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Chapitre 1
Introduction

1.1 Algorithmes de chiffrement par bloc

Un algorithme de chiffrement par bloc, ou chiffrement (par bloc), ou chiffre (par bloc),
est une famille d’applications injectives d’ensembles de départ et d’arrivée finis. On
ne s’intéressera dans ce manuscrit qu’à des familles d’applications d’un ensemble de
chaînes binaires de taille fixe vers lui-même, c’est à dire à des applications de type
E ∶ {0,1}κ ×{0,1}n → {0,1}n telles que E(k, ⋅) est une permutation pour tout k ∈ {0,1}κ.
On appelle κ la taille de clef et n la taille de bloc de E . Les tailles habituelles sont
κ ∈ {64,80,128,192,256} et n ∈ {64,128,256}, bien que les clefs de 64 ou 80 bits ne
soient plus considérées de nos jours comme apportant une sécurité suffisante.

On requiert aussi que E et son inverse E−1 soient calculables efficacement, bien qu’en
fonction des applications il puisse être suffisant qu’un seul des deux le soit.

L’emploi le plus courant qui d’un chiffrement par bloc est d’assurer la confidentialité
de communications. Deux entités A et B partageant une clef k pour le même chiffrement
peuvent communiquer par l’intermédiaire de messages chiffrés c ∶= E(k, p), c′ ∶= E(k, p′),
etc. Le second argument p de E est généralement appelé texte clair, et le résultat c est
généralement appelé texte chiffré. Nous ne nous intéresserons pas ici à la question de
savoir comment A et B obtiennent le secret partagé k, les techniques utilisées à cette fin
étant nettement différentes de celles employées pour les chiffrements par bloc.

Si E est tel que la permutation E(k, ⋅) est difficile à inverser quand k est inconnu, A et
B pourraient s’attendre à ce qu’un canal de communication sûr consiste à injecter leurs
messages vers les chaînes m0∣∣m1∣∣ . . . ∣∣m` de tailles multiples de n et à envoyer les chiffrés
E(k,m0)∣∣ E(k,m1)∣∣ . . . ∣∣ E(k,m`). Ce schéma comporte cependant deux problèmes de
taille, indépendamment de la sécurité du chiffrement choisi : en premier lieu, le schéma
est déterministe, c’est à dire que chiffrer le même texte clair plusieurs fois donne toujours
le même chiffré pour résultat. Un adversaire passif espionnant la conversation sur le canal
entre A et B peut donc détecter quand deux messages identiques ont été envoyés. En
second lieu, la communication n’est pas authentifiée. Un adversaire actif présent sur le
canal peut supprimer et modifier certains des blocs d’un message, ajouter des blocs d’un
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1. Introduction

précédent message, ou encore ajouter des blocs générés aléatoirement. Tout ceci peut
être fait sans que A et B ne détectent qu’une entité extérieure agit sur le canal avec des
intentions hostiles.

Des problèmes tels que ceux ci-dessus sont résolus en concevant desmodes d’opération
sûrs, mais nous n’étudions pas ceux-ci dans ce manuscrit.

1.1.1 Sécurité des chiffrements par bloc

Le but de cette section est d’expliquer brièvement en quoi consiste un bon chiffrement
par bloc, d’un point de vue pratique. Nous commençons toutefois par d’abord définir
une idéalisation de cette primitive, sous la forme du modèle du chiffrement idéal.

Définition 1.1 (Chiffrement par bloc idéal). Un chiffrement par bloc idéal E est une ap-
plication {0,1}κ × {0,1}n → {0,1}n telle que toutes les permutations E(k, ⋅) sont tirées
aléatoirement et uniformément parmi les permutations de {0,1}n.

Cette notion correspond intuitivement à ce qu’on peut atteindre de mieux étant don-
née la définition d’un chiffrement par bloc. Pour de petites valeurs de n, par exemple
20, on peut implémenter un chiffrement idéal en utilisant un algorithme de génération
de permutation, par exemple celui attribué de façon variable à Fisher, Yates, Knuth,
etc. [FY48]. Un tel algorithme permet de tirer uniformément une permutation pour
chaque clef, mais déterminer la permutation associée à une clef donnée a une complexité
de O(2n) en temps et en mémoire. Il n’est donc pas envisageable de suivre cette approche
pour les tailles classiques de bloc n ≥ 64 utilisées en cryptographie. Même pour de petites
valeurs de n, l’algorithme de Fisher et al. requiert une quantité considérable d’aléa pa-
ramétrisé par une clef, ce qui peut constituer un obstacle à son utilisation. En pratique,
les chiffrements utilisés ne sont donc que des « approximations » de chiffrements idéaux.
Une façon utile, bien qu’essentiellement théorique, de quantifier la sécurité d’un chiffre-
ment par bloc est alors précisément de mesurer à quel point celui-ci est éloigné d’un
chiffrement idéal. Informellement, ceci est fait en bornant supérieurement l’avantage sur
une réponse aléatoire qu’a un adversaire de distinguer s’il interagit avec une permuta-
tion tirée aléatoirement ou avec une instance du chiffrement paramétré avec une clef
inconnue. Cette proposition peut être précisée sous la forme suivante, similaire à celle
qui peut être trouvée par exemple dans [BKR00] :

Définition 1.2 (Permutations pseudo-aléatoires (PRP)). Soit E un chiffrement par bloc de
taille de clef κ et de taille de bloc n. On note Π2n l’ensemble des permutations sur les
chaînes binaires de longueur n ; x $← S l’action de tirer x aléatoirement et uniformément
parmi les éléments de l’ensemble S ; Af un algorithme ayant accès à un oracle f et qui
retourne un unique bit. On définit alors l’ avantage PRP de A pour E , écrit AdvPRP

E (A)
comme :

AdvPRP
E (A) = ∣Pr[Af = 1 ∣ f $← Π2n] −Pr[Af = 1 ∣ f ∶= E(k, ⋅), k $← {0,1}κ]∣.
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1.1. Algorithmes de chiffrement par bloc

La sécurité PRP de E pour une complexité en donnée q et une complexité en temps t
est :

AdvPRP
E (q, t) ∶= max

A∈Algf/q,E /t
{AdvPRP

E (A)}.

Ici, Algf/q,E /t est l’ensemble des algorithmes A qui ont accès à un oracle f auquel ils
font au plus q accès, et qui tournent en temps inférieur à O(t), l’unité de temps étant le
temps nécessaire pour calculer E une fois.

La notion de PRP est utile pour par exemple prouver qu’une construction utilisant
un chiffrement par bloc n’est pas significativement moins sûre que ce dernier. Un tel
résultat est typiquement obtenu en définissant une fonction d’avantage pour la construc-
tion de haut niveau similaire à celle utilisée dans la sécurité PRP, et en montrant que cet
avantage n’est pas plus qu’une fonction « raisonnable » de la sécurité PRP. Par exemple,
dans le cas de [BKR00], la construction de haut niveau considérée est CBC-MAC.

Toutefois, la définition 1.2 n’est pas constructive, dans le sens où elle ne donne pas
de procédure efficace permettant de calculer la sécurité PRP d’un chiffrement par bloc
en général. Un des objectifs majeurs de la cryptographie symétrique consiste à analyser
explicitement des instances de chiffrements par blocs dans le but d’établir leur sécurité
concrète contre certaines attaques. S’inspirant de la terminologie de la définition 1.2, ceci
revient à trouver des algorithmes pour lesquels q, t et l’avantage PRP sont connus. Une
telle attaque sur un chiffrement E permet alors de borner inférieurement sa sécurité PRP
en un certain point (q, t). Cependant, en réalité, déterminer complètement le niveau de
sécurité apporté par un chiffrement est plus complexe que ce que la définition 1.2 pourrait
faire croire. Des caractéristiques importantes des attaques qui ne sont pas visibles dans
cette définition sont la complexité en mémoire ; la quantité de calculs qui ont lieu en
ligne ou hors ligne ; savoir si les attaques s’appliquent aussi bien à toutes les clefs ou à
seulement certaines d’entre elles ; savoir si elles permettent de retrouver k quand f est
une instance de E , ou un algorithme équivalent à E(k, ⋅), etc. Nous consacrons le reste de
cette section à introduire quelques éléments caractéristiques d’attaques de chiffrements
par bloc.

1.1.2 Distingueurs et attaques
Beaucoup d’attaques sur les chiffrements par blocs exploitent des distingueurs, qui sont
des algorithmes utilisant des ressources raisonnables qui ont un avantage non négligeable
d’après la définition 1.2. Il n’existe pas de réponse évidente à ce que « raisonnable »
et « non négligeable » signifient dans le contexte d’attaques réelles, notamment parce
que les tailles de clefs et de blocs sont fixes. Certains chiffrements ou distingueurs po-
tentiels peuvent parfois être paramétrés pour aider à préciser ces notions, mais ce n’est
pas toujours le cas. Cependant, les algorithmes utilisés dans des attaques sont souvent
suffisamment performants pour lever tout ambiguïté sur leur nature de distingueur. Par
exemple, un algorithme permettant de distinguer E de clef et bloc de taille 128 avec
q = 2, t = 220 et probabilité 0.9 utilise objectivement peu de ressources par rapport à la
taille de E et a une probabilité de succès élevée.
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1. Introduction

1.1.2.1 Classes de distingueurs

Nous décrivons brièvement deux types de distingueurs qui exploitent des comportements
non idéaux de différentes natures.

Nous commençons par présenter les distingueurs différentiels, qui appartiennent à
la classe plus générale des distingueurs dits statistiques. Le principe d’un distingueur
statistique est de définir un événement dont la distribution de probabilité pour la cible à
distinguer est différente de celle obtenue pour une permutation tirée aléatoirement dans
Π2n . Appliquer le distingueur correspond alors à collecter un certain nombre d’échan-
tillons obtenus grâce à un oracle et à déterminer quelle est la distribution suivant laquelle
ils ont le plus probablement été tirés. Un distingueur différentiel applique ce principe
en considérant un certain type d’événement statistique. Une autre classe majeure de
distingueurs statistiques est celle des distingueurs linéaires.

Soit E un chiffrement par bloc, une différentielle pour E est une paire (∆ ≠ 0, δ) de
différences d’entrée et de sortie associées à une certaine loi de groupe +. Dans la grande
majorité des cas, + est l’addition sur Fn

2 , c’est à dire le OU exclusif bit à bit (XOR) ; on
utilisera alors souvent la notation alternative ⊕ pour cette loi. Parfois, + est l’addition
dans Z/2nZ, et d’autres fois les différences peuvent être considérées suivant plusieurs lois
à la fois. Une paire différentielle pour la différentielle (∆, δ) et pour une certaine clef k
est une paire ordonnée de textes clairs et des chiffrés correspondant ((p, c), (p′, c′)) avec
p, c ∶= E(k, p), p′, c′ ∶= E(k, p′), telle que p − p′ = ∆ et c − c′ = δ. Quand la différence est
sur Fn

2 , la soustraction coïncide avec l’addition et devient donc commutative, et la paire
n’a alors plus besoin d’être ordonnée. Nous nous plaçons dans un tel cas pour le reste
de cette description.

On appelle probabilité différentielle d’une différentielle pour une permutation P la
probabilité d’obtenir une paire différentielle pour P : DPP(∆, δ) ∶= Prp ∈ {0,1}n[P(k, p) ⊕
P(k, p⊕∆) = δ]. La caractéristique la plus importante d’une différentielle pour un chiffre-
ment par bloc est sa probabilité différentielle espérée, qui est simplement la moyenne sur k
de ses probabilités différentielles pour E(k, ⋅) : EDPE(∆, δ) ∶= 2−κ∑k ∈ {0,1}κ DPE(k,⋅)(∆, δ).
Une hypothèse courante est que pour la plupart des clefs et des différentielles, la proba-
bilité DP à clef fixée est proche de la moyenne EDP. La DP d’une différentielle aléatoire
pour une permutation aléatoire peut être approchée par une loi de Poisson : le nombre
approché de paires différentielles est ∼ Poi(2−1), de moyenne et variance 2−1 (voir [DR07],
se basant sur un résultat antérieur [O’C95]). Puisqu’il y a 2n−1 paires possibles, la DP
espérée est de 2−n ; on notera cependant que la DP prend forcément sa valeur parmi les
multiples de 2−n+1. Pour qu’un distingueur sur E soit utile, il faut donc en quelque sorte
que son EDP soit différente de 2−n. Si elle en est suffisamment éloignée, par exemple
égale à 2−3n/4, on fait généralement l’hypothèse simplificatrice que toutes les DPs sont
égales à leur espérance, ou plutôt la valeur possible la plus proche. Dans ce cas, utili-
ser un distingueur consiste à accumuler environ 1/EDPE(∆, δ) textes clairs vérifiant la
différence d’entrée et à compter combien d’entre eux vérifient la différence de sortie. Le
distingueur fait l’hypothèse qu’il interagit avec E si et seulement si cette valeur est au
moins un.
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1.1. Algorithmes de chiffrement par bloc

Tous les distingueurs ne sont pas statistiques ; une autre approche possible est d’ex-
ploiter une représentation algébrique des chiffrements par bloc. Il est toujours pos-
sible de redéfinir un chiffrement E ∶ {0,1}κ × {0,1}n → {0,1}n comme un ensemble
ordonné de fonctions F i ∶ {0,1}κ+n → {0,1} projetant E sur son ième bit de sortie : E ≡
(F0, . . . ,Fn−1). Les F is peuvent être vues comme des fonctions booléennes Fκ+n

2 → F2
qui sont elles-mêmes en bijection avec les éléments de F2[x0, x1, . . . xκ+n−1]/⟨x2

i −xi⟩i<κ+n,
c’est à dire des polynômes en κ + n variables sur F2. Le polynôme correspondant à une
fonction booléenne est appelé sa forme algébrique normale (ANF) ; l’ANF de E est l’en-
semble ordonné des ANFs de ses projections.

Une caractéristique importante d’une ANF est son degré, qui peut être utilisé pour
définir des distingueurs simples mais efficaces. Le degré de l’ANF d’une permutation sur
n bits est au plus n−1, et il est attendu d’une permutation aléatoire qu’elle soit de degré
maximal. Si un chiffrement par bloc a un degré d < n − 1, il peut être distingué en étant
dérivé en suffisamment de points. Ceci nécessite simplement d’évaluer l’oracle fourni au
distingueur sur 2d+1 valeurs bien choisies, essentiellement un cube de dimension d, et de
toutes les additionner. Si le résultat vaut zéro sur chaque bit, l’oracle est probablement de
degré moins que d et est donc supposé être E ; si ce n’est pas le cas, il est nécessairement
de degré d ou plus et est donc supposé être une permutation aléatoire.

1.1.2.2 Étendre un distingueur pour retrouver une clef
Pour définir la sécurité PRP, la notion de distingueur était suffisante. Cependant, dans
le cas d’attaques concrètes, l’objectif final est dans l’idéal de retrouver la clef inconnue
utilisée par l’oracle. Le contexte d’une attaque est aussi souvent différent de celui d’un
jeu de sécurité PRP, car l’attaquant connaît généralement déjà le chiffrement E avec
lequel il interagit, et sait également que celui-ci n’est pas une permutation aléatoire ; il
peut donc paraître finalement inutile d’appliquer un distingueur. Malgré ces objections
apparentes, les distingueurs sont utiles dans bien des cas, et sont souvent à la base
d’attaques retrouvant la clef.

Nous expliquons maintenant brièvement l’idée derrière les conversions de distingueurs
en attaques plus complètes. Pour ceci, nous devons faire certaines hypothèses sur la
structure de E , très souvent valables en pratique.

Un chiffrement par bloc itératif est un chiffrement E pouvant être décrit comme
la composition multiple d’une fonction de tour R, éventuellement aussi composée avec
une fonction d’initialisation et une fonction de finalisation que nous ignorons ici : E ≡
R○⋯ ○ R. On note r le nombre total d’applications de R dans E pour une version
« complète » de ce dernier. Une attaque basée sur un distingueur et dont l’objectif
est de recouvrir la clef consiste tout d’abord à trouver un distingueur sur une version
réduite de E constituée de la composition de d < r fonctions de tour. L’étape suivante
consiste à interroger l’oracle sur des entrées vérifiant les conditions du distingueur, par
exemple des textes clairs de différence ∆ ; les réponses obtenues étant chiffrées avec une
version complète du chiffrement, il n’est pas attendu du distingueur qu’il réussisse avec
un avantage non négligeable. Cependant, l’idée principale de l’attaque consiste alors à
faire une hypothèse sur la valeur d’une partie de la clef inconnue k de E , qui permet
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1. Introduction

de déchiffrer partiellement les textes chiffrés sur r − d tours. Ainsi, si l’hypothèse était
correcte, l’attaquant obtient des chiffrés pour le chiffrement réduit à d tours, pour lequel
l’avantage du distingueur est supposé non négligeable. En revanche, si l’hypothèse est
fausse, le déchiffrement sur r − d tours est fait avec une clef incorrecte et il peut alors
être assimilé à du chiffrement. L’adversaire obtient donc des chiffrés équivalents à ceux
d’un chiffrement sur r + (r − d) tours, et le distingueur aura probablement à nouveau
un avantage négligeable. Finalement, on peut donc voir que cette approche donne une
méthode pour vérifier une hypothèse sur une partie a priori inconnue de la clef.

Plusieurs remarques peuvent-être faites sur cette procédure. Tout d’abord, le coût
associé aux hypothèses répétées sur la valeur d’une partie de la clef augmente la com-
plexité de l’attaque par rapport à celle du distingueur employé. On ne peut donc utiliser
de cette façon que des distingueurs de complexité suffisamment faible. Il n’est aussi pos-
sible d’utiliser que des distingueurs permettant à l’attaquant de faire une hypothèse sur
une partie de la clef avant d’être exécutés, ce point constituant le cœur de l’attaque.
Cette condition est souvent vérifiée en pratique, par exemple parce que le distingueur
est « local » à une certaine partie de l’état du chiffrement. Pour utiliser un tel distin-
gueur, il peut alors suffire de deviner la partie de la clef utilisée pour chiffrer la partie de
l’état intervenant dans le distingueur. Enfin, la partie de la clef qui n’est pas retrouvée
grâce au distingueur peut être déterminée de plusieurs façons ; par exemple, un autre
distingueur impliquant une hypothèse sur une autre partie de la clef peut être utilisé, ou
alors elle peut simplement être énumérée exhaustivement.

1.1.2.3 Modèles d’attaques
Jusqu’à présent, nous avons considéré la sécurité des chiffrements dans un cas simple
où l’attaquant a accès à un unique oracle secret. Ce scénario peut être généralisé de
plusieurs façons, par exemple en donnant accès à plus d’un oracle. Une généralisation de
ce type qui est relativement courante prend la forme du modèle d’attaques à clefs liées
(ou corrélées), où l’attaquant peut appeler E(k, ⋅), E(φ(k), ⋅), avec φ(⋅) une ou plusieurs
applications sur l’espace des clefs. Une observation importante est que φ ne peut pas
être arbitraire, car certaines applications sont suffisamment puissantes pour permettre
d’attaquer n’importe quel chiffrement ; il ne peut alors pas y avoir de définition sensée
de la sécurité de E dans un tel cas.

Il est donc utile de garder à l’esprit qu’une attaque doit toujours être spécifiée dans
un modèle clair. Bien que certains modèles puissent être considérés comme trop puissants
et donc moins utiles que d’autres, ce qui est une critique parfois formulée à l’égard des
attaques à clefs liées en général, cette question est toujours secondaire par rapport à celle
de savoir si un modèle permet de mener des attaques triviales dans n’importe quelles
circonstances.

1.1.3 Utilisation des chiffrements par bloc

Pour sécuriser un canal de communication, il n’est pas suffisant de disposer d’un bon
chiffrement par bloc. Celui-ci doit aussi être utilisé suivant un mode d’opération adéquat,
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dont le but est de définir comment chiffrer des messages potentiellement longs de plus
d’un bloc. Nous ne décrivons pas de mode dans cette section, mais précisons certains
critères qu’un bon mode doit vérifier.

Une condition essentielle pour un mode est qu’il ne doit pas être déterministe. En
particulier, cela veut dire que chiffrer deux fois le même texte clair avec la même clef
doit donner des chiffrés différents. Cette condition peut être formalisée par la notion
d’indistinguabilité dans un scénario d’attaque à clair choisi (IND-CPA), ainsi que ses
variantes proches. Ceci est approximativement défini par le processus suivant : un ad-
versaire est doté d’un accès à un oracle de chiffrement pour un certain système, puis il
prépare deux messages m0 et m1 qu’il envoie à un second oracle. Ce dernier choisit aléa-
toirement un des deux messages et retourne son chiffré. Finalement, l’adversaire peut à
nouveau émettre des requêtes à son premier oracle et doit ensuite deviner quel message
a été chiffré. Le cryptosystème est IND-CPA si aucun adversaire aux ressources bornées
de façon appropriées ne gagne ce jeu avec un avantage non négligeable. Il est notamment
clair qu’aucun système déterministe ne peut être sûr suivant cette définition.

Un autre critère important pour un cryptosystème est qu’il doit permettre aux entités
communicantes de s’authentifier. Ceci peut être assuré directement par le mode d’opé-
ration d’un chiffrement par bloc, qu’on appelle alors mode de chiffrement authentifié.
Alternativement, ceci peut être fait en combinant de façon appropriée un mode assurant
le seul chiffrement avec un code d’authentification (MAC). La tendance actuelle est de
favoriser la première approche, qui mène généralement à des systèmes plus efficaces.

1.2 Fonctions de hachage
Une fonction de hachage est une application d’un ensemble quelconque, non nécessai-
rement fini, vers un ensemble fini de petite taille. Comme précédemment, nous nous
restreindrons ici au cas binaire ; ainsi, on considérera qu’une fonction de hachage est une
application des chaînes binaires de taille arbitraire, appelés messages vers des chaînes
de taille fixe, appelés empreintes, ou hachés : H ∶ {0,1}∗ → {0,1}n pour un entier n. La
plupart des fonctions de hachage ne suivent pas strictement cette définition et ne sont
définies que sur un domaine fini, de taille par exemple égale à 264. Ceci n’a a priori pas
d’impact en pratique car les arguments potentiels d’une fonction sont bien plus petits
que ces limites supérieures. La taille de sortie typique d’une fonction de hachage est de
quelques centaines de bits, et généralement un multiple de trente-deux ; la plupart des
fonctions existantes ont des sorties de taille n ∈ {128,160,224,256,384,512}, bien qu’une
sortie de taille inférieure à 224 bit soit maintenant considérée comme trop courte.

Il est plus compliqué de définir la sécurité des fonctions de hachage cryptographiques
que celle des chiffrements par bloc de la section précédente. En effet, contrairement à
ces derniers, les fonctions de hachage ne sont pas paramétrées et en particulier aucun
secret n’intervient dans le calcul de l’empreinte d’un message. Il n’est donc pas possible
d’exprimer la résistance d’une fonction via une définition similaire à la définition 1.2.
La façon habituelle et relativement informelle de procéder (voir par exemple [MvOV96,
Chapitre 9]) consiste alors à définir des messages vérifiant certaines propriétés particu-
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lières et à exiger d’une fonction sûre qu’elle ne permette pas à un attaquant de trouver
« efficacement » de tels messages. Ces messages particuliers sont définis comme suit.

Définition 1.3 (Préimage). Une préimage de t par la fonction H est un message m tel
que H(m) = t.

Définition 1.4 (Seconde préimage). Une seconde préimage de t ∶= H(m) par la fonction
H est un message m′ ≠m tel que H(m′) = H(m) = t.

Définition 1.5 (Collision). Une collision pour la fonction H est une paire de messages
(m,m′ ≠m) telle que H(m) = H(m′).

Une fonction H résistante aux attaques en (seconde) préimages est une fonction pour
laquelle une (seconde) préimage d’une cible t choisie aléatoirement ne peut pas être
calculée plus efficacement que pour une fonction dont les sorties sont aléatoires unifor-
mément et indépendantes. Notamment, si la taille de sortie de H est n, ceci veut dire
qu’une (seconde) préimage ne peut pas être trouvée plus efficacement qu’en calculant
H(x) pour environ 2n entrées x distinctes. Il est important de noter que des préimages
peuvent facilement être précalculées pour certaines valeurs, puisque le calcul de H(x) = y
permet d’apprendre que x est une préimage de y. C’est pourquoi on considère unique-
ment qu’un algorithme attaque la résistance en préimage d’une fonction s’il s’exécute
efficacement sur des cibles qui ne sont pas contrôlées par l’attaquant.

Une fonction résistante aux collisions est une fonction pour laquelle on ne peut pas
trouver de collisions plus facilement que par un processus générique s’appliquant à n’im-
porte quelle fonction. Autrement dit, une collision ne peut pas être trouvée plus effica-
cement qu’en calculant H(x) pour environ 2n/2 entrées x distinctes.

Algorithmes « dégénérés ». On peut remarquer que pour n’importe quelle fonction H, il
existe des algorithmes s’exécutant avec des besoins en temps et en mémoire négligeables
et retournant toujours une unique collision (m,m′). Celle-ci peut par exemple avoir été
obtenue par un calcul préalable dont le coût n’intervient pas visiblement dans celui de
l’algorithme, ou avoir été donnée par un oracle. Comme contrairement aux préimages
les collisions ne sont pas associées à des cibles, il n’est pas possible d’exclure de tels
algorithmes dégénérés en exigeant qu’ils produisent des collisions associées à des cibles
particulières. Cependant, l’existence de ces algorithmes est tout de même ignorée en
pratique, et on considère toujours que trouver une collision pour une fonction aux sorties
aléatoires uniformément et indépendantes nécessite en moyenne 2n/2 appels à la fonction.

1.2.1 Applications des fonctions de hachage

Les notions de résistance aux préimages et aux collisions d’une fonction de hachage ne
sont pas arbitraires ; au contraire, elles sont imposées par les utilisations concrètes qui
sont faites de ces fonctions en cryptographie. Bien que la résistance simultanée à toutes
les attaques ne soit pas nécessaire dans toutes les applications, on attend généralement
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d’une fonction de hachage qu’elle puisse être utilisée dans un grand nombre d’applications
différentes, et il est donc désirable qu’elle résiste à tous les types d’attaque.

En guise d’illustration, nous décrivons ci-dessous quelques utilisations possibles des
fonctions de hachage.

Paradigme « hacher et signer ». Il est courant d’utiliser des fonctions de hachage au
sein de schémas de signature électronique. Ceci est généralement fait pour deux raisons :
tout d’abord, les fonctions de hachage sont beaucoup plus rapides à calculer que les
algorithmes au cœur des schémas de signature. Il est donc plus efficace de d’abord calculer
une empreinte de petite taille d’un message à signer et de ne réellement signer que cette
dernière. Ensuite, certains schémas de signature se définissent également plus facilement
quand les messages sont de taille fixe ; cette condition est beaucoup plus facile à remplir
par des empreintes de messages plutôt que par les messages eux-mêmes.

Les signatures produites par ce type de schémas sont de la forme (m,S(k,H(m))),
avec k la clef utilisée pour signer avec S. Il est évident que pour qu’un tel schéma soit sûr,
la fonction H doit au moins être résistante en seconde préimage. Dans le cas contraire,
un adversaire pourrait intercepter un message m signé par A, remplacer m par m′ de
même empreinte, et prétendre que A a signé m′. Pour des raisons similaires, on peut
voir que la résistance aux collisions est également nécessaire.

Hachage de mots de passe. Le hachage de mots de passe est une autre application
courante des fonctions de hachage. On suppose qu’une entité souhaite autoriser des
utilisateurs à s’authentifier grâce à un mot de passe. En conséquence, elle doit mémoriser
le mot de passe correspondant à chaque utilisateur. Comme il est évident que stocker les
mots de passe eux-mêmes mènerait à de graves problèmes de sécurité, une idée consiste
à stocker à la place leurs images à travers une fonction de hachage H. Ainsi, même si un
adversaire devait trouver la liste des utilisateurs et des mots de passe hachés associés, il
ne serait pas capable de trouver les mots de passe eux-mêmes ou des entrées équivalentes,
pour peu queH résiste aux attaques en préimage. Dans cet exemple, résister aux attaques
en seconde préimage ou en collision n’est alors pas nécessaire. Cependant, il est bon de
noter que le schéma esquissé ci-dessus est en fait trop simpliste pour apporter une réelle
sécurité, indépendamment de la fonction de hachage utilisée. Nous ne rentrerons toutefois
pas dans les détails de la construction de bons schémas.

Signature à base de fonctions de hachage. Une utilisation moins courante des fonctions
de hachage est de les employer pour directement définir un schéma de signature (voir par
exemple [Mer87]). Nous ne décrivons pas un tel schéma ici, mais il est intéressant de noter
certaines de leurs caractéristiques. Le principe utilisé est que l’entité souhaitant effectuer
des signatures publie en avance un certain nombre d’empreintes, tout en gardant secrètes
les entrées de la fonction de hachage les produisant. Signer un message consiste alors
à révéler certaines de ces entrées ; ainsi, être capable de calculer des préimages pour la
fonction permet d’attaquer le schéma, mais les collisions ne sont pas une menace. Enfin,
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une propriété inhabituelle de ces constructions est qu’elles peuvent être basées sur une
fonction de hachage qui a seulement besoin d’être définie sur des entrées de petite taille.

Codes d’authentification. Le dernier usage possible d’une fonction de hachage que nous
évoquons ici est la construction de codes d’authentification (MACs), qui peuvent d’une
certaine façon être vus comme des variantes à clef des fonctions de hachage. Un MAC
T prend comme entrée une clef k et un message m et retourne un tag t ∶= T (k,m). Un
adversaire ne connaissant pas la clef ne doit pas être capable de trouver efficacement
une paire (m, t) valide pour T (k, ⋅), qu’il ait le choix du message m pour lequel produire
t ou non. En fonction de ce dernier point, la propriété de sécurité associée est appelée
contrefaçon existentielle ou universelle. Bien sûr, il est aussi nécessaire qu’aucune colli-
sion parmi les tags n’ait lieu, que ce soit sur des messages fournis par un adversaire ou
non.

Les fonctions de hachage semblent être de bons candidats pour construire des MACs,
et en effet des constructions génériques telles que HMAC [BCK96] sont populaires. Ce-
pendant, la sécurité exacte fournie par ces constructions n’est pas toujours facile à dé-
terminer, et on dispose généralement d’alternatives plus rapides, comme les MACs dits
polynomiaux (voir par exemple [BHK+99]).

1.2.2 Fonctions de hachage de type Merkle-Damgård

Une des premières méthodes à avoir été développée pour concevoir des fonctions de
hachage est la construction dite de Merkle-Damgård, due indépendamment à Merkle
et Damgård [Mer89, Dam89]. L’idée de cette construction consiste à calculer des em-
preintes de messages de taille arbitraire en définissant une fonction de hachage comme
l’itération d’une fonction de compression d’ensemble de départ et d’arrivée de taille fixe.
On dit alors que la construction est un extendeur de domaine. Cette approche facilite
la conception de fonctions de hachage, mais ne garantit pas a priori que le résultat sera
résistant aux attaques. La contribution principale de Merkle et Damgård sur ce point là
a été de proposer une construction permettant de partiellement réduire la sécurité des
fonctions de hachage à celles de leurs fonctions de compression. En effet, ils montrent
que pour les attaques en collision, une attaque sur une fonction de hachage utilisant leur
construction peut être utilisée pour donner une attaque sur la fonction de compression
sous-jacente. Par contraposée, tant qu’on ne connaît pas d’attaque en collision sur la
fonction de compression, on peut être convaincu qu’il n’y en a pas sur la fonction de
hachage. D’une certaine façon, tout ceci est proche de l’objectif de construire un mode
d’opération sûr à partir d’un chiffrement par bloc sûr lui aussi.

La construction Merkle-Damgård est définie à partir d’une fonction de compression
H ∶ {0,1}n×{0,1}b → {0,1}n. Celle-ci prend deux entrées : une valeur de chaînage c et un
bloc de message m, et produit une autre valeur de chaînage comme sortie. La fonction de
hachage de type Merkle-Damgård H associée à H est construite en étendant le domaine
de la seconde à {0,1}∗ (ou plutôt {0,1}N pour un grand entier N , la plupart du temps).
Ceci est fait en spécifiant une valeur initiale IV pour la première valeur de chaînage c0,
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qui est une constante pour la fonction de hachage, et en définissant l’image d’un message
m par H par la procédure suivante :

1. Le messagem est étendu à une taille multiple de la taille de bloc b. Plusieurs méthodes
peuvent être employées à ces fins, la condition la plus importante étant qu’elles ne
produisent pas de collisions triviales. De plus, la plupart du temps, la taille du message
non étendum est incluse dans le message étendu. Ce procédé s’appelle « renforcement
Merkle-Damgård » et est essentiel à la sécurité de beaucoup d’instantiations courantes
de la construction. Un problème potentiel pouvant apparaître en l’absence d’un tel
renforcement est qu’il serait possible d’utiliser des points fixes pour la fonction de
compression pour construire des collisions ; de tels points fixes sont faciles à trouver
pour certaines fonctions de compression populaires, comme celles de type Davies-
Meyer décrites dans la section 1.2.5.

2. Le message étendu est itérativement traité par la fonction de compression : soit
m0∣∣m1∣∣ . . . ∣∣mr un message de r + 1 blocs, on définit ci+1 ∶= H(ci,mi). L’empreinte
H(m) est égale à la dernière valeur de chaînage cr+1.

Nous donnons une illustration de cette procédure dans la figure 1.1.

pad(m) = m0 m1 m2 m3

Hc0 = IV H
c1

H
c2

H
c3

c4 = H(m)

Figure 1.1 – Une fonction Merkle-Damgård traitant un message sur quatre blocs. Figure
adaptée de [Jea].

Nous concluons cette présentation en esquissant les preuves de réduction de sécu-
rité de la construction Merkle-Damgård pour les attaques en collision et en première
préimage. Il n’existe pas de telle preuve pour les secondes préimages, car il existe des
attaques génériques indépendamment de la sécurité de la fonction de compression, que
nous discuterons brièvement dans la section 1.2.3, et la sécurité exactement atteinte
n’est pas connue. Il est aussi important de remarquer qu’une attaque en collision sur une
fonction de compression H n’implique pas de façon générique une attaque en collision
sur une fonction de hachage de type Merkle-Damgård H l’utilisant. Cependant, une telle
attaque viole la réduction de sécurité, et invalide toute garantie formelle qu’on pourrait
avoir sur la résistance en collisions de H. Nous discuterons ce point un peu plus en détails
dans la section 1.2.3.

Proposition 1.1. Une collision sur une fonction de hachage Merkle-Damgård H implique
une collision sur sa fonction de compression H.
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Démonstration. On suppose ici que le renforcement Merkle-Damgård est utilisé, que la
taille d’un message est ajoutée à la fin du message étendu qu’il définit, et que cette taille
tient sur un unique bloc.

On suppose qu’on a m, m′ ≠m t.q. H(m) = H(m′).
Cas 1 : m et m′ ne font pas la même taille. Les derniers blocs de message mr m′

r′

incluent tous les deux les tailles de leurs messages étendus respectifs, qui sont différentes.
Ainsi, (cr,mr) et (c′r′ ,m′

r′) sont distincts et collisionnent à travers H.
Cas 2 : m et m′ sont de la même longueur. On suppose sans perte de généralité que

les deux messages étendus font r + 1 blocs. On appelle i le numéro de bloc le plus grand
tel que mi ≠ m′

i. Si i = r, alors (cr,mr) et (c′r,m′
r) sont distincts et collisionnent à travers

H. Si i < r, ou bien ci+1 = c′i+1 (et donc (ci,mi) et (c′i,m′
i) forment une collision valide

pour H), ou bien il existe une suite non vide de paires (cj ,mj) and (c′j ,m′
j), j = i+1 . . . r

telles que mj = m′
j pour tout j. Puisque cr+1 = c′r+1, au moins un des éléments de la

suite collisionne à travers H. Les deux entrées du premier de ceux-ci étant différentes, la
collision qu’elles définissent est non triviale.

Proposition 1.2. Une préimage sur une fonction Merkle-Damgård H implique une pré-
image sur sa fonction de compression H.

Démonstration. Soit m un message étendu sur r + 1 blocs t.q. H(m) = t, avec t la cible
de préimage, alors H(cr,mr) = t, et (cr,mr) est une préimage valide pour H.

1.2.3 Préciser la sécurité des fonctions de hachage
Les notions de sécurité de résistance aux collisions et aux préimages peuvent être raf-
finées et complétées avec des notions supplémentaires. Celles-ci ne sont pas toujours
pertinentes pour les emplois concrets qui sont faits des fonctions de hachage, mais elles
sont néanmoins utiles pour évaluer la sécurité d’une fonction de manière plus fine. Ce
raffinement peut se faire de deux façons : ou bien en caractérisant le comportement non
idéal d’une méthode de construction de fonctions de hachage, comme par exemple la
construction Merkle-Damgård ; ou bien en caractérisant les faiblesses d’une partie d’une
fonction de hachage, par exemple une fonction de compression. Afin de donner des défi-
nitions plus explicites de ces notions supplémentaires, il est utile de tout d’abord définir
une vision plus forte et idéalisée des fonctions de hachage :

Définition 1.6 (Oracle aléatoire). Un oracle aléatoire sur n bits R est une application
{0,1}∗ → {0,1}n telle que pour toute entrée x, l’image R(x) est tirée aléatoirement et
uniformément dans {0,1}n.

Un oracle aléatoire est nécessairement résistant aux attaques que nous avons définies
jusqu’à présent, puisqu’il est clair que seuls des algorithmes génériques peuvent être
utilisés sur un tel objet. De cette façon, un oracle aléatoire capture entièrement les
applications qui peuvent être réalisées avec des fonctions de hachages : si une construction
de haut niveau n’est pas sûre quand elle est réalisée avec un oracle aléatoire, elle ne le
sera pas non plus si ce dernier est remplacé par une fonction de hachage concrète. En
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revanche, même si une construction est sûre dans un tel modèle, dit de l’oracle aléatoire,
elle ne le sera pas nécessairement une fois réalisée en pratique.

Les fonctions de type Merkle-Damgård présentent certains comportements non idéaux
dans le sens où elles permettent à certains calculs d’être plus efficaces que pour un oracle
aléatoire.

Un bon exemple de tels calculs correspond au concept de multicollision, qui consiste
à chercher r > 2 messagesm0, . . . ,mr−1 dont les images par H sont toutes égales. La com-
plexité générique de ce problème est O(2n×(r−1)/r) appels à H pour une fonction sur n
bits, mais Joux a montré comment trouver des (2r)-multicollisions en temps O(r×2n/2)
pour les fonctions de type Merkle-Damgård [Jou04]. L’idée de base utilisée dans cette
attaque exploite le fait que des collisions pour une fonction Merkle-Damgård H peuvent
être chaînées ensemble pour mener à un nombre exponentiellement grand de messages
distincts ayant tous la même empreinte. Ceci peut se voir avec l’exemple suivant : sup-
posons qu’un attaquant ait trouvé deux messages distincts de même longueur m0 et m′

0
formant une collision ; ceux-ci peuvent être trouvés génériquement pour un coût de 2n/2.
Il peut ensuite chercher une seconde collision, cette fois pour la fonction H̃ obtenue en
remplaçant la valeur de chaînage initiale c0 par H(m0) = H(m′

0), ce qui peut encore être
fait pour un coût 2n/2, donnant m1 et m′

1. La propriété de chaînage de la construction
Merkle-Damgård implique alors que les quatre messagesm0∣∣m1,m′

0∣∣m1,m0∣∣m′
1,m′

0∣∣m′
1

ont tous la même empreinte. Il est facile de voir que cette procédure se généralise à des
messages plus longs, ce qui donne la complexité mentionnée égale à O(r × 2n/2). On
peut observer que la faiblesse de la construction qui est exploitée ici est le fait qu’une
collision sur les empreintes implique une collision sur l’état interne de la fonction de
hachage. Nous verrons brièvement dans la section 1.2.4 qu’augmenter la taille de l’état
d’une fonction est effectivement un moyen de se protéger contre de telles attaques.

Un autre bon exemple d’une faiblesse de Merkle-Damgård, qui cette fois viole di-
rectement une des propriétés de sécurité définie au début de cette section, consiste en
les attaques génériques en seconde préimages pour des messages longs. Dean [Dea99],
puis indépendamment Kelsey et Schneier [KS05] ont montré comment il est possible
d’exploiter la structure Merkle-Damgård et des collisions internes pour calculer la se-
conde préimage d’un long message plus efficacement qu’avec un algorithme générique.
La complexité de l’attaque de Kelsey et Schneier pour trouver une seconde préimage
pour un message de 2k blocs est ≈ O(2n−k+1) appels à H. Cela veut dire que les fonctions
Merkle-Damgård sont en fait intrinsèquement attaquées si on interprète strictement ce
que nous avons énoncé comme objectifs de sécurité. Cependant, bien que significatives,
de telles attaques restent coûteuses, particulièrement pour les tailles habituelles de mes-
sages. En conséquence, elles ne sont pas généralement considérées comme posant une
menace sur l’utilisation de fonctions Merkle-Damgård en pratique, et de telles fonctions
comme SHA-2 sont toujours utilisées [NIS15a].

Nous avons déjà mentionné dans la section 1.2.3 qu’une attaque sur la fonction de
compression d’une fonction Merkle-Damgård fait que celle-ci ne peut plus être suppo-
sée « sûre ». Il paraît donc naturel d’également analyser la sécurité des fonctions de
compressions en tant que telles. Une attaque dans ce cas démontrerait alors un compor-
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tement non idéal du deuxième type mentionné ci dessus, puisqu’elle ne ciblerait pas la
fonction de hachage elle-même mais un de ses éléments constitutifs. Il existe une façon
naturelle de généraliser les propriétés de sécurité définies plus haut à ce contexte, ce qui
nous mène aux notions d’attaques à initialisation (semi) libre :

Définition 1.7 (Préimage à initialisation libre). Une préimage à initialisation libre pour
une fonction de hachage Merkle-Damgård H est une paire (i,m) d’IV et de message
telle que Hi(m) = t, avec Hi(⋅) dénotant la fonction H dont l’IV original a été remplacé
par i.

Définition 1.8 (Collision à initialisation semi-libre). Une collision à initialisation semi-libre
pour une fonction Merkle-Damgård H est une paire ((i,m), (i,m′)) de deux paires d’IV
et de messages telle que Hi(m) = Hi(m′).

Définition 1.9 (Collision à initialisation libre). Une collision à initialisation libre pour une
fonction Merkle-Damgård H est une paire ((i,m), (i′,m′)) de deux paires d’IV et de
messages telle que Hi(m) = Hi′(m′).

On peut remarquer que si deux messages d’une collision à initialisation libre ont
une longueur d’un bloc, la définition ci-dessus devient équivalente à celle d’une collision
sur la fonction de compression H utilisée pour construire H. Il y a peu de différences
entre les deux notions en général, l’intérêt principal des attaques à initialisation libre
comparées aux attaques sur la fonction de hachage étant qu’elles peuvent profiter de la
liberté supplémentaire offerte par la valeur de chaînage de la fonction de compression.

On attend d’une bonne fonction qu’elle résiste autant aux attaques à initialisation
libres qu’à leurs variantes plus classiques. Par exemple, une collision à initialisation libre
ne doit pas pouvoir être trouvée avec moins d’environ 2n/2 requêtes à la fonction de
compression H.

Enfin, une notion supplémentaire quelque peu mal définie s’ajoutant à celles discutées
jusqu’à présent est le concept de distingueur pour fonctions de hachage, qui cherche à
capturer les comportements non idéaux qui ne le sont pas par les notions définies ci-
dessus. Nous ne donnerons pas de définitions ici, car celles-ci sont difficiles à formaliser
dans le cas de fonctions de hachage, à cause de l’absence de clefs. À la place, nous
mentionnons brièvement un exemple de distingueur pour la fonction de compression de
SHA-1.

Prenant un peu d’avance, nous verrons dans la partie III que l’IV et les blocs de
message de la fonction de compression de SHA-1 sont faits de cinq et seize mots de
32 bits respectivement. En 2003, Saarinen a montré que des paires glissées peuvent être
trouvées pour cette fonction de compression pour un coût équivalent à 232 appels [Saa03].
De telles paires consistent en deux IVs A0,...,4, A′0,...,4 et messages m0,...,15, m′

0,...,15 avec
A′i = Ai−1 et m′

i =mi−1, tels que la paire des sorties de la fonction appelée sur ces entrées
possède aussi cette propriété. Bien qu’il ne soit pas attendu d’une fonction aléatoire
qu’elle possède une telle propriété, il ne semble pas dans ce cas qu’on puisse exploiter
celle-ci pour monter une attaque sur une des notions de sécurité définies ci-dessus.
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1.2.4 Constructions de fonctions de hachage modernes
Nous avons mentionné deux faiblesses génériques des fonctions Merkle-Damgård. La pré-
sence de celles-ci fait que les fonctions de hachage modernes sont généralement basées
sur des constructions alternatives offrant une meilleure sécurité. Nous présentons briè-
vement deux d’entre elles : la variante tuyau-large de Merkle-Damgård (ou coupe-MD),
et les constructions éponge.

Merkle-Damgård « tuyau-large ». La construction tuyau-large a été introduite en 2005
par Lucks [Luc05] et Coron et al., sous le nom coupe-MD [CDMP05]. Elle est concep-
tuellement simple, et consiste à utiliser la construction Merkle-Damgård avec une fonc-
tion de compression de taille de sortie plus grande que celle de la valeur de chaînage.
Si on écrit ⌊⋅⌋n une fonction de troncation arbitraire de m > n vers n bits, on peut
définir une construction tuyau-large de n bits basée sur une fonction de compression
H ∶ {0,1}m × {0,1}b → {0,1}m comme ⌊H(⋅)⌋n, avec H une fonction Merkle-Damgård
classique construite depuis H. Quelques variations sont possibles, par exemple en consi-
dérant d’autres applications de m vers n que des troncations.

On peut facilement voir qu’une collision pour une telle fonction de hachage n’implique
plus une collision sur son état interne. En choisissantm suffisamment grand, par exemple
m = 2n, on peut obtenir une résistance générique aux multicollisions. En fait, Coron
et al. ont montré que cette construction est un extendeur de domaine sûr pour un oracle
aléatoire ; c’est à dire que si la fonction de compression est un oracle aléatoire avec des
entrées de taille fixe, l’utiliser avec une construction tuyau-large donne une fonction ε-
indifférentiable d’un oracle aléatoire (au sens de Maurer et al. [MRH04]), avec ε ≈ 2−tq2,
t = m − n le nombre de bits tronqués et q le nombre de requêtes faites à H. Ceci est
un résultat très utile, puisqu’il dit qu’au contraire d’une construction Merkle-Damgård
classique, aucun comportement non idéal n’est introduit par la construction d’extension
de domaine. De telles fonctions de hachage sont donc supposées se comporter comme
les oracles aléatoires qu’on attend qu’elles réalisent, à condition que leurs fonctions de
compression soient « idéales » et qu’elles ne soient pas appelées un nombre de fois trop
important par rapport à la taille de leurs paramètres.

Construction éponge. La construction éponge a été introduite en 2007 par Bertoni
et al. [BDPA07]. Elle est quelque peu différente de la construction Merkle-Damgård,
notamment parce qu’elle n’utilise pas une fonction de compression comme primitive,
mais une fonction d’ensemble de départ et d’arrivée identiques. Habituellement, cette
fonction est en plus bijective.

La construction en elle-même est simple. Supposons qu’on souhaite construire une
fonction sur n bits basée sur une permutation P sur b bits. On définit le taux r et la
capacité c comme deux entiers tels que que b = r + c. Hacher le message m consiste à
l’étendre à une taille multiple de r et à le traiter itérativement en deux phases. La phase
d’absorption calcule une valeur pour l’état interne i ∶= P(P(. . .P(m0∣∣0c) ⊕ m1∣∣0c) . . .).
La phase de compression produit ensuite une sortie sur n bits définie par H(m) ∶=
⌊i⌋r ∣∣⌊P(i)⌋r ∣∣ . . . ∣∣⌊Pn÷r(i)⌋n mod r.
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Une caractéristique notable des constructions éponges est que la taille de sortie d’une
instance est naturellement décorrélée de la taille de sa fonction constitutrice. Ainsi, cette
construction permet facilement de construire des fonctions de hachage à taille de sortie
variable. Une même permutation ou fonction peut aussi être utilisée dans différentes
réalisations offrant un compromis entre la vitesse (un taux plus élevé donne des fonctions
plus rapides) et la sécurité (une capacité plus élevée donne une fonction plus sûre).

Bertoni et al. ont aussi montré en 2008 que de la même façon que Merkle-Damgård
tuyau-large, la construction éponge réalisée avec une permutation ou une fonction aléa-
toire est ε-indifférentiable d’un oracle aléatoire de sortie de même taille, avec ε ≈ 2−cq2

[BDPA08]. Pour atteindre les propriétés de sécurité classiques, il est alors optimal de
prendre c = 2n.

Un des meilleurs exemples de fonction éponge est Keccak [BDPA11], qui est devenu
le nouveau standard SHA-3 en 2015 [NIS15b].

1.2.5 La famille MD-SHA

Nous présentons maintenant la famille de fonctions de hachage MD-SHA, à la fois pour
son importance historique et parce que la fonction SHA-1 étudiée plus tard dans ce
manuscrit est un de ses membres.

Les origines de cette famille datent de la conception de la fonction MD4, introduite
par Rivest [Riv90] en 1990. Une attaque sur une version réduite a rapidement été trouvée
par den Boer et Bosselaers [dB91], et Rivest a proposé MD5 comme version améliorée.
Bosselaers a lui-même proposé RIPEMD en 1992 comme amélioration alternative de
MD4 [BP95, Chapitre 3], et la NSA fit de même l’année suivante en introduisant la
première génération des algorithmes SHS/SHA [NIS93]. Dans les deux derniers cas, les
fonctions ont été modifiées peu de temps après, en 1996 et 1995 respectivement [DBP96,
NIS95]. D’autres algorithmes tels que SHA-2 [NIS15a], introduits 2002, ont également
été influencés par MD4.

Il existe quelques variations parmi les membres de la famille ; notablement RIPEMD
utilise une structure parallèle pour sa fonction de compression. Nous énumérons spécifi-
quement ci-dessous les caractéristiques partagées par MD4, MD5 et SHA, qui sont aussi
communes aux autres fonctions MD-SHA dans une large mesure.

– La construction Merkle-Damgård est utilisée comme extendeur de domaine.

– La fonction de compression est construite à partir d’un chiffrement par bloc ad hoc
utilisé en mode Davies-Meyer : soit E(x, y) le chiffrement du texte clair y avec la clef
x par E , alors la fonction de compression est définie par ci+1 ∶= E(mi+1, ci) + ci.

– Le chiffrement par bloc utilisé dans la fonction de compression est un réseau de Feistel
déséquilibré qui utilise des additions modulaires, des XORs, des rotations sur les bits,
et des fonctions booléennes bit à bit comme éléments constitutifs. Son expansion de
clef est linéaire et très efficace à calculer.
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La compétition SHA-3 organisée par le NIST entre 2007 et 2012 a motivé la concep-
tion d’un grand nombre de nouvelles fonctions de hachage basées sur des principes variés.
La famille MD-SHA a influencé un certain nombre de candidats, et cette influence conti-
nue d’être exercée encore aujourd’hui.
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Chapitre 2
Présentation de mes travaux

Les travaux réalisés pendant cette thèse appartiennent tous au domaine de la crypto-
graphie symétrique ; on peut néanmoins distinguer certains sous-thèmes en fonction des
objectifs et des objets d’étude.

Une importante partie de cette thèse et de ce manuscrit est dédiée à des attaques
sur la fonction de hachage SHA-1. Notre objectif principal concernant cette fonction a
été d’obtenir une attaque explicite, dans le sens où l’attaque peut être exécutée jusqu’à
son terme, sur une version complète de SHA-1, ceci contrairement aux attaques expli-
cites précédentes qui ont toujours ciblé des versions réduites ; le type d’attaque retenu
a été celui des attaques en collision, qui sont à ce jour les plus efficaces sur SHA-1.
Pour atteindre notre objectif, néanmoins, nous nous sommes placés dans un modèle à
initialisation libre, légèrement plus favorable à l’attaquant.

Nous avons aussi développé une seconde attaque sur SHA-1 visant cette fois à calculer
efficacement des préimages. Ces résultats restent cependant théoriques, dans le sens où
le coût de l’attaque est trop important pour mener à un calcul explicite comme dans
le premier cas. De plus, aucune attaque, même théorique, n’est connue pour la fonction
complète, et notre objectif a précisément été d’augmenter le nombre de tours de la
fonction pour lequel une attaque peut être menée.

D’autres travaux menés pendant cette thèse ont consisté en des attaques sur des
algorithmes différents de SHA-1. Le premier de ces autres résultats a porté sur la famille
de primitive ASASA, qui est faite de plusieurs instances à clef secrète et à clef publique.
Nous avons développé une idée générale d’attaque exploitant certaines propriétés algé-
briques de la structure utilisée dans ASASA, ce qui nous a permis d’attaquer toutes
les instances proposées, à l’exception d’une, qui avait également été attaquée avant nos
travaux en utilisant d’autres méthodes.

Un second algorithme que nous avons attaqué en plus de SHA-1 est le schéma de
chiffrement authentifié Prøst-OTR, pour lequel nous avons développé une attaque à
clefs liées extrêmement efficace. L’idée utilisée dans l’attaque est très simple, et permet
génériquement d’améliorer en un certain sens les attaques à clefs liées existantes sur les
constructions de type Even-Mansour.
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Enfin, une autre partie de cette thèse a été consacrée à la conception d’algorithmes
de chiffrements et de certains de leurs éléments constitutifs. Une première contribution a
porté sur la conception de matrices de diffusion de grande taille, que nous avons définies
à partir de codes géométriques. Nous nous sommes aussi intéressés aux algorithmes de
chiffrement dits légers, qui sont conçus spécifiquement pour être utilisés dans des envi-
ronnements contraints, comme par exemple un petit processeur. Nous avons développé
l’algorithme Fly, qui répond bien à ce contexte. Enfin, nous avons conçu PuppyCipher
et CoureurDesBois, deux algorithmes pouvant être implémentés de façon incompres-
sible, et qui de cette façon répondent à un certain modèle de chiffrement en boîte blanche.

Bien que certains des travaux mentionnés ci-dessus ne soient pas inclus dans ce
manuscrit, toutes ces contributions sont cependant décrites avec un peu plus de détail
dans les trois sections ci-dessous. Nous excluons toutefois de ces descriptions deux articles
écrits avant le début de cette thèse.

2.1 Deux cryptanalyses

2.1.1 Attaques sur ASASA [MDFK15]

Nous décrivons ici des travaux réalisés avec Brice Minaud, Pierre-Alain Fouque et Patrick
Derbez, publiés à ASIACRYPT 2015.

À ASIACRYPT 2014, Biryukov et al. ont proposé la structure ASASA, dans le but
de réaliser un certain nombre de primitives à clef secrète et à clef publique [BBK14]. La
structure commune à ces primitives consiste à alterner un petit nombre de fois des appli-
cations linéaires, ou plus généralement affines, A avec des applications non-linéaires S,
une structure complète pouvant être notée comme A′′○S′○A′○S○A. De façon relativement
inhabituelle, le secret paramétrant ces structures n’est pas injecté séparément, mais ce
sont les applications A, S, etc. elles-mêmes qui sont tenues secrètes. En pratique, celles-ci
peuvent être générées depuis un générateur pseudo-aléatoire cryptographique paramétré
par la « vraie » clef). Par exemple, les instances ASASA de chiffrement à clef secrète
proposées par Biryukov et al. sont constituées de trois matrices inversibles tirées aléa-
toirement dansM128(F2), alternant avec deux applications parallèles de seize boîtes S
toutes générées aléatoirement et indépendamment les unes des autres. D’un point de vue
pratique, de telles constructions peuvent être intéressantes, car elles nécessitent peu de
tours par rapport à une structure plus classique. D’un point de vue plus théorique, elles
peuvent aussi être vues comme des généralisations de structures plus habituelles telles
que les réseaux de substitution-permutation (SPNs) ; une étude de la structure ASASA
peut ainsi par exemple fournir une borne inférieure sur le nombre de tours de n’importe
quel SPN, en dessous de laquelle celui-ci pourrait être attaqué génériquement.

Dans nos travaux, nous avons montré que les constructions basées sur ASASA pré-
sentent des faiblesses qui permettent de retrouver efficacement les différentes applications
A, S, etc., à équivalence prête. Ceci est le cas pour l’instance « chiffrement par bloc »
esquissée ci-dessus, mais aussi pour une instance définissant un schéma de cryptographie
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multivariée à clef publique, ainsi que des variantes à taille réduite de l’instance chiffre-
ment par bloc utilisées pour définir des algorithmes en boîte blanche. Il est à noter qu’un
quatrième type d’instance de type clef publique, que nous n’attaquons pas, avait aussi
été proposé par Biryukov et al.. Ces instances ont cependant aussi été attaquées par
Gilbert et al. à CRYPTO 2015 [GPT15].

