 + m2 have the same parity, IP m1
l1

and IP m2
l2

will also have the same
parity, and thus IP m1

l1
IP m2

l2
will always be a pair function, which implies that

1Z

0

IP m1
l1

(t)IP m2
l2

(t)dt =
1
2

1Z

� 1

IP m1
l1

(t)IP m2
l2

(t)dt; (2.131)

from which we get
Z

S+

Y m1
l1

(x )Y m2
l2

(x )dS+ (x ) =
1
2

Z

S

Y m1
l1

(x )Y m2
l2

(x )dS(x ) =
1
2

� m1
m2

� l1
l2

: (2.132)

�

The orthogonality property stated in the last proposition only works for pairs of Spherical
Harmonic functions having the same parity. This feature will become a key aspect of the tools
that will be developed in what follows.
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2.7.2 Disk basis functions

Proposition 2.7.3 allows us to use orthogonality properties on the upper half-sphere, which
will allow us to de�ne similar properties for vertical projections onto the disk.

De�nition 2.7.4 (The Y set). Let us consider the Spherical HarmonicsY m
l on sphereS. We

de�ne Y, as the set of functions de�ned onD resulting from the composition of a projection
from the disk onto the upper half-sphere, and the Spherical Harmonics:

Y =
�

ym
l 2 C1 (D) : ym

l (x ) = Y m
l (x + ); for x 2 D

	
: (2.133)

Notation 2.7.1 (Notation for arguments of the basis functions). Spherical Harmonics and
disk basis functions can have their arguments expressed in the following equivalent ways:

ym
l (x ) = ym

l (�; � ) =  m
l eim� IP m

l (w(� )) = Y m
l (� (x + ); � (x + )) = Y m

l (x + ): (2.134)

Remark 2.7.2 (First Associated Legendre Polynomials). The following table, Table 2.4, shows
the �rst values of the Associated Legendre Polynomials involved in the functions of the setY,
i.e., IP m

l (w(� )) . It is noteworthy that, when l + m is even, IP m
l (w(� )) is a polynomial, whereas

l + m odd rendersIP m
l (w(� )) = w(� )pm

l (� ), where is pm
l is a polynomial.

Table 2.4: First values of the Associated Legendre Polynomials evaluated atw(� ), as used in
the de�nition of the functions of Y.

IP m
l (w(� )) m = � 3 m = � 2 m = � 1 m = 0 m = 1 m = 2 m = 3
l = 0 1
l = 1 �= 2

p
1 � � 2 � �

l = 2 1
8 � 2 1

2 �
p

1 � � 2 1 � 3� 2

2 � 3�
p

1 � � 2 3� 2

l = 3 1
48 � 3 1

8 � 2
p

1 � � 2 1
8 �

�
4 � 5� 2

� p
1 � � 2

�
1 � 5

2 � 2
�

� 3�
2

�
4 � 5� 2

�
15� 2

p
1 � � 2 � 15� 3

De�nition 2.7.5 (The Ys and Yas sets). We split the functions from Y into two subsets
according to parity as follows:

Ys = f ym
l 2 Y : l + m is eveng; (2.135)

Yas = f ym
l 2 Y : l + m is oddg: (2.136)

De�nition 2.7.6 (The Y1=w
s and Y1=w

as sets). Let us now de�ne the following new sets based
on the previous ones:

Y1=w
s =

�
ym

l

w
: ym

l 2 Y s

�
; (2.137)

Y1=w
as =

�
ym

l

w
: ym

l 2 Yas

�
: (2.138)

Remark 2.7.3 (Behavior at the edge ofD). The properties of the Associated Legendre Func-
tions determine that IP m

l (w(� )) is a polynomial on � wheneverl + m is even, and a polynomial
times function

p
1 � � 2 whenever l + m is odd. That means that they can be expressed as

p(� )
p

1 � � 2, where p is a polynomial. This determines the behavior of the disk basis functions
near the border ofD:

� In the radial direction, functions belonging to Ys behave as polynomials.

� In the radial direction, functions belonging to Yas go to zero as
p

1 � � 2 near � = 1 .

� In the radial direction, functions belonging to Y1=w
s have a singularity that behaves as

1=
p

1 � � 2 near � = 1 .

� In the radial direction, functions belonging to Y1=w
as behave as polynomials.
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2.7.3 Some identities on the disk

Proposition 2.7.4 (Orthogonality identity for D). If l1+ m1 and l2+ m2 have the same parity,
the following orthogonality identity holds:

Z

D

ym1
l1

(x )ym2
l2

(x )

w(x )
dD(x ) =

1
2

� m1
m2

� l1
l2

: (2.139)

Proof The change of variable� = sin � , along with the identity

ym
l (�; � ) = Y m

l (� (x + ); � (x + )) ; (2.140)

implies that
Z

D

ym1
l1

(x )ym2
l2

(x )

w(x )
dD(x ) =

Z

S+

Y m1
l1

(x )Y m2
l2

(x )dS+ (x ); (2.141)

for which Proposition 2.7.3 �nishes the proof. �

Lemma 2.7.2 (Conjugated disk basis functions).

ym
l (x ) = ( � 1)m y� m

l (x ): (2.142)

Proof Direct application of the conjugation yields

ym
l (x ) =  m

l e� im� IP m
l (w(� (x ))) : (2.143)

From the properties of the Associated Legendre Functions [3, Section 8.2], we know that:

IP m
l (w(� (x ))) = ( � 1)m (l + m)!

(l � m)!
IP � m

l (w(� (x ))) (2.144)

) ym
l (x ) = ( � 1)m (l + m)!

(l � m)!
 m

l e� im� IP � m
l (w(� (x ))) (2.145)

= ( � 1)m (l + m)!
(l � m)!

(� 1)m

r
l + 1=2

2�

s
(l � m)!
(l + m)!

e� im� IP � m
l (w(� (x ))) (2.146)

= ( � 1)m

 

(� 1)m

r
l + 1=2

2�

s
(l + m)!
(l � m)!

!

e� im� IP � m
l (w(� (x ))) (2.147)

= ( � 1)m  � m
l e� im� IP � m

l (w(� (x ))) : (2.148)

�

Corollary 2.7.1 (Variations to orthogonality on D). If l1 + m1 and l2 + m2 have the same
parity, the following orthogonality identity holds:

Z

D

ym1
l1

(x )ym2
l2

(x )

w(x )
dD(x ) =

Z

D

ym1
l1

(x ) ym2
l2

(x )

w(x )
dD(x ) =

(� 1)m

2
� l1

l2
� � m1

m2
; (2.149)

with m = jm1j = jm2j wheneverm1 = � m2.

De�nition 2.7.7 (Angular momenta on the disk). Similarly as in De�nition 2.7.2, let us
de�ne the following di�erential operators over functions de�ned on D:

L � u = e� i �
�

�
@u
@�

+ i
1
�

@u
@�

�
; L 3u =

1
i

@u
@�

: (2.150)
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Proposition 2.7.5 (Conjugated angular momenta).

L � u = �L � u; L 3u = �L 3u: (2.151)

Proof The proof comes straightforwardly from the de�nition of the angular momenta operators
on the disk. �

Proposition 2.7.6 (Laplace-Beltrami operators as a composition of angular momentum op-
erators). The Laplace-Beltrami operator on disk D can be written using the angular momenta
as

� Du = �L + � L � u = �L � � L + u: (2.152)

Proof In cylindrical coordinates, the Laplace-Beltrami operators are known to have the fol-
lowing expression:

� Du =
@2u
@�2

+
1
�

@u
@�

+
1
� 2

@2u
@�2

: (2.153)

Using the partial derivates,

@
@�

(L � u) = e� i�
�

�
@2u
@�2

�
i

� 2

@u
@�

+
i
�

@2u
@�@�

�
; (2.154)

@
@�

(L � u) = � ie� i�
�

�
@u
@�

+
i
�

@u
@�

�
+ e� i�

�
�

@2u
@�@�

+
i
�

@2u
@�2

�
; (2.155)

we can calculate

L + (L � u) = L � (L + u) = �
@2u
@�2

�
i

� 2

@u
@�

+
i
�

@2u
@�@�

�
1
�

@u
@�

+
i

� 2

@u
@�

�
i
�

@2u
@�@�

�
1
� 2

@2u
@2�

; (2.156)

from which the desired result is straightforward. �

Notation 2.7.2 (Angular momenta for functions of two variables). When applied to a function
of two variables, e.g. x and y , the variable on which the angular momentum operators are
applied is noted as a superscript:

L x
� u = e� i � x

�
�

@u
@�x

+ i
1

� x

@u
@�x

�
; L x

3 u =
1
i

@u
@�x

: (2.157)

Proposition 2.7.7 (Inner product representation for the
��!
gradD and

��!
curl D operators over

complex functions). If u and v are complex functions de�ned onD, we have that
� ��!

curl Du(x );
��!
curl Dv(y )

�
=

� ��!
gradDu(x );

��!
gradDv(y )

�
; (2.158)

and that they are equal to

�
1
2

�
L + u(x )L � v(y ) + L � u(x )L + v(y )

�
: (2.159)

Proof We start by recalling the expressions for the
��!
gradD and

��!
curl D on the disk:

��!
gradDu =

 
cos� @u

@� � sin �
�

@u
@�

sin � @u
@� + cos�

�
@u
@�

!

; (2.160)

��!
curl Du =

 
sin � @u

@� + cos�
�

@u
@�

� cos� @u
@� + sin �

�
@u
@�

!

: (2.161)
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We observe that

L + u =
�

cos�
@u
@�

�
sin �

�
@u
@�

�
+ i

�
sin �

@u
@�

+
cos�

�
@u
@�

�
; (2.162)

L � u =
�

� cos�
@u
@�

+
sin �

�
@u
@�

�
+ i

�
sin �

@u
@�

+
cos�

�
@u
@�

�
: (2.163)

Using these expressions we can write the gradient and the curl operators as

��!
gradDu =

1
2

�
L + u � L � u

� iL + u � iL � u

�
; (2.164)

��!
curl Du = �

1
2

�
iL + u + i L � u
L + u � L � u

�
: (2.165)

We also recall the expression for the inner product of complex vectors onD: (x ; y ) = x y T ,
giving us the expressions:

� ��!
gradDu(x ) ;

��!
gradDv(y )

�
=

��!
gradDu(x )

� ��!
gradDv(y )

� T

; (2.166)

� ��!
curl Du(x ) ;

��!
curl Dv(y )

�
=

��!
curl Du(x )

� ��!
curl Dv(y )

� T

: (2.167)

From the previous expressions it becomes evident that
� ��!

curl Du(x );
��!
curl Dv(y )

�
=

� ��!
gradDu(x );

��!
gradDv(y )

�
(2.168)

=
1
4

((i L + u + i L � u)(i L � v + i L + v)

+( L + u � L � u)( �L + v + L + v)) (2.169)

= �
1
2

(L + uL � v + L � uL + v) : (2.170)

�

Lemma 2.7.3 (Adjoints of the angular momentum operators). For functions that are zero at
the edge@D, the angular momentum operators have the following adjoints:

hL+ u ; vi D = hu ; L � vi D ; i.e., L �
+ = L � ; (2.171)

hL� u ; vi D = hu ; L + vi D ; i.e., L �
� = L + : (2.172)

Proof Let us �rst address the adjoint of L + . We have that

Z

D

L + u(x )v(x )dD(x ) =

1Z

0

2�Z

0

ei �
�

@u
@�

(x ) +
i
�

@u
@�

(x )
�

v(x )�d�d�: (2.173)

Let us separate the integral in two parts:

I 1 =

1Z

0

2�Z

0

ei �
�

@u
@�

(x )
�

v(x )�d�d�; (2.174)

I 2 =

1Z

0

2�Z

0

ei �
�

i
�

@u
@�

(x )
�

v(x )�d�d�: (2.175)
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Applying integration by parts to the �rst integral gives us

I 1 =

2�Z

0

ei �
�

u(x )v(x )
� �

�
�
� =1

d� �

1Z

0

2�Z

0

ei �

 
u(x )v(x )

�
+

@v
@�

(x )u(x )

!

�d�d�; (2.176)

and applying integration by parts to the second integral gives us

I 2 = �

1Z

0

2�Z

0

ei �

 

�
u(x )v(x )

�
+

i
�

u(x )
@v
@�

(x )

!

�d�d�: (2.177)

) I 1 + I 2 = �
Z

D

u(x )L + v(x )dD +

2�Z

0

ei �
�

u(x )v(x )
� �

�
�
� =1

d�: (2.178)

Proposition 2.7.5 tells us that L + v = � L � v, so we can rewrite the previous expression as

hL+ u ; vi D = hu ; L � vi D +

2�Z

0

ei �
�

u(x )v(x )
� �

�
�
� =1

d�: (2.179)

Using the same procedure we also get

hL� u ; vi D = hu ; L + vi D �

2�Z

0

ei �
�

u(x )v(x )
� �

�
�
� =1

d�: (2.180)

Sinceu = v = 0 for � = 1, we obtain the desired result. �

In the rest of this section we will develop a series of results related to application of deriva-
tives and angular momenta to the disk basis functions that will prove useful in the proofs of
the main results contained in the rest of the chapter.

Lemma 2.7.4 (Some properties of the Associated Legendre Functions [3, Section 8.5]). For
a given variable� 2 (� 1; 1) we have the following recurrence relationships for the Associated
Legendre Functions:

(2l + 1) �IP m
l (� ) = ( l � m + 1) IP m

l+1 (� ) � (l + m) IP m
l� 1(� ); (2.181)

(1 � � 2)
@IPm

l

@�
(� ) =

1
2l + 1

�
(( l + 1)( l + m) IP m

l� 1(� ) � l (l � m + 1) IP m
l+1 (� )

�
); (2.182)

p
(1 � � 2)

@IPm
l

@�
(� ) =

1
2

�
(( l � m + 1)( l + m) IP m� 1

l (� ) � IP m+1
l (� )

�
): (2.183)

This lemma and the application of the angular momentum operators easily allow to express
several identities regarding the disk basis functions. We will list them in the following corollaries
as they will be used later in subsequent proofs.

Corollary 2.7.2 (Angular momenta action on the disk basis functions).

L + ym
l =

p
(l � m)( l + m + 1)

ym+1
l

w
; (2.184)

L � ym
l =

p
(l + m)( l � m + 1)

ym� 1
l

w
; (2.185)
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L 3ym
l = mym

l ; (2.186)

L + ym
l = �

p
(l + m)( l � m + 1)

ym� 1
l

w
; (2.187)

L � ym
l = �

p
(l � m)( l + m + 1)

ym+1
l

w
; (2.188)

L 3ym
l = � mym

l ; (2.189)

L + ym
l =

ei�

2�w (� )

 

(l � m)

p
(l + 1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 � (l + m + 1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1

!

(2.190)

L � ym
l = �

e� i�

2�w (� )

 

(l + m)

p
(l + 1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 � (l � m + 1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1

!

(2.191)

L + ym
l =

ei�

2�w (� )

 

(l + m)

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 � (l � m+1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1

!

(2.192)

Corollary 2.7.3 (Recurrence relations for the disk basis functions).

ym
l (x ) =

1

2
p

(1 � � 2)

 p
(l + 1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 (x ) +

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )

!

; (2.193)

2 �e i� ym
l (x ) =

s
(l � m)( l � m � 1)

l2 � 1=4
ym+1

l � 1 (x ) �

s
(l + m + 1)( l + m + 2)

(l + 1) 2 � 1=4
ym+1

l+1 (x ): (2.194)

2.7.4 Weighted spaces and series representations

De�nition 2.7.8 (Sesquilinear forms associated withw and 1=w). Let us notate by(�; �)w the
following sesquilinear form associated withw:

(u; v)w =
Z

D

u(x )v(x )w(x )dD(x ): (2.195)

Similarly, let us notate by (�; �)1=w, the sesquilinear form associated with1=w:

(u; v)1=w =
Z

D

u(x )v(x )w� 1(x )dD(x ): (2.196)

De�nition 2.7.9 (The L 2
w(D) and the L 2

1=w(D) spaces). Let us de�ne the spaceL 2
w(D), asso-

ciated with the inner product (�; �)w and with the norm kukw =
p

(u; u)w , as

L 2
w(D) = f u measurable : kukw < 1g ; (2.197)

and the spaceL 2
1=w(D), associated with the inner product(�; �)1=w and with the norm kuk1=w =

q
(u; u)1=w, as

L 2
1=w(D) =

�
u measurable : kuk1=w < 1

	
: (2.198)
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Proposition 2.7.8 (Bases forL 2
w(D)) . The setsY1=w

s and Y1=w
as form, each one, an orthogonal

and complete basis forL 2
w(D).

Proof Orthogonality can be easily checked from Proposition 2.7.4. The setsY1=w
s and Y1=w

as

are subsets ofL 2
w(D), since it can be easily shown that each member has a �nite norm (indeed

equal to 1=
p

2). If the set Y1=w
s wasn't dense inL 2

w(D), there would be a memberf 2 L 2
w(D)

not a.e. equal to zero and orthogonal to all members ofY1=w
s , i.e.,

�
f ;

ym
l

w

�

w
=

Z

D

f (x )ym
l (x )dD(x ) = 0 for l � 0; � l � m � l; l + m even. (2.199)

But for l + m even, functionsym
l , i.e. the setYs, is dense inC1 (D), since it is a combination of

polynomials in the radial direction (Remark 2.7.2) and trigonometric polynomials in the angular
direction. This means that f must be equal to zero a.e., which contradicts the premises, thus
implying that Y1=w

s is dense inL 2
w . The same argument can be used forl + m odd, except

that ym
l functions in the radial direction are of the form w(� )p(� ), where now p is polynomial

(Remark 2.7.2). Being w(� ) regular on D the same argument stands, rendering the set of
functions ym

l for l + m odd dense inC1 (D), and thus Y1=w
as is also dense inL 2

w(D) �

Proposition 2.7.9 (Bases forL 2
1=w(D)) . The setsYs and Yas form, each one, an orthogonal

and complete basis forL 2
1=w(D).

Proof This proof uses the same argument as the one from Proposition 2.7.8. Now, if the set
Yas was not dense inL 2

1=w(D), there would be a memberf 2 L 2
1=w(D) not a.e. equal to zero

and orthogonal to all members ofYas, i.e.,

(f ; y m
l )1=w =

Z

D

f (x )ym
l (x )

w(x )
dD(x ) = 0 for l � 0; � l � m � l; ; l + m odd. (2.200)

But for l + m odd, again in accordance with Remark 2.7.2,ym
l =w are polynomials in � and

thus the functions ym
l =w are dense inC1 (D). For l + m even, functionsym

l are polynomials in
� , and thus f=w would have to be a.e. zero onD. This means that f itself would also have to
be a.e. zero onD. By contradiction, there is not such a function f . �

We can expand functions in any of the four Sobolev spaceseH 1=2(D), H 1=2(D), H � 1=2(D),
and eH � 1=2(D) using these bases. Ifu is the solution to the Laplace screen problem for the disk,
the jump of the Neumann trace will behave as� � 1=

p
1 � � 2 near the edge, i.e., for� ! 1,

and the jump of the Dirichlet trace will behave as � �
p

1 � � 2 near the edge (cf. Theorem
2.3.4). This motivates the use of the weight function w and the expansion of functions in
eH 1=2(D) on the spaceL 2

1=w on the basis Yas, functions in the space H 1=2(D) on the space

L 2
1=w on the basisYs, functions in the spaceH � 1=2(D) on the spaceL 2

w on the basisY1=w
as , and

functions in the space eH � 1=2(D) on the spaceL 2
w on the basisY1=w

s . Given the properties of the
basis sets, derived from the properties of the Associated Legendre Polynomials, this equates to
use polynomial bases and the weight functionw in the radial direction as it was done for the
segment inR2 in Subsection 2.4.4, and the basis

�
eim�

	
m2 Z for L 2([0; 2� ]).

A function � in the space eH 1=2(D) will be expanded on the basisYas of spaceL 2
1=w:

� (x ) =
1X

l=0

lX

m= � l
l+ m odd

� m
l ym

l (x ); � m
l = ( �; y m

l )1=w =
Z

D

� (x )ym
l (x )

p
(1 � � (x )2)

dD(x ): (2.201)

A function g in the spaceH 1=2(D) will be expanded on the basisYs of spaceL 2
1=w :
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g(x ) =
1X

l=0

lX

m= � l
l+ m even

gm
l ym

l (x ); gm
l = ( g; ym

l )1=w =
Z

D

g(x )ym
l (x )

p
(1 � � (x )2)

dD(x ): (2.202)

A function ' in the spaceH � 1=2(D) will be expanded on the basisY1=w
as of spaceL 2

w :

' (x ) =
1X

l =0

lX

m = � l
l + m odd

' m
l

ym
l (x )

p
(1 � � (x )2)

; ' m
l =

 

' ;
ym

lp
1 � � (x )2

!

w

=
Z

D
' (x )ym

l (x )dD(x ): (2.203)

A function � in the space eH � 1=2(D) will be expanded on the basisY1=w
s of spaceL 2

w :

� (x ) =
1X

l =0

lX

m = � l
l + m even

� m
l

ym
l (x )

p
(1 � � (x )2)

; � m
l =

 

� ;
ym

l (x )
p

(1 � � (x )2)

!

w

=
Z

D
 (x )ym

l (x )dD(x ): (2.204)

2.7.5 Series forms for the boundary integral operators

In this section we will develop series expressions for the kernels of the integral operators
related to boundary integral equations linked to the symmetric Dirichlet and anti-symmetric
Neumann Laplace problems. This will be done in order to use the developed tools and identities
concerning the disk basis functions to derive inverse integral operators. These inverse operators
will be useful for solving the boundary integral equations and for building coercive bilinear forms
in the function spaces relevant to these problems, thus compliant with the Theorem 2.1.1 on
optimal preconditioning.

We will put forward a theorem about the mapping properties of the operator N acting on
the disk basis functions, hinted by the results of Krenk [42] and Martin [46]. We will provide
a proof later on this section. We will make use of the gamma function [19, Section 6.2], which
we will denote, in the scope of this chapter, with the symbol �.

Theorem 2.7.1 (Hypersingular operator on the disk basis functions). For l + m odd, the
action of the hypersingular boundary integral operator on a disk basis functionym

l is

(N ym
l ) (x ) = � � m

l
ym

l (x )
w(x )

; (2.205)

where the constant� m
l is given by:

� m
l =

�
� l+ m+2

2

�
�

� l � m+2
2

�

� l+ m� 1
2

�
!
� l � m� 1

2

�
!

: (2.206)

Remark 2.7.4 (Some of the �rst values of � m
l ). The values of � m

l are real for l + m odd,
increasing with degreel, and decreasing with the absolute value of the orderm. Table 2.5 shows
some of the �rst values of� m

l .

We will now propose series expressions for the integral kernels of some integral operators
intended to be related to the Dirichlet-to-Neumann and Neumann-to-Dirichlet operators for
the symmetric Dirichlet and anti-symmetric Neumann Laplace problems.

We know from Theorem 2.3.4 that the behavior of the traces of the solutions for the sym-
metric Dirichlet and anti-symmetric resemble 1=

p
dist (x ; @�) for the former and

p
dist (x ; @�)

for the latter near the edge of the screen, and where dist (x ; @�) is the distance to the edge of
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Table 2.5: Some of the �rst values of� m
l , for degreel � 4, order � 4 � m � 4 and l + m odd.

� m
l m = � 4 m = � 3 m = � 2 m = � 1 m = 0 m = 1 m = 2 m = 3 m = 4

l=0
l=1 0.7854
l=2 1.1781 1.1781
l=3 1.4726 1.7671 1.4726
l=4 1.7181 2.2089 2.2089 1.7181

the screen from a given pointx in the vicinity. We also know from the previous results ob-
tained for the segment screen embedded inR2 that the integral kernels match those behaviors.
Finally, from Theorem 2.7.1, the desired mapping properties of one of the integral operators,
N . We will propose new integral kernels that will match all these features in� .

De�nition 2.7.10 (Some new integral kernels in series form). For (x ; y ) 2 D� D, with x 6= y ,
let us de�ne the anti-symmetric weakly singular and hypersingular integral kernels as the formal
series

K ws
as (x ; y ) =

1X

l=0

lX

m= � l
l+ m odd

1
� m

l

�
ym

l (x )ym
l (y ) + ym

l (x )ym
l (y )

�
; (2.207)

K hs
as (x ; y ) = �

1X

l=0

lX

m= � l
l+ m odd

� m
l

�
ym

l (x )
w(x )

ym
l (y )
w(y )

+
ym

l (x )
w(x )

ym
l (y )
w(y )

�
; (2.208)

where � m
l is de�ned as in Theorem 2.7.1. Similarly for (x ; y ) 2 D � D, with x 6= y , let us

de�ne the symmetric weakly singular and hypersingular integral kernels as the formal series

K ws
s (x ; y ) =

1X

l=0

lX

m= � l
l+ m even

1
� m

l

�
ym

l (x )ym
l (y ) + ym

l (x )ym
l (y )

�
; (2.209)

K hs
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m even

� m
l

�
ym

l (x )
w(x )

ym
l (y )
w(y )

+
ym

l (x )
w(x )

ym
l (y )
w(y )

�
; (2.210)

where � m
l is a function of l and m yet to be de�ned.

Remark 2.7.5 (The behavior at the edge is the same as in theR2 case). From Remark 2.7.3,
it becomes clear that the integral kernels of the four integral operators on the segment for the
two-dimensional case, have the same behavior as the corresponding proposed integral kernels
from the previous de�nition in the radial direction.

Using these integral kernels we now de�ne their corresponding boundary integral operators.

De�nition 2.7.11 (Associated boundary integral operators). For a function u de�ned on D,
let us de�ne the symmetric weakly singular integral operator

(L ws
s u) (y ) =

Z

D

K ws
s (x ; y )u(x )dD(x ); (2.211)

the anti-symmetric weakly singular integral operator

(L ws
as u) (y ) =

Z

D

K ws
as (x ; y )u(x )dD(x ); (2.212)
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the symmetric hypersingular integral operator

�
L hs

s u
�

(y ) =
Z

D

K hs
s (x ; y )u(x )dD(x ); (2.213)

and the anti-symmetric hypersingular integral operator

�
L hs

asu
�

(y ) =
Z

D

K hs
as (x ; y )u(x )dD(x ): (2.214)

Using the tools and identities developed in this section, the mapping properties of the
associated boundary integral operators for the disk basis functions are easy to determine.

Proposition 2.7.10 (Integral operator action on the disk basis functions). The following
mapping identities hold for the boundary integral operators from De�nition 2.7.11:

L ws
s

ym
l

w
=

1
� m

l
ym

l ; for l + m even, (2.215)

L ws
as

ym
l

w
=

1
� m

l
ym

l ; for l + m odd, (2.216)

L hs
s ym

l = � � m
l

ym
l

w
; for l + m even, (2.217)

L hs
asym

l = � � m
l

ym
l

w
; for l + m odd. (2.218)

Proof Let us analyze the �rst case.

�
L ws

s
ym

l

w

�
(y )=

1X

l=0

lX

m= � l
l+ m even

1
� m0

l0

0

@ym0

l0 (y )
Z

D

ym0

l0 (x )
ym

l

w
(x )dD(x ) + ym0

l0 (y )
Z

D

ym0

l0 (x )
ym

l

w
dD(x )

1

A :

(2.219)
Using the orthogonality relations from Proposition 2.7.4 and Corollary 2.7.1 it follows that

�
L ws

s
ym

l

w

�
(y ) =

1X

l=0

lX

m= � l
l+ m even

1
� m0

l0

 

ym0

l0 (y )
(� 1)(m0)

2
� m0

� m � l0
l + ym0

l0 (y )
1
2

� m0

m � l0
l + ym0

l0

!

(2.220)

=
(� 1)m

2
1

� � m
l

y� m
l (y ) +

1
2

1
� m

l
ym

l (y ): (2.221)

Noting that � m
l = � � m

l and that y� m
l = ( � 1)m ym

l , the desired result is obtained. The next
three cases follow from similar analyses. �

Proposition 2.7.10 assures that the constructed boundary integral operatorL hs
as has the

desired mapping qualities.

Remark 2.7.6 (N is identi�ed L hs
as). Operator N is identi�ed with operator L hs

as as they map
functions of eH 1=2(D) onto the same images onH � 1=2(D).

The previous Proposition 2.7.10 allows us to extract two results that aim to show that
the boundary integral operators de�ned using the series integral kernel ful�ll the required
conditions, i.e., they provide inverse operators that induce bilinear forms that we can use to
build preconditioners.
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Theorem 2.7.2 (L hs
s is minus the inverse ofL ws

s and L ws
as is minus the inverse ofL hs

as). The
operator L hs

s : Ys ! Y 1=w
s is the inverse of the operatorL ws

s : Y1=w
s ! Y s composed with a

change of sign, and the operatorL ws
as : Y1=w

as ! Y as is the inverse of the operatorL hs
as : Yas !

Y1=w
as composed with a change of sign.

Proof These results follow straightforwardly from Proposition 2.7.10. �

Corollary 2.7.4 (Bilinear forms induced by the new boundary integral operators on for the
disk basis functions). For l1+ m1 and l2+ m2 odd, we have the following bilinear form identities:

�
L ws

as

ym1
l1

w
;

ym2
l2

w

�

D
=

8
<

:

0 , if l1 6= l2 or m1 6= m2;

1
2� m

l
, if l1 = l2 = l and m1 = m2 = m;

(2.222)

D
L hs

asym1
l1

; ym2
l2

E

D
=

(
0 , if l1 6= l2 or m1 6= m2;

� � m
l
2 , if l1 = l2 = l and m1 = m2 = m:

(2.223)

For l1 + m1 and l2 + m2 even, we have the following additional bilinear form identities:

�
L ws

s

ym1
l1

w
;

ym2
l2

w

�

D
=

8
<

:

0 , if l1 6= l2 or m1 6= m2;

1
2� m

l
, if l1 = l2 = l and m1 = m2 = m;

(2.224)

D
L hs

s ym1
l1

; ym2
l2

E

D
=

8
<

:

0 , if l1 6= l2 or m1 6= m2;

� � m
l
2 , if l1 = l2 = l and m1 = m2 = m:

(2.225)

Proof These results follow straightforwardly from the mapping properties of basis functions
established in Proposition 2.7.10, and orthogonality properties from Proposition 2.7.4. �

Up until this point, we have matched L hs
as, for which L ws

as was the inverse, with N ; their
de�nitions depend on the coe�cients � m

l , which are known. The question remains how to
choose� m

l so that we can identify L ws
s with S, thus providing us with the inverse L hs

s . We
noted in Remark 2.6.1 that the Neumann-to-Dirichlet operator for the symmetric Dirichlet
problem, NtD s, is in fact the operator S. Thus, the choice of� m

l must allow K ws
s to be written

as K ws. Following (1.100) from Theorem 1.5.3, we impose special relations betweenL hs
as and

L ws
s , and betweenL hs

s and L ws
as .

De�nition 2.7.12 (� m
l and the relation between L hs

as and L ws
s , and betweenL hs

s and L ws
as ).

