C. R. Woese and G. E. Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.74-5088, 1977.
DOI : 10.1177/026327640602300263

G. E. Fox, Classification of methanogenic bacteria by 16S ribosomal RNA characterization, Proceedings of the National Academy of Sciences, vol.74, issue.10, pp.74-4537, 1977.
DOI : 10.1073/pnas.74.10.4537

C. R. Woese, O. Kandler, and M. L. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya., Proceedings of the National Academy of Sciences, vol.87, issue.12, pp.4576-4585, 1990.
DOI : 10.1073/pnas.87.12.4576

K. Raymann, C. Brochier-armanet, and S. Gribaldo, The two-domain tree of life is linked to a new root for the Archaea, Proceedings of the National Academy of Sciences, vol.112, issue.21, pp.112-6670
DOI : 10.1186/1471-2105-9-341

R. Huber, H. Huber, and K. O. Stetter, Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties, FEMS Microbiology Reviews, vol.24, issue.5, pp.615-638, 2000.
DOI : 10.1111/j.1574-6976.2000.tb00562.x

L. J. Rothschild and R. L. Mancinelli, Life in extreme environments, Nature, vol.409, issue.6823, pp.1092-101, 2001.
DOI : 10.1038/35059215

B. Chaban, S. Y. Ng, and K. F. Jarrell, Archaeal habitats ??? from the extreme to the ordinary, Canadian Journal of Microbiology, vol.52, issue.2, pp.73-116, 2006.
DOI : 10.1139/w05-147

W. Martens-habbena, Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, vol.51, issue.7266, pp.461-976, 2009.
DOI : 10.1038/nature08465

J. F. Brugere, Archaebiotics, Gut Microbes, vol.137, issue.1, pp.5-10
DOI : 10.1128/JB.00420-09

URL : https://hal.archives-ouvertes.fr/hal-01056810

K. F. Jarrell and S. V. Albers, The archaellum: an old motility structure with a new name, Trends in Microbiology, vol.20, issue.7, pp.307-319, 2012.
DOI : 10.1016/j.tim.2012.04.007

O. Kandler and H. Hippe, Lack of peptidoglycan in the cell walls of Methanosarcina barkeri, Archives of Microbiology, vol.45, issue.1-2, pp.57-60, 1977.
DOI : 10.1007/BF00428580

S. V. Albers and B. H. Meyer, The archaeal cell envelope, Nature Reviews Microbiology, vol.3, issue.6, pp.414-440, 2011.
DOI : 10.1038/nrmicro2576

N. P. Ulrih, D. Gmajner, and P. Raspor, Structural and physicochemical properties of polar lipids from thermophilic archaea, Applied Microbiology and Biotechnology, vol.1727, issue.2193, pp.249-60, 2009.
DOI : 10.1007/s00253-009-2102-9

K. Raymann, Global Phylogenomic Analysis Disentangles the Complex Evolutionary History of DNA Replication in Archaea, Genome Biology and Evolution, vol.6, issue.1, pp.192-212, 2014.
DOI : 10.1093/gbe/evu004

URL : https://hal.archives-ouvertes.fr/hal-00957432

D. Langer, Transcription in archaea: similarity to that in eucarya., Proceedings of the National Academy of Sciences, vol.92, issue.13, pp.92-5768, 1995.
DOI : 10.1073/pnas.92.13.5768

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC41582

S. H. Jun, Archaeal RNA polymerase and transcription regulation, Critical Reviews in Biochemistry and Molecular Biology, vol.91, issue.34, pp.27-40, 2005.
DOI : 10.1016/S0968-0004(00)01718-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076279

M. T. Facciotti, General transcription factor specified global gene regulation in archaea, Proceedings of the National Academy of Sciences, vol.31, issue.13, pp.4630-4635, 2007.
DOI : 10.1093/nar/gkg500

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838652

Y. Watanabe, Introns in protein-coding genes in Archaea, FEBS Letters, vol.89, issue.1-2, pp.27-30, 2002.
DOI : 10.1016/S0014-5793(01)03219-7

V. Portnoy, RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus Sartorius-Neef, S. and F. Pfeifer, In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum, EMBO Rep Mol Microbiol, vol.21, issue.6122, pp.1188-93, 2004.

H. Hartman, P. Favaretto, and T. F. Smith, The archaeal origins of the eukaryotic translational system, Archaea, vol.87, issue.1, pp.1-9, 2006.
DOI : 10.1155/2006/431618

M. Meselson and F. W. Stahl, The Replication of DNA, Cold Spring Harbor Symposia on Quantitative Biology, vol.23, issue.0, pp.9-12, 1958.
DOI : 10.1101/SQB.1958.023.01.004

F. Sarmiento, Diversity of the DNA replication system in the Archaea domain, Archaea, p.675946, 2014.

E. R. Barry and S. D. Bell, DNA Replication in the Archaea, Microbiology and Molecular Biology Reviews, vol.70, issue.4, pp.876-87, 2006.
DOI : 10.1128/MMBR.00029-06

Z. Wu, Multiple replication origins with diverse control mechanisms in Haloarcula hispanica, Nucleic Acids Research, vol.42, issue.4, pp.2282-94, 2014.
DOI : 10.1093/nar/gkt1214

URL : http://doi.org/10.1093/nar/gkt1214

E. A. Pelve, in thaum- and euryarchaeal replicons, Molecular Microbiology, vol.8, issue.3, pp.538-50, 2013.
DOI : 10.1111/mmi.12382

H. Yang, Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins, Nature Communications, vol.36, issue.6, p.8321, 2015.
DOI : 10.1038/ncomms9321

M. Hawkins, Accelerated growth in the absence of DNA replication origins, Nature, vol.9, issue.7477, pp.544-551, 2013.
DOI : 10.1038/nature12650

C. Norais, Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii, PLoS Genetics, vol.393, issue.5, p.77, 2007.
DOI : 10.1371/journal.pgen.0030077.st001

URL : https://hal.archives-ouvertes.fr/hal-00195310

R. Lestini, F. D. , H. Myllykallio, and H. , Advances in DNA repair Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon, DNA Replication Restart in Archaea Science, issue.5474, pp.288-2212, 2000.

S. Maisnier-patin, Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii, Molecular Microbiology, vol.10, issue.5, pp.1443-50, 2002.
DOI : 10.1046/j.1365-2958.2002.03111.x

B. R. Berquist and S. Dassarma, An Archaeal Chromosomal Autonomously Replicating Sequence Element from an Extreme Halophile, Halobacterium sp. Strain NRC-1, Journal of Bacteriology, vol.185, issue.20, pp.185-5959, 2003.
DOI : 10.1128/JB.185.20.5959-5966.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225043

J. A. Coker, Multiple Replication Origins of Halobacterium sp. Strain NRC-1: Properties of the Conserved orc7-Dependent oriC1, Journal of Bacteriology, vol.191, issue.16, pp.191-5253, 2009.
DOI : 10.1128/JB.00210-09

A. I. Majernik and J. P. Chong, A conserved mechanism for replication origin recognition and binding in archaea, Biochemical Journal, vol.409, issue.2, pp.511-519, 2008.
DOI : 10.1042/BJ20070213

URL : https://hal.archives-ouvertes.fr/hal-00478756

M. Lundgren, Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination, Proceedings of the National Academy of Sciences, vol.185, issue.20, pp.7046-51, 2004.
DOI : 10.1128/JB.185.20.5959-5966.2003

R. Y. Samson, Specificity and Function of Archaeal DNA Replication Initiator Proteins, Cell Reports, vol.3, issue.2, pp.485-96, 2013.
DOI : 10.1016/j.celrep.2013.01.002

URL : http://doi.org/10.1016/j.celrep.2013.01.002

N. P. Robinson and S. D. Bell, Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.5806-5817, 2007.
DOI : 10.1093/bioinformatics/btg430

F. Matsunaga, In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin, Proceedings of the National Academy of Sciences, vol.2, issue.5500, pp.98-11152, 2001.
DOI : 10.1126/science.290.5500.2309

F. Matsunaga, Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp., Nucleic Acids Research, vol.35, issue.10, pp.35-3214, 2007.
DOI : 10.1093/nar/gkm212

URL : https://hal.archives-ouvertes.fr/hal-00167503

N. P. Robinson, Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus, Cell, vol.116, issue.1, pp.25-38, 2004.
DOI : 10.1016/S0092-8674(03)01034-1

S. A. Macneill, The haloarchaeal chromosome replication machinery, Biochemical Society Transactions, vol.37, issue.1, pp.108-121, 2009.
DOI : 10.1042/BST0370108

S. Ishino, Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis, Genes to Cells, vol.283, issue.12, pp.1176-89, 2011.
DOI : 10.1111/j.1365-2443.2011.01562.x

F. Sarmiento, J. Mrazek, and W. B. Whitman, Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis, Proceedings of the National Academy of Sciences, vol.21, issue.10, pp.110-4726
DOI : 10.1016/j.tcb.2011.07.005

Z. Kelman, J. K. Lee, and J. Hurwitz, The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum Delta H contains DNA helicase activity, Proceedings of the National Academy of Sciences, vol.2, issue.1, pp.14783-14791, 1999.
DOI : 10.1016/S1097-2765(00)80110-0

D. Felice and M. , A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA Regulation of minichromosome maintenance helicase activity by Cdc6, J Biol Chem J Biol Chem, issue.4139, pp.279-43008, 2003.