La base de nos attaques consiste à exploiter des faiblesses du degré algébrique en
sortie des composants de la structure ASASA. Nous détaillons brièvement cette idée
dans le cas de l’instance chiffrement par bloc. On considère les formes algébriques nor-
males (ANFs) associées aux bits de sortie après la seconde application S′, juste avant
l’application de la dernière couche A′′ ; celles-ci sont de degré au plus 49, car les boîtes
des couches S sont sur huit bits et inversibles. Si on multiplie deux de ces ANFs issues
de boîtes différentes de S′, le degré du résultat sera très probablement supérieur à 49 ;
ce n’est par contre pas le cas si les ANFs sont issues de la même boîte, le degré res-
tant alors toujours borné supérieurement par 49. À la suite de cette observation, il est
possible de définir un système d’équations dont la résolution fournit la couche A′′, à équi-
valence prête ; essentiellement, les coefficients de A′′ sont les inconnues, et les contraintes
consistent à forcer les produits de deux sorties des mêmes boîtes S à sommer à zéro sur
un certain nombre de cubes. Une fois le système résolu, il ne reste plus qu’à par exemple
appliquer la fin de l’attaque sur les constructions SASAS de Biryukov et Shamir [BS01].
La complexité totale de notre attaque est dominée par le calcul des cubes, et équivalente
à environ 263 appels à l’algorithme de chiffrement.

2.1.2 Attaques à clefs liées sur Prøst-OTR [Kar15]

Nous décrivons ici un article publié à ISC 2015.

En 1991, à ASIACRYPT, Even et Mansour ont proposé une construction générique
de chiffrement par bloc qui porte désormais leur nom [EM91]. Partant d’une permutation
« aléatoire » fixe et publiquement connue P, on définit le chiffrement E((k1, k0), p) du
texte clair p comme P(p⊕k0)⊕k1. Soit n la taille de bloc de ce chiffrement et en supposant
qu’on accède à P en boîte noire, on peut montrer que la probabilité de retrouver les clefs
d’une instance inconnue de E , ou même seulement de la distinguer d’une permutation
aléatoire, est inférieure à O(qt ⋅2−n), avec q le nombre d’accès à l’oracle de chiffrement et
t le nombre d’accès à la permutation. De plus, on connaît une attaque atteignant cette
borne.

Si on considère un modèle d’attaque à clefs liées, la construction Even-Mansour
est cependant beaucoup plus faible. En effet, supposant un accès à deux oracles de
chiffrement O et O′, l’un avec la clef (k1, k0) et l’autre avec la clef (k1, k0 ⊕ δ) avec δ
une constante non nulle connue de l’attaquant, il est clair que celui-ci peut facilement
distinguer E d’une construction aléatoire en vérifiant que O(p) = O′(p⊕ δ). Nous avons
alors fait l’observation élémentaire que ce distingueur peut être rendu conditionnel à la
valeur des bits de la clef en utilisant des clefs liées par l’addition modulaire plutôt que le
XOR. Nous présentons cette idée dans le cas simple mais répandu où k ∶= k0 = k1. Soit
O(⋅) ∶= E(k, ⋅), Oi(⋅) ∶= E(k ⊞∆i, ⋅) avec ∆i = 2i, représenté par une chaîne binaire de n
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bits valant tous zéro sauf celui en position i ; on peut alors apprendre la valeur du ième

bit de k en comparant x ∶= O(p) et y ∶= Oi(p⊕∆i) : si celui-ci vaut zéro, alors la valeur
en entrée de la permutation P pour Oi est la même que pour O, et on a y ⊟ x = ∆i ; s’il
vaut un, les entrées de P sont différentes pour les deux oracles, et la différence de leurs
sorties est très probablement différente de ∆i ; les deux cas peuvent donc se distinguer
efficacement, pour le coût d’une requête à chaque oracle. Un attaquant ayant accès à O
et Oi, i ∈ {0, . . . , n − 2}, peut donc retrouver l’ensemble de la clef k avec un nombre de
requête linéaire en sa taille.

Nous avons appliqué l’attaque à clef liée décrite ci-dessus à l’algorithme de chiffrement
authentifié Prøst-OTR [KLL+14], qui est une instance du mode de chiffrement OTR
avec un chiffrement de type Even-Mansour. L’utilisation d’un padding sur la moitié du
bloc fait qu’une application directe de notre idée ne permet de retrouver que la moitié
de la clef ; toutefois, nous montrons comment exploiter la propagation de retenue dans
l’addition modulaire ainsi que la position du padding pour également retrouver la seconde
moitié pour le même coût que la première.

2.2 Conception de primitives

2.2.1 Construction de matrices de diffusion issues de codes
géométriques [AFK14]

Nous décrivons ici des travaux effectués avec Daniel Augot et Pierre-Alain Fouque, pu-
bliés à SAC 2014.

Une structure classique utilisée dans la conception de chiffrements par bloc est celle
des réseaux de substitution-permutation (SPNs), qui alternent applications linéaires et
non-linéaires, ces dernières étant généralement définies comme l’application parallèle
de boîtes S de petites tailles. Les applications linéaires utilisées peuvent diversement
consister en des permutations binaires, des matrices sur un corps fini (généralement F2,
F24 ou F28), ou une composition des deux. Bien sûr, toute application linéaire peut
être représentée par une matrice sur une structure bien choisie. Ce n’est cependant pas
toujours sa représentation la plus naturelle.

Dans ces travaux, nous nous sommes intéressés à la conception de matrices denses
de grande dimension pouvant être utilisées pour assurer toute la diffusion dans un SPN,
c’est à dire qu’elles agissent sur l’ensemble du bloc. Concrètement, les matrices que
nous avons étudiées ont une dimension de 16 et permettent de définir des algorithmes
avec des blocs de 64 bits, quand définies sur F24 , ou 128 bits, quand définies sur F28 .
Utiliser une matrice de grande dimension permet d’assurer une diffusion très rapide, à
condition qu’elle possède un branch number (BN) élevé ; cette notion correspond à la
distance minimale d’un code généré par la matrice. Le lien entre matrices de diffusion et
codes correcteurs fait qu’il est naturel de construire les premières à partir des seconds.
En particulier, il est courant de sélectionner des codes MDS, atteignant la borne de
Singleton. Malheureusement, on ne connaît pas de tels codes au delà d’une certaine
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dimension fonction de la taille du corps, et en particulier aucun code MDS de dimension
16 sur F24 n’est connu.

Nos travaux ont donc particulièrement consisté à explorer l’utilisation de codes géo-
métriques pour définir des matrices de diffusion de grande dimension sur de petits corps,
et de BN en pratique seulement légèrement inférieur à celui d’une hypothétique ma-
trice MDS de même taille. Un code géométrique est dans notre cas un code construit
à partir d’une courbe algébrique, qui permet de définir à la fois un ensemble de points,
ou plus précisément de places, et des espaces de fonctions associés à ses diviseurs ; on
peut alors définir des codes comme l’évaluation d’un espace de fonctions donné sur un
sous-ensemble des points. En choisissant correctement la courbe et l’espace de fonctions,
on peut par exemple construire une matrice de dimension 16 sur F24 de BN 15, soit
seulement deux de moins que la borne de Singleton. Cependant, implémenter efficace-
ment la multiplication par une telle matrice n’est pas immédiat, et nous proposons aussi
un algorithme vectoriel rapide qui répond à ce besoin.

2.2.2 L’algorithme de chiffrement léger Fly [KG16]

Nous décrivons ici des travaux préliminaires réalisés avec Benjamin Grégoire.

Nous nous intéressons toujours à la structure SPN, mais cette fois dans le cas d’un
algorithme ciblant des plateformes dont les ressources sont limitées, ce qui place des
contraintes sur les éléments constitutifs de la fonction de tour. Notamment, les grandes
matrices denses étudiées précédemment sont trop coûteuses dans ce contexte, et il est par
exemple plus approprié d’utiliser une couche linéaire constituée d’une simple permutation
de bits. Une conséquence d’un tel choix est cependant qu’une partie de la diffusion doit
maintenant être assurée par les boîtes S elles-mêmes ; on peut ainsi définir une notion de
branch number pour les boîtes S similaire à celle utilisée pour les applications linéaires.

Pour obtenir une fonction de tour de SPN efficace sur de petites architectures, nous
avons construit une boîte S sur huit bits avec un BN de trois qui s’implémente effica-
cement « en tranche », et qui peut être couplée avec une permutation elle aussi facile
d’implémentation. La structure obtenue possède une régularité qui rend l’analyse de
certaines propriétés de sécurité relativement aisée. Une caractéristique intéressante de
notre fonction de tour est aussi qu’elle n’est pas trop coûteuse à protéger contre un
certain nombre d’attaques physiques, celles-ci représentant une menace particulièrement
pertinente dans le contexte de la cryptographie embarquée.

2.2.3 PuppyCipher et CoureurDesBois : deux primitives prouvablement
incompressibles [FKKM16]

Nous décrivons ici des travaux communs avec Pierre-Alain Fouque, Paul Kirchner et
Brice Minaud, publiés à ASIACRYPT 2016.

L’idée de la cryptographie en boîte blanche a été introduite par Chow et al. à
SAC 2002 [CEJvO02], et correspond à l’objectif de fournir via un « compilateur boîte
blanche » une implémentation complète d’un algorithme symétrique, par exemple AES,
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déjà paramétré par une clef, tout en rendant celle-ci difficile à extraire. La réalisation
d’un tel objectif est complexe, et l’essentiel des propositions jusqu’à ce jour ont été
cassées, voir par ex. [Gil16] pour une revue. À SAC 2013, Delerablée et al. ont pro-
posé plusieurs modèles plus ou moins exigeants permettant de formaliser les objectifs
de sécurité d’implémentations boîte blanche [DLPR13]. Le modèle le plus atteignable
correspond à une notion d’incompressibilité : face à une implémentation d’une certaine
taille, un adversaire doit être incapable de fournir une implémentation significativement
plus petite qui est fonctionellement équivalente avec très forte probabilité. Cet objectif
est relativement facile à atteindre, mais ne satisfait pas nécessairement tous les emplois
qu’on pourrait souhaiter faire de la cryptographie boîte blanche, qui restent au demeu-
rant vagues. Certaines propositions récentes d’algorithmes en boîte blanche ciblent (des
variantes proches de) ce modèle : les instantiations boîte blanche de la construction
ASASA de Biryukov et al. [BBK14], largement attaquées [DDKL15, MDFK15], et la
famille SPACE de Bogdanov et Isobe [BI15].

Nos travaux ont consisté à raffiner le modèle d’incompressibilité de Delerablée et al.
en définissant des notions d’incompressibilité faible et forte, la nuance correspondant
aux hypothèses faites sur les stratégies des adversaires, puis de proposer deux familles
de constructions prouvablement incompressibles par rapport à ces modèles. La première,
PuppyCipher, est une famille de chiffrements par bloc de tailles d’implémentation va-
riables, prouvable dans le modèle faible. La seconde, CoureurDesBois, est une famille,
également de taille variable, de fonctions pouvant être utilisées comme générateurs de
clef, prouvable dans le modèle faible et dans le modèle fort. La base de nos algorithmes
est semblable à celles des précédentes propositions de Biryukov et al. et Bogdanov et al. :
elle consiste à utiliser des tables de taille importante remplies de données pseudo-aléatoire
et à forcer leur accès en des points a priori imprévisibles pour être capable de chiffrer un
message aléatoire. L’incompressibilité vient du fait qu’un adversaire « oubliant » une
partie significative des tables se trouverait forcé d’en deviner à nouveau une certaine
partie non négligeable pour correctement implémenter l’algorithme sur la plupart des
entrées. Nos preuves consistent à montrer que ceci est effectivement le cas pour nos
structures. Enfin, notons qu’en plus d’être dotées de preuves d’incompressibilité, nos
constructions sont relativement efficaces, et notamment nettement plus performantes
que les propositions de Bogdanov et Isobe.

2.3 Nouvelles attaques sur la fonction de hachage SHA-1

La fonction de hachage SHA-1 a été développée par la NSA en 1995 [NIS95], sur la
base d’un algorithme datant de 1993 [NIS93], et a été jusqu’à 2002 l’unique standard du
NIST pour le hachage cryptographique. En tant que telle, elle fut largement déployée et
consiste donc une cible de choix pour les cryptanalystes.
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2.3.1 Collisions à initialisations libres pour SHA-1 [KPS15, SKP16]

Nous décrivons conjointement deux articles écrits avec Marc Stevens et Thomas Peyrin,
publiés à CRYPTO 2015 [KPS15] et EUROCRYPT 2016 [SKP16].

Les premières attaques en collision sur une version non-réduite de SHA-1 ont été
présentées par Wang et al. à CRYPTO 2005 [WYY05a]. Bien que, comme souvent en
cryptanalyse, de complexité trop élevée pour être effectivement exécutées, ces attaques
ont eu un impact important sur l’étude des fonctions de hachage durant la décennie qui
a suivie. Elles ont notamment poussé à l’organisation d’une compétition internationale
pour le choix d’un nouveau standard, qui a vu Keccak devenir SHA-3 en 2015 [NIS15b].

Dans ces travaux, nous avons souhaité obtenir la première attaque explicite sur une
version non-réduite de SHA-1. La complexité attendue d’une attaque complète à la ma-
nière de Wang étant d’environ 261 appels à la fonction de compression de SHA-1, suivant
les travaux de Stevens d’EUROCRYPT 2013 [Ste13], nous avons plutôt choisi comme
objectif le calcul de collisions à initialisation libre, qui offrent une liberté supplémentaire
à l’attaquant et permettent en théorie de baisser le coût de celles-ci.

Du point de vue de la cryptanalyse, nos travaux ont donc consisté à adapter les
attaques de Wang et al. à un modèle à initialisation libre, ce qui dans notre cas revient
essentiellement à décaler l’initialisation de l’état interne SHA-1 de quelques tours tout en
s’assurant que les conditions nécessaires à une collision soient préservées. Les attaques de
ce type étant aussi relativement lourdes à effectuer, nous avons aussi amélioré certaines
phases de la génération et de l’implémentation de l’attaque. Une autre part importante de
ces travaux a consisté à implémenter efficacement l’ensemble de l’attaque, notamment
en utilisant des cartes graphiques pour le calcul de la partie la plus coûteuse. Ceci a
nécessité un certain soin lors du développement de l’attaque, entre autres choses pour
que sa structure soit adaptée au modèle de calcul imposé par les cartes graphiques.

Nos résultats ont consisté en une collision à initialisation libre pour 76 tours sur 80
de SHA-1 avec un coût d’environ 250.25 appels à la fonction de compression sur cartes
graphiques, ainsi qu’en une attaque similaire sur la fonction complète pour un coût
d’environ 257.5. Dans le dernier cas, ceci correspond à environ dix jours de calcul sur
soixante-quatre cartes graphiques récentes, ce qui est raisonnablement à la portée d’un
adversaire moyen.

2.3.2 Attaques en préimages jusqu’à 62 tours de SHA-1 [EFK15]

Nous concluons en décrivant des travaux menés avec Thomas Espitau et Pierre-Alain
Fouque, publiés à CRYPTO 2015.

Si la dernière décennie a permis de développer des attaques en collisions puissantes
sur SHA-1, bien que seulement à la limite supérieure de la faisabilité, nous ne connais-
sons toujours pas d’attaque en préimage même complètement théorique sur la fonction
complète. En 2012 Knellwolf et Khovratovich ont présenté à CRYPTO une vision dif-
férentielle des attaques en préimages utilisant les techniques de rencontre par le mi-
lieu [KK12]. Ceci leur a permis à l’époque d’atteindre le plus grand nombre de tours
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attaqués pour SHA-1, à 57 sur 80. Dans nos travaux, nous avons étendu cette approche
différentielle par l’utilisation de différentielles d’ordre supérieur. Ceci permet de trouver
de meilleures partitions pour une attaque par le milieu, dans le sens où elles couvrent plus
de tours, au prix d’une phase de rencontre plus complexe, rendant la technique surtout
utile pour des attaques de coût élevé. De cette façon, nous avons pu augmenter le nombre
de tours attaqués de 5, atteignant 62 tours avec une attaque de très grosse complexité
estimée à 2159.3. Nous avons aussi pu baisser la complexité des attaques à nombre de
tours équivalents par rapport à Knellwolf et Khovratovich, attaquant 58 tours pour un
coût de 2157.9 contre 57 tours à 2158.8. Enfin, nous avons appliqué les mêmes techniques
avec un succès modéré sur les fonctions de la famille BLAKE, améliorant quelque peu le
nombre de tours attaqués en préimage, avec cependant un gain seulement marginal sur
la recherche exhaustive.
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Part One

Preliminaries

Overview
The first part of this thesis serves as an introduction to the other two and to some of the
main topics of symmetric-key cryptography. The first chapter introduces block ciphers
while the second introduces hash functions. These two objects are the main focus of our
work.
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Chapter 3
Block ciphers basics

1 Block ciphers

A block cipher is a family of injective mappings over finite domains and co-domains,
indexed by a finite set of keys. In this manuscript, we will only consider ciphers with
domains and co-domains of identical sizes, with all arguments taken to be binary strings
of a fixed length. Hence, a block cipher is a mapping E ∶ {0,1}κ × {0,1}n → {0,1}n such
that for all k ∈ {0,1}κ, E(k, ⋅) is a permutation. We call κ the key size and n the block size
of E . Typical parameter sizes are κ ∈ {64,80,128,192,256} and n ∈ {64,128,256}, though
64 and 80-bit keys are now considered to be too short to provide adequate security. We
usually require E and its inverse E−1 to be efficiently computable, though depending on
the intended application, it may be enough for only one of these to be efficient.

The most immediate purpose of block ciphers is to provide confidentiality of commu-
nications. Assuming that two parties A and B have been able to share a secret k, they
can then use k as the key input to the same block cipher to send encrypted messages
c ∶= E(k, p), c′ ∶= E(k, p′), etc. The non-key input to E is generally called the plaintext,
and the output of E is called the ciphertext.

If E is such that the permutations E(k, ⋅) are hard to invert when k is unknown,
A and B may suppose that a secure channel of communication between them consists
in injecting their messages to strings m0∣∣m1∣∣ . . . ∣∣m` of sizes multiple of n and sending
encrypted messages E(k,m0)∣∣ E(k,m1)∣∣ . . . ∣∣ E(k,m`). There are two major problems
with this scheme, however, regardless of the security of the block cipher: first, the
scheme is not randomised, i.e. encrypting the same plaintext twice always results in the
same ciphertext. An eavesdropper on the channel between A and B, i.e. a “passive
adversary”, can thus detect when identical message blocks have been sent; second, the
communication is not authenticated. An active adversary on the channel may delete
or modify some of the blocks of a message, append to a message some blocks from a
previous message, or add randomly generated blocks. All of this can be done without A
and B noticing that someone is maliciously tampering with the channel.

Problems such as the ones above are solved by designing secure modes of operation.
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We do not study this topic in this thesis, but we mention some elements related to modes
in Section 3.

2 Security of block ciphers
We keep this section relatively informal. Our goal is to be able to specify what it means
for E to be a good block cipher from a practical point of view. We start nonetheless by
defining the useful notion of ideal block cipher.

Definition 3.1 (Ideal block cipher). An ideal block cipher E is a mapping {0,1}κ×{0,1}n →
{0,1}n s.t. all the permutations E(k, ⋅) are drawn independently and uniformly at ran-
dom among the permutations of {0,1}n.

This definition intuitively corresponds to the best we can achieve from the definition
of a block cipher. For small values of n, e.g. 20, one can implement ideal block ciphers
by using an appropriate shuffling algorithm, such as the one variously attributed to
Fisher, Yates, Knuth, etc. [FY48]. As this algorithm requires O(2n) setup time and
memory per key, it is impractical for cryptographically common block sizes n ≥ 64. Even
for small values of n, the shuffling requires a considerable amount of key-dependent
randomness, which may be something hard to provide. All of this leads to the fact that
we are forced most of the time to use “approximations” of ideal block ciphers. A useful,
mostly theoretical, way of quantifying the security of a specific block cipher is then to
measure “how far” it is from being ideal. Informally, this is done by upper-bounding the
advantage over a random answer that any adversary with some bounded resources has
of distinguishing whether he is given black-box access to a randomly-drawn permutation
or to an instance of the block cipher with a randomly chosen key. This statement can
be made more precise in the form of the following definition, similar to the one that can
be found e.g. in [BKR00]:

Definition 3.2 (Pseudo-random permutations (PRP)). We consider a block cipher E of key
size κ and block size n. We write Π2n for the set of permutations on binary strings of
length n; x $← S the action of drawing x uniformly at random among elements of the set
S; Af an algorithm with oracle, black-box access to the function f and which outputs a
single bit. Then we define the PRP advantage of A over E , written AdvPRP

E (A) as:

AdvPRP
E (A) = ∣Pr[Af = 1 ∣ f $← Π2n] −Pr[Af = 1 ∣ f ∶= E(k, ⋅), k $← {0,1}κ]∣.

The PRP security of E w.r.t. the data complexity q and time complexity t is:

AdvPRP
E (q, t) ∶= max

A∈Algf/q,E /t
{AdvPRP

E (A)}.

Here, Algf/q,E /t is the set of all algorithms A with oracle access to f that perform at
most q oracle accesses and which run in time O(t), with the time unit being the time
necessary to compute E once.
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Definition 3.2 is quite useful in some contexts, for instance to prove that a construc-
tion using a block cipher is not significantly less secure than the latter. This is typically
done by defining an advantage function similar to PRP security for the higher-level
construction and by showing that it is not more than a reasonable function of the PRP
security of the block cipher. For instance, the high-level construction studied in [BKR00]
is CBC-MAC.

However, this definition is not constructive, in the sense that it does not provide
any efficient way of computing the PRP security of a block cipher in general. A major
topic in symmetric cryptography is to analyse explicit instances of block ciphers in order
to assess their concrete security against attacks. In the language of Definition 3.2, this
consists in finding algorithms for which q, t and the PRP advantage is known. Any
such attack on a block cipher E allows to lower-bound its PRP-security at a given point
(q, t). In reality, cryptanalysis results on block ciphers are seldom as easily expressed
as what Definition 3.2 may lead us to believe; practically important characteristics of
an attack are also its memory complexity, distinguishing between its online and offline
time complexity, whether it applies equally well to all keys or if it is only successful for
some “weak” subset thereof, whether it also recovers k when f was instantiated from E ,
or an algorithm equivalent to E(k, ⋅), etc. We devote the remainder of this section to
sketching some typical elements of attacks on block ciphers.

2.1 Distinguishers and attacks

Many concrete attacks on block ciphers use distinguishers as their basis. These can be
defined as algorithms using reasonable resources which have a non-negligible advantage
according to Definition 3.2. There is no easy answer as to what “reasonable” and “non-
negligible” should mean in the context of actual cryptanalysis, as the key and block size
of a specific cipher are fixed values. While some ciphers or potential distinguishers may
be parameterised in a way that helps to make the notion meaningful, this does not have
to be the case. Sometimes, one is easily convinced by the performance of an algorithm
so that there is consensus that it can be called a distinguisher, e.g. distinguishing E of
key and block size 128 with q = 2, t = 220, probability ≈ 1, while some other times the
picture is much less clear, e.g. q = t = 2120 and probability ≈ 1. We ignore this issue
altogether and assume that all the attacks of this chapter are consensual.

2.1.1 Classes of distinguishers for block ciphers
We now briefly describe two types of distinguishers, which exploit “non-ideal” behaviours
of different nature.

We start with differential distinguishers, which are part of the broader class of statis-
tical distinguishers. The basic idea of the latter is to define events which have different
probability distributions for the target, i.e. the block cipher E than for a random permu-
tation drawn from Π2n . Running the distinguisher then consists in collecting a certain
number of samples obtained through an oracle and deciding from which distribution
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those are the most likely to have been drawn. A differential distinguisher instantiates
this idea by considering a certain type of statistical events. Another major class of
statistical distinguishers is the one of linear distinguishers.

Consider a block cipher E ; a differential for E is a pair (∆ ≠ 0, δ) of input and output
differences, according to some group law +. In the huge majority of cases, + is the
addition in Fn

2 , i.e. the bitwise exclusive OR (XOR); in this case we usually use the
alternative notation ⊕. Sometimes, + is taken to be the addition in Z/2nZ, and some
other times differences according to the two laws may be jointly used. A differential pair
for the differential (∆, δ) and the key k is an ordered pair ((p, c), (p′, c′)) of plaintexts
and their corresponding ciphertexts p, c ∶= E(k, p), p′, c′ ∶= E(k, p′) such that p − p′ = ∆,
c−c′ = δ. When differences are over Fn

2 , subtraction coincides with addition and the pair
can be unordered. We consider this to be the case in the remainder of this description.

We call differential probability of a differential w.r.t. a permutation P the probability
of obtaining a differential pair for P: DPP(∆, δ) ∶= Prp ∈ {0,1}n[P(k, p)⊕P(k, p⊕∆) = δ].
The most important characteristic of a differential for a block cipher is its expected
differential probability, which is simply its differential probability for E(k, ⋅) averaged
over k: EDPE(∆, δ) ∶= 2−κ∑k ∈ {0,1}κ DPE(k,⋅)(∆, δ). A common assumption is that for
most keys and differentials, the fixed-key DP is close to the average EDP. The DP of
a random differential w.r.t. a random permutation can be approximated by a Poisson
distribution: the approximate number of differential pairs is ∼ Poi(2−1), of mean and
variance 2−1, see [DR07], using an earlier result [O’C95]. As there are 2n−1 possible
pairs, the expected DP is thus 2−n; note however that the DP is in fact restricted to
values multiple of 2−n+1. For a distinguisher on E to be of any use, we need its EDP
not to be equal to 2−n. If it is far enough from that, e.g. 2−3n/4, we usually make the
simplifying working hypothesis that all DPs are equal to their expected value, or rather
the nearest possible values. In such a case, using the distinguisher consists in collecting
∝ 1/EDPE(∆, δ) plaintext pairs verifying the input difference and counting how many
of them verify the output difference. We decide that we are interacting with E if and
only if this is one or more.

Another kind of distinguishers is based on algebraic representations of block ciphers.
One can always redefine a block cipher E ∶ {0,1}κ ×{0,1}n → {0,1}n as an ordered set of
functions F i ∶ {0,1}κ+n → {0,1} that project E on its ith output bit: E ≡ (F0, . . . ,Fn−1).
The F is can be understood as Boolean functions Fκ+n

2 → F2 which are themselves in
bijection with elements of F2[x0, x1, . . . xκ+n−1]/⟨x2

i − xi⟩i<κ+n, i.e. multivariate polyno-
mials in κ+n variables over F2. The polynomial to which a Boolean function is mapped
is called its algebraic normal form (ANF); the ANF of E is the ordered set of ANFs of
its projections.

An important characteristic of an ANF is its degree, which can be used to define
simple yet efficient distinguishers. The degree of the ANF of an n-bit permutation is at
most n − 1, and it is expected of a random permutation to be of maximal degree. If a
block cipher has degree d < n− 1, it can be distinguished by differentiating it on enough
values. This simply requires to evaluate the oracle on 2d+1 properly chosen values —
essentially a cube of dimension d— and to sum them together. If the result is all-zero,
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the oracle is likely to be of degree less than d and is hence assumed to be E ; if this is
not the case, it is necessarily of degree strictly more than d and hence assumed to be a
random permutation.

2.1.2 Extending distinguishers to key-recovery attacks

In the definition of PRP security, we were content with the notion of distinguisher. In
actual attacks on block ciphers, however, the end objective would ideally be to recover
the unknown key used by the oracle. The context of a concrete attack is also different
from a PRP security game as one usually knows that he is interacting with a specific
cipher E and not a random permutation, and there is seemingly no point in running a
distinguisher at all. Despite these observations, distinguishers are in fact useful in many
cases, and are often at the basis of key-recovery attacks, although it should be noted
that not all such attacks are based on distinguishers. We briefly explain the basic idea
of this conversion; to do this, we need to assume that E possesses a certain structure,
which is in fact very common.

An iterative block cipher is a cipher E that can be described as the multiple compo-
sition of a round function R, possibly with additional composition of an initialisation
or finalisation function that we ignore here: E ≡ R○⋯ ○R. Let us assume that a “full”
application of E is made of r rounds. A distinguisher-based key-recovery attack first
consists in finding a distinguisher on a reduced-round version of E made of the composi-
tion of d < r round functions. The next step simply consists in querying the oracle on
inputs verifying the distinguisher condition, for instance plaintexts with difference ∆, in
a differential case; as one obtains ciphertexts encrypted with the full block cipher, one
is not expected to be successful when running the distinguisher on these values. The
main idea comes from the third step, where one guesses values for part of the unknown
key k of E which allow him to partially decrypt the ciphertexts by r − d rounds. Then,
if the guess was correct, he obtains ciphertexts for the cipher reduced to d rounds, on
which the distinguisher is expected to be successful. On the other hand, if the guess
was incorrect, one may assume that decrypting with invalid keys amounts to encrypting
with random keys. Hence, the inputs to the distinguishers may be seen as ciphertexts
encrypted with a cipher using r + (r − d) = 2r − d rounds, and the distinguisher should
fail. The overall approach thus gives a method to verify a guess for part of the unknown
key.

The procedure as described above calls for several comments. First, the cost of
guessing part of the key obviously adds to the complexity of the distinguisher, so the
overall complexity of the attack is higher than the latter. Thus, only distinguishers of
low-enough complexity may be converted to key-recovery attack. Second, one may only
use distinguishers that allow to verify a guess on part of the key. For instance, one can
use distinguishers that are “local”, in the sense that they only base their answers on the
value of part of the state of the cipher. For such distinguishers, it is enough to guess the
part of the key necessary to decrypt the relevant part of the state. Finally, the part of
the key that was not recovered thanks to the distinguisher can be obtained by different
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means. For instance, another distinguisher may be used which recovers another part of
the key, or it can simply be guessed exhaustively.

2.1.3 Attack models
So far we have discussed how to express the security of block ciphers and how to attack
them in a rather simple case when one is given access to a single “secret” oracle. This
setting may be generalised in some ways, for instance by providing more than one oracle.
One such common generalisation is to attack a cipher in the related-key model, where one
is given oracle access to E(k, ⋅), E(φ(k), ⋅), with φ(⋅) one or more mappings on the key
space. A crucial observation in this case is that φ cannot be arbitrary, as some mappings
may be so powerful that they allow to attack every cipher; speaking of the security of E
in such a model is then meaningless. We will mention this matter again in Chapter 5.

The potential problems arising from ill-defined related-key models are a useful re-
minder that attacks should be specified in a well-founded way. While some models are
more powerful than others and may then be considered less relevant to the actual secu-
rity of block ciphers, a main concern about a new model should be whether it trivially
allows to attack any algorithm.

3 Using block ciphers
Wementioned in the beginning of this chapter that block ciphers do not provide adequate
security if they are used directly and not as part of a wider construction. One calls
mode of operation such a construction that results in a functional cryptosystem. We
do not describe modes in this section, but reiterate from the introduction the essential
conditions that they must meet.

A foremost requirement is that a mode be randomised, in the sense that encrypting
the same message with the same key twice should not result in the same ciphertext.
This can be enforced through the notion of indistinguishability in a chosen-plaintext
attack scenario (IND-CPA) and its close relatives. Roughly, this is defined thanks to the
following process: an adversary is given a black-box access to the encryption procedure
of a certain cryptosystem, then prepares two messages m0 and m1 and sends them to an
oracle. This oracle randomly selects one of the two messages and returns its associated
ciphertext. Finally, the adversary is again given access to the cryptosystem and then tries
to guess which message was encrypted. The cryptosystem is IND-CPA if no adversary
with appropriately bounded resources is successful in his guess with a non-marginal
advantage. It is clear in particular that a deterministic cryptosystem cannot be secure
according to this definition.

We also already mentioned that a cryptosystem should provide authentication of the
communicating parties. This is either done directly by the mode of operation, which is
then called an authenticated encryption mode, or AE, or by combining an encryption-only
mode with a message authentication code (MAC) in an appropriate way. The current
trend is to favour the former approach, as it tends to lead to more efficient schemes.
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Chapter 4
Hash functions basics

1 Hash functions
A hash function is a mapping from an arbitrary, non-necessarily finite set to a finite
set of small size. As in the previous section, we restrict our presentation to the binary
case; hence, we define hash functions as mappings from messages: bit strings of arbitrary
length, to digests or hashes: strings of a fixed predetermined length: H ∶ {0,1}∗ → {0,1}n
for some integer n. Many hash functions do not strictly adhere to this definition, as they
upper-bound the length of their inputs by a large integer such as 264. This currently has
no impact in practice, as all potential inputs to a hash function are much shorter than
these upper limits; it is of course debatable whether this will always remain the case.
The typical output length of hash functions is of a few hundred bits, often a multiple of
thirty-two; current and past hash functions have n ∈ {128,160,224,256,384,512}.

A cryptographic hash function, or simply hash function is a function H that verifies
a certain number of security properties which express the difficulty of computing inputs
to H that verify some conditions. There are three “classical” security properties that
must be met, at least to some extent by any secure hash function. We only give here
rather informal definitions similar to the ones found e.g. in [MvOV96, Chapter 9]. The
specific kinds of messages involved in the security properties are the following:

Definition 4.1 (Preimage). A preimage of t for the function H is a message m such that
H(m) = t.

Definition 4.2 (Second preimage). A second preimage of t ∶= H(m) for the function H is
a message m′ ≠m such that H(m′) = H(m) = t.

Definition 4.3 (Collision). A collision for the functionH is a pair of messages (m,m′ ≠m)
such that H(m) = H(m′).

A function H is (second) preimage-resistant if there is no way of finding a preimage
for a random target t that is more efficient than for a function whose outputs are drawn
uniformly at random and independently of each other, i.e. computing H(x) for about 2n
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different inputs x. It should be noted that anyone can easily compute H(x) = y for some
x and learn a preimage of y. The notion of preimage resistance is thus only meaningful
if associated with random targets.

Similarly, a function H is collision-resistant if one cannot find collisions for H more
efficiently than for a random function, i.e. computingH(x) for about 2n/2 distinct inputs
x.

Degenerate algorithms. One may notice that for any function H, there are algorithms
whose time and space complexity are negligible and that return a single constant collision
(m,m′). As collisions, unlike preimages, are not associated with targets, these algorithms
cannot be easily excluded by demanding that they produce collisions related to a specific
input. However, such degenerate algorithms are ignored in practice and the cost of
finding a collision for a random function is always assumed to be in the neighbourhood
of 2n/2 calls to the function.

The complexities associated with these security notions correspond to the ones of the
best known generic algorithms that can find messages with the desired properties with
high probability for any function. An attack on a specific hash function is an algorithm
that can achieve one of the above tasks significantly more efficiently than the best generic
algorithm. By definition, this violates the associated security property. Above, we define
the complexity of these generic algorithms in terms of calls to H. In practice, it may be
necessary to adjust this to a finer granularity; for instance, for the Merkle-Damgård hash
functions that we describe in Section 2, it makes more sense to evaluate the complexity
in terms of calls to what will be defined as a compression function.

1.1 Applications of hash functions

The nature of the properties used to define security for cryptographic hash functions
is based on requirements from the various cases where they may be used in concrete
cryptosystems or protocols. Depending on the situation, resistance w.r.t. all properties
from above may not be necessary; for instance, it may be the case that collision resistance
is not required, or that, say, only second preimage resistance is relevant. However, a hash
function is usually expected to be used in a certain number of settings, and it is thus
understandingly expected to be secure against all attacks.

We only briefly sketch some possible uses of hash functions here, as an illustration.

Hash and sign signatures. Hash and sign signatures are one of the main settings where
hash functions may be employed; the objective is, given a digital signature algorithm S,
to efficiently and securely sign long messages. Directly doing so using S is usually not
an option, because signature algorithms are rather slow, especially compared to hash
functions which are typically at least 500 ∼ 1000 times faster, and may not behave well
on long messages. A useful alternative is instead to first compute the digest of the
message m that needs to be signed and to sign the digest instead of the whole message.
One then gives an output of the form (m,S(k,H(m))), with k a key for S.
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It is obvious that for such a scheme to work, the function H needs to be at least
resistant to second preimages. If this were not the case, an adversary could intercept a
message m signed by A, replace m by m′ such that the two messages collide through H,
and claim that A signed m′. Collision resistance is also important for similar reasons.

Password hashing. Password hashing is another common setting where hash functions
may be useful. In this case, we assume that a certain entity wishes to allow users
to authenticate themselves through passwords. Consequently, it must remember the
valid password of each user. As there would be obvious security issues with the entity
storing the passwords themselves, an idea is to instead store their images through a
hash function H. Thus, if an adversary finds the database of users and their associated
hashed passwords, he would be unable to find the passwords or some equivalent input,
provided that H is preimage-resistant.

In this setting, second preimage and collision resistance are not strictly needed.
However, it should be noted that even when built from a secure hash function, the
scheme just described above has severe issues, whose details are beyond the scope of this
introduction.

Hash-based signatures. A less common use of hash functions is to utilise them to directly
define signature schemes, see e.g. [Mer87]. We will not describe such schemes in detail
here, but it is interesting to mention a few of their specificities. The main idea of the
schemes is that the signing party makes some digests public while keeping their inputs
secret; signing a message then consists in selectively revealing some of these inputs.
Thus, being able to compute preimages for the hash function breaks the scheme, but
collisions are not a threat. A distinguishing feature of hash-based signatures is that the
hash function may only need to be used on inputs of short, possibly fixed size.

Message authentication codes. The last possible usage of hash functions that we describe
here is the building of message authentication codes, or MACs, which can somehow be
seen as the keyed variants of hash functions. A MAC T takes as input a key k and a
message m and outputs a tag t ∶= T (k,m). If an adversary does not know the key, it
should be hard for him to find a valid (message, tag) pair for T (k, ⋅), with the message
either being of his choosing or imposed by a challenger. These notions correspond to
existential (for the former) and universal (for the latter) forgery. Of course, it is also
highly necessary that no tag collisions occur, whether or not these happen on specific
messages requested by an adversary.

Hash functions seem to be good candidates to build MACs, and indeed generic hash
function based constructions such as HMAC [BCK96] are popular. However, the exact
security of these constructions is not always easy to establish, and there are usually
faster alternatives such as MACs based on universal/polynomial hash functions (see
e.g. [BHK+99]).

41



4. Hash functions basics

2 Merkle-Damgård hash functions
One of the first frameworks for hash function design to have been developed is the so-
called Merkle-Damgård construction, that was independently developed by Merkle and
Damgård in 1989 [Mer89, Dam89]. The idea of this construction is to make the arbitrary-
length inputs to a hash function manageable by defining the latter as the iteration of a
compression function with a small fixed-size (co-)domain; we say that the construction
is a domain extender for a compression function. This approach makes the overall design
much easier, but without a priori ensuring that the resulting function will be secure. The
main contribution of Merkle and Damgård in that respect is to give a construction such
that the security of the function can be partially reduced to the one of the compression
function: they show that for collision attacks, an attack on the hash function can be
exploited to build an attack on the compression function. Taking the contrapositive, as
long as there are no collision attacks on the compression function, we can be confident
that the hash function is secure against this kind of attacks. This is in fact quite similar
to building symmetric cryptosystems by combining a secure block cipher and a secure
mode of operation.

The construction works as following. A compression function H ∶ {0,1}n × {0,1}b →
{0,1}n takes two inputs: a chaining value c and amessage block m, and produces another
chaining value as output. The hash function H associated with H is built by extending
the domain of the latter to {0,1}∗, or rather {0,1}N for a large N , most of the time.
This is done by specifying an initial value IV for the first chaining value c0, which is a
constant for the hash function, and by defining the image of a message m through H by
the following process:

1. m is padded to a size multiple of the message block size b. Various padding rules
may be employed, but it is obviously important that they should not introduce triv-
ial collisions. Also, most of the time, the size, usually in bits, of the non-padded
message m is included in the padding in one way or the other. This is usually called
Merkle-Damgård-strengthening, and it is essential to make many of the common in-
stantiations of the framework secure. Indeed, one issue that could arise in the absence
of such strengthening is that fixed-points for the compression function could be used
to produce collisions; such fixed-points are easy to build for some popular compres-
sion function constructions, including the Davies-Meyer construction of the MD-SHA
family described in Section 5.

2. The padded message m0∣∣m1∣∣
. . . ∣∣mris then iteratively fed to the compression function by having ci+1 ∶= H(ci,mi).
The digest H(m) is equal to the last chaining value cr+1.

We give an illustration of this process in Figure 4.1.
We conclude this presentation by sketching the reduction proofs of the construction

for collision and first preimage attacks. There can be no such proof for second preimages,
as there exists some generic attacks on Merkle-Damgård functions independently of the
security of the compression function, and the actual security reached by Merkle-Damgård
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pad(m) = m0 m1 m2 m3

Hc0 = IV H
c1

H
c2

H
c3

c4 = H(m)

Figure 4.1 – A Merkle-Damgård hash function processing a four-block input. Figure
adapted from [Jea].

functions is not clear. We will briefly discuss these in Section 3. It is also important to
notice that a collision attack for a compression function H does not necessarily lead to
an attack for a Merkle-Damgård function H based on it. Still, such a collision would
violate the security reduction, and thus no formal guarantee could be given anymore
on the collision resistance of H. We will discuss such issues in slightly more details in
Section 3.

Proposition 4.1. A collision on a Merkle-Damgård hash function H implies a collision
on its compression function H.

Proof. We assume that Merkle-Damgård strengthening is used, that the message length
is appended at the end of the padding, and that it fits in a single message block.

Assume we have m, m′ ≠m s.t. H(m) = H(m′).
Case 1: m and m′ have a different length. The last message blocks mr and m′

r′ both
include the length of the message, which is different. Thus (cr,mr) and (c′r′ ,m′

r′) are
distinct and collide through H.

Case 2: m and m′ are of the same length. Assume w.l.o.g. that the messages fit on
r + 1 blocks after padding. Call i the highest block number such that mi ≠ m′

i. If i = r,
then (cr,mr) and (c′r,m′

r) are distinct and collide through H. If i < r, either ci+1 = c′i+1,
thus (ci,mi) and (c′i,m′

i) form a valid collision pair for H, or, we have a non-empty
sequence of input pairs (cj ,mj) and (c′j ,m′

j), j = i + 1 . . . r such that mj = m′
j for all j.

As cr+1 = c′r+1, at least one element of the sequence collides through H. The two input
pairs in the first one to do so are different, and thus form a valid collision for H.

Proposition 4.2. A preimage on a Merkle-Damgård hash function H implies a preimage
on its compression function H.

Proof. Let m be a message fitting on r + 1 blocks after padding s.t. H(m) = t, with t
the preimage target. Then H(cr,mr) = k, and (cr,mr) is thus a valid preimage input for
H.

3 Refining the security of hash functions
The security notions of collision and preimage resistance can be refined and completed
with additional ones. These are not always directly relevant to actual uses of hash
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functions, but they may nonetheless be useful to evaluate the security of a function in
a finer way. We may roughly distinguish between two kinds of additional properties by
what they characterize: non-ideal behaviours of certain frameworks for hash function
constructions, and non-ideal behaviours of specific instances of hash functions or of their
building blocks. To allow for more explicit definitions of these additional properties, it
is useful to define a stronger, idealised view of hash functions:

Definition 4.4 (Random oracle). An n-bit random oracle R is a mapping {0,1}∗ → {0,1}n
such that for every input x, its image R(x) is drawn uniformly at random over {0,1}n.

According to the way we defined attacks, a random oracle is not vulnerable to them,
as only generic algorithms may be used against it. It thus completely captures what the
usefulness of hash functions: if a high-level construction is not secure when it is idealised
as using a random oracle, that is when analysed in the random oracle model, one can
never hope to make it so when instantiating the oracle with a concrete hash function.
However, even if a construction is secure in such a model, it is not necessarily true that
this will still be the case once instantiated.

The Merkle-Damgård functions from Section 2 exhibit some of this non-ideal be-
haviours, in the sense that some properties may be computed more efficiently for Merkle-
Damgård functions than for random oracles.

A good example of such a property is the concept of multicollision, where one is
required to find r > 2 messages m0, . . . ,mr−1 whose images through H are all equal.
The generic complexity of this problem on a random oracle is O(2n×(r−1)/r) calls to H
for an n-bit function, but Joux showed how to find (2r)-multicollisions in time O(r ×
2n/2) for Merkle-Damgård hash functions [Jou04]. The basic idea used in this attack
is that collisions for a Merkle-Damgård function H can be chained together to lead to
an exponentially growing number of distinct messages hashing to the same value. We
can easily see this with a small example: assume that an attacker found two distinct
colliding messages m0 and m′

0 of the same length; this can be done generically at a cost
of 2n/2. One then looks for a second collision for the function H̃ obtained by replacing
the initial chaining value c0 by H(m0) = H(m′

0); this can again be obtained for a cost
of 2n/2, resulting in m1 and m′

1. Then, thanks to the chaining property of the Merkle-
Damgård construction, we have found four colliding messages m0∣∣m1, m′

0∣∣m1, m0∣∣m′
1,

m′
0∣∣m′

1. It is easy to see how this generalises to longer messages, leading to the quoted
complexity of O(r×2n/2). We can observe that one of the weaknesses of the construction
that is exploited here is that a hash collision is also a collision for the internal state of
the hash function. We will briefly see in Section 4 that increasing the size of the state
of a function is indeed a way to make it resistant to such attacks.

Another good example for Merkle-Damgård, which this time directly violates the
security property from Definition 4.2, consists in second preimage attacks for long mes-
sages. Dean [Dea99], and later Kelsey and Schneier [KS05] showed how one can again
exploit the structure of the function and internal collisions to compute a second preim-
age of a long message more efficiently than with a generic algorithm. The complexity
of Kelsey and Schneier’s attack to find a second preimage for a message of 2k blocks
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is ≈ O(2n−k+1) calls to H. This means that Merkle-Damgård hash functions are actu-
ally inherently insecure, if we adhere strictly to what we stated as security objectives.
However, although significant, these attacks remain expensive, especially for messages
of usual sizes. As such, they are not usually considered as threatening the practical use
of Merkle-Damgård functions, and indeed functions following this framework such as
SHA-2 [NIS15a] are still widely used.

We already mentioned in Section 2 that an attack on a compression function makes a
security reduction in a Merkle-Damgård construction impossible. Thus it seems natural
to also analyse the security of the compression functions themselves. An attack would
in this case demonstrate a non-ideal behaviour of the second kind we mentioned above,
not targeting a hash function in itself but one of its building blocks. There is a natural
way to generalise the security properties expressed in Definition 4.1 ∼ Definition 4.3 to
this context, leading to the notion of (semi-)freestart attacks:

Definition 4.5 (Freestart preimage). A freestart preimage for a Merkle-Damgård hash
function H is a pair (i,m) of an IV and a message such that Hi(m) = t, with Hi(⋅)
denoting the hash function H with its original IV replaced by i.

Definition 4.6 (Semi-freestart collision). A semi-freestart collision for a Merkle-Damgård
hash function H is a pair ((i,m), (i,m′)) of two IV and message pairs such that Hi(m) =
Hi(m′).

Definition 4.7 (Freestart collision). A freestart collision for a Merkle-Damgård hash func-
tion H is a pair ((i,m), (i′,m′)) of two IV and message pairs such that Hi(m) = Hi′(m′).

It can be noted that if the two messages of, say, a freestart collision pair are one-
block long, the definition above becomes equivalent to the one of a collision on the
compression function H used to build H. There is little difference between the two in
general, the feature of freestart attacks precisely being that compared to hash function
attacks, they may exploit the additional available input offered by the chaining value of
the compression function.

Lastly, a somehow loosely defined addition to the security notions presented so far is
the concept of distinguishers, which denote non-ideal behaviours of a hash function that
are not otherwise captured by the previous definitions. We will not give a precise defi-
nition here, as these are made tricky by the unkeyed nature of hash functions. Instead,
we just briefly mention an example of such a distinguisher for the compression function
of SHA-1.

Jumping ahead, we will see in Part III that the IV and the message block of SHA-1’s
compression function are made of five and sixteen 32-bit words respectively. In 2003,
Saarinen showed that slid pairs could be found for this compression function for a cost
equivalent to 232 function calls [Saa03]. Such pairs are made of two IVs A0,...,4, A′0,...,4
and messages m0,...,15, m′

0,...,15 with A′i = Ai−1 and m′
i = mi−1, such that the pair of
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outputs of the function called on these inputs also has this property. Although it is not
expected of a random function to exhibit such a property, there is no clear way to use it
to mount an attack against the main and secondary security properties defined above.

4 Modern hash function frameworks
We have mentioned some generic weaknesses of the Merkle-Damgård framework in Sec-
tion 3. As a consequence of these, modern hash function designs are usually based on
alternative, more secure constructions. We briefly review two of them: the wide-pipe
variation of Merkle-Damgård, or chop-MD, and the sponge construction.

Wide-pipe Merkle-Damgård. The wide-pipe construction was introduced in 2005 by
Lucks [Luc05] and Coron et al. under the name chop-MD [CDMP05]. It is conceptu-
ally simple, and consists in using the Merkle-Damgård construction with a compression
function of output size larger than the one of the chaining value. If we write ⌊⋅⌋n an
arbitrary truncation function from m > n to n bits, we may define the n-bit chop-MD
construction based on a compression function H ∶ {0,1}m × {0,1}b → {0,1}m as ⌊H(⋅)⌋n,
with H a standard Merkle-Damgård function built from H. Some variations are possible,
for instance by considering other mappings from m to n bits instead of just a truncation.

One can easily see that a hash collision for such a function does not anymore imply a
collision for its internal state. By choosing m to be sufficiently large, for instance taking
m = 2n, one can achieve generic resistance to, say, multicollisions. In fact, Coron et al.
proved that this construction is a secure domain extender for random oracles, in the
sense that if the compression function is a fixed-size random oracle, using it in a chop-
MD mode yields a function that is ε-indifferentiable from a random oracle, in the sense
of Maurer et al. [MRH04], with ε ≈ 2−tq2, t = m − n being the number of truncated bits
and q the number of queries to H. In the light of Section 3, this is a very useful result, as
it says that unlike plain Merkle-Damgård, no non-ideal behaviour is introduced by the
domain-extending construction. Such hash functions are thus expected to behave closely
to the random oracles they may be expected to instantiate, as long as their compression
functions are “ideal” and that they are not queried too much w.r.t. to the size of their
parameters.

Sponge construction. The sponge construction was introduced in 2007 by Bertoni et al.
[BDPA07]. It is quite distinct from the Merkle-Damgård framework, notably because it
does not use a compression function as building block, but a function of equally-sized
domain and co-domain. Usually, this function is even taken to be bijective.

The construction in itself is simple. Assume we want to build an n-bit function based
on a b-bit permutation P. We define the rate r and the capacity c as two integers such
that b = r+c. Then, hashing the message m consists in padding it to a length multiple of
r and to process it iteratively in two phases. The absorbing phase computes an internal
state value i ∶= P(P(. . .P(m0∣∣0c) ⊕m1∣∣0c) . . .). The squeezing phase then produces the
n-bit output as H(m) ∶= ⌊i⌋r ∣∣⌊P(i)⌋r ∣∣ . . . ∣∣⌊Pn÷r(i)⌋n mod r.
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A distinguishing feature of the sponge construction is that the output length of an
instance is entirely decorrelated from the size of its building block. Thus, it allows to
swimmingly build variable-length hash functions. A given permutation can also be used
in different instantiations offering a tradeoff between speed (a larger rate giving faster
functions) and security (a larger capacity giving more secure functions).

Bertoni et al. also showed in 2008 that similarly as chop-MD, the sponge construction
instantiated with a random function or permutation is ε-indifferentiable from a random
oracle of the same output size, with ε ≈ 2−cq2 [BDPA08]. To achieve the classical security
requirements of a hash function, it is thus optimal to take c = 2n.

One of the best examples of a sponge function is Keccak [BDPA11], which became
the SHA-3 standard in 2015 [NIS15b].

5 The MD-SHA family
We now briefly present the “MD-SHA” hash function family, both because it is of some-
what historical importance and because, the function studied later in this manuscript,
SHA-1, is one of its members.

The family originated in 1990 with the MD4 function, introduced by Rivest [Riv90].
An attack on a reduced version was quickly found by den Boer and Bosselaers [dB91],
and Rivest proposed MD5 as a strengthened version of MD4 [Riv92]. Bosselaers pro-
posed RIPEMD in 1992 as another attempt to strengthen MD4 [BP95, Chapter 3],
and the NSA did the same the following year by introducing the first generation of the
SHS/SHA algorithms [NIS93]. Both algorithms were quickly modified in 1996 and 1995
respectively [DBP96, NIS95]. Some later algorithms such as SHA-2 [NIS15a], introduced
in 2002, also trace their roots back to MD4.

Their are some variations inside members of the family; notably, RIPEMD uses a
parallel structure for its compression function. We specifically list below features that
are shared by MD4, MD5 and SHA, but they are also true for other MD-SHA functions
to a large extent.

– The Merkle-Damgård construction is used as a domain extender.

– The compression function is built from an ad-hoc block cipher used in a Davies-Meyer
mode: let E(x, y) be the encryption of the plaintext y with the key x by the cipher E ,
then the compression function is defined by ci+1 ∶= E(mi+1, ci) + ci.

– The block cipher inside the compression function is an unbalanced Feistel network
that uses modular additions, XORs, bit rotations, and bitwise Boolean functions as
constitutive elements. Its key schedule is linear, and very fast to compute.

With the advent of the NIST SHA-3 competition, which ran from 2007 to 2012, much
more diversity was introduced to hash function design. However, the MD-SHA family
still had an influence on many competition candidates, and it remains influential as of
today.
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Part Two

New attacks and elements of design
for block ciphers

Overview
A widespread design type for block ciphers is the SPN structure. Initially, this stood
for substitution-permutation network, with permutation referring to bit permutations; in
its current usage, this term generally denotes arbitrary F2-linear mappings.

The rationale behind the SPN structure is that one may obtain a good block cipher
round function by alternating a substitution mapping made of the parallel application of
S-boxes (short for substitution boxes) and a linear mapping. The role of both mappings
are complementary, and each is also usually selected to interact well with the other.
While the S-boxes are expected to break any exploitable linear and algebraic structure
at the local level, the permutation should spread the effects of the S-boxes at the global
level, in particular to ensure that no local change in the state of the cipher remains so
through the entire cipher execution.

An advantage of SPNs over some other design structures is that they lend them-
selves relatively well to analysis, in particular with respect to statistical attacks; this is
exemplified by the wide-trail strategy used in the design of the AES. Another notable
point about SPNs is that they offer many possible tradeoffs in their instantiations. One
can choose between large and small S-boxes, large S-boxes being comparatively stronger
than small ones but also more expensive; best-performing S-boxes or cheaper average
ones; bit permutations, particularly efficient in hardware, or non-permutation matrices;
optimally diffusing (MDS) matrices or not; state-wide matrices or not, etc. The design
space of SPNs is thus quite large, and concrete instantiations of the framework may be
quite distinct one from another.

In the second part of this thesis, we study two mappings intended to be used as part
of an SPN round function, the second of them being also instantiated in a complete
block cipher design. On the cryptanalysis side, we start by presenting a simple attack
of the Prøst-OTR authenticated-encryption scheme, using a related-key model.
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In Chapter 5, we show how the simple related-key distinguisher on Even-Mansour
constructions can be converted into a key-recovery attack by considering related-key
introduced with a modular addition rather than an XOR. Although this observation is
quite elementary, it finds a practical application in a very efficient related-key attack on
Prøst-OTR, which is an instantiation of the OTR authenticated-encryption mode of
operation with the Prøst permutation.

In Chapter 6, we present large linear mappings with very good diffusion and efficient
software implementations, with respect to their sizes. They are derived from linear codes
over a small field, typically F24 , with a high dimension, typically 16, and a high mini-
mum distance. This results in diffusion matrices with equally high dimension and a large
branch number. Because no MDS code is known to exist for the selected parameters,
the matrices were derived from more flexible algebraic geometry codes. We present two
simple yet efficient algorithms for the software implementation of matrix-vector multi-
plication in this context, and derive conditions on the generator matrices of the codes to
yield efficient encoders. We then specify an appropriate code and use its automorphisms
as well as random sampling to find good such matrices.

In Chapter 7, we present the construction and implementation of an 8-bit S-box with
a differential and linear branch number of 3. We show an application by designing Fly,
a simple block cipher based on bitsliced evaluations of the S-box and bit rotations which
is designed to be efficient on 8-bit microcontrollers in particular. The round function of
Fly achieves good performance on its target platform, in terms of number of instructions
per round and overall code size, while providing good cryptographic properties. The S-
box also has an efficient implementation with SIMD instructions, a low implementation
cost in hardware and it can be masked efficiently thanks to its sparing use of non-linear
gates and to the fact that it has a natural expression in terms of a single 4-bit S-box.
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Chapter 5
Improved related-key attacks on

Even-Mansour

1 Introduction

The Even-Mansour scheme, or simply Even-Mansour, or EM, is arguably the sim-
plest way to construct a block cipher from publicly available components. It defines
the encryption E((k1, k0), p) of the plaintext p under the possibly equal keys k0 and
k1 as P(p ⊕ k0) ⊕ k1, where P is a public permutation. Even and Mansour proved
in 1991 that for a permutation over n-bit values, the probability of recovering the keys
is upper-bounded by O(qt ⋅ 2−n) when the attacker considers the permutation as a
black box, where q is the data complexity (the number of accesses to the encryption
oracle) and t is the time complexity (the number of accesses to the permutation) of
the attack [EM91]. Although of considerable interest, this bound also shows at the
same time that the construction is not ideal, as one gets security only up to O(2n2 )
queries, which is less than the O(2n) one would expect from an n-bit block cipher.
For this reason, much later work investigated the security of variants of the original
construction. A simple one is the iterated Even-Mansour scheme (IEM). When us-
ing independent keys and independent permutations, its r-round version is defined as
IEMr((kr, kr−1, . . . , k0), p) ∶= Pr−1(Pr−2(. . .P0(p ⊕ k0) ⊕ k1) . . .) ⊕ kr, and it has been
established by Chen and Steinberger that this construction is secure up to O(2 rn

r+1 )
queries [CS14]. On the other hand, in a related-key model, the same construction lends
itself to trivial distinguishing attacks, and one must consider alternatives if security in
this model is necessary. Yet until the recent work of Cogliati and Seurin [CS15] and
Farshim and Procter [FP15], no variant of Even-Mansour was proved to be secure in the
related-key model. This is not the case anymore and it has now been proven that one
can reach a non-trivial level of related-key security for IEMr starting from r = 3 when
using keys linearly derived from a single master key instead of using independent keys,
or even for the original non-iterated EM scheme if one uses a non-linear key derivation
meeting some conditions. While related-key analysis obviously gives much more power to
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the attacker than the single-key setting, it is a widely accepted model that may provide
useful results on primitives studied in a general context.