Let us de�ne � m
l such that for functions u; v 2 eH 1=2(D), the bilinear form induced by L hs

as can
be written as D

�L hs
asu; v

E

D
=

D
L ws

s
��!
curl Du;

��!
curl Dv

E

D
; (2.226)

and that for functions u; v 2 H 1=2(D) with zero mean, i.e. hu; 1i D = 0 and hv; 1i D = 0 , the
bilinear form induced by L hs

s can be written as
D

�L hs
s u; v

E

D
=

D
L ws

as
��!
curl Du;

��!
curl Dv

E

D
: (2.227)

Proposition 2.7.11 (Rewriting hypersingular operators). For real functions, De�nition 2.7.12
can also be written as

L hs
as = �

1
2

(L � � L ws
s � L + + L + � L ws

s � L � ) ; (2.228)

L hs
s = �

1
2

(L � � L ws
as � L + + L + � L ws

as � L � ) : (2.229)
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Proof Let us address the �rst identity. Let us rewrite the following variational expression:
D

�L hs
asu ; v

E

D
= �

Z

D

Z

D

K ws
s (x ; y )

� ��!
curl Du(x );

��!
curl Dv(y )

�
dD(x )dD(y ): (2.230)

Using Proposition 2.7.7 we can rewrite it as

1
2

Z

D

Z

D

K ws
s (x ; y )

�
L x

+ u(x )L y
� v(y ) + L x

� u(x )L y
+ v(y )

�
dD(x )dD(y ) (2.231)

=
1
2

Z

D

Z

D

K ws
s (x ; y )

�
�L x

+ u(x ) L y
+ v(y ) � L x

� u(x ) L y
� v(y )

�
dD(x )dD(y ) (2.232)

= �
1
2

(hLws
s � L + u ; L + vi D + hLws

s � L � u ; L � vi D) (2.233)

= �
1
2

(hL� � L ws
s � L + u ; vi D + hL+ � L ws

s � L � u ; vi D) (2.234)

= �
1
2

(hL� � L ws
s � L + u ; vi D + hL+ � L ws

s � L � u ; vi D) (2.235)

= �
1
2

h(L � � L ws
s � L + + L + � L ws

s � L � ) u ; vi D ; (2.236)

which is the desired result. The second identity is obtained using a similar procedure. �

Using De�nition 2.7.12, the goal is to prove that it implies that the value of � m
l allows for

the rewriting of S as L ws
s for the disk. In what follows, we will examine the consequences of

the de�nition of � m
l given in De�nition 2.7.12.

Proposition 2.7.12 (Recurrence relations for � m
l and � m

l ). The values of � m
l and � m

l are
linked by the recurrence relations

� m
l =

1
2

 
(l + m)( l � m + 1)

� m� 1
l

+
(l � m)( l + m + 1)

� m+1
l

!

; (2.237)

for l � 1 and l + m odd, and

� m
l =

1
2

 
(l + m)( l � m + 1)

� m� 1
l

+
(l � m)( l + m + 1)

� m+1
l

!

; (2.238)

for l � 1 and l + m even.

Proof From Corollary 2.7.2 we know the e�ect of angular momentum operators on disk basis
functions ym

l , thus we can easily compute, forl + m odd,

L + � L ws
s � L � ym

l =
(l � m + 1)( l + m)

� m� 1
l

ym
l ; (2.239)

L � � L ws
s � L + ym

l =
(l + m + 1)( l � m)

� m+1
l

ym
l ; (2.240)

which together with the action of L hs
as over ym

l gives the �rst recurrence relation. The second
recurrence relation comes similarly from computing the e�ect ofL + �L ws

as �L � and L � �L ws
as �L +

for l + m even. �

Proposition 2.7.13 (Alternative expressions for � m
l and � m

l ). The values of� m
l and � m

l can
be rewritten without making use of recurrences as:

� m
l =

�
4

0

@
(l+ m� 1)=2Y

i =1

2i + 1
2i

1

A

0

@
(l � m� 1)=2Y

i =1

2i + 1
2i

1

A ; for l + m odd, (2.241)
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� m
l =

4
�

0

@
(l+ m)=2Y

i =1

2i
2i � 1

1

A

0

@
(l � m)=2Y

i =1

2i
2i � 1

1

A ; for l + m even. (2.242)

Proof Let us �rst recall the following property of the Gamma function [3, Eq. 6.1.12]:

�( n + 1=2) =
p

�
2n

n� 1Y

i =1

(2i + 1) : (2.243)

Let us now rewrite some factors making up� m
l in (2.206) (for l + m odd):

�
�

l + m + 2
2

�
= �

�
l + m + 1

2
+

1
2

�
=

p
�

2
l + m +1

2

l + m � 1
2Y

i =1

(2i + 1) ; (2.244)

�
�

l � m + 2
2

�
= �

�
l � m + 1

2
+

1
2

�
=

p
�

2
l � m +1

2

l � m � 1
2Y

i =1

(2i + 1) ; (2.245)

�
l + m � 1

2

�
! = 2 � l + m � 1

2

l + m � 1
2Y

i =1

(2i ); (2.246)

�
l � m � 1

2

�
! = 2 � l � m � 1

2

l � m � 1
2Y

i =1

(2i ): (2.247)

Replacing the four new expressions in (2.206) we get the desired formula for� m
l .

Using recursion relation (2.237) from Proposition 2.7.12, a similar expression can be found
for � m

l when l + m is even. Let us denotef (i ) = (2 i + 1) =2i and note that,

� m� 1
l =

�
4

l + m � 2
2Y

i =1

f (i )

l � m
2Y

i =1

f (i ) =
1

f
� l+ m

2

�
�
4

l + m
2Y

i =1

f (i )

l � m
2Y

i =1

f (i ); (2.248)

� m+1
l =

�
4

l + m
2Y

i =1

f (i )

l � m � 2
2Y

i =1

f (i ) =
1

f
� l � m

2

�
�
4

l + m
2Y

i =1

f (i )

l � m
2Y

i =1

f (i ): (2.249)

Let us also denote

Am
l =

�
4

l + m
2Y

i =1

f (i )

l � m
2Y

i =1

f (i ): (2.250)

Then � m
l can be computed from the recursion as

� m
l =

1
2Am

l

�
f

�
l + m

2

�
(l + m)( l � m + 1) + f

�
l � m

2

�
(l � m)( l + m + 1)

�
(2.251)

=
1

2Am
l

(( l + m + 1)( l � m + 1) + ( l � m + 1)( l + m + 1)) (2.252)

=
(l + m + 1)( l � m + 1)

Am
l

(2.253)

) � m
l = ( l + m + 1)( l � m + 1)

4
�

l + m
2Y

i =1

2i
2i + 1

l � m
2Y

i =1

2i
2i + 1

: (2.254)
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Let us rewrite the following two products:

l + m
2Y

i =1

1
2i + 1

=
1

(l + m + 1)

l + m
2Y

i =1

1
2i � 1

; (2.255)

l � m
2Y

i =1

1
2i + 1

=
1

(l � m + 1)

l � m
2Y

i =1

1
2i � 1

; (2.256)

from which we �nally write � m
l as:

� m
l =

4
�

l + m
2Y

i =1

2i
2i � 1

l � m
2Y

i =1

2i
2i � 1

: (2.257)

�

Remark 2.7.7 (First values of � m
l ). The values of� m

l are real for l + m, increasing with degree
l, and decreasing with the absolute value of the orderm. Table 2.6 shows, as an example, some
of the �rst values of � m

l .

Table 2.6: Some of the �rst values of� m
l , for degreel � 4, order � 4 � m � 4 and l + m even.

� m
l m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4

l=0 1.2732
l=1 2.5465 2.5465
l=2 3.3953 5.093 3.3953
l=3 4.0744 6.7906 6.7906 4.0744
l=4 4.6564 8.1487 9.0541 8.1487 4.6564

We will now show that the chosen value of� m
l is such that it allows us to rewrite S as L ws

s
for the case of the symmetric Dirichlet Laplace problem for the disk screen.

Theorem 2.7.3 (K ws is K ws
s ). For (x ; y ) 2 D � D, the weakly singular integral kernelK ws,

associated withS, is equal to the proposed weakly singular symmetric kernelK ws
s .

Proof It is easy to show that
��!
grad x

D kx � yk = �
��!
grad y

D kx � yk and that
��!
grad x

DK ws
s (x ; y ) =

�
��!
grad y

DK ws
s (x ; y ), and thus

��!
grad x

D (kx � yk K ws
s (x ; y )) = �

��!
grad y

D (kx � yk K ws
s (x ; y )) : (2.258)

For a function f of x and y on the D, we have that

��!
grad x

Df (x ; y ) = 0 ,

8
>>><

>>>:

cos� x
@f

@�x
(x ; y ) � sin � x

� x

@f
@�x

(x ; y ) = 0

and

sin � x
@f

@�x
(x ; y ) + cos� x

� x

@f
@�x

(x ; y ) = 0 ;

(2.259)

from where it is easy to conclude that

��!
grad x

D (kx � yk K ws
s (x ; y )) = 0 , L x

+ (kx � yk K ws
s (x ; y )) = 0 ; (2.260)

since both kx � yk and K ws
s (x ; y ) are real. Using the above identities, we have that

L x
+ (kx � yk K ws

s (x ; y )) = 0 ) K ws
s (x ; y ) = CK ws(x ; y ); (2.261)
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for some constantC.

Let us then prove that L x
+ (kx � yk K ws

s (x ; y )) = 0.

If we consider the Law of Cosines, or Generalized Pythagoras Theorem, i.e.

kx � yk2 = � 2
x + � 2

y � 2� x � y cos(� x � � y ) (2.262)

We can easily state the identities

L x
+ (kx � yk)=

ei � x

kx � yk

�
� x � � y e� i( � x � � y )

�
(2.263)

and

L x
� (kx � yk)=

e� i � x

kx � yk

�
� � x + � y ei( � x � � y )

�
; (2.264)

which allows us to write:
L x

+ (kx � yk)L x
� (kx � yk) = � 1; (2.265)

kx � ykL x
+ (kx � yk) = � x ei � x � � y e� i � y ; (2.266)

kx � ykL x
� (kx � yk) = � � x e� i � x + � y e� i � y : (2.267)

Using (2.265) together with the product rule

L x
+ (kx � ykK ws

s (x ; y )) = L x
+ (kx � yk)K ws

s (x ; y ) + kx � ykL x
+ (K ws

s (x ; y )) ; (2.268)

we can write

L x
� (kx � yk)L x

+ (kx � ykK ws
s (x ; y ))= � K ws

s (x ; y )+ kx � yk L x
� (kx � yk)L x

+ (K ws
s (x ; y )) : (2.269)

Since function L x
� (kx � yk) is not zero for all x and y on D, we have

K ws
s (x ; y )= kx � yk L x

� (kx � yk)L x
+ (K ws

s (x ; y )) (2.270)

() L x
� (kx � yk)L x

+ (kx � ykK ws
s (x ; y )) = 0 (2.271)

() L x
+ (kx � ykK ws

s (x ; y )) = 0 (2.272)

()
��!
grad x

D(kx � ykK ws
s (x ; y )) = 0 (2.273)

As it has now become clearer, a way of proving the theorem is to demonstrate identity
(2.270). In order to do so we will use the action of the angular momentum operators on the
disk basis functions, contained in Corollary 2.7.2, and recurrence relations for� m

l that we will
conclude from the explicit expression for it given in Proposition 2.7.13.

Using (2.267) we can write

kx � yk L x
� (kx � yk)L x

+ (K ws
s (x ; y )) =

�
� � x e� i � x + � y e� i � y

�
L x

+ (K ws
s (x ; y ): (2.274)

We will use this to prove (2.270) in several steps:

1. Develop an expression for� � x e� i � x L x
+ (K ws

s (x ; y )). This will be easy using (2.190) and
(2.192) from Corollary 2.7.2.

2. Develop an expression for� y e� i � y L x
+ (K ws

s (x ; y )). This will be a more di�cult task be-
cause� y e� i � y , depending ony , will have to be treated to match the terms in L x

+ (K ws
s (x ; y )),

whose exponential components depend onx .

3. Finally we add both developed expressions to formkx � yk L x
� (kx � yk)L x

+ (K ws
s (x ; y ))

and develop a suitable expression forK ws
s to conclude that they are the same.
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We will proceed in the same order.

1. Using (2.190) and (2.192) from Corollary 2.7.2 it is easy to see that

L x
+ K ws

s (x ; y ) =
ei� x

2� x
p

(1� � 2
x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"
�
(l � m)

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1(x ) � (l + m+1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )

�
ym

l (y )

+
�

(l + m)

p
(l +1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 (x ) � (l � m+1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )

�
ym

l (y )

#

:

(2.275)

Then, the desired term is:

� � x e� i � x L x
+ K ws

s (x ; y ) =
� 1

2w(� x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"
�
(l � m)

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 (x ) � (l + m+1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )

�
ym

l (y )

+
�

(l + m)

p
(l +1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 (x ) � (l � m+1)

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )

�
ym

l (y )

#

:

(2.276)

2. Now using (2.184) and (2.188) from Corollary 2.7.2 we write

� y e� i � y L x
+ K ws

s (x ; y )=
� y e� i � y

w(x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

� p
(l � m)( l + m + 1) ym+1

l (x )ym
l (y )

�
p

(l + m)( l � m + 1) ym� 1
l (x ) ym

l (y )
�

:

(2.277)

Then, using (2.194) from Corollary 2.7.3:

� y e� i� y L + (K ws
s (x ; y ))=

� y e� i� (y )

w(x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

p
(l � m)( l + m+1) ym+1

l (x )

 s
(l � m)( l � m� 1)

(l2 � 1=4)
ym+1

l � 1 (y ) �

s
(l + m+1)( l + m+2)

(( l + 1) 2 � 1=4)
ym+1

l+1 (y )

!

+
p

(l + m)( l � m+1) ym� 1
l (x )

 s
(l + m� 1)(l + m)

(l2 � 1=4)
ym� 1

l � 1 (y ) �

s
(l � m+1)( l � m+2)

(( l + 1) 2 � 1=4)
ym� 1

l+1 (y )

! #

;

(2.278)
which can be ordered into
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� y e� i� y L + (K ws
s (x ; y ))=

1
2w(x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

(l � m)

s
l2 � (m+1) 2

l2 � 1=4
ym+1

l (x )ym+1
l � 1 (y ) � (l + m+1)

s
(l +1) 2 � (m+1) 2)

(l + 1) 2 � 1=4
ym+1

l (x )ym+1
l+1 (y ))

+( l + m)

s
(l2 � (m� 1)2)

(l2 � 1=4)
ym� 1

l (x ) ym� 1
l � 1 (y ) � (l � m+1)

s
(l + v1)2 � (m� 1)2

(l + 1) 2 � 1=4
ym� 1

l (x ) ym� 1
l+1 (y )

#

:

(2.279)

We will now treat each term of (2.279) as a di�erent summation and we will change the sum-
mation indices to accommodate the whole expression so that it will only have terms onym

l (y )
and ym

l (y ), as the expression found for part 1. Let us consider the �rst separate summation:

1X

l=0

lX

m= � l
l+ m even

1
� m

l
(l � m)

s
l2 � (m + 1) 2

(l2 � 1=4)
ym+1

l (x )ym+1
l � 1 (y ): (2.280)

We need to sum the new indicesm � 1 and l + 1 to get an expression that is a factor of
ym

l (y ). We use the properties of summations to get

1X

l=0

lX

m= � l
l+ m even

(l � m)
� m

l

s
l2� (m+1) 2

(l2 � 1=4
ym+1

l (x )ym+1
l � 1 (y )=

1X

l= � 1

l+2X

m= � l
l+ m even

(l � m+2)

� m� 1
l+1

s
(l +1) 2 � m2

(l +1) 2 � 1=2
ym

l+1(x )ym
l (y ):

(2.281)

In comparison to the summation to which we would like to add it, summed only for l > 0
and � l < m < l with l + m even, we are introducing additional terms for (l; m) = ( � 1; 1),
(l; m) = (0 ; 2), (l; m) = (1 ; 3), etc. But, since (2.281) has a factor (l � m + 2), these additional
terms are zero, providing us the desired transformation of the �rst term of the summation
(2.279).

Transforming the summation of each one of the separate terms of (2.279) as indicated, it
can be rewritten as

� y e� i� y L + (K ws
s (x ; y ))=

1
2w(x )

1X

l=0

lX

m= � l
l+ m even

"

(l � m + 2)

� m� 1
l+1

s
(( l + 1) 2 � m2)
(( l + 1) 2 � 1=4)

ym
l+1 (x )ym

l (y ) �
(l + m � 1)

� m� 1
l � 1

s
(l2 � m2)
(l2 � 1=4)

ym
l� 1(x )ym

l (y ))

+
(l + m + 2)

� m+1
l+1

s
(( l + 1) 2 � m2)
(( l + 1) 2 � 1=4)

ym
l+1 (x ) ym

l (y ) �
(l � m � 1)

� m+1
l � 1

s
(l2 � m2)
(l2 � 1=4)

ym
l� 1(x ) ym

l (y )

#

:

(2.282)
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3. Summing the terms developed in points 1. and 2. we get the following expression

kx � yk L � (kx � yk)L + (K ws
s (x ; y ) =

1
2w(x )

1X

l=0

lX

m= � l
l+ m even

�

 
l � m + 2

� m� 1
l+1

�
l � m
� m

l

! p
(l + 1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 (x )ym

l (y )

+

 
l + m + 1

� m
l

�
l + m � 1

� m� 1
l � 1

! p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )ym

l (y )

+

 
l + m + 2

� m+1
l+1

�
l + m
� m

l

! p
(l + 1) 2 � m2

p
(l + 1) 2 � 1=4

ym
l+1 (x )ym

l (y )

+

 
l � m + 1

� m
l

�
l � m � 1

� m+1
l � 1

! p
l2 � m2

p
l2 � 1=4

ym
l� 1(x )ym

l (y )

#

:

(2.283)

From Proposition 2.7.13 we can extract suitable relations for� m
l that will further simplify

the previous expression:

(l � m � 1)� m
l = ( l � m)� m+1

l � 1 ; (l + m + 2) � m
l = ( l + m + 1) � m+1

l+1 ;

(l � m + 1) � m� 1
l+1 = ( l � m + 2) � m

l ; (l + m)� m� 1
l � 1 = ( l + m � 1)� m

l :
(2.284)

Using these expressions we can rewrite (2.283) as

kx � yk L � (kx � yk)L + (K ws
s (x ; y ) =

1
2w(x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 (x )ym

l (y ) +

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x ))ym

l (y )

+(

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 (x )ym

l (y )+

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x ) ym

l (y )

#

:

(2.285)

This last expression can be easily equated toK ws
s applying identity (2.193) from Corollary

2.7.3 to ym
l and ym

l :

K ws(x ; y ) =
1X

l=0

lX

m= � l
l+ m even

1
� m

l

�
ym

l (x )ym
l (y ) + ym

l (x )ym
l (y )

�
(2.286)

=
1

2w(x )

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 (x )ym

l (y ) +

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x ))ym

l (y )

+

p
(l +1) 2 � m2

p
(l +1) 2 � 1=4

ym
l+1 (x )ym

l (y )+

p
l2 � m2

p
l2 � 1=4

ym
l� 1(x ) ym

l (y )

#

:

: (2.287)
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This �nishes part 3., allowing us to conclude that K ws
s = CK ws. We will now see that the

constant C is equal to 1.

Using Proposition 2.7.10, Proposition 2.7.13, and Remark 2.7.2 (i.e.y0
0 =  0

0, from (2.120)),
it is easy to check that

Z

D

K ws
s (x ; y )

y0
0(x )

w(x )
dD(x ) =

1
� 0

0
y0

0(x ) =  0
0

�
4

: (2.288)

On the other hand
Z

D

K ws(x ; y )
y0

0(x )
w(x )

dD(x ) =  0
0

Z

D

1
4� kx � yk w(x )

dD(x ): (2.289)

It will su�ce to show that the integral of (4 � kx � yk w(x )) � 1 over D is �= 4 to prove that
C = 1. We know that K ws

s = CK ws, so we also know that the integral of (4� kx � yk w(x )) � 1

over D will be a constant for every y . Let us choose the arbitrary point y 0 = (0 ; 0) to evaluate
this integral.

We suppose thaty has cylindrical coordinatesy = ( � y ; 0) and expressx in general cylin-
drical coordinates x = ( � x ; � x ). We will compute the integral over the sub-region of D such
that � x � � y , and then compute the limit when � y ! 0. We will introduce the variable � such
that,

cos(� ) =
� x cos(� x ) � � y

kx � yk
; and sin(� ) =

� x sin(� x )
kx � yk

; (2.290)

which comply with cos2(� ) + sin 2(� ) = 1 by the law of cosines for kx � yk. We will also use
the standard change of variables� x = sin � x and � y = sin � y .

Using variable � , for � 2 [0; 2� ], we can express the following terms:

� x cos(� x ) = � y sin2(� ) + cos(� )
q

� 2
x � � 2

y sin2(� ) (2.291)

and
kx � yk = � � y +

q
� 2

x � � 2
y sin2(� ): (2.292)

This allows us express the following derivative that will permit us to compute the integral
using the change of variables:

d�
d� x

=
� 2

x � � y � x cos(� x )

kx � yk2 =

q
� 2

x � � 2
y sin2(� )

kx � yk
: (2.293)

Using this change of variables, and making� y = arcsin( � x ), we can write the �rst integral
for � x � � y as

1
4�

2�Z

0

1Z

� y

� x d� x d� x

kx � yk
p

1 � � 2
x

=
1

4�

2�Z

0

�= 2Z

� y

sin(� x )
q

1 � cos2(� x ) � � 2
y sin2(� )

d� x d�: (2.294)

Integrating �rst on � x we have that

�= 2Z

� y

sin(� x )d� xq
1 � cos2(� x ) � � 2

y sin2(� )
= arcsin

0

@

q
1 � � 2

y
q

1 � � 2
y sin2(� )

1

A (2.295)

=
�
2

� arccos

0

@

q
1 � � 2

y
q

1 � � 2
y sin2(� )

1

A ; (2.296)
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so that

1
4�

2�Z

0

1Z

� y

� x d� x d� x

kx � yk
p

1 � � 2
x

=
�
4

�
1

4�

2�Z

0

arccos

0

@

q
1 � � 2

y
q

1 � � 2
y sin2(� )

1

A d�: (2.297)

Summarizing, we have

1
4�

Z

D

dD(x )
kx � y 0k w(� x )

= lim
� y ! 0

1
4�

2�Z

0

1Z

� y

� x d� x d� x

kx � yk
p

1 � � 2
x

(2.298)

=
�
4

� lim
� y ! 0

1
4�

2�Z

0

arccos

0

@

q
1 � � 2

y
q

1 � � 2
y sin2(� )

1

A d� (2.299)

=
�
4

; (2.300)

which �nishes the proof. �

Remark 2.7.8 (S is identi�ed L ws
s ). Being the integral kernelsK ws and K ws

s equal for the
case of the symmetric Dirichlet problem for the disk, the integral operatorsS and L ws

s map the
same functions from eH � 1=2(D) to H 1=2(D).

Theorem 2.7.4 (Weakly singular operator on the disk basis functions). For l + m even, the
action of the weakly singular boundary integral operatorS on a disk basis functionym

l is
�

S
ym

l

w

�
(x ) =

1
� m

l
ym

l : (2.301)

Proof This result comes straightforwardly from the Proposition 2.7.10, and the fact that S
and L ws

s produce the same mapping fromeH � 1=2(D) to H 1=2(D). �

The result from Theorem 2.7.4 was later found to coincide with one from an article by Peter
Wolfe [68]. It was achieved by a di�erent method, taking the Fourier transform of the left-hand
of (2.301) and inverting it. More recently, P. A. Martin has compared it to other expressions
for the application of S in the case of the disk screen [47].

We will now develop the results that will lead to the proof of Theorem 2.7.1.

Proposition 2.7.14 (Relation between the symmetric weakly singular and the anti-symmetric
hypersingular kernels on the disk). For (x ; y ) 2 D� D, the kernelsK ws

s and K hs
as of the boundary

integral operators L ws
s and L hs

as on disk D are linked by the Laplace-Beltrami operator:

� DK ws
s = K hs

as : (2.302)

Proof In this proof we will develop two expressions for � DK ws
s using the two expressions

provided in Proposition 2.7.6 and then add them to recover the coe�cients � m
l needed forK hs

as
from the coe�cients � m

l using the recurrence relations from Proposition 2.7.12.

Let us proceed with the �rst expression for the Laplace-Beltrame operator. It is easy to
show that L x

� K ws
s (x ; x ) = �L y

� K ws
s (x ; x ), so we can write the �rst expression for the Laplace-

Beltrami operator, as

� DK ws
s (x ; y ) = �L x

� � L x
+ K ws

s (x ; y ) (2.303)

= L x
� � L y

+ K ws
s (x ; y ): (2.304)
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Using (2.184) and (2.187) we can obtain

L y
+ K ws

s (x ; y ) =
1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

�
p

(l + m)( l � m + 1)
ym

l (x )
w(x )

ym� 1
l (y )
w(y )

+
p

(l � m)( l + m + 1)
ym

l (x )
w(x )

ym+1
l (y )
w(y )

#

;

(2.305)

and using (2.185) and (2.188)

L x
� � L y

+ K ws
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

(l + m)( l � m + 1)
ym� 1

l (x )
w(x )

ym� 1
l (y )
w(y )

+( l � m)( l + m + 1)
ym+1

l (x )
w(x )

ym+1
l (y )
w(y )

#

:

(2.306)

As done in the proof of Theorem 2.7.3 we will analyze each term of the summand. Noting
that the pairs ( l; m) = (0 ; 0), (l; m) = (1 ; � 1), (l; m) = (2 ; � 2), etc. make l + m = 0 allows us
to rewrite the �rst term as:
1X

l=0

lX

m= � l
l+ m even

(l + m)( l � m+1)
� m

l

ym� 1
l (x )
w(x )

ym� 1
l (y )
w(y )

=
1X

l=0

lX

m= � l
l+ m odd

(l � m)( l + m+1)

� m+1
l

ym
l (x )
w(x )

ym
l (y )
w(y )

: (2.307)

Noting that the pairs ( l; m) = (0 ; 0), (l; m) = (1 ; 1), (l; m) = (2 ; 2), etc. make l � m = 0
allows us to rewrite the second term as:
1X

l=0

lX

m= � l
l+ m even

(l � m)( l + m+1)
� m

l

ym+1
l (x )
w(x )

ym+1
l (y )
w(y )

=
1X

l=0

lX

m= � l
l+ m odd

(l + m)( l � m+1)

� m� 1
l

ym
l (x )
w(x )

ym
l (y )
w(y )

: (2.308)

Let us now obtain the second expression for the Laplace-Beltrami operator:

� DK ws
s (x ; y ) = �L x

+ � L x
� K ws

s (x ; y ) (2.309)

= L x
+ � L y

� K ws
s (x ; y ): (2.310)

Using again (2.184), (2.185), (2.187), and (2.188), we can write

L x
+ � L y

� K ws
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m even

1
� m

l

"

(l � m)( l + m + 1)
ym+1

l (x )
w(x )

ym+1
l (y )
w(y )

+( l + m)( l � m + 1)
ym� 1

l (x )
w(x )

ym� 1
l (y )
w(y )

#

:

(2.311)

As with the �rst expression for the Laplace-Beltrame operator, noting that the pairs ( l; m) =
(0; 0), (l; m) = (1 ; 1), (l; m) = (2 ; 2), etc. makel � m = 0 allows us to rewrite the �rst term as:

1X

l=0

lX

m= � l
l+ m even

(l � m)( l + m+1)
� m

l

ym+1
l (x )
w(x )

ym+1
l (y )
w(y )

=
1X

l=0

lX

m= � l
l+ m odd

(l + m)( l � m+1)

� m� 1
l

ym
l (x )
w(x )

ym
l (y )
w(y )

: (2.312)

Noting that the pairs ( l; m) = (0 ; 0), (l; m) = (1 ; � 1), (l; m) = (2 ; � 2), etc. makel + m = 0
allows us to rewrite the second term as:
1X

l=0

lX

m= � l
l+ m even

(l + m)( l � m+1)
� m

l

ym� 1
l (x )
w(x )

ym� 1
l (y )
w(y )

=
1X

l=0

lX

m= � l
l+ m odd

(l � m)( l + m+1)

� m+1
l

ym
l (x )
w(x )

ym
l (y )
w(y )

: (2.313)
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We can now add the two expressions for the Laplace-Beltrami operator to obtain

� DK ws
s (x ; y ) =

1
2

(L x
� � L y

+ + L x
+ � L y

� )K ws
s (x ; y ) (2.314)

= �
1X

l=0

lX

m= � l
l+ m odd

"
1
2

 
(l + m)( l � m+1)

� m� 1
l

+
(l � m)( l + m+1)

� m+1
l

!
ym

l (x )
w(x )

ym
l (y )
w(y )

+
1
2

 
(l � m)( l + m+1)

� m+1
l

+
(l + m)( l � m+1)

� m� 1
l

!
ym

l (x )
w(x )

ym
l (y )
w(y )

#

: (2.315)

Using the recursion expression for� m
l from Proposition 2.7.12 we can �nally write

� DK ws
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m odd

� m
l

 
ym

l (x )
w(x )

ym
l (y )
w(y )

+
ym

l (x )
w(x )

ym
l (y )
w(y )

!

(2.316)

= K hs
as (x ; y ): (2.317)

�

Theorem 2.7.5 (K hs is K hs
as ). For (x ; y ) 2 D � D, the hypersingular kernelK hs, associated

with N , is equal to the proposed hypersingular anti-symmetric kernelK hs
as .

Proof This result follows from the relation � DK ws(x ; y ) = K hs(x ; y ) from Proposition 2.5.3,
the identity K ws(x ; y ) = K ws

s (x ; y ) from Theorem 2.7.3, and the relation � DK ws
s (x ; y ) =

K hs
as (x ; y ) from Proposition 2.7.14. �

It's now easy to prove Theorem 2.7.1.

Proof of Theorem 2.7.1 From Proposition 2.7.10, we know that

�
L hs

asym
l

�
(y ) = � � m

l
ym

l (y )
w(y )

; for y 2 D: (2.318)

Integral operators N and L hs
as have the same kernel forx ; y 2 D, from which we conclude

the desired result: Z

D

ym (x )dD(x )

4� kx � yk3 = � � m
l

ym
l (y )
w(y )

; (2.319)

for l + m odd and y 2 D. �

We will now use these new expressions of the boundary integral operators linked to the
symmetric Dirichlet and anti-symmetric Neumann Laplace problems for the disk, and their
inverses, to build variational formulations and Galerkin matrices usable in preconditioning
methods. We will �rst summarize the previous results in a succinct and clear manner in the
following table.

Remark 2.7.9. The following table summarizes the situation so far:

Table 2.7: Summary of the operators overD in their di�erent forms.
BIO Closed form kernel DtN/NtD Series Kernel Series BIO Mapping
S K ws NtD s K ws

s L ws
s

eH � 1=2(D) ! H 1=2(D)

N K hs DtN as K hs
as L hs

as
eH 1=2(D) ! H � 1=2(D)

S� 1 DtN s � K hs
s �L hs

s H 1=2(D) ! eH � 1=2(D)

N � 1 NtD as � K ws
as �L ws

as H � 1=2(D) ! eH 1=2(D)
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2.7.6 Variational formulations and norms

We will now use the new de�ned integral operators to endow the Sobolev spaces with
explicit inner products and norms.

De�nition 2.7.13 (Induced bilinear forms). Let us de�ne the following bilinear forms induced
by the described boundary integral operators:

aws
s 2 L

�
eH � 1=2(D) � eH � 1=2(D); C

�
: aws

s (�; � t ) =


L ws

s �; � t �
D ; (2.320)

bhs
s 2 L

�
H 1=2(D) � H 1=2(D); C

�
: bhs

s (g; gt ) =
D

�L hs
s g; gt

E

D
; (2.321)

ahs
as 2 L

�
eH 1=2(D) � eH 1=2(D); C

�
: ahs

as(�; � t ) =
D

�L hs
as �; � t

E

D
; (2.322)

bws
as 2 L

�
H � 1=2(D) � H � 1=2(D); C

�
: bws

as ('; ' t ) =


L ws

as '; ' t �
D : (2.323)

Proposition 2.7.15 (Bilinear forms de�ne inner products) . The bilinear forms from De�nition
2.7.13 de�ne inner products in the following linear spaces:aws

s in eH � 1=2(D), bhs
s in H 1=2(D),

ahs
as in eH 1=2(D) and bws

as in H � 1=2(D).

