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Modeling Economic Resilience

Abstract: A wide range of climatic and ecological changes are unfolding around us.

These changes notably manifest themselves through an increased environmental variabil-

ity, such as shifts in the frequency, intensity, and spatial distribution of weather-related

extreme events. If human societies cannot mitigate these transformations, to which condi-

tions should they adapt? To many researchers and stakeholders, the answer is resilience.

This concept seems to subsume a variety of solutions for dealing with a turbulent and

uncertain world. Resilient systems bounce back after unexpected events, learn novel con-

ditions and adapt to them. Theoretical models, however, to explore the links between so-

cioeconomic mechanisms and resilience are still in their infancy. To advance such models,

the present dissertation proposes a novel conceptual framework. This framework relies on

an interdisciplinary and critical review of ecological and economic studies, and it is based

on the theory of dynamical systems and on the paradigm of complex adaptive systems.

We identify agent-based models as crucial for socioeconomic modeling. To assess their

applicability to the study of resilience, we test at first whether such models can reproduce

the bifurcation patterns of predator–prey interactions, which are a very important factor

in both ecological and economic systems. The dissertation then tackles one of the main

challenges for the design of resilient economic system: the large interconnectedness of pro-

duction processes, whereby disruption may propagate and amplify. We next investigate

the role of delays in production and supply on realistic economic networks, and show that

the interplay between time delays and topology may greatly affect a network’s resilience.

Finally, we investigate a model that encompasses adaptive responses of agents to shocks,

and describes how disruptions propagate even though all firms do their best to mitigate

risks. In particular, systemic amplification gets more pronounced when supply chains are

fragmented. These theoretical findings are fairly general in character and may thus help

the design of novel empirical studies. Through the application of several recent ideas and

methods, this dissertation advances knowledge on innovative mathematical objects, such

as Boolean delay equations on complex networks and evolutionary dynamics on graphs.

Finally, the conceptual models herein open wide perspectives for further theoretical re-

search on economic resilience, especially the study of environmental feedbacks and their

impacts on the structural evolution of production networks.
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Introduction

We live in a time of fast-paced transformations. There are more humans on Earth than

ever, and they are more educated, more interconnected, and consuming more resources

than ever. Through soil degradation, contaminant dispersion and extensive illumination,

the realm of the ‘natural’ is shrinking. Most living organisms have to adapt to an anthro-

pogenized planet. Planetary processes are also becoming influenced by human societies,

the most striking of these processes being the climate-related ones. Following Nobel Lau-

reate Paul Crutzen, many scientists now propose to name our epoch the Anthropocene,

the time of the humans.

These transformations have generated intense debates on how societies may, or

should, adapt their oiko-nomia, the way they manage their home. In the 1960s, Kenneth

Boulding was calling our planet ‘Spaceship Earth’, to stress its limits and the need to

account for them in economic thinking. No decisions should be based on the view that

the biosphere absorbs all pollutants and unlimitedly regenerates all basic resources.

The image of a spaceship also suggests a possibility for controlling the Earth’s

trajectory. If we gather around a negotiation table and act reasonably, we may put in

place the adequate monitoring systems, use resources more efficiently, and thus maintain

some indicators below certain targets, e.g., a 2°C increase in the planetary atmosphere’s

average surface temperature. Or, if we cannot reach these objectives in time, we may

agree on measures to adapt our vessel: cool cities through green walls, protect coastal

settlements with higher dams or displace some communities.

We are realizing, however, that environmental processes are not intrinsically ‘bal-

anced’, and therefore such transformations may not be that smooth. Greenhouse gases

change the mean temperature, but this in turn affects the frequency and intensity of ex-

treme events, and, more generally, the climate’s internal dynamics. The weather is likely

to get more turbulent and warmer globally, and exact consequences on a local scale are still

quite uncertain. In a more fluctuating environment, to what conditions should societies

adapt?

To many, the answer is resilience. This intriguing concept seems to inspire solu-

tions for adapting to a turbulent and uncertain future. Resilient societies may survive

severe and unexpected events, bounce back after a shock, and reorganize their infrastruc-
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ture, economies and policies to fit changing conditions. This flexible and dynamic notion

is much harder to grasp than the eco-efficiency approach of the spaceship and its man-

ageable indicators. Even so, this concept has recently become one of the key pillars of

sustainability.

To become resilient, and to respond to the perturbed internal variability of the

climate, societies need to change their own internal dynamics. In fact, socio-economic

dynamics have also evolved rather rapidly over the past decades. Not only are there more

people and organizations aboard the spaceship, but they interact much more intensely.

Ideas, problems and solutions can spread like wildfire. Through heavier reliance on net-

worked infrastructures, individuals and companies are less autonomous but they can also,

paradoxically, engage more easily in decentralized activities.