2 Notation

We use ∣∣ to denote string concatenation, ai with i an integer to denote the string made
of the concatenation of i copies of the character a, and a∗ to denote any string of the
set {ai, i ∈ N}, a0 denoting the empty string ε. For any string s, we use s[i] to denote
its ith element, starting from zero.

We also use ∆n
i to denote the string 0n−i−1∣∣1∣∣0i−1. The value of the superscript n

will in fact always be clear from the context and therefore omitted.
Finally, we identify strings of length n over the binary alphabet {0,1} with elements

of the vector-space Fn
2 and with the binary representation of elements of the group

Z/2nZ. The addition operations on these structures are respectively denoted by ⊕, the
bitwise exclusive or (XOR) and +, the modular addition.

3 Generic related-key key-recovery attacks on IEM

Since the work of Bellare and Kohno [BK03], it is well-known that no block cipher
can resist related-key attacks (RKA) when an attacker may request encryptions under
related keys using two relation classes. A simple example showing why this cannot be
the case is to consider the classes φ⊕(k) and φ+(k) of keys related to k by the XOR and
the modular addition of any constant chosen by the attacker respectively. If we have
access to related-key encryption oracles E(k, ⋅), E(φ⊕(k), ⋅) and E(φ+(k), ⋅) for the block
cipher E with κ-bit keys, we can easily learn the value of the bit k[i] of k by comparing
the results of the queries E(k + ∆i, p) and E(k ⊕ ∆i, p). For i < κ − 1, the plaintext p
is encrypted under the same key if k[i] = 0, then resulting in the same ciphertext, and
is encrypted under different keys if k[i] = 1, then resulting in different ciphertexts with
overwhelming probability. Doing this test for every bit of k thus allows to recover the
whole key with a complexity linear in κ, except its most significant bit as the carry of
a modular addition on the MSB never propagates.This latter bit can of course easily be
recovered once all the others have been determined.

In the same paper, Bellare and Kohno also show that no such trivial generic attack
exists when the attacker is restricted to using only one of the two classes φ⊕ or φ+,
and they prove that an ideal cipher is in this case resistant to RKA. Taken together,
these results mean in essence that a related-key attack on a block cipher E using both
classes φ⊕(k) and φ+(k) does not say much on E , as nearly all ciphers fall to an attack
in the same model. On the other hand, an attack using either of φ⊕ or φ+ is meaningful,
because an ideal cipher is secure in that case. Nonetheless, one should note that when
queries with many different related keys are allowed, this security remains lower than
in a single-key model, because of the ability to create collisions. One can for instance
query E(k ⊕ δi, p) with 2k/2 different values for δi and a constant p and then compute
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E(γi, p) with 2k/2 guesses γi for k. With high probability, one of the γis will be equal to
one of the k ⊕ δis, which allows to recover k.

3.1 Key-recovery attacks on IEMr with independent keys

Going back to IEM, we explicit the trivial related-key distinguishers mentioned in the
introduction. These distinguishers exist for r-round iterated Even-Mansour schemes
with independent keys, for any value of r. As they only use keys related with, say, the
φ⊕ class, they are therefore meaningful when considering the related-key security of IEM.

From the very definition of IEMr, it is obvious that the two values E((kr−1, kr−2,
. . . , k0), p) and E((kr−1, kr−2, . . . , k0 ⊕ δ), p ⊕ δ) are equal for any difference δ when E =
IEMr and that this equality does not hold in general, thence allowing to distinguish IEMr

from an ideal cipher. This is illustrated for the original EM in Figure 5.1.

p P c

k0 k1

δ

Figure 5.1 – A related-key distinguisher on EM. Dashed lines represent datapaths where
a difference is injected and not canceled.

We now show how these distinguishers can be combined with the two-class attack
of Bellare and Kohno in order to extend it to a very efficient key-recovery attack. We
give a description in the case of one-round Even-Mansour, but it can easily be extended
to an arbitrary r. The attack is very simple and works as follows: consider again
E((k1, k0), p) = P(p ⊕ k0) ⊕ k1; one can learn the value of the bit k0[i] by querying
E((k1, k0), p) and E((k1, k0 + ∆i), p ⊕ ∆i) and by comparing their values. These differ
with overwhelming probability if k0[i] = 1 and are equal otherwise. This is illustrated in
Figure 5.2 and Figure 5.3

p P c

k0 k1

∆i

If k0[i] = 0

Figure 5.2 – Related-key queries to IEM1 (i.e. EM) with no output difference.

A similar attack works on the variant of the (iterated) EM that uses modular addition
instead of XOR for the combination of the key with the plaintext. This variant was first
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p P c

k0 k1

∆i

If k0[i] = 1

Figure 5.3 – Related-key queries to IEM1 (i.e. EM) with an output difference.

analysed by Dunkelman, Keller and Shamir [DKS12] and offers the same security bounds
as the original Even-Mansour. An attack in that case works similarly by querying e.g.
E((k1, k0),∆i) and E((k1, k0 ⊕∆i),0κ).

Both attacks use a single difference class for the related keys, either φ⊕ or φ+, and
they are therefore meaningful as related-key attacks. They simply emulate the attack
that uses both classes simultaneously by taking advantage of the fact that the usage of
key material is very simple in Even-Mansour. Finally, we can see that in the particular
case of a one-round construction, the attack still works without adaptation if one chooses
the keys k1 and k0 to be equal.

3.2 Extension to IEM2 with a linear key schedule
Cogliati and Seurin [CS15] showed that it is also possible to very efficiently distinguish
IEM2 with related keys, even when the keys are equal or derived from a master key by a
linear key schedule. Similarly as for independent-key IEM, we can adapt the distinguisher
and transform it into a key-recovery attack. The idea remains the same: one replaces
the φ⊕ class of the original distinguisher with φ+, which makes its success conditioned
on the value of a few key bits, hence allowing their recovery. We give the description of
our modified distinguisher for E(k, p) ∶= P(P(k⊕p)⊕k)⊕k, where we let the δis denote
arbitrary differences:

1. Query y1 ∶= E(k + δ1, x1).

2. Set x2 to x1 ⊕ δ1 ⊕ δ2 and query y2 ∶= E(k + δ2, x2).

3. Set y3 to y1 ⊕ δ1 ⊕ δ3 and query x3 ∶= E−1(k + δ3, y3).

4. Set y4 to y2 ⊕ δ1 ⊕ δ3 and query x4 ∶= E−1(k + (δ1 ⊕ δ2 ⊕ δ3), y4).

5. Test if x4 = x3 ⊕ δ1 ⊕ δ2.

If the test is successful, it means that with overwhelming probability the key bits at
the positions of the differences δ1, δ2, δ3 are all zero, as in that case k+δi = k⊕δi and the
distinguisher works “as intended”, and as otherwise at least one uncontrolled difference
goes through P or P−1. It is possible to restrict oneself to using differences in only two
bits for the δis, and as soon as two zero key bits have been found (which happens after
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an expected four trials for random keys), the rest of the key can be determined one bit
at a time.

We conclude this short section by showing why the test of line 5 is successful when
k + δi = k ⊕ δi, but refer to Cogliati and Seurin for a complete description of their dis-
tinguisher, including the general case of distinct permutations and keys linearly derived
from a master key.

We write k ⊕ δi for k + δi to make the simplifications more obvious, as these values
are equal by hypothesis. By definition, y1 = P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ1) ⊕ k ⊕ δ1 and y3 =
P(P(x1⊕k⊕δ1)⊕k⊕δ1)⊕k⊕δ1⊕δ1⊕δ3 which simplifies to P(P(x1⊕k⊕δ1)⊕k⊕δ1)⊕k⊕δ3.
This yields the following expression for x3:

x3 = P−1(P−1(P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ1) ⊕ k ⊕ δ3 ⊕ k ⊕ δ3) ⊕ k ⊕ δ3) ⊕ k ⊕ δ3

= P−1(P−1(P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ1)) ⊕ k ⊕ δ3) ⊕ k ⊕ δ3

= P−1(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ1 ⊕ k ⊕ δ3) ⊕ k ⊕ δ3

= P−1(P(x1 ⊕ k ⊕ δ1) ⊕ δ1 ⊕ δ3) ⊕ k ⊕ δ3

Similarly, y2 = P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ2) ⊕ k ⊕ δ2 and y4 = P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ2) ⊕
k ⊕ δ2 ⊕ δ1 ⊕ δ3, which yields the following expression for x4:

x4 = P−1(P−1(P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ2) ⊕ k ⊕ δ2 ⊕ δ1 ⊕ δ3 ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3)
⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3) ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3

= P−1(P−1(P(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ2)) ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3) ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3

= P−1(P(x1 ⊕ k ⊕ δ1) ⊕ k ⊕ δ2 ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3) ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3

= P−1(P(x1 ⊕ k ⊕ δ1) ⊕ δ1 ⊕ δ3) ⊕ k ⊕ δ1 ⊕ δ2 ⊕ δ3

From the final expressions of x3 and x4, we see that their XOR difference is indeed
δ1 ⊕ δ2.

4 Application to Prøst-OTR
We now apply the simple generic key-recovery attack of Section 3 to the Caesar candi-
date Prøst-OTR, which is an authenticated-encryption scheme member of the Prøst
family [KLL+14]. This family is based on the Prøst permutation and defines three
schemes instantiating as many modes of operation, namely COPA, OTR and APE.
Only the latter can readily be instantiated with a permutation, and both COPA and
OTR rely on a keyed primitive. In order to be instantiated with Prøst, the permuta-
tion is expanded to a block cipher defined as a one-round Even-Mansour scheme with
identical keys E(k, p) ∶= P(p⊕k)⊕k, with the Prøst permutation as P. We will denote
this cipher as Prøst/SEM.

Although the attack of Section 3 could readily be applied to Prøst/SEM, this cipher
is only meant to be embedded into a specific instantiation of a mode such as OTR, and
attacking it out of context is not relevant to its intended use. Hence we must be able
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to mount an attack on Prøst-COPA or Prøst-OTR as a whole for it to be really
significant, which is precisely what we describe now for the latter.

Because our attack solely relies on the Even-Mansour structure of the cipher, we
refer the interested reader to the submission document of Prøst for the definition of its
permutation. The same goes for the OTR mode [Min14], as we only need to focus on a
small part to describe the attack. Consequently, we just describe how the encryption of
the first block of plaintext is performed in Prøst-OTR. Note that this is not necessarily
the same as encrypting the first block in every instantiations of OTR, as there is some
flexibility in the definition of the mode.

The mode of operation OTR is nonce-based; it takes as input a key k, a nonce n, a
message m, possibly empty associated data a, and produces a ciphertext c corresponding
to the encryption of the message with k, and a tag t authenticating m and a together
with the key k. It is important for the security of the mode to ensure that one cannot
encrypt twice using the same nonce. However, there are no specific additional restrictions
on the nonces, and we consider that an attacker has full control over their non-repeating
values.

The encryption of the first block of ciphertext c1 by Prøst-OTR is defined as a
function f (k,n,m1,m2) of k, n, and the first two blocks of plaintext m1 and m2: let
` ∶= E(k,n∣∣10∗) be the encryption of the padded nonce and `′ ∶= π(`), with π a linear
permutation, in this case the multiplication by 4 in some finite field, then c1 is simply
equal to E(k, `′ ⊕m1) ⊕m2. We show this schematically along with the encryption of
the second block in Figure 5.4. Let us now apply the attack from Section 3.

EK

m1

⊕
`′

m2

⊕

EK⊕
`′

`

⊕

c1 c2

Figure 5.4 – The encryption of the first two blocks of message in Prøst-OTR.

4.1 Step 1: Recovering the most significant half of the key
It is straightforward to see that one can recover the value of the bit k[i] by performing
only two queries with related keys and different nonces and messages. One just has to
compare c1 = f (k,n,m1,m2) and ĉ1 = f (k +∆i, n⊕∆i,m1 ⊕∆i ⊕ π(∆i),m2). Indeed, if
k[i] = 0, then the value ˆ̀obtained in the computation of ĉ1 is equal to `⊕∆i and ˆ̀′ = `′⊕
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π(∆i), hence ĉ1 = c1⊕∆i. If k[i] = 1, the latter equality does not hold with overwhelming
probability. We illustrate the propagation of differences in the computation of `′ and ˆ̀′
in Figure 5.5 and Figure 5.6.

Pn ˆ̀ ˆ̀′

k k 4

∆i

If k[i] = 0

ˆ̀′ = `′ ⊕ 4⊗∆i

Figure 5.5 – Related-key queries to Prøst-OTR with predictable output difference.

Pn ˆ̀ ˆ̀′

k k 4

∆i

If k[i] = 1

ˆ̀′ = `′ ⊕ $

Figure 5.6 – Related-key queries to Prøst-OTR with unpredictable output difference.

Yet this does not allow to recover the whole key because the nonce in Prøst-OTR
is restricted to a length half of the width of the block cipher E , or equivalently of
the underlying Prøst permutation, i.e. κ

2 . It is then possible to recover only half of
the bits of k using this procedure, as one cannot introduce appropriate differences in the
computation of ` for the other half. For the same reason, it is not possible either to finish
the attack by looking for collisions in the unknown half of the key using the classical
attack on Even-Mansour schemes. The targeted security of the whole primitive being
precisely κ

2 because of the classical single key attack, one does not make a significant
gain by recovering only half of the key. Nonetheless, it should still be noted that this
yields an attack with very little data requirements and with the same time complexity
as the best point on the tradeoff curve of generic attacks, which in that case has a much
higher data complexity of 2

κ
2 .

4.2 Step 2: Recovering the least significant half of the key

Even though the generic attack in its most simple form does not allow to recover the
full key of Prøst-OTR, we can use the fact that the padding of the nonce is done on
the least significant bits to our advantage, and by slightly adapting the procedure of the
first step, we can iteratively recover the value of the least significant half of the key with
no more effort than for the most significant half.
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Let us first show how we can recover the most significant bit of the least significant
half of the key k[κ/2 − 1], i.e. the first bit for which we cannot use the previous method,
after a single encryption by E .

We note kMSB the known most significant half of the key k. To mount the attack,
one queries E(k − kMSB +∆κ/2−1, p⊕∆κ/2) and E(k − kMSB −∆κ/2−1, p). We can see that
the inputs to P in these two cases are equal iff k[κ/2 − 1] = 1. Indeed, in that case,
the carry in the addition (k − kMSB) +∆κ/2−1 propagates by exactly one position and is
cancelled by the difference in p, and there is no carry propagation in (k−kMSB)−∆κ/2−1.
Set C ∶= P(p ⊕ (k − kMSB − ∆κ/2−1)), then the result of the two queries are equal to
C⊕(k−kMSB+∆κ/2−1) = C⊕(k⊕kMSB⊕∆κ/2−1⊕∆κ/2) and C⊕(k−kMSB−∆κ/2−1) = C⊕
(k⊕kMSB⊕∆κ/2−1). Consequently, the XOR difference between the two results is known
and equal to ∆κ/2. If on the other hand k[κ/2 − 1] = 0, the carry in ((k−kMSB)−∆κ/2−1)
propagates all the way to the most significant bit of k, whereas only two differences are
introduced in the input to P in the first query. This allows to distinguish between the
two cases and thus to recover the value of this key bit.

Once the value of k[κ/2 − 1] has been learned, one can iterate the process to recover
the remaining bits of k. The only subtlety is that we want to ensure that if there is
a carry propagation in (k − kMSB) + ∆κ/2−1−i (resp. (k − kMSB) − ∆κ/2−1−i), it should
propagate up to kκ/2, the position where we cancel it with an XOR difference (resp. up
to the most significant bit); this can easily be achieved by adding two terms to both keys.
Let us define γi as the value of the key k only on positions κ/2 − 1 . . . κ/2 − i, completed
with zeros left and right; that is γi[j] = k[j] if κ/2 − 1 ≥ j ≥ κ/2 − i, and γi[j] = 0
otherwise. Let us also define γ̃i as the binary complement of γi on its non-zero support,
that is γ̃i[j] = ¬k[j] if κ/2 − 1 ≥ j ≥ κ/2− i, and γ̃i[j] = 0 otherwise. The modified queries
then become E(k − kMSB +∆κ/2−1−i + γ̃i, p⊕∆κ/2) and E(k − kMSB −∆κ/2−1−i − γi, p), for
which the propagation of the carries is ensured. Note that the difference between the
results of these two queries when k[κ/2 − 1 − i] = 1 is independent of i and always equal
to ∆κ/2.

We conclude by showing how to apply this procedure to Prøst-OTR. For the sake
of readability, let us denote by ∆+

i and ∆−
i the complete modular differences used to

recover one less significant bit k[i], that is ∆+
i = −kMSB +∆κ/2−1−i + γ̃i and ∆−

i = −kMSB +
∆κ/2−1−i−γi. We then simply perform the two queries f (k+∆+

i , n⊕∆κ/2,m1⊕∆κ/2,m2)
and f (k+∆−

i , n,m1⊕π(∆κ/2),m2), which differ by ∆κ/2 iff ki is one, with overwhelming
probability.

All in all, one can retrieve the whole key of size κ using only 2κ chosen-nonce related-
key encryption requests with κ+κ/2+1 different keys, ignoring everything in the output
apart from the value of the first block of ciphertext. We give the full attack in Algo-
rithm 5.1. Note that it makes use of a procedure Refresh which picks fresh values for
two message words and most importantly for the nonce. Because the attack is very fast,
it can easily be tested. We give an implementation for a 64-bit toy cipher in Section A.

Remark. If the padding of the nonce in Prøst-OTR were done on the most significant
bits, no attack similar to Step 2 could recover the corresponding key bits: the modular
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Algorithm 5.1: Related-key key recovery for Prøst-OTR
Input: Oracle access to f (k, ⋅, ⋅, ⋅) and f (φ+(k), ⋅, ⋅, ⋅) for a fixed unknown key k

of even length κ
Output: Two candidates for the key k

1 k′ := 0κ
2 for i := κ − 2 to κ/2 do
3 Refresh(n, m1, m2)
4 x := f (k,n,m1,m2)
5 y := f (k +∆i, n⊕∆i,m1 ⊕∆i ⊕ π(∆i),m2)
6 if x = y ⊕∆i then
7 k′[i] := 0
8 else
9 k′[i] := 1

10 for i := κ/2 − 1 to 0 do
11 Refresh(n, m1, m2)
12 x := f (k +∆+

i , n⊕∆κ/2,m1 ⊕∆κ/2,m2)
13 y := f (k +∆−

i , n,m1 ⊕ π(∆κ/2),m2)
/* The values of ∆+

i and ∆−
i are computed as in Section 4.2 */

14 if x = y ⊕∆κ/2 then
15 k′[i] := 1
16 else
17 k′[i] := 0

18 k′′ := k′

19 k′′[κ − 1] := 1
20 return (k′, k′′)

addition is a triangular function, meaning that the result of a+ b on a bit i only depends
on the value of bits of position less than i in a and b, and therefore no XOR in the nonce
in the less significant bits could control modular differences introduced in the padding
in the more significant bits. An attack in that case would thus most likely be applicable
to general ciphers when using only the φ+ class, and it is proven that no such attack is
efficient. However, one could always imagine using a related-key class using an addition
operation reading the bits in reverse. While admittedly unorthodox, this would not
result in a stronger model than using φ+, strictly speaking.

Discussion. In a recent independent work, Dobraunig, Eichlseder and Mendel use similar
methods to produce forgeries for Prøst-OTR by considering related keys with XOR
differences [DEM15]. On the one hand, one could argue that the class φ⊕ seems more
natural than φ+ and could be more likely to arise in actual situations, which would make
their attack more applicable than ours. On the other hand, an ideal cipher is expected
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5. Improved related-key attacks on Even-Mansour

to give a similar security against RKA using either class, which means that our model
is not theoretically stronger than the one of Dobraunig et al., while resulting in a much
more powerful key recovery attack.

5 Conclusion
We made a simple observation that allows to convert related-key distinguishing attacks
on some Even-Mansour schemes into much more powerful key-recovery attacks, and we
used this observation to derive an extremely efficient key-recovery attack on the Prøst-
OTR Caesar candidate, in the related-key model.

Primitives based on EM are quite common, and it is natural to wonder if we could
mount similar attacks on other ciphers. A natural first target would be Prøst-COPA
which is also based on the Prøst/SEM cipher. However, in this mode, encryption
and tag generation depend on the encryption of a fixed plaintext ` ∶= E(k,0) which is
different for different keys with overwhelming probability and makes our attack fail. The
forgery attacks of Dobraunig et al. seem to fail in that case for the same reason. Keeping
with Caesar candidates, another good target would be Minalpher [STA+14], which also
uses a one-round Even-Mansour block cipher as one of its components. The attack also
fails in this case, though, because the masking key used in the Even-Mansour cipher is
derived from the master key in a highly non-linear way. In fact, Mennink recently proved
that both ciphers are resistant to related-key attacks [Men16]. Finally, leaving aside
authentication and going back to traditional block ciphers, we could consider designs
such as LED [GPPR11]. The attack also fails in that case, however, because the cipher
uses an iterated construction with at least 8 rounds and only one or two keys.

This lack of other results is not very surprising, as we only improve existing distin-
guishing attacks, and this improvement cannot be used without a distinguisher as its
basis. Therefore, any primitive for which resistance to related-key attacks is important
should already be resistant to the distinguishing attacks and thus to ours. Yet it would
be reasonable to allow the presence of a simple related-key distinguisher when designing
a primitive, as this is a very weak type of attack; in fact, this is for instance the approach
taken by PRINCE, among others [BCG+12], which admits a trivial distinguisher due to
its FX construction. What we have shown is that one must be careful when contem-
plating such a decision for EM, and in fact FX constructions to some extent as well, as
in that case it is actually equivalent to allowing key recovery, the most powerful of all
attacks.

A Proof-of-concept implementation for a 64-bit permutation
We give in Figure 5.7 the source of a C program that recovers a 64-bit key from a design
similar to Prøst-OTR, where the Prøst permutation has been replaced by a small
64-bit ARX for compactness. This allows to verify the correctness of the attack, all the
while showing that it is indeed very simple to implement. For the sake of simplicity, we
do not ensure that the nonce does not repeat in the queries.
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#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

#define ROL32(x,r) (((x) << (r)) ^ ((x) >> (32 - (r))))
#define MIX(hi,lo,r) \
{ (hi) += (lo); (lo) = ROL32((lo),(r)) ; (lo) ^= (hi); }

/* Multiplication by x and x^2 in F_2[x]/x^64 + x^4 + x^3 + x^1 + x */
#define TIMES2(x) ((x & 0x8000000000000000ULL) ? ((x) << 1ULL) ^ \
0x000000000000001BULL : (x << 1ULL))
#define TIMES4(x) TIMES2(TIMES2((x)))

#define DELTA(x) (1ULL << (x))
#define MSB(x) ((x) & 0xFFFFFFFF00000000ULL)
#define LSB(x) ((x) & 0x00000000FFFFFFFFULL)

/* A 64-bit permutation using Skein’s MIX function */
uint64_t p64(uint64_t x)
{

uint32_t hi = x >> 32;
uint32_t lo = LSB(x);
unsigned rcon[8] = {1, 29, 4, 8, 17, 12, 3, 14};

for (int i = 0; i < 32; i++)
{

MIX(hi, lo, rcon[i % 8]);
lo += i;

}

return ((((uint64_t)hi) << 32) ^ lo);
}

/* A 64-bit Even-Mansour block cipher using the p64 permutation */
uint64_t em64(uint64_t k, uint64_t p)
{

return p64(k ^ p) ^ k;
}

/* The encryption of one block of message as done in
* Proest-OTR, using em64 as the underlying block cipher */

uint64_t potr_1(uint64_t k, uint64_t n, uint64_t m1, uint64_t m2)
{
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uint64_t l, c;

l = TIMES4(em64(k, n));
c = em64(k, l ^ m1) ^ m2;

return c;
}

/* Step 1 of the attack, that recovers the highest
* 32 bits of the key
* The ‘‘secret’’ key is taken as an argument to
* implement related-key oracle queries */

uint64_t recover_hi(uint64_t secret_key)
{

uint64_t kk = 0;

for (int i = 62; i >= 32; i--)
{

uint64_t m1, m2, c11, c12, n;

m1 = (((uint64_t)arc4random()) << 32) ^ arc4random();
m2 = (((uint64_t)arc4random()) << 32) ^ arc4random();
n = (((uint64_t)arc4random()) << 32) ^ 0x80000000ULL;
c11 = potr_1(secret_key, n, m1, m2);
c12 = potr_1(secret_key + DELTA(i), n ^ DELTA(i), m1 ^ DELTA(i) ^
TIMES4(DELTA(i)), m2);↪

if (c11 != (c12 ^ DELTA(i)))
kk |= DELTA(i);

}

return kk;
}

/* Step 2 of the attack, that recovers the lowest
* 32 bits of the key */

uint64_t recover_lo(uint64_t secret_key, uint64_t hi_key)
{

uint64_t kk = hi_key;

for (int i = 31; i >= 0; i--)
{

uint64_t m1, m2, c11, c12, n;
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uint64_t delta_p, delta_m;

m1 = (((uint64_t)arc4random()) << 32) ^ arc4random();
m2 = (((uint64_t)arc4random()) << 32) ^ arc4random();
n = (((uint64_t)arc4random()) << 32) ^ 0x80000000ULL;

delta_p = DELTA(i) - MSB(kk) + (((LSB(~kk)) >> (i + 1)) << (i + 1));
delta_m = DELTA(i) + MSB(kk) + LSB(kk);
c11 = potr_1(secret_key + delta_p, n ^ DELTA(32), m1 ^ DELTA(32),
m2);↪

c12 = potr_1(secret_key - delta_m, n, m1 ^ TIMES4(DELTA(32)), m2);

if (c11 == (c12 ^ DELTA(32)))
kk |= DELTA(i);

}

return kk;
}

/* Selects a random key and tries to recover it thanks to the attack */
int main()
{

uint64_t secret_key = (((uint64_t)arc4random()) << 32) ^ arc4random();
uint64_t kk1 = recover_lo(secret_key, recover_hi(secret_key));
uint64_t kk2 = kk1 ^ 0x8000000000000000ULL;

printf("The real key is %016llx, the key candidates are %016llx,
%016llx ", secret_key, kk1, kk2);↪

if ((kk1 == secret_key) || (kk2 == secret_key))
printf("SUCCESS!\n");

else
printf("FAILURE!\n");

return 0;
}

Figure 5.7 – A proof-of-concept implementation of the related-key attack on Prøst-
OTR.

The code of Figure 5.7 is a straightforward implementation of Algorithm 5.1. The at-
tack is split in two functions, recover_hi and recover_lo, that each recover one half of
the key; the rest of the code minimally implements the Prøst-OTR-like cryptosystem.
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Chapter 6
Efficient diffusion matrices from

algebraic geometry codes

1 Introduction

The use of MDS matrices over finite fields as linear mappings in block cipher design is
an old trend, followed by many prominent algorithms such as the AES/Rijndael fam-
ily [DR02] and its predecessors [RDP+96, DKR97]. These matrices are called MDS as
they are derived from maximum distance separable linear error-correcting codes, which
achieve the highest minimum distance possible for a given length and dimension. This no-
tion of minimum distance coincides with the one of branch number of a mapping [Dae95],
which is a measure of the effectiveness of a diffusion layer. MDS matrices thus have an
optimal diffusion, in a cryptographic sense, which makes them attractive for cipher de-
sign.

The good security properties that can be derived from MDS matrices are often
counter-balanced by the cost of their computation. The standard matrix-vector product
is quadratic in the dimension of the vector, and finite field operations are not always
efficient. For that reason, there is often a focus on finding matrices allowing efficient
implementations. For instance, the AES matrix is circulant and has small coefficients.
More recently, the PHOTON hash function [GPP11] introduced the use of matrices that
can be obtained as the power of a companion matrix, whose sparsity may be useful
in lightweight hardware implementations. The topic of finding such so-called recursive
diffusion layers has been quite active in the past years, and led to a series of papers
investigating some of their various aspects [SDMS12, WWW12, AF13]. One recent de-
velopment shows how to systematically construct some of these matrices from BCH
codes [AF15]. This allows in particular to construct very large recursive MDS matrices,
for instance of dimension sixteen over F28 . This defines a linear mapping over a full 128-
bit block with excellent diffusion properties, at a moderate hardware implementation
cost.

As interesting as it may be in hardware, the cost in software of a large linear map-

69



6. Efficient diffusion matrices from algebraic geometry codes

ping tends to make these designs rather less attractive than more balanced solutions.
An early attempt to use a large matrix was the block cipher SHARK, a Rijndael pre-
decessor [RDP+96]; the same kind of design was also later used for Khazad [BR01].
Both are 64-bit ciphers which use an MDS matrix of dimension eight over F28 for their
linear diffusion. The usual technique for implementing such a mapping in software is
to rely on a table of precomputed multiples of the matrix rows. However, table-based
implementations now tend to be frown upon as they may lead to timing attacks [TOS10],
and this could leave ciphers with a structure similar to SHARK’s without reasonable
software implementations when resistance to these attacks is required. Yet, such designs
also have advantages of their own; their diffusion acts on the whole state at every round,
and therefore makes structural attacks harder, while also ensuring that many S-Boxes
are kept active. Additionally, the simplicity of the structure makes it arguably easier to
analyse than in the case of most ciphers.

Our contributions. In this chapter, we revisit the use of a SHARK structure for block
cipher design and endeavour to find good matrices and appropriate algorithms to achieve
both a linear mapping with very good diffusion and efficient software implementations
that are not prone to timing attacks. To be more specific on this latter point, we target
software running on 32 or 64-bit CPUs featuring an SIMD vector unit.

A possible way of making a mapping more efficient is to decrease the size of the field
from F28 to F24 . However, according to the MDS conjecture, there is no MDS code over
F24 of length greater than seventeen [MS06]. Because a diffusion matrix of dimension
n is typically obtained from a code of length 2n, MDS matrices over F24 are therefore
restricted to dimensions less than eight. Hence, the prospect of finding an MDS matrix
over F24 diffusing on more than 8 × 4 = 32 bits is hopeless. Obviously, 32 bits is not
enough for a large mapping à la SHARK. We must therefore search for codes with a
slightly smaller minimum distance in the hope that they can be made longer.

Our proposed solution to this problem is to use algebraic geometry codes, as they
precisely offer this tradeoff. One way of defining these codes is as evaluation codes on
algebraic curves; thus our proposal brings a nice connection between these objects and
symmetric cryptography: although elliptic and hyperelliptic curves are now common-
place in public-key cryptography, we show an unusual application of a hyperelliptic curve
to the design of block ciphers. We present a specific code of length 32 and dimension
16 over F24 with minimum distance 15, which is only two less than what an MDS code
would achieve; this is also much better than a random code for these alphabet, length
and dimension, as such a code would typically have an expected minimum distance of 11.
This lets us deriving a very good diffusion matrix on 16×4 = 64 bits in a straightforward
way. Interestingly, this matrix can also be applied to vectors over an extension of F24

such as F28 , while keeping the same good diffusion properties. This allows for instance
to increase the diffusion to 16 × 8 = 128 bits.

We also study two simple yet efficient algorithms for implementing the matrix-vector
multiplication needed in a SHARK structure, when a vector permute instruction is avail-
able. From one of these, we derive conditions on the matrix to make the matrix-vector
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product faster to compute, in the form of a cost function; we then search for matrices
with a low cost, both randomly, and by using automorphisms of the code and of the hy-
perelliptic curve on which it is based. The use of codes automorphisms to derive efficient
encoders is not new [HLS95, CL04], but it is not generally applied to the architecture
and dimensions that we consider in our case.

We conclude the chapter by presenting examples of performance figures of assembly
implementations of our algorithms when used as the linear mapping of a block cipher.

2 Preliminaries

We introduce the notation, definitions and background notions that are used in this
chapter. We illustrate some of these with classical examples, such as Reed-Solomon
codes. However, our goal is not to provide a detailed exposition on coding theory, and
we refer the reader to any good textbook such as [Lin99] for a thorough treatment.

2.1 Notation

We use “∶=” to denote equality by definition. We let Fq be the finite field with q ele-
ments, and in particular F2m be the field with 2m elements. We often consider F24 , and
implicitly use this specific field if not mentioned otherwise. We use the representation
F2[α]/⟨α4 +α+1⟩ for F24 when a specific one is needed, for instance for implementation
purposes. We freely use “integer representation” for elements of F2m ≅ F2[α]/I(α) by
writing n ∈ {0 . . .2m − 1} = ∑m−1

i=0 ai2i to represent the element x ∈ F2m = ∑m−1
i=0 aiα

i.
In the remainder of this section, and especially in Section 3, we usually consider an
arbitrary algebraically closed field, written k; it will usually be clear from the context
whether k is a field or the dimension of a linear code, see Definition 6.2 below. We let
Sn denote the group of permutations on n elements.

Bold variables denote vectors, in the sense of elements of a vector space, and sub-
scripts are used to denote their ith coordinate, starting from zero. For instance, let
x ∶= (1,2,7), then x2 = 7. IfM is a matrix of n columns, we callMi ∶= (Mi,j , j = 0 . . . n−1)
the row vector formed from the coefficients of its ith row.

Arrays, or tables, in the sense of software data structures, are denoted by regular
variables such as x or T , and their elements are accessed by using square brackets. For
instance, T [i] is the ith element of the table T , starting from zero.

The operator “∧n” denotes the logical and between two n-bit values. We use 0n and
1n for binary vectors of length n all made of zeros and ones respectively. These may
also freely be interpreted as elements of other vector spaces that will be clear from the
context. The function I(⋅) takes as input a set and returns one if it is non-empty, zero
otherwise; # denotes the cardinality of a set. We may also use subscripts to show the
base in which a number is written when it is not ten, e.g. 10102 is the number 10 written
in base two.
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2.2 Linear codes
Definition 6.1 (Hamming weight, Hamming distance). Let x be a vector of kn. Its Ham-
ming weight wt(x) ∈ [0, . . . , n] is #{xi, i = 0, . . . , n − 1 ∣ xi ≠ 0}, the number of its
coordinates which are non-zero. The Hamming distance d(x,y) between two vectors is
defined as wt(x − y).

Definition 6.2 (Linear code). A linear code of length n, dimension k andminimal distance
d over the alphabet Fq is a k-dimensional linear subspace of Fn

q such that ∀x,y ∈ C, x ≠
y, d(x,y) ≥ d and ∃x,y ∈ C, d(x,y) = d. The last conditions can equivalently be
expressed as x ≠ 0 ∈ C ⇒ wt(x) ≥ d and ∃x ∈ C,wt(x) = d. We use the usual notation to
characterise codes: an [n, k, d]Fq code C is a code of length n, dimension k and minimum
distance d with symbols in Fq. When d is unknown, we simply write [n, k]Fq .

We only consider linear codes in this manuscript and we will therefore omit this
qualifier in the remainder of the text. We usually view a code as a set, and call codewords
its elements. By an abuse of terminology, we may call messages the elements of Fk

q .

Definition 6.3 (Dual code). Let C be an [n, k, d]Fq code over Fq equipped with a scalar
product ⟨⋅, ⋅⟩. The dual C� of C is defined as {x ∈ Fq ∣∀y ∈ C, ⟨x,y⟩ = 0}.

A code C equal to its dual C� is called self-dual.

Definition 6.4 (Generator matrix, systematic form). A generator matrix G of an [n, k, d]Fq
code C is a matrix ofMk,n(Fq) such that C = {xG,x ∈ Fk

q}. It is in systematic form if
it is of the form (Ik A) with Ik the identity matrix of dimension k.

If (Ik A) is a generator matrix for a code C, then (−At In−k), or equivalently (In−k −
At), is a generator matrix for its dual C�. If C is self-dual, A is orthogonal, i.e. A ⋅At = I

Definition 6.5 (MDS code, MDS matrix). An [n, k, d]Fq code C is called maximum dis-
tance separable, or simply MDS, if d = n − k + 1. By abuse of definition, if n = 2k and
(Ik A) is a generator matrix of C, we call A an MDS matrix.

The minimum distance attained by an MDS code corresponds to the Singleton bound.
In the case of a linear code defined with a systematic generator matrix, it is easy to see
that n − k + 1 is indeed the maximum possible weight for any row.

A useful alternative characterisation of MDS matrices is given by the following the-
orem.

Theorem 6.1 ([MS06, Chapter 11, Theorem 8]). A matrix M is MDS if and only if all
of its minors are non-zero, i.e. all the square sub-matrices of M are invertible.

A consequence is that the dual of an MDS code is also MDS.
An important conjecture on MDS codes is the following:

Conjecture 6.1 (MDS conjecture [MS06, Chapter 11, Section 7]). There is no MDS code
[n, k, n − k + 1]Fq of length n > B, where B = q + 2 when q is even and k = 3 or k = q − 1,
and B = q + 1 in all other cases.
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The next definition rephrases and generalises some of the above concepts in a way
that is more suitable to cryptographic applications. We assume in this case that Fq = F2m

for some m.

Definition 6.6 (Branch number [Dae95]). Let A be the matrix of a linear mapping over
F2m . The differential branch number of A is equal to minx≠0(wt(x) +wt(xA)), and the
linear branch number of A is equal to minx≠0(wt(x) +wt(xAt)).

If A is such that (Ik A) is a generator matrix of a code of minimum distance d whose
dual has minimum distance d′, then A has a differential (resp. linear) branch number of
d (resp. d′).

2.2.1 Evaluation codes
The algebraic geometry codes that we use in this chapter are conveniently defined as
instantiations of the general framework of evaluation codes, for which we give a brief
overview. We start with a general definition:

Definition 6.7 (Evaluation code). Let F be an Fq-vector space of dimension k of func-
tions f ∶ D → Fq from a domain D to a finite field Fq ; we call F the function space.
Let P ∶= (P0, . . . , Pn−1) be an ordered subset of D of cardinality n ; we call P the
evaluation domain. Let EvP ∶ F → Fn

q be the evaluation map defined as EvP(f ) ∶=
(f (P0), . . . , f (Pn−1)). The evaluation code Cev(F ,P) for an injective evaluation map
EvP is defined as {EvP(f ) ∣ f ∈ F}. It is an [n, k]Fq code.

A generator matrix G of an evaluation code can easily be constructed by evaluating
a basis for F on P. Call (f 0, . . . , f k−1) such a basis, then G = (EvP(f 0), . . . ,EvP(f k−1)).
If the code admits a systematic generator matrix, i.e. its first k columns span a subspace
of rank k, it can simply be obtained by computing the reduced row-echelon form of G.

We use ordered sets for the evaluation domain P in this definition. Although the
order that is chosen does not impact the parameters of the code (hence we may sometimes
abuse our definition and talk about the code for any of the equivalent codes based on the
same F and D), it may have an influence on the performance of explicit instantiations,
through e.g. properties of the generator matrices: for instance, one evaluation domain
P may be such that its associated generator matrix cannot be put in systematic form,
but there is always a permutation P ′ of P such that it is the case. Most of the work in
this chapter is actually based on this fact.

The probably best-known evaluation codes are the Reed-Solomon codes (“RS codes”):

Definition 6.8 (Reed-Solomon codes). An [n, k]Fq Reed-Solomon code is an evaluation
code obtained by taking F to be the polynomials Fq[x] of degree less than k − 1 and P
any ordered subset of Fq of size n.

As we must have n ≥ k by definition of a code, all polynomials of F can be uniquely in-
terpolated given their evaluations on n points, hence EvP is injective and Reed-Solomon
codes are well-defined. Furthermore, for any P, any non-zero polynomial of F is zero on
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at most k−1 positions. The minimal distance of a Reed-Solomon code is thus n−(k−1),
which makes them MDS codes.

3 Algebraic geometry codes

We now present algebraic geometry codes (“AG codes”), which are the main object used
in this chapter, and we show how they can give rise to diffusion matrices with interesting
parameters. We introduce a few notions of algebra and geometry along the way in order
to be able to faithfully describe the codes we will be using. We refer the reader to the
relevant chapters of [Lin99, TVN07, Sti09, Ful08] for a much more detailed and rigorous
treatment of the subject.

AG codes as a generalisation of RS codes. We first give an intuition of the construction
used in AG codes. We have seen that RS codes are MDS and that they can be instan-
tiated for many lengths and dimensions. One drawback of the construction however is
that the maximal length of the code is limited by the cardinality of the alphabet Fq:
we cannot evaluate the functions on more points than there are elements in Fq without
introducing some repetition; we can still slightly increase this maximal length by one,
and very rarely two, by defining an extended RS code, which is still MDS. However, by
the MDS conjecture, we do not expect to be able to do better than that. Under this
light, it may seem natural to desire some sort of tradeoff between the maximal length of
a code construction and its designed minimal distance d∗ ≤ d.

A natural way to increase the maximal length of an evaluation code is to consider
functions over domains of higher dimension than the “line” used in RS codes. For
instance, one could take D to be the m-dimensional space Fm

q , and F to be the m-
variate polynomials of Fq[x0, . . . , xn−1] less than a certain degree r. This defines Reed-
Muller codes (“RM codes”) of order r. Although this construction successfully yields
codes longer than RS codes, they are not asymptotically good, in the sense that this
construction does not allow to have code parameters where neither of d/n and k/n tends
to zero when n goes to infinity.

An alternative approach to construct longer variants of RS codes is the one followed
by AG codes. Seeing RS codes as working with a line of genus zero, the idea is to take as
evaluation domains the points of plane curves of higher genus, which can be assimilated
to a subset of F2

q . A geometrically meaningful way to choose the function spaces F is
then to consider certain subspaces of the function fields of the curves. We will see that
for well-chosen F , this construction leads to codes of parameters [n, k, d ≥ n−k+1−g]Fq
for curves of genus g. As the maximal number of points on a curve is roughly increasing
with the genus, this construction gives us the sort of tradeoff we were searching for, and
also yields asymptotically good codes.
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3.1 Selected notions from algebraic geometry
We will be needing a few tools from algebraic geometry to make our description of AG
codes explicit. We only introduce here the notions that are relevant to this specific
application, largely ignoring the wider picture. Note that unlike the remainder of this
chapter, the underlying fields used in the definitions are not necessarily finite.

We will describe AG codes as evaluation codes, which means that we need to be
able first to describe the evaluation domains, and second to define the function spaces
F associated with given evaluation domains. Both of these need to be defined explicitly,
if we want the codes to be useful in practice; in particular, this means that we need to
be able to compute the bases of the function spaces used in the constructions.

The construction of the examples of AG codes that we later consider can eventually
be described in a purely affine way. However, in order to justify them, we need to be
able to reason about points at infinity. Thus we start with the following:

Definition 6.9 (Affine space, projective space). The n-dimensional affine space An(k)
over a field k is a set of points formed by n-tuples over k, P ∶= (x0, . . . , xn−1), xi ∈ k.
The n-dimensional projective space Pn(k) over k is a set of points formed by equivalence
classes of (n + 1)-tuples P ∶= (x0 ∶ . . . ∶ xn), xi ∈ k, where not all xis are zero, and the
equivalence relation ∼ is defined by (x0 ∶ . . . ∶ xn) ∼ (λx0 ∶ . . . ∶ λxn), λ ∈ k∗. In the usual
case where n = 2, we let x ∶= x0, y ∶= x1 and z ∶= x2.
The space An(k) can be embedded into Pn(k) in a natural way as (x0, . . . , xn−1) ↦ (x0 ∶
. . . ∶ xn−1 ∶ 1). The set of projective points (x0 ∶ . . . ∶ xn−1 ∶ 0) is called the hyperplane at
infinity.

We recall the following definitions about ideals.

Definition 6.10 (Ideal, prime ideal, maximal ideal, principal ideal). An ideal I of a ring R
is a subset of R closed by addition and that is absorbing by multiplication: a, b ∈ I ⇒
a + b ∈ I; a ∈ I, b ∈ R ⇒ ab ∈ I.
An ideal I is prime if for any a, b in R such that ab ∈ I, then a ∈ I or b ∈ I.
An ideal I ⊊ R is maximal if there is no ideal J such that I ⊊ J ⊊ R.
An ideal I is principal if it is generated by a single element: ∃a ∈ I s.t. I = aR = {ar, r ∈
R}.

We may now define projective varieties.

Definition 6.11 (Projective variety). A projective variety in the projective space Pn(k)
over an algebraically closed field k is the set of common zeros of a prime ideal I ∶=
⟨f0, . . . , fm⟩ of homogeneous polynomials of k[x0, . . . , xn], i.e. polynomials whose mono-
mials all have the same degree.

A projective curve is a projective variety of dimension one, where the dimension n
of a variety V can formally be defined as the maximal length of the inclusion chain
V = V0 ⊋ . . . ⊋ Vn ≠ ∅, with Vi closed in Vi−1, for the Zariski topology for all i ∈ {1, . . . , n}.
We will not need this definition in this chapter, as we only consider dimension-one
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varieties in P2, i.e. plane curves, which are defined by a single homogeneous polynomial
E.

Remarks

1. The condition that k be algebraically closed is not as restrictive as it may seem. Say
that we wish to work in Fq, with a curve X defined by an equation E over Fq or one
of its subfields. Then, although we define X over the algebraic closure of Fq, we will
only be interested in X(Fq), the points of X that lie in Fq: its Fq-rational points, or
simply rational points. For instance, we may wish to only consider curves which have
a large number of rational points.

2. For a given projective variety, say X defined by E(x, y, z), one can consider the
corresponding affine variety defined as the zeros of “E(x, y,1), E ∈ k[x, y]”, the “de-
homogenised” of E. It will have the same points as X , in the sense of the embedding
of Definition 6.9, minus its potential points at infinity. Similarly, an affine variety can
be extended to a projective closure.

Our first step towards defining suitable function spaces F is to define the function
field of a variety. We give two definitions, one in the affine and one in the projective
case.

Definition 6.12 (Coordinate ring, function field of an affine variety). Let X be an affine va-
riety in An(k) defined by the ideal I. The coordinate ring k[X ] of X is k[x0, . . . , xn−1]/I.
The function field k(X) of X is the quotient field of k[X ].

Definition 6.13 (Function field of a projective variety). Let X be an affine variety in
Pn(k) defined by the ideal I. Let F , G be homogeneous polynomials of equal degrees
in k[x0, . . . , xn] with G ∉ I. The function field k(X) of X is the set of rational functions
F /G modulo I ′, where I ′ = {F /G ∣ F ∈ I}.
A rational function F /G is regular at P , point of X , if G(P ) ≠ 0.

We will need to be able to talk about the behaviour of functions at specific points of
a curve. For this, we first use the following:

Definition 6.14 (Local ring of a point). The local ring OP of a point P of a variety X
is the set of rational functions regular at P . It has a unique maximal ideal mP ∶= {f ∈
OP ∣ f(P ) = 0}.

The local ring and its maximal ideal are in particular useful to define the tangent
space at a point P , which in turn allows to define smooth and singular points, depending
on its dimension. We do not give the general definition here as it is more convenient in
our case to define smoothness at a point from properties of the corresponding local ring.
Indeed, we have the following convenient direct characterisation in the specific case of
curves:
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Definition 6.15 (Smooth and singular points of a curve, local parameter). A point P of a
curve X is smooth or non-singular iff mP is a principal ideal. Any generator of the ideal
tP ∈ OP s.t. mP = tPOP is called a local parameter at P .
A point that is not smooth is called singular.

To build an AG code from a curve X , we will require that it is smooth, i.e. that
none of its points are singular. We only consider smooth curves until Section 3.1.1.

The local parameters are useful in defining the order of zeros and poles of arbitrary
rational functions at a given point. Let f ≠ 0 be a rational function regular at P and tP
be a local parameter at P . The order of f at P is:

ordP (f) ∶= max{k ∣ f ∈ tkPOP , f ∉ tk+1
P OP }.

This can be extended to arbitrary rational functions by writing them as quotients of
functions of OP :

ordP (f/g) = ordP (f) − ordP (g), f, g ∈ OP .

For a function f , if ordP (f) ≥ 0, we call this value the zero order of f at P ; if ordP (f) < 0
we call −ordP (f) the pole order of f at P . It is also useful to notice that ord(fg) =
ord(f) + ord(g) and that ord(1/f) = −ord(f).

In effect, ordP defines a discrete valuation of functions of k(X), associated with the
point P , i.e. OP is a valuation ring:

Definition 6.16 (Valuation ring). A ring O is a valuation ring of k(X) if k ⊊ O ⊊ k(X)
and for every f ∈ k(X), f ∈ O or f−1 ∈ O.

We will see shortly that the ability to define valuations at any point is essential in the
definition of our function space F ; this is why we require the curve to be non-singular,
as a local ring is a valuation ring iff P is smooth.

The last main objects that we introduce are the divisors on a curve.

Definition 6.17 (Divisor). A divisor on a smooth curve X is a formal finite sum of points
Pi of X : D ∶= ∑aiPi, ai ∈ Z, Pi ∈ X . The support of a divisor is the set of points Pi with
ai ≠ 0.
The set Div(X) of divisors on X with formal addition and negation of divisors forms a
group, i.e. ∑aiPi +∑ biPi ∶= ∑(ai + bi)Pi; −∑aiPi ∶= ∑−aiPi.
A divisor D ∶= ∑aiPi is called effective (D ≥ 0) if ∀i, ai ≥ 0.
The degree deg(D) of D = ∑aiPi is defined as ∑ai.

Definition 6.18 (Divisor of a rational function (principal divisor)). The divisor (f) of a
rational function f ∈ k(X), f ≠ 0, is defined as ∑ordP (f)P . A divisor D equal to (f)
for some function f is called a principal divisor.

Principal divisors form a subgroup of Div(X). It can be shown that they are always
of degree zero, which is equivalent to saying that a rational function always has the same
number of poles and zeros, counted with multiplicity.
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Definition 6.19 (Space associated with a divisor). Let D ∈ Div(X). We define L(D), the
space associated with D (or Riemann-Roch space) as:

L(D) = {f ∈ k(X)∗ ∣ (f) +D ≥ 0} ∪ {0}.

This forms a k-vector space; we write `(D) its dimension.

This is finally the kind of function space we will be using to define AG codes. For a
divisor D ∶= ∑aiPi − ∑ bjPj , ai, bj ≥ 0, a simple reformulation of L(D) is to say that it
consists of the zero function and of all the functions which may have poles only in the
Pis of order at most ai, and which must have zeros in all the Pjs of order at least bj .

It can be shown that for any D, L(D) is finite-dimensional. In fact, this is a conse-
quence of two major theorems the first from Riemann and the second being an extension
due to Roch, which allow in particular to compute the explicit value `(D) for a given
divisor D ; this is expressed by the following corollary:

Corollary 6.1 (Corollary of Riemann and Roch). Let D be a divisor on a curve of genus
g, then `(D) ≥ deg(D) + 1 − g, with equality when deg(D) > 2g − 2.

The formulation of this theorem uses the notion of genus of a curve, that we have
not defined yet. A possible, purely algebraic definition is precisely to take g(X) ∶=
max{deg(D) − `(D) + 1, D ∈ Div(X)}. Although this is not very satisfying, we will not
provide a better definition here, and computing the genus in this way is not as hard as
it may seem; in practice, the genus of the curves we use will be known beforehand.

3.1.1 Working with singular curves

In the last few paragraphs, we have assumed that we were working with a smooth
curve. We justified this by the need of being able to define a valuation for functions at
any point of the curve, which allowed us to define divisors and their associated vector
spaces. Unfortunately, some of the curves we may wish to use in practice are not smooth.
We briefly and informally sketch here how it is possible to nonetheless work with some
of these curves. We refer the reader to e.g. Fulton [Ful08, Chapter 7] for a serious
treatment of the matter.

A first remark is that what effectively matters in the definition of the function space
is not so much the points on the curves as their associated valuation rings. It is in fact
possible to define entirely what we have presented above in a purely algebraic way, as
is done for instance by Stichtenoth [Sti09]. In this case, the notion of points is replaced
by the one of places of a function field, written F /k, not necessarily associated with a
curve, where a place is simply the necessarily unique maximal ideal of a valuation ring
of the function field:

Definition 6.20 (Place of a function field). A place P of a function field F /k is the
maximal ideal of a valuation ring O of F /k.
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Divisors can then be redefined as sums of places instead of sums of points.
For a smooth curve X , there is a bijection between its points and the valuation rings

(the places) of k(X), and the theory as presented above is sufficient. On the other hand,
if X is singular, we would like to be able to find a way of additionally defining places
at its singularities. This can be done by constructing a non-singular model X̃ of X ,
and taking as places of X the points of X̃ . A useful theorem is that for a projective
curve X , there is a unique (up to isomorphism) non-singular curve X̃ that is birationally
equivalent to it, which means that there are rational maps from X to X̃ and vice-versa,
that compose to the identity wherever they are defined, a rational map X ⊆ Pm → Pn

being an (n + 1)-tuple of homogeneous polynomials s.t. the polynomials do not jointly
vanish at any point of the curve. Furthermore, the function fields k(X) and k(X̃ ) are
the same, up to isomorphism, so defining the places of X in this way is meaningful. We
will not address here the problem of computing these non-singular models per se.

The map X → X̃ may not be defined on every point of X , but the number of points
where it is not defined is finite; this makes sense, as a curve has at most finitely many
singular points. We say that a place is centered at a point P if P is its image by the
inverse map X̃ → X . Every non-singular point of X has exactly one place centered at it,
while finitely many places may be centered at singular points.

We conclude by defining curves that are said to be in special position, cf. e.g. [SH95],
which are convenient to use for several reasons.

Definition 6.21 (Curve in special position). We recall our notation: a point P ∈ P2(k) is
written (x ∶ y ∶ z), and is at infinity iff z = 0. A projective plane curve X is in special
position if:

1. it has exactly one point P∞ at infinity;

2. there is exactly one place centered at P∞;

3. the affine curve XA ∶= X /P∞ is smooth;

4. the pole order of x/z and y/z at P∞ are not equal.

Curves in special positions are useful as there is a bijection between their places and
their (potentially singular) points; thus they can always be considered “as if smooth”
w.r.t. to the discussions of this section. Additionally, if one considers the space L(aP∞),
a > 0, of functions having poles only at the point at infinity, its elements can be mapped
to polynomials of the coordinate ring of XA. In other words, one can perform all the
computations in L(aP∞) with the affine curve only; we discuss how to explicitly compute
bases for such spaces next.

The main curve used in this chapter is a singular curve in special position.

3.1.2 Computation of a basis of L(aP∞) for a curve in special position
We conclude this brief presentation of algebraic curves and their function fields by show-
ing how to compute a basis of L(aP∞), a > 0 for a plane curve in special position.
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Consider X defined by a homogeneous equation E(x, y, z). From a local parameter-
isation at the place P∞, we can compute the pole order of f ∶= x/z and g ∶= y/z at P∞,
which is enough to determine the pole order of any fraction of x, y and z. An element of
L(aP∞) is then a linear combination of monomials of the form fαgβ such that we always
have α ordP∞(f)+β ordP∞(g) ≤ a, i.e. the pole order at P∞ of the monomials is less than
a. A generating family for L(aP∞) is thus {f igj ∣ i×ordP∞(f)+ j ×ordP∞(g) ≤ a}; if we
keep only a single monomial with any given pole order, it forms a basis. As P∞ is the
only place at infinity, we can switch to an affine view for all computations by considering
points in affine coordinates and dehomogenising E and the basis functions; notably, the
latter effectively become polynomials rather than rational fractions. Indeed, a generating
family for L(aP∞) ⊆ k[X ] is formed by {xiyj ∣ i × ordP∞(f) + j × ordP∞(g) ≤ a}.

We conclude by presenting a simple technique to compute the pole order of x/z and
y/z at the place at infinity for a curve in special position, in a way that does not require
to explicitly find a local parameter at P∞. In this setting, we know by definition that
the valuation ordP∞ is well-defined and that it is negative and distinct for x/z and y/z.
Thus ∃α,β ∈ N∗ s.t. (x/z)β(y/z)−α is regular and non-zero at P∞. The smallest such α
and β are the pole orders of x/z and y/z respectively.

We give two examples of a computation with this technique, corresponding to the
first two curves presented in Section 3.2.

Example 6.1 (x2z + xz2
= y3

+ yz2). We consider the curve of equation E(x, y, z) ∶=
x2z + xz2 = y3 + yz2 over a field of characteristic two. It has a unique place at infinity
P∞ ∶= [1 ∶ 0 ∶ 0], i.e. a unique projective point with z = 0 that verifies the curve equation;
indeed, setting z to zero in E we see that we must have y = 0 as well. From the curve
equation, we may guess 3 and 2 to be the orders of x/z and y/z, as the fraction x2z3/y3z2

seems to be the one of least degree that can be simplified using E. For this guess to be
validated, we need to show that x2z3/y3z2 is regular and non-zero at P∞, which can be
done by finding a suitable equivalent expression for this function.

Using E, we may rewrite x2z3 in the four following ways:

1. z2(x2z);

2. z2(y3 + yz2 + xz2);

3. xz(xz2);

4. xz(y3 + yz2 + x2z).