Proof Let us focus on the �rst bilinear form, aws
s for the linear spaceY1=w

s . Let us take two
arbitrary functions u; v 2 Y 1=w

s and show that conjugate symmetry, linearity, and positive-
de�nitiveness are satis�ed.

hLws
s u ; vi D =

*

L ws
s

1X

l=0

lX

m= � l
l+ m even

um
l

ym
l

w
;

1X

l=0

lX

m= � l
l+ m even

vm
l

ym
l

w

+

D

(2.324)

=

*
1X

l=0

lX

m= � l
l+ m even

um
l

� m
l

ym
l ;

1X

l=0

lX

m= � l
l+ m even

vm
l

ym
l

w

+

D

(2.325)

=
1X

l=0

lX

m= � l
l+ m even

um
l vm

l

2� m
l

(2.326)

=
1X

l=0

lX

m= � l
l+ m even

vm
l um

l

2� m
l

(2.327)

=

*

L ws
s

1X

l=0

lX

m= � l
l+ m even

vm
l

ym
l

w
;

1X

l=0

lX

m= � l
l+ m even

um
l

ym
l

w

+

D

(2.328)

= hLws
s v ; ui D: (2.329)

Linearity on the �rst argument comes straightforwardly from the de�nition of the duality
product. And �nally,

hLws
s u ; ui D =

1X

l=0

lX

m= � l
l+ m even

jum
l j2

2� m
l

(2.330)

shows thataws
s (u; u) is always positive and that, only um

l = 0 for every l and m, and thus only for
u = 0, makesaws

s (u; u) = 0, which shows the positive-de�niteness property. The value (2.330) is
�nite by virtue of the bi-continuity of the bilinear form for its associated Neumann-to-Dirichlet
operator, NtD s from Section 2.6. Coercivity of the bilinear form induced by the corresponding
operator NtD s also guarantees that normk�kaws

s
is equivalent to norm k�k eH � 1=2 (D) . The same

argument follows for the other three cases. �
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De�nition 2.7.14 (Norms for the trace spaces). Being inner products, the previous bilinear
forms allow us to de�ne the following norms in the Sobolev spaces:

k� kaws
s

=
p

aws
s (�; � ); (2.331)

k� kahs
as

=
q

ahs
as(�; � ); (2.332)

kgkbhs
s

=
q

bhs
s (g; g); (2.333)

k' kbws
as

=
p

bws
as ('; ' ): (2.334)

Proposition 2.7.16 (Computation of the norms associated with the new boundary integral
operators). The norms from De�nition 2.7.14 can be computed as follows:

k� k2
aws

s
=

1X

l=0

lX

m= � l
l+ m even

1
2� m

l
� m

l � m
l ; (2.335)

k� k2
ahs

as
=

1X

l=0

lX

m= � l
l+ m odd

� m
l

2
� m

l � m
l ; (2.336)

kgk2
bhs

s
=

1X

l=0

lX

m= � l
l+ m even

� m
l

2
gm

l gm
l ; (2.337)

k' k2
bws

as
=

1X

l=0

lX

m= � l
l+ m odd

1
2� m

l
' m

l ' m
l ; (2.338)

where
� m

l = ( �; y m
l =w)w ; (2.339)

� m
l = ( �; y m

l )1=w; (2.340)

gm
l = ( g; ym

l )1=w; (2.341)

' m
l = ( '; y m

l =w)w : (2.342)

Proof These results follow straightforwardly from applying Corollary 2.7.4 together with the
decomposition in bases described in Section 2.7.4. �

Proposition 2.7.17 (Variational formulations for the new integral operators) . The previous
bilinear forms are coercive in the appropriate spaces, and thus furnish appropriate variational
formulations for the boundary integral equations. A variational formulation for the boundary
integral equation associated with the boundary integral operatorL ws

s (identi�ed with S) is

(L ws
s � VF )

8
<

:

Given g 2 H 1=2(D), �nd � 2 eH � 1=2(D), such that

8� t 2 eH � 1=2(D)
�
aws

s (�; � t ) =


g; � t

�
D

�
:

(2.343)

The boundary integral equation associated with the boundary integral operatorL hs
s (identi�ed

with S� 1) admits the variational formulation

�
L hs

s � VF
�

8
<

:

Given � 2 eH � 1=2(D), �nd � 2 H 1=2(D), such that

8gt 2 H 1=2(D)
�
bhs

s (g; gt ) =


�; g t

�
D

�
:

(2.344)
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The boundary integral equation associated with the boundary integral operatorL hs
as (identi�ed

with N ) admits the variational formulation

�
L hs

as� VF
�

8
<

:

Given ' 2 H � 1=2(D), �nd � 2 eH 1=2(D), such that

8� t 2 eH 1=2(D)
�
ahs

as(�; � t ) =


'; � t

�
D

�
:

(2.345)

The boundary integral equation associated with the boundary integral operatorL ws
as (identi�ed

with N � 1) admits the variational formulation

(L ws
as � VF )

8
<

:

Given � 2 eH 1=2(D), �nd ' 2 H � 1=2(D), such that

8' t 2 H � 1=2(D)
�
bws

as ('; ' t ) =


�; ' t

�
D

�
:

(2.346)

Proof Coercivity follows from the de�nitions of the norms for each space in De�nition 2.7.14.
Bi-continuity of the variational bilinear forms follows from the discrete H•older's inequality. Let
us consider the �rst case; the proof for the rest follows the same procedure.

aws
s (�; � t ) =

1X

l=0

lX

m= � l
l+ m even

� m
l (� t )m

l

2� m
l

(2.347)

�
1X

l=0

lX

m= � l
l+ m even

j� m
l j

p
2� m

l

�
�(� t )m

l

�
�

p
2� m

l

: (2.348)

Using the discrete H•older's inequality we have

aws
s (�; � t ) �

vu
u
u
t

1X

l=0

lX

m= � l
l+ m even

�
� � m

l

�
�2

2� m
l

vu
u
u
t

1X

l=0

lX

m= � l
l+ m even

�
�(� t )m

l

�
�2

2� m
l

(2.349)

� k � k eH � 1=2 (D)


 � t




eH � 1=2 (D) : (2.350)

�

2.7.7 Spectral method and preconditioning of the Laplace problem for the
disk screen

In this section we will use the developed theory to derive �nite-dimensional variational
formulations using the disk basis functions in order to solve the boundary integral equations
linked with the four new integral operators. We will generate the Galerkin matrices associated
with the �nite-dimensional variational formulation and we will build the matrix preconditioners
outlined by the optimal preconditioning strategy. In doing so, the preconditioning process will
be clearly illustrated.

In order to consider N-dimensional �nite subspaces of the involved Sobolev spaces, we will
specify a way of counting the basis functions for each space, initially indexed byl and m.

De�nition 2.7.15 (Counting the basis functions on the disk). For las + mas odd, we will count
the basis functions sequentially with the indexi as as

i as(mas; las) =
1
2

�
l2as + mas + 1

�
; (2.351)

which in turn inversely gives

las(i as) = 1 + arg max
l as � 0

l as ( l as + 1) =2 < i as

las(las + 1)
2

; and mas(i as) = 2 i as � las(i as)2 � 1: (2.352)
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For ls + ms even, we will count the basis functions sequentially with the indexi s as

i s(ms; ls) =
1
2

�
l2s + 2 ls + ms + 2

�
; (2.353)

which in turn inversely gives

ls(i s) = 1+ arg max
l s � � 1

( l s + 1)( l s + 2) =2 < i s

(ls + 1)( ls + 2)
2

; and ms(i s) = 2 i s � ls(i s)2 � 2ls(i s) � 2: (2.354)

De�nition 2.7.16 (Finite subspaces of Sobolev trace spaces). Let us de�ne the following
N-dimensional subspaces to be used in the �nite-dimensional variational formulations of the
in�nite-dimensional ones described above:

VN = span
� n

yms (i s )
ls (is )

oN

is=1

�
� H 1=2(D); (2.355)

~VN = span
� n

ymas (i as )
las (i as )

oN

i as =1

�
� eH 1=2(D); (2.356)

WN = span
� n

ymas (i as )
las (i as ) =w

oN

i as =1

�
� H � 1=2(D); (2.357)

~WN = span
� n

yms (i s )
ls (i s ) =w

oN

i s =1

�
� eH � 1=2(D): (2.358)

De�nition 2.7.17 (N-dimensional variational formulations) . An N-dimensional discrete vari-
ational formulation for the boundary integral equation associated with the boundary integral
operator L ws

s (identi�ed with S) is

(L ws
s � VF N )

8
>>>><

>>>>:

Given gN =
NP

k=1
gms (k)

ls (k) yms (k)
ls (k) 2 VN , �nd � N =

NP

i =1
� ms (i )

ls (i )

ym s ( i )
l s ( i )

w 2 fWN , such that

NP

i =1
� ms (i )

ls (i ) aws
s

�
ym s ( i )

l s ( i )

w ;
ym s ( j )

l s ( j )

w

�
=

NP

k=1
gms (k)

ls (k)

�
yms (k)

ls (k) ;
ym s ( j )

l s ( j )

w

�

D
; for j = 1 :::N:

(2.359)

The boundary integral equation associated with the boundary integral operatorL hs
s (identi�ed

with S� 1) admits the N-dimensional discrete variational formulation

�
L hs

s � VF N

�

8
>>>><

>>>>:

Given � N =
NP

k=1
� ms (k)

ls (k)

ym s ( k )
l s ( k )

w 2 fWN , �nd gN =
NP

i =1
gms (i )

ls (i ) yms (i )
ls (i ) 2 VN , such that

NP

i =1
gms (i )

ls (i ) bhs
s

�
yms (i )

ls (i ) ; yms (j )
ls (j )

�
=

NP

k=1
� ms (k)

ls (k)

�
ym s ( k )

l s ( k )
w ; yms (j )

ls (j )

�

D
; for j = 1 :::N:

(2.360)

The boundary integral equation associated with the boundary integral operatorL hs
as (identi�ed

with N ) admits the N-dimensional discrete variational formulation

�
L hs

as� VF N

�

8
>>>><

>>>>:

Given ' N =
NP

k=1
' mas (k)

las (k)

ym as ( k )
l as ( k )

w 2 WN , �nd � N =
NP

i =1
� mas (i )

las (i ) ymas (i )
las (i ) 2 eVN , such that

NP

i =1
� mas (i )

las (i ) ahs
as

�
ymas (i )

las (i ) ; ymas (j )
las (j )

�
=

NP

k=1
' mas (k)

las (k)

�
ym as ( k )

l as ( k )

w ; ymas (j )
las (j )

�

D
; for j = 1 :::N:

(2.361)
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The boundary integral equation associated with the boundary integral operatorL ws
as (identi�ed

with N � 1) admits the N-dimensional discrete variational formulation

(L ws
as � VF N )

8
>>>><

>>>>:

Given � N =
NP

k=1
� mas (k)

las (k) ymas (k)
las (k) 2 eVN , �nd ' N =

NP

i =1
' mas (i )

las (i )

ym as ( i )
l as ( i )

w 2 WN , such that

NP

i =1
' mas (i )

las (i ) bws
as

�
ym as ( i )

l as ( i )

w ;
ym as ( j )

l as ( j )

w

�
=

NP

k=1
� mas (k)

las (k)

�
ymas (k)

las (k) ;
ym as ( j )

l as ( j )
w

�

D
; for j = 1 :::N:

(2.362)

Proposition 2.7.18 (Computation of bilinear forms) . The computation of the bilinear forms
from De�nition 2.7.17 is performed as follows:

aws
s

0

@
yms (i )

ls (i )

w
;
yms (j )

ls (j )

w

1

A =
1

2� ms (i )
ls (i )

� i
j ; bhs

s

�
yms (i )

ls (i ) ; yms (j )
ls (j )

�
=

� ms (i )
ls (i )

2
� i

j ; (2.363)

ahs
as

�
ymas (i )

las (i ) ; ymas (j )
las (j )

�
=

� mas (i )
las (i )

2
� i

j ; bws
as

0

@
ymas (i )

las (i )

w
;
ymas (j )

las (j )

w

1

A =
1

2� mas (i )
las (i )

� i
j : (2.364)

Proof The values of the bilinear form follow directly from Corollary 2.7.4. �

De�nition 2.7.18 (Galerkin matrices for the spectral discretization). The Galerkin matrices
associated with the N-dimensional variational formulations from De�nition 2.7.17 are de�ned
as

A ws
s =

1
2

diag

0

@ 1

� ms (1)
ls (1)

; :::;
1

� ms (N )
ls (N )

1

A ; (2.365)

B hs
s =

1
2

diag
�

� ms (1)
ls (1) ; :::; � ms (N )

ls (N )

�
; (2.366)

A hs
as =

1
2

diag
�

� mas (1)
las (1) ; :::; � mas (N )

las (N )

�
; (2.367)

B ws
as =

1
2

diag

0

@ 1

� mas (1)
las (1)

; :::;
1

� mas (N )
las (N )

1

A ; (2.368)

where diag de�nes a matrix by indicating the elements of its diagonal.

Proposition 2.7.19 (Computation of right-hand sides). The right-hand sides associated with
the N-dimensional variational formulations from De�nition 2.7.17 are computed as

*

yms (k)
ls (k) ;

yms (j )
ls (j )

w

+

D

=
1
2

� k
j ;

*
yms (k)

ls (k)

w
; yms (j )

ls (j )

+

D

=
1
2

� k
j ; (2.369)

*
ymas (k)

las (k)

w
; ymas (j )

las (j )

+

D

=
1
2

� k
j ;

*

ymas (k)
las (k) ;

ymas (j )
las (j )

w

+

D

=
1
2

� k
j : (2.370)

Proof Right-hand side values follow from the orthogonality properties for basis functions on
the disk in Proposition 2.7.4. �

Proposition 2.7.20 (Spectral solution to the N-dimensional variational formulations). The
coe�cients of the solution to the discrete variational problem (L ws

s � VF N ) are

� ms (i )
ls (i ) = � ms (i )

ls (i ) gms (i )
ls (i ) ; for i = 1 ; :::; N: (2.371)
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The coe�cients of the solution to the discrete variational problem (L hs
s � VF N ) are

gms (i )
ls (i ) =

1

� ms (i )
ls (i )

� ms (i )
ls (i ) ; for i = 1 ; :::; N: (2.372)

The coe�cients of the solution to the discrete variational problem (L hs
as� VF N ) are

� mas (i )
las (i ) = � mas (i )

las (i ) ' mas (i )
las (i ) ; for i = 1 ; :::; N: (2.373)

The coe�cients of the solution to the discrete variational problem (L ws
as � VF N ) are

' mas (i )
las (i ) =

1

� mas (i )
las (i )

� mas (i )
las (i ) ; for i = 1 ; :::; N: (2.374)

Proof Let us consider the �rst N-dimensional variational formulation ( L ws
s � VF N ). From

Proposition 2.7.18 we know that the left-hand side is:

NX

i =1

� ms (i )
ls (i )

2� ms (i )
ls (i )

� j
i ; for j = 1 :::N: (2.375)

We also know from Proposition 2.7.19 that the right-had side is

NX

k=1

1
2

gms (k)
ls (k) � j

k ; for j = 1 :::N: (2.376)

Then, we can compute each coe�cient � ms (j )
ls (j ) determining solution � N as

� ms (j )
ls (j ) = � ms (j )

ls (j ) gms (j )
ls (j ) ; for j = 1 :::N: (2.377)

The same procedure, using Proposition 2.7.18 and Proposition 2.7.19 gives the desired results
for the next three spectral formulations. �

The application of the preconditioning strategy into a preconditioning method for the
Laplace problem using the described spectral discretization yields some interesting results.
In the application of the optimal preconditioning theorem, Theorem 2.1.1, the Galerkin matri-
ces and right-hand side vectors can be computed using the two previous propositions. Matrix
D , accounting for the duality pairing of the bases becomes12 I , with I being the identity ma-
trix. Matrices A and B (for the symmetric Dirichlet and anti-symmetric Neumann cases) are
diagonal, such that the application of the prescribed preconditions yields,

MA = D � 1BD � H A =
1
4

I ; (2.378)

which has optimal condition number, i.e. cond2(MA ) = 1, independently of the dimension
N of the discretization. This shows the way in which optimal preconditioning works despite
being a case where no preconditioning was required, since the linear systems arising from this
discretization are diagonal and can be solved explicitly without recourse to linear solvers, as it
was shown in Proposition 2.7.20.

In this present section we have found series forms for the operatorsS and N (identi�ed
with L ws

s and L hs
as respectively), and their inversesS� 1 and N � 1 (identi�ed with L hs

s and L ws
as

respectively). This allows us to build spectral discretizations to solve the associated problems,
specially the ones of interest (symmetric Dirichlet and anti-symmetric Neumann), and to test
the principles of operator preconditioning, although it is not practically needed when in a
spectral method framework.

In the following section we will attempt to modify the integral kernels to obtain explicit and
closed variational expressions that will be suited for boundary element method computations,
attempting to escape the limitations of spectral methods and reach practical applications to
screens other than the disk.
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Chapter 3

Preconditioning for Screen Obstacles
with Modi�ed Integral Operators

The expressions found in the previous chapter for the inverses of the boundary integral
operators involved in the solution of the symmetric Dirichlet and anti-symmetric Neumann
are in the form of series. This makes their use inadequate for boundary element method
computations and for the construction of associated Galerkin matrices capable of improving the
preconditioning using the strategy outlined by Theorem 2.1.1 in a wider range of applications.
In this chapter, roughly divisible in three parts, we will develop a strategy to overcome this
problem.

In the �rst part, Section 3.1, using the previous two-dimensional case from Section 2.4
and the existing series representation for the disk from the previous chapter as hints, we will
propose a modi�cation to the series expressions for the inverse boundary integral operators.
These modi�ed operators, although not being the exact inverses, will be proven to have an
explicit and closed variational expression, and thus be suited for use in boundary element
method preconditioning methods while still preserving the behavior of the kernels' singularities
from previously developed inverses.

In the second part, Section 3.2, we will de�ne a special mesh partition suitable for the case
of the screens and in particular for the disk. We will use this discretization to de�ne boundary
element spaces with which to formulate variational problems for the modi�ed integral operators,
and then we will use them to develop numerical methods to compute their respective Galerkin
matrices. Using known solutions to the modi�ed boundary integral operators, these methods
will be tested numerically.

In the third part, Section 3.3, we will use the Galerkin matrices to build preconditioners
that will be studied in numerical experiments. We will show that the preconditioners built
with them are mutually optimal preconditioners, from which we will draw several conclusions
about the variational problems associated with the modi�ed integral operators, and about the
mesh partition process. We will later show the preconditioning capabilities of these matrices
when used as preconditioners to the matrices associated with operatorsS and N . We will also
show the preconditioning capabilities when applied to the matrices linked to the Helmholtz
problem, i.e. Sk and N k . Finally, we will propose a technique to extend the exposed method
to other screens.
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3.1 Modi�ed boundary integral operators with explicit closed
variational form

In this section we will modify the kernel expressions in order to �nd closed forms of the
integral operators suited for boundary element method computation. They will be suggested by
the series expansion of the integral kernels of the weakly singular and hypersingular boundary
integral equations when the domain of integration is the sphere inR3. In the case of the
sphere, there are well-established results that allow us to change integral kernels from a series
expression to a closed form expression. Theorem 1.5.3 will also allow us write the hypersingular
integral operator using the weakly singular kernel. These two tools, as we shall see, will suggest
the mentioned modi�cations.

3.1.1 Integral kernels for the weakly singular and hypersingular boundary
integral operators on the sphere

Proposition 3.1.1 (Series for the weakly singular and hypersingular boundary integral oper-
ators on the sphere [51, Section 3.2.3]). The application of the weakly singular operatorS and
hypersingular operator N on functions de�ned on S have the alternative series expressions:

(S� ) (y ) =
1X

l=0

lX

m= � l

1
2l + 1

� m
l Y m

l (y ); (3.1)

(N � ) (y ) = �
1X

l=0

lX

m= � l

l (l + 1)
2l + 1

� m
l Y m

l (y ); (3.2)

where

� m
l =

Z

S

� (x )Y m
l (x )dS(x ) and � m

l =
Z

S

� (x )Y m
l (x )dS(x ): (3.3)

Proposition 3.1.2 (Series expression for the weakly singular kernel). The weakly singular
kernel has the following series expression:

K ws(x ; y ) =
1X

l=0

lX

m= � l

1
2l + 1

Y m
l (y )Y m

l (x ): (3.4)

Proof

(S� ) (y ) =
1X

l=0

lX

m= � l

�
1

2l + 1

�
� m

l Y m
l (y )

=
1X

l=0

lX

m= � l

�
1

2l + 1

� Z

S

� (x )Y m
l (x )dS(x )Y m

l (y )

=
Z

S

1X

l=0

lX

m= � l

�
1

2l + 1

�
Y m

l (x )Y m
l (y )� (x )dS(x ):

(3.5)

) K ws(x ; y ) =
1X

l=0

lX

m= � l

1
2l + 1

Y m
l (x )Y m

l (y ) (3.6)

1
4� kx � yk

=
1X

l=0

lX

m= � l

1
2l + 1

Y m
l (x )Y m

l (y ): (3.7)

�

The previous expression of the weakly singular kernel allows us to extract some conclusions
that will further simplify the expression of the modi�ed kernels proposed.
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Corollary 3.1.1 (Realness of the series weakly singular kernel on the sphere). The series
expression of the weakly singular integral kernel is real, i.e.

Im

(
1X

l=0

lX

m= � l

1
2l + 1

Y m
l (x )Y m

l (y )

)

= 0 (3.8)

and thus can be written in either of the following two forms:

1X

l=0

lX

m= � l

1
2l + 1

Y m
l (x )Y m

l (y ) =
1X

l=0

lX

m= � l

1
2l + 1

Y m
l (y )Y m

l (x ): (3.9)

3.1.2 Modi�ed integral kernels and operators

The boundary integral operators on the disk, de�ned and studied in Section 2.7, have the
desired mapping properties that induce bilinear forms that allow for preconditioning strategies
in the sense de�ned by Theorem 2.1.1. However, having a series expression, they are not suited
for use in boundary element method computations. In this section we will propose modi�ed
boundary integral operators, based on the previous ones, that will preserve the same behavior
in � of the integral kernels on the edge of the disk, which is the key feature of their performance.
This idea will be tested numerically in following sections.

The known relation between closed and series form for the kernels, in the case of the sphere,
suggests a modi�cation on the previously de�ned kernels. Let us de�ne the following modi�ed
integral kernels in the form of series.

De�nition 3.1.1 (Modi�ed integral kernels for the disk) . Let us de�ne the following two weakly
singular integral kernels for (x ; y ) 2 D � D, with x 6= y , as the formal series:

eK ws
s (x ; y ) =

1X

l=0

lX

m= � l
l+ m even

� l ym
l (y )ym

l (x ); (3.10)

eK ws
as (x ; y ) =

1X

l=0

lX

m= � l
l+ m odd

� l ym
l (y )ym

l (x ); (3.11)

with
� l =

2
2l + 1

: (3.12)

Similarly, let us de�ne the following two hypersingular integral kernels for(x ; y ) 2 D � D, with
x 6= y , as the formal series:

eK hs
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m even

� l
ym

l (y )
w(y )

ym
l (x )
w(x )

; (3.13)

eK hs
as (x ; y ) = �

1X

l=0

lX

m= � l
l+ m odd

� l
ym

l (y )
w(y )

ym
l (x )
w(x )

; (3.14)

with

� l =
2l(l + 1)
2l + 1

: (3.15)

We will use these modi�ed integral kernels to de�ne modi�ed boundary integral operators
for which we will later �nd explicit and closed forms in variational contexts.
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De�nition 3.1.2 (Modi�ed boundary integral operators on the disk) . For y 2 D we de�ne
the following boundary integral operators:

�
eL ws

s �
�

(y ) =
Z

D

eK ws
s (x ; y )� (x )dD(x ); (3.16)

�
eL ws

as '
�

(y ) =
Z

D

eK ws
as (x ; y )' (x )dD(x ); (3.17)

�
eL hs

s g
�

(y ) =
Z

D

eK hs
s (x ; y )g(x )dD(x ); (3.18)

�
eL hs

as �
�

(y ) =
Z

D

eK hs
as (x ; y )� (x )dD(x ): (3.19)

Up until this point, the modi�ed integral operators ( eL ws
s , eL ws

as , eL hs
s , and eL hs

as), modi�cation
of the ones known to be identi�ed with S and N and their inverses (L ws

s , L ws
as , L hs

s , and
L hs

as), present the same problem in their incorporation into a boundary element method: they
are in series form. The next theorems, central to this section, will show that they can also
be expressed in closed form, thus solving this problem while still preserving the same radial
behavior in � that was present in the exact inverses in theR2 and R3 cases.

Theorem 3.1.1 (Closed variational form for the weakly singular integral kernels). The weakly
singular integral operators from De�nition 3.1.2 have the following closed form variational
expressions:

D
eL ws

s � ; � t
E

D
=

Z

D

Z

D

1
4�

�
1

kx + � y + k
+

1
kx � � y + k

�
� (x )� t (y )dD(x )dD(y ); (3.20)

D
eL ws

as ' ; ' t
E

D
=

Z

D

Z

D

1
4�

�
1

kx + � y + k
�

1
kx � � y + k

�
' (x )' t (y )dD(x )dD(y ): (3.21)

Proof Let us �rst consider the case of eK ws
s . Let us consider a projectionT : S ! D taking

points on the upper half-sphere to their vertical projections on the disk (y = Ty + = Ty � 2 D),
to be used in integration by substitution. The application of eL ws

s to a function � de�ned on
the disk yields, for y 2 D:

�
eL ws

s �
�

(y ) =
Z

D

eK ws
s (x ; y )� (x )dD(x ) (3.22)

=
Z

S+

1X

l=0

lX

m= � l
l+ m even

� l ym
l (Tx )ym

l (Ty + )� (Tx )j cos� x jdS+ (x ): (3.23)

Let us de�ne � + = � � T over S+ , so that the application of eL ws
s can be pulled to the upper

half-sphere:

�
eL ws

s �
�

(y ) =
Z

S+

1X

l=0

lX

m= � l
l+ m even

� l Y m
l (x )Y m

l (y + )� + (x )j cos� x jdS+ (x ): (3.24)

Let us now de�ne f� + as the mirror reection over S� , so that it is an even function of x3, i.e.,
f� + (x + ) = f� + (x � ). Being Y m

l (x ) (for l + m even), j cos� x j, and f� + (x ) even functions of x3,
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the integration can be computed on the whole sphere as

�
eL ws

s �
�

(y ) =
1
2

Z

S

1X

l=0

lX

m= � l
l+ m even

� l Y m
l (x )Y m

l (y + ) f� + (x )j cos� x jdS(x ): (3.25)

Also, for the rest of the (l; m) pairs, when l + m is odd, Y m
l will be odd, so that the integrand

will also be odd, and thus,

l + m odd )
Z

S

Y m
l (x )Y m

l (y + ) f� + (x )j cos� x jdS(x ) = 0 : (3.26)

Now these terms can be added to 3.25, so that the sum has all the (l; m) pairs:

�
eL ws

s �
�

(y ) =
1
2

Z

S

1X

0= l

lX

m= � l

� l Y m
l (x )Y m

l (y + ) f� + (x )j cos� x jdS(x ): (3.27)

By construction � l =2 = 1=(2l + 1), for which (3.4) from Proposition 3.1.2 allows us rewrite
(3.27):

�
eL ws

s �
�

(y )=
Z

S

K ws(x ; y + ) f� + (x )j cos� x jdS(x ) (3.28)

=
Z

S+

K ws(x ; y + ) f� + (x )j cos� x jdS+ (x )+
Z

S�

K ws(x ; y + ) f� + (x )j cos� x jdS� (x ) (3.29)

=
Z

D

K ws(x + ; y + )� (x )dD(x ) +
Z

D

K ws(x � ; y + )� (x )dD(x ) (3.30)

=
Z

D

1
4�

�
1

kx + � y + k
+

1
kx � � y + k

�
� (x )dD(x ); (3.31)

which proves the identity (3.20) of the theorem.

The demonstration for eK ws
as can be deduced from the application of eL ws

as to a function '
de�ned over D, using the same argument with some modi�cations. Starting with the series
de�nitions for eL ws

as ' , a function ' + = ' � T is de�ned to pull the integral to S+ . De�ning f' +

now as the odd mirror reection, i.e. f' + (x + ) = � f' + (x � ), the same two key properties are
achieved: 1) the integrand becomes even and thus it can be transformed into an integral over
S, and 2) the complementary (l; m) pairs (the even ones) integrate as zero and can be added
to complete the series. Once the expression of the integral kernel for the sphere is recognizable
from Proposition 3.1.2, it can be replaced and the integral later pulled back to the disk. Being
f' + odd, the minus sign appears naturally di�erentiating this case from the previous one.

�

These closed form expressions of two of the integral kernels, without resorting to series
expressions, allow for the computation of boundary element calculations and the construction
of Galerkin matrices as it will be shown later in this chapter. In the next theorem we use the
closed form expressions of the weakly singular integral kernels to deliver closed form variational
expressions for the modi�ed hypersingular operatorseL hs

s and eL hs
as.

Theorem 3.1.2 (Closed variational form for the hypersingular integral kernels). The bilinear
forms induced by the hypersingular boundary integral operatoreL hs

as admits the following two
expressions of integration by parts:

D
� eL hs

as � ; � t
E

D
=

D
eL ws

s
��!
curl D�;

��!
curl D� t

E

D
+

�
eL ws

as

�
1
w

@�
@�x

�
;

1
w

@�t

@�y

�

D
(3.32)
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and

D
� eL hs

as � ; � t
E

D
=

�
eL ws

as
L 3�
w

;
L 3� t

w

�

D
�

1
2

D
eL ws

s L + �; L � � t
E

D
�

1
2

D
eL ws

s L � �; L + � t
E

D
: (3.33)

Similarly, the bilinear forms induced by the hypersingular boundary integral operatoreL hs
s

admits the following two expressions of integration by parts:

D
� eL hs

s g ; gt
E

D
=

D
eL ws

as
��!
curl Dg;

��!
curl Dgt

E

D
+

�
eL ws

s

�
1
w

@g
@�x

�
;

1
w

@gt

@�y

�

D
(3.34)

and

D
� eL hs

s g ; gt
E

D
=

�
eL ws

s
L 3g
w

;
L 3gt

w

�

D
�

1
2

D
eL ws

as L + g;L � gt
E

D
�

1
2

D
eL ws

as L � g;L + gt
E

D
: (3.35)

Proof Let us demonstrate the expressions foreL hs
as; the ones for eL hs

s can be deduced similarly.
The bilinear form induced by eL hs

as is written as:

D
� eL hs

as � ; � t
E

D
= �

Z

D

Z

D

eK hs
as (x ; y )� (x )� t (y )dD(x )dD(y ) (3.36)

=
Z

D

Z

D

1X

l=0

lX

m= � l
l+ m odd

� l
ym

l (x )
w(x )

ym
l (y )
w(y )

� (x )� t (y )dD(x )dD(y ): (3.37)

Let us de�ne T : S ! D as the vertical projection of points from the sphere onto the disk,
and let us de�ne the following odd functions for points x ; y on S:

~� (x ) =
�

� (Tx ) if x 2 S+ ;
� � (Tx ) if x 2 S� ;

and ~� t (y ) =
�

� t (Ty ) if y 2 S+ ;
� � t (Ty ) if y 2 S� :

(3.38)

De�ned like this, we identify Y m
l (x )~� (x ) and Y m

l (y )~� t (y ) as even functions forl + m odd,
and as odd functions forl + m even. Thus, we can rewrite the bilinear form as:

D
� eL hs

as � ; � t
E

D
=

1
2

Z

S

Z

S

1X

l=0

lX

m= � l

� l

2
Y m

l (x )Y m
l (y )~� (x )~� t (y )dS(x )dS(y ): (3.39)

Using Proposition 3.1.1 we can further write the expression as

D
� eL hs

as � ; � t
E

D
=

1
2

Z

S

Z

S

K hs(x ; y )~� (x )~� t (y )dS(x )dS(y ): (3.40)

Using Theorem 1.5.3, we can rewrite the previous expression as

D
� eL hs

as � ; � t
E

D
=

1
2

Z

S

Z

S

K ws(x ; y )
� ��!

curl S~� (x );
��!
curl S~� t (y )

�
dS(x )dS(y ): (3.41)

Using now Remark 2.5.1, we can rewrite again the previous expression as
D

� eL hs
as � ; � t

E

D
=
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1
2

Z

S

Z

S

K ws(x ; y )
@~� (x )
@�x

@~� t (y )
@�y

dS(x )dS(y )

+
1
2

Z

S

Z

S

K ws(x ; y )

"

cos (� x � � y )

 
@~� (x )
@�x

@~� t (y )
@�y

+
cos� x cos� y

sin � x sin � y

@~� (x )
@�x

@~� t (y )
@�y

!