R. Kasiviswanathan, J. H. Shin, and Z. Kelman, Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties, Nucleic Acids Research, vol.33, issue.15, pp.33-4940, 2005.
DOI : 10.1093/nar/gki807

URL : http://doi.org/10.1093/nar/gki807

M. Akita, Cdc6/Orc1 from Pyrococcus furiosus may act as the origin recognition protein and Mcm helicase recruiter, Genes Cells, vol.15, issue.5, pp.537-52, 2010.
DOI : 10.1111/j.1365-2443.2010.01402.x

N. Marinsek, GINS, a central nexus in the archaeal DNA replication fork, EMBO reports, vol.33, issue.5, pp.539-584, 2006.
DOI : 10.1073/pnas.092547099

T. Oyama, Architectures of archaeal GINS complexes, essential DNA replication initiation factors The GINS complex from the thermophilic archaeon, Thermoplasma acidophilum may function as a homotetramer in DNA replication, BMC Biol Extremophiles, vol.15, issue.4, pp.529-568, 2011.

T. Yoshimochi, The GINS Complex from Pyrococcus furiosus Stimulates the MCM Helicase Activity, Journal of Biological Chemistry, vol.283, issue.3, pp.1601-1610, 2008.
DOI : 10.1074/jbc.M707654200

P. Forterre, Origin and evolution of DNA topoisomerases, Biochimie, vol.89, issue.4, pp.427-473, 2007.
DOI : 10.1016/j.biochi.2006.12.009

URL : https://hal.archives-ouvertes.fr/hal-00194416

K. M. Borges, Characterization of the reverse gyrase from the hyperthermophilic archaeon Pyrococcus furiosus., Journal of Bacteriology, vol.179, issue.5, pp.1721-1727, 1997.
DOI : 10.1128/jb.179.5.1721-1726.1997

A. Kikuchi, K. Asai, M. , N. J. Crisona, and P. B. Arimondo, Reverse gyrase???a topoisomerase which introduces positive superhelical turns into DNA, Nature, vol.2, issue.5970, pp.677-81, 1984.
DOI : 10.1038/309677a0

S. Dabrowski, Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus -new arrangement of binding domains. Microbiology A dimeric mutant of the homotetrameric singlestranded DNA binding protein from Escherichia coli, Biol Chem, issue.1489, pp.3307-3322, 2002.

C. Iftode, Y. Daniely, and J. A. Borowiec, Replication Protein A (RPA): The Eukaryotic SSB, Critical Reviews in Biochemistry and Molecular Biology, vol.34, issue.3, pp.141-80, 1999.
DOI : 10.1080/10409239991209255

A. G. Murzin, R. I. Wadsworth, and M. F. White, OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences Identification and properties of the crenarchaeal singlestranded DNA binding protein from Sulfolobus solfataricus, EMBO J Nucleic Acids Res, vol.12, issue.294, pp.861-868, 1993.

K. Komori and Y. Ishino, Replication Protein A in Pyrococcus furiosus Is Involved in Homologous DNA Recombination, Journal of Biological Chemistry, vol.276, issue.28, pp.25654-60, 2001.
DOI : 10.1074/jbc.M102423200

A. Skowyra and S. A. Macneill, Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism, Nucleic Acids Research, vol.40, issue.3, pp.40-1077, 2012.
DOI : 10.1093/nar/gkr838

A. D. Walters and J. P. Chong, : an archaeon with multiple functional MCM proteins?, Biochemical Society Transactions, vol.37, issue.1, pp.1-6, 2009.
DOI : 10.1042/BST0370001

D. N. Frick, C. C. Richardson, and C. H. Norais, DNA Primases, Annual Review of Biochemistry, vol.70, issue.1, pp.39-80, 2001.
DOI : 10.1146/annurev.biochem.70.1.39

Y. Ishino and I. K. Cann, The euryarchaeotes, a subdomain of Archaea, survive on a single DNA polymerase: Fact or farce?, Genes & Genetic Systems, vol.73, issue.6, pp.73-323, 1998.
DOI : 10.1266/ggs.73.323

I. K. Cann, A heterodimeric DNA polymerase: Evidence that members of Euryarchaeota possess a distinct DNA polymerase, Proceedings of the National Academy of Sciences, vol.25, issue.6, pp.95-14250, 1998.
DOI : 10.1093/nar/25.6.1094

Y. Ishino, A novel DNA polymerase family found in Archaea, J Bacteriol, vol.180, issue.8, pp.2232-2238, 1998.

F. Boudsocq, Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta, Nucleic Acids Research, vol.29, issue.22, pp.29-4607, 2001.
DOI : 10.1093/nar/29.22.4607

URL : http://doi.org/10.1093/nar/29.22.4607

G. Henneke, The Hyperthermophilic Euryarchaeota Pyrococcus abyssi Likely Requires the Two DNA Polymerases D and B for DNA Replication, Journal of Molecular Biology, vol.350, issue.1, pp.53-64, 2005.
DOI : 10.1016/j.jmb.2005.04.042

M. Jokela, Characterization of the 3' exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D, Nucleic Acids Research, vol.32, issue.8, pp.2430-2470, 2004.
DOI : 10.1093/nar/gkh558

Z. Li, Affinity Purification of an Archaeal DNA Replication Protein Network, mBio, vol.1, issue.5, 2010.
DOI : 10.1128/mBio.00221-10

URL : http://doi.org/10.1128/mbio.00221-10

K. Daimon, Three Proliferating Cell Nuclear Antigen-Like Proteins Found in the Hyperthermophilic Archaeon Aeropyrum pernix: Interactions with the Two DNA Polymerases, Journal of Bacteriology, vol.184, issue.3, pp.687-94, 2002.
DOI : 10.1128/JB.184.3.687-694.2002

I. Dionne, A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis, Mol Cell Genes Cells, vol.11, issue.8311, pp.275-82, 2003.

T. R. Beattie and S. D. Bell, Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation, The EMBO Journal, vol.156, issue.6, pp.31-1556, 2012.
DOI : 10.1038/emboj.2012.12

C. Creze, Modulation of the Pyrococcus abyssi NucS Endonuclease Activity by Replication Clamp at Functional and Structural Levels, Journal of Biological Chemistry, vol.287, issue.19, pp.287-15648, 2012.
DOI : 10.1074/jbc.M112.346361

URL : https://hal.archives-ouvertes.fr/hal-00808519

B. Ren, Structure and function of a novel endonuclease acting on branched DNA substrates, The EMBO Journal, vol.28, issue.16, pp.2479-89, 2009.
DOI : 10.1073/pnas.0504341102

URL : https://hal.archives-ouvertes.fr/hal-00406013

S. A. Macneill, PCNA-binding proteins in the archaea: novel functionality beyond the conserved core, Current Genetics, vol.9, issue.3, pp.527-559, 2016.
DOI : 10.1007/s00294-016-0577-3

P. F. Pluchon, An extended network of genomic maintenance in the archaeon Pyrococcus abyssi highlights unexpected associations between eucaryotic homologs A novel archaeal DNA repair factor that acts with the UvrABC system to repair mitomycin C-induced DNA damage in a PCNA-dependent manner, PLoS One Mol Microbiol, vol.8, issue.111, pp.99-100, 2013.

