. Bibliographie, Jacquemain, Les accidents de fusion du coeur des réacteurs nucléaires de puissance : état des connaissances. Collection sciences et techniques, 2013.

S. Marguet, Les accidents de réacteurs nucléaires, 2012.

B. R. Sehgal, Nuclear safety in Light Water Reactors : Severe Accident Phenomenology, 2012.

V. Granovsky, V. Khabensky, E. Krushinov, S. Vitol, A. Sulatsky et al., Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention, Nuclear Engineering and Design, vol.278, pp.310-316, 2014.
DOI : 10.1016/j.nucengdes.2014.07.034

URL : http://doi.org/10.1016/j.nucengdes.2014.07.034

R. E. Henry and K. Fauske, External cooling of a reactor vessel under severe accident conditions, Nuclear Engineering and Design, vol.139, issue.1, pp.433-445, 1993.
DOI : 10.1016/0029-5493(93)90260-G

T. G. Theofanous, « In-vessel retention as a severe accident management strategy, Proc. of OECD/NEA/CSNI Workshop on In-Vessel Core Debris Retention and Coolability, pp.3-6, 1998.

R. J. Park, K. H. Kang, S. W. Hong, S. B. Kim, and J. H. Song, CORIUM BEHAVIOR IN THE LOWER PLENUM OF THE REACTOR VESSEL UNDER IVR-ERVC CONDITION: TECHNICAL ISSUES, Nuclear Engineering and Technology, vol.44, issue.3, pp.237-248, 2012.
DOI : 10.5516/NET.03.2012.701

R. J. Park, J. R. Lee, K. S. Ha, and H. Y. Kim, Evaluation of in-vessel corium retention through external reactor vessel cooling for small integral reactor, Nuclear Engineering and Design, vol.262, pp.571-578, 2013.
DOI : 10.1016/j.nucengdes.2013.06.003

T. Theofanous, C. Liu, S. Additon, S. Angelini, O. Kymäläinen et al., In-vessel coolability and retention of a core melt, Nuclear Engineering and Design, vol.169, issue.1-3, pp.1-48, 1997.
DOI : 10.1016/S0029-5493(97)00009-5

O. Kymäläinen, H. Tuomisto, and T. Theofanous, In-vessel retention of corium at the Loviisa plant, Nuclear Engineering and Design, vol.169, issue.1-3, pp.109-130, 1997.
DOI : 10.1016/S0029-5493(96)01280-0

H. Esmaili and M. Khatib-rahbar, Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000, 2004.

R. J. Park, K. H. Kang, S. W. Hong, and H. Kim, Detailed evaluation of melt pool configuration in the lower plenum of the APR1400 reactor vessel during severe accidents, Annals of Nuclear Energy, vol.75, pp.476-482, 2006.
DOI : 10.1016/j.anucene.2014.07.055

J. M. Seiler, A. Fouquet, K. Froment, and F. Defoort, « Theoretical analysis for corium pool with miscibility gap, Nuclear technology, vol.141, issue.3, pp.233-243, 2003.

J. M. Seiler, B. Tourniaire, F. Defoort, and K. Froment, Consequences of material effects on in-vessel retention, Nuclear Engineering and Design, vol.237, issue.15-17, pp.15-17, 2007.
DOI : 10.1016/j.nucengdes.2007.03.007

J. L. Rempe, K. Y. Suh, F. B. Cheung, and S. B. Kim, « In-vessel retention of molten corium : lessons learned and outstanding issues, Nuclear technology, vol.161, issue.3, pp.210-267, 2008.

B. Spindler, B. Tourniaire, and J. M. Seiler, Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model, Nuclear Engineering and Design, vol.236, issue.19-21, pp.19-21, 2006.
DOI : 10.1016/j.nucengdes.2006.03.023

R. , L. Tellier, L. Saas, and F. Payot, « Phenomenological analyses of corium propagation in LWRs : the PROCOR software platform, Proc. of ERMSAR- 2015, p.2015

M. Fischer, P. Levi, G. Langrock, A. Sulatsky, and E. Krushinov, « The impact of thermal chemical phenomena on the heat fluxes into the RPV during in-vessel melt retention, Proc. of ICAPP-2011, 2011.

J. M. Seiler and B. Tourniaire, A phenomenological analysis of melt progression in the lower head of a pressurized water reactor, Nuclear Engineering and Design, vol.268, pp.87-95, 2014.
DOI : 10.1016/j.nucengdes.2013.12.043

R. , L. Tellier, L. Saas, and S. Bajard, « Transient stratification modelling of a corium pool in a LWR vessel lower head, Nuclear Engineering and Design, vol.287, pp.68-77, 2015.