+ sin ( � x � � y )

 
cos� y

sin � y

@~� (x )
@�x

@~� t (y )
@�y

�
cos� x

sin � x

@~� (x )
@�x

@~� t (y )
@�y

!#

j cos� x j j cos� y jdS(x )dS(y )

(3.42)

Let us focus on the �rst integral. Using Proposition 3.1.2, we can write:

1
2

Z

S

Z

S

K ws (x ; y )
@~� (x )
@�x

@~� t (y )
@�y

dS(x )dS(y ) =
1
2

Z

S

Z

S

1X

l =0

lX

m = � l

� l

2
Y m

l (x )Y m
l (y )

@~� (x )
@�x

@~� t (y )
@�y

dS(x )dS(y );

(3.43)

and since ~� and ~� t are odd (and even (l; m) pairs vanish) functions we can write:

=
1
2

Z

S

Z

S

1X

l=0

lX

m= � l
l+ m odd

� l

2
Y m

l (x )Y m
l (y )

@~� (x )
@�x

@~� t (y )
@�y

dS(x )dS(y ) (3.44)

=
Z

S+

Z

S

1X

l=0

lX

m= � l
l+ m odd

� l

2
Y m

l (x )Y m
l (y )

@~� (x )
@�x

@~� t (y )
@�y

dS(x )dS+ (y ) (3.45)

=
Z

S+

Z

S+

1X

l=0

lX

m= � l
l+ m odd

� l Y m
l (x )Y m

l (y )
@~� (x )
@�x

@~� t (y )
@�y

dS+ (x )dS+ (y ) (3.46)

=
Z

D

Z

D

1X

l=0

lX

m= � l
l+ m odd

� l ym
l (x )ym

l (y )
1

w(x )
@�(x )
@�x

1
w(y )

@� t (y )
@�y

dD(x )dD(y ) (3.47)

=
�

eL ws
as

�
1
w

@�
@�x

�
;

1
w

@�t

@�y

�

D
; (3.48)

thus providing the desired result for the �rst integration in (3.42). Let us now address the
second one. Let us �rst note that the following functions are even with respect to the plane
x3 = 0:

@~�
@�x

(x );
@~� t

@�y
(y );

cos� x

sin � x

@~�
@�x

(x ) and
cos� y

sin � y

@~� t

@�y
(y ): (3.49)

Thus, we can rewrite the second integral in (3.42), eliminating the terms forl + m odd, as:

1
2

Z

S

Z

S

1X

l=0

lX

m= � l
l+ m even

� l

2
ym

l (x )ym
l (y )

"

cos (� x � � y )

 
@~� (x )
@�x

@~� t (y )
@�y

+
cos� x cos� y

sin � x sin � y

@~� (x )
@�x

@~� t (y )
@�y

!

+ sin ( � x � � y )

 
cos� y

sin � y

@~� (x )
@�x

@~� t (y )
@�y

�
cos� x

sin � x

@~� (x )
@�x

@~� t (y )
@�y

!#

j cos� x j j cos� y jdS(x )dS(y ):

(3.50)

Using the same procedure as before for writing sphere integrals of even functions as integrals
on S+ and on D, and using (2.67) and (2.68) from Remark 2.5.1, we �nd the desired expression
for the second integral.
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For the second part regardingeahs
as(�; � t ), using proposition 2.7.7, let us rewrite the �rst

term of (3.32):

D
eL ws

s
��!
curl D�;

��!
curl � t

E

D
=

Z

D

Z

D

eK ws
s (x ; y )

� ��!
curl D�;

��!
curl D� t

�
dD(x )dD(y ) (3.51)

= �
1
2

Z

D

Z

D

eK ws
s (x ; y )

�
L + � L � � t + L + � L � � t

�
dD(x )dD(y ) (3.52)

= �
1
2

D
eL ws

as L + �; L � � t
E

D
�

1
2

D
eL ws

as L � �; L + � t
E

D
: (3.53)

The second term of (3.32) can be easily rewritten, using the de�nition of operatorL 3 and
its conjugate (Proposition 2.7.5), as:

�
eL ws

as

�
1
w

@�
@�x

�
;

1
w

@�t

@�y

�

D
=

Z

D

Z

D

eK ws
as (x ; y )

1
w(x )

@�
@�x

1
w(y )

@� t

@�y
dD(x )dD(y ) (3.54)

= �
Z

D

Z

D

eK ws
as (x ; y )

1
w(x )

1
i

@�
@�x

1
w(y )

1
i

@� t

@�y
dD(x )dD(y ) (3.55)

= �
Z

D

Z

D

eK ws
as (x ; y )

L 3� (x )
w(x )

L 3� t (y )
w(y )

dD(x )dD(y ) (3.56)

=
Z

D

Z

D

eK ws
as (x ; y )

L 3� (x )
w(x )

L 3� t (y )
w(y )

dD(x )dD(y ) (3.57)

=
�

eL ws
as

L 3�
w(x )

;
L 3� t

w(y )

�

D
: (3.58)

This proves identities (3.32) and (3.33) from the theorem. Equations (3.34) and (3.35)
regarding eL hs

s can be obtained with the same procedure using complementary parity and sym-
metry. �

Proposition 3.1.3 (Modi�ed integral operators' action over basis functions on the disk).
The modi�ed boundary integral operators from De�nition 3.1.2 have the following mapping
properties:

eL ws
s

ym
l

w
=

� l

2
ym

l , for l + m even, (3.59)

eL ws
as

ym
l

w
=

� l

2
ym

l , for l + m odd, (3.60)

eL hs
s ym

l = �
� l

2
ym

l

w
, for l + m even, (3.61)

eL hs
asym

l = �
� l

2
ym

l

w
, for l + m odd. (3.62)

Proof Let us analyze the �rst case.

�
eL ws

s
ym

l

w

�
(y ) =

1X

l0=0

l0X

m0= � l0
l0+ m0 even

� l

Z

D

ym0

l0 (y )ym0

l0 (x )
ym

l (x )
w(x )

dD(x ): (3.63)

Using the orthogonality relations 2.7.4 and 2.7.1 it follows that

�
eL ws

s
ym

l

w

�
(y ) =

1X

l0=0

l0X

m0= � l0
l0+ m0 even

� l ym0

l0 (y )
1
2

� l0
l � m0

m (3.64)
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=
� l

2
ym

l (y ): (3.65)

The next three cases follow from similar procedures. �

Proposition 3.1.4 (Calder�on-type identities for the modi�ed boundary integral operators on
the disk). The modi�ed boundary integral operators from De�nition 3.1.2 have the following
Calderon-type identities:

� eL hs
s � eL ws

s � =
1
4

�
I +

1
w

eL ws
s

�
1
w

eL ws
s �

��
; (3.66)

� eL hs
as � eL ws

as ' =
1
4

�
I +

1
w

eL ws
as

�
1
w

eL ws
as '

��
; (3.67)

� eL ws
s � eL hs

s g =
1
4

�
I + eL ws

s

�
1
w

eL ws
s

� g
w

� ��
; (3.68)

� eL ws
as � eL hs

as � =
1
4

�
I + eL ws

as

�
1
w

eL ws
as

� �
w

� ��
: (3.69)

Proof Let us prove the �rst identity for eL hs
s � eL ws

s . Using Proposition 2.7.10 it is easy to see
that, for � 2 eH � 1=2(D)

�
�

eL hs
s � eL ws

s

�
� =

1
4

1X

l=0

lX

m= � l
l+ m even

� l � l � m
l

ym
l

w
(3.70)

=
1X

l=0

lX

m= � l
l+ m even

l (l + 1)
(2l + 1) 2 � m

l
ym

l

w
: (3.71)

This expression can be separated as

1X

l=0

lX

m= � l
l+ m even

l (l + 1)
(2l + 1) 2 � m

l
ym

l

w
=

1X

l=0

lX

m= � l
l+ m even

� m
l

ym
l

w
�

1X

l=0

lX

m= � l
l+ m even

3l2 + 3 l + 1
(2l + 1) 2 � m

l
ym

l

w
(3.72)

= � � 3
1X

l=0

lX

m= � l
l+ m even

l (l + 1)
(2l + 1) 2 � m

l
ym

l

w
�

1X

l=0

lX

m= � l
l+ m even

1
(2l + 1) 2 � m

l
ym

l

w
; (3.73)

) � 4
�

eL hs
s � eL ws

s

�
� = � �

1X

l=0

lX

m= � l
l+ m even

1
(2l + 1) 2 � m

l
ym

l

w
: (3.74)

The last term of the equation is easy to compose using operatoreL ws
s . Using again Propo-

sition 2.7.10 it's easy to see that

1
w

eL ws
s

�
1
w

eL ws
s �

�
=

1X

l=0

lX

m= � l
l+ m even

1
(2l + 1) 2 � m

l
ym

l

w
; (3.75)

which proves the �rst case. The case foreL hs
as � eL ws

as is done in the same way forH � 1=2(D) but
summing over l + m odd pairs.

Let us now address the caseeL ws
s � eL hs

s . In a way similar to the previous two cases, we have,
for g 2 H 1=2(D),

�
�

eL ws
s � eL hs

s

�
g =

1X

l=0

lX

m= � l
l+ m even

l (l + 1)
(2l + 1) 2 gm

l ym
l : (3.76)
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Using yet again Proposition 2.7.10 it's easy to see that

eL ws
s

�
1
w

eL ws
s

� g
w

� �
=

1X

l=0

lX

m= � l
l+ m even

1
(2l + 1) 2 gm

l ym
l ; (3.77)

which proves this case proceeding as in the previous two cases but replacingym
l =w with ym

l .
The case for eL ws

as � eL hs
as is done in the same way foreH 1=2(D) but summing over l + m odd pairs.

�

3.1.3 Variational problems and norms

In this section we will use the modi�ed boundary integral operators, for which we know their
explicit variational expressions, to formulate variational problems that we will later use to build
Galerkin matrices. The preconditioning capabilities of these matrices will be an important part
of this chapter, and will be studied in subsequent sections.

De�nition 3.1.3 (Induced bilinear forms). Let us de�ne the following bilinear forms induced
by the modi�ed boundary integral operators from De�nition 3.1.2:

eaws
s 2 L

�
eH � 1=2(D) � eH � 1=2(D); C

�
: eaws

s (�; � t ) =
D

eL ws
s �; � t

E

D
; (3.78)

ebhs
s 2 L

�
H 1=2(D) � H 1=2(D); C

�
: ebhs

s (g; gt ) =
D

� eL hs
s g; gt

E

D
; (3.79)

eahs
as 2 L

�
eH 1=2(D) � eH 1=2(D); C

�
: eahs

as(�; � t ) =
D

� eL hs
as �; � t

E

D
; (3.80)

ebws
as 2 L

�
H � 1=2(D) � H � 1=2(D); C

�
: ebws

as ('; ' t ) =
D

eL ws
as '; ' t

E

D
: (3.81)

These bilinear forms de�ne norms in the spaces spanned by the disk basis functions, as we
will show in the next propositions.

Proposition 3.1.5 (The bilinear forms de�ne inner products) . The bilinear forms from De�-
nition 3.1.3 de�ne inner products in the linear spaces spanned by the set of disk basis functions:
eaws

s in Y1=w
s , ebhs

s in Ys, eahs
as in Yas and ebws

as in Y1=w
as .

Proof Let us focus on the �rst bilinear form, eaws
s for the linear space spanned byY1=w

s . Let us

take two arbitrary functions u; v 2 span
�

Y1=w
s

�
and show that conjugate symmetry, linearity,

and positive de�niteness are satis�ed.

D
eL ws

s u ; v
E

D
=

*

L ws
s

1X

l=0

lX

m= � l
l+ m even

um
l

ym
l

w
;

1X

l=0

lX

m= � l
l+ m even

vm
l

ym
l

w

+

D

(3.82)

=

*
1X

l=0

lX

m= � l
l+ m even

� l

2
um

l ym
l ;

1X

l=0

lX

m= � l
l+ m even

vm
l

ym
l

w

+

D

(3.83)

=
1X

l=0

lX

m= � l
l+ m even

� l um
l vm

l

4
(3.84)

=
1X

l=0

lX

m= � l
l+ m even

� l vm
l um

l

4
(3.85)

=
D

eL ws
s v ; u

E

D
: (3.86)
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Linearity on the �rst argument comes straightforwardly from the de�nition of the duality
product. And �nally,

D
eL ws

s u ; u
E

D
=

1X

l=0

lX

m= � l
l+ m even

� l
jum

l j2

4
; (3.87)

shows that eaws
s (u; u) is always positive and that, only um

l = 0 for every l and m, and thus
only u = 0, makes eaws

s (u; u) = 0, which shows the positive-de�niteness property. The same
argument follows for the other three cases. �

De�nition 3.1.4 (Norms associated with the modi�ed operators). Being inner products, the
previous bilinear forms from De�nition 3.1.3 allow us to de�ne the following norms for their
respective spaces:

k� keaws
s

=
p

eaws
s (�; � ); (3.88)

k� keahs
as

=
q

eahs
as(�; � ); (3.89)

kgkebhs
s

=
q

ebhs
s (g; g); (3.90)

k' kebws
as

=
q

ebws
as ('; ' ): (3.91)

Proposition 3.1.6 (Computation of the norms associated with the modi�ed boundary integral
operators). The norms from De�nition 3.1.4 can be computed as follows:

k� k2
eaws

s
=

1X

l=0

lX

m= � l
l+ m even

� l

4
� m

l � m
l ; for l + m even, (3.92)

k� k2
eahs

as
=

1X

l=0

lX

m= � l
l+ m odd

� l

4
� m

l � m
l ; for l + m odd, (3.93)

kgk2
ebhs

s
=

1X

l=0

lX

m= � l
l+ m even

� l

4
gm

l gm
l ; for l + m even, (3.94)

k' k2
ebws

as
=

1X

l=0

lX

m= � l
l+ m odd

� l

4
' m

l ' m
l ; for l + m odd, (3.95)

where
� m

l = ( �; y m
l =w)w ; (3.96)

� m
l = ( �; y m

l )1=w; (3.97)

gm
l = ( g; ym

l )1=w; (3.98)

' m
l = ( '; y m

l =w)w : (3.99)

Proof The demonstration is done as the one for Proposition 2.7.16. �

We will use the bilinear forms induced by the modi�ed boundary integral operators to pose
variational problems. These variational problems will later give rise to the Galerkin matrices
that will be the subject of study, especially in their preconditioning abilities.
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De�nition 3.1.5 (Variational problems for the modi�ed boundary integral operators) . Let
us consider the following variational problems for the bilinear forms from De�nition 3.1.3.
A variation problem for the boundary integral equation associated with the boundary integral
operator eL ws

s is

�
eL ws

s � VF
�

8
<

:

Given g 2 H 1=2(D), �nd � 2 eH � 1=2(D), such that

8� t 2 eH � 1=2(D)
�
eaws

s (�; � t ) =


g; � t

�
D

�
:

(3.100)

The boundary integral equation associated with the boundary integral operatoreL hs
s admits the

variational problem

�
eL hs

s � VF
�

8
><

>:

Given � 2 eH � 1=2(D), �nd � 2 H 1=2(D), such that

8gt 2 H 1=2(D)
�
ebhs

s (g; gt ) =


�; g t

�
D

�
:

(3.101)

The boundary integral equation associated with the boundary integral operatoreL hs
as admits the

variational problem

�
eL hs

as� VF
�

8
<

:

Given ' 2 H � 1=2(D), �nd � 2 eH 1=2(D), such that

8� t 2 eH 1=2(D)
�
eahs

as(�; � t ) =


'; � t

�
D

�
:

(3.102)

The boundary integral equation associated with the boundary integral operatoreL ws
as admits the

variational problem

�
eL ws

as � VF
�

8
><

>:

Given � 2 eH 1=2(D), �nd ' 2 H � 1=2(D), such that

8' t 2 H � 1=2(D)
�
ebws

as ('; ' t ) =


�; ' t

�
D

�
:

(3.103)

Coercivity and bi-continuity in the Sobolev trace spaces must be proven for the associated
Galerking matrices to be optimal preconditioners. These variational problems will provide
the Galerkin matrices that are intended to produce the desired preconditioning e�ect on the
Galerkin matrices associated withS and N by virtue of their kernels' behavior in the radial
direction. This idea will be put to the test numerically in the next sections. These variational
problems are not necessarily variational formulations for the modi�ed integral operators in
the relevant trace spaces on which these problems are posed, as their coercivity is not readily
assured for the norms of the Sobolev trace spaceseH � 1=2(D), H 1=2(D), eH 1=2(D) and H � 1=2(D).
In fact, following Propositions 2.7.16 and 3.1.6, the coercivity would need the existence of
constants Cws

s , Chs
s , Cws

as and Chs
as such that

1
� m

l
� Cws

s � l ; � m
l � Chs

s � l ;
1

� m
l

� Cws
as � l ; and � m

l � Chs
as � l ; (3.104)

and the existence of constantsC0ws
s , C0hs

s , C0ws
as and C0hs

as such that

1
� m

l
� C0ws

s � l ; � m
l � C0hs

s � l ;
1

� m
l

� C0ws
as � l ; and � m

l � C0hs
as � l : (3.105)

This would amount to norm equivalency between the norms induced by the series operators
presented in the previous section and the norms induced by modi�ed series operators presented
in this current section.

We will present the answer to some of this issues the following sections.
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3.2 Boundary elements method implementation

Taking advantage of known series representation of the operators posed on the sphere, it
was possible to consider in this present chapter slight modi�cations to the series form integral
kernel from De�nition 2.7.10, that had explicit and closed variational forms while preserving the
singularity behavior properties of the integral kernels. These singularity behavior properties
were signaled as a key feature of a previous achievement for a segment screen inR2 and in
fact they were also shown for the series forms of the kernels of the inverse operators for the
case of the disk. In the rest of this chapter we will describe a domain discretization suitable
for the preconditioning strategy drawn from Theorem 2.1.1 and a boundary element method
adapted to the case of the disk screen. With these tools we will build, in the subsequent
sections, the Galerkin matrices for the new modi�ed operators and we will test the numerical
implementation with benchmark cases. Finally, once the implementation has been argued to
be successful, we will explore the capacity for preconditioning of the new modi�ed operators
in various cases for the Laplace and Helmholtz screen problem for a disk obstacle. We will end
this chapter showing an extension of the numerical method that can extend preconditioning
capabilities into screens with other shapes.

3.2.1 Domain discretization

In this subsection we will address in further detail the triangular mesh partition of the
surface of screens, particularly the disk. The main concepts about mesh partition were already
described in Subsection 1.6.1. The details further developed in this present subsection will
be related to the ful�llment of dimension matching conditions stipulated in Theorem 2.1.1
when the surface is not closed. Producing a mesh over which to specify supports for boundary
element basis functions is more di�cult for screens because the existence of a border of the
surface (@D 6= ? ), and because the fact that one of the Sobolev spaces has functions that are
zero at this border ( in fact, eH 1=2(D) � H 1=2

0 (D)).

Let us consider a triangular meshTh for the conformal triangular approximation Dh of
D (De�nition 1.6.1) and a triangular mesh Th (De�nition 1.6.2), made of NT closed triangles
(with t i its i-th triangle), NE edges andNV vertices (with v i its i-th vertex), of which N 0

V

are interior. The new domain of integration Dh , an approximation of D, is then Dh = [ NT
i =1 t i

(modulo a close-open topological operation).

Two dual meshes will be constructed starting fromTh . The �rst dual mesh eTh is constructed
as it was indicated in De�nition 1.6.10, but we will shortly refresh its main elements. We
consider the six disjoint sub-triangles (of type t̂ in De�nition 1.6.3) resulting from dividing
each triangle of Th using its medians. We consider the set of piece-wise polygonal elements
f L i g

NV
i =1 , associated with the vertices of the primal meshTh such that piece-wise polygonal

element L i associated withv i is the union of the collection of sub-triangles of typet̂ that have
vertex v i of the meshTh as one of its own vertices. This construction also yieldsDh = [ NV

i =1 L i

(modulo a close-open topological operation) and, when the discretized surface lies on a plane,
elementsL i are not just piece-wise polygonal, but polygons themselves.

We will consider a second dual mesh in order to develop appropriate elements for a subspace
of H � 1=2(D), dual to eH 1=2(D) of functions zero on the border, and to comply with the require-
ment that both �nite subspaces have the same dimensions. The second dual mesh, denoted by
eT 0
h , will use a di�erent subdivision of the triangles on the border of Dh : triangles t 2 Th with

two or three vertices on the edge@Dh will not be subdivided and will be considered proper
sub-triangles, while the ones with one vertex over@Dh will be divided into two sub-triangles (of
type ~t in De�nition 1.6.3) separated by the median associated with the vertex on the border
@Dh . Triangles without vertices on @Dh will be subdivided as in eTh . The dual mesh eT 0

h is
then the set of piece-wise polygonal elements associated with theN 0

V internal vertices of the

meshTh , f M i g
N 0

V
i =0 , such that the element M i associated with the internal vertex v i of Th is the
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collection of sub-triangles (now produced di�erently than for eTh) that have the internal vertex
v i of the Th as one of their own vertices. Figure 3.1 illustrates the construction process foreTh

and eT 0
h showing the subdivision of triangles near edge@Dh on a sector the ofDh . Figure 3.2

shows specimens of the three meshes forDh for a given h.

Figure 3.1: Detail of the subdivision of the triangles of a meshTh near the border of @Dh ,
showing the subdivision border triangles for the construction of eTh (left) and eT 0

h (right).

Figure 3.2: An example of triangular mesh partition Th of Dh for a given mean edge sizeh ex-
hibiting its triangles f t i g

NT
i =1 (left), with the resulting dual meshes eTh , exhibiting its components

f L i g
NV
i =1 (center), and eT 0

h exhibiting its components f M i g
N 0

V
i =1 (right).

A more formal de�nition will be given using the tools developed in Subsection 1.6.1.

De�nition 3.2.1 (Secondary dual mesheT 0
h ). We will call eT 0

h the secondary dual mesh of the
triangular mesh Th the set of piece-wise polygonal elements associated with theN 0

V internal

vertices of Th , f M i g
N 0

V
i =1 , where the elementM i associated with the internal vertexv i is de�ned

as:

M i =

2

6
6
4

[

t2 Tv ! t (v i )
jTt ! v (t )\ @Dh j=2 ;3

t

3

7
7
5

[

2

6
6
4

[

t2 Tv ! t (v i )
jTt ! v (t )\ @Dh j=1

[

~t2 Tt ! ~t (t )

~t

3

7
7
5

[

2

6
6
4

[

t2 Tv ! t (v i )
jTt ! v (t )\ @Dh j=0

[

t̂ 2 Tt ! t̂ (t )

t̂

3

7
7
5 ; (3.106)
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for i = 1 :::N 0
V indexing the internal vertices of Th .

From its construction it is also clear that the dual mesh eT 0
h is also a partition of Dh in the

sense thatDh = [
N 0

V
i =1 M i (modulo a close-open topological operation), and when the discretized

surface lies in a plane elementsM i are not just piece-wise polygonal, but polygons themselves.

It is remarkable that the number of piece-wise polygonal elements of the �rst dual mesh
eTh is the same as the number of vertices ofTh , and that the number of piece-wise polygonal
elements of the secondary dual mesheT 0

h is the same as the number of internal vertices ofTh .

Notation 3.2.1 (Sub-triangles of piece-wise polygonal elements fromeTh and eT 0
h ). Given a

piece-wise polygonal elementL i , associated with the vertexv i of Th , the notation k 2 L i will
be used to mean that a trianglek is one of the sub-triangles of the elementL i (in this case,
triangles of type t̂ in De�nition 1.6.3). Given a piece-wise polygonal elementM i , associated
with the internal vertex v i of Th , the notation k 2 M i will be used to mean that a trianglek is
one of the sub-triangles of the elementM i (in this case triangles of typet̂ or type ~t in De�nition
1.6.3, or just triangles from Th).

3.2.2 Mesh sets

In the presented modi�ed boundary integral operators related to the Laplace equation for
the disk, the kernels involved projections of points from diskD onto upper half-sphereS+ and
onto lower half-sphereS� . When performing numerical integrations overDh , advantage can be
taken performing them instead over projected conformal triangular approximationsS+

h and S�
h ,

which can be obtained fromDh or vice versa. A projected conformal triangular approximation
is obtained using the weight function w, de�ned for the disk in (2.43) from Subsection 2.5.1.
For the disk, function w provides the distancekx � x � k for x 2 D. Thus, conformal triangular
approximations S�

h can be obtained from Dh taking the points of S�
h to be the ones ofDh

after projecting them vertically using function w. Likewise, any one ofS�
h can de�ne Dh and

the complementary half-sphere using a similar procedure. Using di�erent weight functions for
vertical projections will become a relevant tool when treating di�erent screens, as it will be in
the next section of this chapter.

The boundary element computations will use, as it will be seen later in this chapter, in-
tegration over triangles in the upper and lower half-spheres. The set of these three meshes,
available for the computation of bilinear forms over Dh , will be named mesh set.

De�nition 3.2.2 (Mesh set). A mesh set for diskD is the set of conformal triangular approxi-
mations of D, S+ , and S� , i.e.

�
Dh ; S+

h ; S�
h

	
for a �xed discretization parameter h of Dh , such

that every vertex ofS+
h (and of S�

h ) is the vertical projection of a vertex of Dh onto S+ (and
onto S� ).

We will consider three di�erent types of mesh sets. The interest in studying di�erent meshes
and mesh sets arises from: 1) the interest in providing mesh re�nement near@Dh as some
solutions to the relevant boundary integral equationes are expected to present singularities at
the border of D (refer to Theorem 2.3.4), and 2) the interest in analyzing the e�ect of mesh
uniformity (De�nitions 1.6.8 and 1.6.9) on the numerical method to be proposed. Theorem
2.1.1 assures optimal preconditioning independently of the choice of the basis for the �nite-
dimentional subspaces of the relevant Sobolev trace spaces, provided that stability estimates
are ful�lled by the chosen bases. The type of mesh sets to be considered are summarized and
explained in Table 3.1. They are obtained �xing one of the three surfaces, taking it to be
globally or locally quasi-uniform (De�nitions 1.6.8 and 1.6.9) and generating the other two by
projection.
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Table 3.1: Description of the types of mesh sets considered for the numerical experiments and
their construction processes for disk screenD.

Type Dh S+
h S�

h

Mesh set #1 Projected from S+
h Glob. q.-uniform triangular mesh of S+ Proj. from S+

h

Mesh set #1 Glob. q.-uniform mesh of Dh Projected from Dh Proj. from Dh

Mesh set #3 Radially graded mesh of Dh Projected from Dh Proj. from Dh

Specimens of the three types of mesh sets described in Table 3.1 are illustrated in Figures
3.3, 3.4 & 3.5 providing graphical representations ofDh and S+

h for a given discretization
parameter h.

Figure 3.3: Example of discretized domainsDh (left) and S+
h (right) in a mesh set of type

Mesh set #1 for a given discretization parameterh.

Figure 3.4: Example of discretized domainsDh (left) and S+
h (right) in a mesh set of type

Mesh set #2 for a given discretization parameterh.
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Figure 3.5: Example of discretized domainsDh (left) and S+
h (right) in a mesh set of type

Mesh set #3 for a given discretization parameterh.

3.2.3 Boundary element spaces and basis functions

We employ the described meshes and mesh sets to obtain zeroth and �rst order piecewise
polynomial boundary element spaces, subspaces of the Sobolev trace spaces involved in the
variational formulations for the new boundary integral operators on the disk. We call Pn the
space of bi-variate polynomials of a degree less than or equal ton, and we then proceed to de�ne
the following boundary element spaces. The de�nitions that will be presented will resemble
those of Subsection 1.6.2, but will di�er in the treatment required for the �nite-dimensional
subspaces of the new spaceseH 1=2(D) and eH � 1=2(D), that were not considered in Chapter 1.

De�nition 3.2.3 (Boundary element spaces). Let us de�ne the following �nite-dimensional
boundary element spaces, piecewise polynomial on the triangles de�ned for the primal meshTh

and on the piece-wise polygonal elements de�ned for its dual mesheTh and for its secondary
dual mesh eT 0

h :

Vh (Dh) =
�

gh 2 C (Dh) : 8t 2 Th
�

gh jt 2 P1�	
� H 1=2 (Dh) ; (3.107)

eVh (Dh) =
n

� h 2 Vh (Dh) : � h j@Dh
= 0

o
� eH 1=2 (Dh) ; (3.108)

fWh (Dh) =
n

� h 2 L 2 (Dh) : 8L 2 eTh
�

� h jL 2 P0� o
� eH � 1=2 (Dh) ; (3.109)

Wh (Dh) =
n

' h 2 L 2 (Dh) : 8M 2 eT 0
h

�
' h jM 2 P0� o

� H � 1=2 (Dh) : (3.110)

We will de�ne precise basis functions that we will use in �nite-dimensional versions of the
variational problems for the modi�ed boundary integral operators. These basis functions will
be de�ned by slightly modifying those from Subsection 1.6.2.

De�nition 3.2.4 (Basis functions for the boundary element spaces). We denote the standard
zeroth and �rst order �nite element basis functions for the previously de�ned �nite dimensional
spaces as follows.

Let i 2 f 1:::NV g index the vertices of meshTh , and its associated piece-wise polygonal
element L i 2 eTh .

For i 2 f 1:::NV g; we de�ne � i (x ) =

(
1 if x 2 L i ;

0 if x =2 L i :
(3.111)
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Let i 2 f 1:::N 0
V g index the internal vertices of meshTh , and its associated piece-wise polyg-

onal elementM i 2 eT 0
h .

For i 2 f 1:::N 0
V g; we de�ne � 0

i (x ) =

(
1 if x 2 M i ;

0 if x =2 M i :
(3.112)

To de�ne the �rst order �nite element basis functions we will consider the set of vertices of
a meshTh , i.e. f v i g

NV
i =1 . Let i 2 f 1:::NV g index the vertices of meshTh .

For i 2 f 1:::NV g; we de�ne � i 2 Vh (Dh) such that � i (v j ) =

(
1 if i = j;

0 if i 6= j;
for j =1 :::NV :

(3.113)

We will use the superscript 0 in � 0
i , to emphasize the case when a function� i cannot

be associated with a vertex on the boundary ofDh in the case when� i 2 eVh(Dh). This will
facilitate the notation when referring to basis functions of the spaceeVh(Dh), signaling when a
basis function belongs to this space.

For piecewise a�ne functions � i or � 0
i we will denote their restriction to a triangle tm as

� tm
i (x ) = am

i x1 + bm
i x2 + cm

i . We will write tm 3 v i to mean that the triangle tm has v i as one
of its vertices.

Remark 3.2.1 (Dimension matching of the boundary element spaces). Constructed like this,
the de�ned �nite-dimensional spaces are subspaces of the relevant Sobolev trace spaces associated
with operators S and N , and they also comply with the dimension matching requirement from
Theorem 2.1.1:

dim
�

fWh(Dh)
�

= dim ( Vh(Dh)) = NV ; (3.114)

dim
�

eVh(Dh)
�

= dim ( Wh(Dh)) = N 0
V : (3.115)

3.2.4 Finite-dimensional variational problems

Using the de�ned boundary element spaces, we will specify �nite-dimensional versions to
the variational problems from De�nition 3.1.5 associated with the modi�ed boundary integral
operators. We will use these �nite-variational problems in the construction of Galerkin matrices
that will be used in solving boundary integral equations for the modi�ed operators, and later
in preconditioning methods.