N. Y. Yao, Mechanism of Proliferating Cell Nuclear Antigen Clamp Opening by Replication Factor C, Journal of Biological Chemistry, vol.281, issue.25, pp.281-17528, 2006.
DOI : 10.1074/jbc.M601273200

D. Jeruzalmi, M. O. Donnell, and J. Kuriyan, Clamp loaders and sliding clamps, Current Opinion in Structural Biology, vol.12, issue.2, pp.217-241, 2002.
DOI : 10.1016/S0959-440X(02)00313-5

I. K. Cann, Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea, J Bacteriol, issue.21, pp.181-6591, 1999.

D. Felice and M. , Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus, Journal of Molecular Biology, vol.291, issue.1, pp.47-57, 1999.
DOI : 10.1006/jmbi.1999.2939

Z. Kelman and J. Hurwitz, A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH, J Biol Chem, issue.10, pp.275-7327, 2000.

A. Seybert, Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus, Nucleic Acids Research, vol.30, issue.20, pp.30-4329, 2002.
DOI : 10.1093/nar/gkf584

A. Seybert, Communication between subunits within an archaeal clamp-loader complex, The EMBO Journal, vol.103, issue.10, pp.2209-2227, 2006.
DOI : 10.1038/sj.emboj.7601093

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462970

A. Seybert and D. B. Wigley, Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader, The EMBO Journal, vol.23, issue.6, pp.1360-71, 2004.
DOI : 10.1038/sj.emboj.7600130

G. Henneke, reconstitution of RNA primer removal in Archaea reveals the existence of two pathways, Biochemical Journal, vol.160, issue.2, pp.271-80, 2012.
DOI : 10.1093/jmcb/mjq048

URL : https://hal.archives-ouvertes.fr/hal-00773151

L. Meslet-cladiere, A Novel Proteomic Approach Identifies New Interaction Partners for Proliferating Cell Nuclear Antigen, Journal of Molecular Biology, vol.372, issue.5, pp.1137-1185, 2007.
DOI : 10.1016/j.jmb.2007.06.056

URL : https://hal.archives-ouvertes.fr/hal-00193755

A. L. Hartman, The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon, PLoS ONE, vol.5, issue.3, p.9605, 2010.
DOI : 10.1371/journal.pone.0009605.s004

G. Bitan-banin, R. Ortenberg, and M. Mevarech, Development of a Gene Knockout System for the Halophilic Archaeon Haloferax volcanii by Use of the pyrE Gene, Journal of Bacteriology, vol.185, issue.3, pp.772-780, 2003.
DOI : 10.1128/JB.185.3.772-778.2003

T. Allers, Development of Additional Selectable Markers for the Halophilic Archaeon Haloferax volcanii Based on the leuB and trpA Genes, Applied and Environmental Microbiology, vol.70, issue.2, pp.943-53, 2004.
DOI : 10.1128/AEM.70.2.943-953.2004

M. F. Mullakhanbhai and H. Larsen, Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement, Archives of Microbiology, vol.11, issue.1, pp.207-221, 1975.
DOI : 10.1007/BF00447326

J. J. Cairo, Methanosarcina mazei JC2, a new methanogenic strain isolated from lake sediments, that does not use H2/CO2. Microbiologia, pp.21-31, 1992.

W. G. Hixon and D. G. Searcy, Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts, Biosystems, vol.29, issue.2-3, pp.151-60, 1993.
DOI : 10.1016/0303-2647(93)90091-P

M. Kessel and Y. Cohen, Ultrastructure of square bacteria from a brine pool in Southern Sinai, J Bacteriol, vol.150, issue.2, pp.851-60, 1982.

D. G. Burns, Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain, International Journal of Systematic and Evolutionary Microbiology, vol.57, issue.2, pp.57-387, 2007.
DOI : 10.1099/ijs.0.64690-0

W. J. Jones, J. A. , F. Mayer, C. R. Woese, and R. S. Wolfe, Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent Archives of microbiology, 1983.

E. Blochl, Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C, Extremophiles, vol.1, issue.1, pp.14-21, 1997.

D. J. Kushner and H. Onishi, Absence of normal cell wall constituents from the outer layers of Halobacterium cutirubrum, Can J Biochem, issue.8, pp.46-997, 1968.

H. Claus, Molecular organization of selected prokaryotic S-layer proteins, Canadian Journal of Microbiology, vol.51, issue.9, pp.731-774, 2005.
DOI : 10.1139/w05-093

X. Wang and J. Lutkenhaus, FtsZ ring: the eubacterial division apparatus conserved in archaebacteria, Molecular Microbiology, vol.21, issue.2, pp.313-322, 1996.
DOI : 10.1046/j.1365-2958.1996.6421360.x

I. G. Duggin, CetZ tubulin-like proteins control archaeal cell shape, Nature, vol.22, issue.7543, pp.362-367, 2015.
DOI : 10.1038/nature13983

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369195

M. J. Dobro, Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission, Molecular Biology of the Cell, vol.24, issue.15, pp.24-2319, 2013.
DOI : 10.1091/mbc.E12-11-0785

T. Gristwood, The sub-cellular localization of Sulfolobus DNA replication, Nucleic Acids Research, vol.40, issue.12, pp.5487-96, 2012.
DOI : 10.1093/nar/gks217

R. Y. Samson, A Role for the ESCRT System in Cell Division in Archaea, Science, vol.80, issue.15, pp.1710-1713, 2008.
DOI : 10.1128/JVI.00522-06

A. Salic and T. J. Mitchison, A chemical method for fast and sensitive detection of DNA synthesis in vivo, Proceedings of the National Academy of Sciences, vol.37, issue.17, pp.2415-2435, 2008.
DOI : 10.1021/jm00043a007

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.223-262, 1962.
DOI : 10.1002/jcp.1030590302

M. Ormo, Crystal Structure of the Aequorea victoria Green Fluorescent Protein, Science, vol.273, issue.5280, pp.1392-1397, 1996.
DOI : 10.1126/science.273.5280.1392

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-553, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

C. J. Reuter and J. A. Maupin-furlow, Analysis of Proteasome-Dependent Proteolysis in Haloferax volcanii Cells, Using Short-Lived Green Fluorescent Proteins, Applied and Environmental Microbiology, vol.70, issue.12, pp.70-7530, 2004.
DOI : 10.1128/AEM.70.12.7530-7538.2004

G. H. Patterson, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy, Biophysical Journal, vol.73, issue.5, pp.2782-90, 1997.
DOI : 10.1016/S0006-3495(97)78307-3

P. J. Cranfill, Quantitative assessment of fluorescent proteins, Nature Methods, vol.58, issue.7, pp.557-62, 2016.
DOI : 10.1073/pnas.0407752101

E. A. Reits and J. J. Neefjes, From fixed to FRAP: measuring protein mobility and activity in living cells, Nature Cell Biology, vol.3, issue.6, pp.145-152, 2001.
DOI : 10.1038/35078615

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION, Journal of Microscopy, vol.198, issue.2, pp.82-89, 0198.
DOI : 10.1046/j.1365-2818.2000.00710.x

Y. Hirano, A. Matsuda, and Y. Hiraoka, Recent advancements in structured-illumination microscopy toward live-cell imaging, Microscopy, vol.64, issue.4, pp.237-286, 2015.
DOI : 10.1093/jmicro/dfv034

E. Morgunova, Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment, Acta Crystallogr D Biol Crystallogr, pp.65-1081, 2009.