Similarly, y3z2 can be rewritten as:

i. z2(y3);

ii. z2(x2z + xz2 + yz2);

iii. y2(yz2);

iv. y2(y3 + x2z + xz2).
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We can then notice that “1/ii” = z2(x2z)/z2(x2z + xz2 + yz2) simplifies to x2z/(x2z +
xz2 + yz2) = x2/(x2 + xz + yz), which evaluates to 1 at [1 ∶ 0 ∶ 0]. Hence we indeed have
ordP∞(x/z) = 3 and ordP∞(y/z) = 2.

Example 6.2 (x5
= y2z3

+ yz4). We consider the curve of equation E(x, y, z) ∶= x5 =
y2z3+yz4 over a field of characteristic two. It has a unique place at infinity P∞ ∶= [0 ∶ 1 ∶
0]. As in Example 6.1, we may guess that x/z and y/z have order 2 and 5 respectively.
We thus consider the fraction x5z2/y2z5. This can be rewritten as (y2z5 + yz6)/y2z5

which readily simplifies to (y2 + yz)/y2 = (y + z)/y which evaluates to 1 at [0 ∶ 1 ∶ 0].
Hence we indeed have ordP∞(x/z) = 2 and ordP∞(y/z) = 5.

3.2 Construction of AG codes

We are now ready to define the family of AG codes that we use in the remainder of this
chapter. We refer to [TVN07, Chapter 4] for the description of other ways of defining
codes from algebraic geometry.

Let X be a smooth projective curve defined by an equation in Fq such that the
set of its rational places X(Fq) is non-empty. Let D ∈ Div(X) be a divisor on X and
P ∶= (P0, . . . , Pn−1) ⊊ X(Fq) be n places not in the support of D. This defines a code
Cev(L(D),P) through the evaluation map EvP(f ) ∶= (f (P0), . . . , f (Pn−1)), f ∈ L(D).

For the definition to be valid, the evaluation map from L(D) at P has to be injective,
i.e. its kernel must be equal to {0}. This condition can easily be expressed in terms
of divisors; if we call S ∶= P0 + . . . + Pn−1 the divisor of the evaluation support, we need
L(D − S) (i.e. functions of L(D) with zeros in all of the Pis, i.e. the kernel of Ev) to
be reduced to the zero function. One can see that this will always be the case as long
as deg(D) < deg(S).

Assuming that we defined a code using this construction, one of our main concerns
would be to determine its parameters k and d, or at least to provide an estimate for
them. By definition of the minimal distance, n−d is the maximal number of zeros that a
function of L(D) can have over P; we already showed that the latter is upper-bounded
by deg(D), so we have d ≥ n−deg(D). This lower-bound n−deg(D) for d is the designed
minimum distance d∗ for the code.

The dimension of the code is simply `(D), which can be computed from the Riemann-
Roch theorem. In particular, for deg(D) > 2g − 2, g the genus of X , we have k = `(D) =
deg(D)+1−g. We can then rephrase the lower-bound on d in terms of k as d ≥ n−k+1−g,
which is indeed what we promised at the beginning of the section.

Deriving a lower bound on the parameters of an algebraic geometry code as we just
did is quite straightforward, but the overall theory is much richer. A useful result in
particular is that the dual of an AG code from the family we described is also an AG
code whose parameters are related through the same equation d ≥ n − k + 1 − g [TVN07,
Chapter 4]. This is an interesting property in our context, as it means that diffusion
matrices derived from AG codes have identical differential and linear branch numbers.

81



6. Efficient diffusion matrices from algebraic geometry codes

3.2.1 Examples
We give three concrete examples of AG codes, the second of which being the code used
to define the diffusion matrices presented in this chapter. All of the examples are built
from curves with a maximal number of F24-rational points given their respective genus.

Example 6.3 (An AG code from a curve of genus 1). Let X be the plane projective curve
of genus 1 of equation x2z + xz2 = y3 + yz2 defined over F24 . It is smooth, in special
position, with a unique point at infinity P∞ ∶= [1 ∶ 0 ∶ 0], and it has 24 F24-rational affine
points. The pole order of x/z and y/z at P∞ is 3 and 2 respectively, as computed in
Example 6.1.

Let D ∶= 12P∞. From the Riemann-Roch theorem, the dimension `(D) of L(D) is
12 + 1 − g = 12. We can thus define a [24,12]F24 AG code Cev(L(D),P) with P the
affine rational points of X put in any order. A generating matrix for this code can
be computed by evaluating a basis of L(D) on P, one such basis being for instance
(1, y, x, y2, xy, y3, xy2, y4, xy3, y5, xy4, y6).

This code and its dual have minimum distance at least 12. Either code can thus be
used to define a diffusion matrix of dimension 12 over F24 , which diffuses over 12×4 = 48
bits and has differential and linear branch number at least 12 (in fact exactly 12).

Example 6.4 (An AG code from a curve of genus 2). Let X be the plane projective curve
of genus 2 of equation x5 = y2z3+yz4 defined over F24 . It is singular, in special position,
with a unique point at infinity P∞ ∶= [0 ∶ 1 ∶ 0] at which a unique place is centered.
It has 32 F24-rational affine points. The pole order of x/z and y/z at P∞ is 2 and 5
respectively, as computed in Example 6.2.

Let D ∶= 17P∞. From the Riemann-Roch theorem, the dimension `(D) of L(D) is
17+1−g = 16. We can thus define a [32,16]F24 AG code Cev(L(D),P) with P the affine
rational points of X put in any order.

This code is self-dual and has minimum distance at least 15. It can thus be used
to define an orthogonal diffusion matrix of dimension 16 over F24 , which diffuses over
16×4 = 64 bits and has differential and linear branch number at least 15 (in fact exactly
15).

Example 6.5 (An AG code from a curve of genus 6). Let X be the plane projective curve
of genus 6 of equation x5 = y4z + yz4 defined over F24 . It is smooth, in special position,
with a unique point at infinity P∞ ∶= [0 ∶ 1 ∶ 0] at which a unique place is centered.
It has 64 F24-rational affine points. The pole order of x/z and y/z at P∞ is 4 and 5
respectively.

Let D ∶= 37P∞. From the Riemann-Roch theorem, the dimension `(D) of L(D) is
37+1−g = 32. We can thus define a [64,32]F24 AG code Cev(L(D),P) with P the affine
rational points of X put in any order.

This code is self-dual and has minimum distance at least 27. It can thus be used
to define an orthogonal diffusion matrix of dimension 32 over F24 , which diffuses over
32×4 = 128 bits and has differential and linear branch number at least 27 (in fact exactly
27).
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4 Efficient algorithms for matrix-vector multiplication
We now turn to implementation considerations, and present two algorithms for matrix-
vector multiplication in Mn(F24). We let the dimension n be equal to 16 in this pre-
sentation, but the algorithms apply equally well to other close values.

Targeted architecture. The algorithms in this section target CPUs featuring vector in-
structions, including in particular a vector shuffle instruction such as Intel’s pshufb from
the SSSE3 instruction set extension [Int14]. These instructions are now widespread
and have already been used successfully in fast cryptographic implementations, see
e.g. [Ham09, SMMK12, BGLP13]. We mostly considered SSSE3 when designing the
algorithms, but other processor architectures do feature vector instructions. This is for
instance the case of ARM’s NEON extensions, which may also yield efficient implemen-
tations, see e.g. [BS12]. We do not consider these explicitly in this chapter, however.

Because it plays an important role in our algorithms, we briefly recall the semantics of
pshufb. This instruction takes two 128-bit inputs1. The first (the destination operand)
is an xmm SSE vector register which logically represents a vector of sixteen bytes. The
second (the source operand) is either a similar xmm register, or a 128-bit memory location.
The result of calling pshufb x y is to overwrite the input x with the vector x′ defined
by:

x′[i] = { x[⌊y[i]⌋4] if the most significant bit of y[i] is not set
0 otherwise , 0 ≤ i < 16

where ⌊⋅⌋4 denotes truncation to the four least significant bits. This instruction allows
to arbitrarily shuffle a vector according to a mask, with possible repetition and omission
of some of the vector values. We will use the word shuffle with this precise meaning in
the remainder of this chapter. Notice that this instruction can in particular be used to
perform sixteen parallel 4-to-8-bit table lookups: let us call T the table; take as first
operand to pshufb the vector x ∶= (T [i], i = 0, . . . ,15), as second operand the vector
y ∶= (a, b, c, d, . . .) on which to perform the lookup; then we see that the first byte of the
result is x[y[0]] = T [a], the second is x[y[1]] = T [b], etc.

Finally, let us mention that there is a three-operand variant of this instruction in the
more recent AVX instruction set and onward [Int14], which allows not to overwrite the
first operand.

Targeted properties. In this chapter we focus solely on algorithms that can easily be
implemented in a way that makes them immune to timing-attacks, see e.g. [TOS10].
Specifically, we consider the matrix as a known constant but the vector as a secret, and
we wish to perform the multiplication without secret-dependent branches or memory
accesses. It might not always be important to be immune, or even partially resistant to
this type of attacks, but we consider that it should be important for any cryptographic

1It can actually also be used on 64-bit operands, but we do not consider this possibility here.
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primitive or structure to possibly be implemented in such a way. Hence we try to find
efficient such implementations for the SHARK structure and therefore for dense matrix-
vector multiplications.

We now go on to describe the algorithms. In all of the remainder of this section, x
and y are two column vectors of F16

24 , andM a matrix ofM16(F24). We first briefly recall
the principle of table implementations which are generic and efficient but unsatisfactory
when timing attacks are taken into account.

4.1 Table implementation

We wish to compute y =Mx. The idea of table implementations is to use table lookups
to perform the equivalent multiplication yt = xtM t, i.e. yt = ∑15

i=0 xiM t
i . This can

be computed efficiently by tabulating beforehand the products λM t
i , λ ∈ F24 , resulting

in sixteen tables, each of sixteen entries of 64 bits, and then for each multiplication
by accessing the table for M t

i at the index xi and summing all the retrieved table
entries together. This only requires sixteen table lookups per multiplication. However,
the memory accesses depend on the value of x, which makes this algorithm inherently
vulnerable to timing attacks.

Note that there is a more memory-efficient alternative implementation of this al-
gorithm which consists in explicitly computing the multiplications for each term λM t

i

instead of using a table lookup. This can be done with a single pshufb instruction per
matrix row, taking as first operand the table of multiplication by λ, which is made of
sixteen 4-bit entries, and can be precomputed, and as second operand a register repre-
senting M t

i . In that case, only the sixteen multiplication tables need to be stored, but
their accesses still depend on the secret value x, as one needs to look up the appropriate
multiplication table for each xi.

4.2 A generic constant-time algorithm

We now describe our first algorithm, which can be seen as a variant of table multiplica-
tion that is immune to timing attacks. The idea consists again in computing the right
multiplication yt = xtM t, i.e. yt = ∑15

i=0 xiM t
i . However, instead of tabulating the results

of the scalar multiplication of the matrix rows M t
i , those are always recomputed, in a

way that does not explicitly depend on the value of the scalar.

4.2.1 Description of Algorithm 6.1
We start with a high-level description of the algorithm. Assume we want to perform the
scalar multiplication λz for an unknown scalar λ and a known, constant vector z ∈ F16

24 .
Let us write λ as the polynomial λ3 ⋅ α3 + λ2 ⋅ α2 + λ1 ⋅ α + λ0 with the λi in F2. Then,
the result of λ ⋅ z is simply λ3 ⋅ (α3 ⋅ z) + λ2 ⋅ (α2 ⋅ z) + λ1 ⋅ (α ⋅ z) + λ0 ⋅ z. Thus we just
need to precompute the products αi ⋅ z, select the right ones with respect to the binary
representation of λ, and add these together. This can easily be achieved thanks to a
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4. Efficient algorithms for matrix-vector multiplication

broadcast function defined as:

broadcast(x, i)n = { 1n if the ith bit of x is set
0n otherwise ,

The full algorithm then just consists in using this scalar-vector multiplication sixteen
times, one for each row of the matrix.

This results in Algorithm 6.1. Note that a similar algorithm was used by Käsper and
Schwabe for binary matrices of dimension 128 [KS09].

Algorithm 6.1: Broadcast-based matrix-vector multiplication
Input: x ∈ F16

24 , M ∈ M16(F24)
Output: y = xt ⋅M t

Offline phase
for i ∶= 0, i < 16 do

8Mi ∶= α3 ⋅Mi

4Mi ∶= α2 ⋅Mi

2Mi ∶= α ⋅Mi

Online phase
y ∶= 064
for i ∶= 0, i < 16 do

υ8
i ∶= 8Mi ∧64 broadcast(xi,3)64
υ4
i ∶= 4Mi ∧64 broadcast(xi,2)64
υ2
i ∶= 2Mi ∧64 broadcast(xi,1)64
υ1
i ∶=Mi ∧64 broadcast(xi,0)64
υi ∶= υ8

i + υ4
i + υ2

i + υ1
i

y ∶= y + υi
return y

4.2.2 Implementation of Algorithm 6.1 with SSSE3 instructions
We now consider how to efficiently implement Algorithm 6.1 in practice. The only non-
trivial operation that is used is the broadcast function, and we show that it can be
performed with only one or two pshufb instructions.

To compute broadcast(λ, i)64, with λ a 4-bit value, we can use a single pshufb with
first operand x, such that x[j] = 111111112 if the ith bit of j is set and 0 otherwise, and
with second operand y ∶= (λ,λ, . . .). The result of pshufb x y is indeed (x[λ], x[λ], . . .)
which is 164 if the ith bit of λ is set and 064 otherwise, that is broadcast(λ, i)64. In fact,
the quantities actually computed this way are rather 0128 and 1128. Adapting this to
064 and 164 is however simple to do.

In practice, the input x to pshufb can conveniently be constructed offline and stored
in memory, but the second input y might not be readily available before performing
this computation, and because it depends on what we assume to be a secret value, it
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cannot either be fetched from memory. However, it can easily be computed thanks to
an additional pshufb. Alternatively, if the above computation is done with a vector y ∶=
(λ, ?, ?, . . .) instead, with ? denoting unknown values, and call z its result (x[λ], ?, ?, . . .),
then we have broadcast(λ, i)n = pshufb z (0,0, . . .).

In the specific case of matrices of dimension sixteen over F24 , one can take advantage
of the 128-bit wide xmm registers by interleaving, say, 8x with 4x, and 2x with x, and by
computing a slightly more complex version of the broadcast function broadcast(x, i, j)2n
which interleaves broadcast(x, i)n with broadcast(x, j)n. In that case, an implementation
of one step of Algorithm 6.1 only requires two broadcast calls, two logical and, folding
back the interleaved vectors (which only needs a couple of logical shift and exclusive or),
and adding the folded vectors together. We give a snippet of such an implementation in
Section C.1.

Scalar implementation of broadcast. On an architecture without access to pshufb, the
broadcast function can still be implemented rather efficiently with a few arithmetic and
logical instructions. Let x be an 64-bit value, w.l.o.g., represented by an unsigned integer,
then the following sequence of C instructions computes broadcast(x, i)64:

x = ~x;
x >>= i;
x &= 1;
x -= 1ull;

In this snippet, after the third line, x is equal to 0 if its ith bit was initially one, and 1
otherwise. The subtraction by one in line four thus produces the desired result.

4.3 A faster algorithm exploiting the matrix structure

Algorithm 6.1 is already reasonably efficient, and has the advantage of being completely
generic w.r.t. the matrix. Yet, better solutions may exist in more specific cases. We
present here an alternative that can be much faster when the matrix possesses a partic-
ular structure.

The idea behind this second algorithm is to take advantage of the fact that many
coefficients of a matrix may be identical, thence many of the finite-field multiplications
performed in a matrix-vector product consist in multiplications by the same constants.
Thus, we may be tempted to take advantage of this fact by performing those in parallel.
A motivation of this approach is that the multiplications being by constants, i.e. the
known coefficients of the matrix, they can be performed by pshufb-implemented table
lookups, which are more efficient than a broadcast-based algorithm.
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4. Efficient algorithms for matrix-vector multiplication

4.3.1 Description of Algorithm 6.2
We first give a high-level idea of the algorithm. Let us first consider a small example,
and compute Mx defined as:

⎛
⎜⎜⎜
⎝

1 0 2 2
3 1 2 3
2 3 3 2
0 2 3 1

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

x0
x1
x2
x3

⎞
⎟⎟⎟
⎠
. (6.1)

It is obvious that this is equal to:

⎛
⎜⎜⎜
⎝

x0
x1
0
x3

⎞
⎟⎟⎟
⎠
+ 2 ⋅

⎛
⎜⎜⎜
⎝

x2
x2
x0
x1

⎞
⎟⎟⎟
⎠
+ 2 ⋅

⎛
⎜⎜⎜
⎝

x3
0
x3
0

⎞
⎟⎟⎟
⎠
+ 3 ⋅

⎛
⎜⎜⎜
⎝

0
x0
x1
x2

⎞
⎟⎟⎟
⎠
+ 3 ⋅

⎛
⎜⎜⎜
⎝

0
x3
x2
0

⎞
⎟⎟⎟
⎠
,

where the constant multiplications of the vector (x0, x1, x2, x3)t and the shuffles of its
coefficients can both be computed with a single pshufb instruction each, while none of
these operations directly depends on the value of the vector. This type of decomposition
can be done for any matrix, but the number of operations depends on the value of its
coefficients.

We now sketch one way of obtaining an optimal decomposition as above. We consider
a matrix product Mx with M constant and x seen as the formal arrangement of inde-
terminates xi. Let us define S(M,λ) as one of the minimal sets of shuffles of coefficients
of x, such that there exists a unique vector z ∈ S(M,λ) such that zi = xj iff Mi,j = λ.
For instance, in the above example, we have S(M,2) = {(x2, x2, x0, x1)t, (x3,0, x3,0)t}.
Equivalently, we could have taken S(M,2) = {(x3, x2, x3,0)t, (x2,0, x0, x1)t}. These sets
are straightforward to compute for this particular matrix, and so are they in the general
case.

From the definition of S, it is clear that we have Mx = ∑λ∈F∗

24
∑z∈S(M,λ) λ ⋅ z. Once

the values of the sets S have been determined, it is clear that we only need to compute
this sum to get our result, and this is precisely what this second algorithm does.

We give a complete description of this shuffle-based process in Algorithm 6.2.

4.3.2 Cost of Algorithm 6.2
The cost of computing a matrix-vector product with Algorithm 6.2 depends on the
coefficients of the matrix, since the size of the sets S(M,λ) depends both on the density
of the matrix and of how its coefficients are arranged.

If we suppose that a vector implementation of this algorithm is used, and if the
dimension and the field of the matrix are well-chosen, we can assume that both the
scalar multiplication of x by a constant and a shuffle can be computed with a single
pshufb each, and a few ancillary instructions. We take the number of calls to pshufb
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6. Efficient diffusion matrices from algebraic geometry codes

Algorithm 6.2: Shuffle-based matrix-vector multiplication
Input: x ∈ F16

24 , M ∈ M16(F24)
Output: y =M ⋅ x

1 Offline phase
2 for i ∶= 1, i < 16 do
3 si[ ] ∶= S(M, i) ▷ Initialise the array si with one of the possible sets of shuffles.
4 Online phase
5 y ∶= 064
6 for i ∶= 1, i < 16 do
7 for j ∶= 1, j < #si do
8 y ∶= y + i ⋅ si[j]

9 return y

as a basis to define a cost function for matrices with respect to their implementations
with Algorithm 6.2. It is defined as:

cost2 (M) ∶= ∑
λ∈F∗

24

#S(M,λ) + ∑
λ∈F∗

24∖{1}
I(S(M,λ)).

The first term corresponds to the number of shuffles that need to be performed for each
constant value, and the second to the number of constant multiplications to do. We
may notice that #S(M,λ) is equal to the maximum number of occurrence of λ in a
single row of M , and the cost2 function is therefore easy to compute. As an example
the cost of the matrix M from Equation 6.1 is 7. In the special case of a matrix that has
a diagonal with identical non-zero coefficients, the actual cost is one less than computed
with cost2 .

A matrix with minimal cost w.r.t. cost2 is one that minimises the sum of the max-
imum number of occurrence of λ in any row, for every λ ∈ F∗

24 . A simple observation
is that for matrices with the same number of non-zero coefficients, this amount is the
smallest when every row can be deduced by permutation of a single one; this is for in-
stance the case for circulant matrices, by definition. More generally, we can heuristically
hope that the cost of a matrix will be low if all of its rows can be obtained from the
permutation of, say, only two rows.

We can try to estimate the minimum cost of an arbitrary dense circulant matrix of
dimension sixteen over F24 . If the coefficients of the unique row, up to permutation, are
chosen uniformly at random, we should expect them to be made of about 1−(1−1/16)16 ≈
2/3 of the elements of F24 . Additionally, fifteen permutations of the input will need to
be computed: all rows need to be different for the matrix to be of full rank —which is
something we will desire in our applications— but the coefficients on the diagonal are
constant. Thus we can estimate the cost of such a random matrix to be about 25.
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5. Diffusion matrices from algebraic geometry codes

Before concluding this section, let us notice that special cases of this algorithm have
already been used for circulant matrices, namely in the case of the AES MixColumn
matrix [Ham09].

4.3.3 Implementation of Algorithm 6.2 with SSSE3 instructions

The implementation of Algorithm 6.2 is quite straightforward. We give nonetheless a
small code snippet in Section C.2.

4.4 Performance

In Table 6.2 and Table 6.3 of Section 6, we give a few performance figures for ciphers with
a SHARK structure using assembly implementations of Algorithm 6.1 and Algorithm 6.2
for their linear mapping. From there it can be seen without surprise that Algorithm 6.2
is more efficient if the matrix is well-chosen. However, Algorithm 6.1 still performs
reasonably well, without imposing any condition on the matrix.

5 Diffusion matrices from algebraic geometry codes

We now discuss how to design diffusion matrices based on the code from Example 6.4 of
Section 3 with efficient implementations with respect to Algorithm 6.2 of the previous
section.

A diffusion matrix associated to this code is simply the right block A of a generator
matrix in systematic form G ∶= (I16 A). Recall that G is the result of computing the
reduced row-echelon form of the matrix obtained by evaluating a basis for the function
space F on the evaluation domain P. Using the row-echelon form is simply a convenient
way of computing the basis that results in G being in systematic form, so it is clear
that the initial choice of the basis for F prior reduction does not impact G, and hence
A. However, changing the order of the elements of the evaluation domain does result in
different matrices.

The problem for the rest of the section is thus to find good orderings P, that result
in matrices with a low cost, i.e. efficient encoders, that is implementations of a generator
matrix. For simplicity, we write C2 to denote any code obtained from Example 6.4, with
the precise choice of the evaluation domain P left unspecified.

5.1 Compact encoders using code automorphisms

Our first objective is to find matrices obtained from C2 that can be generated by per-
mutations of a small number of rows. The main tool we use to achieve this goal are
automorphisms of C2; these are the injective morphisms from the code to itself.

Definition 6.22 (Automorphism of a code). The automorphism group Aut(C) of a code
C of length n is a subgroup of Sn such that π ∈ Aut(C) ⇔ (c ∈ C ⇒ π(c) ∈ C).
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As C2 is an evaluation code, we can equivalently define its automorphisms as being
permutations of the elements of P. If π is an automorphism of C2, if {O0, . . . ,O`} are its
orbits, and if our instance of the code has an evaluation support s.t. elements of a same
orbit are consecutive, then the action of π on a codeword of C2 is to cyclically permute
its coordinates locally, along each orbit.

To see that this can be useful, assume that there is an automorphism π with two
orbits O0 and O1 of size n/2 each. Then, if M ∶= (In/2 A) is built from P ∶= (O0,O1),
each row of M can be obtained by the repeated action of π on, say, M0, and it follows
that A is circulant and therefore has a low cost w.r.t. Algorithm 6.2. More generally, if
an automorphism can be found such that it has orbits of sizes summing up to n/2, and
if the two partitions defined by the orbits have maximal rank, then the corresponding
matrix M can be deduced from a small set of rows. We give two toy examples with
Reed-Solomon codes, which can easily be verified.

π ∶ F24 → F24 , x ↦ 8x. This automorphism has O0 ∶= (1,8,12,10,15) and O1 ∶=
(2,3,11,7,13) for orbits, among others. The systematic matrix for the [10,5,6]F24 code
obtained with the points in that order is then such that A is circulant and obtained from
the cyclic permutation of the row (12,10,2,6,3).

π ∶ F24 → F24 , x ↦ 7x. This automorphism has O0 ∶= (1,7,6), O1 ∶= (2,14,12),
O2 ∶= (4,15,11), and O3 ∶= (8,13,5) for orbits, among others. The systematic matrix
for the [12,6,7]F24 code obtained with the points in that order is then of the form

(I3 03 A B
03 I3 C D

) with A, B, C and D circulant matrices. It can thus be obtained by

cyclic permutation of only two rows.

5.1.1 Application to C2

Automorphisms of C2 may be quite harder to find than ones of RS codes. They can
however be found within automorphisms of the curve X on which it is based [Sti09], or
rather its function field. This is quite intuitive, as these will precisely permute places of
the curve, which are the elements on which the code is defined. We mostly need to be
careful to only use automorphisms that fix the places of the divisor D used to define F .
In our case, this means fixing the place at infinity.

We considered the degree-one automorphisms of the curve X of Example 6.4, for
instance described by Duursma [Duu99]. They have two generators: π0 ∶ F2

24 →
F2

24 , (x, y) ↦ (ζx, y) with ζ5 = 1, and π1
(a,b)

∶ F2
24 → F2

24 , (x, y) ↦ (x+a, y+a8x2 +a4x+
b4), with (a, b) an affine point of X . These generators span a group of order 160. When
considering their orbit decomposition, the break-up of the size of the orbits can only be
of one of five types, given in Table 6.1.
From these automorphisms, it is possible to define partitions of P in two sets of size
sixteen which are union of orbits. We may therefore hope to obtain systematic matrices
of the type we are looking for. Unfortunately, after an extensive search both on C2 and

90



5. Diffusion matrices from algebraic geometry codes

Table 6.1 – Possible combination of orbit sizes of automorphisms of C2 spanned by π0
and π1. A number n in column c means that an automorphism of this type has n orbits
of size c.

Orbit size 1 2 4 5 10

Type 1 32 0 0 0 0
Type 2 0 16 0 0 0
Type 3 0 0 8 0 0
Type 4 2 0 0 6 0
Type 5 0 1 0 0 3

on the smaller elliptic code of Example 6.3 using its own automorphisms, it appears that
ordering P in this fashion never results in obtaining a systematic matrix, i.e. computing
the row-reduced of the initial matrix never results in a left square submatrix of full rank.

5.1.2 Extending the automorphisms with the Frobenius mapping
We extend the previous automorphisms with the Frobenius mapping F ∶ F2

24 → F2
24 ,

(x, y) ↦ (x2, y2); this adds another 160 automorphisms for X . However, these will not
anymore be automorphisms for the code C2 in general, and we will therefore obtain
matrices of a form slightly different from what we first hoped to achieve.

The global strategy is still the same, however, and consists in ordering the points
along orbits of the curve automorphisms. By using the Frobenius, we can obtain new
combination of orbit sizes, notably four of size eight. We study below the result of
ordering P along the orbits of one such automorphism. We take the example of σ ∶=
F ○ σ2 ○ σ1, with σ1 ∶ (x, y) ↦ (x + 1, y + x2 + x + 7) and σ2 ∶ (x, y) ↦ (12x, y). An
observation is that in this case, only σ0 and σ4 are automorphisms of C2. Note that not
all orbits orderings of σ for P yield a systematic matrix. However, unlike as above, we
were able to find some orders that do. In these cases, the right matrix “A” of the full
generator matrix (I16 A) is of the form:

(A0,A1,A2,A3, σ
4(A0), σ4(A1), σ4(A2), σ4(A3),

A8,A9,A10,A11, σ
4(A8), σ4(A9), σ4(A10), σ4(A11)),

with A0, . . . ,A3, A8, . . . ,A11 row vectors of dimension 16. For instance, the first and
fifth row of one such matrix are:

A0 = (5,2,1,3,8,5,1,5,12,10,14,6,7,11,4,11)
A4 = σ4(A0) = (8,5,1,5,5,2,1,3,7,11,4,11,12,10,14,6).

We give the full matrix corresponding to these rows in Figure 6.2.
We have therefore partially reached our goal of being able to describe A from a

permutation of a subset of its rows. However this subset is not small, as it is of size
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8 —half of the matrix dimension. Consequently, these matrices have a moderate cost
according to the cost2 function, when implemented with Algorithm 6.2, but it is not
minimal. Interestingly, all the matrices of this form that we found have the same cost
of 52.

5.2 Fast random encoders
We conclude this section by presenting the results of a very simple random search for
efficient encoders of C2 with respect to Algorithm 6.2. Unlike in the above discussion,
this search does not exploit any kind of algebraic structure. Indeed, it only consists in
repeatedly generating a random permutation of the affine points of the curve, building
a matrix for the code with the corresponding point order, tentatively putting it in sys-
tematic form (I16 A), and if successful evaluating the cost2 function from Section 4.3
on A. We then collect matrices with a minimum cost.

Because there are 32! ≈ 2117.7 possible point orders, we can only explore a very
small part of the search space. However, matrices of low cost can be found even after
a moderate amount of computation, and we found many matrices of cost 43, though
none of a lower cost. We present in Table 6.4 from Section B the number of matrices
of cost strictly less than 60 that we found during a search of 238 encoders. We give an
example of a matrix of cost 43 in Figure 6.3, which is only about a factor 1.7 away from
the estimate of the minimum cost of a circulant matrix given in Section 4.3. We observe
that the transpose of this matrix, i.e. its inverse, also has a cost of 43.

6 Applications and performance
This last section presents the performance of straightforward assembly implementations
of both of our algorithms when applied to a fast encoder of the code C2 from Section 5.
In all of the remainder, M denotes the matrix from Figure 6.3; it is of dimension 16
over F24 and has a differential and linear branch number of 15. We use this matrix in
the design of the Samneric couple of toy block ciphers; Sam is a 64-bit block cipher
that uses M as is with a four-bit S-box, and Eric uses M over F28 together with an
eight-bit S-box to define a 128-bit block cipher.

We do not actually specify complete block ciphers, in particular we do not give
key schedules; our objective is rather to evaluate the performance of round functions
following these structures, in order to assess the utility of large diffusion mappings for
block cipher design. Consequently, our security analysis of Samneric is minimal, and
only serves to give a realistic estimate of how many rounds are needed to achieve good
security.

6.1 The Sam block cipher
The round function of Sam is taken to beM○S ○K, where K adds a 64-bit round key
to its input and S is the parallel application of sixteen identical 4-bit S-boxes, taken to
be any optimal S-box of this size, see e.g. [Saa11, LP07].
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Table 6.2 – Performance of software implementations of Sam, given in cycles per byte
(cpb), for implementations using Algorithm 6.1 and Algorithm 6.2. Figures in parenthe-
ses are for an AVX implementation when applicable.

Processor type # rounds cpb (Alg. 6.1) cpb (Alg. 6.2)

Intel Xeon E5-2650 @ 2.00GHz 8 66.5 (60.2) 44.5 (31.9)

Intel Xeon E5-2609 @ 2.40GHz 8 95.3 (84.7) 63.3 (45.6)

Intel Xeon E5649 @ 2.53GHz 8 111.3 59.8

We use standard wide-trail considerations to study differential and linear properties
of a Sam instance [DR02]. This is very easy to do thanks to the simple structure of
the cipher. The branch number of M is 15, which means that at least 15 S-boxes are
active in any two rounds of a differential or linear trail, while the best 4-bit S-boxes
have a maximum differential probability of 2−2 and a squared correlation of at most 2−2

for any linear approximation; we will discuss such notions in more details in the next
Chapter 7. By using such S-boxes, one can upper-bound the expected probability of a
single differential trail over the choice of the key (respectively the squared correlation of
a single fixed-key linear trail) for 2n rounds by 2−2⋅15n. This is smaller than 2−64 as soon
as n > 2. Hence we conjecture that 6 to 8 rounds are enough to make a cipher resistant
to standard statistical attacks.

The most powerful attacks against Sam may in fact not be statistical; algebraic
attacks may be more efficient in exploiting the fact that the round function is defined
at a granularity of four bits, and that the degree of an invertible 4-bit S-box is at most
three. Applying the upper-bound from Boura et al. [BCD11, Theorem 2], we get that
seven rounds are necessary to obtain a permutation of maximal degree. Thus, eight full
rounds plus an additional half-round consisting of only S would probably be necessary
to avoid attacks based on the low degree of the cipher.

On the other hand, we would expect Sam to be more resistant than most ciphers to
structural attacks such as impossible-differential or integral attacks, as its round function
diffuses over the full block.

We give software performance figures for an 8-round version of Sam in Table 6.2. We
include data both for a strict SSSE3 implementation and for one using AVX extensions,
which can be seen to bring a considerable benefit. Note that the last round is complete
and includes the linear mapping, unlike e.g. AES. As the parallel application of the
S-Boxes of S can be implemented very efficiently with a single pshufb, this part of the
round function has virtually no impact on the performance, and one could for instance
add an extra half-round essentially for free.
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6.2 The Eric block cipher

Although the code C2 from which the matrix M is built was initially defined with F24

as an alphabet, this latter can be replaced by an algebraic extension of F24 such as
F28 , to yield a code C2

′ with the same parameters, namely a [32,16,15]F28 code. One
way of seeing this is that by constructing F28 as an extension of F24 , for instance by
letting F24 ≅ F2[α]/⟨α4 + α3 + α2 + α + 1⟩ and F28 ≅ F24[t]/⟨t2 + t + α⟩; an element
of F28 is represented as a degree-one polynomial at + b over F24 . It follows that the
minimum weight of a codeword w ∶= (ait + bi), i ∈ {0 . . .31} of C2

′ is at least equal to
the minimum weight of words (ai), i = 0 . . .31 and (bi), i ∈ {0 . . .31}. If those are taken
among codewords of C2, their minimum weight is 15, and thus so is the one of w.

An efficient encoder can also be built for C2
′, with only small changes from an encoder

for C2. If we consider finite field multiplications as performed by linear feedback shift
registers (LFSRs), the multiplication by a constant is done by summing shifts of the mul-
tiplicand and possibly shifted copies of the feedback polynomial. Such a multiplication,
say on eight bits can obviously be tabulated in a table of 256 8-bit entries, but smaller
tables can also be used, exploiting the linearity. For instance, one can compute the
multiplication from two tables of 16 8-bit entries which store the partial multiplication
of the constant by the four most and least significant bits respectively; performing the
complete multiplication simply consists in accessing these tables with the right inputs
and summing their results. We give an example of such an approach in Figure 6.1.

uint8_t m71(uint8_t x)
{

uint8_t lo[16] = {0x00,0x71,0xE2,0x93,0xDF,0xAE,0x3D,0x4C
,0xA5,0xD4,0x47,0x36,0x7A,0x0B,0x98,0xE9};

uint8_t hi[16] = {0x00,0x51,0xA2,0xF3,0x5F,0x0E,0xFD,0xAC
,0xBE,0xEF,0x1C,0x4D,0xE1,0xB0,0x43,0x12};

return (lo[x & 0xF] ^ hi[x >> 4]);
}

Figure 6.1 – Multiplication by 0x71 in F2[x]/⟨x8 + x4 + x3 + x + 1⟩

Table lookups from four to eight bits can be performed efficiently with pshufb;
multiplication by a constant in F28 is thus twice as expensive as multiplication in F24 ,
but it operates on twice the amount of data. An implementation of a diffusion matrix
M′ from C2

′ is thus comparatively as efficient as for the original code.

The round function of Eric is taken to beM′○S ′○K′, where K′ adds a 128-bit round
key to its input and S ′ is the parallel application of sixteen identical cryptographically
strong 8-bit S-boxes.

From wide-trail considerations, the resistance of an Eric cipher to statistical attacks
is comparatively better than Sam, when an appropriate 8-bit S-Box is used. For in-
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Table 6.3 – Performance of software implementations of Eric, in cycles per byte (cpb),
for implementations using Algorithm 6.1 and Algorithm 6.2. Figures in parentheses are
for an AVX implementation when applicable.

128-bit Block

Processor type # rounds cpb (Alg. 6.1) cpb (Alg. 6.2)

Intel Xeon E5-2650 @ 2.00GHz 6 58 (52.3) 32.7 (26.5)
8 76.8 (69.6) 43.8 (35.7)

Intel Xeon E5-2609 @ 2.40GHz 6 79.8 (75.6) 47.1 (36.8)
8 106.6 (97.1) 62.1 (50.3)

Intel Xeon E5649 @ 2.53GHz 6 84.5 47
8 111 61.9

stance, the AES S-box has a maximal differential probability of 2−6, and it cannot be
approximated linearly with a squared correlation more than 2−6 [DR02]. This implies
that the expected probability (respectively squared correlation) of a single differential
trail (respectively linear trail) for 2n rounds is upper-bounded by 2−6⋅15n, which is al-
ready much smaller than 2−128 as soon as n > 1. Eric is also likely to be more resistant
to algebraic attacks; at least five rounds are necessary to reach full degree for an S-box
of degree seven, which is two less than Sam. Thus, eight and a half rounds of an Eric
cipher should bring adequate security, and six and a half rounds might be enough. We
provide performance figures for SSSE3 and an AVX implementations in Table 6.3, for
both six and eight full rounds. Note that in the case of 8-bit S-Boxes, the S-Box ap-
plication is usually rather more complex and expensive a step than with 4-bit S-Boxes.
In these test programs, we used the efficient vector implementation of the AES S-Box
from Hamburg [Ham09]; better performance may be attained by using cryptographically
weaker but more efficient S-boxes, such as Whirlpool’s second S-box [BR03].

6.3 Discussion
The performance figures given in Table 6.2, Table 6.3 are average for a block cipher.
For instance, it compares favourably with the optimized vector implementations of 64-
bit ciphers LED and Piccolo in sequential mode from [BGLP13], which run at speeds
between 70 and 90 cpb., depending on the CPU. It is however slower than Hamburg’s
vector implementation of AES, with reported speeds of 6 to 22 cpb. (9 to 25 for the
inverse cipher) [Ham09, SMMK12].

Yet, we conjecture that the strong structure of the round function makes Samneric
more suitable to speed-ups from derivative constructions. For instance, the leak extrac-
tion approach used in the stream cipher LEX allowed a 2.5-time speed-up from the AES
by leaking a quarter of the state of the cipher as keystream every round [Bir06]. Although
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LEX was later broken [DK08], we believe that the stronger diffusion in Samneric may
protect leak extraction variants against similar attacks; these could for instance lead to
two-time speed-ups for an eight-round Eric with leaks of the same amount as the ones
of LEX.

Finally, a particular advantage of large mappings over small alphabets is that they
allow to build ciphers with a small AND complexity, in terms of the number and depth
of AND gates necessary to implement it. This may be useful in certain contexts such as
masking at high order [GGNS13] and fully-homomorphic encryption [ARS+15].

7 Conclusion
We revisited the SHARK structure by replacing the MDS matrix of its linear diffusion
layer by matrices built from an algebraic geometry code. Although this code is not MDS,
it still has a very high minimum distance, all the while being quite long. This allowed
us to define an efficient full-state diffusion layer for a 64-bit block cipher, operating on
4-bit values.

We studied algorithms suitable for a vector implementation of the multiplication
by this matrix, and how to find matrices that are most efficiently implemented with
those algorithms. Finally, we gave performance figures for assembly implementations of
hypothetical SHARK-like ciphers using this matrix as a linear layer.

This work provided the first generalisation of SHARK that are not vulnerable to
timing attacks as is the original cipher, and also the first generalisation to 128-bit blocks.
It also showed that even if not the fastest, such potential design could be implemented
efficiently in software.

As a future work, it would be interesting to investigate how to use the full automor-
phism group of the code to design matrices with a lower cost. In that case, we would
not restrict ourselves to derive the rows from a single row and the powers of a single
automorphism, but could use several independent automorphisms instead.

A Examples of diffusion matrices of dimension 16 over F24

A.1 A matrix of cost 52

The C2 matrix of Figure 6.2 was found thanks to the automorphisms described in Sec-
tion 5.1. It has a cost 52 w.r.t. Section 4.3, and both a differential and a linear branch
number of 15. It is a block matrix made of sixteen square matrices of dimension four,
eight of them being distinct. The different blocks are highlighted by different colours in
the figure.

A.2 A matrix of cost 43

The C2 matrix of Figure 6.3 was found by randomly testing permutations of the points
of the curve. It has a cost 43, and so does its transpose.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 2 1 3 8 5 1 5 12 10 14 6 7 11 4 11
2 2 4 1 5 12 2 1 9 15 8 11 7 6 9 3
1 4 4 3 1 2 15 4 5 13 10 12 9 6 7 13
3 1 3 3 5 1 4 10 14 2 14 8 15 13 7 6
8 5 1 5 5 2 1 3 7 11 4 11 12 10 14 6
5 12 2 1 2 2 4 1 7 6 9 3 9 15 8 11
1 2 15 4 1 4 4 3 9 6 7 13 5 13 10 12
5 1 4 10 3 1 3 3 15 13 7 6 14 2 14 8
12 9 5 14 7 7 9 15 7 6 11 3 15 5 13 7
10 15 13 2 11 6 6 13 6 6 7 9 5 10 2 14
14 8 10 14 4 9 7 7 11 7 7 6 13 2 8 4
6 11 12 8 11 3 13 6 3 9 6 6 7 14 4 12
7 7 9 15 12 9 5 14 15 5 13 7 7 6 11 3
11 6 6 13 10 15 13 2 5 10 2 14 6 6 7 9
4 9 7 7 14 8 10 14 13 2 8 4 11 7 7 6
11 3 13 6 6 11 12 8 7 14 4 12 3 9 6 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 6.2 – A diffusion block matrix.

It can easily be obtained as follows. First, define a basis of L(17P∞), for instance
(1, x, x2, y, x3, xy, x4, x2y, x5, x3y, x6, x4y, x7, x5y, x8, x6y). Then, arrange the affine points
of the curve on which C2 is defined in the order ( (8, 7), (13, 2), (4, 5), (0, 0), (14, 5), (15,
6), (7, 3), (1, 7), (2, 2), (11, 3), (3, 3), (10, 7), (6, 4), (5, 5), (9, 5), (12, 6), (3, 2), (11,
2), (12, 7), (13, 3), (4, 4), (0, 1), (1, 6), (7, 2), (9, 4), (6, 5), (2, 3), (5, 4), (15, 7), (10,
6), (14, 4), (8, 6) ). Finally, evaluate the basis of L(17P∞) on these points and compute
the reduced row echelon form of this matrix; the right square matrix of dimension 16 of
the result is the matrix of Figure 6.3.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

11 6 1 6 10 14 10 9 13 3 3 12 9 15 2 9
6 12 0 4 2 8 9 2 5 11 9 5 4 1 15 6
9 11 2 2 1 11 13 15 13 3 2 1 14 1 3 10
0 0 9 8 11 6 2 1 11 10 15 10 10 15 1 14
13 13 3 15 3 1 11 2 9 2 10 14 1 11 1 2
1 9 8 4 14 10 2 5 15 2 12 12 9 10 1 9
5 9 11 2 15 1 12 4 6 0 6 4 5 8 2 9
1 4 14 9 13 2 10 12 0 6 6 9 2 0 11 10
13 10 3 9 2 15 6 6 11 1 9 9 12 14 10 3
0 10 6 12 11 0 4 9 1 14 10 2 9 2 13 6
2 0 5 6 9 0 1 5 15 12 13 15 1 11 13 11
11 2 10 1 1 15 0 8 0 9 14 10 10 6 11 15
12 14 10 11 3 10 6 0 5 11 1 8 2 9 2 3
15 2 2 5 1 10 9 4 1 8 9 9 12 10 14 12
15 1 12 5 13 11 0 6 2 5 11 1 15 0 9 13
5 6 11 0 2 9 14 11 12 10 3 2 8 10 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 6.3 – An unstructured diffusion matrix

B Statistical distribution of the cost of matrices of C2

Table 6.4 gives the repartition of random matrices by their cost w.r.t. Section 4.3.
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Table 6.4 – Statistical distribution of the cost of 238 randomly-generated generator ma-
trices of C2.

cost #matrices cumulative #matrices cumulative proportion of
the search space

43 146 482 146 482 0.00000053
44 73 220 219 702 0.00000080
45 218 542 438 244 0.0000016
46 879 557 1 317 801 0.0000048
47 1 978 159 3 295 960 0.000012
48 5 559 814 8 855 774 0.000032
49 21 512 707 30 368 481 0.00011
50 93 289 020 123 657 501 0.00045
51 356 848 829 480 506 330 0.0017
52 1 282 233 658 1 762 739 988 0.0064
53 3 534 412 567 5 297 152 555 0.019
54 8 141 274 412 13 438 426 967 0.049
55 15 433 896 914 28 872 323 881 0.11
56 24 837 735 898 53 710 059 779 0.20
57 33 794 051 687 87 504 111 466 0.32
58 38 971 338 149 126 475 449 615 0.46
59 38 629 339 524 165 104 789 139 0.60

C Excerpts of assembly implementations of matrix-vector
multiplication

We give two snippets of assembly implementation of encoders for C2 using the two
algorithms of Section 4. They allow both to make the description of the algorithms more
explicit and to illustrate their respective complexities in terms of number of instructions.

C.1 Excerpt of an implementation of Algorithm 6.1
; cleaning mask
cle: dq 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f
; mask for the selection of v, 2v
oe1: dq 0xff0ff000ff0ff000, 0xff0ff000ff0ff000
; mask for the selection of 4v, 8v
oe2: dq 0xf0f0f0f000000000, 0xffffffff0f0f0f0f
; m0 and 2m0 interleaved
c01: dq 0x91a7efa76c126cb5, 0x9124fd91cb3636d9
; 4m0 and 8m0 interleaved
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c02: dq 0x24efd9efb548b5a7, 0x248391245acbcb12
; etc.
c11: dq 0x249183244800cb6c, 0x6cfd12485a91b55a
c12: dq 0x83246c8336005ab5, 0xb59148367e24a77e
c21: dq 0xfdd9b5122424b591, 0xa73612ef122436d9
c22: dq 0x9112a7488383a724, 0xefcb48d94883cb12
; [...]

; macro for one matrix row multiplication and accumulation
; (nasm syntax)
; 1 is input
; 2, 3, 4, 5 are storage
; 6 is constant zero
; 7 is accumulator
; 8 is index
%macro m_1_row 8

; selects the right double-masks
movdqa %2, [oe1]
movdqa %3, [oe2]
pshufb %2, %1
pshufb %3, %1
; shift the input for the next round
psrldq %1, 1
; expand
pshufb %2, %6
pshufb %3, %6
; select the rows with the double-masks
pand %2, [c01 + %8*16*2]
pand %3, [c02 + %8*16*2]

; shift and xor the rows together
movdqa %4, %2
movdqa %5, %3
psrlq %2, 4
psrlq %3, 4
pxor %4, %5
pxor %2, %3
; accumulate everything
pxor %2, %4
pxor %7, %2

%endmacro

; the input is in xmm0, with only the four lsb of each byte set
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_m64:
; constant zero
pxor xmm5, xmm5
; accumulator
pxor xmm6, xmm6

.mainstuff:
m_1_row xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, 0
m_1_row xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, 1
m_1_row xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, 2
; [...]

.fin:
; the result is in xmm0, and still of the same form
pand xmm6, [cle]
movdqa xmm0, xmm6
ret

Figure 6.4 – Part of an encoder for C2 using Algorithm 6.1

C.2 Excerpt of an implementation of Algorithm 6.2

; multiplication tables (in the order where we need them)
ttim2 : dq 0x0e0c0a0806040200, 0x0d0f090b05070103
ttim8 : dq 0x0d050e060b030800, 0x0109020a070f040c
; [...]

; shuffles
; 0xff for not selected nibbles (it will zero them)
pp10: dq 0x0005000507040d02, 0x0f01040a03060809
pp11: dq 0xffff0e0c0e0bffff, 0xff0b08ff040cffff
pp12: dq 0xffffff0eff0dffff, 0xffffffffffffffff
pp20: dq 0x050306070602040e, 0x0408010c01000b04
pp21: dq 0x0c0e0909ff0307ff, 0x0bff020effff0dff
pp22: dq 0xffffff0fff0affff, 0xffffffffffffffff
pp30: dq 0xffffff02ff09ff09, 0x0affff04ffffff02
pp31: dq 0xffffff04ff0eff0a, 0x0effff0fffffff0f
; [...]

; Two useful macros (nasm syntax)
; 1 is the location of the vector,
; 2 is storage for the multiplied thingy,
; 3 is the constant index
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%macro vec_mul 3
movdqa %2, [ttim2 + %3*16]
pshufb %2, %1
movdqa %1, %2

%endmacro

; 1 is the accumulator,
; 2 is the multiplied vector,
; 3 is storage for the shuffled thingy,
; 4 is the index for the shuffle
%macro pp_accu 4

movdqa %3, %2
pshufb %3, [pp10 + %4*16]
pxor %1, %3

%endmacro

; the input is in xmm0, with only the four lsb of each byte set
_m64:

pxor xmm1, xmm1 ; init the accumulator
.mainstuff:

; 1.x
pp_accu xmm1, xmm0, xmm2, 0
pp_accu xmm1, xmm0, xmm2, 1
pp_accu xmm1, xmm0, xmm2, 2
; 2.x
vec_mul xmm0, xmm2, 0
pp_accu xmm1, xmm0, xmm2, 3
pp_accu xmm1, xmm0, xmm2, 4
pp_accu xmm1, xmm0, xmm2, 5
; 3.x
vec_mul xmm0, xmm2, 1
pp_accu xmm1, xmm0, xmm2, 6
pp_accu xmm1, xmm0, xmm2, 7

; [...]
.fin:

; the result is in xmm0, and still of the same form
movdqa xmm0, xmm1
ret

Figure 6.5 – Part of an encoder for C2 using Algorithm 6.2
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Chapter 7
The Littlun S-box and the Fly block

cipher

1 Introduction

Since the late 1990’s and the end of the AES competition, the academic community
and the industry have been provided with excellent block ciphers. In most cases where
a cipher is needed, AES [NIS01] can readily be used and there is currently little need
for a replacement. Consequently, the symmetric cryptographic community shifted focus
to e.g. the wider picture of authenticated encryption through the Caesar competition,
or to more specific applications of block ciphers. In the latter case, an important topic
is the design of “lightweight” block ciphers intended to be implemented on low-cost,
resource-constraint devices. An early successful example following this trend is the
block cipher Present [BKL+07], which can be implemented in small hardware circuits.
Most lightweight algorithms similarly target a few platforms on which they are expected
to perform particularly well; good performance in other cases are however not usually
expected and lightweight ciphers are in general not very versatile. Typical platforms
of interest include hardware circuits and 8-bit to 32-bit microcontrollers. Recently,
NIST released a draft report on lightweight cryptography with the objective of creating
a portfolio of lightweight primitives through an open process [NIS16]. The topic of
lightweight cryptography is thus ever more timely.

In this chapter, we design a conceptually simple block cipher targeting efficient light
implementations on 8-bit microcontrollers, where by light implementations, we mean
in particular that the size of the code is small, typically of the order of 200 bytes. If
more resources are available, the best current block cipher is probably the AES, see
e.g. [BSS+15]. The chief academic proposal to date for this scenario is the Pride block
cipher, that was presented at CRYPTO 2014 [ADK+14]; notable “non-academic” ciphers
for the same scenario are the “NSA ciphers” Simon and Speck [BSS+13]. Our block
cipher is built around Littlun-1, a compact 8-bit S-box with branch number 3. This
allows to define a round function similar to a scaled-up variant of Present, composing
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the S-box application with a simple bit permutation. As a bit permutation obviously
does not increase the number of active bits, an important part of the diffusion in such
a cipher is played by the S-box. The typical measure of the quality of the diffusion of
an S-box is its “branch number” which plays a role similar to the minimum distance of
the linear codes used in AES-like designs and in the previous chapter Chapter 6. We
thus get a trade-off between hardware and light software implementations: Littlun-1 is
more expensive in hardware than two applications of the S-box of Present, but the bit
permutation is simple to implement with 8-bit rotations. Owing to Golding, we name
our block cipher “Fly”.

Excluding on-the-fly key expansion, the round function of Fly costs four instructions
less to implement than Pride’s on AVR. Using the good branch number of Littlun-1,
we can show that with a similar number of rounds, Fly is more resistant than Pride to
statistical attacks. This is all the more relevant as the security margin of Pride seems
to be quite thin [ZWWD14]. Taking the key-schedule into account, one round of Fly
costs eight more instructions than one round of Pride. However, unlike Pride, we do
not use an FX construction for the key-schedule and thus the generic security of Fly
does not decrease with the amount of data available to the adversary. Dinur also showed
how the FX construction can lead to more efficient time-memory-data trade-offs [Din15].

As implementations on resource-constraint devices are more likely to be vulnerable to
side-channel attacks, one should also consider the additional cost of protection against,
say, differential power analysis when evaluating schemes that target such platforms. In
that respect, the small number of gates necessary to implement the Littlun-1 S-box as
well as its simple expression in terms of light 4-bit S-boxes allow one to produce masked
implementations of Fly with limited overhead.

Related work. The block cipher literature is so numerous that most new proposal will
bear some similarity with past designs. In that respect, apart from Present, Fly
is quite similar to Rectangle [ZBL+14], which also combines a Serpent-like bitsliced
application of an S-box [BAK98] with a rotation-implemented bit permutation. However,
the S-box in Rectangle is on 4 bits, it does not have a branch number of 3 and the
rotations are on 16-bit words. The construction of the Littlun S-box uses the Lai-
Massey structure from the IDEA block cipher [LMM91]; this structure was already
used to build the second S-box of the Whirlpool hash function [BR03] and the S-box
of the block cipher Fox [JV04].

2 Preliminaries
We start by giving an overview of the main notions that will be used in evaluating the
cryptographic properties of our construction. A more detailed and rigorous treatment
of the following can for instance be found in [Rou15].

Although we will mostly consider S-boxes as defined over binary strings we may see
an n-bit S-box as a mapping Fn

2 → Fn
2 whenever convenient, in particular so that the
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addition of a difference to an S-box input is a well-defined operation.

Definition 7.1 (Differential uniformity of an S-box). Let S be an n-bit S-box. We define
its difference distribution table (or DDT) as the function δS defined extensively by:

δS(a, b) ∶= #{x ∈ Fn
2 ∣ S(x) + S(x + a) = b}.

The differential uniformity D of S is defined as:

max
(a,b)≠(0,0)

δS(a, b).

Put another way, an n-bit S-box with differential uniformity D has a maximal dif-
ferential probability of D/2n over its inputs.

Definition 7.2 (Linearity of an S-box). Let S be an n-bit S-box. We define its linear
approximation table (or LAT) as the function `S defined extensively by:

`S(a, b) ∶= ∑
x∈Fn2

(−1)⟨b,S(x)⟩+⟨a,x⟩.

The linearity L of S is defined as:

max
(a,b)≠(0,0)

∣ `S(a, b)∣.

Roughly speaking, the linearity measures the maximum absolute difference between
how many times a non-trivial linear approximation takes the value 1 and how many
times it takes the value 0. For an n-bit S-box, it is therefore twice the difference between
2n−1 and how many times either value is taken. In particular, if we define the bias b of a
probability p as p−1/2, it means that the absolute bias of any linear approximation of an
n-bit S-box of linearity L is upper-bounded by (L /2)/2n. We will in fact mostly use the
alternative notion of squared correlation of linear approximations, where the correlation
of a given approximation is defined as CS(a, b) ∶= `S(a, b)/2n, i.e. twice the bias.

Definition 7.3 (Differential branch number of an S-box). The differential branch number
of an S-box S is:

min
{(a,b)≠(0,0) ∣ δS(a,b)≠0}

wt(a) +wt(b),

where wt(x) is the Hamming weight of x.

Definition 7.4 (Linear branch number of an S-box). The linear branch number of an S-box
S is:

min
{a≠0,b≠0 ∣ `S(a,b)≠0}

wt(a) +wt(b).

Definition 7.5 (Algebraic normal form). Let f ∶ Fn
2 → F2 be an n-bit Boolean func-

tion, its algebraic normal form (or ANF) is defined as the unique polynomial g ∈
F2[x0, x1, . . . xn−1]/⟨x2

i − xi ⟩i<n such that for all x ∈ Fn
2 , f(x) = g(x[0], . . . , x[n − 1]).

Similarly, the ANF of an n-bit S-box S is the sequence of the ANFs of its n constituent
Boolean functions ⟨S(⋅), ei⟩, with (ei) the canonical basis of Fn

2 .

105



7. The Littlun S-box and the Fly block cipher

The previous definitions focused on properties of individual S-boxes; in particular
they involved no key or other kind of parameterisation. As we are eventually interested
in the properties of block ciphers, i.e. families of permutations indexed by a key, we
may also require definitions that average some of the above properties in a meaningful
way. We then get the two following definitions, where we naturally extend the notion of
differential uniformity and linearity to any function rather than just S-boxes.

Definition 7.6 (Maximum expected differential probability of a family of functions). The
Maximum expected differential probability (MEDP) of F ∶ K×{0,1}n → {0,1}n is defined
as:

max
(a,b)≠(0,0)

1
#K ⋅ ∑

k∈K

δF(k,⋅)(a, b)
2n

.

Definition 7.7 (Maximum expected linear potential of a family of functions). TheMaximum
expected linear potential (MELP) of F ∶ K × {0,1}n → {0,1}n is defined as:

max
(a,b)≠(0,0)

1
#K ⋅ ∑

k∈K

⎛
⎝
`F(k,⋅)(a, b)

2n
⎞
⎠

2

.