Given a particular conformal triangular approximation Dh of D, we will consider the fol-
lowing expressions for functions in the boundary element spaces.

De�nition 3.2.5 (Representation of functions in the boundary element spaces). A function
� h 2 fWh(Dh) will be expressed as

� h(x ) =
NVX

i =1

� h
i � i (x ); for x 2 Dh : (3.116)

A function gh 2 Vh(Dh) will be expressed as

gh(x ) =
NVX

i =1

gh
i � i (x ); for x 2 Dh : (3.117)

A function � h 2 eVh(Dh) will be expressed as

� h(x ) =
N 0

VX

i =1

� h
i � 0

i (x ); for x 2 Dh : (3.118)
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A function ' h 2 Wh(Dh) will be expressed as

' h(x ) =
N 0

VX

i =1

' h
i � 0

i (x ); for x 2 Dh : (3.119)

De�nition 3.2.6 (Finite-dimensional variational problems). We will adapt the variational
problems from De�nition 3.1.5 using �nite-dimensional variational problems as follows. A
variational problem for the boundary integral equation associated with the boundary integral
operator eL ws

s is

�
eL ws

s � VF h

�

8
>>><

>>>:

Given gh 2 Vh(Dh), �nd
�

� h
i

	 NV

i =1 , such that

NVP

i =1
� h

i eaws
s (� i ; � j ) =

NVP

k=1
gh

k h� k ; � j i Dh
; for j = 1 :::NV :

(3.120)

The boundary integral equation associated with the boundary integral operatoreL hs
s admits

the variational problem

�
eL hs

s � VF h

�

8
>>><

>>>:

Given � h 2 fWh(Dh), �nd
�

gh
i

	 NV

i =1 , such that

NVP

i =1
gh

i
ebhs

s (� i ; � j ) =
NVP

k=1
� h

k h� k ; � j i Dh
; for j = 1 :::NV :

(3.121)

The boundary integral equation associated with the boundary integral operatoreL hs
as admits

the variational problem

�
eL hs

as� VF h

�

8
>>><

>>>:

Given ' h 2 Wh(Dh), �nd
�

� h
i

	 N 0
V

i =1 , such that

N 0
VP

i =1
� h

i eahs
as(� 0

i ; � 0
j ) =

NVP

k=1
' h

k

D
� 0

k ; � 0
j

E

Dh

; for j = 1 :::N 0
V :

(3.122)

The boundary integral equation associated with the boundary integral operatoreL ws
as admits

the variational problem

�
eL ws

as � VF h

�

8
>>><

>>>:

Given � h 2 eVh(Dh), �nd
�

' h
i

	 N 0
V

i =1 , such that

N 0
VP

i =1
' h

i
ebws

as (� 0
i ; � 0

j ) =
N 0

VP

k=1
� h

k

D
� 0

k ; � 0
j

E

Dh

; for j = 1 :::N 0
V :

(3.123)

In these variational problems we have kept the symbols of the bilinear forms from De�nition
3.1.3, abusing the notation, but they represent here bilinear forms induced by the corresponding
modi�ed operators over the new domain on integrationDh .

3.2.5 Boundary element computations

In this subsection we will describe how to compute numerically the bilinear forms asso-
ciated with the previous �nite-dimensional variational problems for the corresponding basis
functions. Let us �rst establish the key numerical tool underlying all other boundary integral
computations.

Remark 3.2.2 (Integrating K ws over pairs of arbitrary triangles) . The main tool behind the
numerical computation of the bilinear forms associated with the four �nite-dimensional varia-
tional problems from De�nition 3.2.6 is the integration of the kernel K ws over any two pairs
of triangles, denoted here ask1 and k2, in R3:
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Z

k1

Z

k2

K ws(x ; y )dk1(x )dk2(y ) =
Z

k1

Z

k2

dk1(x )dk2(y )
4� kx � yk

: (3.124)

This integral is computed using a 6 point Gauss-Lobatto quadrature scheme when triangles
k1 and k2 are separated. If the triangles are adjacent (or if they are the same triangle) the
integral is computed analytically as described in [34, Annex D.12] and [11]. Later in this
subsection, trianglesk1 and/or k2 from (3.124) will be triangles t in Th , sub-triangles of typet̂,
or sub-triangles of type~t (refer to De�nition 1.6.3). This will be useful when integrating over
pairs piece-wise polygonal elements ineTh or eT 0

h .

We will now proceed to specify the way in which the numerical computation of the bilinear
forms will be performed. For integrations over piece-wise polygonal elements, we will follow
Notation 3.2.1 and denotek 2 L i the fact that a sub-triangle k is one of the sub-triangles that
constitute a piece-wise polygonal elementL i 2 eTh . In this case, sub-trianglesk can only be
of type t̂. We will use the same notation, denoting byk 2 M i the fact that a sub-triangle k
is one the sub-triangles that constitute a piece-wise polygonal elementM i 2 eT 0

h . In this case,
sub-triangles k can either be of type t̂, ~t or even t (refer to De�nition 1.6.3). For couples of
identi�ed sub-triangles km and kn , or their projections onto the upper or lower half-spheres,
the integration of K ws can be performed as indicated by the previous remark, i.e. Remark
3.2.2.

Notation 3.2.2 (Projected triangles). For any given triangle k with vertices on Dh , we will
denote byk� its projection into the upper o lower projected domainsS�

h .

Proposition 3.2.1 (Computation of bilinear variational forms associated with eL ws
s and eL ws

as ).
The values of the bilinear forms associated with the weakly singular integral operatorseL ws

s and
eL ws

as for the piecewise constant basis functions are:

eaws
s (� i ; � j ) =

Z

L i

Z

L j

K ws �
x + ; y + �

dL i (x )dL j (y ) +
Z

L i

Z

L j

K ws �
x � ; y + �

dL i (x )dL j (y ); (3.125)

ebws
as (� 0

i ; � 0
j ) =

Z

M i

Z

M j

K ws �
x + ; y + �

dM i (x )dM j (y ) �
Z

M i

Z

M j

K ws �
x � ; y + �

dM i (x )dM j (y ): (3.126)

Proof This comes easily from considering the bounded support of elementsL i and M i and the
de�nition of the bilinear forms in De�nition 3.1.3. �

Notation 3.2.3 (Components of unit vector normal to a triangle). Given a triangle k in R3

we will denote byn k its unit normal vector, and by n k
i , for i = 1 ; 2; 3, its coordinates.

De�nition 3.2.7 (Approximation of elementary integrals of K ws over piece-wise polygonal
elements). We will use the following approximations, signaled by� , for the integration of the
weakly singular kernel with projected arguments:

Z

L i

Z

L j

K ws �
x � ; y + �

dL i (x )dL j (y )�
X

km � L i

X

kn � L j

�
�
�n

k �
m

3 n k +
n

3

�
�
�
Z

k �
m

Z

k +
n

K ws (x ; y ) dk�
m (x )dk+

n (y ); (3.127)

Z

M i

Z

M j

K ws �
x � ; y + �

dM i (x )dM j (y )�
X

km � M i

X

kn � M j

�
�
�n

k �
m

3 n k +
n

3

�
�
�
Z

k �
m

Z

k +
n

K ws (x ; y ) dk�
m (x )dk+

n (y ): (3.128)

Proposition 3.2.2 (Computation of bilinear variational forms associated with eL hs
s and eL hs

as).
The values of the bilinear forms associated with the hypersingular integral operatorseL hs

s and
eL hs

as for the piecewise a�ne basis functions are:

eahs
as(� 0

i ; � 0
j ) =

D
eL ws

s
��!
curl Dh � 0

i ;
��!
curl � 0

j

E

Dh

+

*

eL ws
as

�
1
w

@�0i
@�x

�
;

1
w

@�0j
@�y

+

Dh

; (3.129)
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ebhs
s (� i ; � j ) =

D
eL ws

as
��!
curl Dh � i ;

��!
curl Dh � j

E

Dh

+
�

eL ws
s

�
1
w

@�i
@�x

�
;

1
w

@�j
@�y

�

Dh

: (3.130)

Proof This follows straightforwardly from the de�nition of the bilinear forms. �

De�nition 3.2.8 (Approximation of the elementary integrals for a�ne functions over trian-
gles). We will approximate the integrals involved in the previous proposition. The �rst dual
product of the bilinear forms (3.129) and (3.130) will be computed as:

D
eL ws

s=as
��!
curl D� i ;

��!
curl � j

E

Dh

=
X

tm 2 Tv ! t (v i )

X

tn 2 Tv ! t (v j )

D
eL ws

s=as
��!
curl Dh � tm

i ;
��!
curl Dh � tn

j

E

Dh

; (3.131)

with
D

eL ws
s=as

��!
curl Dh � tm

i ;
��!
curl Dh � tn

j

E

Dh

=
�
am

i an
j + bm

i bn
j

� Z

tm

Z

tn

K ws(x + ; y + )dtm (x )dtn (y )

�
�
am

i an
j + bm

i bn
j

� Z

tm

Z

tn

K ws(x � ; y + )dtm (x )dtn (y );

(3.132)

and
Z

tm

Z

tn

K ws(x � ; y + )dtm (x )dtn (y ) �
�
�
�n t �

m
3 n t+

n
3

�
�
�
Z

t �
m

Z

t+
n

K ws(x ; y )dt�
m (x )dt+

n (y ): (3.133)

Let us �rst de�ne function Fw for points x ; y 2 Dh , triangles m and n, and vertices i and
j of Th :

Fw(x ; y ; m; n; i; j ) =
1

w(x )w(y )

�
x �

�
bm

i
� am

i

�� �
y �

�
bn

j
� an

j

��
; (3.134)

where am
i , bm

i , an
j , and bn

j are de�ned in De�nition 3.2.4.

The second dual product of the bilinear forms (3.129) and (3.130) will be computed as:

�
eL ws

s=as

�
1
w

@�i
@�x

�
;

1
w

@�j
@�y

�

Dh

=
X

tm 2 Tv ! t (v i )

X

tn 2 Tv ! t (v j )

*

eL ws
s=as

�
1
w

@�tm
i

@�x

�
;

1
w

@�tn
j

@�y

+

Dh

; (3.135)

with

*

eL ws
s=as

�
1
w

@�tm
i

@�x

�
;

1
w

@�tn
j

@�y

+

Dh

=
Z

tm

Z

tn

K ws(x + ; y + )Fw(x ; y ; m; n)dtm (x )dtn (y )

�
Z

tm

Z

tn

K ws(x � ; y + )Fw(x ; y ; m; n)dtm (x )dtn (y );

(3.136)
and

Z

t m

Z

t n

K ws (x � ; y + )Fw (x ; y ; m; n)dtm (x )dtn (y ) � F (r m
c ; r n

c ; m; n; i; j )
Z

t m

Z

t n

K ws (x � ; y + )dtm (x )dtn (y );

(3.137)
where r m

c and r n
c are the centroids of trianglestm and tn .
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3.2.6 Galerkin matrices

Using the previously de�ned boundary element computations we will proceed to de�ne
the construction of the Galerkin matrices associated with the new modi�ed boundary integral
equations.

De�nition 3.2.9 (Galerkin matrices associated with the new modi�ed operators). We will de-
�ne the Galerkin matrices associated with the bilinear forms described in this section. These ma-
trices will be used in the resolution of boundary integral equations associated with the proposed
operators for testing purposes and later in preconditioning methods. We de�neSh

s 2 CNV � NV

as
Sh

s [i; j ] = eaws
s (� i ; � j ); for i; j = 1 :::NV : (3.138)

We de�ne Sh
as 2 CN 0

V � N 0
V as

Sh
as[i; j ] = eaws

as (� 0
i ; � 0

j ); for i; j = 1 :::N 0
V : (3.139)

We de�ne N h
s 2 CNV � NV as

N h
s [i; j ] = eahs

s (� i ; � j ) + � h� i ; � j i Dh
; for i; j = 1 :::NV : (3.140)

We de�ne N h
as 2 CN 0

V � N 0
V as

N h
as[i; j ] = eahs

as(� 0
i ; � 0

j ); for i; j = 1 :::N 0
V : (3.141)

The variational problem associated witheL hs
s is being modi�ed in (3.140), augmented with a

parameter � 2 R+ to eliminate the kernel space. It becomes evident from (3.61) in Proposition
3.1.3 that the modi�ed integral operator eL hs

s has the constant functions onDh as kernel space
(since they can be spanned by functiony0

0, and l = 0 ) � l = 0 ).

Remark 3.2.3 (Computational implementation) . The variational problems, as well as all the
following computational experiments regarding preconditioning, have been implemented using
several computational languages and libraries. The main programs were implemented using
C++ along the style of [17]. Core routines for the integration ofK ws for any two triangles in
R3 have been coded in FORTRAN, though accessed fromC++ , from slight modi�cations of the
code explained in [34]. Scienti�c computing libraries such as LAPACK [6] and EIGEN [27]
were used to perform matrix operations and condition number computations. BOOST scienti�c
library for C++ was used for the computation of values of special functions (� function and
Spherical Harmonics) [1]. Conformal mesh approximation of the surfacesD, S and S+ (and
other geometries to be exhibited in the nest subsections) were done using Gmsh [21].

3.2.7 Benchmarks

In this subsection we will test the numerical implementation of the Galerkin matrices arising
from the variational problem using the described discretization and boundary element compu-
tations. By solving boundary integral equations associated with the new modi�ed boundary
integral operators for given data we can compare the computed results with the known solu-
tions. Using Proposition 3.1.3, boundary integral equations with known exact solutions can
be considered for each one of the four modi�ed boundary integral operators on the disk. Ap-
proximations � h , � h , gh and ' h can then be computed with the �nite-dimensional variational
problem from De�nition 3.2.6 using the described boundary element computations. Table 3.2
shows four boundary integral equations for given data, each one associated with one of the new
modi�ed boundary integral operators on the disk, and their known exact solutions (as given
by Proposition 3.1.3). We will exhibit the of error of the computed solutions for the boundary
integral equations on Table 3.2, in order to show that the proposed numerical method is valid,
despite not having a priori error estimations.
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Table 3.2: Boundary integral equations for the modi�ed integral operators to be used as bench-
mark cases.

Variational Problem Integral Equation Exact Solution Computed Solution

eL ws
s � VF h eL ws

s � = y1
1
3 � = y1

1
w � h

eL ws
as � VF h eL ws

as ' = y1
2
5 ' = y1

2
w ' h

eL hs
s � VF h eL hs

s g = � 2y1
1

3w g = y1
1 gh

eL hs
as� VF h eL hs

as � = � 6y1
1

7w � = y1
2 � h

We will be interested in the convergence of the relative error by which the computed solu-
tions approximate the exact ones. In what follows, we will show this relative error convergence
using the Sobolev norms, for which an expression was established in Proposition 2.7.16, and
using the norms induced by the modi�ed boundary integral operators in De�nition 3.1.4.

Relative error convergence in Sobolev norms

Let us consider the four boundary integral equations and their variational problems from
Table 3.2. We will be interested in the convergence of the associated relative error in Sobolev
norms, as it will be summarized in Table 3.3

Table 3.3: Sobolev norms relative errors for the boundary integral equations for the modi�ed
integral operators.

Variational Problem Exact Solution Computed Solution Relative Error

eL ws
s � VF h � � h

k� � � hkaws
s

k� kaws
s

eL ws
as � VF h ' ' h

k' � ' hkbws
as

k' kbws
as

eL hs
s � VF h g gh

kg � ggkbhs
s

kgkbhs
s

eL hs
as� VF h � � h

k� � � hkahs
as

k� kahs
as

In the following �gures, Figure 3.6, 3.7 & 3.8 (for the three types of mesh sets described in
Table 3.1), we will show the convergence of the relative error of the computed solutions from
Table 3.2 & 3.3 for the di�erent variational problems for di�erent mesh re�nements measured
by the discretization parameter h of Dh .
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Figure 3.6: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of typeMesh set #1 with
mesh re�nement parameter h of Dh

Figure 3.7: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of typeMesh set #2 with
mesh re�nement parameter h of Dh
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Figure 3.8: Convergence of the relative error in Sobolev norms between the exact solutions and
the computed solutions described in Table 3.2 using a mesh set of typeMesh set #3 with
mesh re�nement parameter h of Dh

Relative error convergence in modi�ed norms

Let us consider the four boundary integral equations and their variational problems from
Table 3.2. We will be interested in the convergence of the associated relative error in the norms
induced be the modi�ed integral operators, as it will be summarized in Table 3.4

Table 3.4: Modi�ed norms relative errors for the boundary integral equations for the modi�ed
integral operators..

Variational Problem Exact Solution Computed Solution Relative Error

eL ws
s � VF h � � h

k� � � hkeaws
s

k� keaws
s

eL ws
as � VF h ' ' h

k' � ' hkebws
as

k' kebws
as

eL hs
s � VF h g gh

kg � ggkebhs
s

kgkebhs
s

eL hs
as� VF h � � h

k� � � hkeahs
as

k� keahs
s

In the following �gures, Figure 3.9, 3.10 & 3.11 (for the three types of mesh sets described
in Table 3.1) , we will show the convergence of the relative error of the computed solutions from
Table 3.2 & 3.4 for the di�erent variational problems for di�erent mesh re�nements measured
by the discretization parameters h of Dh .
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Figure 3.9: Convergence of the relative error in modi�ed norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of typeMesh set #1 with
mesh re�nement parameter h of Dh

Figure 3.10: Convergence of the relative error in modi�ed norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of typeMesh set #2 with
mesh re�nement parameter h of Dh
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Figure 3.11: Convergence of the relative error in modi�ed norms between the exact solutions
and the computed solutions described in Table 3.2 using a mesh set of typeMesh set #3 with
mesh re�nement parameter h of Dh

Validation of the numerical method

Remark 3.2.4 (A posteriori validation of the numerical implementation) . Figures 3.6, 3.7 &
3.8, and Figures 3.9, 3.10 & 3.11 show the a posteriori error convergence, strongly suggesting
the validity of the mesh partition process and the boundary element computations.

Remark 3.2.5 (Variational problems allow for the resolution of boundary integral equations
for disk basis function data). These results also suggest that the variational problems from
De�nition 3.1.5 are adequate in that, even if the bilinear forms are not assured to be coercive
for the relevant trace spaces indicated for them (relevant for the symmetric Dirichlet and anti-
symmetric Neumann problems, i.e., eH 1=2(D), H � 1=2(D), eH � 1=2(D), and H 1=2(D)). They are
coercive in some spaces spanned by the disk basis functions and where the bilinear forms can
induce coercive bilinear forms (De�nition 3.1.4), and where boundary integral equations for
the modi�ed operators can be correctly posed using right-hand side data from the set of basis
functions.
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3.3 Preconditioning

In the previous section it was argued that the boundary element implementation for the
bilinear forms induced by the modi�ed boundary integral operators was correct in the sense
that their Galerkin matrices correctly represent their associated variational problems, providing
solutions of diminishing relative error to the associated boundary integral equations of known
solutions. In this section we will study these Galerkin matrices in their use as preconditioners.
We will �rst describe the construction of the preconditioning matrices following the strategy
from De�nition 2.1.1 outlined by Theorem 2.1.1, but using the modi�ed boundary integral
operators.

In a �rst part of this section we will study the mutual preconditioning e�ect of the Galerkin
matrices from De�nition 3.2.9. In order to do so, we will build the bases' duality pairing
matrix D from Theorem 2.1.1. The Galerkin matrices associated with the modi�ed integral
operators will prove to be mutual optimal preconditioners. This will provide us with relevant
information on the stability of the duality pairing of the basis from the sub-spaces of the dual
spaces involved in the boundary integral equations for the disk screen. It will also allow us to
extract some conclusions about the variational problems from De�nition 3.1.5. In the second
part of this section we will use these Galerkin matrices to precondition the matrices associated
with operators S and N , related to the boundary integral equations for the symmetric Dirichlet
and anti-symmetric Neumann problems. In a third and fourth part we will extend the use of
these preconditioners to the case of the Helmholtz equation and to other screens, modifying
the weight function w.

3.3.1 Mutual preconditioning of the Galerkin matrices for the modi�ed
boundary integral operators

In order to build preconditioning matrices as outlined in the optimal preconditioning strat-
egy from De�nition 2.1.1, we will take bilinear operator d from Theorem 2.1.1 to be the duality
pairing, with which we will build the bases' duality pairing matrices.

De�nition 3.3.1 (Bases' duality pairing matrices). Let us consider the following matrices for
a triangular mesh Th for the conformal triangular approximation Dh of D, with NV vertices,
of which N 0

V are internal.

We de�ne D h
D 2 RNV � NV as:

D h
D [i; j ] = h� i ; � j i Dh

; for i; j = 1 :::NV : (3.142)

We de�ne D h
N 2 RN 0

V � N 0
V as:

D h
N [i; j ] =



� 0

i ; � 0
j

�
Dh

; for i; j = 1 :::N 0
V : (3.143)

Remark 3.3.1 (Bases duality pairing matrices are sparse). Because the chosen bases for the
boundary element spaces have local support, matricesD h

D and D h
N will be sparse. This will

result in a lower inversion complexity, when required in building preconditioning matrices, as
stated in Remark 2.1.3

We now have all the necessary elements to build the preconditioning matrices, following
the optimal preconditioning strategy from De�nition 2.1.1 taking the preconditioning operator
to be not the exact inverses, for which we do not have an explicit variational formulation, but
the modi�ed integral operators ( eL hs

s and eL ws
as ), for which we do.

De�nition 3.3.2 (Preconditioning matrices). Let as consider matrices N h
s and Sh

as from
De�nition 3.2.9, associated with the modi�ed integral operators eL hs

s and eL ws
as , and matrices D h

S
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and D h
N from De�nition 3.3.1, to de�ne the following preconditioning matrices as in Theorem

2.1.1. We de�ne M h
D 2 CNV � NV as

M h
D =

�
D h

D

� � 1
N h

s

�
D h

D

� � H
: (3.144)

We de�ne M h
N 2 CN 0

V � N 0
V as

M h
N =

�
D h

N

� � 1
Sh

as

�
D h

N

� � H
: (3.145)

We will now consider using matrix M h
D to precondition matrix Sh

s and matrix M h
N to

precondition matrix N h
as. These two matrices on which to apply the preconditioners come from

the variational problems from De�nition 3.1.5 and do not correspond to the variational problems
from Proposition 2.7.17, which are linked to operatorsS and N . In doing this, however, will
we show some interesting properties of the variational problems stated in De�nition 3.1.5, and
we will extract conclusions regarding the discretization and the boundary element method
proposed.

Figures 3.12, 3.13 and 3.14 will show, for the three di�erent types of mesh sets considered,
the evolution of the condition number for matrices Sh

s , Sh
as, N h

s and N h
as, and that of the

preconditioned matricesM h
D Sh

s and M h
N N h

as.

Figure 3.12: Preconditioning of matrix Sh
s by matrix M h

D (left) and matrix N h
as by matrix

M h
N for the mesh set of typeMesh set #1.
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Figure 3.13: Preconditioning of matrix Sh
s by matrix M h

D (left) and matrix N h
as by matrix

M h
N for the mesh set of typeMesh set #2.

Figure 3.14: Preconditioning of matrix Sh
s by matrix M h

D (left) and matrix N h
as by matrix

M h
N for the mesh set of typeMesh set #3.

As appreciated from the previous �gures, matricesSh
s , Sh

as, N h
s , and N h

as are naturally
ill-conditioned, but they act as optimal mutual pre-conditioners.

Remark 3.3.2 (Spaces of the variational problem for the modi�ed integral operators). Even
if the bilinear forms induced by the modi�ed boundary integral operators are not coercive in
the relevant Sobolev trace spaces speci�ed for the variational problem from De�nition 3.1.5 (as
it was stated in the �nal comments to Section 3.1), the fact that they provide optimal mutual
preconditioning suggests that the modi�ed boundary integral operators do induce coercive bilinear
forms in the spaces spanned by the disk basis functions, and that these are pair-wise mutual
duals.

Remark 3.3.3 (Stability of the bases duality pairing for the boundary element spaces). As
an extension to the previous remark, the fact that modi�ed boundary integral operators provide
optimal mutual preconditioning suggests that the bases' duality pairing for basis of the spaces
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eVh(Dh) and Wh(Dh) is also stable, as it was shown to be the case forfWh(Dh) and Vh(Dh) in
Proposition 2.2.1, where, for a closed surface� , it's evident that fWh(� h) = Wh(� h).

In the next subsection, we will use the preconditioning matrices from De�nition 3.3.2 on
the matrices associated with the boundary integral operatorsS and N , associated with the
symmetric Dirichlet and the anti-symmetric Neumann problems.

3.3.2 Preconditioning the matrices for the symmetric Dirichlet and anti-
symmetric Neumann problems on the disk

We will now specify the construction of the Galerkin matrices for the symmetric Dirichlet
and the anti-symmetric Neumann problems for the disk screen. This matrices will be de�ned
as in De�nition 1.6.17 and as in Subsection 2.2.1, but now explicitely for open surfaces using
the tools and de�nitions developed in this chapter.

De�nition 3.3.3 (Galerkin matrices associated with S and N ). Let us de�ne the Galerkin
matrices associated with boundary integral operatorsS and N on the conformal triangular
approximation Dh for the disk. As usual, we denote byNV the number of vertices of the mesh
Th for Dh , of which N 0

V are internal.

We de�ne Sh 2 CNV � NV as

Sh [i; j ] = hS� i ; � j i Dh
; for i; j = 1 :::NV : (3.146)

We de�ne Sh 2 CN 0
V � N 0

V as

N h [i; j ] =


�N � 0

i ; � 0
j

�
Dh

+ �


� 0

i ; 1
�

Dh



1 ; � 0

j

�
Dh

; for i; j = 1 :::N 0
V ; (3.147)

with a parameter � 2 R+ to suppress the kernel space of operatorN (refer to Theorem 1.5.3),
as it was done for the Galerkin matrix associated with operatoreL hs

s from De�nition 3.2.9.

We will now consider the preconditioning e�ect of matrix M h
D on matrix Sh , and of matrix

M h
N on matrix N h . Figures 3.15, 3.16 & 3.17 will show the evolution of the condition number of

matrices Sh and N h , and the preconditioned matricesM h
D Sh and M h

N N h using the di�erent
types of mesh sets de�ned.

Figure 3.15: Preconditioning of matrix Sh by matrix M h
D (left) and of matrix N h by matrix

M h
D for a mesh set of typeMesh set #1.
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Figure 3.16: Preconditioning of matrix Sh by matrix M h
D (left) and of matrix N h by matrix

M h
D for a mesh set of typeMesh set #2.

Figure 3.17: Preconditioning of matrix Sh by matrix M h
D (left) and of matrix N h by matrix

M h
D for a mesh set of typeMesh set #3.

In stark di�erence with the cases from Subsection 3.3.1, matrix M h
D is not an optimal

preconditioner for Sh as it was for Sh
s , and matrix M h

N is not an optimal preconditioner for
N h as it was for N h

as. As suggested in Remark 3.3.3, the dual pairing of bases for the �nite-
dimensional spaces is stable in the sense of (2.3) as required by Theorem 2.1.1, and as it was
proven for the closed surfaces in Proposition 2.2.1. Also, as suggested by Remark 3.3.2, the
bilinear forms induced by the modi�ed boundary integral operators are coercive and continuous
in some spaces, but their coercivity and continuity was not assured on the relevant Sobolev
trace spaces for the symmetric Dirichlet and anti-symmetric Neumann problems for the disk
(as warned in the closing remarks for Section 3.1).

The fact that matrix M h
D is not an optimal preconditioner for Sh as it was for Sh

s , and
matrix M h

N is not an optimal preconditioner for N h as it was for N h
as, strongly suggests that

it is the case that the bilinear forms induced by the modi�ed boundary integral operators are
not coercive and continuous in the relevant Sobolev trace spaces for the symmetric Dirichlet
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and anti-symmetric Neumann. However, there is a signi�cant improvement in the condition
number of the preconditioned matrices, which is due to the radial behavior of the kernels of
the modi�ed boundary integral operators. This was the guiding principle in devising operator
preconditioning techniques from the modi�cations of the exact inverses developed in Chapter
2.

When preconditioning, the bilinear forms ebhs
s and ebws

as used to precondition the matrices
associated to the boundary integral operatorsS and N respectively, can be shown to fail to be
continuous and coercive in the relevant spaces:H 1=2(D) and H � 1=2(D). We will analyze this
carefully in what follows, picking up the discussion at the end of Section 3.1

ebhs
s is not continuous in H 1=2(D)

In order for ebhs
s to be continuous in H 1=2(D) there would have to be a constantC > 0 such

that

� l � C� m
l ; (3.148)

for all l � 0 and l + m even. However, the opposite can be shown: there is no constantC > 0
such that inequality hold. Given the fact that � l

l � � m
l for all l � 0 and l + m even, it su�ces

to show that there is no constant C > 0 such that

� l � C� l
l ; (3.149)

or equivalently, that the series � l =� l
l does not has an upper bound for alll � 0. The following

�gure shows that this is the case.

Figure 3.18: No-continuity of ebhs
s in H 1=2(D) shown by the unboundness of� l =� l

l .

ebhs
s is not coercive in H 1=2(D)

In order for ebhs
s to be coercive inH 1=2(D) there would have to be a constantC > 0 such

that

� l � C� m
l ; (3.150)
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for all l � 0 and l + m even. The existence of such a constant is impossible, since� 0 = 0.
However, it's worth noting that in the subspace of functions from H 1=2(D) with zero mean,ebhs

s
would be coercive. Noting that � 0

l � � m
l , the existence ofC > 0 for l � 1 such that (3.150)

holds can be assured by the existence of a constantC0 > 0 such that

� l � C0� 0
l ; (3.151)

or equivalently, that the series � l =� 0
l has a lower bound for alll � 1. The following �gure shows

that this is the case.

Figure 3.19: Coercivity ofebhs
s for zero-mean functions ofH 1=2(D) shown by the lower boundness

of � l =� 0
l .

ebws
as is continuous in H � 1=2(D)

In order for ebws
as to be continuous in H � 1=2(D) there would have to be a constantC > 0

such that

� l �
C

� m
l

; (3.152)

for all l � 1 and l + m odd. Given the fact that � 0
l � � m

l for all l � 1 and l + m odd, it
su�ces to show that there is a constant C0 > 0 such that

� l �
C0

� 0
l
; (3.153)

or equivalently, that the series � l � 0
l has an upper bound for all l � 1. The following �gure

shows that this is the case.

122



Figure 3.20: Continuity of ebws
as in H � 1=2(D) shown by the boundness of� l � 0

l .

ebws
as is not coercive in H � 1=2(D)

In order for ebws
as to be coercive inH � 1=2(D) there would have to be a constantC > 0 such

that

� l �
C

� m
l

; (3.154)

for all l � 1 and l + m odd. Noting that � l � 1
l � � m

l , the existence ofC > 0 for l � 1 such
that (3.154) holds can be assured by the existence of a constantC0 > 0 such that

� l �
C0

� l � 1
l

; (3.155)

or equivalently, that the series � l �
l � 1
l has a lower bound for alll � 1. This is not the case, and

the non-existence of such a constant would be assured by the impossibility of the existence of
a lower bound for the series� l �

l � 1
l for l � 1. However, a simple numerical experiment does not

provide a convincing argument, as the following �gure illustrates.
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Figure 3.21: No-coercivity ofebws
as in H � 1=2(D) shown by the lower unboundness of� l �

l � 1
l .

An explicit determination of the limit of the sequence provides the argument required to
assure thatebws

as is not coercive in H � 1=2(D).

Lemma 3.3.1 (Limits of the sequence associated with the coerciveness ofebws
as in H � 1=2(D)) .

The limits value of the sequence� l �
l � 1
l is:

lim
l !1

� l �
l � 1
l = 0 : (3.156)

Proof Using the de�nition of � m
l we can write

� l � 1
l =

� ( l + 1=2) � (3 =2)
� ( l ) � (1)

; (3.157)

where � stands for the special function Gamma.