L. Zhang, Y. Zhou, Y. Zhang, W. Tian, S. Qiu et al., Natural convection heat transfer in corium pools: A review work of experimental studies, Progress in Nuclear Energy, pp.167-181, 2015.
DOI : 10.1016/j.pnucene.2014.11.021

M. Fukasawa, S. Hayakawa, and M. Saito, Thermal-Hydraulic Analysis for Inversely Stratified Molten Corium in Lower Vessel, Thermal-Hydraulic Analysis for Inversely Stratified Molten Corium in Lower Vessel », pp.873-888, 2008.
DOI : 10.1007/BF00122467

V. Chudanov, A. E. Aksenova, and V. A. , Pervichko, « CFD to modeling molten core behavior simultaneously with chemical phenomena, Proc. of NURETH-11, 2005.

L. Saas, C. L. Guennic, A. Cervone, D. Pavlidis, A. Grah et al., Shams et L. Vyskocil, « First results of CFD calculations, Annual meeting of European project IVMR, p.2016

G. Ratel, F. Defoort, K. Froment, B. Tourniaire, and J. M. Seiler, « Considerations on mass transfer kinetics for layer inversion and layer oxidation : from MASCA program to the reactor situation, Proc. of MASCA-2 Seminar, 2007.

L. A. Girifalco and R. J. Good, A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension, The Journal of Physical Chemistry, vol.61, issue.7, pp.904-909, 1957.
DOI : 10.1021/j150553a013

R. , L. Tellier, and C. Nt, Eléments de définition pour des essais à moyenne échelle sur la stratification du corium en cuve », rapport technique, pp.2015-076, 2015.

N. Bakouta, S. Bajard, R. L. Tellier, and L. Saas, « Progress regarding invessel corium modelling through benchmarks with MAAP and PROCOR codes », in International Workshop In-Vessel corium retention strategy : status of knowledge and perspectives, p.2016

D. Grishchenko and P. Piluso, « Recent progress in the gas-film levitation as a method for thermophysical properties measurements : application to ZrO

A. Sulatsky, S. Smirnov, V. Granovsky, V. Khabensky, E. Krushinov et al., Oxidation kinetics of corium pool, Oxidation kinetics of corium pool, pp.168-179, 2013.
DOI : 10.1016/j.nucengdes.2013.04.025

P. Majumdar, G. Guillard, and F. Fichot, « Large Scale Models for Corium Stratification, Proc. of MASCA-2 Seminar, 2007.

D. Tarabelli, G. Ratel, R. Pélisson, G. Guillard, M. Barnak et al., ASTEC application to in-vessel corium retention, Nuclear Engineering and Design, vol.239, issue.7, pp.1345-1353, 2009.
DOI : 10.1016/j.nucengdes.2009.02.021

L. Carénini, J. Fleurot, and F. Fichot, Validation of ASTEC V2 models for the behaviour of corium in the vessel lower head, Nuclear Engineering and Design, vol.272, pp.152-162, 2014.
DOI : 10.1016/j.nucengdes.2013.06.041

M. Salay and F. Fichot, « Modelling of metal-oxide corium stratification in the lower plenum of a reactor vessel, Proc. of NURETH-11, 2005.

L. Carénini and F. Fichot, « The Impact of Transient Behaviour of Corium in the Lower Head of a Reactor Vesel for In-Vessel Melt Retention Strategies, Proc. of ICONE24, p.2016

H. L. Lukas, S. G. Fries, and B. Sundman, Computational thermodynamics : the CALPHAD method, 2007.
DOI : 10.1017/CBO9780511804137

M. Barrachin and F. Defoort, « Thermophysical properties of in-vessel : MASCA programme related results, Proc. of MASCA Seminar, 2004.

B. Sundman, X. Lu, and H. Ohtani, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Computational Materials Science, vol.101, pp.127-137, 2015.
DOI : 10.1016/j.commatsci.2015.01.029

A. Borgenstam, L. Höglund, J. Ågren, A. Engström, and «. Dictra, DICTRA, a tool for simulation of diffusional transformations in alloys, Journal of Phase Equilibria, vol.30, issue.165, pp.269-280, 2000.
DOI : 10.1361/105497100770340057

N. Moelans and B. , Blanpain et P. Wollants, « An introduction to phase-field modeling of microstructure evolution, pp.268-294, 2008.