The MEDP and MELP of (reduced versions of) a block cipher are good indicators
of its resistance against differential and linear cryptanalysis. Unfortunately, it is usually
a hard problem to compute the MEDP and MELP for a non-trivial number of rounds
of a block cipher. However, in the case of SPN ciphers, it is generally easier to derive
upper bounds on the probability and potential of given differential and linear trails (or
characteristics), for which the intermediate differences and linear masks are specified at
every round. For some SPN ciphers, it may even be possible to provide bounds for any
trail on a given number of rounds. These notions are then often used instead of the
MEDP and MELP to argue about the security of the cipher.

In the following, we consider an iterative n-bit block cipher E with round function R.
If we write Rk the round function with pre-addition of a subkey k, i.e. Rk(x) = R(x⊕k),
then the r-round E is defined as E(K,x) = (Rkr−1 ○⋯ ○ Rk0(x)) ⊕ kr, where the tuple
(k0, . . . , kr) is the image of K by some key expansion mapping. We then have:

Definition 7.8 (Differential trail). An r-round differential trail for a block cipher E is an
(r + 1)-tuple (a0, . . . , ar) of n-bit differences. An input x to E is said to follow the trail
for the subkeys (k0, . . . , kr) if ∀ i < r, Rki(x) ⊕Rki(x⊕ ai) = ai+1.
When the key (equivalently the tuple of subkeys) of E is fixed, we call differential trail
probability (DTP) of a trail the probability that it is followed by an input to E .

Definition 7.9 (Linear trail). An r-round linear trail for E is an (r + 1)-tuple (a0, . . . , ar)
of n-bit linear selection masks.
For a fixed key of E , the linear trail correlation (LTC) of a trail is given by:

r−1
∏
i=0

CRki (ai, ai+1).
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In the same spirit as Definition 7.6 and Definition 7.7, we will usually be interested
in the expected values of the DTP and the squared LTC over the choice of the key.

The above definitions are in fact not completely specific to SPN block ciphers. How-
ever, for such ciphers, one can additionally define the notion of active S-box in a trail,
which we define informally as follows:

Definition 7.10 (Active S-box in a trail). An ith-round S-box is active in an r-round
differential (resp. linear) trail (a0, . . . , ar) if it has a non-zero input difference as per ai
(resp. if some of its input bits are selected by the mask ai).

For example, taking the block and S-box size to be respectively 32 and 4 and using
hexadecimal notation, all S-boxes are active in the 2-round trails (0xFFFFFFFF,0xFFFF
FFFF,0xFFFFFFFF) and (0x12345678,0x9ABCDEFE,0xDCBA9876), and only one S-box is
active at every round of the trail (0x10000000,0x30000000,0x00000004).

We can define the weight of a trail (an) as the number of S-boxes active for (an).
Note that whether an S-box is active or not in a trail solely depends on the definition of
the latter and not, say, on subkey values. Consequently, even though the probability of
the differential trails of a block cipher (say) may in fact depend on the key, the possible
weights of trails of non-zero probability are only a consequence of the round function.

If we allow ourselves to make some independence hypotheses, assuming that consec-
utive round functions behave independently of each other, then the number of active
S-boxes in a differential trail can be used to upper-bound its expected probability. This
is expressed informally as the following:

Assumption 7.1. Let (an) be a differential trail of weight w for the SPN block cipher
E which uses a unique b-bit S-box S of differential uniformity D. Call pS ∶= D /2b the
maximum differential probability of S. Then the expected probability over the choice of
K that an input to E(K, ⋅) follows the trail (an) is upper-bounded by (pS)w.

In other words, Assumption 7.1 is a consequence of the assumption that the ex-
pected probability of an r-round differential trail is equal to the product of the expected
probabilities of the one-round trails it is made of, i.e. the so-called Markov assump-
tion [LMM91].

The case of linear trails is treated somewhat similarly. In particular, from Defini-
tion 7.9, the correlation of a trail for a fixed key is easy to compute from the correlation
of the one-round trails it is made of. Hence, we get:

Proposition 7.1. Let (an) be a linear trail of weight w for the SPN block cipher E which
uses a unique b-bit S-box S of linearity L. Call CS ∶= L /2b the maximal absolute corre-
lation of a linear approximation for S. Then, fixing the key K, the absolute correlation
of the trail (an) for E(K, ⋅) is upper-bounded by (CS)w and thus the squared correlation
by (C2

S)w.

Depending on the properties of the S-box and on the block size of a cipher, one can
use the upper bounds from Assumption 7.1 and Proposition 7.1 to set an objective for
the minimum number of active S-boxes in any trail.
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For resistance against differential cryptanalysis, one typically requires trails to have at
least wd differentially active S-boxes so that (pS)wd <D2−n, with n the block size of the
cipher under consideration and D a number. This comes from the fact that differentials
of probability 2−n+1 are bound to exist, and one wishes both that no single trail has a
higher expected probability and more importantly that no set of more than D trails with
a minimum number of active S-boxes and equal starting and ending differences can be
found.

In the case of linear cryptanalysis, one similarly typically requires at least wl linearly
active S-boxes in any trail so that (C2

S)wl < L2−n. This comes from the fact that the data
complexity required to exploit an approximation of correlation C grows with the square
of C, and that we do not want the net number of trails with equal starting and ending
masks, activating the minimum number of S-boxes, and interfering constructively, to be
likely more than L for some fixed keys.

The entire approach based on counting the number of active S-boxes becomes par-
ticularly useful if one is able to use the structure of the round function of a block cipher
to lower-bound the number of differentially and linearly active S-boxes for any trail of a
given number of round. If such a bound can be computed, the objective on the number
of S-boxes then becomes one on the number of rounds.

3 The Littlun S-box construction

3.1 The Lai-Massey structure

Our S-box uses the Lai-Massey structure, which was proposed in 1991 for the design of
the block cipher IDEA [LMM91]. The structure is similar in its objective to a Feistel
or Misty structure (see e.g. [CDL15] for definitions of the Feistel and Misty structures),
as it allows to construct n-bit functions out of smaller components. It is in particular
well-suited to build efficient 8-bit S-boxes from 4-bit S-boxes all the while amplifying
the good cryptographic properties of the 4-bit S-boxes. It was already used as such
for the design of the second S-box of the Whirlpool hash function [BR03] (an early
version of Whirlpool used a randomly-generated S-box) using five 4-bit S-boxes, see
Figure 7.1a, and for the design of the S-box of the Fox block cipher [JV04] which uses a
three-round iterated structure. In our construction, we use only one round of the more
classical variant of the structure, with only three S-boxes, see Figure 7.1b, which allows
nonetheless to square the differential probability and the linearity of the underlying 4-bit
S-box.

The choice of the Lai-Massey structure was mainly motivated by our objective of
building an S-box with a branch number of three, both differential and linear; this will
in turn be useful to design a good lightweight round function. Indeed, it is easy to
see that the S-box will have this property by construction for the differential branch
number as soon as the 4-bit S-boxes have differential branch number three, and such
S-boxes are well-known, see e.g. Serpent [BAK98]. So much cannot be said however
for the linear branch number, as no 4-bit S-box with optimal resistance to differential
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and linear cryptanalysis exists with this property, as demonstrated by an exhaustive
search we performed on the optimal classes described e.g. in [LP07]. In fact, we are not
aware of previous examples of 8-bit S-boxes with this feature either.

Other good properties of the structure are that it yields S-boxes with a circuit depth
of two S-boxes and it allows for efficient vector implementations using SIMD instructions,
see Section B.2. On the downside, it requires the 4-bit S-boxes to be permutations if
we want the 8-bit S-box to be one. Canteaut, Duval and Leurent recently showed how
the absence of such a restriction for Feistel structures could be used to build compact
S-boxes with particularly low differential probability [CDL15]. We should note however
that for the applications we have in mind, see Section 5, the linearity of the S-box is
as important as the differential probability, and the linearity of the S-box of Canteaut
et al. is average, and in particular not better than ours. Finally, we should mention
that the good and bad points of the Lai-Massey structure cited so far are shared with
the Misty structure. Choosing Lai-Massey in our case was mainly due to a matter of
taste, though it is noteworthy that Misty yields S-boxes with a rather sparse algebraic
expression, meaning that the polynomials in the ANF of such S-boxes tend to have many
zero coefficients.

3.2 An instantiation: Littlun-1
We now define Littlun-1, a concrete instantiation of the Lai-Massey structure which
achieves a differential and linear branch number of three. Although we have seen that we
could guarantee this in the differential case by using a 4-bit S-box of differential branch
number three, this is actually not necessary and we use instead a very compact member
of the class 13 of Ullrich et al. [UDI+11]. This S-box uses only 4 non-linear and 4 XOR
gates, which is minimal for an optimal S-box of this size. This leads to an 8-bit S-box
using 12 non-linear and 24 XOR gates. We give the table of the 4-bit S-box “Littlun-
S4” in Figure 7.9 and of the complete 8-bit S-box in Figure 7.10, in Section B.1, and
conclude this section by a summary of the cryptographic properties of Littlun-1.

Proposition 7.2 (Statistical properties). The differential uniformity of Littlun-1 and
of its inverse is 16 and its linearity is 64, as proven by a direct computation. Its DDT
and LAT are shown in Figure 7.7 and Figure 7.8 respectively.

In essence, Proposition 7.2 means that the probability (taken over all the inputs) of
any non-trivial differential relation going through the S-box is upper-bounded by 2−4

and the squared correlation of any non-trivial linear approximation is upper-bounded by
2−4.

Proposition 7.3 (Diffusion properties). The differential and linear branch number of
Littlun-1 and of its inverse is 3.

As we already mentioned, several 4-bit S-boxes from the literature have a differential
branch number of 3, and it is not hard to construct 8-bit S-boxes with this property
from them. This is not the case for the linear branch number, and we find the fact that
Littlun-1 has such a property to be quite more remarkable.
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(a) Lai-Massey as in the Whirlpool sec-
ond S-box
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(b) Lai-Massey as in the Littlun construc-
tion

Figure 7.1 – The Lai-Massey structure

Proposition 7.4 (Algebraic properties). The maximal degree of the ANF of Littlun-1
is 5 in four of the eight output bits, 4 in two other and 3 in the remaining two. The
maximal degree of its inverse is 5 in six of the eight output bits and 4 in the other two.

4 Implementation of Littlun-1

4.1 Hardware implementation

We give a circuit using OR, AND and XOR gates implementing Littlun-S4 in Fig-
ure 7.12 in Section B.3. A hardware implementation of the entire S-box can easily be
deduced by plugging this circuit into the one of Figure 7.1b. As previously mentioned,
Littlun-1 can be implemented with 12 non-linear (OR and AND) gates and 24 XOR
gates. With a typical cell library such as the Virtual Silicon standard cell library, OR and
AND gates cost 1.33 gate equivalent (GE), and XOR gates 2.67 GE. Thus synthesising
the S-box with this library would cost 80 GE.

4.2 Bitsliced software implementation

One of our main objective w.r.t. implementation is to obtain an S-box with an effi-
cient bitsliced implementation in software. This is closely related to the simplicity of
the circuit of the S-box, though not exactly equivalent. We purposefully choose a 4-bit
S-box from the class 13 of Ullrich et al. [UDI+11] because of its very efficient bitsliced
implementation that requires only 9 instructions on a wide variety of platforms. Such
an implementation is given in Figure 7.2. From this, it is easy to obtain an efficient bit-
sliced implementation for the whole S-box, as shown in Figure 7.3. This implementation
typically requires 43 instructions and 13 registers.

110



4. Implementation of Littlun-1

t = b; b |= a; b ^= c; // (B): c ^ (a | b)
c &= t; c ^= d; // (C): d ^ (c & b)
d &= b; d ^= a; // (D): a ^ (d & B)
a |= c; a ^= t; // (A): b ^ (a | C)

Figure 7.2 – Snippet for a bitsliced C implementation of Littlun-S4 with input and
output in registers a, b, c, d (the word holding the most significant bit is taken to be a),
using one extra register t.

t = a ^ e;
u = b ^ f;
v = c ^ g;
w = d ^ h;
S4(t,u,v,w); // uses one more extra register x
a ^= t; e ^= t;
b ^= u; f ^= u;
c ^= v; g ^= v;
d ^= w; h ^= w;
S4(a,b,c,d); // reuses t as extra
S4(e,f,g,h); // reuses u as extra

Figure 7.3 – Snippet for a bitsliced C implementation of Littlun-1, using the code of
Figure 7.2 as subroutine. The input and output registers are a, b, c, d, e, f, g, h (with the
most significant bit in word a), the five extra registers are t, u, v,w, x.

4.3 Masking

The low number of non-linear gates needed to implement Littlun-1 makes it a suitable
choice for applications where counter-measures against side-channel attacks are required.
Indeed, it directly implies a lower cost when using Boolean masking schemes, both
hardware and software, which represent the primitive to be masked as a circuit [ISW03,
CGP+12]. In particular, Littlun-1 is competitive with the S-boxes proposed by Grosso
et al. [GLSV14]: it has the same gate count as the S-box used for Robin and only one
more non-linear and one less XOR gate than the one used for Fantomas. All three S-
boxes are comparable in terms of cryptographic properties. The S-box of Canteaut et al.
is slightly more expensive, requiring two more non-linear gates [CDL15]; it is however
stronger against differential cryptanalysis, its differential uniformity being equal to 8.

One could alternatively consider that the chief non-linear component to take into
account in that context is actually Littlun-S4, the 4-bit S-box underlying Littlun-1,
rather than the full S-box. Indeed, any cryptosystem using Littlun-1 in combination
with an arbitrary linear layer can be re-written as using only Littlun-S4 for its non-
linear part. In that respect, the number of non-linear gates to consider for masking
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would only be 4. One could however object that additional factors need to be taken
into account, such as for instance the total number of application of the S-box in an
execution of the cipher. Yet if we jump a little ahead and consider the block cipher Fly
of Section 5, we can see that in terms of the 4-bit S-box, Fly needs 20× 8× 3 = 480 calls
to Littlun-S4, which is comparable to the 31 × 16 = 496 of Present, discounting the
key-schedule.

The ability to express Littlun-1 only in terms of a 4-bit S-box is also convenient
when considering threshold implementations, although these chiefly apply to hardware
implementations, which are not the focus of this chapter. For instance, it allows one
to benefit from the recent progresses in such protected implementations of small S-
boxes [BNN+15].

We further discuss the cost of masking a concrete block cipher instance using Littlun-
1 in Section 5.3.

4.4 Inverse S-box

The inverse Littlun-1−1 of Littlun-1 is slightly costlier to implement, because of a
more expensive inverse for Littlun-S4. As a circuit, the latter requires 5 XOR gates, 4
non-linear (OR and AND) gates and one NOT gate costing 0.67 GE. The total hardware
cost of Littlun-1−1 is thus 90 GE.

Software bitsliced implementations are also more expensive. We give a snippet for
the inverse of Littlun-S4 in Figure 7.4 that requires 11 instructions and 5 registers.
The complete inverse can be implemented with 49 instructions and 13 registers in a
straightforward adaptation of Figure 7.3. However, because the output registers form a
non-trivial permutation of the input ones, additional instructions may also be needed in
the cases where this cannot be dealt with implicitly.

t = c; c &= b; c ^= d; // (A): d ^ (b & c)
d |= t; d ^= a; // (B): a ^ (c | d)
a &= c; a ^= b; a ^= d; // (C): b ^ B ^ (a & A)
b = ~b; b &= d; b ^= t; // (D): c ^ (~b & B)

Figure 7.4 – Snippet for a bitsliced C implementation of the inverse of Littlun-S4 with
inputs in registers a, b, c, d (the word holding the most significant bit is taken to be a),
using one extra register t. The output is in c, d, a, b.

5 An application: the Fly block cipher
In this section, we present the Fly block cipher as an application of the Littlun-1
S-box. It is a 64-bit block cipher with 128-bit keys. Thanks to the branch number of the
S-box, it is easy to design a round function with good resistance to statistical attacks by
combining its bitsliced application with a simple bit permutation. This results in a cipher
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with a structure similar to Present [BKL+07] with a tradeoff: the S-box is bigger, and
thus more expensive to implement, in particular in hardware, but the permutation is
simpler, and thus cheaper to implement in software. This cipher was designed to be used
in the same cases as Pride, and its chief implementation target is 8-bit microcontrollers.

5.1 Specifications
We first give the specification of the round function RFly of Fly. It takes a 64-
bit block and 64-bit round key as input. Let x ∶= (x0∣∣x1∣∣x2∣∣x3∣∣x4∣∣x5∣∣x6∣∣x7), rk ∶=
(rk0∣∣rk1∣∣rk2∣∣rk3∣∣rk4∣∣rk5∣∣rk6∣∣rk7) be such an input, with xi, rki 8-bit words. The big
endian convention is used to convert from x and rk to the xis and rkis.

Let us first define fi(t) ∶= ιi(t0)∣∣κ(t1)∣∣t2∣∣t3∣∣t4∣∣t5∣∣t6∣∣t7, with κ(x) ∶= x⊕0xFF; ιi(x) ∶=
x ⊕ C(i), C(i) being a round constant produced as the ith iteration of the affine LFSR
C shown in Figure 7.5, initialised with zero. Algebraically speaking, C implements the
mapping x↦ α(x+α7) in F2[α]/⟨α8 +α7 +α3 +α2 +1⟩. Note however that the mapping
of elements of this field to the state of Figure 7.15, or equivalently 8-bit machine words,
uses the inverse ordering of the usual convention, i.e. the highest coefficient is stored in
the LSB. This, as well as the addition of α7 prior to the multiplication by α, is done to
ease software implementations of this round constant generation. An example of such
an implementation is given in Figure 7.15.

flip = r[0] ^ 1; r[n] = r[n + 1], n = 6...0; r[7] = 0;
r[0] = r[0] ^ flip; r[4] = r[4] ^ flip;
r[5] = r[5] ^ flip; r[7] = r[7] ^ flip;

Figure 7.5 – The affine LFSR whose ith iteration starting from a zero state defines the
ith round constant. This pseudo-code assumes an 8-bit state r, whose entry r[0] maps
to the LSB in a machine representation.

We write Arki the addition of the ith round key: Arki(rki, x) ∶= fi(x⊕rki); Bls(x)
a bitsliced application of Littlun-1 such as e.g. the one shown in Figure 7.3, with x0
holding the most significant bits of the input to the S-boxes; and Rot the “Shiftrow”
word-wise rotation with↺ denoting bitwise rotation to the left

Rot(x) ∶= (x0∣∣x1↺1∣∣x2↺2∣∣x3↺3∣∣x4↺4∣∣x5↺5∣∣x6↺6∣∣x7↺7)

which can alternatively be defined at the bit level as the permutation P(i) ∶= (i + 8(i
mod 8)) mod 64 applied to a suitable binary representation of x = b0 . . . b63. Then we
simply have RFly(⋅, ⋅) ∶= Rot ○Bls ○Ark. We give a graphical representation of the
SPN structure of this round function at the bit level in Figure 7.6.

We propose two key-schedules, KS1 and KS2, depending on whether resistance to
related-key attacks is required, in the case of KS2, or not. In order to distinguish
between the two block ciphers, we write Fly for the default case where KS1 is used
and FlyRK when KS2 is used. We describe KS1 first, which in fact performs only an
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S S S S S S S S
rki

Figure 7.6 – The round function of Fly. Bits are numbered left to right from 0 to 63
w.r.t. the bit permutation. The addition of the round constant is omitted.

elementary scheduling: let k ∶= k0∣∣k1 be the 128-bit master key, and k0 (resp. k1) its
first (resp. second) half; then the sequence (rkn) of round keys of KS1 is the simple
alternation of k0 and k0 ⊕ k1 defined as rki ∶= k0 ⊕ i× k1, where i× k1 means the all-zero
key for even values of i and k1 otherwise. A round constant is also added in Ark through
the function fi to prevent self-similarity attacks.

For Fly to be resistant to related-key attacks, we use the same approach as Noekeon
[DPAR00] to define KS2 as follows. Let us denote by Fly(0, ⋅)/12 twelve applications
of the round function of Fly with the all-zero 128-bit key and define k′ ∶= k′0∣∣k′1 =
Fly(0, k0)/12∣∣Fly(0, k1)/12. Then KS2 is defined through FlyRK as FlyRK(k, ⋅) ∶=
Fly(k′, ⋅).

The round function of Fly is applied 20 times, the same as Pride. The entire cipher
can thus finally be defined as Fly(k, ⋅) ∶= Ark(rk20, ⋅) ○RFly(rk19, ⋅) ○ . . . ○RFly(rk1, ⋅) ○
RFly(rk0, ⋅).

Design rationale
The core of Fly is the Littlun-1 S-box, which was designed to have a branch number of
three. This allows to achieve a good diffusion when combining the S-box application with
a simple bit permutation. The latter was chosen so that all eight bits at the output of an
S-box go to one different S-box each; similarly, all input bits come from a different S-box.
Unlike in Present, this permutation also has cycles of different lengths, namely 2 (on 8
values), 4 (on 16) and 8 (on 32). This might reduce the impact of linear and differential
trail clustering. The round constants break the self-similarity and self-symmetry of the
round function (through ι) and the self-symmetry of the S-box (through κ). This latter
symmetry is actually already broken by ι and most of the times by the round keys, but
using an extra constant allows for a simple and clean argument at a negligible cost.

The two components of the round function can be efficiently implemented on an 8-bit
architecture through a bitsliced application of the S-box and word rotations respectively,
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cf. Section 5.3.
The two key-schedules were designed according to different possible scenarios. Most

applications do not require resistance to related-key attacks and a simple alternating key-
schedule is enough in that case. We chose not to use an FX construction as in Pride as
we did not consider the slight gain in efficiency it offers to be worth the generic security
loss it implies. In the spirit of Noekeon, we propose a second key-schedule to offer
resistance to related-key attacks that consists in “scrambling” the master key with a
permutation of good differential uniformity before it is used as in the first key-schedule.

5.2 Preliminary cryptanalysis

We now analyse the security of Fly against various types of attacks. Considering the
similarity of the design with Present and the published analysis on this cipher, the
most efficient attacks on Fly are likely to be variants of classical statistical (differential
and linear) attacks, which we analyse first, in the single-key setting. We then give an
overview of the resistance against other attack techniques.

5.2.1 Statistical attacks
We can use the branch number of Littlun-1 together with the properties of the bit
permutation Rot to easily derive a lower bound on the number of differentially and
linearly active S-boxes. Indeed, as the branch number is 3, we are guaranteed to have
at least 6 active S-boxes every four rounds of any non-trivial differential or linear trail.
This is a consequence of the following proposition:

Proposition 7.5. There is no 3-round trail on Fly activating 1, then n, then 1 S-box,
for any value of n.

Proof. In a round following one round with a single active S-box, all n active S-boxes
are active in a single bit of their input, and consequently each of their outputs activates
at least 2 S-boxes.

Following Section 2, the block size of Fly being 64 bits and the differential unifor-
mity and linearity of its 8-bit S-box being 16 and 64 respectively, we want any differen-
tial trail to have more than 16 active S-boxes to preclude differential distinguishers, as
2−64 = (16/256)16; we also want any linear trail to have more than 16 active S-boxes, as
2−64 = ((64/256)2)16. From Proposition 7.5, this happens in both cases after at most 12
rounds, after which at least 18 S-boxes are guaranteed to be active, both linearly and
differentially. Even by discounting the additional 2 S-boxes and assuming that a distin-
guisher can be found for this amount of rounds, this gives a very comfortable margin of
8 rounds, which we estimate to be much beyond the ability of an attacker to convert the
distinguisher into, say, key-recovery; in particular, this is twice the number of rounds
needed for full diffusion. This also leaves some margin to ensure that even in the case
where Fly would exhibit a strong differential or linear hull effect it would be unlikely
for an attacker to be able to mount a meaningful attack. For instance, after 16 rounds,
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an attacker would need about 232 “optimal” contributing differential trails to obtain a
distinguisher with non-trivial probability, and would still be facing 4 rounds to mount
an attack.

Thus, we conjecture that Fly with 20 rounds offers good resistance to statistical
attacks.

Brief comparison with Present. The best attacks to date on Present are based on
multidimensional linear cryptanalysis [Cho10, BTV16]. These attacks exploit the pres-
ence of linear trails that constantly activate only one S-box per round, i.e. “single-bit
trails”. As there are no such trails in Fly, we believe that these attacks would be less
effective on the latter. Similarly, some other good attacks on Present exploit the fact
that half of the bits of some groups of S-boxes remain in the same group [CS09], and
there is no such property for Fly.

5.2.2 Other attacks
Algebraic attacks. We would like to estimate how many rounds of Fly are necessary
for the degree of the cipher to reach the maximum of 63, as a lower degree could be
exploited in algebraic attacks. Computing the exact degree of an iterated function is a
difficult problem in general, but we should at least compute the upper bound of Boura,
Canteaut and De Cannière to estimate how quickly the degree increases [BCD11]. In
our case, this bound states that deg(G ○ F ) ≤ n − (n − deg(G))/(n0 − 2), where n is
the block size and n0 the size of the S-box. Combining this bound with the fact that
the degree of the S-box is 5, and thus that deg(Bls ○F ) ≤ 5 ⋅ deg(F ), we can see that
5 rounds of Fly are necessary to reach a full degree; this increases to 6 rounds if we
take 3 as the degree of the S-box, which is the minimum degree of its projections on one
output bit. If we assume the latter bound to be an equality, any algebraic distinguisher
on more than about twice this number, i.e. twelve rounds, is unlikely to exist. Even
when relaxing this latter assumption, 20 rounds seem to be well enough to make Fly
resistant to algebraic attacks.

Meet-in-the-middle attacks. We analysed how many rounds are necessary to ensure that
every bit of the intermediate ciphertext depends on every bit of the key, as a basic way
to estimate the resistance of Fly to meet-in-the-middle (MitM) attacks, which typically
exploit the opposite effect. We did this by performing random trials with 220 pairs of
random keys and random plaintexts and found that this happens after at most 5 rounds.
Any MitM attack on more than about twice this number of rounds is unlikely to exist,
and we therefore conjecture that Fly is resistant to such attacks. Which key-schedule
is used is irrelevant, as KS2 is equivalent to using KS1 with a different effective master
key, which a MitM attacker can recover in the exact same way as the true master key
produced by KS1.

Invariant subspace attacks. Invariant subspace attacks exploit the propensity of a round
function to map inputs from a certain non-trivial affine coset to another, when in addition
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a trivial key-schedule and sparse round constants are used [LMR15]. As the two latter
points appear in Fly, we analysed its round function in order to see if it could also meet
the first, critical condition. We ran the automated search tool provided by the authors
of [LMR15]1 for about 236 iterations without finding any invariant subspace; this shows
that with good probability, no such subspace of dimension greater than 64 − 36 = 28
exists.

Integral attacks, impossible differentials, zero correlation. We did not analyse in detail
the security of Fly against integral attacks, nor against impossible differentials and
zero correlation attacks. Indeed, none of these techniques seem to be able to attack a
significant number of rounds of bit-oriented ciphers such as Present (see e.g. [ZRHD08,
CJF+16, BC16], where the obtained distinguishers reach significantly less rounds than
the best statistical ones) or Fly and we do not consider them to be a threat for our
cipher.

Related-key attacks. We now study the resistance of Fly against XOR-induced, differ-
ential related-key attacks. Fly equipped with the simple key-alternating key-schedule
KS1 offers nearly no resistance to related-key attacks. With KS2, however, an attacker
is unable to control the differences between two different effective master keys k′0∣∣k′1 and
k̃′0∣∣k′1 with a probability much better than 2−2⋅64, as each difference pair (k0, k̃0) and
(k1, k̃1) goes through a permutation with maximum differential probability not signifi-
cantly above 2−64. Furthermore, unlike single-key differential attacks, which introduce
differences on the plaintext, we do not expect an attacker to easily be able to force a
change of keys if their effective master keys fail to verify a difference relation. Thus,
even if a differential on KS2 with probability p higher than 2−128 were found, it would
only lead to a related-key attack on a weak-key class of size ≈ p/2−128 or to an attack
requiring a huge amount of keys. Putting everything together, we believe FlyRK to be
resistant to XOR-induced related-key attacks.

Known- and chosen-key distinguishers, compression function mode. We do not claim any
resistance of Fly against known-key and chosen-key distinguishers. We do not make
any claim about its suitability to build a cryptographically strong compression function.

5.3 Implementation

5.3.1 Microcontrollers implementations
The S-box application can take advantage of the bitsliced expression of Littlun-1 from
Section 4, which can easily be implemented with instructions available on the cheapest
ATtiny chips [Atm07]. It is even possible to save 2 instructions from the 43 quoted in
Section 4 on higher-end architectures such as the ATmega family [Atm13] by using word-
wise 16-bit movw instructions, resulting in the implementation given in Figure 7.13 of

1Available at http://invariant-space.gforge.inria.fr/.
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Section C. A straightforward implementation of the inverse S-box application requires
59 instructions —a significant overhead of 44%. However, as a lightweight cipher is
precisely used in cases where the available resources are limited, we would mostly expect
it to be used in a mode of operation that only uses encryption, such as e.g. CTR for
encryption only or CLOC [IMGM14] for authenticated-encryption. Hence we do not
believe that a slower inverse is a significant drawback.

Even though the AVR instruction set does not include rotations by an arbitrary
constant, the permutation Rot can still be compactly implemented with only 11 in-
structions, as shown in Figure 7.14 of Section C.

The entire substitution and permutation layers of Fly can therefore be implemented
with only 52 instructions on ATmega (54 on ATtiny), which is 4 less than the 56 of
Pride [ADK+14], while at the same time having at least 1.5 times more equivalent
active S-boxes every four rounds: there are at least four active 4-bit S-boxes of maximum
differential probability 2−2 and best squared correlation 2−2 every two rounds of Pride
and there are at least 6 active 8-bit S-boxes of maximum differential probability 2−4 and
best squared correlation 2−4 every four rounds of Fly.

On-the-fly computation of one round-key of the key-schedule KS1 can be done in 8
instructions. The complete key expansion and round constant addition can be done in
24 instructions as shown in Figure 7.15.

The total round function of Fly including the key-schedule can thus be implemented
in 76 instructions, which is eight more than Pride. Note however that the conjectured
security margin of Fly is much larger, and unlike Pride, its resistance to generic attacks
does not decrease with the amount of data available to the adversary. In contrast, Pride
uses an FX construction, where one half of its 128-bit key is only used for pre- and post-
whitening. This leads to a simple way to merge on-the-fly round-key generation with the
round function, but significantly degrades the security of the cipher to generic attacks
from 128 bits to 128−log(D), with D the amount of data available to an attacker [KR01],
while also leading to more efficient time-memory-data trade-offs [Din15].

5.3.2 Masked implementations
We have just considered the good performance of Fly on AVR processors. However,
on such platforms, discounting the overhead of protection against side-channel attacks
may be misleading. Indeed, these devices are rather prone to leakage, and it might not
be entirely reasonable to deploy unprotected cryptosystems on them [SOR+14]. Conse-
quently, we consider here the cost of masked implementations of Fly at various orders,
and compare them to Pride and the “NSA ciphers” Simon and Speck [BSS+13] in the
same setting. All the masked implementations have been generated automatically by
using the compiler of Barthe et al. [BBD+15]. This compiler takes a C implementation of
a cipher as an input and generates C code for a corresponding masked implementation.
This code is then instrumented to count the number of basic instructions, e.g. logical
and arithmetic, executed in the encryption of one block.

We report the cost in terms of number of instructions for the studied ciphers and
configurations in Table 7.1. The first column gives the name of the cipher, followed
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Cipher Unmasked Order 2 Order 4 Order 7 Order 11

Fly (8) 1909 10741 27253 66421 145525

Simon64-128 (8) 3400 14056 30344 65336 131704

Simon64-128 (32) 1012 3926 8240 17336 34364

Pride (8) 1374 22922 60550 150592 333368

Speck64-128 (32) 486 48198 132652 337843 757983

Table 7.1 – Count of operations needed to encrypt one block with each cipher, masked
at various orders.

by the basic word-size used in the implementation; for 8-bit microcontrollers, the most
relevant value for this number is understandingly 8. The next columns give the number
of instructions over the same word-size as the cipher taken to encrypt one block with
an unmasked implementation, and then masked implementations at various orders; an
order-t implementation ensures security in the t-probing model [ISW03].

From these results, a first important remark we can make is that neither Pride nor
Speck seem to be well suited to masked implementations. This is due to their conjoined
use of bitwise operations and integer modular addition, namely eighty 8-bit additions for
Pride used in its key-schedule and fifty-four 32-bit additions for Speck64-128. Masking
bitwise operations can be done relatively efficiently by using a Boolean sharing scheme
but it is costly to do so with an additive scheme, while the converse holds for modular
additions. In practice, the compiler of Barthe et al. uses the algorithm of Coron et al.
from CHES 2014 to mask modular additions with a Boolean scheme [CGV14]. If we
were to restrict ourselves to first-order masking, it would be possible to use the more
efficient algorithm of Coron et al. from FSE 2015 [CGTV15].

On the contrary, both Fly and Simon are quite efficient to mask with a Boolean
scheme. Note that we implemented Simon64-128 in two ways: one using 8-bit words,
suitable for 8-bit microcontrollers and thus directly comparable with the intended use of
Fly, and one using 32-bit words which is more straightforward in a way as all instances
of Simon on 2n-bit blocks can be expressed naturally with n-bit arithmetic.

On 8-bit platforms, our unmasked implementation of Fly is more efficient than
Simon64-128. This advantage is maintained up to a small number of shares, but starting
from 8, i.e. an implementation secure at order 7, Simon becomes more efficient. This
behaviour can be explained by the breakdown of the cost for the two ciphers: although
an unmasked Simon64-128 is costlier than Fly overall, our masked implementation of
the former uses only 176 refresh and and operations, while Fly needs 240. As the cost
of these operations is quadratic in the number of shares, implementing Simon at high
order becomes cheaper than implementing Fly, but the latter starts with a significant
initial advantage.

In conclusion both Fly and Simon are well suited to masked implementations on
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8-bit microcontrollers. While the latter is the most efficient of the two for 7+-order
implementations, Fly is cheaper in the in our opinion more relevant case of low-order
ones.

We give the code of a masked version of Fly in Section F.

A Complement on the properties of Littlun-1

Figure 7.7 – DDT of Littlun-1 .
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Figure 7.8 – LAT of Littlun-1 .

B Examples of implementation of Littlun-1

B.1 Tables for Littlun-1 and Littlun-S4

uint8_t littlun1_s4[16] =
{0x0, 0xa, 0x4, 0xf, 0xc, 0x7, 0x2, 0x8,
0xd, 0xe, 0x9, 0xb, 0x5, 0x6, 0x3, 0x1};

Figure 7.9 – The 4-bit S-box Littlun-S4 used in Littlun-1 as a C array
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uint8_t littlun1[256] =
{0x00, 0x9b, 0xc2, 0x15, 0x5d, 0x84, 0x4c, 0xd1,
0x67, 0x38, 0xef, 0xb0, 0x7e, 0x2b, 0xf6, 0xa3,
0xb9, 0xaa, 0x36, 0x78, 0x2f, 0x6e, 0xe3, 0xf7,
0x12, 0x5c, 0x9a, 0xd4, 0x89, 0xcd, 0x01, 0x45,
0x2c, 0x63, 0x44, 0xde, 0x02, 0x96, 0x39, 0x70,
0xba, 0xe4, 0x18, 0x57, 0xa1, 0xf5, 0x8b, 0xce,
0x51, 0x87, 0xed, 0xff, 0xb5, 0xa8, 0xca, 0x1b,
0xdf, 0x90, 0x6c, 0x32, 0x46, 0x03, 0x7d, 0x29,
0xd5, 0xf2, 0x20, 0x5b, 0xcc, 0x31, 0x04, 0xbd,
0xa6, 0x41, 0x8e, 0x79, 0xea, 0x9f, 0x68, 0x1c,
0x48, 0xe6, 0x69, 0x8a, 0x13, 0x77, 0x9e, 0xaf,
0xf3, 0x05, 0xcb, 0x2d, 0xb4, 0xd0, 0x37, 0x52,
0xc4, 0x3e, 0x93, 0xac, 0x40, 0xe9, 0x22, 0x56,
0x7b, 0x8d, 0xf1, 0x06, 0x17, 0x62, 0xbf, 0xda,
0x1d, 0x7f, 0x07, 0xb1, 0xdb, 0xfa, 0x65, 0x88,
0x2e, 0xc9, 0xa5, 0x43, 0x58, 0x3c, 0xe0, 0x94,
0x76, 0x21, 0xab, 0xfd, 0x6a, 0x3f, 0xb7, 0xe2,
0xdd, 0x4f, 0x53, 0x8c, 0xc0, 0x19, 0x95, 0x08,
0x83, 0xc5, 0x4e, 0x09, 0x14, 0x50, 0xd8, 0x9c,
0xf4, 0xee, 0x27, 0x61, 0x3b, 0x7a, 0xa2, 0xb6,
0xfe, 0xa9, 0x81, 0xc6, 0xe8, 0xbc, 0x1f, 0x5a,
0x35, 0x72, 0x99, 0x0a, 0xd3, 0x47, 0x24, 0x6d,
0x0b, 0x4d, 0x75, 0x23, 0x97, 0xd2, 0x60, 0x34,
0xc8, 0x16, 0xa0, 0xbb, 0xfc, 0xe1, 0x5e, 0x8f,
0xe7, 0x98, 0x1a, 0x64, 0xae, 0x4b, 0x71, 0x85,
0x0c, 0xb3, 0x3d, 0xcf, 0x55, 0x28, 0xd9, 0xf0,
0xb2, 0xdc, 0x5f, 0x30, 0xf9, 0x0d, 0x26, 0xc3,
0x91, 0xa7, 0x74, 0x1e, 0x82, 0x66, 0x4a, 0xeb,
0x6f, 0x10, 0xb8, 0xd7, 0x86, 0x73, 0xfb, 0x0e,
0x59, 0x2a, 0x42, 0xe5, 0x9d, 0xa4, 0x33, 0xc7,
0x3a, 0x54, 0xec, 0x92, 0xc1, 0x25, 0xad, 0x49,
0x80, 0x6b, 0xd6, 0xf8, 0x0f, 0xbe, 0x7c, 0x11};

Figure 7.10 – The Littlun-1 S-box as a C array

B.2 SIMD software implementation of Littlun-1

In the context of 4 to 8-bit S-boxes, the Lai-Massey structure of the Littlun con-
struction also allows to conveniently use vector Single Instruction Multiple Data (or
SIMD) instructions for efficient implementations. We discuss here an implementation
of Littlun-1 based mostly on the pshufb instruction from Intel’s SSSE3 instruction
set. The pshufb instruction can easily be used in an implementation either by directly
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writing the relevant part of the program in assembler or by using compiler intrinsics
for a language such as C. In the latter case, the intrinsic corresponding to the use of
pshufb is usually named _mm_shuffle_epi8. We give a small function implementing
the Littlun-1 S-box using C intrinsics in Figure 7.11. Even without further tuning
of the code, this function compares favourably with vector implementations of other S-
boxes in terms of efficiency. For instance, it needs about half the number of instructions
of Hamburg’s hand-written vector implementation of the AES S-box [Ham09], although
this must be moderated by the fact that the AES S-box is cryptographically stronger.

__m128i littlun_ps(__m128i x)
{

__m128i xlo, xhi, xmid;

__m128i LO_MASK = _mm_set1_epi8(0x0f);
__m128i LO_SBOX = _mm_set_epi32(0x01030605, 0x0b090e0d, 0x0802070c,

0x0f040a00);↪

__m128i HI_SBOX = _mm_set_epi32(0x10306050, 0xb090e0d0, 0x802070c0,
0xf040a000);↪

xhi = _mm_srli_epi16(x, 4);
xhi = _mm_and_si128(xhi, LO_MASK);
xlo = _mm_and_si128(x, LO_MASK);
xmid = _mm_xor_si128(xlo, xhi);

xmid = _mm_shuffle_epi8(LO_SBOX, xmid);
xlo = _mm_xor_si128(xlo, xmid);
xhi = _mm_xor_si128(xhi, xmid);

xlo = _mm_shuffle_epi8(LO_SBOX, xlo);
xhi = _mm_shuffle_epi8(HI_SBOX, xhi);
x = _mm_xor_si128(xlo, xhi);

return x;
}

Figure 7.11 – Snippet for an SSE C implementation of Littlun-1 using compiler intrin-
sics.

B.3 Hardware circuit for Littlun-S4
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t = a

d

c

b

a

Figure 7.12 – A circuit implementation of Littlun-S4. The symbols , and rep-
resent the AND, OR and XOR gates respectively.

C AVR implementation of the Fly round function
We give pseudo AVR assembly code for the S-box layer, the permutation and on-the-fly
computation of the key-schedule of Fly. All the state, key and temporary variables fit
in the 32 registers of an ATtiny or ATmega.

; input/output in s0,...,s7 (with MSBs in s0)
; temporary values held in t0,...,t4
; top XOR
movw t0, s0 ; moves t1:s0 <- s1:s0
movw t2, s2
eor t0, s4
eor t1, s5
eor t2, s6
eor t3, s7
; middle S-box
mov t4, t1
or t1, t0
eor t1, t2
and t2, t4
eor t2, t3
and t3, t1
eor t3, t0
or t0, t2
eor t0, t4
; bottom XOR
eor s0, t0
eor s1, t1
eor s2, t2
eor s3, t3
eor s4, t0
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eor s5, t1
eor s6, t2
eor s7, t3
; bottom S-boxes
mov t0, s1
or s1, s0
eor s1, s2
and s2, t0
eor s2, s3
and s3, s1
eor s3, s0
or s0, s2
eor s0, t0

mov t0, s5
or s5, s4
eor s5, s6
and s6, t0
eor s6, s7
and s7, s5
eor s7, s4
or s4, s6
eor s4, t0

Figure 7.13 – The Littlun-1 S-box on ATmega, using 41 instructions.

; input/output in s0,...,s7
rol s1
rol s2
rol s2
swap s3
ror s3
swap s4
swap s5
rol s5
ror s6
ror s6
ror s7

Figure 7.14 – The Rot permutation on ATmega/ATtiny, using 11 instructions.
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; key input in k0,...,k15
; cipher state in s0,...,s7
; round constant in c0
; temporary register in t0

; add the current round key & round constant to the state
eor s0, k0
eor s1, k1
eor s2, k2
eor s3, k3
eor s4, k4
eor s5, k5
eor s6, k6
eor s7, k7

eor s0, c0
eor s1, 255

; update k0,...,k7 to the next round key
eor k0, k8
eor k1, k9
eor k2, k10
eor k3, k11
eor k4, k12
eor k5, k13
eor k6, k14
eor k7, k15

; update c0 to the next round constant
mov t0, c0
andi t0, 1
dec t0
andi t0, 177
lsr c0
eor c0, t0

Figure 7.15 – Key addition, and the KS1 key-schedule on ATmega/ATtiny, using 24
instructions.
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Taken together, Figure 7.13, Figure 7.14 and Figure 7.15 entirely define the round
function of Fly. They thus demonstrate that true to its lightweight nature, Fly can be
implemented in a very compact way. This implementation is also easy to obtain from
the description of the cipher, and no particular optimisation work is necessary to derive
it.

D Hardware implementation of Fly

Fly was not designed to be particularly efficient in hardware, and there are clearly better
alternatives in that setting. Thus we did not implement Fly in hardware, but it might
be informative to very roughly estimate the cost (in GE) of such an implementation.
This can be done by looking at the cost of Present, given the similarity of their struc-
tures. A round-based ASIC implementation of Present-128 can be done for 1884 GE
[Pos09], of which 27 × 16 are dedicated to implementing the 16 S-boxes. If we make the
assumption that the key-schedule of Fly does not use significantly more area than the
one of Present-128, we can estimate that a similar round-based implementation of Fly
would cost in the area of 1884 − 27 × 16 + 80 × 8 = 2092 GE, meaning that the overhead
is about 11%.

E Test vectors for Fly

All numbers are given in big endian, i.e. those are arrays of bytes, with the byte of
lowest address on the left.

k0: 0x0000000000000000 k1: 0x0000000000000000
p : 0x0000000000000000
FLY(k0||k1,p) : 0x40A942D3FB302724

k0: 0x0001020304050607 k1: 0x08090A0B0C0D0E0F
p : 0xF7E6D5C4B3A29180
FLY(k0||k1,p) : 0x0D3FE2BF9650AE34

k0: 0x0000000000000000 k1: 0x0000000000000000
p : 0x0000000000000000
FLY(0,k0)/12 : 0x228F5762975E5B43
FLY(0,k1)/12 : 0x228F5762975E5B43
FLY_RK(k0||k1,p) : 0x7C5B37DC56F4829A

k0: 0x0001020304050607 k1: 0x08090A0B0C0D0E0F
p : 0xF7E6D5C4B3A29180
FLY(0,k0)/12 : 0x68F5FC8290A95219
FLY(0,k1)/12 : 0x58F242AC38C00E6B
FLY_RK(k0||k1,p) : 0x8EE2EA8B0A63DE6D
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F C masked implementation of Fly
We give here the code of a masked version of the Littlun-1 S-box and of the Fly block
cipher in Figure 7.17 and Figure 7.18 respectively. These implementations use masked
versions of basic logical operations defined in Figure 7.16. This further shows that Fly
can easily be implemented and that its structure does not need to be changed if masking
is added.

typedef uint8_t bint8_t[NUM_SHARES];

#define NOT(x) (~x)
#define XOR(x,y) (x ^ y)
#define AND(x,y) (x & y)

/* Masked logical NOT */
void bint8_not(bint8_t r, bint8_t a) {

r[0] = NOT(a[0]);
// This can be removed if we know that a and r are equal
memcpy(r+1, a+1, NUM_SHARES - 1);
return;

}

/* Masked exclusive OR */
void bint8_xor(bint8_t r, bint8_t a, bint8_t b) {

int i;
for (i = 0; i < NUM_SHARES; i++) r[i] = XOR(a[i], b[i]);
return;

}

/* Masked exclusive OR with a public value */
void bint8_xor_pub(bint8_t r, bint8_t a, uint8_t b) {

r[0] = XOR(a[0], b);
memcpy(r+1, a+1, NUM_SHARES - 1);
return;

}

/* Masked logical AND */
void bint8_and(bint8_t rc, bint8_t a,bint8_t b) {

int i, j;
uint8_t zij, zji, tmp;
bint8_t r;

// Diagonal
for (i = 0; i < NUM_SHARES; i++) {
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r[i] = AND(a[i],b[i]);
}
// Triangles + Row-Wise Sums
for (i = 0; i < NUM_SHARES; i++) {

for (j = i + 1; j < NUM_SHARES; j++) {
zij = uint8_rand();
zji = AND(a[i],b[j]);
zji = XOR(zij,zji);
tmp = AND(a[j],b[i]);
zji = XOR(zji,tmp);
r[i] = XOR(r[i],zij);
r[j] = XOR(r[j],zji);

}
}

memcpy(rc,r,NUM_SHARES);

return;
}

/* Masked rotation */
void bint8_rotl(bint8_t r, bint8_t a, uint8_t b) {

int i;
for (i = 0; i < NUM_SHARES; i++) r[i] = ROTL8(a[i], b);
return;

}

/* Masked logical OR as a series of NOTs and ANDs */
void bint8_or (bint8_t r, bint8_t x, bint8_t y) {

bint8_t aux, x0, y0;

bint8_not(x0, x);
bint8_not(y0, y);
bint8_and(aux, x0, y0);
bint8_not(r, aux);
return;

}

/* The mask-refreshing function */
void bint8_refresh(bint8_t r, bint8_t a) {

int i, j;
uint8_t aux;
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memcpy(r,a,NUM_SHARES);

for (i = 0; i < NUM_SHARES; i++) {
for (j = i + 1; j < NUM_SHARES; j++) {

aux = uint8_rand();
r[i] = XOR(r[i], aux);
r[j] = XOR(r[j], aux);

}
}

return;
}

Figure 7.16 – Masked implementations of logical operations.

The masked implementations of logical operations defined in the above code can be
used to implement masked version of any logical circuit. It can be directly observed
from these functions that the cost of a masked XOR is linear in the number of shares
NUM_SHARES, as can be seen in bint8_xor, while it is quadratic for the non-linear AND
function bint8_and.

The masked implementation of the Littlun S-box shown in the next Figure 7.17
follows in a straightforward way the standard bitsliced implementation of Figure 7.3.
The main difference is that the masked versions of Figure 7.16 are used to implement
the logical operations and that regular calls to bint8_refresh need to be made to refresh
the random masks.

void s8 (bint8_t x[8]) {
bint8_t t, a, b, c, d, aux;

bint8_xor(a, x[0], x[4]);
bint8_xor(b, x[1], x[5]);
bint8_xor(c, x[2], x[6]);
bint8_xor(d, x[3], x[7]);
bint8_copy(t, b);
bint8_refresh(aux, a);
bint8_or(b, b, aux);
bint8_xor(b, b, c);
bint8_refresh(aux, t);
bint8_and(c, c, aux);
bint8_xor(c, c, d);
bint8_refresh(aux, b);
bint8_and(d, d, aux);
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bint8_xor(d, d, a);
bint8_refresh(aux, c);
bint8_or(a, a, aux);
bint8_xor(a, a, t);
bint8_xor(x[0], x[0], a);
bint8_xor(x[1], x[1], b);
bint8_xor(x[2], x[2], c);
bint8_xor(x[3], x[3], d);
bint8_xor(x[4], x[4], a);
bint8_xor(x[5], x[5], b);
bint8_xor(x[6], x[6], c);
bint8_xor(x[7], x[7], d);
bint8_copy(t, x[1]);
bint8_refresh(aux, x[0]);
bint8_or(x[1], x[1], aux);
bint8_xor(x[1], x[1], x[2]);
bint8_refresh(aux, t);
bint8_and(x[2], x[2], aux);
bint8_xor(x[2], x[2], x[3]);
bint8_refresh(aux, x[1]);
bint8_and(x[3], x[3], aux);
bint8_xor(x[3], x[3], x[0]);
bint8_refresh(aux, x[2]);
bint8_or(x[0], x[0], aux);
bint8_xor(x[0], x[0], t);
bint8_copy(t, x[5]);
bint8_refresh(aux, x[4]);
bint8_or(x[5], x[5], aux);
bint8_xor(x[5], x[5], x[6]);
bint8_refresh(aux, t);
bint8_and(x[6], x[6], aux);
bint8_xor(x[6], x[6], x[7]);
bint8_refresh(aux, x[5]);
bint8_and(x[7], x[7], aux);
bint8_xor(x[7], x[7], x[4]);
bint8_refresh(aux, x[6]);
bint8_or(x[4], x[4], aux);
bint8_xor(x[4], x[4], t);
return;

}

Figure 7.17 – C masked implementation of the Littlun-1 S-box.
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The masked implementation of Fly given in Figure 7.18 is a simple implementation
of the cipher whose only notable fact is that it uses a masked implementation for the
S-box.

void fly (bint8_t x[8], bint8_t k[16]) {
uint8_t rcon, t, i, j, l;

rcon = 0;
for(i = 0; i < 20; i++) {

for(j = 0; j < 8; j++) {
bint8_xor(x[j], x[j], k[j]);

}
bint8_xor_pub(x[0], x[0], rcon);
bint8_xor_pub(x[1], x[1], 0xFF);
s8(x);
for(l = 1; l < 8; l++) {

bint8_rotl(x[l], x[l], l);
}
t = rcon & 1;
t = t - 1;
t = t & 177;
rcon = rcon >> 1;
rcon = rcon ^ t;
for(j = 0; j < 8; j++) {

bint8_xor(k[j], k[j], k[8 + j]);
}

}
for(j = 0; j < 8; j++) {

bint8_xor(x[j], x[j], k[j]);
}
bint8_xor_pub(x[0], x[0], rcon);
bint8_xor_pub(x[1], x[1], 0xFF);
return;

}

Figure 7.18 – C masked implementation of Fly.
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Part Three

New attacks on SHA-1

Overview
The SHA-1 hash function was one of the first widely-deployed hash functions. It was
designed by the NSA in 1995 as a modified version of 1993’s SHA-0, which itself was
more loosely based on 1990’s MD4.

In 2005, Wang et al. presented the first major attack on SHA-1, giving a method
to find collisions for the hash function in time equivalent to ≈ 269 evaluations of the
compression function, which is significantly faster than the ≈ 280 required by a generic
process. However, the high cost of the attack implied that no explicit collision was
computed at the time. This remains the case today, even if improvements to the attack
and ever more efficient hardware would make such an endeavour more affordable than
it was in 2005. The considerable amount of work that followed Wang et al.’s original
contribution then mostly focused on first getting a better understanding of the attack
process, and secondly on bringing innovations allowing to explicitly provide collisions for
reduced versions of SHA-1 with the highest number of steps.

Considering the efficient collision attacks developed since 2005, it may seem remark-
able that SHA-1 in fact still offers a comfortable security margin against first preimage
attacks. Until our own work, the attack reaching the highest number of steps was due to
Knellwolf and Khovratovich, who showed in 2012 how to attack 57/80 of the function,
with an estimated complexity of 2158.8 evaluations of the compression function.

The third and last part of this thesis describes new attacks on SHA-1.
We start by presenting explicit collision attacks for the full compression function of

SHA-1. While this comes short of a practical attack on the hash function, this is the
first explicit result on SHA-1 for a standard security notion. Furthermore, the efficient
implementation framework that was developed for this work could also be reused for
hash function attacks, which have a very similar and in some respect simpler structure
than our freestart case.

Collision attacks on SHA-1 à la Wang have a rather specific structure, full of small
technicalities. Thus, after briefly introducing SHA-1 in Chapter 8, we start with a pre-
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sentation of this topic in Chapter 9, that we hope to be self-contained. Our contributions
on freestart collisions are presented next in Chapter 10.

We then conclude this thesis by presenting in Chapter 11 the current best preimage
attacks on SHA-1, in terms of number of attacked steps. By extending the framework
developed by Knellwolf and Khovratovich to higher-order differential attacks, we are able
to increase by five the number of steps of SHA-1 for which a preimage can be computed
faster than with a generic method.
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Chapter 8
The SHA-1 hash function

1 Notation

We start by introducing some notation that is used through this entire part. Table 8.1
gives the meaning of various standard symbols and Table 8.2 shows the signification of
the symbols used to denote bit differences between two states. Additionally, we use the
following conventions: SHA-1 states, messages, and expanded messages are respectively
denoted by A,M, W; for a variable x, the corresponding variable related by a specific
difference is noted x̃, the difference itself is denoted by ∆(x, x̃) or ∆x; two different
variables of the same type are noted x, x′ when their difference is not known; a variable
that can be seen as an array can have its words accessed through a subscript, indices
starting from zero, e.g. x2 is the third word of x; a variable that can be seen as a fixed-
size binary word can have its bits accessed through a bracket notation, indices starting
from zero, e.g. x[31] is the thirty-second bit of x; numbers written in hexadecimal use
a fixed-space font and the 0x prefix, e.g. 0x1337; we sometimes also write numbers in
base two with a subscript 2, e.g. 10102, in the case where the basis cannot immediately
be inferred. Finally, “∶=” is used to denote equality by definition. Various additional
shorthands are introduced throughout the text.

2 The SHA-1 hash function

This section gives a brief description of the SHA-1 hash function, going again over some
features already presented in Chapter 4. We refer to the most recent NIST standard
document [NIS15a] for a more thorough presentation.

SHA-1 is a hash function from the MD-SHA family which produces digests of 160
bits. Its high-level structure follows the Merkle-Damgård framework [Mer89, Dam89]:
the input message to the function is first padded to a length multiple of the block size,
which is 512 bits, defining k similarly-sized blocks. Each block mi is then fed to a
compression function H which is used to update a 160-bit chaining value ci: ci+1 ∶=
H(ci,mi). The first chaining value c0 is a predefined constant set to an initial value
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8. The SHA-1 hash function

Table 8.1 – Meaning of standard symbols.

Symbol Meaning

⊕ Bitwise exclusive or
+ Modular addition
⊞ Modular addition, word-wise modular addition
− Modular subtraction
∨ Bitwise logical or
∧ Bitwise logical and
¬ Bitwise complementation
↺ r Bit rotation by r to the left
↻ r Bit rotation by r to the right

Table 8.2 – Meaning of the bit difference symbols, for a symbol located on At[i]. The
same symbols are also used for W.

Symbol Condition on (A,Ã)

○ At[i] = Ãt[i]
● At[i] ≠ Ãt[i]
▴ At[i] = 0, Ãt[i] = 1
▾ At[i] = 1, Ãt[i] = 0
▿ At[i] = Ãt[i] = 0
▵ At[i] = Ãt[i] = 1

☆ At[i] = Ãt[i] = At−1[i]
★ At[i] = Ãt[i] ≠ At−1[i]
◇ At[i] = Ãt[i] = (At−1 ↻ 2)[i]
◆ At[i] = Ãt[i] ≠ (At−1 ↻ 2)[i]
◽ At[i] = Ãt[i] = (At−2 ↻ 2)[i]
◾ At[i] = Ãt[i] ≠ (At−2 ↻ 2)[i]

∗ No condition on At[i], Ãt[i]

IV given in the specifications of the function, and the last value ck is the final output
of the hash function. The padding rule of SHA-1 is a straightforward application of
Merkle-Damgård strengthening; it is at least 65-bit long and is made of one “1” bit
followed by a possibly zero number of “0” bits, and the length of the message to be
hashed (without the padding) in bits as a 64-bit integer. The value of the IV is given
in Table 8.3 as five 32-bit words; each of these words initialises one of the five internal
registers of the compression function, described below. Note that neither the padding
nor the IV actually play any role in our attacks.