J. A. Winter, The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation, BMC Structural Biology, vol.9, issue.1, p.55, 2009.
DOI : 10.1186/1472-6807-9-55

A. Costes, The C-Terminal Domain of the Bacterial SSB Protein Acts as a DNA Maintenance Hub at Active Chromosome Replication Forks, PLoS Genetics, vol.38, issue.12, p.1001238, 2010.
DOI : 10.1371/journal.pgen.1001238.s013

URL : https://hal.archives-ouvertes.fr/hal-00557833

F. Lecointe, Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks, The EMBO Journal, vol.267, issue.19, pp.26-4239, 2007.
DOI : 10.1038/sj.emboj.7601848

URL : https://hal.archives-ouvertes.fr/hal-00211391

D. J. Richard, Single-stranded DNA-binding protein hSSB1 is critical for genomic stability, Nature, vol.26, issue.7195, pp.453-677, 2008.
DOI : 10.1038/nature06883

W. Shi, Essential Developmental, Genomic Stability, and Tumour Suppressor Functions of the Mouse Orthologue of hSSB1/NABP2, PLoS Genetics, vol.106, issue.2, p.1003298
DOI : 10.1371/journal.pgen.1003298.s014

L. Cubeddu and M. F. White, DNA Damage Detection by an Archaeal Single-stranded DNA-binding Protein, Journal of Molecular Biology, vol.353, issue.3, pp.507-523, 2005.
DOI : 10.1016/j.jmb.2005.08.050

A. Stroud, S. Liddell, and T. Allers, Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii, Frontiers in Microbiology, vol.3, issue.3, p.224, 2012.
DOI : 10.3389/fmicb.2012.00224

R. Lestini, Intracellular dynamics of archaeal FANCM homologue Hef in response to halted DNA replication, Nucleic Acids Research, vol.41, issue.22, pp.41-10358, 2013.
DOI : 10.1093/nar/gkt816

URL : https://hal.archives-ouvertes.fr/hal-00942476

A. Wach, PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae, Yeast, vol.11, issue.3, pp.259-65, 1996.
DOI : 10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C

M. Z. Li and S. J. Elledge, SLIC: A Method for Sequence- and Ligation-Independent Cloning, Methods Mol Biol, vol.852, pp.51-60, 2012.
DOI : 10.1007/978-1-61779-564-0_5

P. Forterre, C. Elie, and M. Kohiyama, Aphidicolin inhibits growth and DNA synthesis in halophilic arachaebacteria, J Bacteriol, vol.159, issue.2, pp.800-802, 1984.

R. Y. Samson and S. D. Bell, Archaeal DNA Replication Origins and Recruitment of the MCM Replicative Helicase. Enzymes, pp.169-90, 2016.

A. Moran-reyna and J. A. Coker, The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea, F1000Research, issue.3, p.168, 1000.
DOI : 10.12688/f1000research.4789.1

M. L. Rolfsmeier and C. A. Haseltine, The Single-Stranded DNA Binding Protein of Sulfolobus solfataricus Acts in the Presynaptic Step of Homologous Recombination, Journal of Molecular Biology, vol.397, issue.1, pp.31-45, 2010.
DOI : 10.1016/j.jmb.2010.01.004

C. Hellen and R. A. Ishikawa-ankerhold, Advanced Fluorescence Microscopy Techniques?FRAP, FLIP,FLAP, FRET and FLIM Molecules, 2012.

D. Kamiyama, Versatile protein tagging in cells with split fluorescent protein, Nature Communications, vol.127, issue.876, 2006.
DOI : 10.1038/ncomms11046

URL : http://doi.org/10.1038/ncomms11046

Z. Kelman and M. F. White, Archaeal DNA replication and repair, Current Opinion in Microbiology, vol.8, issue.6, pp.669-676, 2005.
DOI : 10.1016/j.mib.2005.10.001

M. O. Donnell, L. Langston, and B. Stillman, Principles and concepts of DNA replication in bacteria, archaea, and eukarya, Cold Spring Harb. Perspect. Biol, vol.5, 2013.

G. Grompone, D. Ehrlich, and B. Michel, Cells defective for replication restart undergo replication fork reversal, EMBO reports, vol.267, issue.6, pp.607-612, 2004.
DOI : 10.1016/S1097-2765(03)00061-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299077

B. Michel, H. Boubakri, Z. Baharoglu, M. Lemasson, and R. Lestini, Recombination proteins and rescue of arrested replication forks, DNA Repair, vol.6, issue.7, pp.967-980, 2007.
DOI : 10.1016/j.dnarep.2007.02.016

URL : https://hal.archives-ouvertes.fr/hal-00167418

C. J. Rudolph, A. L. Upton, and R. G. Lloyd, Maintaining replication fork integrity in UV-irradiated Escherichia coli cells, DNA Repair, vol.7, issue.9, pp.1589-1602, 2008.
DOI : 10.1016/j.dnarep.2008.06.012

L. Xu and K. J. Marians, PriA Mediates DNA Replication Pathway Choice at Recombination Intermediates, Molecular Cell, vol.11, issue.3, pp.817-826, 2003.
DOI : 10.1016/S1097-2765(03)00061-3

URL : http://doi.org/10.1016/s1097-2765(03)00061-3

A. M. Carr and S. Lambert, Replication Stress-Induced Genome Instability: The Dark Side of Replication Maintenance by Homologous Recombination, Journal of Molecular Biology, vol.425, issue.23, pp.425-4733, 2013.
DOI : 10.1016/j.jmb.2013.04.023

C. Lundin, N. Schultz, C. Arnaudeau, A. Mohindra, L. T. Hansen et al., RAD51 is Involved in Repair of Damage Associated with DNA Replication in Mammalian Cells, Journal of Molecular Biology, vol.328, issue.3, pp.328-521, 2003.
DOI : 10.1016/S0022-2836(03)00313-9

L. Roseaulin, Y. Yamada, Y. Tsutsui, P. Russell, H. Iwasaki et al., Mus81 is essential for sister chromatid recombination at broken replication forks, The EMBO Journal, vol.300, issue.9, pp.1378-1387, 2008.
DOI : 10.1038/emboj.2008.65

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374842

Y. Saintigny, F. Delacote, G. Vares, F. Petitot, S. Lambert et al., Characterization of homologous recombination induced by replication inhibition in mammalian cells, The EMBO Journal, vol.20, issue.14, 2001.
DOI : 10.1093/emboj/20.14.3861

J. T. Yeeles, J. Poli, K. J. Marians, and P. Pasero, Rescuing Stalled or Damaged Replication Forks, Cold Spring Harbor Perspectives in Biology, vol.5, issue.5, p.12815, 2013.
DOI : 10.1101/cshperspect.a012815

URL : https://hal.archives-ouvertes.fr/hal-00820216

H. Myllykallio, P. Lopez, P. Lopez-garcia, R. Heilig, W. Saurin et al., Bacterial Mode of Replication with Eukaryotic-Like Machinery in a Hyperthermophilic Archaeon, Science, vol.288, issue.5474, pp.2212-2215, 2000.
DOI : 10.1126/science.288.5474.2212

S. Maisnier-patin, L. Malandrin, N. K. Birkeland, and R. Bernander, Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii, Molecular Microbiology, vol.10, issue.5, p.45, 2002.
DOI : 10.1046/j.1365-2958.2002.03111.x

M. Hawkins, S. Malla, M. J. Blythe, C. A. Nieduszynski, and T. Allers, Accelerated growth in the absence of DNA replication origins, Nature, vol.9, issue.7477, pp.544-547, 2013.
DOI : 10.1038/nature12650

M. Lundgren, A. Andersson, L. Chen, P. Nilsson, and R. Bernander, Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination, Proceedings of the National Academy of Sciences, vol.185, issue.20, pp.7046-7051, 2004.
DOI : 10.1128/JB.185.20.5959-5966.2003

E. A. Pelve, A. C. Lindas, A. Knoppel, A. Mira, and R. Bernander, Four chromosome replication origins in the archaeon Pyrobaculum calidifontis, Mol. Microbiol, pp.85-986, 2012.

E. A. Pelve, W. Martens-habbena, D. A. Stahl, and R. Bernander, Mapping of active replication origins in vivo in thaum-and euryarchaeal replicons, Mol. Microbiol, pp.90-538, 2013.