]. I. Bibliographie55, H. M. Singer-loginova, and . Singer, « The phase field technique for modeling multiphase materials, Reports on Progress in Physics, vol.71, issue.10, pp.1-32, 2008.

I. Steinbach, « Phase-field models in materials science », Modelling and Simulation in, Materials Science and Engineering, vol.17, issue.7, pp.1-31, 2009.

N. Provatas and K. Elder, Phase-field methods in materials science and engineering, 2010.
DOI : 10.1002/9783527631520

H. Emmerich, Advances of and by phase-field modelling in condensed-matter physics, Advances in Physics, pp.1-87, 2008.
DOI : 10.1103/PhysRevE.70.051605

J. Rowlinson and J. D. Translation, Translation of J. D. van der Waals' ?The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density?, Journal of Statistical Physics, vol.3, issue.2, pp.200-244, 1978.
DOI : 10.1007/BF01011513

Q. Bronchart, Développement de méthodes de champs de phase quantitatives et applications à la précipitation homogène dans les alliages binaires, Thèse de doctorat, 2006.

J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, The Journal of Chemical Physics, vol.184, issue.2, pp.258-267, 1958.
DOI : 10.1039/df9531500210

J. W. Cahn, Free Energy of a Nonuniform System. II. Thermodynamic Basis, The Journal of Chemical Physics, vol.30, issue.5, pp.1121-1124, 1959.
DOI : 10.1103/PhysRev.113.412

J. S. Langer, MODELS OF PATTERN FORMATION IN FIRST-ORDER PHASE TRANSITIONS, Directions in Condensed Matter Physics, pp.165-186, 1986.
DOI : 10.1142/9789814415309_0005

J. B. Collins and H. Levine, Diffuse interface model of diffusion-limited crystal growth, Physical Review B, vol.31, issue.9, pp.6119-6122, 1985.
DOI : 10.1103/PhysRevB.31.6119

B. Echebarria, R. Folch, A. Karma, and M. Plapp, Quantitative phase-field model of alloy solidification, Physical Review E, vol.70, issue.6, pp.1-22, 2004.
DOI : 10.1103/PhysRevE.70.061604

M. Mamivand, M. A. Zaeem, and H. Kadiri, A review on phase field modeling of martensitic phase transformation, Computational Materials Science, vol.77, pp.304-311, 2013.
DOI : 10.1016/j.commatsci.2013.04.059

M. Conti, Density change effects on crystal growth from the melt, Physical Review E, vol.64, issue.5
DOI : 10.1103/PhysRevE.64.051601

M. Conti and M. Fermani, Interface dynamics and solute trapping in alloy solidification with density change, Physical Review E, vol.67, issue.2, pp.1-12, 2003.
DOI : 10.1103/PhysRevE.67.026117

D. A. Cogswell and W. C. Carter, Thermodynamic phase-field model for microstructure with multiple components and phases: The possibility of metastable phases, Physical Review E, vol.83, issue.6, pp.61602-61603, 2011.
DOI : 10.1103/PhysRevE.83.061602

C. Godrèche, Solids far from equilibrium. No. 1 de Collection Aléa Saclay, 2011.

S. G. Kim, W. T. Kim, and T. Suzuki, Phase-field model for binary alloys, Physical Review E, vol.60, issue.6, pp.7186-7197, 1999.
DOI : 10.1103/PhysRevE.60.7186

A. A. Wheeler, W. J. Boettinger, and G. B. Mcfadden, Phase-field model for isothermal phase transitions in binary alloys, Physical Review A, vol.45, issue.10, pp.7424-7439, 1992.
DOI : 10.1103/PhysRevA.45.7424

S. Z. Zhang, R. J. Zhang, X. H. Qu, W. Fang, and M. Z. Liu, Phase field simulation for non-isothermal solidification of multicomponent alloys coupled with thermodynamics database, Transactions of Nonferrous Metals Society of China, pp.2361-2367, 2013.
DOI : 10.1016/S1003-6326(13)62742-9

S. R. Groot and P. Mazur, Non-equilibrium thermodynamics, 1984.

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Reciprocal Relations in Irreversible Processes. I, pp.405-426, 1931.
DOI : 10.1103/PhysRev.37.405

J. Cahn and J. Hilliard, Spinodal decomposition: A reprise, Acta Metallurgica, vol.19, issue.2, pp.151-161, 1971.
DOI : 10.1016/0001-6160(71)90127-1

]. S. Bibliographie78 and J. W. Allen, Cahn, « A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, vol.27, issue.6, pp.1085-1095, 1979.