Similarly to other members of the MD-SHA family, the compression function H
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2. The SHA-1 hash function

Table 8.3 – The initial value (IV ) of SHA-1.

A0:0x67452301 B0:0xefcfab89 C0:0x98badcfe D0:0x10325476 E0:0xc3d2e1f0

is built around an ad hoc block cipher E used in a Davies-Meyer construction. The
block cipher itself is a five-branch generalised Feistel network using an Add-Rotate-
XOR “ARX” step function with the addition of two non-linear Boolean functions, see
Table 8.4. In its full version, the step function is iterated 80 times, divided in four rounds
of 20 steps.

The internal state of E consists of five 32-bit registers (Ai,Bi,Ci,Di,Ei); at each step,
a 32-bit expanded message word Wi derived from a message block m is used to update
the five registers:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai+1 = (Ai↺ 5) + ϕi(Bi,Ci,Di) + Ei +Ki +Wi

Bi+1 = Ai
Ci+1 = Bi↻ 2
Di+1 = Ci
Ei+1 = Di

,

with Ki a constant and ϕi one of three possible bitwise Boolean functions, see Table 8.4
for their specifications. We give a graphical representation of this step function in Fig-
ure 8.1. From this figure and the definition of the function, one can notice that all
updated registers except Ai+1 are just rotated copies of another; thus it is possible to
equivalently express SHA-1’s step function in a recursive way, using only past values of
the register A. The definition then becomes:

Ai+1 = (Ai↺ 5) + ϕi(Ai−1,Ai−2 ↻ 2,Ai−3 ↻ 2) + (Ai−4 ↻ 2) + Ki +Wi. (8.1)

With this notation, the output of one application of the compression function is made
of the possibly rotated last five state words, A76 . . .A80.

Table 8.4 – Boolean functions and constants of SHA-1.

round step i ϕi(x, y, z) Ki

1 0 ≤ i < 20 ϕIF = (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
2 20 ≤ i < 40 ϕXOR = x⊕ y ⊕ z 0x6ed6eba1
3 40 ≤ i < 60 ϕMAJ = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
4 60 ≤ i < 80 ϕXOR = x⊕ y ⊕ z 0xca62c1d6
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8. The SHA-1 hash function

Ai Bi Ci Di Ei

↺ 5

↻ 2

ϕi

Ei+1Di+1Ci+1Bi+1Ai+1

Wi

Ki

Figure 8.1 – One step of SHA-1. Figure adapted from [Jea].

Finally, the expanded message words Wi are computed from the 512-bit message block
m. This message is first expressed as sixteen 32-bit wordsM0, . . . ,M15, which are then
used to recursively define the eighty 32-bit words Wi:

Wi =
⎧⎪⎪⎨⎪⎪⎩

Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ↺ 1, for 16 ≤ i ≤ 79

. (8.2)

The step function and the message expansion can both easily be inverted as follows:

Ai=(Ai+5 −Wi+4 −Ki+4 − ϕi+4(Ai+3,Ai+2 ↻ 2,Ai+1 ↻ 2) − (Ai+4 ↺ 5))↺ 2, (8.3)

Wi = (Wi+16 ↻ 1) ⊕Wi+13 ⊕Wi+8 ⊕Wi+2. (8.4)
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Chapter 9
A brief history of collision attacks on

SHA-1

In this chapter we give a background on the literature of collision attacks on SHA-1, that
was initiated by the major work of Wang, Yin and Yu from CRYPTO 2005 [WYY05a].
Some of the techniques used to attack SHA-1 had been previously introduced to attack
other hash functions, and in particular SHA-0, SHA-1’s close predecessor. Consequently,
we start by discussing some of these earlier work. We then review some of the more recent
developments of the original attacks.

None of the material presented in this chapter is new, and it may be safely skipped
by an experienced reader. We believe however that it may be of some use to a public
less familiar with the matter.

All the attacks presented in this chapter are differential in nature. In its simplest
form, the idea of such attacks is to find a goodmessage difference ∆(W,W̃) (or ∆W) and
associated state differential path ∆(A, Ã) (or ∆A) such that a pair of states following
the differential path ∆A results in a collision, and finding a pair of messages of difference
∆W such that the corresponding pair of states follows ∆A is efficient; in particular, this
means that searching for a collision in that way is faster than searching for one by brute
force. In the case of SHA-1, the difference is actually imposed on the non-expanded
message wordsMi. However, the message expansion being linear, we will usually rather
consider the implied probability-one difference on the expanded message Wi.

1 Preliminaries: collision attacks on SHA-0
In the initial SHA standard of 1993, there was no rotation by one to the left in the
message expansion of the compression function [NIS93]; the corresponding original al-
gorithm was retrospectively named SHA-0, to distinguish it from the updated standard
SHA-1, first published in 1995 [NIS95]. At CRYPTO 1998, Chabaud and Joux pre-
sented a theoretical collision attack on SHA-0, with an estimated complexity of searching
through 261 message pairs [CJ98], equivalent to 258 calls to the compression function of
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9. A brief history of collision attacks on SHA-1

SHA-0 [BCJ15]. However, the modified message expansion of SHA-1 prevents a straight-
forward application of the same approach from leading to an attack better than brute
force.

There are four main components in the original attack on SHA-0 and its first im-
provements [BC04, BCJ+05, BCJ15], all of which found their way to the attacks on
SHA-1, either as is or in a modified form:

1. Local collisions in the step function as a springboard for a collision for the full function
(Section 2).

2. Using signed differences and a fine analysis of difference conditions in the Boolean
functions (Section 3).

3. Regrouping local collisions along a disturbance vector (Section 4).

4. Efficient implementation of the probabilistic search for colliding messages (Section 5).

We will only briefly mention the multi-block techniques as used for SHA-0 [BCJ+05,
BCJ15], as these are not directly relevant to the best attacks on SHA-1. The improve-
ments by Wang et al. used to attack the full SHA-1 are presented next in Section 6.

2 Local collisions for a few steps of SHA
An instructive starting point when searching for collisions on SHA is to first consider a
linearised variant (over F2) of the step function, obtained by replacing the Boolean func-
tions ϕIF and ϕMAJ by ϕXOR and the additions in Z/232Z by additions in F32

2 ,i.e. XORs.
Although collisions for this simple variant named SHI-1 by Chabaud and Joux [CJ98]
are trivial to find, SHI-1 is useful as a simple model to build the main structure of the
attack, in particular the differential paths ∆W and ∆A. A main element at the basis
of this paths is the concept of local collisions for the step function.

It is easy to see for instance from Equation 8.1 that only five consecutive state words
are used in the step function of SHA to determine the value of the next or previous
word. Consequently, if we could introduce a difference in the message, such that after
some steps the five state words of A and Ã were equal, then the final hash values for the
two computations would form a collision, as long as no more differences were present in
the remainder of the message. Of course, the latter condition is hard to meet in general,
but meeting the former seems to be quite easy as long as some limited control on the
message words is available. It is also a good first objective, as it locally achieves the
result that we wish to get at the end of the computation.

Let us assume that we have full control over six consecutive expanded message words:
Wi...i+5 and W̃i...i+5 used in the computation of two related SHA states A, Ã and that
we have Wj = W̃j for j < i.

The first step of a local collision is to introduce a difference, for instance in one bit,
so that the two messages are not consistently equal, as we are not interested in any
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trivial equality. For the linear variant SHI-1, the exact index where this difference is
introduced does not matter much; let us assume w.l.o.g. that Wi and W̃i are different
exactly on bit 7, i.e.

∆(Wi, W̃i) = ○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○○ .

From Equation 8.1, we see that this introduces a difference between Ai+1 and Ãi+1 in
the same position, i.e. on bit 7. Our goal is now to ensure that this difference does not
propagate further, and that there are no differences between Ai+2...i+6 and Ãi+2...i+6:

– At (Ai+2, Ãi+2), we must cancel the difference coming from (A(i+2)−1, Ã(i+2)−1) ↺ 5 =
(Ai+1, Ãi+1) ↺ 5; this is done by inserting a difference in bit 12 of Wi+1:

∆(Wi+1,W̃i+1) = ○○○○○○○○○○○○○○○○○○○●○○○○○○○○○○○○ .

– At (Ai+3, Ãi+3), we must cancel the difference coming from (A(i+3)−2, Ã(i+3)−2) =
(Ai+1, Ãi+1); this is done by inserting a difference in bit 7 of Wi+2:

∆(Wi+2,W̃i+2) = ○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○○ .

– At (Ai+4, Ãi+4), we must cancel the difference coming from (A(i+4)−3, Ã(i+4)−3) ↻ 2 =
(Ai+1, Ãi+1) ↻ 2; this is done by inserting a difference in bit 5 of Wi+3:

∆(Wi+3,W̃i+3) = ○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○ .

– At (Ai+5, Ãi+5), we must cancel the difference coming from (A(i+5)−4, Ã(i+5)−4) ↻ 2 =
(Ai+1, Ãi+1) ↻ 2; this is done by inserting a difference in bit 5 of Wi+4:

∆(Wi+4,W̃i+4) = ○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○ .

– At (Ai+6, Ãi+6), we must cancel the difference coming from (A(i+6)−5, Ã(i+6)−5) ↻ 2 =
(Ai+1, Ãi+1) ↻ 2; this is done by inserting a difference in bit 5 of Wi+5:

∆(Wi+5, W̃i+5) = ○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○ .

At this point, we have reached our goal of having no differences in a pair of five consec-
utive state words.

The pattern formed by the successive message differences of a local collision is com-
monly seen in various stages of attacks on SHA, and as such it deserves to be shown in
its entirety:
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∆(Wi...i+5,W̃i...i+5) = ○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○○
○○○○○○○○○○○○○○○○○○○●○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○

.

In the case of SHI-1, the probability of obtaining a local collision when following the
above pattern is equal to one. However, this is not the case anymore when the true SHA
step function is used. For instance, there is a probability 2−1 that the introduction of the
difference in (Ai+1, Ãi+1) with modular addition rather than XOR leads to a difference
in more than one bit because of different behaviours in the propagation of the carry
in the two states, on which we do not assume to have any direct control. Overall, the
probability of obtaining a successful local collision depends on several factors, including
which Boolean function is used and whether several collisions are chained together or
not. We partially address this matter next.

3 Difference analysis for impure ARX
We now move away from SHI-1 and start to analyse the behaviour of local collisions
for the true SHA function. There are two main points in this analysis: what conditions
at the bit level ensure the highest probability of success for the different types of single
local collisions, and under optimal conditions, what is the probability of a chain of local
collisions? We focus on the first question here, and defer the answer to the second to
Section 9.

In the case of SHA, and more generally ARX primitives, the way of expressing differ-
ences between messages is less obvious than for e.g. bit or byte-oriented primitives. It is
indeed natural to consider both “XOR differences” over F32

2 and “modular differences”
over Z/232Z, as both operations are used in the function. In practice, the literature on
SHA uses several hybrid representations of differences based on signed XOR differences.
In its most basic form, such a difference is similar to an XOR difference with the addi-
tional information of the value of the differing bits and of bits equal to each other, which
is a “sign” for the difference.

This is an important information when one works with modular addition as the
sign impacts the propagation of carries in the addition of two differences. Let us for
instance consider the two pairs of words a = 110110000012, ã = 110110000002 and b =
101001110002, b̃ = 101001110012; the XOR differences (a ⊕ ã) and (b ⊕ b̃) are both
000000000012, i.e. ○○○○○○○○○○●, meaning that (a⊕ b) = (ã⊕ b̃). On the other hand, the
signed XOR difference between a and ã may be written ○○○○○○○○○○▾ to convey the fact
that they are different on their lowest bit and that the value of this bit is 1 for a and
thence 0 for ã, i.e. ã = a − 1; similarly, the signed difference between b and b̃ may be
written ○○○○○○○○○○▴, which is a difference in the same position but of a different sign,
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i.e. b̃ = b + 1. From these differences, we can deduce that (a + b) = (ã + b̃) because
differences of different signs cancel while differences of the same sign do not; if we were
to swap the values b and b̃, both differences on a and b would have the same sign and
indeed we have (a + b̃) ≠ (ã + b) though (a⊕ b̃) and (ã⊕ b) remain equal. In the case of
bits with no difference, we may similarly want to use different notations to express the
fact that two bits are equal to zero (▿) or equal to one (▵).

It is possible to extend signed differences to account for more generic combinations
of possible values for each message bit; this was for instance done by De Cannière and
Rechberger to aid in the automatic search of differential paths [DR06]. Another possible
extension is to consider relations between various bits of different possibly rotated state
words; this allows to efficiently keep track of the propagation of differences through the
step function. Such differences are for instance used by Stevens [Ste13], and also later
in this work.

Using signed differences, we can express a first simple necessary condition for a local
collision to happen: because the initial difference in ∆Ai+1 has to be canceled in ∆Ai+2
through the modular addition of ∆Wi+1, we know that these differences have to be of
different sign. As we have some control on the message, we can ensure that this is always
the case for successful introductions of the difference on ∆Ai+1, i.e. ones that do not
result in different carry propagations for Ai+1 and Ãi+1, by analysing what may happen
in the four possible cases of an introduction (depending on the signs of the involved
differences), at the level of one bit:

1. ▴ (the difference in ∆Wi, introducing the perturbation) + ▿ (the “difference” in the
same position of the partial sum used to compute ∆Ai+1) = ▴, with no different carry
propagation in the remainder of ∆Ai+1).

2. ▴ + ▵ = ▾, with different carry propagation.

3. ▾ + ▿= ▾, with no different carry propagation.

4. ▾ + ▵ = ▴, with different carry propagation.

Of these four cases, (1) and (3) are always favourable to a local collision; (2) and (4) are
not considered to be favourable here, except if the differences are on the most significant
bit of the message and state words, as in this case the carry propagation is absorbed by
the modular reduction; in that unique case, unsigned differences may be used safely. We
will also later see in Section 9 that in some cases, a difference in the carry propagation
does not actually always result in the absence of a local collision. We ignore this fact in
the current analysis. Thus, except when the difference is introduced on the MSB, we see
that a successful introduction on ∆Ai+1 preserves the sign of the difference ∆Wi, and
thence we must always choose a different sign for the difference on ∆Wi+1 if we want
the two to cancel.

We can analyse the rest of the conditions for a successful local collision in a similar
fashion; it is helpful at this point to consider the possible behaviours of the Boolean
functions of SHA for their different signed inputs. We follow here the approach by
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Joux [Jou09, Chapter 5] and start by analysing the propagation of signed differences ▿, ▵,
▾, ▴ through ϕIF (Table 9.1), ϕXOR (Table 9.2) and ϕMAJ (Table 9.2), before considering
what happens for each remaining correction of the local collision in ∆Ai+3...i+6. An
essentially identical analysis can for instance be found in [Pey08, BCJ15].

We should note that for reasons that will be made clear in Section 4, the corrections
used to obtain a local collision must work with every possible Boolean function1. A
consequence is that we cannot use the fact that the non-linear functions ϕIF and ϕMAJ
may absorb a single difference, for instance as in ϕIF(▿, ▴, ▿), as there is never such a
behaviour with ϕXOR; thus, there is always a correction introduced in every message, true
to the local collision pattern of SHI-1 of Section 2. In general, the following things may
then happen in the Boolean functions: the difference is absorbed (this never happens
with ϕXOR); the difference is preserved, but its sign is changed (this never happens with
ϕMAJ); the difference is preserved and its sign is not changed. As we already mentioned,
knowing the sign of a difference is important if we want to cancel it with another one;
thus, the possibility of unpredictable changes of signs decreases the success probability
of a local collision. Let us see in general how this latter is impacted by the behaviours
of the different Boolean functions.

– ∆Ai+3: the difference is on the first input (x) of the Boolean function. With ϕIF, there
is a probability 2−1 that it is absorbed and 2−2 that the sign is changed otherwise,
for a total success probability of 2−2 (2−1 on the MSB, where a change of sign has no
consequence). With ϕXOR, there is a probability 2−1 that the sign is changed (total
success of 2−1, 1 on the MSB). With ϕMAJ, there is a probability 2−1 that it is absorbed
(total success of 2−1).

– ∆Ai+4: the difference is on the second input (y) of the Boolean function. With ϕIF,
there is a probability 2−1 that it is absorbed (total success of 2−1). With ϕXOR there is
a probability 2−1 that the sign is changed (total success of 2−1, 1 on the MSB). With
ϕMAJ there is a probability 2−1 that it is absorbed (total success of 2−1).

– ∆Ai+5: the difference is on the third input (z) of the Boolean function. This case is
the same as for ∆Ai + 4.

– ∆Ai+6: the difference is on a modular addition. If it is on the MSB, nothing needs
to be done. Otherwise, it needs to be of sign opposite the one of the introductory
difference to ensure a correction, which will then happen with probability 1. This
condition can be enforced for free by properly choosing the signed message difference
∆W.

This analysis may be useful in several ways. First, it gives some necessary conditions
on the signs of the corrections, possibly conditioned on the Boolean function of the
round being considered; more generally, it may actually be used as a nearly exhaustive
list of inputs resulting in local collisions, but this is less useful as we do not have control

1This is not true if our goal is to build boomerangs, which is something that we will consider in
Section 5.

146



4. Disturbance vectors

on the values of ∆A in general. Second, it helps us to position the local collisions in
an “optimal” way, by ensuring that many corrections involve bits that are at the most
significant position, as we have seen that these may have higher success probabilities.
Finally, it may be used to check in advance if a given local collision is going to happen
or not, without necessarily computing the two states A and Ã. For instance, in the
first round, assuming a perturbation on bit j of ∆Ai+1, we can predict that there
will be no local collision if the bits j − 2 of ∆Ai and ∆Ai−1 are equal, even if the
perturbation is properly introduced. Indeed, none of ϕIF(▴,▿,▿), ϕIF(▴,▵,▵), ϕIF(▾,▿,▿),
ϕIF(▾,▵,▵) results in a difference, which is a direct consequence of the very definition
of the IF function. This means that there will be no difference in the Boolean function
computation at ∆Ai+3 and thus the tentative correction in ∆Wi+2 will actually introduce
a difference.

Table 9.1 – Signed difference analysis of ϕIF(x, y, z).

x = ▿ y = ▿ y = ▵ y = ▴ y = ▾ x = ▵ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▿ ▿ ▿ ▿ z = ▿ ▿ ▵ ▴ ▾
z = ▵ ▵ ▵ ▵ ▵ z = ▵ ▿ ▵ ▴ ▾
z = ▴ ▴ ▴ ▴ ▴ z = ▴ ▿ ▵ ▴ ▾
z = ▾ ▾ ▾ ▾ ▾ z = ▾ ▿ ▵ ▴ ▾

x = ▴ y = ▿ y = ▵ y = ▴ y = ▾ x = ▾ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▿ ▴ ▴ ▿ z = ▿ ▿ ▾ ▿ ▾
z = ▵ ▾ ▵ ▵ ▾ z = ▵ ▴ ▵ ▴ ▵
z = ▴ ▿ ▴ ▴ ▿ z = ▴ ▴ ▵ ▴ ▵
z = ▾ ▾ ▵ ▵ ▾ z = ▾ ▿ ▾ ▿ ▾

4 Disturbance vectors
We have seen how using a local collision allows one to create a pair of different messages
which may lead to a pair of SHA states that are identical at some point during the
computation of their respective digests. Given enough control on the message, which
implies control on the state, one may obtain such an equality with probability one, and
it is quite easy to derive sufficient conditions for a single local collision to happen. This
makes it possible to derive the success probability of uncontrolled independent local
collisions.

In order to mount a complete attack and obtain a collision on the actual digest, we
need to ensure that the last five state words are free of differences: this means that no
local collision must have been started after step 75. Of course, we also need the colliding
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Table 9.2 – Signed difference analysis of ϕXOR(x, y, z).

x = ▿ y = ▿ y = ▵ y = ▴ y = ▾ x = ▵ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▿ ▵ ▴ ▾ z = ▿ ▵ ▿ ▾ ▴
z = ▵ ▵ ▿ ▴ ▾ z = ▵ ▿ ▵ ▾ ▴
z = ▴ ▴ ▾ ▿ ▵ z = ▴ ▾ ▴ ▵ ▿
z = ▾ ▾ ▴ ▵ ▿ z = ▾ ▴ ▾ ▿ ▵

x = ▴ y = ▿ y = ▵ y = ▴ y = ▾ x = ▾ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▴ ▾ ▿ ▵ z = ▿ ▾ ▴ ▵ ▿
z = ▵ ▾ ▴ ▵ ▿ z = ▵ ▴ ▾ ▿ ▵
z = ▴ ▿ ▵ ▴ ▾ z = ▴ ▵ ▿ ▾ ▴
z = ▾ ▵ ▿ ▾ ▴ z = ▾ ▿ ▵ ▴ ▾

Table 9.3 – Signed difference analysis of ϕMAJ(x, y, z).

x = ▿ y = ▿ y = ▵ y = ▴ y = ▾ x = ▵ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▿ ▿ ▿ ▿ z = ▿ ▿ ▵ ▴ ▾
z = ▵ ▿ ▵ ▴ ▾ z = ▵ ▵ ▵ ▵ ▵
z = ▴ ▿ ▴ ▴ ▿ z = ▴ ▴ ▵ ▴ ▵
z = ▾ ▿ ▾ ▿ ▾ z = ▾ ▾ ▵ ▵ ▾

x = ▴ y = ▿ y = ▵ y = ▴ y = ▾ x = ▾ y = ▿ y = ▵ y = ▴ y = ▾
z = ▿ ▿ ▴ ▴ ▿ z = ▿ ▿ ▾ ▿ ▾
z = ▵ ▴ ▵ ▴ ▵ z = ▵ ▾ ▵ ▵ ▾
z = ▴ ▴ ▴ ▴ ▴ z = ▴ ▿ ▵ ▴ ▾
z = ▾ ▿ ▵ ▴ ▾ z = ▾ ▾ ▾ ▾ ▾

messages to be valid expanded messages, and this is where local collisions become really
useful: the idea is to interleave a series of local collisions together so that the resulting
message difference follows the message expansion and the joint probability of all the
local collisions being successful is high; in particular, an attack is obtained if it is higher
than ≈ 2−80.

The first condition is actually easy to meet by defining a disturbance vector (DV ).
This is a vector of eighty 32-bit words, whose “1” bits define the positions of the initial
perturbations of the series of local collisions. Now it suffices to remark that because
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the message expansion is linear, a sum of expanded messages is an expanded message
itself; then if the disturbance vector is a valid expanded message word, so is the com-
plete message difference, including the corrections of the local collisions. For this to be
correct, however, two conditions need to be met: first, the disturbance vector must have
no differences in its first five “negative” words W−5,...,−1, obtained through the back-
ward message expansion. Indeed, remembering Section 2, the corrections of the local
collisions will be obtained from possibly rotated shifted copies of the pattern of initial
perturbations introduced by the DV , up to five positions down. If we want these copies
to be valid expanded message words, they must be equal to the DV with its last (up to
five) words removed and with a few (up to five) words added at the beginning, which
would be obtained from the backward message expansion. As the added words must
be zero, lest they create new perturbations that would not be corrected, we obtain the
aforementioned condition. Second, all corrections need to be performed in the same
way, so that they globally conform to the message expansion; this is why one cannot
exploit the absorption properties of some Boolean functions as noticed in Section 3, as
it is impossible to do so consistently across all the rounds.

This simple characterisation of series of local collisions allows to define efficient search
strategies to find vectors that achieve a high joint probability. In the case of SHA-0,
the message expansion can easily be defined at the bit level, as the bit i of an expanded
message word Wj , j > 15 is entirely determined by the bit i of the message words
Wj−16...j−1. This means that any expanded message, and in particular a disturbance
vector, can be seen as the union of 32 “one-bit expanded messages” that do not interact
with each other. Thus, a search for good disturbance vectors can focus solely on such one-
bit messages. As any consecutive window of sixteen message words entirely defines the
remainder of an expanded message word through the (backward) message expansion, one
can see that there is only a small number of 216 one-bit disturbance vectors to consider,
which can then be shifted laterally to start on any of the 32 bits of a message word.

Of the 216 candidate disturbance vectors, many do not meet the condition of being
zero on their first five negative positions and their last five positions. Overall, these
requirements give “10 bits of conditions”, and indeed only 26 vectors meet all of them,
one of them being the all-zero vector [Jou09, Chapter 5]. It now remains to determine
which of these lead to the best attacks.

A first rather crude way of estimating the cost of a collision associated with a certain
DV is simply to count the number of local collisions it introduces, i.e. to consider the
Hamming weight of the vector and to multiply this by the probability of a local collision
being successful. This estimate can immediately be enhanced by discounting the cost
of collisions appearing in the first sixteen state words, as the attacker has a full control
on the corresponding message words and can then fulfill all their associated conditions
deterministically. Additionally, recalling Section 3, we know that the success probability
of a local collision increases if some of the bit differences are located on the MSB. Thus,
the probability of a DV is not invariant by lateral shift, and each vector should be
considered on its best positions only; given the pattern of corrections of a local collision,
inserting the perturbations on bit one is a good choice.
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There is one problem remaining with this first cost function, which is that it assumes
that all local collisions are independent. This is actually not the case, and a more detailed
analysis of the success probability of non-independent local collisions is necessary to get
an accurate estimate of the overall cost of an attack. We do not detail such an analysis
in the present case of SHA-0, and instead refer to [Jou09, Chapter 5], which shows
possible interactions between local collisions in a case-by-case study. The main result
of this is that some interactions introduce contradictions that cannot be resolved and
which thence entirely disqualify some DVs. This may happen in particular because of
the absorption capabilities of ϕIF; in that case, it disqualifies DVs with two consecutive
perturbations in the first round, the “IF” round. Alternatively, the probability of some
other interactions being successful can be increased by properly choosing the sign of
some specific collisions. We will later discuss the issue further for SHA-1 in Section 9.

With this refined cost function in mind, two good disturbance vectors were found for
the original attack on SHA-0 [CJ98]; we show the first of them in Figure 9.1, using an
unsigned differences notation.

○○○●○○○○○○○●○○●○○○○○○○●○○○○●●○●●○●●●●●●○
●●○●○○●○○○○●○●○●○○●○●○●○○○●○●●●○○●●○○○○○

Figure 9.1 – A good (one bit) disturbance vector for SHA-0, with a basic cost of 268.
Bit zero is shown on the top left.

5 Accelerating techniques for collision search

A suitable disturbance vector such as the one of Figure 9.1 defines an explicit attack
procedure in a straightforward way: one uses the available freedom in the first sixteen
message words to deterministically fulfill as many conditions for local collisions, while
keeping enough free bits to expect being able to fulfill the remaining conditions proba-
bilistically.

This was the approach taken in the original attack on SHA-0, and it results in an
attack of complexity 267 (measured in the number of message pairs to be tested for a
collision) for the vector of Figure 9.1, and 261 for another good disturbance vector [CJ98].

Although this is already an attack that is significantly faster than a brute-force
approach, it remains fairly expensive, and no explicit collision for SHA-0 was computed at
the time. Even nearly twenty years later, such an attack requires considerable resources;
it would roughly be comparable in cost with the full free-start collision for SHA-1 which
is the main topic of this part. A series of techniques were later developed to make such
attacks considerably more efficient, which ultimately led to the first explicit collision on
SHA-0 [BCJ+05]. These improvements were of two kinds: chaining multiple blocks to
enable the use of better DVs, and using neutral bits to make the probabilistic phase of
the attack more efficient. The first improvement as originally used for SHA-0 was later
superseded by the two-block attack structure of Wang et al., used both for improved
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attacks on SHA-0 and for the first full theoretical attack on SHA-1 [WYY05b, WYY05a],
and we will not describe it here. The second improvement, originally introduced by
Biham and Chen [BC04] was much more long-lived, and it is still useful in current
attacks, including ours.

The aim of the neutral bits technique is to make a better use of the available freedom
in the first sixteen message words, in order to speed up the attack. The idea is to identify
bits of messages that with good probability do not interact with any local collision
necessary conditions, say up to step n. Thus, if one found a message pair fulfilling
all conditions up to step n, called a partial solution, flipping a neutral bit will lead to
another message pair similarly fulfilling all conditions up to n with good probability.
Using neutral bits then allows to amortise the cost of finding good message pairs, which
makes the attack faster. To make things a bit more formal, we may give the following:

Definition 9.1 (Neutral bits). A bit b of W0≤i<16 is a neutral bit for a disturbance vector
V at step n with probability p if the probability, taken over the message space, that it
does not interact with any necessary condition for V up to step n is equal to p.

This definition can be generalised by considering groups of bits that need to be flipped
together. This may be done either because it makes these bits being more effective, or
because not doing so would change the sign of some bits of local collisions later in the
expanded message.

In general, one can distinguish two not mutually excluding approaches to finding
neutral bits: either running a random search across many partial solutions; or using the
propagation properties of the step function to identify good candidates. In particular, the
latter approach found a powerful expression with the technique of auxiliary differential
paths, or boomerangs, first developed for SHA-1 [JP07] and which led to the currently
fastest attacks on SHA-0 [MP08].

A boomerang in that context is a small set of neutral bits that are particularly
efficient when activated together, i.e. of the first kind mentioned above. The reason of
this efficiency is that they define a local collisions (or sometimes a few of them) for which
all necessary conditions have been pre-satisfied. Flipping the bits of the boomerang then
only introduces a single local perturbation that is immediately corrected and thus does
not propagate. Yet, because the local collision defined by the neutral bits is not chained
along a disturbance vector, uncorrected perturbations will eventually be introduced by
the message expansion and result in interactions with necessary conditions; this will
however happen much later than with “standard” neutral bits. One can notice that
because the local collisions of a boomerang do not need to be chained, they do not need
to be of a form suitable for every Boolean function. For instance, as it was hinted earlier
in Section 3, one can obtain better boomerangs by using the absorption properties of
the IF function to define local collisions with fewer necessary corrections.

We conclude this short summary on SHA-0 by giving an illustration of the different
phases of a one-block attack on SHA-0 in Figure 9.2. The two main rectangles represent
the state and expanded messages of a computation of SHA-0. The diagonal lines ( ,
) represent areas of the state and messages that are fixed for an attack; any state
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condition within this zone is deterministically fulfilled. The non-diagonal lines in the
message represent bits that are used to generate many message pairs in the hope that
one leads to a collision; horizontal lines ( ) do so purely probabilistically, and vertical
lines ( ) represent neutral bits which are useful to amortise the cost of finding partial
solutions; the (completely determined) remainder of the expanded message is left blank.
Finally, dots ( ) represent conditions that need to be fulfilled probabilistically.
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conditions
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SHA-0 State words (Ai) SHA-0 Message words (Wi)

Figure 9.2 – The structure of a one-block attack on SHA-0.

6 Collision attacks on the full SHA-1
Having discussed the original attacks on SHA-0, we now turn our attention to SHA-1
for the rest of this chapter. Although both functions are very similar, their different
message expansion makes a direct application of attacks on SHA-0 in the form discussed
above inapplicable to the full SHA-1. We now discuss the new techniques that were
developed for that purpose and some of their subsequent improvements:

1. The use of non-linear differential paths and of a two-block attack structure is the
main improvement that makes full attacks on SHA-1 possible (Section 7).

2. The different message expansion of SHA-1 makes the search for good disturbance
vectors more complex (Section 8).

3. Better cost functions were defined for the disturbance vectors (Section 9).
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It is important to note that although these improvements were somehow necessary to
attack SHA-1 and led to the first theoretical attack on this function [WYY05a], the
same techniques can, and were, applied to improve the existing attacks on SHA-0 as
well [WYY05b], and also other functions of the MD-SHA family.

Let us also mention for completeness that the original attacks of Wang et al. used
an accelerating technique named message modification instead of neutral bits. Such a
technique works by identifying changes in message words controlled by the attacker that
only impact, say, a single necessary condition for a local collision located at a point
where no direct control is possible. This can be used during the probabilistic phase of
the attack to carefully fulfill some of the conditions independently of each other, which
increases the probability of success. However, it is not clear whether this technique has
a significant advantage over neutral bits, especially when including boomerangs, and it
is somehow harder to implement efficiently, especially on a parallel architecture. Thus,
we will not detail it further in this chapter.

7 The two-block structure and non-linear paths
With the benefit of hindsight, looking back on the case of SHA-0, we can identify two
points in particular where the original attack does not seem to be optimal. Firstly, the
original structure with a single block imposes the DV to be zero in its last five bits,
which may disqualify some otherwise good DVs. A way to get around this restriction is
to use “multi-block” attacks which culminated in using exactly two blocks.

A second point is that using a purely linearised model for the propagation of differ-
ences in the round function similarly imposes the condition that the first five negative
bits of the DV have to be zero, and that there are no consecutive bits during the IF
round. A way to remove these conditions is to switch to a non-linear propagation model
for part of the first round. We now discuss these two improvements in more detail.

7.1 The two-block structure

In a multi-block attack, one uses DVs which only result in near collisions, i.e. final states
still containing a few differences, only in controlled locations. The idea is then to chain
such DVs together in a way that eventually produces a collision, by cancelling in the last
block the few differences in the IV coming from a near collision in the previous block
through the Merkle-Damgård domain extension with appropriate differences in the final
state, thanks to the feed-forward of the Davies-Meyer construction.

This was first done by Biham et al. to obtain the first explicit collision on SHA-0,
using four blocks of different DVs [BCJ+05], and it was improved by Wang et al. in a
more systematic fashion using two blocks with the same DV , with the second block using
a negated version of the DV of the first block i.e. with the differences being changed
to their opposite, e.g. ▴ becomes ▾, ▵ becomes ▿. This results in a structure with a
first near-collision that ends with a difference +∆, followed by a second block with a
final state of negated difference −∆. In fact, following this exact structure is not strictly
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necessary, as there are a few admissible differences {+∆̃} for the end of the first block
that can all lead to a collision in the second block.

The main reason why this structure may be used is that a non-linear propagation
model is used in the beginning of the attack. Such a model in itself also allows to use
better DVs.

7.2 Non-linear model for the propagation of local collisions
We have mentioned some limitations of using a purely linear model to establish the
state differential path ∆A. In a non-linear model, we do not try to systematically avoid
differences in the carry propagation of A and Ã, which also implies that not every local
collision will be systematically corrected.

Two advantages of this approach over a purely linear model were already mentioned.
The first is that there is no need to ensure the absence of local collisions in the beginning
of the negative message anymore. The second is that one can keep successive local
collisions in the IF round; this point was in fact already partially resolved by Biham
et al. for SHA-0 [BCJ+05].

This allows to select better disturbance vectors than what would otherwise be pos-
sible, provided that one is able to find a suitable state difference, using a non-linear
propagation model, that is compatible with the disturbance vector. It is however not
essential, at least for a basic attack, for the path entailed by the “non-linear” state dif-
ference to be of high probability, as it will be located in part of the first round only
where one has entire control of the message, as there is no obstacle to using a linear
path for the remainder of the function. This amount of freedom is enough to find many
solutions to the non-linear part of the differential path, even when keeping in mind that
these need to leave some bits unspecified so that enough message candidates can later
be generated to obtain a collision.

The other main advantage of using a non-linear path is that, as mentioned above,
it is the chief reason why an efficient two-block structure can be used for an attack.
Indeed, in the same way as it removes the conditions in the early message differences,
it allows to disconnect the presence (for the second block) or absence (for the first) of
incoming IV differences with the choice of the remaining linear part of the differential
path. Thus, the same DV can be used for two blocks, and choosing opposite signs for
the two is enough to lead to a collision. This new ability of using only one disturbance
vector is in particular a consequence of the fact that many non-linear paths are possible
for a fixed DV , even when the same IV differences are used, whereas a path following a
linear behaviour is unique.

We show the simplified structure of a two-block attack using non-linear paths in
Figure 9.3. The first block (on the left) takes a zero (0) IV difference, a message
difference ∆W, and starts with a non-linear differential path NL 1 for which it is easy
to find solutions in a deterministic way ( ); this is followed by a linear path L which
is satisfied probabilistically, first using accelerating techniques such as neutral bits ( ),
and then purely randomly ( ). This results in a state difference ∆A which is passed
to a second block. This block uses a different non-linear path NL 2 to connect to the
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negated linear path −L that is obtained by using an oppositely signed message difference
−∆W; following this second path leads to a collision.

NL 1

L

∆W

∆A

0

NL 2

−L

−∆W

−∆A

0

∆A

∆A

Figure 9.3 – The structure of a two-block collision attack for SHA. Figure adapted
from [Jea]

The main difficulty in using non-linear paths is to find the paths themselves, as
there is a large number of possible behaviours to take into account. The search was
initially done by hand for the first attack on SHA-1, but automated tools were later
developed to make this process much more efficient. One can for instance cite the work
of De Cannière and Rechberger [DR06], who used a guess-and-determine approach to
find new non-linear paths, leading in particular to an explicit two-block collision for
SHA-1 reduced to the at-the-time record number of 64 steps.

The idea of the guess-and-determine method is to define a set of constraints that en-
code a differential path, along with an efficient constraint-propagation algorithm. One
then starts from an underdefined initial path with many unconstrained differences but
with the conditions for the IV and for the connecting linear path already set and itera-
tively chooses an unconstrained difference at random, assigns it a value, and propagates
the consequences of this choice. A backtracking strategy is also used to escape situations
where no more valid choices are possible. A path is found when every constraint is either
a signed difference or a possibly signed equality.
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One can also mention the alternative “meet-in-the-middle” approach for the construc-
tion of these paths, which was used by Yajima et al. [YSN+07], and later Stevens [Ste12].
This method works by defining two partial differential paths, one expanded forward e.g.
starting from the IV and one expanded backward e.g. starting from the purely linear
part of the path, that are then connected on a few consecutive steps.

The advantages of an automatic search of the non-linear part of the differential path
over a manual one are twofold: first, it is much faster to create new attack instances,
which allows for example to experiment quickly with several DVs. This is particularly
useful if one wants both to mount attacks for the full function (even without running
the attack completely) and attacks for a high number of reduced steps, the best DVs in
each case being likely different. Second, the ability to generate many non-linear paths
allows to search for ones that have few constraints (for instance leading to more available
neutral bits) or that can incorporate more preset constraints that may for instance aid
in the use of boomerang neutral bits.

8 Classes of disturbance vectors for SHA-1
We recall from Section 4 that the search for disturbance vectors for SHA-0 naturally
reduces to a search among only 216 candidates. Once a cost function is chosen, it is
simple to evaluate it on every potential DV and one just needs to keep the best of
them. Unfortunately, the message expansion of SHA-1 can no longer be seen as thirty-
two smaller independent message expansions, making the search space for potential DVs
significantly larger.

In the original attack from Wang et al., the DV was found when searching through a
reduced space of size 238, using the Hamming weight of the resulting DVs as the primary
cost function. Subsequently, a significant amount of work focused on finding alternate
disturbance vectors in the hope of decreasing the cost of the probabilistic phase of the
attack. Manuel then noticed that all DVs suggested in the literature could actually be
concisely described by two simple classes which lead to the best known vectors [Man11];
we now summarise these results.

We start by defining an extended expanded message for SHA-1 as follows:

Definition 9.2 (Extended expanded message). LetM be a SHA-1 message block made of
sixteen 32-bit message wordsM0, . . . ,M15. The extended expanded message W forM
is made of 144 32-bit words W−64, . . . ,W79 defined by:

W i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mi, for 0 ≤ i ≤ 15
(W i−3 ⊕W i−8 ⊕W i−14 ⊕W i−16) ↺ 1, for 16 ≤ i ≤ 79
W i = (W i+16 ↻ 1) ⊕W i+13 ⊕W i+8 ⊕W i+2, for − 64 ≤ i ≤ −1

. (9.1)

In other words, an extended expanded message expands an initial message both
forwards (using Equation 8.2) by 64 words, but also backwards (using Equation 8.4) by a
similar amount. By definition, every consecutive 80 wordsW i, . . . ,W i+79, i ∈ [−64, . . . ,0]
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ofW form a valid expanded message “(W i)” for SHA-1. Furthermore, it is easy to check
that these 65 expanded messages are exactly the 65 possible such messages for which
sixteen consecutive words are equal toM.

We also note the following fact:

Fact 9.1 (The message expansion of SHA-1 is a quasi-cyclic code). If W = W0, . . . ,

W79 is a valid expanded message for SHA-1, then for every i ∈ [0,31], W↺i ∶= W↺i
0 , . . . ,

W↺i
79 is a valid expanded message for SHA-1.

This fact, together with the notion of extended expanded message allows to define
equivalence classes for expanded messages:

Definition 9.3 (Equivalence class for SHA-1 expanded messages [Man11]). Two
SHA-1 expanded messages W and W ′ are equivalent if there are two pairs (i, j), (i′, j′)
in [−64,0] × [0,31] and an extended expanded message W such that W = (W i)↺j and
W ′ = (W i′)↺j′ .

In other words, two expanded messages are equivalent if they can be generated from
the same, possibly rotated, extended expanded message. It should be noted however
that a message necessarily belongs to many distinct such equivalence classes.

As the disturbance vectors are expanded messages themselves, one can then use
equivalence classes as a natural way to segment the search space for good DVs. For
instance, Manuel searched for candidates among all classes of extended expanded mes-
sages defined from windows of Hamming weight up to four, and for some classes defined
by windows of weight five and six. It followed from this search that all good DVs, in-
cluding all the ones described in previous work, come from two equivalence classes. The
16-word messages generating the extended expanded messages of the two classes (up
to rotation) are shown in Figure 9.4. The messages in this figure are given using an
unsigned difference notation. In Definition 9.2, we gave the definition using a “normal”
message ∈ {{0,1}32}16. As a disturbance vector is eventually used to define the difference
between two messages, we think that using such a notation is appropriate in this case.
Following this observation, Manuel termed I(i, j) and II(i, j) the disturbance vectors
(W−i)↺j where W is generated from the messages of type I and II of Figure 9.4 respec-
tively.

9 Exact cost functions for disturbance vectors
We have already mentioned the role played by the cost functions when choosing a dis-
turbance vector, both in the case of SHA-0 in Section 4 and in the case of SHA-1 in the
previous Section 8. A first basic such function is simply to take the Hamming weight of
a vector, i.e. to count the number of local collisions, over the steps where we expect the
attack to be purely probabilistic, e.g. starting from step 20. Even in the case of SHA-0,
we have seen that some additional interactions between local collisions need to be taken
into account to make this function more accurate. The same sort of interactions is also
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Figure 9.4 – The messages defining the class of type I (left) and type II (right) disturbance
vectors, given as sixteen 32-bit wordsM0, . . . ,M15, withM0 on top.

present in the case of SHA-1, and some new ones may appear as well, especially because
several local collisions may now be started on the same step.

9.1 Bit compression

A first new kind of interaction between local collisions that is favourable to the crypt-
analyst is the effect used in the technique of bit compression introduced by Wang et al.
[WYY05a] as a special counting rule and later named as such by Yajima et al. [YIN+08].
Under certain conditions, this technique allows to significantly improve the joint proba-
bility of two or more neighbouring local collisions being successful by making it as high
as for a single one. In a nutshell, the idea is to introduce the initial perturbations using
a chain of differences all having the same sign, except for the last one, and to let the
carry propagate from the first perturbation to the other ones instead of preventing such
a propagation every time. Let us see how this may work on an example with three
neighbouring differences.

Example 9.1 (Compression of three differences). Consider a chain of differences of the
form . . . ○ ▴▾▾○ . . . added to a state with no difference . . . ○ ○ ○ ○ ○ . . .. It is most useful
in this case to first consider the differences as modular ones. If we call x, x̃ and y, ỹ the
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two states that are added together, we have x̃ = x− 2i − 2i+1 + 2i+2 for some value i. Now
we want to determine what are the probabilities of some of the possible resulting XOR
differences between x + y and x̃ + ỹ.

Using a traditional view and treating all differences separately, which is what would
happen if these were perturbations of local collisions seen independently, we would like
to have no carry propagation at any of the three positions, to obtain an XOR difference
on the same three positions where differences were introduced. It is easy to see that this
imposes three conditions on x+y, as it means that we want x̃+ ỹ = (x+y)⊕2i⊕2i+1⊕2i+2,
which translates to bits i, i + 1 and i + 2 of x + y being 1, 1 and 0 respectively. The
probability of this happening is thus 2−3.

However, as we have 2i+2 − 2i+1 − 2i = 2i, the alternative XOR difference x̃ + ỹ =
(x + y) ⊕ 2i only imposes one condition on x + y, namely that bit i must be 0; this
difference may then happen with probability 2−1.

We can use the effect showed in Example 9.1 to increase the probability of a suc-
cessful introduction of perturbations in series of local collisions; this is however at the
condition that the “compressed” XOR difference obtained as a result is compatible with
the following corrections, which are still located on multiple bits. Fortunately, this con-
dition is always fulfilled provided that the single difference is not absorbed or flipped in
a Boolean function —the usual condition for a successful correction— and that the chain
of consecutive differences is not broken through the bit rotations —a “hard” condition
that determines if a series of neighbouring local collisions can indeed be compressed. We
illustrate this by continuing our previous example.

Example 9.2 (Correction of compressed differences). Let us use modular differences again.
Consider the case of Example 9.1 and assume that the introduction of the perturbation
resulted in the modular and XOR difference x̃ + ỹ = (x + y) + 2i = (x + y) ⊕ 2i. Assume
that this difference is preserved through the step function, excluding the addition of the
message, resulting in a partial state z, z̃ with z̃ = z + 2i. This partial state is rotated to
the left by r ∈ {0,5,30} in the computation of the new state, and the differences in the
message at this point are at positions α = i+ r mod 32, β = i+1+ r mod 32, γ = i+2+ r
mod 32 and of sign opposite the ones of the initial perturbation, i.e. we have m,m̃ with
m̃ =m + 2α + 2β − 2γ . If α < β < γ, we then have m̃ =m − 2α. In that case, (z̃↺ r) + m̃
= (z↺ r) + 2α +m − 2α = (z↺ r) +m, and the correction is indeed successful.

It is worth noting that because only a single state difference needs to be preserved
through the Boolean functions during the correction, the probability of all corrections
of compressed local collisions being successful is also much higher, compared to the
uncompressed case.

To summarise, local collisions starting at the same step and at neighbouring bit
positions that remain consecutive through left rotations by 5 and 30 (i.e. the considered
bit positions do not include bit 1 or 26 and bits to their left) can be compressed by
choosing a proper signing for the initial perturbation. The probability of the resulting
compressed collision to be successful is the same as the success probability of a single
local collision.
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Finally, let us note that compressing local collisions does not actually hinder in any
way their chance of being successful in the “traditional” independent way. For instance,
two local collisions in no particular position during an XOR round have a “theoretical”
joint success probability of 2−8 when considered independent and of 2−4 if they are
compressed as per Section 3. The two successful events being independent, the total
theoretical success probability of these collisions is thence 2−3.91. It may thus appear
that compressed local collisions actually have a higher probability than single ones. This
is actually not the case, as we explain next.

9.2 Bit decompression

We now use the insight gained from the analysis of the bit compression technique to come
closer to computing the exact success probability of local collisions. The observation we
make here is that in the same way as neighbouring XOR bit differences of appropriate
sign can be compressed into a single modular difference, a single XOR difference can be
“decompressed” into a series of multiple modular ones. Similarly as for bit compression,
if this difference is the perturbation of a local collision, the corrections may still be
effective if they can themselves be decompressed.

In other words, it is not necessary that the introduction of the perturbation of a
local collision does not trigger a difference in carry propagations; even if this is the case,
the local collision may still be successful if the resulting state difference is preserved
by the Boolean functions and if the carry chain is not broken by rotations during the
corrections. Thus, the success probability of a single local collision not on a rotation
boundary is strictly higher than the probability obtained from the analysis of Section 3.

We may rephrase this in a slightly more formal way as follows:

Consider a local collision started by an initial perturbation on ms and m̃s of positive
sign at position i < 31, i.e. with a signed bit difference . . . ○ ▴○ . . .. This corresponds to
a modular difference m̃s = ms + 2i. Call x, x̃ and y, ỹ the state to which the message
ms, m̃s is added and the result of this addition respectively. The probability (over the
values of x) of having a signed difference . . .○▴○ . . . for y, ỹ is 2−1. However, we also have
m̃s =ms−∑k−1

j=i 2j+2k for any k < 32. Thus we can write ỹ = x̃+m̃s = x+ms−∑k−1
j=i 2j+2k.

The probability of having a difference . . . ○ ▴▾○ . . . between ỹ and y is thus 2−2; more
generally, the probability of having a difference . . . ○ ▴ ▾. . .▾

²
u times

○ . . . between ỹ and y (with

i + u + 1 < 32) is 2−u−1.
For an initial difference of weight u + 1, the corrections on subsequent message

words ms+o, m̃s+o are of the form m̃s+o = ms+o − 2i+r mod 32, r ∈ {0,5,30}. An ini-
tial perturbation that resulted in a difference on y, ỹ of weight u + 1 can thus be
corrected at every step only if i + r mod 32 ≤ i + u + r mod 32, because the equality
m̃s+o =ms+o +∑i+r+u−1 mod 32

j=i+r mod 32 2j − 2i+r+u mod 32 must hold.
Now assume that the maximal weight of an initial perturbation that can be corrected

is v, and that for the sake of simplicity all induced perturbations are in an XOR round
in no particular position, meaning that no correction is on the MSB, then the success
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probability of having a local collision is ∑vi=1 2−4v, which is higher than the probability
2−4 obtained by considering only the signed difference . . . ○ ▴○ . . ..

A complete analysis of the impact of carry propagation on the success probability of
a single local collision was done by Mendel et al. for all Boolean functions and positions
of the perturbation [MPRR06]. Manuel also performed experiments validating this anal-
ysis [Man11]; in particular, these results seem to show that for a single local collision,
no additional effect contributes to the success probability.

To conclude, we have seen that the interaction of XOR and modular differences in
SHA leads to a slight differential effect for the disturbance vector. A single message
difference actually defines several, not mutually exclusive, local collision patterns. Even
though one of these patterns is much more likely than the others, i.e. the one with
all possible compressions effectively done and no decompression, the contribution of the
remaining ones is not nil.

9.3 Joint local collision analysis
We have just considered how the propagation of carries may influence the probability of
a single local collision and of neighbouring local collisions started on the same step. We
now consider how to account for similar effects that impact the joint success probability
of local collisions sharing some common steps. We have already mentioned in Section 4
that an analysis in the spirit of Section 3 may be done on closely interacting local
collisions, for instance on local collisions that share some correction bits or that have
some corrections interacting together through the Boolean functions. However, this does
not take into account the effects of carries, and a more precise study is thus possible.

We now summarise the joint local collision analysis (JLCA) approach of Stevens
[Ste12, Ste13], which allows to compute the exact best probability of a disturbance
vector by considering all interactions between non-disjoint local collisions. This results
in a very good “exact” cost function for DVs of SHA-1.

The objective here is actually slightly more generic: for a given DV , there is some
liberty in the choice of the actual message differences, e.g. by specifying their sign, and
we have already seen that this may impact the success probability of local collisions.
These variations should be taken into account when comparing DVs together, and only
the message differences resulting in the best probability should be considered. Going
further, for a given range of steps, we may want to determine which initial and final state
differences yield the best probability. Thus we may reformulate our objective as wanting
to find the maximum success probability for a given DV and a prescribed number of
steps over the choice of compatible signed message differences and initial and final state
differences.

To fulfill this objective, we may simply try for a given configuration to enumerate
all differential paths and sum their probabilities. However, although this was feasible
for a single local collision, cf. [MPRR06], the amount of paths to consider makes this
task computationally intractable in general. The idea of Stevens to get around this lim-
itation is to use a notion of reduced paths together with equivalence classes of message
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differences. A reduced path is essentially obtained from its non-reduced analogue by
removing differences not interacting with the initial and final differences. Such paths
can easily be enumerated, and most importantly it is possible to compute their associ-
ated “cumulative probabilities” which is, for a given reduced path and a given message
difference, the sum of the probabilities of all possible complements to the reduced path
that result in a valid overall path. Although the number of possible message differences
to consider may be big, Stevens also shows how to find equivalence classes yielding the
same probability for all their members. It is then enough to perform the computation
for one representative of every class.

The above strategy allows to exactly compute the best achievable probability for
a given DV over a given range of steps. However, one should keep in mind that the
DV with the best such probability for the range of steps one wishes to consider is not
necessarily the one most suited to an attack. Indeed, somehow in the same way as DVs
were disqualified in the original SHA-0 attacks because of incompatibilities in the IF
round for the model used at the time, a DV with high associated probability may be
a worse choice than another with a lower probability if the former makes it harder to
find a good non-linear part for the first round than the latter, or similarly if it makes it
harder to use accelerating techniques.

These last criteria are much harder to capture into a cost function, and there was no
attempt to do so in the literature. Ultimately, the complexity of the non-probabilistic
phase of an attack can only be precisely determined by evaluating the speed at which
an efficient implementation produces partial solutions up to a step where no freedom
remains. The cost functions as presented in this entire chapter are then a very useful
tool to precisely extrapolate the complexity of a full attack from this point on.
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Chapter 10
Freestart collision attacks for SHA-1

1 A framework for freestart collisions for SHA-1
This section presents in detail our framework for freestart collision attacks on SHA-
1. We start by presenting our general approach to such attacks in Section 1.1, and
the addition and improvements to existing techniques that were developed to make the
attacks possible in Section 1.2.

1.1 Faster collisions by exploiting more freedom
The main interest of freestart collisions is that they consist in an attack against a mean-
ingful, though weakened security notion, while granting more freedom to the attacker
by providing him with an additional input. It is thus expected that such attacks should
be more efficient than ones targeting stronger notions e.g. hash function collisions, not
unlike attacks targeting a reduced version of a function, using fewer steps.

However, it is not necessarily clear in general how to efficiently exploit the additional
input in a freestart attack. We describe below our strategy in that respect in the case
of SHA-1. Note that unlike hash function attacks à la Wang, our freestart collisions use
only one block, which has some consequences when building the attack.

The basic idea underlying the structure of our freestart collisions is to start the
initialisation of the hash function from a “middle” state rather than from the IV , and
to similarly initialise the message with an offset. As both of the step function and the
message expansion of SHA-1 can easily be inverted, any computation started from the
middle can be equivalently defined as starting from the beginning. We call main block
offset the offset in the initialisation of the message, giving us the technical definition:

Definition 10.1 (Main block offset). A freestart collision attack on SHA-1 uses a main
block offset of i ∈ {0, . . . ,64} if the candidate expanded messagesW tested for a collision
are defined through the message expansion of the words Wi, . . . ,Wi+15.

The desired effect of using a non-zero main block offset is to move down the part
where freedom is available, enabling to satisfy conditions up to a later point in the
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attack, either deterministically or with accelerating techniques. Being able to do so
would mechanically make the attack more efficient, at the condition that this gain is not
entirely offset by the cost of satisfying potential conditions when computing backward
to the corresponding IV , this computation being eventually necessary to fully determine
the colliding inputs.

In the case of a freestart attack, the entire freedom of the IV implies that no a priori
constraints are set in the middle initialisation. This is in contrast to a hash function
attack, where the necessity for the backward-computed IV to be of a specific value makes
the approach less powerful, although potentially still useful.

It should be noted that this kind of broad approach has already been used successfully
in the past in various hash function attacks, see e.g. [Dob96, LP13, MRS14]. We conclude
this discussion by considering more closely how we applied this technique to SHA-1.

1.1.1 Different choices for the disturbance vectors

We already mentioned at length the importance of the disturbance vectors in attacks
on SHA-1. When shifting the window where actual freedom is used, it seems natural
to also shift the disturbance vector. This is in part a consequence of the fact that good
DVs tend to naturally include a series of steps for which they impose a lot of conditions.
These can easily be resolved provided that enough freedom is available, but they would
heavily impact the complexity of an attack, were they to be satisfied probabilistically.
It is thus important that this part remains in the window of available freedom.

As the equivalence classes of Manuel already include vertical shifts in their definitions,
the two known good classes are already suitable to the search for good DVs for freestart
collisions. We simply expect to use DVs with different shift values than the ones usually
considered.

The structure of the attack also imposes additional conditions on the DV , compared
to a usual two-block hash function attack. Both conditions come from the aforemen-
tioned fact that bit conditions which ensure that the message pair follows a proper
differential path may need to be satisfied probabilistically when computing the IV back-
ward from the values of the middle initialisation. To make this phase efficient, we would
like to have as few such bit conditions as possible. This translates to the two high-level
conditions:

1. The DV should not imply too many differences in the last five steps of the attack.
This is because we aim for a one-block attack, thus corresponding differences will
need to be inserted in the backward-computed IV for the pair to define a collision.

2. The DV itself should not include too many differences in its early words, that is the
ones used in the backward computation, as we observed that being dense on these
positions makes it harder to connect to the IV with few conditions. Additionally, it
may decrease the overall probability of the computation.
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1.1.2 New constraints for the accelerating techniques
The necessity of satisfying bit conditions in a backward computation also imposes some
constraints on the accelerating techniques that can be used. These all have in common
that they work by selectively changing the value of some bits of the message. As the
structure of our attacks implies shifting down the free window of the message, changing
a bit in this window may also impact the value of the first few message words that
are computed with the backward message expansion. This may potentially result in
unwanted interactions with the ability to satisfy the backward bit conditions.

In short, the selection of accelerating techniques, e.g. neutral bits, must take into
account their “back effects”, which may disqualify some otherwise good candidates.

1.2 New techniques for freestart collisions
There is a certain number of points that need to be specified to make the description of
our framework complete. In particular, we will discuss here:

1. The construction of non-linear paths adapted to the shifted initialisation and to the
requirements of high-probability backward computations, and improvements to ex-
isting methods (Section 1.2.1).