N. P. Robinson and S. D. Bell, Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.5806-5811, 2007.
DOI : 10.1093/bioinformatics/btg430

R. Y. Samson, Y. Xu, C. Gadelha, T. A. Stone, J. N. Faqiri et al., Specificity and Function of Archaeal DNA Replication Initiator Proteins, Cell Reports, vol.3, issue.2, pp.485-496, 2013.
DOI : 10.1016/j.celrep.2013.01.002

Z. Wu, H. Liu, J. Liu, X. Liu, and H. Xiang, Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea, BMC Genomics, vol.13, issue.1, p.478, 2012.
DOI : 10.1093/bioinformatics/btn578

M. F. Mullakhanbhai and H. Larsen, Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement, Archives of Microbiology, vol.11, issue.1, pp.207-214, 1975.
DOI : 10.1007/BF00447326

T. Allers, S. Barak, S. Liddell, K. Wardell, and M. Mevarech, Improved Strains and Plasmid Vectors for Conditional Overexpression of His-Tagged Proteins in Haloferax volcanii, Applied and Environmental Microbiology, vol.76, issue.6, pp.76-1759, 2010.
DOI : 10.1128/AEM.02670-09

T. Allers, H. P. Ngo, M. Mevarech, and R. G. Lloyd, Development of Additional Selectable Markers for the Halophilic Archaeon Haloferax volcanii Based on the leuB and trpA Genes, Applied and Environmental Microbiology, vol.70, issue.2, p.70, 2004.
DOI : 10.1128/AEM.70.2.943-953.2004

G. Bitan-banin, R. Ortenberg, and M. Mevarech, Development of a Gene Knockout System for the Halophilic Archaeon Haloferax volcanii by Use of the pyrE Gene, Journal of Bacteriology, vol.185, issue.3, pp.185-772, 2003.
DOI : 10.1128/JB.185.3.772-778.2003

A. Large, C. Stamme, C. Lange, Z. Duan, T. Allers et al., Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene, Molecular Microbiology, vol.147, issue.5, p.66, 2007.
DOI : 10.1046/j.1365-2958.2003.03497.x

J. Robinson, H. Khouri, Q. Ren, T. M. Lowe, J. Maupin-furlow et al., The complete genome sequence of Haloferax volcanii DS2, a model archaeon, PLoS One, vol.5, p.9605, 2010.

S. Breuert, T. Allers, G. Spohn, and J. Soppa, Regulated Polyploidy in Halophilic Archaea, PLoS ONE, vol.178, issue.22, p.92, 2006.
DOI : 10.1371/journal.pone.0000092.t001

URL : http://doi.org/10.1371/journal.pone.0000092

C. Lange, K. Zerulla, S. Breuert, and J. Soppa, Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii, Molecular Microbiology, vol.89, issue.3, pp.80-666, 2011.
DOI : 10.1111/j.1365-2958.2011.07600.x

C. Norais, M. Hawkins, A. L. Hartman, J. A. Eisen, H. Myllykallio et al., Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii, PLoS Genetics, vol.393, issue.5, p.77, 2007.
DOI : 10.1371/journal.pgen.0030077.st001

URL : https://hal.archives-ouvertes.fr/hal-00195310

Z. Wu, J. Liu, H. Yang, H. Liu, and H. Xiang, Multiple replication origins with diverse control mechanisms in Haloarcula hispanica, Nucleic Acids Research, vol.42, issue.4, pp.42-2282, 2014.
DOI : 10.1093/nar/gkt1214

URL : http://doi.org/10.1093/nar/gkt1214

B. Michel and R. Bernander, Chromosome replication origins: Do we really need them?, BioEssays, vol.11, issue.6, pp.585-590, 2014.
DOI : 10.1002/bies.201400003

C. Cvetic and J. C. Walter, Eukaryotic origins of DNA replication: could you please be more specific?, Seminars in Cell & Developmental Biology, vol.16, issue.3, p.16, 2005.
DOI : 10.1016/j.semcdb.2005.02.009

W. G. Woods and M. L. , Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii, Molecular Microbiology, vol.23, issue.4, pp.791-797, 1997.
DOI : 10.1046/j.1365-2958.1997.2651626.x

A. Ahmad, A. R. Robinson, A. Duensing, E. Van-drunen, H. B. Beverloo et al., ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair, ERCC1-XPF endonuclease facilitates DNA double-strand break repair, pp.5082-5092, 2008.
DOI : 10.1128/MCB.00293-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519706

A. Ciccia, N. Mcdonald, and S. C. West, Structural and Functional Relationships of the XPF/MUS81 Family of Proteins, Annual Review of Biochemistry, vol.77, issue.1, pp.77-259, 2008.
DOI : 10.1146/annurev.biochem.77.070306.102408

S. J. Collis, A. Ciccia, A. J. Deans, Z. Horejsi, J. S. Martin et al., FANCM and FAAP24 Function in ATR-Mediated Checkpoint Signaling Independently of the Fanconi Anemia Core Complex, FANCM and FAAP24 function in ATRmediated checkpoint signaling independently of the Fanconi anemia core complex, pp.313-324, 2008.
DOI : 10.1016/j.molcel.2008.10.014

J. H. Enzlin and O. D. Scharer, The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif, The EMBO Journal, vol.21, issue.8, 2002.
DOI : 10.1093/emboj/21.8.2045

K. Gari, C. Decaillet, M. Delannoy, L. Wu, and A. Constantinou, Remodeling of DNA replication structures by the branch point translocase FANCM, Proc. Natl
DOI : 10.1093/nar/gkl258

K. Hanada, M. Budzowska, S. L. Davies, E. Van-drunen, H. Onizawa et al., The structure-specific endonuclease Mus81 contributes to replication restart by generating doublestrand DNA breaks, Nat. Struct. Mol. Biol, vol.14, 2007.
DOI : 10.1038/nsmb1313

P. Matulova, V. Marini, R. C. Burgess, A. Sisakova, Y. Kwon et al., Cooperativity of Mus81{middle dot}Mms4 with Rad54 in the Resolution of Recombination and Replication Intermediates, Journal of Biological Chemistry, vol.284, issue.12, pp.7733-7745, 2009.
DOI : 10.1074/jbc.M806192200

F. Osman and M. C. Whitby, Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks, DNA Repair, vol.6, issue.7, pp.1004-1017, 2007.
DOI : 10.1016/j.dnarep.2007.02.019

A. M. Sijbers, W. L. De-laat, R. R. Ariza, M. Biggerstaff, Y. F. Wei et al., Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease, Cell, vol.86, issue.5, pp.811-822, 1996.
DOI : 10.1016/S0092-8674(00)80155-5

K. Komori, R. Fujikane, H. Shinagawa, and Y. Ishino, Novel endonuclease in Archaea cleaving DNA with various branched structure, Genes & Genetic Systems, vol.77, issue.4, pp.77-227, 2002.
DOI : 10.1266/ggs.77.227

A. R. Meetei, A. L. Medhurst, C. Ling, Y. Xue, T. R. Singh et al., A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M, Nature Genetics, vol.7, issue.9, 2005.
DOI : 10.1073/pnas.1937626100

G. Mosedale, W. Niedzwiedz, A. Alpi, F. Perrina, J. B. Pereira-leal et al., The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway, Nature Structural & Molecular Biology, vol.11, issue.9, pp.763-771, 2005.
DOI : 10.1093/emboj/cdf355

T. Nishino, K. Komori, Y. Ishino, and K. Morikawa, Structural and Functional Analyses of an Archaeal XPF/Rad1/Mus81 Nuclease: Asymmetric DNA Binding and Cleavage Mechanisms, Structure, vol.13, issue.8, pp.1183-1192, 2005.
DOI : 10.1016/j.str.2005.04.024

T. Nishino, K. Komori, D. Tsuchiya, Y. Ishino, and K. Morikawa, Crystal Structure and Functional Implications of Pyrococcus furiosus Hef Helicase Domain Involved in Branched DNA Processing, Structure, vol.13, issue.1, pp.143-153, 2005.
DOI : 10.1016/j.str.2004.11.008

K. Komori, M. Hidaka, T. Horiuchi, R. Fujikane, H. Shinagawa et al., Cooperation of the N-terminal Helicase and C-terminal Endonuclease Activities of Archaeal Hef Protein in Processing Stalled Replication Forks, Journal of Biological Chemistry, vol.279, issue.51
DOI : 10.1074/jbc.M409243200

S. Ishino, T. Yamagami, M. Kitamura, N. Kodera, T. Mori et al., Multiple Interactions of the Intrinsically Disordered Region between the Helicase and Nuclease Domains of the Archaeal Hef Protein, Journal of Biological Chemistry, vol.289, issue.31, pp.289-21627, 2014.
DOI : 10.1074/jbc.M114.554998

M. Pan, T. J. Santangelo, L. Cubonova, Z. Li, H. Metangmo et al., Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability, Extremophiles, vol.62, issue.3, pp.453-461, 2013.
DOI : 10.1007/s00792-013-0526-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743106

L. Meslet-cladiere, C. Norais, J. Kuhn, J. Briffotaux, J. W. Sloostra et al., A Novel Proteomic Approach Identifies New Interaction Partners for Proliferating Cell Nuclear Antigen, Journal of Molecular Biology, vol.372, issue.5, p.372, 2007.
DOI : 10.1016/j.jmb.2007.06.056