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetic of phase transitions, Physica D: Nonlinear Phenomena, vol.43, issue.1, pp.44-62, 1990.
DOI : 10.1016/0167-2789(90)90015-H

R. N. Hills and P. H. Roberts, « On the motion of a fluid that is incompressible in a generalized sense and its relationship to the boussinesq approximation

U. Grafe, B. Böttger, J. Tiaden, and S. G. Fries, Coupling of multicomponent thermodynamic databases to a phase field model: application to solidification and solid state transformations of superalloys, Scripta Materialia, vol.42, issue.12, pp.1179-1186, 2000.
DOI : 10.1016/S1359-6462(00)00355-9

I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler et al., A phase field concept for multiphase systems, Physica D: Nonlinear Phenomena, vol.94, issue.3, pp.135-147, 1996.
DOI : 10.1016/0167-2789(95)00298-7

R. Qin and E. Wallach, A phase-field model coupled with a thermodynamic database, Acta Materialia, vol.51, issue.20, pp.6199-6210, 2003.
DOI : 10.1016/S1359-6454(03)00443-9

I. Steinbach, B. Böttger, J. Eiken, N. Warnken, and S. G. Fries, CALPHAD and Phase-Field Modeling: A Successful Liaison, Journal of Phase Equilibria and Diffusion, vol.8, issue.4, pp.101-106, 2007.
DOI : 10.1007/s11669-006-9009-2

Y. Nishida, Y. Tsukada, T. Koyama, and M. Kurata, Phase-field simulation of the stability of reaction phases at UO2/??-Zr interface, Journal of Nuclear Materials, vol.466, pp.551-559, 2015.
DOI : 10.1016/j.jnucmat.2015.08.041

A. and «. Micress, -the MICRostructure Evolution Simulation Software, 2016.

B. Sundman, B. Jansson, and J. O. , Andersson, « The Thermo-Calc databank system, pp.153-190, 1985.
DOI : 10.1016/0364-5916(85)90021-5

D. M. Anderson, G. B. Mcfadden, and A. A. Wheeler, A phase-field model of solidification with convection, Physica D: Nonlinear Phenomena, vol.135, issue.1-2, pp.175-194, 2000.
DOI : 10.1016/S0167-2789(99)00109-8

J. Kim, Abstract, Communications in Computational Physics, vol.7, issue.03, pp.613-661, 2012.
DOI : 10.1016/S0167-2789(03)00030-7

URL : https://hal.archives-ouvertes.fr/hal-01058407

G. Tegze, T. Pusztai, and L. Gránásy, Phase field simulation of liquid phase separation with fluid flow, Materials Science and Engineering: A, vol.413, issue.414, pp.413-414, 2005.
DOI : 10.1016/j.msea.2005.09.045

C. Lapuerta, Echanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles, Thèse de doctorat, 2006.

C. Introïni, Interaction entre un fluide à haute température et un béton : contribution à la modélisation des échanges de masse et de chaleur, Thèse de doctorat, 2010.

D. Han and X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn???Hilliard???Navier???Stokes equation, Journal of Computational Physics, vol.290, pp.139-156, 2015.
DOI : 10.1016/j.jcp.2015.02.046

R. Mohanty and Y. Sohn, Phase-field investigation of multicomponent diffusion in single-phase and two-phase diffusion couples, Journal of Phase Equilibria and Diffusion, vol.8, issue.3, pp.676-683, 2006.
DOI : 10.1007/BF02736572

M. Hillert, B. Jansson, B. Sundman, and J. Ågren, A two-sublattice model for molten solutions with different tendency for ionization, Metallurgical Transactions A, vol.74, issue.2, pp.261-266, 1985.
DOI : 10.1007/BF02816052

B. Sundman, Modification of the two-sublattice model for liquids, Calphad, vol.15, issue.2, pp.109-119, 1991.
DOI : 10.1016/0364-5916(91)90010-H

T. Tanaka and S. Hara, Application of thermodynamic databases to evaluation of interfacial tension between liquid steels and molten slags, Zeitschrift für Metallkunde, pp.348-354, 1999.