2. The accelerating techniques used in our attacks (Section 1.2.2).

3. The modified attack process adapted to the shifted initialisation (Section 1.2.3).

1.2.1 Differential paths for freestart attacks
In our freestart attacks, we have the requirements that the computation from the ini-
tialised state back to the IV be of high probability. Ideally, we would even like to be able
to satisfy deterministically all the conditions associated with this computation, while still
performing a shifted initialisation. A direct consequence of this is that the differential
path should be sparse in the steps involved in the backward computation, i.e. include
few conditions and especially few differences.

The known methods for the construction of non-linear differential paths for SHA do
not provide good guarantees that the path will be sparse in a priori specified state words.
However, it is not hard to search independently for a sparse prefix for the differential path
and then only to search for paths that are extensions of this prefix. We implemented
this strategy by first greedily searching for prefixes of various lengths and with few
differences, and then by searching for good paths extending these prefixes. We show in
Figure 10.1 the starting point that was eventually used in the search for the path of the
76-step attack, using a representation suitable for a guess-and-determine path search.
Note that in order to ensure a collision through the Davies-Meyer feed-forward, a sign
has been imposed in the differences in the IV .

Through the course of the preparation of the attacks, we tried both methods for
constructing the extension of the non-linear path, i.e. a guess-and-determine and a
meet-in-the-middle approach. We have found that the meet-in-the-middle approach
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i Ai Mi

-4 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-3 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-2 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○▴○
-1 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○▴
0 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○
1 ○○○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○ ○○○○○●○○○○○○○○○○○○○○○○○○○○○●●●○○
2 ○○○○○●○○○○○○○○○○○○○○○○●○○○○○○●○○ ●●○○●●○○○○○○○○○○○○○○○○○○○○○●○●○○
3 ○○○○○●○○○○○○○○○○○●○○○○○○●○○○○●○○ ○○○○●●○○○○○○○○○○○○○○○○○○○○○○○○●○
4 ○●○○○○○○○○○○●○○○○○○●○○○○●○○○○○●○ ●●○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○
5 ○●○○○○○○○○○○○○●○○○○●○○○○○○●○●○○○ ●○●●○●○○○○○○○○○○○○○○○○○○○○○●●●○○
6 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ○○●●●●○○○○○○○○○○○○○○○○○○○○○○○●○○
7 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ●○●●●●○○○○○○○○○○○○○○○○○○○○○●●○●○
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ○○●○○○○○○○○○○○○○○○○○○○○○○○○●○○○○
9 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ○○●○○●○○○○○○○○○○○○○○○○○○○○○●●●○○
10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Figure 10.1 – A sparse prefix for the non-linear differential path of a freestart attack.
The symbol “∗” denotes the absence of conditions.

allowed to find paths with fewer conditions, and that it allowed a better control of
the position where some of these conditions were located. A slight downside of our
meet-in-the-middle implementation, however, is that it did not give strict guarantees
that the paths it produced were completely valid, as they may include contradictory
conditions, for instance in the high-density part of the path where many differences are
located. However, this issue could usually be resolved by considering slight variations
of the impossible path, which we were able to do efficiently with a guess-and-determine
method.

The evaluation and eventual selection of the DVs used in our attacks was done using
joint local collision analysis. We modified the original implementation of Stevens [Ste13]
to cover all steps, including the non-linear part, and to produce the entire set of sufficient
state conditions and message bit relations as used by collision attacks. These are the
conditions placed on the expanded messages W that ensure that the highest probability
that is reachable for a given DV is indeed attained. More specifically, we improved
JLCA in the following ways:

1. Originally JLCA considered the entire set of differential paths that conform to the
disturbance vector only over the linear part. This was done by considering sets
{∆Ai} of allowed state differences for each state word Ai given the disturbance
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vector, including carries. We extended this to aid in the non-linear path search
by defining sets {∆Ai} for the non-linear part as the state difference given by the
previously constructed differential path of the non-linear part. Here one actually
has a few options: only consider exact state difference of the non-linear path or also
consider changes in carries or signs, as well as include state differences conforming
to the disturbance vector. We found that allowing changes in carries or signs for the
state differences given by the non-linear path made JLCA impractical, yet including
state differences conforming to the disturbance vector was practical and had a positive
effect on the overall probability of the full differential path.

2. In the original JLCA, the probability computation took into account the possible
carry propagations in local collisions, as this improves the overall probability, the
probability of variants of paths adding up. However, until a certain step, say 25,
a typical attack implementation requires the partial solutions to strictly follow the
main differential path, and thus variants induced by carry propagations are actually
not allowed to happen in an attack, and thus should not be counted as improving the
probability. We thus corrected JLCA by not adding up the probability of paths over
the first 25 steps, but only by taking the maximum probability. In our implementa-
tion, this can be simply done by replacing the addition of two probabilities by taking
their maximum, conditionally on the current SHA-1 step.

3. Originally JLCA only gave as output starting differences, ending differences, message
bit relations and the optimal success probability. We extended it so that it can
also reconstruct the set of differential paths over steps, say, [0,25] and determine
minimal sets of sufficient conditions and message bit relations. This can be made
possible by keeping the intermediate sets of reduced differential paths R[tb,te] which
were constructed backwards starting at a zero-difference intermediate state of SHA-1.
Then one can iteratively construct sets O[0,i[ of optimal differential paths over steps
0, . . . , i − 1, i.e., differential paths compatible with some combination of the optimal
starting differences, ending differences and message bit relations such that the optimal
success probability can be achieved. One starts with the set O[0,0] determined by the
optimal starting differences. Given O[0,i[ one can compute O[0,i+1[ by considering all
possible extensions of every differential path inO[0,i[ with step i. From all those paths,
one only stores in O[0,i+1[ those that can be complemented by a reduced differential
path over steps i+ 1, . . . , te from R[i+1,te] such that the optimal success probability is
achieved over steps 0, . . . , te.

Now given, say, O[0,26[, we can select any path and determine its necessary and
sufficient conditions for steps 0, . . . ,25 and the optimal set of message bit relations
that goes with it. Although we use only one path, having the entire set O[0,26[ opens
even more avenues for future work. For instance, one might consider an entire subclass
of 2k differential paths from O[0,26[ that can be described by state conditions linear
in message bits and a set of linear message bit relations. This would provide k bits
more in degrees of freedom that can be exploited by speed up techniques.
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We thus proposed several extensions to the original JLCA that allowed us to determine
sufficient state conditions and message bit relations optimised for collision attacks, i.e.
minimal set of conditions for paths attaining the highest success probability.

1.2.2 Instantiating accelerating techniques
Generally speaking, the accelerating technique used in our attacks are neutral bits. Only
“single-bit” neutral bits were used in the attack on 76 steps, but the 80-step attack also
used “boomerang” neutral bits where three (and in one occasion, four) carefully chosen
bits are flipped at once to compute the pair of related messages. Additionally, in both
attacks, some additional changes in the message may be necessary, depending on which
neutral bits are activated, to ensure that no message bit relation becomes violated. In the
following, we use the term neutral bit to mean either of the “single-bit” or “boomerang”
neutral bits.

The main difference in the selection of neutral bits compared to a usual, non-freestart
attack is the presence of the main block offset, which determines the offset of the message
freedom window used during the attack. We have selected a main block offset of 6 (resp.
5) in the 76-step (resp. 80-step) case, as this led to the best distribution of usable
neutral bits and boomerangs. This means that all the neutral bits, including potential
boomerangs, directly lead to changes in the state from steps 6 (resp. 5) up to 21 (resp.
20) and that these changes propagate to steps 5 (resp. 4) down to 0 backwards and steps
22 (resp. 21) up to 79 forwards.

We describe below the selection process more specifically in the case of the 80-step
attack; the approach was similar in the 76-step case, with the omission of the boomerangs
neutral bits which were not used.

The search for both single and boomerang neutral bits requires to evaluate the prob-
ability that a candidate does not interact badly with path conditions up to a certain
point. This probability is estimated experimentally by observing the effect of activating
potential neutral bits on many partial solutions for the differential path. Because the
dense area of the attack conditions may implicitly force certain other bits to specific
values, resulting in hidden conditions, we used more than 4000 partial solutions over
steps 1 up to 16 in the analysis. The 16 steps fully determine the message block, and
also verify the sufficient conditions in the IV and in the dense non-linear differential
path of the first round. It should be noted that for this step it is important to generate
every sample independently. Indeed using e.g. message modification techniques to gen-
erate many samples from a single one would result in a biased distribution where many
samples would only differ in the last few steps.

Searching for Boomerangs. We analyse potential boomerangs from the framework of
Joux and Peyrin [JP07], which initially flip a single state bit together with 2 or more
message bits. Each boomerang should be orthogonal to the attack conditions, i.e., the
state bit where a difference is introduced should be free of sufficient conditions, while
flipping the message bits should not break any of the message bit relations either directly
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or through the message expansion. Let t ∈ [6,16], b ∈ [0,31] be such that the state bit
At[b] has no sufficient condition.

First, we determine the best usable boomerang on At[b] as follows. For every sam-
pled solution, we flip that state bit and compute the signed bit differences between the
resulting and the unaltered message words W5, . . . ,W20. We verify that the boomerang
is usable by checking that flipping its constituting bits breaks none of the message bit
relations. We normalise these signed bit differences by negating them all when the state
bit is flipped from 1 to 0. In this manner we obtain a set of usable boomerangs for
At[b]. We determine the additional conditions on message and state bits associated
with the boomerangs that ensure that the initial local collision corrections are successful
with probability one, and only keep the best usable boomerang that has the fewest such
conditions.

Secondly, we analyse the behaviour of the boomerang over the backward steps. For
every sampled solution, we simulate the application of the boomerang by flipping all of
its bits. We then recompute steps 4 to 0 backwards and verify if any sufficient condition
on these steps is broken. Any boomerang that breaks any sufficient conditions on the
early steps with probability higher than 0.1 is dismissed.

Thirdly, we analyse the behaviour of the boomerang over the forward steps. For
every sampled solution, we simulate the application of the boomerang by flipping its
constituting bits. We then recompute steps 21 up to 79 forwards and keep track of any
sufficient condition for the differential path that becomes violated. A boomerang will be
used at step i in our attack if it does not break any sufficient condition up to step i − 1
with probability more than 0.1.

This process is iterated as long as good boomerangs are found.

Searching for single neutral bits. The neutral bit analysis uses the same overall approach
as the boomerangs, with the following changes. After boomerangs are determined, their
conditions are added to the previous attack conditions and used to generate a new set of
solution samples. Usable neutral bits consist of a set of one or more message bits that
are flipped simultaneously. However, unlike for boomerangs, the reason for flipping more
than one bit is to preserve message bit relations, and not to control the propagation of
a state difference. Let t ∈ [5,20], b ∈ [0,31] be a candidate neutral bit; flipping Wt[b]
may possibly break certain message bit relations. We express each message bit relation
over W5, . . . ,W20 using linear algebra, and use Gaussian elimination to ensure that each
of them has a unique last message bit Wi[j], i.e. where i ∗ 32 + j is maximal. For each
relation involving Wt[b], let Wi[j] be its last message bit. If (i, j) equals (t, b) then this
neutral bit is not usable; indeed, this would mean that its value is fully determined by
earlier message bits. Otherwise we add bit Wi[j] to be flipped together with Wt[b] as
part of the neutral bit. Similarly to boomerangs, we dismiss any neutral bit that breaks
sufficient conditions backwards with probability higher than 0.1. The step i in which
the neutral bit is used is determined in the same way as for the boomerangs.

169



10. Freestart collision attacks for SHA-1

1.2.3 The shifted initialisation and the attack process
In the implementations of our attacks, we only apply neutral bits on fully determined
message blocks. In other words, neutral bits are used to try to extend to more steps
partial solutions for the differential path which cannot be extended by using more free-
dom in the message. We call base solutions such partial solutions; each of them consists
of an expanded message and an IV such that 21 consecutive state words (one for each
free message word plus the IV ) follow the differential path:

Definition 10.2 (Base solution). A base solution for a differential path P of offset i ∈
{0, . . . ,64} is a pair (W, Ij(A) ∶= (Aj , . . . ,Aj+4; j ∈ {−4+ i, . . .11+ i}) such that the state
words Ai, . . . ,Ai+20 entailed by W and the “IV ” Ij(A) satisfy all necessary conditions
imposed on them by P, i.e. is a partial solution for P.

Although we may define base solutions with an offset as above, one should note that
it is not directly related to the main block offset; in particular, both offsets do not need
to be equal, and they are indeed different in our attacks. The reason of that difference
is that the two offsets represent different things: the base solution offset defines which
state words have their conditions pre-satisfied before any neutral bit is applied, while
the main block offset defines which state words are modified through the action of the
neutral bits. Thus we can see that we typically want the base solution to have an offset
only if there are no path conditions on the lower state words that become ignored by
the initialisation as a result. If this were not the case, the conditions would need to
be satisfied probabilistically, likely with no accelerating technique to make that process
efficient. On the other hand, the main block offset is chosen to be the one yielding the
best neutral bits, and it is chiefly limited by the magnitude of the backward interactions
it entails.

There is also some subtlety in how to specify the “IV ” of a base solution, as it
potentially includes two offsets. The first offset of an IV naturally comes from the one
of the base solution it is part of, as the IV needs to be entirely included in the twenty-
one words of the solution. The second offset then comes from the freedom one has, to
choose which five contiguous words from the twenty-one of the base solution are to be
initialised.

Let us make this more concrete by discussing the specific cases of our attacks.

The first state condition in both attacks appears on A−3, i.e. the second word of the
original IV . Consequently, we chose a base solution offset of one in both cases. Thus,
a base solution consists of state words A−3, . . . ,A17 specified through a five-word IV
and an expanded message such that all path conditions are verified by this partially
computed state.

The search for a base solution consists in specifying a suitable IV Ij(A) and then
finding a message producing a valid partial solution. For instance, in the case of the
76-step attack, this process is instantiated by first choosing an initial solution I8(A)
over A8, . . . ,A12 and then extending it backward using message words W11, . . . ,W1 and
forward using words W12, . . . ,W16.
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For both attacks, the implementation of this search directly uses the path conditions,
such as they are computed by JLCA at the end of the generation of the differential path.

Attack process. We already mentioned that the main block offset is 6 (resp. 5) for the
76-step (resp. 80-step) attack. Let us detail here the effect of this offset on the base
solution and on the attack process in a bit more details, considering the 76-step case,
without losing much generality.

In the course of the attack, the window of freedom for the message is made ofW6, . . . ,
W21, and all state conditions are known to be satisfied for steps −4 to 17. The value of
the message words cannot be changed entirely, because they must conform to the base
solution. It is thus not possible to e.g. fix the value of W17 so that all conditions for
A18 become satisfied. However, a certain number of neutral bits have been determined
for this message window. The attack then consists in searching for good patterns of
active and inactive neutral bits that allow to satisfy path conditions in state words past
A17. These neutral bits were chosen so that they do not interact badly with the already
fulfilled conditions, first of the base solution, and then of the further state words that
are iteratively added to the partial solution, all the while allowing to try many different
messages. The best of these neutral bits does not interact w.h.p. with any condition
before A26 excluded; in general, for each previous step starting from A18, some fresh
neutral bits are available. Past A26, the attack switches to a purely probabilistic phase.

We show in Figure 10.2 the starting point for the attack process in the 76-step
case. This figure shows the state words for which the conditions were satisfied in the
base solution ( ), the message words where neutral bits are located ( ) and the
remaining (untouched) free message window ( ), and the state words where the cost of
satisfying the path conditions is amortised through the action of the neutral bits ( ).

2 A framework for efficient GPU implementations of collision
attacks

In the previous section, we have described the framework used to mount freestart colli-
sion attacks on SHA-1. We now turn to the matter of concrete implementation of the
attack procedure. Specifically, we describe implementations on graphics processing units
(GPUs).

The use of GPUs is attractive for computation-intensive cryptanalysis, as they offer
much more raw computational power than similarly-priced general-purpose processors
(CPUs). The availability of efficient frameworks for general-purpose GPU programming
such as CUDA [NVIb] allows for potentially complex code to be conveniently deployed on
GPUs. However, the differences in architecture between CPUs and GPUs as highlighted
below need to be taken into account, and not every attack may be suitable for a GPU
implementation.

GPUs have already been used with some success in heavy-computation cryptography,
notably to aid in integer factorisation or in finding discrete logarithms [BK12, MBKL14,
BGGM15, Jel15], and also for collision attacks on reduced SHA-1 [GA11]. Even if the
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Figure 10.2 – The freestart attack layout made of a base solution and a message with
offset.

latter case in particular is essentially identical to our own, we nonetheless developed our
GPU framework for implementing collision attacks from scratch.

2.1 GPU architecture and programming model

We start by first recalling a few important points about current GPUs that will help
understanding our design decisions. We specifically discuss these points for Nvidia GPUs
of the Maxwell generation such as the GTX970 used in our attacks.

A modern GPU can feature more than a thousand small cores, that are packed to-
gether in a small number of larger “multiprocessor” execution units. Taking the example
of the Nvidia GTX970 for concreteness, there are 13 multiprocessors of 128 cores each,
making 1664 cores in total [NVIc]. The fastest instructions such as for instance 32-bit
bitwise logical operations or modular addition have a throughput of 1 per core, which
means that in ideal conditions 1664 instructions may be simultaneously processed by
such a GPU in one clock cycle [NVIa].

Yet, so many instructions cannot be emitted independently, or to put it in another
way, one cannot run an independent thread of computation for every core. In fact,
threads are grouped together by 32 forming a warp, and only warps may be scheduled
independently. Threads within a warp may have a diverging control flow, for instance by
taking a different path upon encountering a conditional statement, but their execution
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in this case is serialised. At an even higher level, warps executing the same code can be
grouped together as blocks.

Each multiprocessor can host a maximum of 2048 threads regrouped in at least 2
and at most 32 blocks [NVIa]. If every multiprocessor of the GPU hosts 2048 threads,
we say that we have reached full occupancy. While a multiprocessor can only physically
run one thread per core, i.e. 128, at a given time, a higher number of resident threads
is beneficial to hide computation and memory latencies. These can have a significant
impact on the performance as a single waiting thread causes its entire warp of 32 to wait
with him; it is thus important in this case for the multiprocessor to be able to schedule
another warp in the meantime.

Achieving full occupancy is not however an absolute objective as it may or may
not result in optimal performance depending on the resources needed by every thread.
Important factors in that respect are the average amount of memory and the number of
registers needed by a single thread, both being resources shared among the threads. In
our implementation, the threads need to run rather heavy functions and full occupancy
is typically not desirable. One reason why it is so is that we need to allocate 64 registers
per thread in order to prevent register spilling in some of the most expensive functions;
a multiprocessor having “only” 216 registers, this limits the number of threads to 1024.
As a result, we use a layout of 26 blocks of 512 threads each, every multiprocessor being
then able to host 2 such blocks.

In the same way as they feature many execution units, GPUs also provide memory
of a generous size, e.g. 4 GB for the GTX970, which must however be shared among the
threads. The amount of memory available to a single thread is therefore much less than
what is typically available on a CPU; though it of course highly depends on the number
of running threads, it can be lower than 1MB. This, together with the facts that threads
of a same warp do not actually execute independently of each other and that threads of
a same block run the same code makes it enticing to organise the memory structure of a
program at the block level. Fortunately, this is made rather easy by the fact that many
efficient synchronisation functions are available for the threads, both at the warp and at
the block level.

2.2 High-level structure of the framework
The implementation of our attacks can be broadly decomposed into two phases. The
first step consists in computing a certain number of base solutions and in storing them
on disk. Because the total number of base solutions necessary to find a collision is rather
small (about 225 in the 76-step case, for instance) and because they can be computed
quickly, this can be done efficiently in an offline fashion using CPUs.

The second phase then consists in trying to extend probabilistically the base solutions
to satisfy path conditions up to a further point by trying many neutral bit combinations,
in the hope of eventually finding a collision. This is an intensely parallel task that is
well suited to running on GPUs. However, as it was emphasised above, GPUs are most
efficient when there is a high coherency between the execution of many threads. For

173



10. Freestart collision attacks for SHA-1

that reason, we must avoid having idle threads that are waiting because their candidate
solutions failed to follow the differential paths, while others keep on verifying a more
successful one. Our approach to this is to fragment the verification into many small
functions or snippets that are chosen in a way which ensures that coherency is maintained
for every thread of a warp when executing a single snippet, except in only a few small
points. This is achieved through a series of intermediary buffers that store inputs and
outputs for the snippets. A warp then only executes a given snippet if enough inputs
are available for every of its threads. One should note that there is no need to entirely
decompose the second step of the attack into snippets, and that a final part can again
be run in a more serial fashion, typically on CPU. Indeed, if inputs to such a part are
scarce, there is no real advantage in verifying them in a highly parallel way.

The sort of decomposition used for the GPU phase of our attack as described above
is in no way constrained by the specific context of a SHA-1 collision search. In fact, it is
quite general, and we believe that it can be successfully applied to many an implemen-
tation of (symmetric) cryptographic attacks. We conclude this section by giving more
details of the application of this approach to the case of SHA-1.

As we mentioned in Section 1, the attack process consists in trying many combina-
tions of neutral bits, with each step in a small window adding new neutral bits to be
tested. It is thus quite natural to reflect this process in the choice of the snippets: we use
intermediary buffers to store partial solutions up to A17 (i.e. base solutions), A18, etc.
Then for each step the corresponding snippet consists in loading one partial solution per
thread of a warp and applying every possible combination of neutral bits for this step.
Each combination is tried by every thread at the same time on its own partial solution,
thereby maintaining coherency. Then, each thread assesses if the current combination
yields a valid extension by one step of its own partial solution, and writes the result to
an output buffer for the snippet, which is the input buffer for the next snippet, if this
is the case; this conditional write is the only part of the code where threads may briefly
diverge.

For the later steps when no neutral bits can be used anymore, the snippets regroup the
computation of several steps together. Eventually the verification that partial solutions
up to step 56 (in the 76-step case; 60 in the 80-step one) result in valid collisions is done
on a CPU. This is partly because the amount of available memory makes it hard to
use step-by-step snippets until the end, but also because such partial solutions are only
produced very slowly. For instance, a single GTX970 produces partial solutions up to
step 56 of a 76-step collision at a speed of about 0.017 solution per second, that is about
1 per minute; waiting for enough partial solutions to feed a single complete warp would
in this case take a completely unreasonable half hour.

A complete implementation of an attack mostly consists in the snippets and sup-
porting functions, such as buffer management. Connecting the snippets together is
straightforward. Every warp tries to work with partial solutions that are up to the lat-
est step for which enough solutions are available. This means that it visits the buffer
of partial solutions in order from the top, stopping at the first that is able to feed it
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entirely. In the worst case where none of the buffers are full enough, it simply resorts to
using base solutions.

In practice, warps spend most of their time feeding on partial solutions that are
valid up to a rather late step. For instance, in the 76-step attack, about 90% of the time
is spent on A24 or higher, which is at most two steps away from the latest one where
neutral bits are available. Thus, work on early steps and in particular on base solutions
is done only intermittently.

We conclude this high-level description by giving a simplified flow chart of the GPU
part of the 76-step attack in Figure 10.3, made slightly incorrect for the sake of clarity,
notably omitting the fact that further verification is still done on GPU up to steps 56.

Enough
solutions
up to 25?

Enough
solutions
up to 24?

Enough
solutions
up to 18?

Extend to 26

Extend to 25

Extend to 19

Extend to 18

Solutions
up to 26

Solutions
up to 25

Solutions
up to 18

Base
solutions

From
CPU

To
CPU

yes

no
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reads

writes

writes
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writes
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writes

Figure 10.3 – Simplified flow chart for the GPU part of the attack. The start of this
infinite loop is in the top left corner. Rectangles “ ” represent snippets, ellipses “ ”
represent shared buffers, plain lines “ ” represent control flow, and dotted lines “ ”
represent data flow.
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2.3 Implementation details

We now give more details about the implementations of the attacks. In particular, we
discuss how partial solutions are represented at various steps in Section 2.3.1 and we
comment the code of a snippet function in Section 2.3.2. We very briefly discuss how to
tune GPU settings to use them more efficiently in Section 2.3.3.

2.3.1 Representation of partial solutions
As the basis of our framework is to store, load and extend many partial solutions for
the differential path, we need to be able to work with such objects in an efficient way.
One thus needs to define good representations for partial solutions, such that processing
them is computationally simple, and managing them in memory causes as little overhead
as possible.

The representation we use is based on two types of buffers: some are holding enough
information to define a SHA computation in its entirety, i.e. it contains the value of
at least five (resp. sixteen) consecutive state (resp. message) words, while others only
contain the necessary information to express how the associated partial solution differs
from a completely-defined one. Typically, the first kind of buffer may be used to store
base solutions, while the second is used to keep track of which neutral bits are active in
a partial solution.

It is quite straightforward to define the structure of a base solution buffer, as there
is little doubt about the necessary information they need to include and the way to
represent it. For instance, the 76-step base solution buffer contains the value of state
words A13, . . . ,A17 and of the message words W6, . . . ,W21. Additionally, it includes the
value of A12; while this information is not strictly necessary, it is useful to speed-up
the computation of the activation of some neutral bits. Similar buffers without an extra
state word are used to hold partial solutions up to A36 and A56 (resp. A40 and A60 in the
80-step case). The choice of these boundaries to define the late partial solutions where
no more control is possible simply comes from the fact that a pair of messages following
the differential path of either attack is not expected to have any state differences at these
steps. It is thus particularly efficient to filter solutions that are not valid at these points.

The structures of the other buffers are also quite simple, but their instantiations
may require some care to make them especially efficient. In a nutshell, we just want
such a buffer to keep a reference to a base solution and to remember the values of the
currently active neutral bits. To make this efficient and convenient to use, we would like
to share a similar structure for the input and output buffers of a snippet; this would
allow to extend a partial solution that possibly already has some bits active by simply
adding the newly activated bits for this step. This is the approach we followed in our
implementations, with an added refinement.

We have already mentioned in the past section that e.g. the 76-step attack contains
neutral bits acting on a wide range of steps, from A18 to A26; the range for the 80-
step attack is even wider, due to the use of boomerangs. Additionally, the neutral
bits themselves are located on many message words. Thus, it would seem wasteful to
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recompute the action of past neutral bits on message words as low as W14 while in the
snippet corresponding e.g. to A24. Consequently, we have a strong incentive to store
intermediary partial solutions in order to save some of this recomputation.

In the 76-step case, there is a natural location that may be used to define what we
call extended base solutions. As we will detail in Section 3, neutral bits located on words
W14 to W18 are only used up to A21, and the ones located on words W19 to W21 are
only used in later steps. Thus, it would make sense that once the active bits up to W18
have all been determined, only the modified message words and the corresponding value
for the state should be stored. There is however no need to keep again sixteen message
words in such an extended base solution, as most of them are identical to the ones of
the corresponding base solution, and as a base solution is in general extended into many
distinct extended base solutions, it would not make sense to e.g. add enough message
words to the latter and erase the former. One subtlety in the definition of this extended
base solution is that it also includes the message wordW20. Although no neutral bits on
this word have been activated at the point where the solution is formed, some of its bits
may need to be flipped depending on the use of neutral bits on words W15 and W16, so
as to preserve message bit relations. A convenient way to remember this information is
simply to preemptively add the possible contributions of the neutral bits to W20 and to
store this modified word in the extended base solution. All in all, the buffer of extended
base solution of the 76-step attack is made of twelve words: five state words A17 to A21,
six message words W14 to W18 and W20, and one word holding an identifier for the base
solution from which it is extended.

The inter-snippet buffers that refer to changes from a base or extended base solution
are only made of two words consisting of concatenated segments of the message words
containing neutral bits and of a reference to the associated solution.

The 80-step attack uses similar representations but with a few variations. As we will
show in Section 4, there are more possible corrections on the messages to be performed in
the 80-step attack to preserve message bit relations. Consequently, some of the precom-
putations of individual neutral bit contributions are stored alongside the actual neutral
bits. It is also slightly less immediate to determine where to start defining an extended
base solution, as there is no natural separation between the location of various neutral
bits as there was in the 76-step case. This is not a major issue, however, as the location
of the neutral bits of a same word shared between base and extended base solutions are
not overlapping inside the word itself; splitting their representation over multiple buffers
thus does not result in significant overhead. Finally, the additional use of boomerang
neutral bits, or somehow equivalently the use of more neutral bits than in the 76-step
attack, implies that the last inter-snippet buffers contain one more word compared to
the ones for early snippets and all such buffers in the 76-step case, i.e. three in total.

In Section 3 and Section 4, we will describe the full content of most of the inter-
snippet buffers.

We conclude this part by discussing some implementation aspects of the various
buffers.
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All of the buffers are cyclic and hold 220 elements, regardless of their sizes, except
the buffers of partial solutions extended up to A36 ∼ A40 and A56 ∼ A60 which only have
210 elements as they see a lower production rate due to their purely probabilistic nature.

With the exception of the buffers holding the base solutions and the collision can-
didates formed by partial solutions up to A56 ∼ A60, i.e. the buffers that are written
or read by a CPU, there is one instance of every buffer per block, i.e. 26 buffers per
GPU. This allows to use block-wise instead of global synchronisation mechanisms when
updating the buffers’ content, thence reducing the overhead inherent to the use of such
shared data structures. Taken together, the buffers thus use a significant portion of the
4GB memory available on the GTX970, needing in the neighbourhood of 3GB.

We carefully took into account the presence of a limited amount of very fast multi-
processor-specific shared memory. While the 96KB available per multiprocessor is hardly
enough to store the whole buffers themselves, we take advantage of it by dissociating
the storage of the buffers and of the meta-data used for their control logic, the latter
being held in shared memory. This improves the overall latency of buffer manipulations,
especially in case of heavy contention between different warps. This local shared memory
is also very useful to buffer the writes to the buffers themselves. Indeed, only a fraction
of the threads of a warp often as low as 2−3 have a valid solution to write after having
tested a single candidate, and the more unsuccessful threads need to wait while the
former write their solution to global memory. It is therefore beneficial to first write
the solutions to a small local warp-specific buffer and to flush it to the main block-wise
buffer as soon as it holds 32 solutions or more, thence significantly reducing the number
of accesses to the slower global memory.

2.3.2 An example of snippet function
We now illustrate the discussion of this section by providing a commented snippet from
the 76-step attack given in Figure 10.4 written in CUDA C/C++, namely a function that
is taking partial solutions up to A22 and that is trying to extend them up to A23 using
neutral bits on W19. Its structure is a straightforward application of the framework,
and is fairly representative of most of the code of both of our attacks although some
snippets may at first seem more complex due to their use of neutral bits located on
several distinct message words.

1 __device__ void stepQ23(uint32_t thread_rd_idx)
2 {
3 uint32_t base_idx = Q22SOLBUF.get<11>(thread_rd_idx);
4 uint32_t q17 = Q22SOLBUF.get<0>(thread_rd_idx);
5 uint32_t q18 = Q22SOLBUF.get<1>(thread_rd_idx);
6 uint32_t q19 = Q22SOLBUF.get<2>(thread_rd_idx);
7 uint32_t q20 = Q22SOLBUF.get<3>(thread_rd_idx);
8 uint32_t q21 = Q22SOLBUF.get<4>(thread_rd_idx);
9 uint32_t m6 = BASESOLBUF.get<6>(base_idx);

10 uint32_t m8 = BASESOLBUF.get<8>(base_idx);
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11 uint32_t m19 = BASESOLBUF.get<19>(base_idx);
12 uint32_t m21 = BASESOLBUF.get<21>(base_idx);
13 uint32_t m14 = Q22SOLBUF.get<5>(thread_rd_idx);
14 uint32_t m22;
15

16 uint32_t q22 = sha1_round2(q21, q20, q19, q18, q17, m21);
17

18 uint32_t w19_q23_nb = 0;
19 for (unsigned i = 0; i < 32; i++)
20 {
21 NEXT_NB(w19_q23_nb, W19NBQ23M);
22

23 m19 &= ~W19NBQ23M;
24 m19 |= w19_q23_nb;
25 m22 = sha1_mess(m19, m14, m8, m6);
26

27 uint32_t newq20 = q20 + w19_q23_nb;
28 uint32_t newq21 = q21 + rotate_left(w19_q23_nb, 5);
29 uint32_t newq22 = sha1_round2(newq21, newq20, q19, q18,

q17, m21);↪

30 uint32_t newq23 = sha1_round2(newq22, newq21, newq20,
q19, q18, m22);↪

31

32 uint32_t q23nessies = Qset1mask[QOFF + 23] ^ (Qprevrmask
[QOFF + 23] & rotate_left(newq22, 30));↪

33 bool valid_sol = (0 == ((newq21 ^ q21) & Qcondmask[QOFF
+ 21]));↪

34 valid_sol &= (0 == ((newq22 ^ q22) & Qcondmask[QOFF +
22]));↪

35 valid_sol &= (0 == ((newq23 ^ q23nessies) &
Qcondmask[QOFF + 23]));↪

36

37 uint32_t sol_val_0 = pack_update_q23_0(m19);
38 uint32_t sol_val_1 = pack_update_q23_1(thread_rd_idx);
39

40 WARP_TMP_BUF.write2(valid_sol, sol_val_0, sol_val_1,
Q23SOLBUF, Q23SOLCTL);↪

41 }
42 WARP_TMP_BUF.flush2(Q23SOLBUF, Q23SOLCTL);
43 }

Figure 10.4 – The stepQ23 function from the 76-step attack.
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This function takes as argument a thread-dependent identifier thread_rd_idx for a
partial solution, which is essentially an index for the buffer Q22SOLBUF of solutions up
to A22.

The partial solution is loaded from the buffer and reconstructed from lines 3 to 16.
This buffer being the first one holding an extended base solution, there is no need to
reapply neutral bits and most of the work simply consists in loading the appropriate
state and message words either directly from the extended base solution buffer, or from
the matching solution of the base solution buffer BASESOLBUF, the index of which is
recovered on line 3. The only recomputation performed here is the one of q22 on line 16,
using the SHA-1 round function. This would in fact not be necessary in this function, as
the value could have been included in the extended base solution altogether. This was
not done because recomputing q22 is necessary in the snippets of the following steps and
causes only minimal overhead in this one, while saving a 32-bit word from the Q22SOLBUF
buffer.

The loop from lines 18 to 41, i.e. the remainder of the function, applies every
combination of the five neutral bits for this step, all of which are located on W19. In
more details, line 21 sets the register w19_q23_nb to one of the 32 possible combinations.
Lines 23 and 24 clear the message word m19 of the previous neutral bit combination and
applies the new one, and line 25 computes the expanded message word m22 based on the
new value for m19, using SHA-1’s message expansion. Note that this computation could
actually be optimised, e.g. by precomputing the contribution of m14, m8 and m6, which
are fixed in this function. Lines 27 to 30 compute the impact of the current neutral bit
combination, first by partially recomputing the state words newq20 and newq21, then
fully recomputing newq22, and finally computing the as yet unknown word newq23. Line
32 computes a mask of sufficient conditions for the value of newq23 based on the value
of newq22. Lines 33 to 35 determine if the current combination of neutral bits lead to
a valid partial solution for A23, first by comparing the values of q21 and q22 which
we know to fulfill the conditions with the updated values newq21 and newq22 (lines 33
and 34), and then checking newq23 for the previously computed conditions. Lines 37
and 38 prepare the description of the partial solution. Finally, line 40 writes the partial
solution to the buffer Q23SOLBUF, at the condition that it is indeed valid. As mentioned
at the end of Section 2.3.1, this is done through a warp-specific temporary buffer, which
is flushed to the actual buffer on line 42 to ensure that every valid solution is indeed
eventually copied to Q23SOLBUF.

2.3.3 GPU tuning

After our initial implementation of the 76-step attack, we did some fine tuning of the
GPU BIOS settings in order to try improving the performance. One first objective was
to ensure that the GPU fans work at 100% during the attack, as this was strangely not
the case initially for our particular boards, and was obviously not ideal for cooling. We
also experimented with various temperature limits that define when the GPU will start
to throttle and both over-clocking and under-volting.
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Taken together, these variations had a significant impact on the overall performance
of the program. For a single GPU, the initial setting resulted in an estimated time of
4.94 days to produce one 76-step freestart collision. We were able to eventually reduce
this to 4.16 days. We also set-up machines with four GPUs, and observed significant
performance variations across the GPUs. This was likely due to uneven heat dissipation,
as was shown by the different temperatures reached by every board. All in all, the average
expected time to obtain a collision on a single 4-GPU machine was 4.42 days per GPU,
and thus about 1.1 day per machine. As the cooling was not optimal in our set-up,
reaching a performance closer to the one-GPU setting is likely to be possible.

We did not make any major changes for the 80-step attack. However, due to the
higher computational cost, we ran the attack only once. The collision was found after
ten days, with the attack being run on sixteen 4-GPU machines.

2.4 Efficiency of the framework

We conclude this section by evaluating the performance of our framework, and in par-
ticular by assessing the relative efficiency of a GPU-based attack compared to a more
traditional CPU implementation. We provide this analysis for the 76-step attack, but
the results apply entirely to the 80-step attack as well and to would-be SHA-1 collision
attacks implemented with our framework in general.

Our GPU implementation of SHA-1 can compute about 231.8 full SHA-1 compression
functions per second on a GTX970. Comparing this with the expected time to find a
collision of 4.16 days, this means that the 76-step attack has a complexity equivalent
to 250.25 calls to the compression function for the best-performing GPU; this increases
slightly to 250.34 when considering the 4-GPU average of 4.42 days.

Comparatively, on a Haswell Core-i5 running at 3.2GHz, the OpenSSL implemen-
tation of SHA-1 can compute 223.47 compression functions per second on one core. A
CPU implementation of our attack on the same processor leads to an expected time
to collision of 606.12 core-days, which translates to a complexity of 249.1 compression
function calls, though this could probably be improved by vectorizing part of the CPU
implementation. This means that a single GTX970 is worth 322 such CPU cores when
computing the SHA-1 compression function, and 138 cores when running our attack
program; this increases to 146 for the best-performing GPU. While this drop in relative
efficiency was to be expected, it is somehow surprisingly small given the complexity of
our implementation and e.g. the intensive use of large shared data structures. Our
careful implementation thus gives a much better value for the GPUs when compared
to previous attempts at running collision attacks on such a platform: in their work,
Grechnikov and Adinetz estimated a GPU to be worth 39 CPU cores [GA11]. This com-
parison should however be modulated by considering possibly uneven progress in GPUs
and CPUs since 2011 and different hardware quality. We believe that the gap between
these and our results is nonetheless significant.
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3 Freestart collisions for 76-step SHA-1
This section gives the attack parameters for the 76-step freestart collision attack on
SHA-1.

3.1 The differential path for most of the first two rounds
We give a graphical representation of the differential path used in our attack up to step
29 in Figure 10.5. The meanings of the various symbols are defined in Table 8.2. The
remainder of the path up to step 76 can easily be determined by linerisation of the step
function, given the differences in the message.

The message bit relations used in the attack for message words past W35 are given
in Figure 10.6, together with a graphical representation in Figure 10.7.

3.2 The neutral bits
We give here the list of the neutral bits used in the attack. There are fifty-one of them
over the eight message words W14 to W21, distributed as follows:

– W14: 9 neutral bits at bit positions (starting with the least significant bit (LSB) at
zero) 5,6,7,8,9,10,11,12,13

– W15: 11 neutral bits at positions 5,6,7,8,9,10,11,12,13,14,16

– W16: 8 neutral bits at positions 6,7,8,9,10,11,13,16

– W17: 5 neutral bits at positions 10,11,12,13,19

– W18: 2 neutral bits at positions 15,16

– W19: 8 neutral bits at positions 6,7,8,9,10,11,12,14

– W20: 5 neutral bits at positions 0,6,11,12,13

– W21: 3 neutral bits at positions 11,16,17

We give a graphical representation of the repartition of these neutral bits in Figure 10.8.
Not all of the neutral bits located on the same word (say W14) are neutral up to the

same state word. Their repartition in that respect is as follows

– Bits neutral up to step 18 (excluded): W14[9,10,11,12,13], W15[14,16]

– Bits neutral up to step 19 (excluded): W14[5,6,7,8], W15[8,9,10,11,12,13], W16[13,16],
W17[19]

– Bits neutral up to step 20 (excluded): W15[5,6,7], W16[9,10,11]

– Bits neutral up to step 21 (excluded): W16[6,7,8], W17[10,11,12,13], W18[15,16]
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i Ai Mi

-4 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-3 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-2 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○☆▴○
-1 ▿○○○○○○○○○○○○○○○○○○○○○○○○▵○○○○○▴
0 ▵▿○▿○○○○○○○○○○○○○○○○○○○○○▿○▿○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
1 ○▿○▵○○○○○○○○○○○○○○○○☆○▿○○○○▴○○○○ ○○○○○▾○○○○○○○○○○○○○○○○○○○○○▾▴▴○○
2 ○○○☆○▾○○○○○○○○○☆○▵○○○○▴○○○○▵○▾○▵ ▾▴○○▾▴○○○○○○○○○○○○○○○○○○○○○▴○▾○○
3 ○○○○○▾○▵○○☆○▵○○○○▴○○○○▵○▾○○○☆▾○▿ ○○○○▴▾○○○○○○○○○○○○○○○○○○○○○○○○▴○
4 ○▾○▵○○○▵▵○▿○▴○○○○▿▿▾▵▵○○▾○☆○○▿▴▵ ▴▾○○○○○○○○○○○○○○○○○○○○○○○○○▾○○○○
5 ▵▴○▿○☆○▿▿☆▵▵▵○▾○▵▿▵▾▿▿○▵○○▴○▴▵○▿ ▴○▴▴○▾○○○○○○○○○○○○○○○○○○○○○▾▴▾○○
6 ▿▿○▾☆▾▵▾▵▾▾▴▴▴▴☆▿▵▴▿▾○▾▾○▵▵○▵○▿▾ ○○▴▾▴▴○○○○○○○○○○○○○○○○○○○○○○○▴○○
7 ▵▴○▾☆▴▾▿▾▴▵▿▴▾▿☆▴▴▾▴▵☆▵○▿▴○○▿○▵▵ ▴○▴▾▾▾○○○○○○○○○○○○○○○○○○○○○▴▾○▾○
8 ▴▾○▵○○▴▾▾▾▾▾▾▾▾▾▾▾▾▾▵▾▴▴▵▵○▾○○▴▿ ○○▾○○○○○○○○○○○○○○○○○○○○○○○○▾○○○○
9 ▾▾▴▿○▵○▿▵▿○▵▿▿▿○▵▿▴▾○▿○▵▿▿▾▵○▵▿○ ○○▴○○▴○○○○○○○○○○○○○○○○○○○○○▾▴▴○○
10 ▾▵▿○▵○○○▵▿▿▿▵▵▵▿▵▵▿▿▵○○▵▵▵○○▵▿○○ ▾▾▴○▴▾○○○○○○○○○○○○○○○○○○○○○▾○▴○○
11 ▵○○▾▵○○○○○○○○○○○○○○○▵▿○○○○○○▵○☆○ ○○○○▾▴○○○○○○○○○○○○○○○○○○○○○○○○▾○
12 ▴○▴○○▵○○○○○○○○○○○○○○○○○○☆○○○○○○○ ▾▴○○○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
13 ▿○▴○▵▿○○○○○○○○○○○○○○○○○○○○▾○○○○▿ ▴○▾▾○▾○○○○○○○○○○○○○○○○○○○○○▴▾▾○○
14 ○○▴○○○○○○○○○○○○○○○○○○○○○○○○○▿○○▵ ○○▾○▾▴○○○○○○○○○○○○○○○○○○○○○○○▾○○
15 ▵▾○○○○○○○○○○○○○○○○○○○○○○○○○○▵○★○ ▴○▾▴▴▴○○○○○○○○○○○○○○○○○○○○○▴▾○○○
16 ▴○○▵▿○○○○○○○○○○○○○○○○○○○○○○○○○☆○ ▾○▾▴○○○○○○○○○○○○○○○○○○○○○○○▾○○○○
17 ▴○▾▵○○○○○○○○○○○○○○○○○○○○○○○○○○★○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○▾▴○○
18 ▴○○○▵○○○○○○○○○○○○○○○○○○○○○○○○○○☆ ▴○▴▾▴○○○○○○○○○○○○○○○○○○○○○○▾○○○○
19 ○▾○○◆○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○▾○○○○○○○○○○○○○○○○○○○○○○▴▾○○○
20 ▾○◆◾○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○▴▴▴▴○○○○○○○○○○○○○○○○○○○○○○▴○○○○
21 ▾○▾◆○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○▾○○○○○○○○○○○○○○○○○○○○○○▴○▴○○
22 ▾○○○◽○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○▾▴▴○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
23 ▾○▴○◇○○○○○○○○○○○○○○○○○○○○○○○○○○○ ▾○▴▾▴○○○○○○○○○○○○○○○○○○○○○○▴▾▴○○
24 ○○○○◾○○○○○○○○○○○○○○○○○○○○○○○○○○○ ▾▾▴○▴○○○○○○○○○○○○○○○○○○○○○○○○○○○
25 ○○▾○◆○○○○○○○○○○○○○○○○○○○○○○○○○○○ ▾○▴▴○○○○○○○○○○○○○○○○○○○○○○○○○▴○○
26 ▾○○○◾○○○○○○○○○○○○○○○○○○○○○○○○○○☆ ○▾○▴▾○○○○○○○○○○○○○○○○○○○○○○▴○○○○
27 ○▾▾○◇○○○○○○○○○○○○○○○○○○○○○○○○○○○ ▴○▴▾○○○○○○○○○○○○○○○○○○○○○○○○▴▴○○
28 ○○◇◾◾○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○▴○○▴○○○○○○○○○○○○○○○○○○○○○○○○○○○
29 ○○○◇◇○○○○○○○○○○○○○○○○○○○○○○○○○○○

Figure 10.5 – The differential path of the 76-step attack up to step 29.
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10. Freestart collision attacks for SHA-1

W54[29] ⊕W55[29] = 0 W53[29] ⊕W55[29] = 0 W51[4] ⊕W55[29] = 0
W49[29] ⊕W50[29] = 0 W48[29] ⊕W50[29] = 0 W47[28] ⊕W47[29] = 1
W46[4] ⊕W50[29] = 0 W46[28] ⊕W47[28] = 0 W46[29] ⊕W47[28] = 1
W45[28] ⊕W47[28] = 0 W44[29] ⊕W44[30] = 0 W43[3] ⊕W47[28] = 0
W43[4] ⊕W47[28] = 1 W42[29] ⊕W47[28] = 1 W41[4] ⊕W47[28] = 0
W40[29] ⊕W47[28] = 0 W39[4] ⊕W47[28] = 1 W37[4] ⊕W47[28] = 0
W59[4] ⊕W63[29] = 0 W57[4] ⊕W59[29] = 0 W74[0] = 1
W75[5] = 0 W73[1] ⊕W74[6] = 1 W71[5] ⊕W75[30] = 0
W70[0] ⊕W75[30] = 1

Figure 10.6 – The message bit relations of the 76-step attack for message words W36 to
W75.

– Bits neutral up to step 23 (excluded): W19[9,10,11,12,14]

– Bits neutral up to step 24 (excluded): W19[6,7], W20[11,12], W21[16,17]

– Bits neutral up to step 25 (excluded): W19[8], W20[6,13], W21[11]

– Bits neutral up to step 26 (excluded): W20[0]

We also give a graphical representation of this repartition in Figure 10.9.
Finally, on the implementation side, we show how the neutral bits are packed together

inside the inter-snippet buffers from Section 2.3.1 in Figure 10.10 and Figure 10.11. These
figures represent each of the two words of the buffers as thirty-two numbered coloured
circles, one for each bit. The colours represent the original message word from which the
bit comes from, and the number is the bit position in this original word. For instance, in
Figure 10.10, 13 is the value of the thirteenth bit in some instance of W14, i.e. W14[13];
the fact that this circle is the leftmost one in the top sequence means that in the buffer,
this information is stored as the MSB of the first word. One should note that not all
consecutive bits of a message are neutral; non-neutral bits do not need to be stored, but
it is nonetheless useful to maintain the relative distance between the actual neutral bits
inside the packing. For instance, there is no neutral bit on W15[15], thus this bit is not
included per se in Figure 10.10, but a padding bit is added instead. This is shown as . .

3.3 An example of colliding message pair
We give an example of collision in Table 10.1. This shows the two (message, IV ) pairs
with their identical resulting digest. The IVs and the digests’ words are ordered similarly
as in Table 8.3; the messages’ words are ordered asM0, . . . ,M15 from top to bottom, left
to right. Although the separations between the 32-bit words are not materialised, they
should be taken into account, and the values should not be interpreted as binary strings.
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3. Freestart collisions for 76-step SHA-1

W36: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W37: . . . . . . . . . . . . . . . . . . . . . . . . . . . a . . . .
W38: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W39: . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . .
W40: . . a . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W41: . . . . . . . . . . . . . . . . . . . . . . . . . . . a . . . .
W42: . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W43: . . . . . . . . . . . . . . . . . . . . . . . . . . . A a . . .
W44: . b b . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W45: . . . a . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W46: . . A a . . . . . . . . . . . . . . . . . . . . . . . c . . . .
W47: . . A a . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W48: . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W49: . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W50: . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W51: . . . . . . . . . . . . . . . . . . . . . . . . . . . d . . . .
W52: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W53: . . d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W54: . . d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W55: . . d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W56: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W57: . . . . . . . . . . . . . . . . . . . . . . . . . . . e . . . .
W58: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W59: . . e . . . . . . . . . . . . . . . . . . . . . . . . f . . . .
W60: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W61: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W62: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W63: . . f . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W64: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W65: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W66: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W67: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W68: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W69: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W70: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g
W71: . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . .
W72: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W73: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h .
W74: . . . . . . . . . . . . . . . . . . . . . . . . . H . . . . . 1
W75: . G . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . .

Figure 10.7 – The message bit-relations used in the attack for wordsW36 toW75 (graph-
ical representation). A dot (“.”) means an absence of condition. A zero (“0”) or one
(“1”) character represents a bit unconditionally set to 0 or 1. A pair of two identical
letters x means that the two bits have the same value. A pair of two letters x and X
means that the two bits have different values.

Note that unlike most inputs discussed in this chapter, the IV values are compatible
with the original description of SHA-1, i.e. they are not (all) equal to the corresponding
state values A0, . . . ,A−4; compared to A−2, . . . ,A−4, the last three IV words are rotated
by two to the right.

3.4 Complexity of the attack

As we already mentioned in Section 2.3.3, the expected time to find a collision on a
single average-performing GTX970 is 4.42 days. This figure is obtained by considering
the rate at which partial solutions up to A56 are produced together with the probability
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10. Freestart collision attacks for SHA-1

W14: ○○○○○○○○○○○○○○○○○○●●●●●●●●●○○○○○
W15: ○○○○○○○○○○○○○○○●○●●●●●●●●●●○○○○○
W16: ○○○○○○○○○○○○○○○●○○●○●●●●●●○○○○○○
W17: ○○○○○○○○○○○○●○○○○○●●●●○○○○○○○○○○
W18: ○○○○○○○○○○○○○○○●●○○○○○○○○○○○○○○○
W19: ○○○○○○○○○○○○○○○○○●○●●●●●●●○○○○○○
W20: ○○○○○○○○○○○○○○○○○○●●●○○○○●○○○○○●
W21: ○○○○○○○○○○○○○○●●○○○○●○○○○○○○○○○○

Figure 10.8 – The fifty-one neutral bits of the 76-step attack, using (with some abuse) a
“difference” notation. A “○” (resp. “●”) symbol means the absence (resp. presence) of a
neutral bit on the corresponding bit. The message words are (as usual) written left to
right from MSB to LSB.

Table 10.1 – A freestart collision for 76-step SHA-1. Message and IV bytes with differ-
ences are highlighted with coloured boxes .

Message 1

IV 81 bf 23 06 41 b8 3b 5c 03 e9 a7 8f ba 50 28 d5 fc 50 87 88

M 46 fa 5a 88 f4 f0 c7 f0 b8 de db ec 95 1e 25 88
77 34 fd f5 4c 42 c4 97 52 d7 d8 f9 5f 14 52 ea
b4 9e 93 b2 91 c2 30 71 c7 0f 35 9b 8a ba cf af
b3 7f fb 27 3d fe 7f ad 7a de 56 95 20 fd 7c ea

H(IV,M) af 49 5d 10 52 82 35 03 e4 9e 46 78
dc e7 f3 b3 d6 da a3 24

Message 2

∆IV 81 bf 23 06 41 b8 3b 5d 83 e9 a7 8f ba 50 28 d5 fc 50 87 88

∆M 46 fa 5a 98 f0 f0 c7 ec 7a de db f8 99 1e 25 8a
b7 34 fd e5 f8 42 c4 8b 6e d7 d8 fd e3 14 52 f0
94 9e 93 a2 b5 c2 30 6d 2b 0f 35 8f 86 ba cf ad
73 7f fb 37 89 fe 7f b1 56 de 56 91 9c fd 7c f2

H(∆ IV,∆M) af 49 5d 10 52 82 35 03 e4 9e 46 78
dc e7 f3 b3 d6 da a3 24
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3. Freestart collisions for 76-step SHA-1

A18

W14: ○○○○○○○○○○○○○○○○○○●●●●●○○○○○○○○○
W15: ○○○○○○○○○○○○○○○●○●○○○○○○○○○○○○○○
A19

W14: ○○○○○○○○○○○○○○○○○○○○○○○●●●●○○○○○
W15: ○○○○○○○○○○○○○○○○○○●●●●●●○○○○○○○○
W16: ○○○○○○○○○○○○○○○●○○●○○○○○○○○○○○○○
W17: ○○○○○○○○○○○○●○○○○○○○○○○○○○○○○○○○
A20

W15: ○○○○○○○○○○○○○○○○○○○○○○○○●●●○○○○○
W16: ○○○○○○○○○○○○○○○○○○○○●●●○○○○○○○○○
A21

W16: ○○○○○○○○○○○○○○○○○○○○○○○●●●○○○○○○
W17: ○○○○○○○○○○○○○○○○○○●●●●○○○○○○○○○○
W18: ○○○○○○○○○○○○○○○●●○○○○○○○○○○○○○○○
A23

W19: ○○○○○○○○○○○○○○○○○●○●●●●○○○○○○○○○
A24

W19: ○○○○○○○○○○○○○○○○○○○○○○○○●●○○○○○○
W20: ○○○○○○○○○○○○○○○○○○○●●○○○○○○○○○○○
W21: ○○○○○○○○○○○○○○●●○○○○○○○○○○○○○○○○
A25

W19: ○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○○○
W20: ○○○○○○○○○○○○○○○○○○●○○○○○○●○○○○○○
W21: ○○○○○○○○○○○○○○○○○○○○●○○○○○○○○○○○
A26

W20: ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○●

Figure 10.9 – The fifty-one neutral bits regrouped by the first state where they start to
interact. A “●” represents the presence of a neutral bit, and a “○” the absence thereof.
The LSB position is the rightmost one.
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13 12 11 10 9 8 7 6 5 16 . 14 13 12 11 10 9 8 7 6 5 16 . . 13 . 11 10 9 8 7 6

19 . . . . . 13 12 11 10 16 15 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Figure 10.10 – The inter-snippet buffer for steps A18 to A21. From top to bottom, left
to right, bright cerulean ( ) refers to bits from W14; light rhodamine ( ) refers to bits
from W15; bright (burnt) orange ( ) bits come from W16, while light (yellow) orange
( ) means bits from W17. Finally, bright fuchsia ( ) and light lime ( ) refer to bits of
W18 and bits holding the index of a base solution respectively.

. . 17 16 . . . . 11 14 . 12 11 10 9 8 7 6 13 12 11 . . . . 6 . . . . . 0

. . . . . . . . . . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Figure 10.11 – The inter-snippet buffer for steps A23 to A26. From top to bottom, left
to right, the two lime bits ( ) are bits of padding that do not hold any meaningful
data; bright cerulean ( ) refers to bits from W21 and light rhodamine ( ) to bits from
W19; bright (burnt) orange ( ) bits come from W20. Light (yellow) orange ( ) bits are
also padding bits, and bright fuchsia ( ) bits finally hold the index of an extended base
solution.

that such a partial solution leads to a collision. In our experiments, partial solutions were
obtained at a rate of 0.0171 per second on average, while JLCA gives a probability of
2−12.67, leading to the above expected time to collision. As we mentioned in Section 2.4,
this translates to a complexity of 250.34 compression function calls on a GTX970.

4 Freestart collisions for 80-step SHA-1

This section gives the attack parameters for the 80-step full freestart collision attack on
SHA-1.

4.1 The differential path for part of the first two rounds

A graphical representation of the differential path used in our attack up to step 28
is given in Figure 10.12. It consists of sufficient conditions for the state, and of the
associated message signed bit differences. The meaning of the bit condition symbols
were defined in Table 8.2. Note that the signs of message bit differences are enforced
through message bit relations. The message bit relations used in the attack past W28
are given in Figure 10.13, and a graphical representation thereof in Figure 10.14. The
remainder of the path can easily be determined by linearisation of the step function
given the differences in the message.