Using the properties of the Gamma function, we can rewrite

� l � 1
l =

�
22l+1

(2l)!
l !(l � 1)!

: (3.158)

We now consider the sequence

� l �
l � 1
l =

�
22l (2l + 1)

(2l)!
l !(l � 1)!

: (3.159)

We recall that Stirling's approximations provide us with the following bounds for the fac-
torial of numbers n > 0: p

2�n n+1 =2e� n � n! � enn+1 =2e� n : (3.160)

Using Stirling's approximations from (3.160) we can produce bounds for the factorial factors
in the expression of the sequence (3.159):

(2l)! � e(2l)2l+1 =2e� 2l ; (3.161)

1
l !

�
el

p
2�

1
l l+1 =2

; (3.162)
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1
(l � 1)!

�
el � 1
p

2�

1
(l � 1)l � 1=2

: (3.163)

Using these bounds we can now establish a bound for the sequence (3.159) as

� l �
l � 1
l � 22=3 l l

(2l � 1)(l � 1)l � 1=2
: (3.164)

A rearrangement of terms,

� l �
l � 1
l � 22=3

�
l

l � 1

� l p
l � 1

l � 1
; (3.165)

shows that
lim
l !1

� l �
l � 1
l = 0 : (3.166)

�

In the next subsections we will extend the principle explored in the present one to con�rm
that the Laplace preconditioners preserve their preconditioning capabilities when applied to the
Helmoltz case when the surface is a screen (open), and we will further extend it to adapt this
preconditioning method to cover screens other than the disk by modifying the weight function
w.

3.3.3 The Helmholtz problem for the unit disk in three dimensions as a
compact perturbation

In Section 2.2 it was shown that the boundary integral operators for the Laplace problems
provided equally good preconditioners for the integral operators for the Helmholtz problems
when the surface on which they were posed were Lipschitz-regular. That is, the Galerkin
matrix associated with the bilinear form induced by S, provides an optimal preconditioner for
the Galerkin matrix associated with the bilinear form induced by N k , and that the Galerkin
matrix associated with the bilinear form induced by N provided an optimal preconditioner for
the Galerkin matrix associated with the bilinear form induced by Sk (following Notation 2.2.1).
In what follows we will apply the same reasoning to the case of screen obstacles using the disk
as an example. For that, we will de�ne the Helmholtz Galerkin matrices for operatorsSk and
N k , now explicitly for the disk screen.

De�nition 3.3.4 (Galerkin matrices associated withSk and N k ). Let us de�ne the Galerkin
matrices associated with boundary integral operatorsSk and N k on the conformal triangular
approximation Dh for the disk. As usual, we denote byNV the number of vertices of the mesh
Th for Dh , of which N 0

V are internal.

We de�ne Sh
k 2 CNV � NV as

Sh
k [i; j ] =

D
Sk � i ; � j

E

Dh

; for i; j = 1 :::NV : (3.167)

We de�ne N h
k 2 CN 0

V � N 0
V as

N h
k [i; j ] =

D
�N k � 0

i ; � 0
j

E

Dh

; for i; j = 1 :::N 0
V : (3.168)

Remark 3.3.4 (The bilinear forms for the Helmholtz case are compact perturbations of the
ones for the Laplace case). By the same reasoning as that exposed in Subsection 2.2.2, the
bilinear forms for the Helmholtz case for the disk, i.e.



Sk � ; � t

�
Dh

and


�N k � ; � t

�
Dh

, are
compact perturbations of the ones used for the Laplace case and de�ned in De�nition 3.3.3.
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Figure 3.22 will show the evolution of the condition number of matricesSh
k and N h

k , de�ned
in De�nition 3.3.4, and the evolution of the condition number of the preconditioned matrices
M h

D Sh
k and M h

N N h
k using the pre-conditioners de�ned in De�nition 3.3.2, for diminishing

discretization parameter h.

Figure 3.22: Preconditioning of matrix Sh
k by matrix M h

D (left) and of matrix N h
k by matrix

M h
D for a mesh set of typeMesh set #1.

The same preconditioning e�ect is observed when preconditioning the symmetric Dirichlet
and the anti-symmetric Neumann Helmholtz problem for the unit disk using the Laplace pre-
condi�oners. Figure 3.23 exempli�es the scenario of a wave propagation numerical simulation
where the disk screen is the obstacle for an incoming wave.

Figure 3.23: Example of a numerical simulation of wave propagation where a disk screen is
the obstacle for an incoming wave, showing the incoming wave (left) and the scattered wave
(right).

3.3.4 Generalization to planar polygonal screens

The preconditioning e�ect of matrices M h
D and M h

N is achieved by selecting kernelseK hs
s

and eK ws
as that induce integral operators that, while not providing exact inverses for S and N ,

have kernels that behave similarly to those of the known inverses. This was related to the known
behavior of the jump of traces of the solutions of the Laplace problems, as stated in Remark
2.7.3, related to w(� ) and 1=w(� ). The weight function w was also intimately linked to the
relation between the sphere and the disk. This role manifests itself in the subsequent proposed
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method in the fact that vertical projection of point x on the disk onto the half-spheres, i.e.
x � , was separated by a quantityw(x ). This e�ect was included in the numerical method in
two di�erent ways: 1) considering the upper and lower conformal triangular approximations
S�

h that were produced with weight function w to perform the integrations involved in the
boundary element computations in Subsection 3.2.5, and 2) in the explicit use of the weight
function w in the proposed numerical scheme in (3.134).

In this section we will extend the action of the de�ned preconditioners to some planar
polygonal screens �, by preserving the behavior of the modi�ed integral operators' kernels near
the edges of the screen. To do so, we will propose a di�erent weight function for each screen �,
that will be related to the distance of a given point x 2 � to edge @� when in the vicinity of
this edge. We will begin by dividing the planar polygonal screen � into zones, and de�ning for
each one of them a distance function with which we will later de�ne a global modi�ed weight
function w� for screen �.

Let us state formally the de�nition of division by zones of a planar polygonal screen �.

De�nition 3.3.5 (Zone division of a planar polygonal screen). Let us consider a planar and
polygonal screen� divided in NZ disjoint zones f Z i g

NZ
i =1 such that each one of them reaches the

edge@� , i.e., for i = 1 :::NZ we haveZ i \ @� 6= ? , and such that the setZ i \ @� 6= ? belongs
to a line in R3. The set f Z i g

NZ
i =1 is called a zone division for the planar polygonal screen� .

Let us consider the case of a square-shaped and an L-shaped screen to illustrate this ex-
tended method. We will divide the square-shaped screen into four zones, and the L-shaped
screen into six zones as indicated in Figure 3.24 and in compliance with De�nition 3.3.5.

Figure 3.24: Zone division of a square-shaped screen (left) and an L-shaped screen (right).

Let consider the following geometrical de�nition that will be useful in de�ning the mentioned
zone-wise distance functions.

De�nition 3.3.6 (External edge line of a zone). For each zoneZ i of a zone divisionf Z i g
NZ
i =1

for a planar polygonal screen� , we will de�ne the external edge linè i as the only straight line
in R3 containing the segmentZ i \ @� 6= ? .

We can now formally de�ne the zone-wise distance-to-edge function.

De�nition 3.3.7 (Zone-wise distance-to-edge function). For each zoneZ i of a zone division
f Z i g

NZ
i =1 for a planar polygonal screen� , we will de�ne the zone-wise distance-to-edge function
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distZ i (x ) for a point x 2 Z i as
distZ i (x ) = dist (x ; ` i ) ; (3.169)

where function dist(�; �) is de�ned in De�nition 1.2.2.

Finally, using the zone-wise distance-to-edge function we can de�ne the global modi�ed
weight function w� for a planar polygonal screen �.

De�nition 3.3.8 (Global modi�ed weight function w� for a planar polygonal screen �). Given
a planar polygonal screen� divided in NZ disjoint zones f Z i g

NZ
i =1 , we de�ne the global modi�ed

weight function w� for x 2 � as

w� (x ) =

8
>><

>>:

p
distZ1 (x ); if x 2 Z1;

...
...q

distZN Z
(x ); if x 2 ZNZ :

(3.170)

Although this global modi�ed weight function could be discontinuous at the intersection of
zones in which a screen is subdivided, it is easy to produce continuous ones for a considerably
wide range of screen geometries, such as the ones depicted in Figure 3.24. We will focus
on these examples, using this global modi�ed weight functionw� to generate the mesh set
f � h ; � +

h ; � �
h g by means of vertical projections, where ��h are the upper and lower conformal

triangular approximation determined by vertical projections using function w� to project form
� h . Figures 3.25 & 3.26 illustrate the achieved mesh set for a square-shaped and an L-shaped
screen by showing �h and � +

h .

Figure 3.25: Discretized square-shaped screen �h (left) with its upper projection � +
h (right)

generated using the global modi�ed weight function w� .
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Figure 3.26: Discretized L-shaped screen �h (left) with its upper projection � +
h (right) gener-

ated using the global modi�ed weight function w� .

Given a planar polygonal screen � and given a chosen zone division for it, we use the global
modi�ed weight function w� over a conformal triangular approximation � h to generate the mesh
set f � h ; � +

h ; � �
h g. Together with replacing function w by w� in (3.134) this allows to rede�ne

the boundary element computations to generate the Galerkin matrices for the particular case
of a planar polygonal screen �. Using these matrices, we will test again the preconditioning
capabilities of matrices M h

D and M h
D computed with these prescribed modi�cations.

Figure 3.27 shows the evolution of the condition number of matrixSh and the condition
number of the preconditioned matrix M h

D Sh , and also the evolution N h and the condition
number of the preconditioned matrix M h

N N h , for diminishing minimum edge lengths h, all
while using a square-shaped screen. Figure 3.28 shows the evolution of the condition number
of matrix Sh and the condition number of the preconditioned matrix M h

D Sh , and the evo-
lution N h and the condition number of the preconditioned matrix M h

N N h for diminishing
discretization parameter h.

Figure 3.27: Evolution of the condition numbers forSh and M h
D Sh (left) and N h and M h

N N h

(right) for a squared-shaped screen � with diminishing discretization parameter h.
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Figure 3.28: Evolution of the condition numbers forSh and M h
D Sh , (left) and N h and M h

N N h

(right) for an L-shaped screen � with diminishing discretization parameter h.

Remarkably, the condition number has greatly improved, especially for the symmetric
Dirichlet problem, although it presents anomalies in its evolution as the discretization pa-
rameter diminishes. This is due to the fact that the broken angles on the edge of the screen
introduce other singularities on the jump of the traces, not described so far, and fall out of
the scope of the functional framework given by the available theorems provided in Section 2.3.
These anomalies are sensitive to the values� chosen to eliminate kernel spaces for the operator
eL hs

s , which explains why they only occur in the use of its associated matrixM h
D .
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Chapter 4

Applications to the Design and
Testing of Remote Perception
Technologies

In this chapter we will present some results related to the use of numerical simulations
in the assessment of remote sensing technologies such as the ground-penetrating radar. This
application example will highlight the need for robust and e�cient numerical simulation of
physical phenomena, such as the one outlined in Chapter 1, to which Chapters 2 & 3 suggest
ways of improving it.

As discussed in Section 1.7, computational complexity and numerical inaccuracy can severely
limit the usefulness of the application of numerical methods to solve partial di�erential equa-
tions modeling physical phenomena. This becomes especially true when the solution to a partial
di�erential equation has to be computed in numerous repetitions for di�erent parameters, or
when its solution has to be fed into a process that has a feedback loop that might amplify
the error. A wide variety of relevant applications that involve the evolution of some physical
system make these situations unavoidable, such as automated design, optimization, automatic
control, or the solution of some inverse problems. The ground-penetrating radar technology is
an example where multiple and numerous transmitting and receiving spatial positions are used
to determine some physical property of the underground. The assessment of a given type of
radar can thus be performed by computing the direct problems associated with each of the nu-
merous emitting-receiving positions to simulate physical wave propagation. Then, these results
to feed an inverse problem solver that will determine some parameter of the physical system
that was involved in the evolution of the direct physical problems. This procedure allows for
the assessment of the performance of a system before it is built, which in turn allows for a
more e�cient, and sometimes even a possible, development process.

In this chapter we will give a description of ground-penetrating radar systems, emphasizing
the ones that rely on time-harmonic radar signals. We will present a type of ground-penetrating
radar called holographic radar and a special variant. Next, we will discuss how to simulate the
propagation of radio waves using the Helmholtz equation for this chosen type of radar. This
will be a simpli�cation of the more precise but costly simulations using the Maxwell equations
for the electromagnetic phenomena. This simpli�cation is, however, a useful and standard
practice in the framework of the development of many remote perception technologies. This
discussion will include the modeling of reective radar targets, the treatment of the interface
between the air above-ground and the subsurface, the cost of solving a large number of wave
propagation problems (as required by this setting), and how the approach developed in the
previous chapter can help reduce this burden. Finally, the simulations will be used as examples
in the assessment of a radar imaging principle that, because it relies on many assumptions that
usually go unveri�ed, provides a case of study suited for the use of numerical simulations.
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4.1 Ground-penetrating radars

A ground-penetrating radar is a device that uses radio signals to gather physical informa-
tion from the underground of a given portion of land. More generally, they are considered to
be part of the subsurface radars, that include devices that use radio signals to gather physical
information that is otherwise inaccessible behind a wall, clothes, skin tissue, canopy, or other
material hiding a target of interest. The ground-penetrating radar often emits a radio signal
(unless it is a passive radar) that travels across the surface, reaches an underground area of
interest, and then is scattered back to the radar's antennas. The most common use for a
ground-penetrating radar is the location and identi�cation of underground objects that can
scatter an incoming radio wave depending on their reectivity, which is determined by di�er-
ent physical parameters. These objects can be, according to the application of the technology,
structures of archeological interest, pipes, bodies of water, cavities, undesired remnants from
previous industrial activities, and even unexploded ordnance or landmines. Using the backscat-
tered radio waves, a ground-penetrating radar can locate the reectivity, position, depth, and
possibly the shape of a reective target depending on its design. These physical parameters
that determine the reectivity of an underground target are of great importance in the descrip-
tion a physical scenario in which a ground-penetrating radar is to be used. Radio waves are
reected by interfaces between media with di�erent electromagnetic characteristics, which can
be modeled by the point-wise values of complex electrical permittivity and magnetic permeabil-
ity when time-harmonic radio waves are considered (cf. [63, Section 2.1]). A common scenario
is that of a bounded target buried within a su�ciently homogeneous underground material. In
this scenario, the contrast in the electromagnetic properties of the underground and those of
the target determine its reectivity. A relevant type of target is the totally reective target,
often called a hard boundary object. This type of target is such that all incoming waves are
reected and no carried energy penetrates into its interior. In what follows, we will consider
homogeneous above-ground and underground domains where homogeneous totally reective
targets can be buried. We will detail in the next sections the framework to be considered.

Ground-penetrating radar systems can be classi�ed according to numerous criteria. We will
provide some of them in the next subsection in order to precisely describe a given type. This
type will allow us to show the advantages attainable by more e�cient numerical simulations,
such as the ones achievable using the numerical method proposed in Chapter 3, and how this
can help in the testing and design of radar imaging methods.

4.1.1 Types of ground-penetrating radars

Ground-penetrating radar systems can be classi�ed according to di�erent and numerous
criteria. We will mention the ones that will become relevant to the description of the system
on which we will focus our attention.

Proximity to the ground surface

In the framework of the ground-penetrating radars, the proximity of the antennas of a
radar system to the surface hiding the relevant propagation domain where a target of interest
is possibly hidden, is one of the distinguishing characteristics. We will di�erentiate two types
of proximities that are relevant for practical reasons: 1) single domain, or contact ground-
penetrating radars, and 2) double domain or interface ground-penetrating radars.

Single domain, or contact ground-penetrating radars have their emitting and receiving
antennas in contact with the ground's surface or very close to it, thus generating relevant wave
propagation only in the underground domain; hence its name. These radars normally require
ground support to be put in position, and rely on ground transportation and mobility. This
has two major consequences: 1) there is interaction between the ground under analysis and
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radar equipment and/or even its operators, which can be problematic in the case of landmines,
unexploded ordnance or archeological sites, and 2) the e�ect of the geometry and reectivity
of the surface can be better controlled.

Double domain, or interface ground-penetrating radars have their emitting and receiving
antennas considerably above the surface of the ground under analysis, making the distance
that the wave travels above ground of importance, often introducing distorting e�ects depend-
ing on the geometry and reectivity of the interface surface between the above-ground and
underground. This is the case of airborne ground-penetrating radars, and has the advantage
of removing the possible mechanical interaction between the radar equipment and the ground,
and avoiding dependence on ground mobility which is often less agile, allowing less ground
coverage in a given amount of operation time.

Con�guration of transmitting and receiving positions

Radars in general, and ground-penetrating radars in particular, have antennas that emit
and receive the radio signals used to scan the surroundings or the underground. These antennas
can be the same or di�erent (for emission and reception), and a radar system can have one or
multiple antennas. One distinguishing characteristic is the spatial and temporal sequentiation,
and the type con�guration of the radar measurements. If the antennas of a radar system move
above the ground, their movement will be often much slower than the propagation speed of the
radio wave, so that a radar measurement can be considered as a still photograph. Variations
from this setting for high speed radar systems or targets can be taken into account considering
the doppler e�ect, but often fall outside the scope of ground-penetrating radars. Each one
of these measurements will be recorded by a number of antennas from the echoes produced
by the radio signal emitted by the same or possibly other antennas. According to this, we
will di�erentiate: 1) multi-bistatic ground-penetrating radars and 2) multi-monostatic ground-
penetrating radars.

A multi-bistatic (MBS) ground-penetrating radar records radar measurements from di�er-
ent antennas as they receive the backscattered radio signal emitted from other antennas. A
common con�guration is recording on all the antennas while only one is transmitting separately.

A multi-monostatic (MMS) ground-penetrating radar records in numerous positions the
backscattered radio signal using the same antenna that produced it. The relevant feature is
that emission and reception are produced in the same spatial position, and can in fact be
separate but close-by antennas depending on the application.

Time-domain or frequency-domain radars

One of the most relevant and distinguishing aspects of the di�erent types of ground-
penetrating radar, is the kind signal that they transmit and then receive back. The signal
that a radar system transmits through its antenna is generated internally in its electronic com-
ponents. This signal can be [40]: 1) a time-domain impulse signal, or 2) a frequency-domain
signal.

Time-domain impulse signals are characterized by short bursts of energy compacted into
a short duration of time that create a propagating wave that travels into the underground
generating echoes in its contact with the boundaries of reective buried targets when present.
The relative compactness in time of the signals allows for the echoes to arrive separately so that
they are distinguishable when their arrival time is determined. This information, together with
the speed of propagation of radio waves in the di�erent domains involved, provides relevant
spatial information about the targets that gave origin to the received reections. This kind of
wave phenomenon lies out of the scope of the modeling described in Chapter 1 and adopted
throughout this document, unless it is used with Fourier analysis decomposition techniques for
transient signals.
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Frequency-domain signals are characterized by continuous emission of a single-frequency,
time-harmonic radio wave, so that at a given time, the antenna receives the sum of all backscat-
tered reections, with di�erent amplitudes and phases according to the traveled distances and
possible attenuations. This radar type is also known as continuous-wave radar, and can be fur-
ther classi�ed in: 1) continuos-wave frequency-modulated and 2) holographic radars. The �rst
ones, not often used in ground-penetrating radars, introduce slight changes in the frequency
of the radio signal, and are suited to detect the presence of targets, and their range and speed
though doppler analysis. The second ones emit a phase-coherent single-frequency radio wave
and record at each receiving antenna the amplitude and the phase of the incoming backscat-
tered wave. They are called holographic radars because the principle used in taking radar
measurements is analogous to the optical recording of an holographic image using coherent
light illumination and interference on a photographic plate [2, Section 1.2] [54].

In what remains of this chapter we will consider a speci�c type of ground-penetrating radar.
According to our exhibited classi�cation characteristics, it falls under the interface, multi-
monostatic, holographic, ground-penetrating radar type. The motivation is closely linked to
the rise of airborne instrumentation using drones and the improvements on data storage and
treatment.

4.1.2 Airborne ground-penetrating radars

The ground-penetrating radar to be considered as an example in this chapter is intended
to be �t for use on board of a ight platform such a drone. This has determined some of its
characteristics, as the ones that have been speci�ed in the previous subsection. A line array of
multi-monostatic antennas, taking holographic radar measurement, is positioned in a drone or
other ying platform aligned perpendicular to the ight path. The di�erent antennas on the
line array are switched to take monostatic, time-harmonic, holographic radar measurements,
i.e., emitting a single-frequency, continuous-wave, and measuring the amplitude and the phase
of the sum of all incoming reected backscattered signals from the ground and the underground.
As this switching provides measurements of the di�erent antennas along the array, and as this
array travels over a portion of ground due to the movement along a ight path, the result
is a collection of NMMS amplitude and phase backscattered sample measurements taken at
points f r H

i gNMMS
i =1 contained in a surface above ground described by the movement of the

array on the air. This surface, which we will denote by � H contains the recorded hologram
of the double domain for the wave propagation scenario. This scenario consists of an above-
ground propagation domain 
 + and an underground propagation domain 
 � , separated by
the ground's surface, which we will denote as the interface surface �I . A target possibly buried
in 
 � , of boundary � T , is considered. Figure 4.1 illustrates the proposed scenario. In the case
of a single under domain radar, the hologram recording surface �H is just placed at the surface
of the ground.
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Figure 4.1: Illustration of an airborne line-array of antennas taking multi-monostatic radar
measurements over a given portion of land.

The interest on this con�guration lies in that it allows for recording of underground data
for large portions of terrains in short periods of time. This relies, however, on complementary
technologies such as precise ight positioning and navigation, laser telemetry of the determi-
nation of the shape of � I , and the storage and treatment of large volumes of data. Despite the
disadvantages of the stress put on the need for robust complementary technologies, and the
narrower range of ground-penetrating radar con�gurations usable in this setting, it o�ers sev-
eral advantages. Analyzing the underground of large portions of terrain can provide a critical
cost- and time-e�ective �rst assessment of a terrain when scouting for targets. This can become
critical when, for example, the intended radar targets are landmines and the assessment is set
to provide quick clearance of suspicious terrains or clear safe ground paths on it.

This particular radar type and sampling setting have many di�erent variants, but we have
focused on radar systems consistent with the developments achieved in [18] and [13]. This two
documents describe a precise procedure to take multi-monostatic holographic radar samples.
The second, particularly, is suited to produce the kind of sampling data described in this
subsection using airborne platforms.
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4.2 Simulating time-harmonic radio signals

In this section we will show how to take advantage of some of the proposed techniques
developed in the previous chapters to perform simulations of the wave propagation problem
involved in ground-penetrating radar techniques. There are di�erent ways of modeling these
phenomena, and while the Maxwell's equations provide a more comprehensive modeling that
takes into account physical characteristics particular to the electromagnetic behavior such as
polarization, the use of scalar wave equations is a standard recourse in the radar community
(cf. [2,23,58]). Doing this still yields useful conclusions, insight, and methods while simplifying
the theoretical framework to be used and the numerical complexity of the simulations involved.
In this chapter we will describe how to use di�erent models and assumptions to take advantage
of the preconditioning tools developed in the previous chapters to evaluate a given ground-
penetrating radar system.

We will begin by setting the precise assumptions and tools that will be used to treat scalar
wave propagation and scattering produced by the boundaries present in a simulation scenario,
be it a single underground domain, or double domain or interface scenario as described in the
classi�cation provided in Subsection 4.1.1. We will specify the notation to be used in each
one of these two scenarios, and the treatment that will be given to the reective underground
targets and to the air-ground interfaces. Next, we will address the cost of simulating a wave
propagation in these scenarios. It is in this part where the previous results will be shown to
be signi�cant by increasing time-e�ciency even for simplistic implementations. Finally, we
will state the precise problem de�nition for the computation of the holographic recording for
a single underground domain ground-penetrating radar scenario, and for an interface ground-
penetrating scenario. We will also provide examples of how these solutions look for relatively
complex radar targets such as the L-shaped screen presented in Subsection 3.3.4 from the
previous chapter. This screen target will be used throughout the chapter as it presents less
symmetries than other described screens such as the disk or the square-shaped screen. It will
also provide us with the chance to study the consequences of the preconditioning methods
described in Subsection 3.3.4.

4.2.1 General setting and assumptions

In the modeling of the behavior of wave propagation across surfaces, the Helmholtz equation
will use some assumptions that will give rise to a set o boundary conditions. Let us consider the
Helmholtz equation for acoustics governing the behavior of a scalar wave �eldu. Let us focus
a on given oriented interface surface �I with unit normal n with upper side + and lower side
� . We will call u� the upper/lower restriction of u. The interface separates two propagating
homogeneous domains, 
+ and 
 � , having wave velocitiesc+ and c� , wavelengths� + and � � ,
and wavenumbersk+ and k� respectively. Enforcing continuity conditions across the surface
� I , we have the following continuity conditions:

8
>><

>>:

u� (x ) = u+ (x ); for x 2 � I ;

@u�

@n
(x ) = n2 @u+

@n
(x ); for x 2 � I :

(4.1)

where n = c+ =c� = � + =� � = k� =k+ is the refraction index between the two media. The
second condition in (4.1) comes from applying the time-harmonic conservation of momentum
across the interface �I from (1.9). Figure 4.2 shows in detail the elements to be considered and
de�ned at the interface surface.
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Figure 4.2: Composition of the scalar wave �elds at both sides of an interface �I .

Let us shortly de�ne the geometrical settings for the two operation scenarios to be consid-
ered hereinafter: a single underground propagation domain and a double domain divided by
an interface. In the �rst one the antennas contained in the hologram plane �H are in contact
with the ground's surface and the only propagation domain is the underground 
� . In the
second one, the antennas contained in the hologram recording surface �H are above-ground and
there are two propagation domains: the above-ground and the underground. We will call the
above-ground domain 
 + , the underground domain 
 � , we recall that the surface containing
the multi-monosstatic radar measurement is �H , and the air-ground interface is � I . In both
cases we will denote by �T the surface of an underground radar target. Let us denote the above
ground (underground) wave velocity c+ (c� ), the wavelength � + (� � ), and the wavenumberk+

(k� ). Figure 4.3 shows both scenarios: the described single domain, and the interface scenario
for the holographic ground-penetrating radar simulations that will be speci�ed in this section.

Figure 4.3: General setting for a holographic ground-penetrating simulation for a single domain
(left) and a double domain scenario (right).

We will now adopt further speci�cations. We will consider a set of emitting-receiving
(monostatic) samples recording amplitude and phase valuesf cH

i gNMMS
i =1 , with cH

i 2 C, each
associated with one of the sampling pointsf r H

i gNMMS
i =1 � � H . A position r H

i is a position
where an antenna has emitted a time-harmonic radio signal, which will be modeled by a point
source represented by a Diract delta function. The scalar wave �eldu will be decomposed
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in uinc and uscat . Let uinc be each scalar �eld caused by the radiation of each antenna at
point r H

i 2 � H , propagating towards the radar target, be it in in a single domain or through
an interface. Let uscat be the corresponding scalar �eld scattered back by the surface of the
reective radar target � T . When the scenario to be considered consists of a double domain
or interface problem, their restrictions to the above-ground domain 
 + will be called u+

inc and
u+

scat , and their restrictions to the underground domain 
 � will be called u�
inc and u�

scat . Figure
4.5 illustrates the situation for a single domain scenario, and Figure 4.5 for a double domain
or interface scenario.

Figure 4.4: General setting for a holographic ground-penetrating simulation for a single under-
ground domain scenario showing the incident (left) and the scattered (right) wave.

Figure 4.5: General setting for a holographic ground-penetrating simulation for a double do-
main or interface scenario showing the incident (left) and the scattered (right) wave.
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4.2.2 Radar targets

For the examples to come in this chapter we will use totally reecting screen radar targets
with boundaries denoted by � T . This will impose the following Neumann boundary condition
on the exterior of the screen surface:

@u�scat

@n
(x ) = �

@u�inc

@n
(x ); for x 2 � T : (4.2)

This is in accordance with the more general conditions (4.1) when taken to be for a surface
� T considered totally reective. In this case the transmitted scalar wave �eld is zero and that
the exterior �eld is decomposed asu� = u�

inc + u�
scat , yielding the stated boundary condition

on � T .

For the examples that follow we will consider an L-shaped screen radar target to provide a
complex geometry that will allow us to test the resoling capacities of the ground-penetrating
radar to be simulated. Let us consider the following parametric square-shaped horizontal
screen:

� a� b
r =

�
(x1; x2; x3) : r1 �

a
2

� x1 � r1 +
a
2

; r2 �
b
2

� x2 � r2 +
b
2

; x3 = r3

�
: (4.3)

This parametric screen will prove useful in the de�nition of several surfaces in this chapter.
We will use this parametric squared-shaped screen to de�ne the radar target screen �T as:

� T =
�

� 0:2� 0:1
(0:05;0;0)

� [ �
� 0:1� 0:2

(0;0:05;0)

�
; (4.4)

which is a 20cm wide and 20cm long L-shaped at screen on the planex3 = 0. We will consider
a conformal triangular approximation � T

h for h � 5 millimeters. According to the requirements
for the relation between h and the wavelength � � from Section 1.7, this should safely allow us
to simulate up to frequencies resulting in� � = 5cm. Figure 4.6 shows the conformal triangular
approximation � T

h of � T for h � 5 milimeters and 2872 triangles.

Figure 4.6: Conformal triangular approximation � T
h of the radar target � T for h = 4 :9 milime-

ters resulting in 2872 triangles.
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4.2.3 Computational cost and conditioning

In this subsection we will analyze the cost of computing the wave scattered by the under-
ground screen target �T described in (4.4) using conformal triangular meshes, the boundary
element method, and the Galerkin matrix N h

k from (3.168) in De�nition 3.3.4 to solve the anti-
symmetric Neumann Helmholtz problem for the screen �T (Problem 1.3.12 for Neumann data
(4.2)). We will consider and compare two ways of solving this problem: 1) directly solving the
linear system for matrix N h

k for screen as computed in De�nition 3.3.4, and 2) preconditioning
the matrix N h

k using a preconditioner M h
N computed as indicated in Subsection 3.3.4 before

solving the linear system now for the preconditioned matrix M h
N � N h

k . This second way of
solving a linear system will be indexed by the superscriptPC, meaning preconditioned, in the
several variables we will de�ne.

Let us consider di�erent conformal triangular approximations � T
h of the screen target �T

from (4.4) for di�erent discretization parameters h. With each discretization parameters h we
will associate the admissible shortest wavelength� � = 10 � h, a highest admissible wavenumber
k= 2�=� � or a highest admissible simulation frequencyf = c� =� � , for an underground wave
velocity c� . For each progressively �ner mesh approximation, indexed byh, we will compute the
matrix N h

k � and solve the associated linear system using the GMRES iterative method, taking
N iter iterations to be solved. Likewise, we will also considered the preconditioned linear system
for matrix M h

N � N h
k � and solve it also using the GMRES iterative method, now takingN P C

iter
iterations. Table 4.1 shows the number of trianglesNT , and the admissible wavelength� � in the
underground for the target � T approximated by progressively �ner triangular approximations
� T

h indexed by h. It also show the condition number of the associated preconditioned and
unpreconditioned matrix, and the number of iterations required in each case.

Table 4.1: Condition number and number of iterations required to solve the linear system
associated with unpreconditioned matrix N h

k and with the preconditioned matrix M h
N � N h

k
for progressively �ner meshes for the L-shaped screen �T using the GMRES iterative solver.
The row for the radar target chosen in Subsection 4.2.2 has been highlighted.