URL : https://hal.archives-ouvertes.fr/hal-00193755

J. A. Roberts, S. D. Bell, and M. F. White, An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA, Molecular Microbiology, vol.277, issue.2, pp.48-361, 2003.
DOI : 10.1046/j.1365-2958.2003.03444.x

R. Fujikane, S. Ishino, Y. Ishino, and P. Forterre, Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis, Genes & Genetic Systems, vol.85, issue.4, pp.85-243, 2010.
DOI : 10.1266/ggs.85.243

C. Rouillon and M. F. White, The evolution and mechanisms of nucleotide excision repair proteins, Research in Microbiology, vol.162, issue.1, 2011.
DOI : 10.1016/j.resmic.2010.09.003

A. J. Bardwell, L. Bardwell, A. E. Tomkinson, and E. C. Friedberg, Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease, Science, vol.265, issue.5181, 1994.
DOI : 10.1126/science.8091230

R. Lestini, Z. Duan, and T. Allers, The archaeal Xpf/Mus81/FANCM homolog Hef and the Holliday junction resolvase Hjc define alternative pathways that are essential for cell viability in Haloferax volcanii, DNA Repair, vol.9, issue.9, pp.994-1002, 2010.
DOI : 10.1016/j.dnarep.2010.06.012

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, issue.5148, pp.802-805, 1994.
DOI : 10.1126/science.8303295

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Physiological Reviews, vol.90, issue.3, pp.90-1103, 2010.
DOI : 10.1152/physrev.00038.2009

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.59-223, 1962.
DOI : 10.1002/jcp.1030590302

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-544, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

W. Vermeulen, Dynamics of mammalian NER proteins, DNA Repair, vol.10, issue.7, pp.760-771, 2011.
DOI : 10.1016/j.dnarep.2011.04.015

C. J. Reuter and J. A. Maupin-furlow, Analysis of Proteasome-Dependent Proteolysis in Haloferax volcanii Cells, Using Short-Lived Green Fluorescent Proteins, Applied and Environmental Microbiology, vol.70, issue.12, pp.70-7530, 2004.
DOI : 10.1128/AEM.70.12.7530-7538.2004

R. Lestini, S. P. Laptenok, J. Kuhn, M. A. Hink, M. C. Schanne-klein et al., Intracellular dynamics of archaeal FANCM homologue Hef in response to halted DNA replication, Nucleic Acids Research, vol.41, issue.22, p.41, 2013.
DOI : 10.1093/nar/gkt816

URL : https://hal.archives-ouvertes.fr/hal-00942476

P. Forterre, C. Elie, and M. Kohiyama, Aphidicolin inhibits growth and DNA synthesis in halophilic arachaebacteria, J. Bacteriol, vol.159, pp.800-802, 1984.

M. B. Elowitz, M. G. Surette, P. E. Wolf, J. B. Stock, and S. Leibler, Protein mobility in the cytoplasm of Escherichia coli, J. Bacteriol, p.181, 1999.

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope, Biophysical Journal, vol.94, issue.6, pp.94-2320, 2008.
DOI : 10.1529/biophysj.107.114645

S. T. Bakker, H. J. Van-de-vrugt, M. A. Rooimans, A. B. Oostra, J. Steltenpool et al., Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M, Human Molecular Genetics, vol.18, issue.18, pp.3484-3495, 2009.
DOI : 10.1093/hmg/ddp297

W. Crismani, C. Girard, N. Froger, M. Pradillo, J. L. Santos et al., FANCM Limits Meiotic Crossovers, FANCM limits meiotic crossovers, pp.1588-1590, 2012.
DOI : 10.1242/jcs.088229

URL : https://hal.archives-ouvertes.fr/hal-01004174

A. Lorenz, F. Osman, W. Sun, S. Nandi, R. Steinacher et al., The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis, Science, vol.115, issue.4, pp.1585-1588, 2012.
DOI : 10.1007/s00412-006-0053-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399777

R. Lestini and B. Michel, UvrD controls the access of recombination proteins to blocked replication forks, The EMBO Journal, vol.134, issue.16, pp.3804-3814, 2007.
DOI : 10.1038/sj.emboj.7601804

I. G. Duggin, C. H. Aylett, J. C. Walsh, K. A. Michie, Q. Wang et al., CetZ tubulin-like proteins control archaeal cell shape, Nature, vol.22, issue.7543, pp.362-365, 2015.
DOI : 10.1038/nature13983

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369195

M. Donnell, L. Langston, and B. Stillman, Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect, 2013.

C. Woese, O. Kandler, and M. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya., Proceedings of the National Academy of Sciences, vol.87, issue.12, pp.4576-4585
DOI : 10.1073/pnas.87.12.4576

C. Brochier-armanet, B. Boussau, S. Gribaldo, and P. Forterre, Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota, Nature Reviews Microbiology, vol.52, issue.3, pp.245-52, 2008.
DOI : 10.1038/nrmicro1852

URL : https://hal.archives-ouvertes.fr/hal-00256781

H. Myllykallio, P. Lopez, P. Lopez-garcia, R. Heilig, W. Saurin et al., Bac? terial mode of replication with eukaryotic-like machinery in a hyperthermophilic ar? chaeon, pp.2212-2217, 2000.

M. Hawkins, S. Malla, M. Blythe, C. Nieduszynski, and T. Allers, Accelerated growth in the absence of DNA replication origins, Nature, vol.9, issue.7477, pp.544-551
DOI : 10.1038/nature12650

C. Norais, M. Hawkins, A. Hartman, J. Eisen, H. Myllykallio et al., Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii, PLoS Genetics, vol.393, issue.5, p.77
DOI : 10.1371/journal.pgen.0030077.st001

URL : https://hal.archives-ouvertes.fr/hal-00195310

E. Pelve, W. Martens-habbena, D. Stahl, and R. Bernander, Mapping of active replica? tion origins in vivo in thaum-and euryarchaeal replicons, Mol, vol.90, issue.3, pp.538-50, 2013.

S. Maisnier-patin, L. Malandrin, N. Birkeland, and R. Bernander, Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Metha? nocaldococcus (Methanococcus) jannaschii, Mol, vol.45, issue.5, pp.1443-50, 2002.

B. Berquist and S. Dassarma, An Archaeal Chromosomal Autonomously Replicating Sequence Element from an Extreme Halophile, Halobacterium sp. Strain NRC-1, Journal of Bacteriology, vol.185, issue.20, pp.5959-66, 2003.
DOI : 10.1128/JB.185.20.5959-5966.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225043

J. Coker, P. Dassarma, M. Capes, T. Wallace, K. Mcgarrity et al., Multiple Replication Origins of Halobacterium sp. Strain NRC-1: Properties of the Conserved orc7-Dependent oriC1, Journal of Bacteriology, vol.191, issue.16, pp.5253-61, 2009.
DOI : 10.1128/JB.00210-09

Z. Wu, H. Liu, J. Liu, X. Liu, and H. Xiang, Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea, BMC Genomics, vol.13, issue.1, p.478, 2012.
DOI : 10.1093/bioinformatics/btn578

A. Majernik and J. Chong, A conserved mechanism for replication origin recognition and binding in archaea, Biochemical Journal, vol.409, issue.2, pp.511-519, 2008.
DOI : 10.1042/BJ20070213

URL : https://hal.archives-ouvertes.fr/hal-00478756

M. Lundgren, A. Andersson, L. Chen, P. Nilsson, and R. Bernander, Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination, Proceedings of the National Academy of Sciences, vol.185, issue.20, pp.7046-51, 2004.
DOI : 10.1128/JB.185.20.5959-5966.2003

R. Samson, Y. Xu, C. Gadelha, T. Stone, J. Faqiri et al., Specificity and func? tion of archaeal DNA replication initiator proteins, Cell Rep2013 Feb, vol.213, issue.2, pp.485-96

E. Pelve, A. Lindas, A. Knoppel, A. Mira, and R. Bernander, Four chromosome replica? tion origins in the archaeon Pyrobaculum calidifontis, Mol, vol.85, issue.5, pp.986-95, 2012.