188



4. Freestart collisions for 80-step SHA-1

4.2 The neutral bits and boomerangs
We give here the list of the neutral bits used in the 80-step attack. There are sixty of
them over the seven message words W14 to W20, distributed as follows:

– W14: 6 neutral bits at bit positions (starting with the least significant bit (LSB) at
zero) 5,7,8,9,10,11

– W15: 11 neutral bits at positions 4,7,8,9,10,11,12,13,14,15,16

– W16: 9 neutral bits at positions 8,9,10,11,12,13,14,15,16

– W17: 10 neutral bits at positions 10,11,12,13,14,15,16,17,18,19

– W18: 11 neutral bits at positions 4,6,7,8,9,10,11,12,13,14,15

– W19: 8 neutral bits at positions 6,7,8,9,10,11,12,14

– W20: 5 neutral bits at positions 6,11,12,13,15

We give a graphical representation of the position of these neutral bits in Figure 10.15.
Not all of the neutral bits of the same word (say W14) are used at the same step

during the attack. Their repartition in that respect is as follows

– Bits neutral up to step 18 (excluded): W14[8,9,10,11], W15[13,14,15,16]

– Bits neutral up to step 19 (excluded): W14[5,7],W15[8,9,10,11,12],W16[12,13,14,15,16]

– Bits neutral up to step 20 (excluded): W15[4,7,8,9], W16[8,9,10,11,12], W17[14,15,16,
17,18,19]

– Bits neutral up to step 21 (excluded): W17[10,11,12,13], W18[15]

– Bits neutral up to step 22 (excluded): W18[9,10,11,12,13,14], W19[10,14]

– Bits neutral up to step 23 (excluded): W18[4,6,7,8], W19[9,11,12], W20[15]

– Bits neutral up to step 24 (excluded): W19[6,7,8], W20[11,12,13]

– Bit neutral up to step 25 (excluded): W20[7]

One should note that this list only includes a single bit per neutral bit group. As we
mentioned in the previous section, some additional flips may be needed in order to
preserve message bit relations.

We also give a graphical representation of this repartition in Figure 10.17.
In addition to the “single” neutral bits, the 80-step attack also uses boomerangs.

These are regrouped in two sets of two. The first one introduces a difference in the
message at word W10; as it does not significantly impact conditions up to step 27, it
is used to increase the number of partial solutions for A28. The second set introduces
a difference at word W11, and is used on partial solutions up to A30. More precisely,
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10. Freestart collision attacks for SHA-1

the four boomerangs have their first differences on bits 7,8 of W10 and 8,9 of W11. In
Figure 10.16, we give a graphical representation of the complete set of message bits to
be flipped for each boomerang. One can see that these follow the pattern of a local
collisions, with some “linear” corrections omitted thanks to the absorption properties of
the ϕIF Boolean function.

We conclude by showing how the neutral bits are packed together with the index
of an (extended) base solution in Figure 10.18 and Figure 10.18. Note that neutral
bits on W17 are split between the buffers for steps 18–20 and 21–25. Furthermore, the
packing of steps 21–25 also includes some “flip” values, which are partial sums of some
selected neutral bits that aid in determining if additional bits need to be flipped so as
to preserve message bit relations. The representation of the packing is done similarly as
in Section 3.2.

4.3 An example of colliding message pair
We give an example of 80-step collision in Table 10.2. This shows the two (message, IV )
pairs with their identical resulting digest. This table is formatted in the same way as
the one of Section 3.3.

4.4 Complexity of the attack
To estimate the complexity of the attack, we may as in Section 3.4 consider the produc-
tion rate of partial solutions up to A60 and the corresponding probability of extending
these to a collision. However, the slower production rate due to the higher number of
conditions would lead to a less reliable estimate than in the 76-step case. Thus, we
choose instead to consider partial solutions up to A40. On a good-performing GTX970,
such solutions are produced at a rate of about 1030 per second. The probability that
one of these results in a collision is given by JLCA to be 2−35.58, leading to an expected
time to collision of 577.16 days. Recalling that one GTX970 can compute 231.8 SHA-1
compression functions per second, the complexity of the attack is thus of 257.37 on such
a GPU. However, it should be noted that as for the 76-step attack, the average perfor-
mance of the GPUs on an actual cluster slightly degrades compared to a single one. In
our attack, we used sixteen 4-GPU machines, which combined together led to an attack
of complexity about 257.5, which takes about ten days to run.
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Table 10.2 – A freestart collision for 80-step SHA-1. Message and IV bytes with differ-
ences are highlighted with coloured boxes .

Message 1

IV 50 6b 01 78 ff 6d 18 90 20 22 91 fd 3a de 38 71 b2 c6 65 ea

M 9d 44 38 28 a5 ea 3d f0 86 ea a0 fa 77 83 a7 36
33 24 48 4d af 70 2a aa a3 da b6 79 d8 a6 9e 2d
54 38 20 ed a7 ff fb 52 d3 ff 49 3f c3 ff 55 1e
fb ff d9 7f 55 fe ee f2 08 5a f3 12 08 86 88 a9

H(IV,M) f0 20 48 6f 07 1b f1 10 53 54 7a 86
f4 a7 15 3b 3c 95 0f 4b

Message 2

∆ IV 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 ea

∆M 3f 44 38 38 81 ea 3d ec a0 ea a0 ee 51 83 a7 2c
33 24 48 5d ab 70 2a b6 6f da b6 6d d4 a6 9e 2f
94 38 20 fd 13 ff fb 4e ef ff 49 3b 7f ff 55 04
db ff d9 6f 71 fe ee ee e4 5a f3 06 04 86 88 ab

H(∆ IV,∆M) f0 20 48 6f 07 1b f1 10 53 54 7a 86
f4 a7 15 3b 3c 95 0f 4b
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i Ai Mi

-4 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-3 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
-2 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○☆▾○
-1 ▵○○○▵○○○○○○○○○○○○○○○○○○○○▿○○○○○▴
0 ▿▵○○▿○○○○○○○○○○○○○○○○○○○○▵○○○○○○ ●○▴○○○▴○○○○○○○○○○○○○○○○○○○○▴○○○○
1 ▵▵▴☆○○▴○○○○○○○○○○○○○☆○○○○○○▴○○○○ ○○▾○○▾○○○○○○○○○○○○○○○○○○○○○▾▴▴○○
2 ○○▾▵▵▾▵○▵○○○○○○☆○○○○○▵▴▵▵▿○▵○▿○○ ○○▴○○▾▾○○○○○○○○○○○○○○○○○○○○▾○▴○○
3 ○▿○▿▾▿▿▵▵○☆○▵▿○○○▴▿▵○▿▵▵▵▵☆▿○▵○▵ ○○▾○○▾▾○○○○○○○○○○○○○○○○○○○○▾▴○▾○
4 ○▵○▵▵▴▾▵▴☆☆☆▴▵☆☆☆▿▵▵☆☆○▾▴▴▴▴▴▾○▴ ○○○○○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
5 ○▴○▴○▾▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴▴○▴▿▾▵▵▵▵ ○○○○○▾○○○○○○○○○○○○○○○○○○○○○▴▴▴○○
6 ○▿○▿○▵○▿▵▵○▵▵▵○▵▵▵▵▿▾▿▵▿▿▾▵○▵▿▾▴ ●▴○○▴▴○○○○○○○○○○○○○○○○○○○○○▾○▴○○
7 ▵▾○▴○▵○▿▵▿▵▿▿▿▵▿▿▿▿▿▿▿▵▵▵▴○▾○▿○▴ ○○○○▾▴○○○○○○○○○○○○○○○○○○○○○○○○▴○
8 ▿▴○▿○▿○○○○○○○○○○○○○○○○▿○○▴○▾○▿○▵ ●▾○○○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
9 ○▴○▿○▿○○○○○○○○○○○○○○○○○○○▿○▴○○○☆ ●○▾▴○▾○○○○○○○○○○○○○○○○○○○○○▾▴▴○○
10 ○▴○○○○○○○○○○○○○○○○○○○○○○○○○▴○▿○○ ○○▾▴▴▴○○○○○○○○○○○○○○○○○○○○○○○▾○○
11 ○○○▾○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●○▴▴▴▴○○○○○○○○○○○○○○○○○○○○○▾▴○▴○
12 ○○○▿○▵○○○○○○○○○○○○○○○○○○○○○○○▵○○ ○○▾○○○○○○○○○○○○○○○○○○○○○○○○▾○○○○
13 ○▵○○○▿○○○○○○○○○○○○○○○○○○○○○○○○★☆ ○○▴○○▴○○○○○○○○○○○○○○○○○○○○○▾▴▴○○
14 ▴▾○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●▴▴○▴▾○○○○○○○○○○○○○○○○○○○○○▾○▴○○
15 ▵○▵▾○○○○○○○○○○○○○○○○○○○○○○○○○○★○ ○○○○▴▾○○○○○○○○○○○○○○○○○○○○○○○○▴○
16 ▴○▵▿○▵○○○○○○○○○○○○○○○○○○○○○○○○○○ ●▴○○○○○○○○○○○○○○○○○○○○○○○○○▾○○○○
17 ▵○▾○○▿○○○○○○○○○○○○○○○○○○○○○○○○○☆ ●○▴▴○▴○○○○○○○○○○○○○○○○○○○○○▴▾▾○○
18 ○▴▾○▿○○○○○○○○○○○○○○○○○○○○○○○○○○★ ○○▴○▾▾○○○○○○○○○○○○○○○○○○○○○○○▾○○
19 ○▴○◽○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●○▴▾▾▾○○○○○○○○○○○○○○○○○○○○○▾▴○○○
20 ▾○○○◆○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●○▴▴○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
21 ▾○▴◆○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○▴▴○○
22 ▾○○○◾○○○○○○○○○○○○○○○○○○○○○○○○○○☆ ●○▾▾▾○○○○○○○○○○○○○○○○○○○○○○▴○○○○
23 ○▾○○◆○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○▾○○○○○○○○○○○○○○○○○○○○○○▴▾○○○
24 ▾○◇◽○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○▾▴▾▾○○○○○○○○○○○○○○○○○○○○○○▴○○○○
25 ▾○▾◇○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○○○○▴○○○○○○○○○○○○○○○○○○○○○○▴○▴○○
26 ▾○○○◽○○○○○○○○○○○○○○○○○○○○○○○○○○○ ○▴▾▾○○○○○○○○○○○○○○○○○○○○○○○▴○○○○
27 ▾○▾○◇○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●○▴▾▴○○○○○○○○○○○○○○○○○○○○○○▴▴▾○○
28 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ ●▴▾○▾○○○○○○○○○○○○○○○○○○○○○○○○○○○
29 ○○▾○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Figure 10.12 – The differential path used in the 80-step attack up to step 29.
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W29[2] = 0 W29[28] = 0 W29[29] = 0
W30[27] ⊕W30[28] = 1 W30[30] = 1 W31[2] = 0
W31[3] = 0 W31[28] = 0 W31[29] = 0
W33[28] ⊕W33[29] = 1 W30[4] ⊕W34[29] = 0 W35[27] = 0
W35[28] = 0 W35[4] ⊕W39[29] = 0 W58[29] ⊕W59[29] = 0
W57[29] ⊕W59[29] = 0 W55[4] ⊕W59[29] = 0 W53[29] ⊕W54[29] = 0
W52[29] ⊕W54[29] = 0 W51[28] ⊕W51[29] = 1 W50[4] ⊕W54[29] = 0
W50[28] ⊕W51[28] = 0 W50[29] ⊕W51[28] = 1 W49[28] ⊕W51[28] = 0
W48[29] ⊕W48[30] = 0 W47[3] ⊕W51[28] = 0 W47[4] ⊕W51[28] = 1
W46[29] ⊕W51[28] = 1 W45[4] ⊕W51[28] = 0 W44[29] ⊕W51[28] = 0
W43[4] ⊕W51[28] = 1 W43[29] ⊕W51[28] = 0 W41[4] ⊕W51[28] = 0
W63[4] ⊕W67[29] = 0 W79[5] = 0 W78[0] = 1
W77[1] ⊕W78[6] = 1 W75[5] ⊕W79[30] = 0 W74[0] ⊕W79[30] = 1

Figure 10.13 – The message bit relations of the 80-step attack for message words W29
to W79.
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W29: . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . 0 . .
W30: . 1 . A a . . . . . . . . . . . . . . . . . . . . . . c . . . .
W31: . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . .
W32: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W33: . . B b . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W34: . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W35: . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . d . . . .
W36: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W37: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W38: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W39: . . d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W40: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W41: . . . . . . . . . . . . . . . . . . . . . . . . . . . e . . . .
W42: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W43: . . e . . . . . . . . . . . . . . . . . . . . . . . . E . . . .
W44: . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W45: . . . . . . . . . . . . . . . . . . . . . . . . . . . e . . . .
W46: . . E . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W47: . . . . . . . . . . . . . . . . . . . . . . . . . . . E e . . .
W48: . f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W49: . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W50: . . E e . . . . . . . . . . . . . . . . . . . . . . . g . . . .
W51: . . E e . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W52: . . g . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W53: . . g . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W54: . . g . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W55: . . . . . . . . . . . . . . . . . . . . . . . . . . . h . . . .
W56: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W57: . . h . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W58: . . h . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W59: . . h . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W60: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W61: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W62: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W63: . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . .
W64: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W65: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W66: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W67: . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W68: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W69: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W70: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W71: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W72: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W73: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W74: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j
W75: . . . . . . . . . . . . . . . . . . . . . . . . . . J . . . . .
W76: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W77: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k .
W78: . . . . . . . . . . . . . . . . . . . . . . . . . K . . . . . 1
W79: . J . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . .

Figure 10.14 – The message bit-relations used in the attack for words W29 to W79
(graphical representation). A dot (“.”) means an absence of condition. A zero (“0”) or
a one (“1”) character represents a bit unconditionally set to 0 or 1. A pair of two letters
x means that the two bits have the same value. A pair of two letters x and X means
that the two bits have different values.
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4. Freestart collisions for 80-step SHA-1

W14: ○○○○○○○○○○○○○○○○○○○○●●●●●○●○○○○○
W15: ○○○○○○○○○○○○○○○●●●●●●●●●●○○●○○○○
W16: ○○○○○○○○○○○○○○○●●●●●●●●●○○○○○○○○
W17: ○○○○○○○○○○○○●●●●●●●●●●○○○○○○○○○○
W18: ○○○○○○○○○○○○○○○○●●●●●●●●●●○●○○○○
W19: ○○○○○○○○○○○○○○○○○●○●●●●●●●○○○○○○
W20: ○○○○○○○○○○○○○○○○●○●●●○○○○●○○○○○○

Figure 10.15 – The sixty neutral bits of the 80-step attack, using (with some abuse) a
“difference” notation. A “○” (resp. “●”) symbol means the absence (resp. presence) of a
neutral bit on the corresponding bit. The message words are (as usual) written left to
right from MSB to LSB.

W10: ○○○○○○○○○○○○○○○○○○○○○○▴★○○○○○○○○
W11: ○○○○○○○○○○○○○○○○○▵☆○○○○▾◆○○○○○○○
W12: ○○○○○○○○○○○○○○○○○○▿◇○○○○○○○○○○○○
W13: ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
W14: ○○○○○○○○○○○○○○○○○○○○○○○○○☆○○○○○○
W15: ○○○○○○○○○○○○○○○○○○○○○○○○▵☆○○○○○○
W16: ○○○○○○○○○○○○○○○○○○○○○○○○○▿◇○○○○○

Figure 10.16 – The local collision patterns for each of the four boomerangs, using “dif-
ference” symbols by an abuse of notation. The position of the first difference to be
introduced is highlighted with a difference (black) symbol; the associated correcting dif-
ferences (identified by the corresponding white symbols) must then have a sign different
from this one. Note that boomerang “★” uses one more difference than the others.
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10. Freestart collision attacks for SHA-1

A18

W14: ○○○○○○○○○○○○○○○○○○○○●●●●○○○○○○○○
W15: ○○○○○○○○○○○○○○○●●●●○○○○○○○○○○○○○
A19

W14: ○○○○○○○○○○○○○○○○○○○○○○○○●○●○○○○○
W15: ○○○○○○○○○○○○○○○○○○○●●●●●○○○○○○○○
W16: ○○○○○○○○○○○○○○○●●●●●○○○○○○○○○○○○
A20

W15: ○○○○○○○○○○○○○○○○○○○○○○○○●○○●○○○○
W16: ○○○○○○○○○○○○○○○○○○○○●●●●○○○○○○○○
W17: ○○○○○○○○○○○○●●●●●●○○○○○○○○○○○○○○
A21

W17: ○○○○○○○○○○○○○○○○○○●●●●○○○○○○○○○○
W18: ○○○○○○○○○○○○○○○○●○○○○○○○○○○○○○○○
A22

W18: ○○○○○○○○○○○○○○○○○●●●●●●○○○○○○○○○
W19: ○○○○○○○○○○○○○○○○○●○○○●○○○○○○○○○○
A23

W18: ○○○○○○○○○○○○○○○○○○○○○○○●●●○●○○○○
W19: ○○○○○○○○○○○○○○○○○○○●●○●○○○○○○○○○
W20: ○○○○○○○○○○○○○○○○●○○○○○○○○○○○○○○○
A24

W19: ○○○○○○○○○○○○○○○○○○○○○○○●●●○○○○○○
W20: ○○○○○○○○○○○○○○○○○○●●●○○○○○○○○○○○
A25

W20: ○○○○○○○○○○○○○○○○○○○○○○○○○●○○○○○○

Figure 10.17 – The sixty neutral bits regrouped by the first state where they start to
interact. A “●” represents the presence of a neutral bit, and a “○” the absence thereof.
The LSB position is the rightmost one.
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16 15 14 13 12 11 10 9 8 . . . 16 15 14 13 12 11 10 9 8 7 . . 4 11 10 9 8 7 . 5

19 18 17 16 15 14 . . . . . . ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Figure 10.18 – The inter-snippet buffer for steps A18 to A20. From top to bottom, left
to right, bright cerulean ( ) refers to bits from W16; light rhodamine ( ) refers to bits
from W15 (with some additional padding); bright (burnt) orange ( ) bits come from
W14, while light (yellow) orange ( ) means bits from W17. Finally, bright fuchsia ( )
and light lime ( ) refer to padding bits and bits holding the index of a base solution
respectively.

15 14 13 12 11 10 9 8 7 6 . 4 . . 17 . 15 . 13 12 11 . . . . 6 . 13 12 11 10 0

17 . 15 14 . 12 11 10 9 8 7 6 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Figure 10.19 – The inter-snippet buffer for steps A21 to A25. From top to bottom, left
to right, light lime bits ( ) come from W18 (with a few trailing padding bits); bright
fuchsia ( ) refers to bits from W20, including two “flip” bits on positions 17 and 0, and
yellow-tinted orange bits ( ) are from W17. Bright cerulean means ( ) bits from W19
(with two flip bits on 17 and 15), and finally light rhodamine ( ) bits hold the index of
an extended base solution.
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10. Freestart collision attacks for SHA-1

5 Conclusion
The work described in this chapter culminated in the computation of an explicit freestart
collision for the full SHA-1. Although it remains the case that no collision for the entire
hash algorithm is known, the progress we have made does allow us to precisely estimate
and update what would be the computational and financial cost to generate such a
collision, using the latest cryptanalysis results [Ste13]; the computational cost required
to generate such a collision is actually a recurrent debate in the academic community
since the first theoretical attack from Wang et al. [WYY05a].

Schneier’s projections [Sch12] on the cost of SHA-1 collisions, made in 2012, were
that on Amazon EC2 the cost would be ≈700K US$ by 2015, ≈173K US$ by 2018
and ≈43K US$ by 2021. These computations were based on an early announcement of
[Ste13]. These projections have been used to establish the timeline of migrating away
from SHA-1-based signatures for secure Internet websites, resulting in a migration by
January 2017 —one year before Schneier estimated that a SHA-1 collision would be
within the resources of criminal syndicates.

This work demonstrated that GPUs are much faster for this type of attacks when
compared to CPUs, and we could estimate that at the time where this work was done,
in the autumn 2015, a full SHA-1 collision would not cost more than between 75K
and 120K US$ by renting computational power on Amazon EC2. Our new GPU-based
projections are more accurate and significantly below Schneier’s estimations. What could
be considered more worrying is that they were theoretically already within Schneier’s
estimated financial resources of criminal syndicates as of the end of 2015, almost two
years earlier than previously expected, and one year before SHA-1 would start being
marked as unsafe in modern Internet browsers. This led us to recommend that migration
from SHA-1 to the secure SHA-2 or SHA-3 hash algorithms should be done sooner than
previously planned.

It had previously been shown that a more advanced chosen-prefix collision attack on
MD5 allowed the creation of a rogue Certification Authority undermining the security of
all secure websites [SSA+09]. Collisions on SHA-1 can result in e.g. signature forgeries,
but do not directly undermine the security of the Internet at large. Chosen-prefix colli-
sions are significantly more threatening, but currently much costlier to mount for SHA-1.
Yet, given the lessons learned with the MD5 full collision break, it is not advisable to
wait until these become practically possible to move away from using SHA-1.

At the time of the finding of the 80-step freestart collision, in October 2015, we
learned that in an ironic turn of events the CA/Browser Forum, which is the main
association of industries regulating the use of digital certificates on the Internet, was
planning to hold a ballot to decide whether to extend issuance of SHA-1 certificates
through the year 2016 [For15a]. With our new cost projections in mind, we strongly
recommended against this extension and the ballot was also subsequently withdrawn
[For15b]. Further action was subsequently considered by major browser providers such as
Microsoft [Mic15] and Mozilla [Moz15] to speed up the deprecation of SHA-1 certificates.
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Chapter 11
Preimage attacks for SHA-1

1 Introduction

This short chapter presents new preimage attacks for the SHA-1 hash function. The
results are obtained by extending the differential view of meet-in-the-middle preimage
attacks with higher-order differentials.

The starting point of the work described here is the meet-in-the-middle technique,
which was first used in cryptography by Diffie and Hellman in 1977 to attack double-
encryption [DH77]. Its use for preimage attack is much more recent and is due to Aoki
and Sasaki, who used it as a framework to attack various hash functions, including for
instance SHA-0 and SHA-1 [AS09]. The basic principle behind a meet-in-the-middle
technique is to exploit the fact that some intermediate value of a function’s computation
can be expressed in two different ways involving different parts of a secret, which can
then be sampled independently of each other. In the case of hash function cryptanalysis,
there is no actual secret to consider, but a similar technique can nonetheless be exploited
in certain cases; we show in more details how to do so in the preliminaries of Section 2.

At CRYPTO 2012, Knellwolf and Khovratovich introduced a differential formulation
of the meet-in-the-middle framework of Aoki and Sasaki, which they used to improve
the best attacks on SHA-1 [KK12]. One of the main interests of their approach is that
it simplifies the formulation of several advanced extensions of the meet-in-the-middle
technique, and thereby facilitates the search for attack parameters, which in the case of
meet-in-the-middle attacks roughly correspond to good partitions for the “secret”.

In this chapter, we further exploit this differential formulation and generalise it to use
higher-order differentials, which were introduced in cryptography by Lai in 1994 [Lai94].
The essence of this technique is to consider “standard” differential cryptanalysis as ex-
ploiting properties of the first-order derivative of the function one wishes to analyse; it is
then somehow natural to generalise the idea and to consider higher-order derivatives as
well. We illustrate this with a small example using XOR differences: consider a function
f and assume the equality ∆α f (x) ∶= f (x) ⊕ f (x⊕α) = A holds with a good probability
over the values of x; this is the same as saying that the derivative of f in α is biased to-
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11. Preimage attacks for SHA-1

wards A. In an extreme case, if f is linear, then ∆α f is constantly equal to f (α). Now if
we consider the expression ∆α f (x)⊕∆α f (x⊕β) = f (x)⊕f (x⊕α)⊕f (x⊕β)⊕f (x⊕α⊕β),
this corresponds to taking the derivative of f twice, first in α, and then in β. A possible
advantage of doing this is that the resulting function may be more biased than ∆α f was,
for instance by being constant when ∆α f is linear. This process can be iterated at will,
each time decreasing the algebraic degree of the resulting function until it reaches zero.

As higher-order differentials are obviously best formulated in differential form, they
combine neatly with the differential view of the framework of Knellwolf and Khovra-
tovich, whereas using a similar technique in a meet-in-the-middle attack independently
of any differential formulation would probably prove to be much more difficult. As
a final motivation for this generalisation, we show a small application to the analysis
of the MD4 hash function [Riv90]. This does not improve the best known preimage
attacks [GLRW10, ZL12], but gives a good illustration of the potential of the technique.

Higher-order differentials for the compression function of MD4. The inverse of the state
update function inside the compression function of MD4 is of the form: qi−4 ← (qi ↺
si)−ϕ(qi−1, qi−2, qi−3)−mj , with the subtraction being done modulo 232. Four consecutive
steps of this inverse function can thus be written as:

q3 ← (q7 ↺ s7) − ϕ(q6, q5, q4) −m7

q2 ← (q6 ↺ s6) − ϕ(q5, q4, q3) −m6

q1 ← (q6 ↺ s5) − ϕ(q4, q3, q2) −m5

q0 ← (q4 ↺ s4) − ϕ(q3, q2, q1) −m4

If we consider order-2 differentials on m6 and m7, with additive differences modulo
232 concentrated around the most significant bit, that is of the form ●●●●○○○○, computing
the state update from above on these differences results in a state q0...3 with differences
of the form:

q‡
3: ∗∗∗∗○○○○ q⋆3 : ○○○○○○○○ q†

3: equal to q‡
3

q‡
2: ∗∗∗∗○○○○ q⋆2 : ∗∗∗∗○○○○ q†

2: ∗∗∗∗○○○○
q‡

1: ∗∗∗∗○○○○ q⋆1 : ∗∗∗∗○○○○ q†
1: ∗∗∗∗○○○○

q‡
0: ∗∗∗∗○○○○ q⋆0 : ∗∗∗∗○○○○ q†

0: ∗∗∗∗○○○○

For diff. on m7 For diff. on m6 For diff. on m6 & m7

Thus there is no difference on the value q†
3 − q⋆3 − q

‡
3 + q3, and the differences on the

remaining words also have a high probability. This good differential behaviour can then
be exploited in a later attack.

It is worth noting that in the very case of MD4, one could also use very good local
collisions from order-1 message differences, and higher-order differentials do not typically
outperform these; we just gave them for illustration.
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1. Introduction

1.1 Previous and new results on SHA-1

The first preimage attacks on SHA-1 were due to De Cannière and Rechberger [DR08],
who used a system-based approach that in particular allows to compute practical preim-
ages for a non-trivial number of steps. In order to attack more steps, Aoki and Sasaki
later used a meet-in-the-middle approach [AS09]. This was subsequently improved by
Knellwolf and Khovratovich [KK12], who attacked the highest number of rounds so
far. To be more precise, they attack reduced versions of the function up to 52 steps
for one-block preimages with padding, 57 steps for one-block preimages without padding,
and 60 steps for one-block pseudo-preimages with padding, i.e. freestart preimages with
padding. The latter two attacks can be combined to give 57 steps two-block preimages
with padding. In this work, we present one-block preimages with padding up to 56 steps,
one-block preimages without padding up to 62 steps, one-block pseudo preimages with
padding up to 64 steps, resulting in two-block preimages with padding up to 62 steps.

We give a summary of these results in Table 11.1.

Table 11.1 – Existing and new preimage attacks on SHA-1, with complexity given in
base-2 logarithm.

Function # blocks # rounds complexity ref.

SHA-1

1 52 158.4 [KK12]
1 52 156.7 Section 4.2
1 56 159.4 Section 4.2
2 57 158.8 [KK12]
2 58 157.9 Section 4.3
2 62 159.3 Section 4.3

SHA-1, without padding
1 57 158.7 [KK12]
1 58 157.4 Section 4.1
1 62 159 Section 4.1

SHA-1, pseudo-preimage
1 60 157.4 [KK12]
1 61 156.4 Section 4.3
1 64 158.7 Section 4.3
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2 Meet-in-The-Middle Attacks and the Differential
Framework from CRYPTO 2012

As a preliminary, we give a description of the meet-in-the-middle framework for preimage
attacks on hash functions, and in particular of the differential formulation of Knellwolf
and Khovratovich from CRYPTO 2012 [KK12].

The relevance of meet-in-the-middle for preimage attacks comes from the fact that
many hash functions are built from a compression function which is an ad hoc block
cipher used in one of the PGV modes [PGV93]. The SHA-1 function itself follows
this design strategy and uses the particular Davies-Meyer mode, already described in
Chapter 4. We recall that in this mode, the compression function H ∶ {0,1}v ×{0,1}n →
{0,1}v compressing a chaining value c with a message m to form the updated chaining
value c′ ∶= H(c,m) is defined as H(c,m) = f (m,c) + c, with f ∶ {0,1}n × {0,1}v → {0,1}v
a block cipher of key-length and message-length n and v. Given a compression function
H, the problem of finding a preimage of t for H is then equivalent to finding a key m for
f such that f (m,p) = c for a pair (p, c), with c = t − p. Additional constraints can also
be put on p, such as prescribing it to a fixed initialisation value IV.

In its most basic form, a meet-in-the-middle attack can speed-up the search for a
preimage if the block cipher f can equivalently be described as the composition f2 ○ f1
of two block ciphers f1 ∶ K1 × {0,1}v → {0,1}v and f2 ∶ K2 × {0,1}v → {0,1}v with
independent key spaces K1,K2 ⊂ {0,1}n. Indeed, if such a decomposition is possible, an
attacker can select a subset {k1

i , i = 1 . . .N1} (resp. {k2
j , j = 1 . . .N2}) of keys of K1 (resp.

K2), which together suggest N ∶= N1 ⋅N2 candidate keys k12
ij ∶= (k1

i , k
2
j ) for f by setting

f (k12
ij , ⋅) = f2 (k2

j , ⋅) ○ f1 (k1
i , ⋅).

Since the two sets {f1 (k1
i , p), i = 1 . . .N1} and {f2 −1(k2

j , c), j = 1 . . .N2} can be com-
puted independently, the complexity of testing f (k12

ij , p) = c for N keys is only of
O(max(N1,N2)) time and O(min(N1,N2)) memory, which is less than N and can be
as low as

√
N when N1 = N2.

2.1 Formalizing meet-in-the-middle attacks with related-key differentials

Let us denote by (α,β) fÐ→
p
γ the fact that Pr

(x,y)
[ f (x⊕α, y⊕β) = f (x, y)⊕γ] = p, meaning

that (α,β) is a related-key differential for f that holds with probability p. The goal of
an attacker is now to find two linear sub-spaces D1 and D2 of {0,1}m such that:

D1 ∩D2 = {0} (11.1)

∀δ1 ∈D1 ∃ ∆1 ∈ {0,1}v s.t. (δ1,0)
f1Ð→
1

∆1 (11.2)

∀δ2 ∈D2 ∃ ∆2 ∈ {0,1}v s.t. (δ2,0)
f2 −1

Ð→
1

∆2. (11.3)

Let d1 and d2 be the dimension of D1 and D2 respectively. Then for a setM of messages
µi ∈ {0,1}m, or more precisely the quotient space of {0,1}m by D1 ⊕D2, one can define
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#M distinct sets µi⊕D1⊕D2 of dimension d1+d2 (and size 2d1+d2), which can be tested
for a preimage with a complexity of only O(max(2d1 ,2d2)) time and O(min(2d1 ,2d2))
memory. We recall the procedure to do so in Algorithm 11.1.

Algorithm 11.1: Testing µ⊕D1 ⊕D2 for a preimage [KK12]
Input: D1,D2 ⊂ {0,1}m, µ ∈ {0,1}m, p, c
Output: A preimage of c + p if there is one in µ⊕D1 ⊕D2, � otherwise
Data: Two lists L1, L2 indexed by δ2, δ1 respectively

1 forall δ2 ∈D2 do
2 L1[δ2] ← f1 (µ⊕ δ2, p) ⊕∆2

3 forall δ1 ∈D1 do
4 L2[δ1] ← f2 −1(µ⊕ δ1, c) ⊕∆1

5 forall (δ1, δ2) ∈D1 ×D2 do
6 if L1[δ2] = L2[δ1] then
7 return µ⊕ δ1 ⊕ δ2

8 return �

2.1.1 Analysis of Algorithm 11.1
For the sake of simplicity we assume that d1 and d2 are equal to a certain value d < v

2 .
The running time of every loop of Algorithm 11.1 is therefore O(2d), assuming efficient
data structures and equality testing for the lists, and O(2d) memory is necessary for
storing L1 and L2. It is also clear that if the condition L1[δ2] = L2[δ1] is met, then
µ⊕ δ1 ⊕ δ2 is a preimage of c + p. Indeed, this translates to f1 (µ⊕ δ2, p) ⊕∆2 = f2 −1(µ⊕
δ1, c)⊕∆1, and using the differential properties of D1 and D2 for f1 and f2 , we have that
f1 (µ⊕ δ1⊕ δ2, p) = f1 (µ⊕ δ2, p)⊕∆1 and f2 −1(µ⊕ δ1⊕ δ2, c) = f2 −1(µ⊕ δ1, c)⊕∆2. Hence,
f1 (µ ⊕ δ1 ⊕ δ2, p) = f2 −1(µ ⊕ δ1 ⊕ δ2), and f (µ ⊕ δ1 ⊕ δ2, p) = c. This algorithm therefore
allows to search through 22d candidate preimages with a complexity of O(2d), and thus
gives a speed-up of 2d. The complexity of a full attack is hence O(2v−d).

2.1.2 Comparison with the basic meet-in-the-middle attack
When setting ∆1 = ∆2 = 0, this differential variant of the meet-in-the-middle technique
becomes a special case of the general formulation of the basic technique given at the
beginning of this section: the key spaces K1 and K2 now possess a structure of affine
spaces. Although this is a restriction on the shape of the key partition, the additional
structure is useful when one is intent on finding actual attacks.

The advantage of the differential view of the meet-in-the-middle attack then comes
from the fact that it gives a practical way of searching for the key spaces, as differential
path search is a well-studied area of symmetric cryptanalysis. Another major advantage
is that it makes the formulation of several extensions to the basic attack very natural,
without compromising the ease of the search for the key spaces. One such immediate
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extension is obviously to consider non-zero values for ∆1 and ∆2. As noted by Knell-
wolf and Khovratovich, this already corresponds to an advanced technique of indirect
matching in the original framework of Aoki and Sasaki. Further extensions are detailed
next.

2.2 Probabilistic truncated differential meet-in-the-middle
There are two natural ways to generalise the differential formulation of the meet-in-
the-middle, that each correspond to relaxing one condition. First, one can consider
differentials of probability less than one —although a high probability is still usually
needed; second, one can consider truncated differentials by using an equivalence relation
“≡” instead of the equality, with one usually taking ≡ to be a truncated equality: a ≡
b [m] ⇔ a ∧m = b ∧m for a, b,m ∈ {0,1}v. One can then use the notation (α,β) f↝

p
γ to

denote the fact that Pr
(x,y)

[ f (x⊕α, y⊕β) ≡ f (x, y)⊕γ] = p. Hence Equation 11.2 becomes:

∀δ1 ∈D1 ∃ ∆1 ∈ {0,1}v s.t. (δ1,0)
f1↝
p1

∆1, (11.4)

for some probability p1 and relation ≡, and the same changes apply to Equation 11.3.
Again, these generalisations correspond to advanced techniques of Aoki and Sasaki’s

framework, which find here a concise and efficient description.

The only change to Algorithm 11.1 needed to accommodate these extensions is to
replace the equality by the appropriate equivalence relation on line 6. However, the fact
that this equivalence holds no longer ensures that x ∶= µ ⊕ δ1 ⊕ δ2 is a preimage, which
implies an increased complexity for the attack. This increase comes from two factors:
first, even when x is a preimage, the relation on line 6 might not hold with probability
1 − p1p2, meaning that on average one needs to test 1/p1p2 times more candidates in
order to account for the false negatives; secondly, if we denote by s the average size of
the equivalence classes under ≡ (when using truncation as above, this is equal to 2v−r
with r the Hamming weight of m), then one needs to check s potential preimages as
returned on line 6 on average before finding a valid one, in order to account for the false
positives. The total complexity of an attack with the modified algorithm is therefore
O((2v−d + s)/p̃1p̃2), where p̃1 and p̃2 are the respective average probabilities for p1 and
p2 over the spaces D1 and D2.

2.3 Splice-and-cut, initial structures and bicliques
The two techniques we present now are older than the framework of [KK12], but are
fully compatible with its differential approach.

Splice-and-cut was introduced by Aoki and Sasaki in 2008 [AS08]. Its idea is to use
the feedforward of the compression function so as to be able to start the computation
of f1 and f2 −1 not from p and c but from an intermediate value from the middle of the
computation of f . If one sets f = f3 ○ f2 ○ f1 and calls s the intermediate value f3 −1(c)
(or equivalently f2 ○ f1 (p)), an attacker may now sample the functions f1 (t − f3 (s)) and

204



3. Higher-Order Differential Meet-in-The-Middle

f2 −1(s) on their respective key-spaces, which are as always taken to be independent,
when searching a preimage for t. By giving more possible choices for the decomposition
of f , one can hope for better attacks. This however comes at the cost that they are now
pseudo-preimage attacks, as one does not control the value of the IV anymore, which
becomes equal to t − f3 (s).

A possible improvement to a splice-and-cut decomposition is the use of initial struc-
tures [SA09], which were later reformulated as bicliques [KRS12]. Instead of starting the
computations in the middle from an intermediate value s, the idea is now to start from
a set of multiple values possessing a special structure that spans several rounds. If the
cost of constructing such sets is negligible w.r.t the rest of the computations, the rounds
spanned by the structure actually come for free. In more details, a biclique, say for f3 in
the above decomposition of f , is a set {m,D1,D2,Q1,Q2} where m is a message, D1 and
D2 are linear spaces of dimension d, and Q1 (resp. Q2) is a list of 2d values indexed by the
differences δ1 of D1 (resp. D2) s.t. ∀(δ1, δ2) ∈D1 ×D2 Q2[δ2] = f3 (m⊕ δ1⊕ δ2,Q1[δ1]).
This allows to search the message space m ⊕ D1 ⊕ D2 in O(2d) with a meet-in-the-
middle approach that does not need any call to f3 , essentially bypassing this part of the
decomposition.

3 Higher-Order Differential Meet-in-The-Middle
We now describe how to modify the framework of Section 2 to use higher-order dif-
ferentials. Let us denote by ({α1, α2},{β1, β2})

fÐ→
p

γ the fact that Pr
(x,y)

[ f (x ⊕ α1 ⊕

α2, y ⊕ β1 ⊕ β2) ⊕ f (x ⊕ α1, y ⊕ β1) ⊕ f (x ⊕ α2, y ⊕ β2) = f (x, y) ⊕ γ] = p , meaning that
({α1, α2},{β1, β2}) is a related-key order-2 differential for f that holds with probability
p.

Similarly as in Section 2, the goal of the attacker is to find four linear subspaces
D1,1,D1,2,D2,1,D2,2 of {0,1}m in direct sum such that:

∀δ1,1, δ1,2 ∈D1,1 ×D1,2 ∃ ∆1 ∈ {0,1}v s.t. ({δ1,1, δ1,2},{0,0}) f1Ð→
1

∆1 (11.5)

∀δ2,1, δ2,2 ∈D2,1 ×D2,2 ∃ ∆2 ∈ {0,1}v s.t. ({δ2,1, δ2,2},{0,0}) f2 −1

Ð→
1

∆2. (11.6)

Then M ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2 is a preimage of c + p if and only if f1 (µ ⊕ δ1,1 ⊕ δ1,2 ⊕
δ2,1⊕ δ2,2, c) = f2 −1(µ⊕ δ1,1⊕ δ1,2⊕ δ2,1⊕ δ2,2, p) which is equivalent by the Equation 11.5
and Equation 11.6 to the equality:

f1 (µ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, p) ⊕ f2 −1(µ⊕ δ2,1,⊕δ1,1 ⊕ δ1,2, c)⊕
f1 (µ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, p)⊕ = f2 −1(µ⊕ δ2,2,⊕δ1,1 ⊕ δ1,2, c)⊕
f1 (µ⊕ δ2,1 ⊕ δ2,2, p) ⊕∆1 f2 −1(µ⊕ δ1,1 ⊕ δ1,2, c) ⊕∆2.

(11.7)

We denote by di,j the dimension of the sub-space Di,j for i, j = 1,2. Then for a setM
of messages µ ∈ {0,1}m) one can define #M affine sub-sets µi⊕D1,1⊕D1,2⊕D2,1⊕D2,2 of
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dimension d1,1+d1,2+d2,1+d2,2 (since the sub-spacesDi,j are in direct sum by hypothesis),
which can be tested for a preimage using Equation 11.7. This can be done efficiently by
a modification of Algorithm 11.1 into the following Algorithm 11.2.

Algorithm 11.2: Testing µ⊕D1,1 ⊕D1,2 ⊕D2,1 ⊕D2,2 for a preimage
Input: D1,1,D1,2,D2,1,D2,2 ⊂ {0,1}m, µ ∈ {0,1}m, p, c
Output: A preimage of c + p if there is one in µ⊕D1,1 ⊕D1,2,⊕D2,1 ⊕D2,2, �

otherwise
Data: Six lists:
L1,1 indexed by δ1,2, δ2,1, δ2,2
L1,2 indexed by δ1,1, δ2,1, δ2,2
L2,1 indexed by δ1,1, δ1,2, δ2,2
L2,2 indexed by δ1,1, δ1,2, δ2,1
L1 indexed by δ2,2, δ2,1
L2 indexed by δ1,1, δ1,2

1 forall δ1,2, δ2,1, δ2,2 ∈D1,2 ×D2,1 ×D2,2 do
2 L1,1[δ1,2, δ2,1, δ2,2] ← f2 −1(µ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) ;
3 forall δ1,1, δ2,1, δ2,2 ∈D1,1 ×D2,1 ×D2,2 do
4 L1,2[δ1,1, δ2,1, δ2,2] ← f2 −1(µ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, c) ;
5 forall δ1,1, δ1,2, δ2,2 ∈D1,1 ×D1,2 ×D2,2× do
6 L2,1[δ1,1, δ1,2, δ2,2] ← f1 (µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,2, p) ;
7 forall δ1,1, δ1,2, δ2,1 ∈D1,1 ×D1,2 ×D2,1 do
8 L2,2[δ1,1, δ1,2, δ2,1] ← f1 (µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1, p) ;
9 forall δ1,1, δ1,2 ∈D1,1 ×D1,2 do

10 L2[δ1,1, δ1,2] ← f2 −1(µ⊕ δ1,1 ⊕ δ1,2, c) ⊕∆1 ;
11 forall δ2,1, δ2,2 ∈D2,1 ×D2,2 do
12 L1[δ2,1, δ2,2] ← f1 (µ⊕ δ2,1 ⊕ δ2,2, p) ⊕∆2 ;
13 forall δ1,1, δ1,2, δ2,1, δ2,2 ∈D1,1 ×D1,2 ×D2,1 ×D2,2 do
14 if L1,1[δ1,2, δ2,1, δ2,2] ⊕L1,2[δ1,1, δ2,1, δ2,2] ⊕L1[δ2,1, δ2,2] =

L2,1[δ1,1, δ1,2, δ2,2] ⊕L2,2[δ1,1, δ1,2, δ2,1] ⊕L2[δ1,1, δ1,2] then
15 return µ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2

16 return �

3.1 Analysis of Algorithm 11.2
If we denote by Γ1 and Γ2 the cost of evaluating of f1 and f2 −1 and Γmatch the cost of the
test on line 14, then the algorithm allows to test 2d1,1+d1,2+d2,1+d2,2 messages with a com-
plexity of 2d1,2+d2,1+d2,2Γ2+2d1,1+d2,1+d2,2Γ2+2d1,1+d1,2+d2,1Γ1+2d1,1+d1,2+d2,1Γ1+2d1,1+d1,2Γ2+
2d2,1+d2,2Γ1+Γmatch. The algorithm must then be run 2n−(d1,1+d1,2+d2,1+d2,2) times in order
to test 2n messages. In the special case where all the linear spaces have the same dimen-
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sion d and if we consider that Γmatch is negligible with respect to the total complexity,
the total complexity of an attack is then of : 2n−4d ⋅ (23d ⋅ (2Γ1 + 2Γ2) + 22d ⋅ (Γ1 +Γ2)) =
2n−d+1Γ+2n−2dΓ = O(2n−d) where Γ is the cost of the evaluation of the total compression
function f . We think that the assumption on the cost of Γmatch is reasonable given the
small size of d in actual attacks and the fact that performing a single match is much
faster than computing f .

The factor that is gained from a brute-force search of complexity O(2n) is hence of
2d, which is the same as for Algorithm 11.1. However, one now needs four spaces of
differences of size 2d instead of only two, which might look like a setback. Indeed the
real interest of this method does not lie in a simpler attack but in the fact that using
higher-order differentials may now allow to attack functions for which no good-enough
order-1 differentials are available.

3.2 Using probabilistic truncated differentials
Similarly as in Section 2, Algorithm 11.2 can be modified in order to use probabilistic
truncated differentials instead of probability-1 differentials on the full state. The changes
to the algorithm and the complexity evaluation are identical to the ones described in
Section 2.2.

4 Applications to SHA-1

4.1 One-block preimages without padding
We can apply the framework of Section 3 to mount attacks on SHA-1 for one-block
preimages without padding. These are rather direct applications of the framework, the
only difference being the fact that we use sets of differentials instead of linear spaces. This
has no impact on Algorithm 11.2, but makes the description of the attack parameters
less compact.

As was noted in [KK12], the message expansion of SHA-1 being linear, it is possible
to attack 15 steps both in the forward and backward direction, for a total of 30, without
advanced matching techniques: it is sufficient to use a message difference in the kernel
of the 15 first steps of the message expansion. When applying our framework to attack
more steps, say 55 to 62, we have observed experimentally that splitting the forward
and backward parts around steps 22 to 27 seems to give the best results. A similar
behaviour was observed by Knellwolf and Khovratovich in their attacks, and this can
be explained by the fact that the SHA-1 step function has a somewhat weaker diffusion
when computed backward compared to forward.

We used Algorithm 11.3 to construct a suitable set of differences in the preparation
of an attack. This algorithm was run on input differences of low Hamming weight; a
difference was kept only when it resulted in output differences with truncation masks
that are long enough and with good overall probabilities. The sampling parameter Q
that we used was 215; the threshold value t was subjected to a tradeoff: the larger it
is, the less bits are chosen in the truncation mask, but the better the probability of the
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resulting differential. In practice, we used values between 2 and 5, depending on the
differential considered.

Algorithm 11.3: Computing a suitable output difference for a given input differ-
ence
Input: A chunk f i of the compression function, δi,1, δi,2 ∈ {0,1}m, a threshold

value t, a sample size Q, an internal state c.
Output: An output difference S , and a mask TS for the differential

((δi,1, δi,2),0)
f i↝ S

Data: An array d of n counters initially set to 0.
1 for q = 0 to Q do
2 Choose µ ∈ {0,1}m at random;
3 ∆← f i(µ⊕ δi,1 ⊕ δi,2, c) ⊕ f i(µ⊕ δi,1, c) ⊕ f i(µ⊕ δi,2, c) ⊕ f i(µ, c);
4 for i = 0 to n − 1 do
5 if the ith bit of ∆ is 1 then
6 d[i] ← d[i] + 1;

7 for i = 0 to n − 1 do
8 if d[i] ≥ t then
9 Set the i-th bit of the output difference S to 1;

Once input and output differences had been chosen, we used an adapted version of
[KK12, Algorithm 2] given in Algorithm 11.4 to compute suitable truncation masks.

Algorithm 11.4: Find truncation mask T for matching
Input: D1,1,D1,2,D2,1,D2,2 ⊂ {0,1}m, a sample size Q, a mask size d.
Output: A truncation mask T ∈ {0,1}n of Hamming weight d.
Data: An array k of n counters initially set to 0.

1 for q = 0 to Q do
2 Choose µ ∈ {0,1}m at random ;
3 c← f (µ, IV);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈D1,1 ×D1,2 ×D2,1 ×D2,2 at random;
5 ∆← f1 (µ⊕ δ1,1 ⊕ δ1,2, c) ⊕ f1 (µ⊕ δ1,1, c) ⊕ f1 (µ⊕ δ1,2, c);
6 ∆←∆⊕ f2 −1(µ⊕ δ2,1 ⊕ δ2,2, c) ⊕ f2 −1(µ⊕ δ2,2, c) ⊕ f2 −1(µ⊕ δ2,2, c);
7 for i = 0 to n − 1 do
8 if the ith bit of ∆ is 1 then
9 k[i] ← k[i] + 1;

10 Set the d bits of lowest counter value in k to 1 in T.

The choice of the size of the truncation mask d in this algorithm offers a tradeoff
between the probability one can hope to achieve for the resulting truncated differential
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and how efficient a filtering of “ bad ” messages it will offer. In our applications to SHA-
1, we chose masks of size about min(log2(∣D1,1∣), log2(∣D1,2∣), log2(∣D2,1∣), log2(∣D2,2∣)),
which is consistent with taking masks of size the dimension of the affine spaces as is
done in [KK12].

We similarly adapted [KK12, Algorithm 3] as Algorithm 11.5 in order to estimate
the average false negative probability associated with the final truncated differential.

Algorithm 11.5: Estimate the average false negative probability
Input: D1,1,D1,2,D2,1,D2,2 ⊂ {0,1}m, T ∈ {0,1}n, a sample size Q
Output: Average false negative probability α.
Data: A counter k initially set to 0.

1 for q = 0 to Q do
2 Choose µ ∈ {0,1}m at random ;
3 c← f (µ, IV);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈D1,1 ×D1,2 ×D2,1 ×D2,2 at random;
5 ∆← f1 (µ⊕ δ1,1 ⊕ δ1,2, c) ⊕ f1 (µ⊕ δ1,1, c) ⊕ f1 (µ⊕ δ1,2, c);
6 ∆←∆⊕ f2 −1(µ⊕ δ2,1 ⊕ δ2,2, c) ⊕ f2 −1(µ⊕ δ2,2, c) ⊕ f2 −1(µ⊕ δ2,2, c);
7 for i = 0 to n − 1 do
8 if ∆ /≡T 0n then
9 k ← k + 1;

10 return k/Q

We do not explicitly list the difference sets used in our attack, but conclude this
section by giving the statistics for the best attacks that we found for various reduced
versions of SHA-1 without padding in Table 11.2, the highest number of attacked rounds
being 62.

4.2 One-block preimages with padding
If we want the message to be properly padded, 65 out of the 512 bits of the last message
blocks need to be fixed according to the padding rules, and this naturally restricts the
positions of where one can now use message differences. This has in particular an adverse
effect on the differences in the backward step, whose Hamming weight increases because
of some features of SHA-1’s message expansion algorithm. The overall process of finding
attack parameters is otherwise unchanged from the non-padded case. We give statistics
for the best attacks that we found in Table 11.3. One will note that the highest number
of attacked rounds dropped from 62 to 56 when compared to Table 11.2.

4.3 Two-block preimages with padding
We can increase the number of rounds for which we can find a preimage with a properly
padded message at the cost of using a slightly longer message of two blocks: if we are
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Table 11.2 – One block preimage without padding. N is the number of attacked steps,
Split is the separation step between the forward and the backward chunk, di,j is the
log2 of the cardinal of Di,j and α is the estimate for the false negative probability. The
complexity is computed as described in Section 3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

58 25 7.6 9.0 9.2 9.0 0.73 157.4
59 25 7.6 9.0 6.7 6.7 0.69 157.7
60 26 6.5 6.0 6.7 6.0 0.60 158.0
61 27 4.7 4.8 5.7 5.8 0.51 158.5
62 27 4.7 4.8 4.3 4.6 0.63 159.0

Table 11.3 – One block preimage with padding. N is the number of attacked steps, Split
is the separation step between the forward and the backward chunk, di,j is the log2 of the
cardinal of Di,j and α is the estimation for false negative probability. The complexity is
computed as described in Section 3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

51 23 8.7 8.7 8.7 8.7 0.72 155.6
52 23 9.1 9.1 8.2 8.2 0.61 156.7
53 23 9.1 9.1 3.5 3.5 0.61 157.7
55 25 6.5 6.5 5.9 5.7 0.52 158.2
56 25 6 6.2 7.2 7.2 0.6 159.4

able to find one-block pseudo preimages with padding on enough rounds, we can then
use the one-block preimage without padding to bridge the former to the IV. Indeed, in
a pseudo-preimage setting, the additional freedom degrees gained from removing any
constraint on the IV more than compensate for the ones added by the padding. We first
describe how to compute such pseudo-preimages.

4.3.1 One-block pseudo-preimages

If we relax the conditions on the IV and do not impose anymore that it is fixed to the
one of the specifications, it becomes possible to use a splice-and-cut decomposition of
the function, as well as short properly padded bicliques built in the same way as the
ones used by Knellwolf and Khovratovich [KK12].
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f3 f1f2

s2 s2 + 1

s1 − 1 s1
e e + 1

Figure 11.1 – A splice-and-cut decomposition using a biclique.

The reduced compression function of SHA-1 f is now decomposed into three smaller
functions as f = f2 t ○ f1 ○ f3 ○ f2 b, f3 being the rounds covered by the biclique. The function
f1 covers the steps s1 to e, f2 = f2 t ○ f2 b covers s2 to e + 1 through the feedforward, and
f3 covers s2 + 1 to s1 − 1, as shown in Figure 11.1.

Finding the parameters is done in the exact same way as for the one-block preimage
attacks. Since we only use bicliques covering 7 steps, one can generate many of them from
a single one by modifying some of the remaining message words outside of the biclique
proper. Therefore, the amortised cost of their construction is small and considered
negligible w.r.t. the rest of the attack. The statistics of the resulting attacks are shown
in Table 11.4.

Table 11.4 – One block pseudo-preimage with padding. N is the number of attacked
steps, di,j is the log2 of the cardinal of the set D1,2 and α is the estimate for the false
negative probability. The various splits are labeled as in Figure 11.1. The complexity is
computed as described in Section 3.

N s1 e s2 d1,1 d1,2 d2,1 d2,2 α Complexity

61 27 49 20 7.0 7.0 7.5 7.5 0.56 156.4
62 27 50 20 5.8 5.7 7.2 7.2 0.57 157.0
63 27 50 20 6.7 6.7 7.7 7.7 0.57 157.6
64 27 50 20 3 3 4.5 4.7 0.69 158.7

4.3.2 Complexity of the two-block attacks

Using two one-block attacks, it is simple to mount a two-block attack at the combined
cost of each of them. For a given target c, the process is the following:

1. The attacker uses a properly-padded pseudo-preimage attack, yielding the second
message block µ2 and an IV IV′;
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2. The attacker then uses a non-padded preimage attack with target IV′, yielding a first
message block µ2.

From the Merkle-Damgård structure of SHA-1, it follows that the two-block message
(µ1, µ2) is a preimage of c.

For attacks up to 60 rounds, we can use the pseudo-preimage attacks of [KK12]; for
61 and 62 rounds, we use the ones of this section. This results in attacks of complexities
as shown in Table 11.5.

Table 11.5 – Two-block preimage attacks on SHA-1 reduced to N steps. The pseudo-
preimage attacks followed by “⋆” come from [KK12].

N Second block complexity First block complexity Total Complexity

58 156.3⋆ 157.4 157.9
59 156.7⋆ 157.7 158.3
60 157.5⋆ 158.0 158.7
61 156.4 158.5 158.8
62 157.0 159.0 159.3

5 Conclusion
This chapter showed how to extend the differential variant of the meet-in-the-middle
framework for hash function preimage attacks with higher-order differentials, and how
this could be applied to find better attacks on SHA-1. The source of the improvements
comes from the fact that higher-order differentials lead to better message partitions,
which then mechanically allow to mount attacks up to a larger number of steps than the
previous best results.

This new technique is however not without downsides of its own, as it makes the
attack procedure more complex. A consequence is that it does not seem to improve
the best attacks on very weak functions such as MD4. Yet, it still produces the best
known attacks on the more complex SHA-1, when the objective is to find a preimage for
the highest possible number of rounds. It should also be noted that due to the strong
similarity with the original meet-in-the-middle framework, this technique may be much
less successful when applied to functions with a heavier message expansion, such as SHA-
2, or in general to functions with better diffusion. A striking example in the latter case
is that by applying the current framework to the BLAKE-512 hash function [AHMP10],
we were only able to attack 2.75 out of 16 with a complexity close to a generic attack.
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Titre : Analyse de primitives symétriques
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Résumé : Cette thèse a pour objet d’étude
les algorithmes de chiffrement par bloc et les
fonctions de hachage cryptographiques, qui sont
deux primitives essentielles de la cryptographie dite
« symétrique ».
Dans une première partie, nous étudions des élé-
ments utiles pour la conception de chiffres par bloc:
tout d’abord des matrices de diffusion de grande di-
mension issues de codes correcteurs géométriques,
puis une boîte de substitution offrant une bonne
diffusion. Dans le second cas, nous montrons aussi

comment utiliser cet élément pour construire un
chiffre compact et efficace sur petits processeurs.
Dans une seconde partie, nous nous intéressons
à des attaques en collision à initialisation libre
sur la fonction de hachage SHA-1. Nous montrons
comment les attaques classiques sur cette fonction
peuvent être rendues plus efficaces en exploitant la
liberté supplémentaire offerte par ce modèle. Ceci
nous permet en particulier de calculer explicite-
ment des collisions pour la fonction de compression
de SHA-1 non réduite.
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Abstract : This thesis focuses on block ciphers
and cryptographic hash functions, which are two
essential primitives of symmetric-key cryptography.
In the first part of this manuscript, we study use-
ful building blocks for block cipher design. We
first consider large diffusion matrices built from
algebraic-geometry codes, and then construct a
small S-box with good diffusion. In the second case,
we show how the S-box can be used to define a

compact and efficient block cipher targeting small
processors.
In the second part, we focus on the SHA-1 hash
function, for which we develop a freestart collision
attack. We show how classical collision attacks can
be made more efficient by exploiting the additional
freedom provided by this model. This allows us in
particular to compute explicit collisions for the full
compression function of SHA-1.
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