NT h � � k� cond2(N h
k � ) N iter cond2(M h

N N h
k � ) N P C

iter

176 0.019936 0.1993 31.5174 5.697 23 1.714 17
204 0.018175 0.1817 34.5792 6.758 25 1.777 18
388 0.013331 0.1333 47.1314 7.694 28 2.052 17
668 0.010116 0.1011 62.1132 8.381 63 2.495 18

1214 0.007398 0.0739 84.9305 11.486 82 3.047 22
2872 0.004969 0.0496 126.4352 12.984 122 6.730 29

It could be hastily concluded from Table 4.1 that applying matrix preconditioning might
increase e�ciency when solving a single direct problem, i.e., solving the backscattered wave
when the target has been reached by the incoming wave coming from a single emitter atr H

i
in the hologram recording surface �H . A closer look into the time-e�ciency of the processes
involved in preconditioning will indicate otherwise.

Let us consider the following de�nition of time lapses associated with di�erent parts of the
matrix computation and linear system solving in the context of the matrix preconditioning
methods described in Chapter 3.

De�nition 4.2.1 (Time lapses associated with linear systems solving and preconditioning).
Let us consider the di�erent conformal triangular approximations � T

h (of the radar target � T

from (4.4)) referred to in Table 4.1 and indexed by the discretization parameterh. For the
unpreconditioned linear system, let us de�ne the following time lapses in seconds:

� Tsetup(h): Time required to compute the matrix N h
k � for � T

h .

� TGMRES (h): Time required to compute the solution of the linear system using the GMRES
iterative method once the linear system has been assembled.
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� TLS(h): Time required to assemble and solve the linear associated withN h
k � given Neu-

mann data (4.2) for a single direct problem for single emitter/receiver in r H
i 2 � H , i.e.,

Tsetup(h) + TGMRES (h).

For the preconditioned linear system, let us de�ne the following time lapses in seconds:

� TPC (h): Time required to precondition matrix N h
k � for � T

h . This includes the time re-
quired to compute matrix Sh

as from (3.139) in De�nition 3.2.9, the time required to com-
pute matrix D h

N from (3.142) in De�nition 3.3.1, the time required to invert it, the time
required to compute matrix M h

N from (3.145) in De�nition 3.3.2 and the time multiply
it by N h

k � .

� TPC
setup(h): Time required to compute the matrixM h

N �N h
k � for � T

h , i.e., Tsetup(h)+ TP C (h).

� TPC
GMRES (h): Time required to compute the solution of the preconditioned linear system

using the GMRES iterative method once the linear system has been assembled.

� TPC
LS (h): Time required to assemble and solve the linear system associated withM h

N �N h
k �

given Neumann data(4.2) for a single direct problem for single emitter receiver inr H
i 2

� H , i.e., TPC
setup(h) + TPC

GMRES (h).

� Tsaved(h): Total time saved when solving a linear system for the anti-symmetric Neumann
Helmholtz problem due to preconditioning, i.e.TLS(h) � TPC

LS (h).

Remark 4.2.1 (The time required to assemble right-hand sides is neglected). In the time
lapses from De�nition 4.2.1 the time required to assemble the right-hand side of the linear
system has been intentionally neglected as its algorithmic complexity involved in doing so is
signi�cantly lower than the complexity involved in the other processes.

Remark 4.2.2 (Times are dependent on the machine used). The time needed to assemble
and solve a linear system also depends on the computer and the algorithms used. The matrix
inversion algorithm was chosen from the Eigen library as stated in Remark 3.2.3 (not optimized
for sparse matrices), and the machine used had a dual 3GHz Intel i7 core and 16GBytes of
RAM memory. Both parameters could be optimized to improve the required processing times,
but this wouldn't a�ect the argument made throughout this subsection.

We will see that while preconditioned linear systems can be solved faster, the over time-
e�ciency is not always poised to improve. Table 4.2 shows, for the same progressively �ner
triangular approximations � T

h of � T indexed by h, some of the time durations from De�nition
4.2.1.

Table 4.2: Time duration in seconds of the di�erent processes involved in matrix assembling,
preconditining and solving for progressively �ner triangular approximation � T

h of the screen
radar target � T .

NT h Tsetup TGMRES TLS TP C
setup TP C

GMRES TP C
LS Tsaved

176 0.019936 0.7288 0.0259 0.7548 4.2468 0.0169 4.2637 -3.5089
204 0.018175 0.9531 0.0311 0.9842 5.3685 0.0221 5.3907 -4.4064
388 0.013331 3.9945 0.0812 4.0758 18.2498 0.0357 18.2856 -14.2098
668 0.010116 11.199 0.4115 11.6111 47.4604 0.0974 47.5578 -35.9467

1214 0.007398 36.804 1.9721 38.7763 131.8325 0.7201 132.5525 -93.7762
2872 0.004969 236.57 10.3864 246.9604 652.3295 2.3754 654.7049 -407.7445

As anticipated, the last column of Table 4.2 shows that despite the fact that the proposed
preconditioning strategy from Subsection 3.3.4 allows for faster solving of the associated linear
system in less iterations, the overall time required for the assembly and solving of the linear
systems can grow with mesh re�nement and be less time-e�cient. Although these particular
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time lapses presented in Table 4.2 could be improved in view of Remark 4.2.2, the following
exposition will make use of this chosen application example to show the relevance of improved
algorithmic complexity as a motivation for the development preconditioning methods and ac-
celeration/compression methods. This will be the case regardless of observations about the
particular machine used and inversion algorithm chosen and commented in Remark 4.2.2. The
other advantage of matrix preconditioning, i.e., improved accuracy, will not be tested.

Let us reconsider the global problem of simulating the radar acquisition process for a holo-
graphic ground-penetrating such as it described in Subsection 4.2.1, and let us analyze the
time-cost of computing the scattering produced by the radar target � T when illuminated by
radio waves coming fromNMMS di�erent sources placed in the hologram recording surface �H .
This is the so-called multi-monostatic scattering problem for positionsf r H

i gNMMS
i =1 .

De�nition 4.2.2 (Time lapses associated with the multi-monostatic scattering problem for
the radar target) . Let us consider the di�erent conformal triangular approximations � T

h (of the
radar target � T from (4.4)) referred to in Table 4.1 and indexed by the discretization parameters
h, the time lapses de�ned from De�nition 4.2.1 and let NMMS be a number of multi-monostatic
scattering problems to be solved. Let us de�ne the time in seconds needed to assemble and solve
the linear system for the anti-symmetric Neumann Helmholtz problem:

TMMS (h; NMMS ) = Tsetup(h) + NMMS TGMRES (h): (4.5)

Likewise, let us de�ne the time in seconds needed to assemble, precondition and solve the
linear system for the anti-symmetric Neumann Helmholtz problem:

TP C
MMS (h; NMMS ) = TP C

setup(h) + NMMS TP C
GMRES (h): (4.6)

Since the assembling and preconditioning of a matrix is only performed once for many
Neumann data, i.e., di�erent positions r H

i , the gain in time when solving the system will
outweigh the time lost in preconditioning after a certain value of NMMS . Let us consider
the radar target from Subsection 4.2.2 and its discretization �Th highlighted on Tables 4.1
& 4.2, with 2872 triangles and h � 5mm, allowing for simulation frequencies resulting in
wavelength down to � � � 5cm. Let us de�ne the percent time gain for a given numberNMMS

of emitting/receiving points in � H :

T%
MMS (h; NMMS ) = 100 �

TMMS (h; NMMS ) � TP C
MMS (h; NMMS )

TMMS (h; NMMS )
; (4.7)

which can be easily shown to be equal to

T%
MMS (h; NMMS ) = 100 �

NMMS
�
TGMRES (h) � TP C

GMRES (h)
�

� TP C (h)
NMMS TGMRES (h) + Tsetup(h)

: (4.8)

The limit value, also directly obtainable, exempli�es the usefulness of the improvements
leading to increased time-e�ciency of linear system solving in problems requiring the solution
for a massive number of di�erent right-hand side data:

T%
MMS (h; NMMS ) �������!

NMMS !1
100�

TGMRES (h) � TP C
GMRES (h)

TGMRES (h)
: (4.9)

Figure 4.7 shows the evolution ofT%
MMS (h; NMMS ) for the chosen radar target approxi-

mation � T from Subsection 4.2.2, forh = 0 :0049695 andNT = 2872 and to be used in the
subsequent simulations, for an increasing numberNMMS of multi-monostatic radar measuring
points in the hologram recording surface �H .
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Figure 4.7: Evolution of T%
MMS (h; NMMS ) for the chosen radar target approximation � T

h , for
h = 0 :0049695 andNT = 2872 for an increasing numberNMMS of multi-monostatic radar
measuring points in the hologram recording surface �H

4.2.4 Air-ground interface, hologram recording surfaces, and imaging sur-
faces

In this subsection we will describe three surfaces of importance to the modeling of the
radar system: the air-ground interface surface �I , the hologram recording surface �H , and the
imaging surface �R .

For the cases presented in this chapter we will consider the air-ground interface surface �I

to be an aperture surface from where the radio waves will enter and then exit the underground.
For the purposes of the following exposition, we will describe it parametrically inR3, �xing a
given range inx1 and x2, where it will be inscribed, and describing the height of the interface
surface with a function f I of these two variables:

� I = f (x1; x2; x3) : � 0:5 � x1; x2 � 0:5; x3 = f I (x1; x2)g : (4.10)

When specifying an interface surface, a range forx1 and x2 will be provided along with a
given resolution � I determining the number N I of area elements to be used in computations.
These area elements are arranged in a rectangular grid.

Figure 4.8 shows a discretized approximation of surface �I for the function f I the function,
e.g.,

f I (x1; x2) =
7
20

�
1
2

(x2
1 + x2

2): (4.11)
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Figure 4.8: Rectangular grid approximation of � I
h of surface � I , made of 400 elements (for

illustrative purposes) for the function f I from (4.11)

The hologram recording surface �H is the surface that contains all sample points where
the monostatic holographic radar measurement are taken. In the case of a switching line array
of antennas moving at a height above the ground, as described in Subsection 4.1.2, the result
is most often a plane in three-dimensional space. In our examples, we will consider in fact a
plane which we will describe using the parametric square-shaped screen from (4.3) as:

� H = � a� b
r H

: (4.12)

When specifying a hologram recording surface,a, b, and r H will be provided along with
a given resolution � H determining sampling points f r H

i gNMMS
i =1 � � H for the multi-monostatic

con�guration using a rectangular grid such that

NMMS =
ab

(� H )2 : (4.13)

The recorded hologram isH
�
� H

�
! C, so that for a sampling point r H

i 2 � H the value
H

�
r H

i

�
is the complex value of the backscattered radio wave:u�

scat(r
H
i ) (in the context of a sin-

gle underground domain) oru+
scat(r

H
i ) (in the context of a double domain of interface problem).

The complex value of a backscattered radio wave will provide us with the amplitude and phase
information needed for a holographic ground-penetrating radar image reconstruction. Given
a �xed hologram recording surface �H , taking enough sample pointsf r H

i gNMMS
i =1 (choosing a

su�ciently small � H ) allows for the determination of the map H through interpolation, and
the magnitude of the valuesH(r H

i ) for i = 1 :::NMMS can be regarded as the pixel values of
the holographic image recorded on �H .
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Finally, we will describe the imagining surface where the reectivity values of the under-
ground will be computed using the holographic ground-penetrating radar and the imaging
principle to be described. Similarly to the description of � H , we will de�ne the reectivity
imaging surface using the parametric square-shaped screen surface (4.3) as:

� R = � c� d
r R

: (4.14)

Unlike for the hologram recording surface, for all the examples presented we will consider
c = d = 1m, a resolution of � R = 1cm, and we will put the imaging surface at the center of the
target � T , setting r R = (0 ; 0; 0).

Using the reective imaging surface � R , the recorded reectivity image will be R
�
� R

�
! C,

so that for a sampling point r R
i 2 � R the value R

�
r R

i

�
is the complex reectivity reconstructed

using the imaging principle to be described in the next section. Given a �xed image recording
surface � R , taking enough sample pointsf r R

i gNR
i =1 (choosing a su�ciently small � R , with NR =

cd=(� R )2) allows for the determination of the map R through interpolation, and the magnitude
of the values R(r R

i ) for i = 1 :::NR can be regarded as the pixel values of the reconstructed
reectivity image recorded on � R .

4.2.5 Simulating single domain and interface problems

In this subsection we will show the results of example simulations of wave propagation in the
prescribed scenarios, i.e., for a single underground domain scenario and for a double domain or
interface scenario. In both cases we will use the radar target �T described in Subsection 4.2.2.
We will position a single emitter in an arbitrary position and we will compute the incident
scalar wave �eld uinc and the scattered scalar wave �eld created by the L-shaped screen radar
target � T contained in the plane x3 = 0. In providing these examples we will show how to
compute incident wave scattering and backscattered waves, especially when they travel across
an interface surface �I separating the above ground and the underground domains using an
aperture model. These simulations will be explained and performed for a single monostatic
holographic radar acquisition from a single sampling pointr H

i .

For the results described and exempli�ed in this subsection, we will consider the single
emitter to be in r H

i = (0 :5; 0; 1:1), and we will plot the values of the real part of the incident
wave �eld uinc and the backscattered �eld uscat on a plane � x2=0 given by:

� x2=0 = f (x1; x2; x3) : x2 = 0 ; � 0:5 � x1 � 0:5; � 0:1 � x3 � 0:7g: (4.15)

The description exhibited here for the computation of the scattered �elds will be applied
in the next section to compute recorded hologramsH to be used in imaging algorithms that
will provide reectivity images of the underground.

Single underground domains

The following de�nition will state the procedure for computing a single direct problem for
a single emitter/receiver in a single underground domain scenario. This will then be used in
the next section to compute recorded hologram dataH using this procedure for each emit-
ting/receiving point.

De�nition 4.2.3 (Single underground domain wave computation). For a single monostatic
direct problem computation the procedure is as follows:

1. Select an emitting/receiving point r H
i .

2. Compute u�
inc in 
 � as u�

inc (y ) = Gk �
(r H

i ; y ) for y 2 
 � .
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3. Compute the Neumann data of the scattered �eld on the surface of� T as

@u�scat

@n y
(y ) = �

@u�inc

@n y
(y ); for y 2 � T : (4.16)

4. Assemble and compute the linear system for the discrete variational formulation of

� N k �
� =

@u�scat

@n y
(y ): (4.17)

5. Solve the jump of the Dirichlet traces� .

6. Compute the scattered scalar wave �eldu�
scat as u�

scat(y ) = �D k� � (y ) for y 2 
 � .

7. Compute the value of the recorded hologram atr H
i as u�

scat(r
H
i ).

In the following example, there is only one unbounded propagation domain 
� , with prop-
agation parameters described in Table 4.3.

Table 4.3: Parameters for the single underground domain example simulations
Parameter Value Units

Domain 
 � � � 5 cm
k� 125.66 cm� 1

Target
� T

h (4.4)
h 5 mm

Figure 4.9 shows an example computation of radio wave propagation in a single underground
domain scenario using the radar target �T described in Subsection 4.2.2 using parameters from
Table 4.3 and the procedure from De�nition 4.2.3.

Figure 4.9: Example computation of radio wave propagation in a single underground domain
scenario using the radar target �T described in Subsection 4.2.2 using parameters from Table
4.3 and the procedure from De�nition 4.2.3. The real values of the scalar wave �eldsuinc (left)
and uscat (right) are plotted on the plane � x2=0 .

Double domain or interface problems

In order to compute incident and scalar �elds across an aperture interface surface �I we
will consider the Kirchho�'s di�raction formula [12, Section 8.3.2]. For known traces of u�

inc

and @u�inc
@n on � I from 
 � , we compute

u�
inc (y ) =

Z

� I

�
u�

inc (x )
@

@n x
Gk �

(x ; y ) � Gk �
(x ; y )

@u�inc

@n x
(x )

�
d� I (x ); for y 2 
 � : (4.18)
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For known traces of u+
scat and @u+scat

@n on � I from 
 + , we compute

u+
scat(y ) = �

Z

� I

�
u+

scat(x )
@

@n x
Gk+

(x ; y ) � Gk+
(x ; y )

@u+scat

@n x
(x )

�
d� I (x ); for y 2 
 + :

(4.19)

The successful modeling of the propagation across surface �I using the previously enunci-
ated Kirchho�'s di�raction formula for the to cases of interest assumes that dist

�
� I ; y

�
� � � .

De�nition 4.2.4 (Double domain interface wave computation). For a single monostatic direct
problem computation the procedure is as follows:

1. Select an emitting/receiving point r H
i .

2. Compute u+
inc in 
 + as u+

inc (y ) = Gk+
(r H

i ; y ) for y 2 
 + .

3. Compute the values ofu+
inc and @u+inc

@n at � I as

u+
inc (y ) = Gk+

(r H
i ; y ) and

@u+inc

@n y
=

@
@n y

Gk+
(r H

i ; y ) for y 2 � I : (4.20)

4. Compute the values ofu�
inc and @u�inc

@n at � I as

u�
inc (y ) = u�

inc (y ) and
@u�inc

@n y
= n2 @u+inc

@n y
for y 2 � I ; (4.21)

with n = � + =� � .

5. Compute u�
inc in 
 � as

u�
inc (y ) =

Z

� I

"

u�
inc (x )

@Gk
�

@n x
(x ; y ) � Gk �

(x ; y )
@u�inc

@n x
(x )

#

d� I (x ); for y 2 
 � : (4.22)

6. Compute the normal derivative ofu�
inc on � T as

@u�inc

@n y
(y )=

Z

� I

"

u�
inc (x )

@2Gk �

@n x @n y
(x ; y ) �

@Gk
�

@n y
(x ; y )

@u�inc

@n x
(x )

#

d� I (x ); for y 2 � T :

(4.23)

7. Compute the Neumann data of the scattered �eld on the surface of� T as

@u�scat

@n y
(y ) = �

@u�inc

@n y
(y ); for y 2 � T : (4.24)

8. Assemble the linear system for the discrete variational formulation of

� N k �
� =

@u�scat

@n y
(y ): (4.25)

9. Solve the jump of the Dirichlet traces� .

10. Compute the scattered scalar wave �eldu�
scat as u�

scat(y ) = �D k �
� (y ) for y 2 
 � .
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11. Compute the values ofu�
scat and @u�scat

@n at � I as

u�
scat(y ) = �D k �

� (y ) and
@u�scat

@n y
= �

@
@n y

Dk �
� (y ) for y 2 � I : (4.26)

12. Compute the values ofu+
scat and @u+scat

@n at � I as

u+
scat(y ) = u�

scat(y ) and
@u+scat

@n y
=

1
n2

@u�scat

@n y
for y 2 � I ; (4.27)

with n = � + =� � .

13. Computeu+
scat in 
 + as

u+
scat(y ) = �

Z

� I

"

u+
scat(x )

@Gk
+

@n x
(x ; y ) � Gk+

(x ; y )
@u+scat

@n x
(x )

#

d� I (x ); for y 2 
 + : (4.28)

14. Compute the value of the recorded hologram atr H
i as u+

scat(r
H
i ).

In the following example, there are two unbounded propagation domains, the underground

 � , and the above-ground 
 + , with propagation parameters described in Table 4.4.

Table 4.4: Parameters for double domain example simulations
Parameter Value Units

Domain 
 � � � 5 cm
k� 125.66 cm� 1

Domain 
 + � + 10 cm
k+ 62.83 cm� 1

n = � + =� � 2 dimensionless
Interface � I f I (4.11) m

Target
� T (4.4) m

h 5 mm

Figures 4.10 & 4.11 shows an example computation of radio wave propagation in a double
domain scenario using the radar target �T described in Subsection 4.2.2 using parameters from
Table 4.4, using the interface surface from Subsection 4.2.4 and the procedure from De�nition
4.2.4.

Figure 4.10: Incident wave �eld example computation of radio wave propagation in a double
domain scenario using the radar target �T described in Subsection 4.2.2 using parameters from
Table 4.4 and the procedure from De�nition 4.2.4. The real part of the incident scalar wave
�eld uinc is shown with its values on � I (left) and on the plane � x2=0 (right).
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Figure 4.11: Scattered wave �eld example computation of radio wave propagation in a double
domain scenario using the radar target �T described in Subsection 4.2.2 using parameters from
Table 4.4 and the procedure from De�nition 4.2.4. The real part of the scattered scalar wave
�eld uscat is shown with its values on the plane � x2=0 (left) and on � I (right).
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4.3 A type of subsurface holographic radar

Given a con�guration for radar acquisition in a scenario in which radar target � T is buried
in the underground 
 � , and there is possibly a surface �I separating it from an above-ground
domain 
 + , multi-monostatic holographic radar measurements can be taken on a recording
hologram surface �H to determine the map H, as described in Subsection 4.2.4. An imaging
method uses an imaging principle, the holographic data measurement represented by the map
H, possibly the knowledge of a known interface �I , and the physical parameters of the media
to compute a reectivity complex map R on a reectivity image surface � R . The magnitude
of the values of this map on the surface �R is the reectivity image that signals the possible
presence of a reective radar target buried at the position where that reectivity image surface
has been computed.

In this section we will describe a type of imaging principle and method for the holographic
ground-penetrating radar. We will explain the motivations and assumptions behind it, and
we will propose simpli�cations leading to new methods. These motivations are not the im-
provement of the quality or robustness of the capacities to identify a reective target, but the
reduction of the cost and an increase of the speed in doing so. In fact, we will present prin-
ciples and methods that will progressively rely on more stringent assumptions that will allow
for faster image computations at the expense of robustness and quality. This provides, on the
other hand, the motivation for e�cient simulation tools capable of predicting the performance
of such imaging methods and thus assessing their usefulness despite the lack of robustness
in many scenarios of interest. It is precisely the point that, through e�cient simulation, the
spectrum of scenarios on which these methods can be relied upon may be correctly delimited.

We will begin by explaining the imaging principle used by the radar type chosen as moti-
vation, as explained in Section 4.1 and especially, in Subsection 4.1.2. We will also provide a
general framework for holographic radar imaging. We will present an imaging method based
on that principle for single underground domain scenarios and subsequent adaptations for dou-
ble domains or interface scenarios. We will provide image reconstructions for several cases of
interest giving some insight into the capabilities of the studied radar system while showing the
usefulness of the proposed simulation methods in such endeavor.

4.3.1 Holographic radar imaging and principles

Given a scenario for ground-penetrating radar analysis such as those given in Subsection
4.2.1, the result of performing multi-monostatic radar acquisition provides the following avail-
able data:

� A hologram recording surface �H .

� A set of multi-monostatic holographic radar measurementsf cH
i gNMMS

i =1 taken at sample
points f r H

i gNMMS
i =1 � � H . Through interpolation this provides the mapping H : � H ! C.

� A chosen reective image surface �R on which to compute the complex reectivity map
R : � T ! C.

� Knowledge of the physical parameters of the underground. In our case� � , (k� ).

� If the scenario has an interface surface, it's geometry is also assumed to be known, so
that the geometrical object � I is de�ned, as well as the physical parameters of the above-
ground domain. In our case� + , (k+ ).

The position and the shape of the radar target is not know. But, a reectivity image surface
has been chosen on which to compute the reectivity of the underground on that area.

A general holographic imaging method can be expressed as a family of �lter functions
F : � H � � R ! C such that the complex reectivity image is computed as
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R(y ) =
Z

� H

F (x ; y )H(x )d� H (x ); for y 2 � R : (4.29)

In the case of a double domain or interface scenario, where the above-ground is separated
from the underground by a surface �I , the �lter function depends on the interface surface and
is denoted asF I : � H � � R ! C, resulting in a complex reectivity image

R(y ) =
Z

� H

F I (x ; y )H(x )d� H (x ); for y 2 � R : (4.30)

The principles and methods used in what follows come from geometrical optics, especially
in it's use of Snell's law for radio waves. Other techniques have used geometrical optics and
Snell's law in ground-penetrating technologies, but mostly for time-domain radars [7,53,59,67].
Under this approach, radio waves are being treated under the assumption that wavelengths are
considerably smaller than all other geometrical distances and magnitudes in consideration. The
imaging principle on which the methods here considered are base on, is the so-called conjugate-
phase matching (CPM) principle [23, 50], and it is based on the principle of minimum optical
path length. In this context, the optical path length, or optical distance, is the product
of the geometric length of a wave path through an optical system, and the refraction index
of the medium where the wave propagates. The minimum optical path length between two
points is then the shortest between all possible wave paths joining the two points. The stated
assumption in which the wavelength of a time-harmonic radio wave is much smaller than all
other geometrical distances in consideration is crucial to the meaningfulness of the optical path
length. This assumption will soon prove to be excessive for ground-penetrating radars, and it
is one of the elements that compromise the robustness of these imaging methods in exchange
for speed and simplicity.

The conjugate-phase matching principle uses a conjugate phase propagation functionGk
c

and the minimum optical path length, under geometrical optics' assumptions, to provide a
measure of phase coherence between the observed holographic data contained in the mapH,
and a possible reective target at a given position in � R . Given the fundamental solution
governing wave propagation in the framework described in Section 1.4, the conjugate phase
propagation function uses the minimum optical path length, hereinafter called`, as:

Gk
c (`) = e� ik` : (4.31)

In the next subsection we will provide an explicit expression forF for the case of a single
underground domain that will illustrate how the minimum optical path length is used by the
conjugate-phase matching holographic imaging method. This method was described and tested
by Giubbolini and Sambuelli in [23] for single underground domains.

4.3.2 Imaging method for single underground domain scenarios

Given x 2 � H and y 2 � R , the minimum optical path length of the round-trip path is the
geometrical distance between the two points, i.e. 2kx � yk, times the refraction index n� for
the underground domain:

`(x ; y ) = 2 n� kx � yk : (4.32)

Being 
 � the only domain under consideration, the refraction index can be set ton� = 1
setting 
 � as the reference propagation domain. The �lter function for the single underground
domain scenario in the conjugate-phase matching method is then given by

F (x ; y ) = Gk �

c (`(x ; y )) = e� ik � 2kx � y k : (4.33)
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The complex reectivity image can be then computed as:

R(y ) =
Z

� H

e� ik � 2kx � y kH(x )d� H (x ); for y 2 � R ; (4.34)

or in its discrete version, using the points from the rectangular grid de�ned in Subsection 4.2.4
for � H and � R , as:

R(r R
i ) = ( � H )2

NMMSX

j =1

e� ik � 2kr H
j � r R

i kH(r H
j ); for i = 1 :::NR : (4.35)

In what follows we will provide an example of complex image reconstruction using the
algorithm described in this subsection and synthesized in (4.35). As for the rest of the re-
construction examples of complex reectivity images given in this chapter, we will present a
table summarizing the main parameters for the considered scenario, for the multi-monostatic
holographic radar acquisition, and for the image reconstruction.

Table 4.5 shows the parameters used for a multi-monostatic simulation and image recon-
struction using a single underground scenario.

Table 4.5: Parameters used for a multi-monostatic simulation and image reconstruction using
a single underground scenario

Parameter Value Units

Domain 
 � � � 5 cm
k� 125.66 m� 1

Hologram H
� H � 1� 1

(0;0;1) meters
� H 2.5 cm

Image R
� R � 1� 1

(0;0;0) meters
� R 1 cm

Method (4.35)

Target
� T (4.4) m

h 5 mm

The following �gures show the scenario for the simulated multi-monostatic holographic
radar acquisition and the magnitude of the mapsH on � H , and R on � R . The values ofR are
represented on an arbitrary reectivity scale.
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Figure 4.12: Scenario for the simulated multi-monostatic holographic radar acquisition using
parameters of Table 4.5, showing the underground propagation domain, the radar target, and
� H with the magnitude of the values of H painted on.

Figure 4.13: Magnitude of the values of the mapH painted on � H (left), and magnitude of the
values of the mapR painted on � R (right) using parameters of Table 4.5. The known shape
of the radar target � T has been drawn on the reectivity image on the right as a reference.

As seen in Figure 4.13, the method proposed in [23], synthesized in (4.35) for our framework,
is capable of generating a reectivity imageR where the radar target � T can be resolved using
the parameters given in Table 4.5. In the next subsection, we will extend the principles used
to the case of a radar scenario with an above-ground and an underground domain separated
by a non-at interface. We will draw inspiration from geometrical optics techniques mentioned
in Subsection 4.3.1 and in particular from [14] for the treatment of the interface as a lens.
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4.3.3 Imaging method for double domains scenarios

When the scenario consists of an above-ground domain 
+ , and an underground domain

 � separated by an interface surface �I , the application of the same method using the principle
of minimum path length becomes a more di�cult task. This is because now the determination
of the minimum path length for the round-trip from a point on the hologram recording surface
and a point in the imaging surface is not trivial as it was in (4.32). We will consider all possible
round-trips between x and y , then we will consider the subset of those complying with Snell's
law for the paths' entrance and exit across �I , and �nally we will choose the one with the
minimum optical path length.

A given (possibly non-physical) round-trip between points x 2 � H and y 2 � R , can be
decomposed in the incident go trip fromx to y , crossing � I at r I

inc , and the scattered return
trip from y to x , crossing � I at r I

scat . We will consider the following geometrical distances:

l+inc =

 x � r I

inc


 ; l �inc =


 y � r I

inc


 ; l+scat =


 x � r I

scat


 ; and l �scat =


 y � r I

scat


 :
(4.36)

We will also de�ne the following directions given by unit vectors:

v+
inc =

r I
inc � x
l+inc

; v �
inc =

y � r I
inc

l �inc
; v+

scat =
x � r I

scat

l+scat
; and v �

scat =
r I

scat � y
l �scat

: (4.37)

When � � (k� ) are known, and we �x 
 + as the reference media for refraction, i.e.n =
� + =� � , only a subset of all the possible round-trips between the two points comply with Snell's
law of angles. A round-trip will be called admissible or physical if both its incident go trip
wave path and its scattered return trip wave path comply with Snell's law of angles.

Using Snell's law we can compute the direction of the transmitted wave paths across the
interface surfaces for the incident wave and for the scattered wave. For the incident wave path
joining x and r I

inc we have that the transmitted direction v̂ �
inc should be

v̂ �
inc =

1
n

 

v+
inc �

 
�

v+
inc �n r I

inc

�
+

r

n2 � 1 +
�

v+
inc �n r I

inc

� 2
!

n r I
inc

!

: (4.38)

so that the error in the transmitted angle for the incident wave is

� e
inc = arccos(r̂ �

inc � v �
inc ): (4.39)

A given incident path will be called admissible or physical if � e
inc = 0.

Likewise for the scattering wave, for the scattered wave path joiningy and r I
scat we can

compute the direction v̂+
scat that the outgoing wave path should have as

v̂+
scat = n

 

v �
scat �

 
�

v �
scat �n r I

scat

�
�

r
1
n2 � 1 +

�
v �

scat �n r I
scat

� 2
!

n r I
scat

!

: (4.40)

and determine the error in the angle with the actual direction for that given return path as

� e
scat = arccos(v̂+

scat � v+
scat): (4.41)

A given scattered path will be called admissible or physical if� e
scat = 0.

Figure 4.14 illustrates the de�ned values and vector for a given round-trip between points
x 2 � H and y 2 � R .
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Figure 4.14: Geometrical lengths and vectors for an arbitrary round-trip between pointsx 2 � H

and y 2 � R .