N. Robinson and S. Bell, Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.5806-5817
DOI : 10.1093/bioinformatics/btg430

H. Luo, C. Zhang, and F. Gao, Ori-Finder 2, an integrated tool to predict replication ori? gins in the archaeal genomes, Frontiers in Microbiology, vol.5, pp.2014-2029

A. Andersson, E. Pelve, S. Lindeberg, M. Lundgren, P. Nilsson et al., Replication-biased genome organisation in the crenarchaeon Sulfolobus, BMC Genomics, vol.11, issue.1, p.454, 2010.
DOI : 10.1186/1471-2164-11-454

F. Matsunaga, P. Forterre, Y. Ishino, and H. Myllykallio, In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin, Proceedings of the National Academy of Sciences, vol.2, issue.5500
DOI : 10.1126/science.290.5500.2309

S. Capaldi and J. Berger, Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus, Nucleic Acids Research, vol.32, issue.16, pp.4821-4853, 2004.
DOI : 10.1093/nar/gkh819

N. Robinson, I. Dionne, M. Lundgren, V. Marsh, R. Bernander et al., Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus, Cell, vol.116, issue.1, pp.25-38, 2004.
DOI : 10.1016/S0092-8674(03)01034-1

Z. Wu, J. Liu, H. Yang, H. Liu, and H. Xiang, Multiple replication origins with diverse con? trol mechanisms in Haloarcula hispanica. Nucleic Acids Res2014 Feb, pp.2282-94

W. Woods and M. Smith, Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii, Molecular Microbiology, vol.23, issue.4, pp.791-798
DOI : 10.1046/j.1365-2958.1997.2651626.x

R. Kolodner, C. Putnam, and M. K. , Maintenance of genome stability in Saccharo? myces cerevisiae, pp.552-559, 2002.

T. Abbas, M. Keaton, and A. Dutta, Genomic instability in cancer. Cold Spring Harb Per? spect Biol2013 Mar, p.12914

A. Jackson, R. Laskey, and N. Coleman, Replication proteins and human disease. Cold Spring Harb Perspect, 2014.
DOI : 10.1101/cshperspect.a013060

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941220

S. Breuert, T. Allers, G. Spohn, and J. Soppa, Regulated Polyploidy in Halophilic Archaea, PLoS ONE, vol.178, issue.22, p.92, 2006.
DOI : 10.1371/journal.pone.0000092.t001

URL : http://doi.org/10.1371/journal.pone.0000092

C. Cvetic and J. Walter, Eukaryotic origins of DNA replication: could you please be more specific? Semin Cell Dev Biol2005, pp.343-53

B. Michel and R. Bernander, Chromosome replication origins: Do we really need them?, BioEssays, vol.11, issue.6, pp.585-90, 2014.
DOI : 10.1002/bies.201400003

P. Pluchon, T. Fouqueau, C. Creze, S. Laurent, J. Briffotaux et al., An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs, PLoS ONE, vol.63, issue.11, p.79707, 2013.
DOI : 10.1371/journal.pone.0079707.s003

URL : https://hal.archives-ouvertes.fr/hal-00911795

R. Lestini, Z. Duan, and T. Allers, The archaeal Xpf/Mus81/FANCM homolog Hef and the Holliday junction resolvase Hjc define alternative pathways that are essential for cell viability in Haloferax volcanii, DNA Repair, vol.9, issue.9, pp.994-1002, 2010.
DOI : 10.1016/j.dnarep.2010.06.012

R. Lestini, S. Laptenok, J. Kuhn, M. Hink, M. Schanne-klein et al., Intracel? lular dynamics of archaeal FANCM homologue Hef in response to halted DNA repli? cation. Nucleic Acids, pp.10358-70, 2013.

J. Enzlin and O. Scharer, The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif, The EMBO Journal, vol.21, issue.8, pp.2045-53
DOI : 10.1093/emboj/21.8.2045

J. Sgouros, P. Gaillard, and R. Wood, A relationship between a DNA-repair/recombination nuclease family and archaeal helicases, Trends in Biochemical Sciences, vol.24, issue.3, pp.95-102, 1999.
DOI : 10.1016/S0968-0004(99)01355-9

A. Ciccia, C. Ling, R. Coulthard, Z. Yan, Y. Xue et al., Identification of FAAP24, a Fanconi Anemia Core Complex Protein that Interacts with FANCM, Molecular Cell, vol.25, issue.3, pp.331-374
DOI : 10.1016/j.molcel.2007.01.003

A. Meetei, A. Medhurst, C. Ling, Y. Xue, T. Singh et al., A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M, Nature Genetics, vol.7, issue.9, pp.958-63
DOI : 10.1073/pnas.1937626100

A. Ciccia, N. Mcdonald, and S. West, Structural and Functional Relationships of the XPF/MUS81 Family of Proteins, Annual Review of Biochemistry, vol.77, issue.1, pp.259-87, 2008.
DOI : 10.1146/annurev.biochem.77.070306.102408

K. Komori, R. Fujikane, H. Shinagawa, and Y. Ishino, Novel endonuclease in Archaea cleaving DNA with various branched structure, Genes & Genetic Systems, vol.77, issue.4, pp.227-268, 2002.
DOI : 10.1266/ggs.77.227

G. Mosedale, W. Niedzwiedz, A. Alpi, F. Perrina, J. Pereira-leal et al., The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway, Nature Structural & Molecular Biology, vol.11, issue.9, pp.763-71
DOI : 10.1093/emboj/cdf355

M. Newman, J. Murray-rust, J. Lally, R. J. Fadden, A. Knowles et al., Structure of an XPF endonuclease with and without DNA suggests a model for substrate rec? ognition, pp.895-905, 2005.

J. Roberts, S. Bell, and M. White, An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA, Molecular Microbiology, vol.277, issue.2, pp.361-71
DOI : 10.1046/j.1365-2958.2003.03444.x

L. Meslet-cladiere, C. Norais, J. Kuhn, J. Briffotaux, J. Sloostra et al., A Novel Proteomic Approach Identifies New Interaction Partners for Proliferating Cell Nuclear Antigen, Journal of Molecular Biology, vol.372, issue.5, pp.1137-1185, 2007.
DOI : 10.1016/j.jmb.2007.06.056

URL : https://hal.archives-ouvertes.fr/hal-00193755

R. Hutton, T. Craggs, M. White, and J. Penedo, PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Res2010 Mar, pp.1664-75
DOI : 10.1093/nar/gkp1104

URL : http://doi.org/10.1093/nar/gkp1104

R. Hutton, J. Roberts, J. Penedo, and M. White, PCNA stimulates catalysis by struc? ture-specific nucleases using two distinct mechanisms: substrate targeting and cata? lytic step. Nucleic Acids, pp.6720-6727, 2008.
DOI : 10.1093/nar/gkn745

URL : http://doi.org/10.1093/nar/gkn745

J. Roberts and M. White, DNA end-directed and processive nuclease activities of the archaeal XPF enzyme, Nucleic Acids Research, vol.33, issue.20, pp.6662-70, 2005.
DOI : 10.1093/nar/gki974

J. Roberts and M. White, An archaeal endonuclease displays key properties of both eu? karyal XPF-ERCC1 and Mus81, J Biol Chem2005 Feb, vol.18280, issue.7, pp.5924-5932

T. Nishino, K. Komori, Y. Ishino, and K. Morikawa, X-Ray and Biochemical Anatomy of an Archaeal XPF/Rad1/Mus81 Family Nuclease, Structure, vol.11, issue.4, pp.445-57
DOI : 10.1016/S0969-2126(03)00046-7

URL : http://doi.org/10.1016/s0969-2126(03)00046-7

T. Nishino, K. Komori, Y. Ishino, and K. Morikawa, Structural and Functional Analyses of an Archaeal XPF/Rad1/Mus81 Nuclease: Asymmetric DNA Binding and Cleavage Mechanisms, Structure, vol.13, issue.8, pp.1183-92, 2005.
DOI : 10.1016/j.str.2005.04.024

URL : http://doi.org/10.1016/j.str.2005.04.024

T. Nishino, K. Komori, D. Tsuchiya, Y. Ishino, and K. Morikawa, Crystal Structure and Functional Implications of Pyrococcus furiosus Hef Helicase Domain Involved in Branched DNA Processing, Structure, vol.13, issue.1, pp.143-53
DOI : 10.1016/j.str.2004.11.008

K. Komori, M. Hidaka, T. Horiuchi, R. Fujikane, H. Shinagawa et al., Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef pro? tein in processing stalled replication forks, J Biol, vol.279, issue.51, pp.53175-85, 2004.