A. Yasumori, G. Neilson, and M. Weinberg, Measurement of Surface Tension of Organic Liquid Pairs, Journal of Colloid and Interface Science, vol.155, issue.1, pp.85-91, 1993.
DOI : 10.1006/jcis.1993.1013

J. O. Andersson and J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, Journal of Applied Physics, vol.9, issue.4, pp.1350-1355, 1992.
DOI : 10.1063/1.351745

C. Cardon, R. L. Tellier, and M. Plapp, Modelling of liquid phase segregation in the Uranium???Oxygen binary system, Calphad, vol.52, pp.47-56, 2016.
DOI : 10.1016/j.calphad.2015.10.005

C. Guéneau, M. Baichi, C. Chatillon, and B. Sundman, Thermodynamic assessment of the uranium???oxygen system, Thermodynamic assessment of the uranium-oxygen system, pp.161-175, 2002.
DOI : 10.1016/S0022-3115(02)00878-4

S. Sridhar and «. Commentary, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems, L.S. Darken : Trans. AIME Metallurgical and Materials Transactions B, vol.175, issue.41 2, pp.275-294, 1948.
DOI : 10.1007/s11661-010-0177-7

URL : http://dx.doi.org/10.1007/s11661-010-0177-7

P. Kuhn, J. Horbach, F. Kargl, A. Meyer, and T. Voigtmann, Diffusion and interdiffusion in binary metallic melts, Physical Review B, vol.90, issue.2, pp.1-14, 2014.
DOI : 10.1103/PhysRevB.90.024309

URL : http://arxiv.org/abs/1408.2148

A. Y. Kupryazhkin, A. N. Zhiganov, D. V. Risovanyi, V. D. Risovanyi, and V. N. Golovanov, Oxygen diffusion in uranium dioxide in the temperature range of phase transitions, Technical Physics, vol.49, issue.2, pp.254-257, 2004.
DOI : 10.1134/1.1648965

A. Kupryazhkin, A. Zhiganov, D. Risovany, K. Nekrassov, V. Risovany et al., Simulation of diffusion of oxygen and uranium in uranium dioxide nanocrystals, Journal of Nuclear Materials, vol.372, issue.2-3, pp.233-238, 2008.
DOI : 10.1016/j.jnucmat.2007.03.176

J. Langer and M. , Theory of early-stage spinodal decomposition, Annals of Physics, vol.78, issue.2, pp.421-452, 1973.
DOI : 10.1016/0003-4916(73)90266-2

Y. Jingxue, On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation, Journal of Differential Equations, vol.97, issue.2, pp.310-327, 1992.
DOI : 10.1016/0022-0396(92)90075-X

H. Assadi, A phase-field model for non-equilibrium solidification of intermetallics, Acta Materialia, vol.55, issue.15, pp.5225-5235, 2007.
DOI : 10.1016/j.actamat.2007.05.042

A. A. Lee, A. Münch, E. Süli, and . Sharp, Sharp-Interface Limits of the Cahn--Hilliard Equation with Degenerate Mobility, SIAM Journal on Applied Mathematics, vol.76, issue.2, pp.433-456, 2016.
DOI : 10.1137/140960189

V. Tiwari and R. L. Tellier, « On the use of CALPHAD-based enthalpytemperature relations in suboxidized corium plane front solidification modelling, 2017.

S. Minjeaud, Raffinement local adaptatif et méthodes multiniveaux pour la simulation d'écoulements multiphasiques, Thèse de doctorat, 2010.

J. W. Thomas, Numerical Partial Differential Equations : Finite Difference Methods, Texts in Applied Mathematics, 1995.
DOI : 10.1007/978-1-4899-7278-1

V. Chalupeck, yChalupeck` Chalupeck`y, « Numerical studies of Cahn-Hilliard equation and applications in image processing, Proc. of Czech?Japanese Seminar in Appl. Math, pp.4-7, 2004.

A. Quarteroni, R. Sacco, and F. Saleri, Méthodes numériques : algorithmes, analyse et applications, 2007.

P. Boyanova and M. Neytcheva, Efficient numerical solution of discrete multi-component Cahn???Hilliard systems, Computers & Mathematics with Applications, vol.67, issue.1, pp.106-121, 2014.
DOI : 10.1016/j.camwa.2013.10.013

Y. Saad, Iterative methods for sparse linear systems, Philadelphia : SIAM, vol.2, 2003.
DOI : 10.1137/1.9780898718003

«. Matrix-toolkits-java and ». , https://github.com/fommil/matrix-toolkits-java, 2016.