A given round-trip will be called admissible if both the incident and the scattered wave
paths are admissible. For every admissible trip, let us de�ne the optical path length as

` I (x ; y ) = l+inc + l+scat + n
�
l �inc + l �scat

�
: (4.42)

From all the admissible round-trips, let ` �
I (x ; y ) be the minimum optical path length, with

associated geometrical distancesl+ �
inc , l ��inc , l+ �

scat , and l ��scat . Then the new �lter function F I is

F I (x ; y ) = Gk+

c (` �
I (x ; y )) = e� ik+ ` �

I (x ;y ) = e
� i2�

�
l + �
inc
� + +

l ��inc
� � +

l ��scat
� � +

l + �
scat
� +

�

: (4.43)

The imaging method is then

R(y ) =
Z

� H

F I (x ; y )H(x )d� H (x ); for y 2 � H : (4.44)

In practice, in a discrete version, for every sample taken atr H
j � H , and every reconstruction

point r R
i 2 � R , we explore a �nite number of points on a rectangular grid on � I and consider

admissible the paths that comply with a tolerance � tol , i.e., � e
inc � � tol and � e

scat � � tol . Then,
the optical path length is computed for all the admissible paths and the shortest one is selected
as ` �

I (r H
j ; r R

i ). We then compute the complex reectivity image at points f r R
i gNR

i =1 as:

R(r R
i ) = ( � H )2

NMMSX

j =1

e� ik+ ` �
I (r H

j ;r R
i )H(r H

j ); for i = 1 :::NR : (4.45)

The proposed method, synthesized in (4.45) an called hereinafter Across-Interface Conjugate-
Phase Matching (AI-CPM), is capable of generating a reectivity image R where the radar
target � T can be resolved, as it will be seen in subsequent subsections. This comes at a cost,
since the complexity algorithm (4.45) is O (NR � NMMS � N I ). In the next subsection, we will
further extend the principles for the case of a radar scenario with an above-ground and an
underground domain using additional assumptions that will distance us further from correct
physical representation and will achieve lower algorithmic complexities at the expense of ro-
bustness. We propose a new simpli�ed imaging method based on the one presented in this
subsection and we will test it under di�erent circumstances using numerical simulations.
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4.3.4 A simpli�ed imaging method for double domain scenarios

In a further simpli�cation of the imaging method from Subsection 4.3.3 we will adopt
the assumption that the incident incoming wave path and the scattered outgoing wave path
between points x 2 � H and y 2 � R are not sigini�cantly di�erent in magnitude, i.e., we will
assume that

l+inc + l �inc � l+scat + l �scat (4.46)

Under assumption (4.46), the task of computing the minimum wave path lengths is sim-
pli�ed because we can compute only one of them. In a new simpli�ed algorithm, and under
this new assumption, we will consider the entry and exit wave paths that pass through points
x 2 � I and y 2 � R and we will determine the corresponding point ~r H 2 � H that complies
with Snell's law, for which we will consider the exit wave path. The direction v �

scat of the wave
path exiting the domain 
 � is computed as before using the new points:

v �
scat =

x � y
kx � yk

: (4.47)

Then, the direction v+
scat of the exit wave path in the domain 
 + can be computed similarly

as in (4.40):

v̂+
scat = n

 

v �
scat �

 
�
v �

scat �n x
�

�

r
1
n2 � 1 +

�
v �

scat �n x
�
!

n x

!

: (4.48)

Using the exit direction v̂+
scat , and if the holographic recording surface �H is contained in

a plane at a given heightr H
3 , then the corresponding the point ~r H 2 � H on � H can be found

using x = ( x1; x2; x3) 2 � I as

~r H (x ; y ) = x +
r H

3 � x3

ê3 � v̂+
scat

v̂+
scat : (4.49)

Figure 4.15 illustrates the described geometrical process.

Figure 4.15: Geometrical lengths and vectors for the simpli�ed round-trip passing through
between pointsx 2 � I and y 2 � R .
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Taking 
 + as reference medium andn = � + =� � , the corresponding round-trip optical path
length is

` I (~r H (x ; y ); y ) = 2
� 
 ~r H (x ; y ) � x


 + n kx � yk

�
; (4.50)

and the new �lter function F I is

F I (~r H (x ; y ); y ) = Gk+

c (` I (~r H (x ; y ); y )) = e� ik+ ` I (~r H (x ;y );y ) : (4.51)

Using this new �lter function, now de�ned for points on � T and � I , the imaging method is
expressed as

R(y ) =
Z

� I

F I (~r H (x ; y ); y )H (~r H (x ; y ))d� I (x ); for y 2 � I : (4.52)

Given a rectangular grid of points f r I
i gN I

i =1 with resolution � I , the new simpli�ed imaging
algorithm is

R(r R
i ) =

N IX

j =1

F I (~r H (r I
j ; r R

i ); r R
i )H (~r H (r I

j ; r R
i )) � � I (r I

j ); for i = 1 :::NR ; (4.53)

where the area element is

� � I (r I
j ) = ( � I )2

s

1 +
�

@fI
@x1

(r I
j )

� 2

+
�

@fI
@x2

(r I
j )

� 2

: (4.54)

The value H(~r H ) is available through interpolation whenever the resolution � H of the
recorded hologram is small enough, and wheneverer H 2 � H and the there is a physical return-
trip ray. It is remarkable that the complexity of the new imaging method (4.53) is now
O (NR � N I ). This new and simpli�ed method, synthesized in (4.53) and called hereinafter
Single-Path Across-Interface Conjugate-Phase Matching (SPAI-CPM), is capable of producing
reectivity images of the underground as it will be seen in the next subsection. Its resolving
capabilities and robustness will be, as expected, worse than those of the previously described
method, AS-CPM from Subsection 4.3.4. This less performant method, relying on additional
assumptions, will be able to produce reectivity images but it will also show greater image
degradation as the scenarios on which it's used deviate from conditions less challenging to
those assumptions.

In what follows we will provide examples of complex image reconstruction using the al-
gorithm described in this subsection, synthesized in (4.53), and in the previous subsection,
synthesized in (4.45).

4.3.5 Simulated examples

In this subsection we will present simulated examples of the two proposed imaging meth-
ods for underground reectivity in double domain scenarios. The aim of these simulations
is to exemplify how numerical simulations of the global direct problem, i.e. solving a direct
backscattering wave problem for each monostatic radar sampling position, can help predict
the performance of a ground penetrating radar as the one considered. The two particular
underground imaging schemes proposed pose a case of interest because they are based on as-
sumptions that are commonly violated in realistic scenarios, and their performance must be
assessed via numerical simulations.

The di�erent scenarios under which the imaging schemes will be evaluated, and the simu-
lations of wave propagation and backscattering in them, will share many parameters. Those
parameters particular to each scenario will be speci�ed explicitly, while those shared will be
presented in the following table.
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Table 4.6: Parameters used for example cases of a multi-monostatic simulation and image
reconstruction in double domain scenarios

Parameter Value Units

Domain 
 + � + 10 cm
k+ 62.83 m� 1

Domain 
 � � � 5 cm
k� 125.66 m� 1

n = � + =� � 2 dimensionless

Interface � I
x1; x2 � 0:5 � x1; x2 � 0:5 m

� I 5 mm
f I (x1; x2) hI � a(x2

1 + x2
2) + bsin

� 2�x 1
l

�
m

Hologram H
� H � L H � L H

(0;0;xH
3 )

m

� H 5 cm

Image R
� R � 1� 1

(0;0;0) m
� H 1 cm

Methods AI-CPM (4.45), and SPAI-CPM (4.53)

Target
� T (4.4) m

h 5 mm

The parameters speci�ed in Table 4.6 show settings similar to those used for simulations in
Subsection 4.2.5 and image reconstruction in Subsection 4.3.2. We will use the target de�ned
in Subsection 4.2.2. The main di�erence between the scenarios that will be presented, as
anticipated in Table 4.6, will be the interface surface � I , parametrized by the valueshI , a, b,
and l, and the surface �H of holographic recording, parametrized by its heightxH

3 and its size
L H . The following table summarized the scenarios that will be presented and the values for
the mentioned parameters that will de�ne them.

Table 4.7: Summary of the scenarios presented under which the two underground imaging
methods will be evaluated using numerical simulations with common parameters from Table
4.6 and particular parameters for each case in meters.

Scenario hI a b l xH
3 L H

A 0.35 0.00 0.000 0.0 1.0 1.0
B 0.35 0.50 0.000 0.0 1.0 1.0
C 0.35 0.00 0.000 0.0 3.0 1.5

D 0.35 0.00 0.025 0.8 1.0 1.0
E 0.35 0.00 0.025 0.4 1.0 1.0
F 0.35 0.00 0.025 0.2 1.0 1.0
G 0.35 0.00 0.070 0.1 1.0 1.0

The scenarios considered are divided in two main groups. In the �rst group we consider a
at surface, a parabolic surface, and a radio sampling performed from a greater distance from
the surface and on a wider area, in a setting more similar to airborne acquisition. In a second
group we explore the e�ect of the presence of ripple on the interface surface, ranging from
moderate to acute in comparison to the wavelength used.

For each scenario four �gures will be presented. The �rst one will show a three-dimensional
scenario showing the position and shape of the radar target �T , the interface surface �I , and
the surface of holographic recording �H with the magnitude of the recorded hologram, i.e.Hj ,
painted on it. The second one will show the magnitude of the complex values of the mapH
for the NMMS points sampled in � H . The third and fourth �gures will show the magnitude of
the complex values of the mapsR painted on the reconstruction points on � R for the AI-CPM
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and SPAI-CPM methods.

The reconstructed reectivity maps R are represented using an arbitrary and normalized
scale across the examples presented. The edge of the original radar target it drawn over every
map to provide as reference of the accuracy of the reconstruction.
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Scenario A

Scenario hI a b l xH
3 L H

A 0.35 0.00 0.000 0.0 1.0 1.0

Figure 4.16: Three-dimensional depiction of Scenario A showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.17: Absolute values of mapR reconstructed for Scenario A using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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Scenario B

Scenario hI a b l xH
3 L H

B 0.35 0.50 0.000 0.0 1.0 1.0

Figure 4.18: Three-dimensional depiction of Scenario B showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.19: Absolute values of mapR reconstructed for Scenario B using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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Scenario C

Scenario hI a b l xH
3 L H

C 0.35 0.00 0.000 0.0 3.0 1.5

Figure 4.20: Three-dimensional depiction of Scenario C showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.21: Absolute values of mapR reconstructed for Scenario C using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .

162



Scenario D

Scenario hI a b l xH
3 L H

D 0.35 0.00 0.025 0.8 1.0 1.0

Figure 4.22: Three-dimensional depiction of Scenario D showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.23: Absolute values of mapR reconstructed for Scenario D using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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Scenario E

Scenario hI a b l xH
3 L H

E 0.35 0.00 0.025 0.4 1.0 1.0

Figure 4.24: Three-dimensional depiction of Scenario E showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.25: Absolute values of mapR reconstructed for Scenario E using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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Scenario F

Scenario hI a b l xH
3 L H

F 0.35 0.00 0.025 0.2 1.0 1.0

Figure 4.26: Three-dimensional depiction of Scenario F showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.27: Absolute values of mapR reconstructed for Scenario F using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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Scenario G

Scenario hI a b l xH
3 L H

G 0.35 0.00 0.070 0.1 1.0 1.0

Figure 4.28: Three-dimensional depiction of Scenario G showing the radar target �T , the
interface surface �I , the surface of holographic recording �H and the absolute value of H
painted on it ( left ), and the absolute values of the mapH painted on � H (right ).

Figure 4.29: Absolute values of mapR reconstructed for Scenario G using AI-CPM (left ) and
SPAI-CPM ( right ), painted on � R .
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The results provided for the cases A through G, described in Subsection 4.3.5 and with
parameters summarized in Table 4.6, show an overall satisfactory performance. Even if many
cases violate the assumption underlying the imagining principles of both methods, i.e., that
the wavelength is very small in comparison to the geometrical features of the scenario, the
algorithms produce reectivity maps R whose absolute values allow for the location and (in
many cases) the identi�cation of the shape of the radar target. From the somewhat restricted set
of simulated examples, some conclusions can be extracted about the imaging methods. Besides
the performance of the imaging methods, their simulations proves the proposed simulation
method appropriate to measure it, and highlights the improvements leading to more e�cient
numerical simulations.

The �rst method, called AI-CPM, a proposed extension of the method described and tested
for single domain scenarios in [23], is able to resolve the obstacle even when the geometrical
features of the interface surface violate the assumptions of geometrical optics on which it is
based. It does however provide poorer results the further this violation goes. Depending on the
actual refraction index and on the used wavelength in a real scenario, this method stands as
promising for use with airborne ground-penetrating radars when the underground is assumed
to be su�ciently homogeneous and the geometrical features of the interface surface are larger
than the wave used length. The second method, SPAI-CPM, relying on additional and most
often unrealistic assumptions, stands out by its lower algorithmic complexity while its resolving
performance remains useful for a range of cases that could prove useful for some applications.
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Synth�ese en Fran�cais
Cette th�ese s'inscrit dans le sujet des op�erateurs int�egraux de fronti�ere d�e�nis sur le disque

unitaire en trois dimensions, leurs relations avec les probl�emes externes de Laplace et Helmholtz,
et leurs applications au pr�econditionnement des syst�emes lin�eaires obtenus en utilisant la
m�ethode des �el�ements �nis de fronti�ere. On utilise aussi les r�esultats obtenus pour �eteindre la
port�ee des ces m�ethodes pour le pr�econditionnement des syst�emes lin�eaires produits par des
objets plats plus g�en�erals. Finalement, on montre la capacit�e de la m�ethode propos�ee dans la
gestion de la complexit�e computationnelle associ�ee �a une nouvelle m�ethode de reconstruction
des images en utilisant la di�raction d'ondes.

Chapitre 1: Propagation d'Ondes, �Equations Int�egrales de Front-
i�ere, M�ethode des �El�ements Finis de Fronti�ere et Complexit�e
Computationnelle

On d�ecrit d'abord les m�ethodes int�egrales pour r�esoudre les probl�emes de Laplace et de
Helmholtz en dehors des objets �a fronti�ere r�eguli�ere lipschitzienne, et en dehors des surfaces
bidimensionnelles ouvertes dans un espace tridimensionnel. On met le focus sur le cas du
probl�eme de Laplace. La formulation int�egrale des probl�emes de Laplace est d�ecrite formelle-
ment.

On s'int�eresse aux formes bilin�eaires



S� ; � t �

� et


N � ; � t �

�

pour l'op�erateur de simple couche sur une distribution � 2 H � 1=2(�)

S� (y ) =
Z

�

G(x ; y )� (x )d�( x ); y 2 R3;

et pour l'op�erateur hyper-singuli�ere sur une distribution � 2 H 1=2(�)

N � (y ) =
Z

�

@2G
@n x @n x

(x ; y )� (x )d�( x ); y 2 R3;

d�e�nis pour une fronti�ere � su�samment r�eguli�ere et pour la solution fondamental de
l'�equation de Laplace en trois dimensions, i.e.

G(x ; y ) =
1

4� kx � yk
:

On d�ecrit l'obtention des solution num�eriques en utilisant la m�ethode des �el�ements �nis de
fronti�ere (BEM en anglais) et on s'int�eresse aux matrices qu'en r�esultent de cette m�ethode. On
d�ecrit �egalement la mise en �uvre d'une m�ethode num�erique utilisant la m�ethode des �el�ements
�nis de fronti�ere dans un cadre su�samment ample. Les avantages et les d�e�s inh�erents �a
la m�ethode sont abord�es : la complexit�e du calcul num�erique (de m�emoire et algorithmique),
d'ordre O

�
N 2

�
, et le mal conditionnement inh�erentes �a des syst�emes lin�eaires associ�es, d'ordre

O
�
h� 1

�
, o�u N est le nombre de fonctions de base de l'espace discret utilis�e eth est le param�etre

de taille de la discr�etisation de la surface �. Dans la suite de la th�ese, on s'attaque au probl�eme
du conditionnement pour un type pr�ecis de surface �.
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Chapitre 2: Op�erateurs Int�egraux et les Objets en Forme de
Disque

Dans une deuxi�eme partie on expose une technique optimale de pr�econditionnement (in-
d�ependante de la discr�etisation) sur la base des op�erateurs int�egraux de fronti�ere. On montre
comment cette technique est facilement r�ealisable dans le cas de probl�emes d�e�nis en dehors
d'un objet r�egulier �a fronti�ere lipschitzienne, mais qu'elle pose des probl�emes quand ils sont
d�e�nis en dehors d'une surface ouverte dans un espace tridimensionnel. On montre que les
op�erateurs int�egraux de fronti�ere associ�es �a la r�esolution des probl�emes de Dirichlet et Neumann
d�e�nis en dehors des surfaces ont des inverses bien d�e�nis. On montre �egalement que ceux-ci
pourraient conduire �a des techniques de pr�econditionnement optimales, mais que ses formes
explicites ne sont pas faciles �a obtenir. Ensuite, on montre une m�ethode pour obtenir de tels
op�erateurs inverses de fa�con explicite lorsque la surface sur laquelle ils sont d�e�nis est un disque
unitaire dans un espace tridimensionnel. Ces op�erateurs inverses explicites seront, cependant,
en forme des s�eries, et n'auront pas une adaptation imm�ediate pour leur utilisation dans des
m�ethodes des �el�ements �nis de fronti�ere. On d�e�nit le disque comme

D = f x = ( x1; x2; x3) 2 R3 : x3 = 0 ; x2
1 + x2

2 < 1g;

sur lequel on considerera aussi des coordonn�ees cylindriques (� x ; � x ) pour un point x 2 D.

On consid�ere les harmoniques sph�eriques d�e�nies pour un pointx sur la sph�ere unit�e d�e�nie
en coordonn�ees sph�eriques

Y m
l (� x ; � x ) =  m

l eim� x IP m
l (cos� x ), pour � l � m � l et m � 0;

o�u

 m
l = ( � 1)m

r
l + 1=2

2�

s
(l � m)!
(l + m)!

:

On d�e�nit des fonctions de base sur le disque comme

ym
l (x ) = Y m

l (x + ); pour x 2 D;

o�u x � est la projection verticale sup�erieure/inf�erieure du point x sur la sph�ere unit�e. En
consid�erant aussi une fonction de poids li�ee �a la singularit�e des sauts des traces,w(x ) =p

1 � � 2
x , et l'ensemble

Y =
�

ym
l 2 C1 (D) : ym

l (x ) = Y m
l (x + ); for x 2 D

	
;

on d�e�nit les ensembles

Ys = f ym
l 2 Y : l + m pairg; Y1=w

s =
�

ym
l

w
: ym

l 2 Y s

�
;

Yas = f ym
l 2 Y : l + m impairg; Y1=w

as =
�

ym
l

w
: ym

l 2 Yas

�
:

Un des principaux r�esultats est le d�eveloppement en s�eries des fonctions sur les espaces
H 1=2(D), H � 1=2(D), eH 1=2(D), et eH � 1=2(D).

Une fonction � dans l'espaceeH 1=2(D) peut être d�evelopp�ee dans la baseYas:

� (x ) =
1X

l=0

lX

m= � l
l+ m impair

� m
l ym

l (x ); � m
l =

Z

D

� (x )ym
l (x )

p
(1 � � (x )2)

dD(x ):
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Une fonction g dans l'espaceH 1=2(D) peut être d�evelopp�ee dans la baseYs:

g(x ) =
1X

l=0

lX

m= � l
l+ m pair

gm
l ym

l (x ); gm
l =

Z

D

g(x )ym
l (x )

p
(1 � � (x )2)

dD(x ):

Une fonction ' dans l'espaceH � 1=2(D) peut être d�evelopp�ee dans la baseY1=w
as :

' (x ) =
1X

l=0

lX

m= � l
l+ m impair

' m
l

ym
l (x )

p
(1 � � (x )2)

; ' m
l =

Z

D
' (x )ym

l (x )dD(x ):

Une fonction � dans l'espaceeH � 1=2(D) peut être d�evelopp�ee dans la baseY1=w
s :

� (x ) =
1X

l=0

lX

m= � l
l+ m pair

� m
l

ym
l (x )

p
(1 � � (x )2)

; � m
l =

Z

D
 (x )ym

l (x )dD(x ):

En utilisant ces d�eveloppements en s�erie, on propose des noyaux int�egraux comme s�eries
formelles:

K ws
as (x ; y ) =

1X

l=0

lX

m= � l
l+ m impair

1
� m

l

�
ym

l (x )ym
l (y ) + ym

l (x )ym
l (y )

�
;

K hs
as (x ; y ) = �

1X

l=0

lX

m= � l
l+ m impair

� m
l

�
ym

l (x )
w(x )

ym
l (y )
w(y )

+
ym

l (x )
w(x )

ym
l (y )
w(y )

�
;

K ws
s (x ; y ) =

1X

l=0

lX

m= � l
l+ m pair

1
� m

l

�
ym

l (x )ym
l (y ) + ym

l (x )ym
l (y )

�
;

K hs
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m pair

� m
l

�
ym

l (x )
w(x )

ym
l (y )
w(y )

+
ym

l (x )
w(x )

ym
l (y )
w(y )

�
:

Dans ces noyaux, les coe�cients� m
l et � m

l son d�e�nis comme

� m
l =

�
4

0

@
(l+ m� 1)=2Y

i =1

2i + 1
2i

1

A

0

@
(l � m� 1)=2Y

i =1

2i + 1
2i

1

A ; pour l + m pair,

� m
l =

4
�

0

@
(l+ m)=2Y

i =1

2i
2i � 1

1

A

0

@
(l � m)=2Y

i =1

2i
2i � 1

1

A ; pour l + m impair.

En d�e�nissant les op�erateurs int�egraux

(L ws
s u) (y ) =

Z

D

K ws
s (x ; y )u(x )dD(x );

(L ws
as u) (y ) =

Z

D

K ws
as (x ; y )u(x )dD(x );
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�
L hs

s u
�

(y ) =
Z

D

K hs
s (x ; y )u(x )dD(x );

�
L hs

asu
�

(y ) =
Z

D

K hs
as (x ; y )u(x )dD(x );

on preuve queL hs
s � L ws

s = �I et que L ws
as � L hs

as = �I (o�u I est l'application identit�e). En
suite on preuve queK ws = K ws

s et que K hs = K hs
as , avec

K ws(x ; y ) = G(x ; y ) et K hs(x ; y ) =
@2G

@n x @n y
(x ; y );

en donnant des expression pour les inverses deS et N sur le disque. Ces bases permettent
de triangulariser les formulation variationnelles pour les probl�emes de Dirichlet et de Neumann
pour le disque en trois dimensions, donnant une m�ethode spectrale pour les r�esoudre.

Chapitre 3: Le Preconditionnement par Op�erateurs Int�egraux
Modi��es pour des Objets Plats

Dans une troisi�eme partie on montre comment certaines modi�cations aux op�erateurs in-
verses mentionn�es permettent d'obtenir des expressions variationnelles explicites et ferm�ees,
non plus sous la forme des s�eries, en conservant certaines caract�eristiques importantes pour
l'e�et de pr�econditionnement cherch�e. Ces formes explicites sont applicables aux m�ethodes
des �el�ements �nis fronti�ere. On obtient des expressions variationnelles pr�ecises et on propose
des calculs num�eriques pour leur utilisation avec des �el�ements �nis fronti�ere. Ces m�ethodes
num�eriques sont test�ees en utilisant di��erentes identit�es obtenues dans la th�eorie d�evelopp�ee, et
sont ensuite utilis�ees pour produire des matrices pr�econditionnantes. Leur performance en tant
que pr�econditionneurs de syst�emes lin�eaires associ�es �a des probl�emes de Laplace et Helmholtz
�a l'ext�erieur du disque est test�ee. En�n, on propose extension de cette m�ethode pour couvrir
les cas de surfaces diverses. Ceci est �etudi�e dans les cas pr�ecis des probl�emes ext�erieurs �a des
surfaces en forme de carr�e et en forme deL dans un espace tridimensionnel.

En consid�erant des noyaux modi��es,

eK ws
s (x ; y ) =

1X

l=0

lX

m= � l
l+ m pair

� l ym
l (y )ym

l (x );

eK ws
as (x ; y ) =

1X

l=0

lX

m= � l
l+ m impair

� l ym
l (y )ym

l (x );

eK hs
s (x ; y ) = �

1X

l=0

lX

m= � l
l+ m pair

� l
ym

l (y )
w(y )

ym
l (x )
w(x )

;

eK hs
as (x ; y ) = �

1X

l=0

lX

m= � l
l+ m impair

� l
ym

l (y )
w(y )

ym
l (x )
w(x )

;

o�u les coe�cients modi��es sont

� l =
2

2l + 1
et � l =

2l(l + 1)
2l + 1

;
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on d�e�nit �egalement des op�erateurs int�egraux modi��es:

�
eL ws

s �
�

(y ) =
Z

D

eK ws
s (x ; y )� (x )dD(x );

�
eL ws

as '
�

(y ) =
Z

D

eK ws
as (x ; y )' (x )dD(x );

�
eL hs

s g
�

(y ) =
Z

D

eK hs
s (x ; y )g(x )dD(x );

�
eL hs

as �
�

(y ) =
Z

D

eK hs
as (x ; y )� (x )dD(x ):

Un r�esultat central de la th�ese est l'expression des formes bilin�eaires associ�ees aux ces
op�erateurs. En fait:

D
eL ws

s � ; � t
E

D
=

Z

D

Z

D

1
4�

�
1

kx + � y + k
+

1
kx � � y + k

�
� (x )� t (y )dD(x )dD(y );

D
eL ws

as ' ; ' t
E

D
=

Z

D

Z

D

1
4�

�
1

kx + � y + k
�

1
kx � � y + k

�
' (x )' t (y )dD(x )dD(y );

D
� eL hs

as � ; � t
E

D
=

D
eL ws

s
��!
curl D�;

��!
curl D� t

E

D
+

�
eL ws

as

�
1
w

@�
@�x

�
;

1
w

@�t

@�y

�

D
;

D
� eL hs

s g ; gt
E

D
=

D
eL ws

as
��!
curl Dg;

��!
curl Dgt

E

D
+

�
eL ws

s

�
1
w

@g
@�x

�
;

1
w

@gt

@�y

�

D
:

Ces expression bilin�eaires sont ferm�ees, et donc calculables dans le cadre des m�ethodes des
�el�ements �nis de fronti�ere. Les matrices qui en r�esultent, provenant des op�erateurs avec des
singularit�es dans leur noyaux similaires �a celles des inverses deS et N , sont adapt�ees pour être
pr�econditionnantes. Plusieurs exemples num�eriques en montrent leur performance.

Chapitre 4: Application �a la gestion de la Complexit�e Com-
putationnelle dans la Test de M�ethodes de T�el�ed�etection par
Simulation

En�n, les m�ethodes d�evelopp�es sont utilis�es dans un exemple d'application. Sur la base de
techniques et hypoth�eses de l'optique g�eom�etrique, on propose des am�eliorations �a des m�ethodes
existantes pour l'imagerie de la r�eectivit�e du sous-sol en utilisant le radar �a p�en�etration de
sol. �Etant bas�ees sur des hypoth�eses de l'optique g�eom�etrique, ces m�ethodes doivent être
�evalu�ees par simulations num�eriques, ce qui entrâ�ne la r�esolution d'un nombre tr�es impor-
tant de probl�emes directs. Une analyse de complexit�e montre comment les techniques de
pr�econditionnement propos�ees peuvent r�eduire la complexit�e algorithmique du probl�eme global.
En�n, la capacit�e de r�esolution des m�ethodes propos�ees pour la formation des images du sous-
sol est �evalu�ee dans pour di�erent sc�enarios d'int�erêt.

Les m�ethodes trait�ees dans ce chapitre appartient aux m�ethodes de �ltrage adaptative pour
la reconstruction des images complexes de r�eexivit�eR sur un surface �R ,
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R(y ) =
Z

� H

F (x ; y )H(x )d� H (x ); for y 2 � R ;

o�u H est la fonction de di�raction (d'un objet irradi�e) mesur�ee sur une surface � H , F
est le �ltre adapt�e, et � I est une surface qui cache l'objet dont on veut faire un image de sa
r�eectivit�e.
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Titre : Aspects Th�eoriques et Num�eriques des Ph�enom�enes de Propagation d'Ondes dans Domaines
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Cette th�ese s'inscrit dans le sujet des op�erateurs int�egraux de fronti�ere d�e�nis sur le disque unitaire en trois
dimensions, leurs relations avec les probl�emes externes de Laplace et Helmholtz, et leurs applications au
pr�econditionnement pour la m�ethode des �el�ements �nis de fronti�ere. On d�ecrit d'abord les m�ethodes int�egrales pour
les probl�emes de Laplace et de Helmholtz en dehors des objets �a fronti�ere r�eguli�ere lipschitzienne, et en dehors des
surfaces bidimensionnelles ouvertes. On d�ecrit la mise en �uvre des �el�ements �nis de fronti�ere, la complexit�e du
calcul num�erique associ�e, et le mauvais conditionnement des syst�emes lin�eaires. Ensuite, on d�ecrit le
pr�econditionnement optimal sur la base des op�erateurs int�egraux de fronti�ere. Cette technique est facilement
r�ealisable dans le cas de probl�emes d�e�nis en dehors d'un objet �a fronti�ere lipschitzienne, mais elle pose des
probl�emes quand ils sont d�e�nis en dehors d'une surface ouverte. On montre que les op�erateurs int�egraux de
fronti�ere associ�es �a la r�esolution des probl�emes de Dirichlet et Neumann ont des inverses bien d�e�nies, et on montre
�egalement que celles-ci pourraient conduire �a des techniques de pr�econditionnement optimales, mais que ses formes
explicites ne sont pas faciles �a obtenir. Ensuite, on pr�esent une m�ethode pour obtenir de tels op�erateurs inverses de
fa�con explicite quand la surface est un disque unitaire. Ces op�erateurs inverses explicites seront, cependant, en
forme de s�eries, et n'auront pas une application imm�ediate avec des m�ethodes des �el�ements �nis de fronti�ere. On
propose, ensuite, certaines modi�cations aux op�erateurs inverses mentionn�es permettant d'obtenir des expressions
variationnelles explicites et ferm�ees en conservant certaines caract�eristiques importantes pour l'e�et de
pr�econditionnement cherch�e. Ces formes explicites sont applicables aux m�ethodes des �el�ements �nis fronti�ere. On
obtient des expressions variationnelles pr�ecises et on propose des sch�emas num�eriques appropri�es. Ces m�ethodes
num�eriques sont test�ees et sont ensuite utilis�ees pour produire des matrices pr�econditionnantes. Leur performance
en tant que pr�econditionneurs de syst�emes lin�eaires est test�ee. En�n, on propose une extension de cette m�ethode
pour les cas de surfaces diverses. Les m�ethodes d�evelopp�ees sont utilis�ees dans un exemple d'application. Sur la
base de techniques et hypoth�eses de l'optique g�eom�etrique, on propose des am�eliorations �a des m�ethodes existantes
pour l'imagerie de la r�eectivit�e du sous-sol en utilisant le radar �a p�en�etration de sol.

Title: Theoretical and Numerical Aspects of Wave Propagation Phenomena In Domains of Complex
Geometry and Applications to Remote Sensing

Keywords: Exterior Laplace problem, exterior Helmholtz problem, boundary integral equations, boundary
element methods, operator preconditioning, optimal preconditioning, screen problems, crack problems.

This thesis is about some boundary integral operators de�ned on the unit disk in three-dimensional space, their
relation with the exterior Laplace and Helmholtz problems, and their application to the preconditioning for the
boundary element method. We begin by describing the integral method for the solution of the Laplace and
Helmholtz problems on the exterior of objects with Lipschitz-regular boundaries and open two-dimensional surfaces
in three-dimensional space. We describe the integral formulation in these cases, the boundary element method, its
computational complexity and the inherent ill-conditioning of the associated linear systems. We describe optimal
preconditioning based on operator preconditioning. We show that this technique is easily applicable when objects
are Lipschitz-regular, but that its application fails for problems involving open surfaces. We show that the integral
operators associated with the resolution of the Dirichlet and Neumann problems de�ned on the exterior of open
surfaces have inverse operators that would provide optimal preconditioners but they are not easily obtainable.
Then we show a technique to explicitly obtain such inverse operators for the unit disk. Their explicit inverse
operators will be given in the form of a series and will not be immediately applicable in the use of boundary
element methods. Then we show how some modi�cations to these inverse operators allow us to obtain variational
explicit and closed-form expressions that conserve some characteristics that are relevant for their preconditioning
e�ect. These explicit and closed forms expressions are applicable in boundary element methods. We obtain precise
variational expressions for them and propose appropriate numerical schemes. The proposed numerical methods are
tested and then used to build preconditioning matrices. Their performance as preconditioners for linear systems is
tested for the case of the Laplace and Helmholtz problems for the unit disk. We propose an extension of this
method that allows for the treatment of cases of open surfaces other than the disk. Finally, the methods developed
are used in an application example. Based on techniques and assumptions from geometrical optics, we propose
improvements to existing methods for the imaging of underground reectivity using ground penetrating radar.
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