C. Doe, F. Osman, J. Dixon, and M. Whitby, DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51, Nucleic Acids Research, vol.32, issue.18, pp.5570-81, 2004.
DOI : 10.1093/nar/gkh853

B. Froget, J. Blaisonneau, S. Lambert, and G. Baldacci, Cleavage of Stalled Forks by Fission Yeast Mus81/Eme1 in Absence of DNA Replication Checkpoint, Molecular Biology of the Cell, vol.19, issue.2, pp.445-56
DOI : 10.1091/mbc.E07-07-0728

M. Kai, M. Boddy, P. Russell, and T. Wang, Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress, Genes & Development, vol.19, issue.8, pp.919-951, 2005.
DOI : 10.1101/gad.1304305

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080131

P. Matulova, V. Marini, R. Burgess, A. Sisakova, Y. Kwon et al., Coopera? tivity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates, J Biol, vol.284, issue.12, pp.7733-7778, 2009.

L. Roseaulin, Y. Yamada, Y. Tsutsui, P. Russell, H. Iwasaki et al., Mus81 is es? sential for sister chromatid recombination at broken replication forks, pp.1378-87, 2008.
DOI : 10.1038/emboj.2008.65

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374842

V. Kaliraman, J. Mullen, W. Fricke, S. Bastin-shanower, and S. Brill, Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease, Genes & Development, vol.15, issue.20, pp.2730-2770, 2001.
DOI : 10.1101/gad.932201

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC312806

X. Chen, R. Melchionna, C. Denis, P. Gaillard, A. Blasina et al., Human Mus81-Associated Endonuclease Cleaves Holliday Junctions In Vitro, Molecular Cell, vol.8, issue.5, pp.1117-1144
DOI : 10.1016/S1097-2765(01)00375-6

URL : http://doi.org/10.1016/s1097-2765(01)00375-6

A. Ciccia, A. Constantinou, and S. West, Identification and Characterization of the Human Mus81-Eme1 Endonuclease, Journal of Biological Chemistry, vol.278, issue.27, pp.25172-25180
DOI : 10.1074/jbc.M302882200

A. Franchitto, L. Pirzio, E. Prosperi, O. Sapora, M. Bignami et al., Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway, The Journal of Cell Biology, vol.14, issue.2, pp.241-52, 2008.
DOI : 10.1073/pnas.95.15.8733

K. Hanada, M. Budzowska, S. Davies, E. Van-drunen, H. Onizawa et al., The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks, Nature Structural & Molecular Biology, vol.574, issue.11, pp.1096-104, 2007.
DOI : 10.1128/MCB.24.13.5776-5787.2004

T. Shimura, M. Torres, M. Martin, V. Rao, Y. Pommier et al., Bloom's Syndrome Helicase and Mus81 are Required to Induce Transient Double-strand DNA Breaks in Response to DNA Replication Stress, Journal of Molecular Biology, vol.375, issue.4, pp.1152-64, 2008.
DOI : 10.1016/j.jmb.2007.11.006

S. Ishino, T. Yamagami, M. Kitamura, N. Kodera, T. Mori et al., Multiple Interactions of the Intrinsically Disordered Region between the Helicase and Nuclease Domains of the Archaeal Hef Protein, Journal of Biological Chemistry, vol.289, issue.31, pp.21627-21666, 2014.
DOI : 10.1074/jbc.M114.554998

R. Fujikane, S. Ishino, Y. Ishino, and P. Forterre, Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis, Genes & Genetic Systems, vol.85, issue.4, pp.243-57, 2010.
DOI : 10.1266/ggs.85.243

C. Rouillon and M. White, The evolution and mechanisms of nucleotide excision repair proteins, Research in Microbiology, vol.162, issue.1, pp.19-26
DOI : 10.1016/j.resmic.2010.09.003

A. Bardwell, L. Bardwell, A. Tomkinson, and E. Friedberg, Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonu? clease, pp.2082-2087, 1994.

A. Sijbers, W. De-laat, R. Ariza, M. Biggerstaff, Y. Wei et al., Xeroder? ma pigmentosum group F caused by a defect in a structure-specific DNA repair en? donuclease, pp.811-833, 1996.

Z. Duan, Genetic Analysis of Two Structure-specific Endonucleases Hef and Fen1 in Archaeon Haloferax volcanii (PhD thesis): University of Nottingham, 2008.

O. Shimomura, F. Johnson, and Y. Saiga, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.223-262
DOI : 10.1002/jcp.1030590302

M. Ormo, A. Cubitt, K. Kallio, L. Gross, R. Tsien et al., Crystal Structure of the Aequorea victoria Green Fluorescent Protein, Science, vol.273, issue.5280, pp.1392-1397, 1996.
DOI : 10.1126/science.273.5280.1392

R. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-553, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

D. Chudakov, M. Matz, S. Lukyanov, and K. Lukyanov, Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Physiological Reviews, vol.90, issue.3, pp.1103-63
DOI : 10.1152/physrev.00038.2009

W. Vermeulen, Dynamics of mammalian NER proteins, DNA Repair, vol.10, issue.7, pp.760-71, 2011.
DOI : 10.1016/j.dnarep.2011.04.015

C. Reuter and J. Maupin-furlow, Analysis of Proteasome-Dependent Proteolysis in Haloferax volcanii Cells, Using Short-Lived Green Fluorescent Proteins, Applied and Environmental Microbiology, vol.70, issue.12, pp.7530-7538, 2004.
DOI : 10.1128/AEM.70.12.7530-7538.2004

C. Reuter, S. Uthandi, J. Puentes, and J. Maupin-furlow, Hydrophobic carboxy-termi? nal residues dramatically reduce protein levels in the haloarchaeon Haloferax volca? nii, pp.248-55, 2010.

A. Henche, A. Koerdt, A. Ghosh, and S. Albers, Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein, Environmental Microbiology, vol.192, issue.3, pp.779-93, 2012.
DOI : 10.1111/j.1462-2920.2011.02638.x

A. Cubitt, L. Woollenweber, and R. Heim, Chapter 2: Understanding Structure???Function Relationships in the Aequorea victoria Green Fluorescent Protein, Methods Cell Bi?, vol.58, pp.19-30, 1999.
DOI : 10.1016/S0091-679X(08)61946-9

G. Patterson, S. Knobel, W. Sharif, S. Kain, and D. Piston, Use of the green fluores? cent protein and its mutants in quantitative fluorescence microscopy, Biophys, vol.73, issue.5, pp.2782-90, 1997.

P. Forterre, C. Elie, and M. Kohiyama, Aphidicolin inhibits growth and DNA synthesis in halophilic arachaebacteria, J, vol.159, issue.2, pp.800-802, 1984.

M. Digman, R. Dalal, A. Horwitz, and E. Gratton, Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope, Biophysical Journal, vol.94, issue.6, pp.2320-2352, 2008.
DOI : 10.1529/biophysj.107.114645

S. Bakker, H. Van-de-vrugt, M. Rooimans, A. Oostra, J. Steltenpool et al., Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M, Human Molecular Genetics, vol.18, issue.18, pp.3484-95, 2009.
DOI : 10.1093/hmg/ddp297

W. Crismani, C. Girard, N. Froger, M. Pradillo, J. Santos et al., FANCM Limits Meiotic Crossovers, Science, vol.124, issue.16, pp.1588-90, 2012.
DOI : 10.1242/jcs.088229

URL : https://hal.archives-ouvertes.fr/hal-01004174

A. Lorenz, F. Osman, W. Sun, S. Nandi, R. Steinacher et al., The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis, Science, vol.115, issue.4, pp.1585-1593, 2012.
DOI : 10.1007/s00412-006-0053-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399777

M. Wagner, M. Van-wolferen, A. Wagner, K. Lassak, B. Meyer et al., Versa? tile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius, Front Micro?, vol.3, p.214, 2012.
DOI : 10.3389/fmicb.2012.00214

URL : http://doi.org/10.3389/fmicb.2012.00214

C. Zhang, B. Tian, S. Li, X. Ao, K. Dalgaard et al., Genetic manipulation in Sul? folobus islandicus and functional analysis of DNA repair genes, Biochem Soc Trans2013 Feb, vol.141, issue.1, pp.405-415