As for economies in general, the production of goods and services is getting more

global, and it involves therewith a multitude of specialized organizations connected

through transnational and fragmented supply chains. As analyzed by Ingmar Granstedt

already in the 1970s, these intricacies bind distant processes together. Such increased

interconnectivity fosters the propagation of disruptions and may generate economic

volatility. These economic phenomena may, in turn, be amplified by a potential increase

in the amplitude, spatio-temporal extent and frequency of weather-and-climate–related

extreme events. Systemic risk — whereby an unexpected event triggers a large domino

effect — is a great concern, not only for people and businesses but also for insurers.

In this context, firms are themselves looking for resilient strategies. Through risk

mitigation, increased agility, and permanent restructuring, they may better compete in a

turbulent environment. Does such individual-firm behavior help the economy getting more

resilient as a whole? How do individual risk reduction strategies interact with the complex

structure of the economy? How can we even analyze the resilience in such interconnected

systems?

The present dissertation aims to tackle these questions. We intend to advance the

understanding of economic resilience, and focus on the supply side of economies, what

we call “the production system.” Our approach is based on the concepts and methods of

dynamical and complex system analysis, through which we formulate and analyze math-

ematical models of the production system.

Given the relative novelty of the topic, our first objective is to carefully formulate

the research approach, to define the key concepts, and to select the adequate tools. To

that end, we embark in an interdisciplinary journey, carried out in three steps. We start

in ecology, where resilience has first been mathematically introduced, go on with business

management, economics, network and complex adaptive system theories, and end with

the design of a conceptual framework for modeling economic resilience.

In Chapter 1, we present the sources and the originality of the concept of ecological

resilience, and point to the avenue this structuring concept opens in the investigation

12



of socioeconomic systems, along with its potential misuses. Chapter 2 then gives an

account of the main economic trends affecting production systems and their vulnerability

to shocks, in particular the complexification of supply chains and the emergence of systemic

risks. We also analyze what resilience means for companies and their competitiveness. In

Chapter 3, we review the tools available for studying the response of production systems

to shocks. We then analyze how resilience has been framed in economics and discuss

the theoretical challenges that remain for its modeling. From there, we design a novel

conceptual framework for the study of economic resilience. This framework allows us

to clearly define the concept, organize knowledge, generate hypotheses and formulate

theoretical models.

Our second objective is to test and apply this conceptual framework. We tackle this

goal in a series of three papers. The first one — reproduced as Chapter 4 in this dissertation

— is of a rather methodological nature. It applies one of the modeling techniques that we

identified in Chapter 3 to a predator–prey problem, and demonstrates its mathematical

usefulness for the study of resilience.

We then build in the second and third paper two types of models representing

productions systems, each of them focusing on different aspects of resilience that were

highlighted by our conceptual framework. In the second paper Chapter 5, we study the

interplay between the topological network structure, supply delays and their variability in

affecting the networks’ resilience. The third one (Chapter 6) investigates how the vertical

fragmentation of supply chains may increase systemic risks and deteriorate resilience.

Based on the analysis of these two models, we are able to derive robust conclusions

on the dynamics of production systems and on how decisions by economic agents may affect

the resilience of networks they participate in. The understanding gained therewith can

help generate hypotheses that are empirically testable. The novelty of these models and

of the analysis methods applied to them herein also advances the broader mathematical

knowledge on studying the resilience-related properties of complex dynamical systems.

The research perspectives that this dissertation opens are discussed in Chapter 7.
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Introduction

Resilience is about movement and dynamics. The word comes from the latin verb resilire,

which means to rebound or leap back. Although "resilience" or "resiliency" is mentioned in

some publications of the 19th century (Alexander, 2013), its development as an academic

concept only started in the 1960s and 1970s. In the natural sciences, ecologist Holling

introduced it in 1973 to interpret the persistence over time of highly fluctuating ecosystems.

Through Kuhn’s framework (1962), Holling’s paper may be interpreted as an attempt to

invalidate the equilibrium-based paradigm1 that used to prevail in ecology. In parallel,

the concept of resilience helped psychologists solve a gap between theory and observations

on human development. Human development used to be understood as a linear process

in which any adverse events would induce disorder (Werner, 1993). Several longitudinal

studies however proved that some children had gone through positive development albeit

adverse early exposure to stress, such as chronic poverty and family discord. Resilience

opened a new scope for interpreting these observations: a person may be resilient, meaning

able to recover from terrible life experiences.

In both fields, this concept was successful in opening new lines of interpretations. It

allowed scientists to look at more complex and dynamic behavior. In Sec. 1.1, we present

the key concepts of the resilience-based paradigm proposed by Holling. We particularly

emphasize its original contribution, which contains the seeds of most of the further con-

ceptual developments. In Sec. 1.2, we show how resilience evolved from a purely ecological

concept to a truly interdisciplinary one. We also highlight the contribution of social sci-

entists and the theory of complex adaptive systems in its conceptual refinement. Finally,

Sec. 1.3 gives an account of how resilience diffused from ecology to many disciplines and

from academics to policy-making realms, and uses as an example the field of disaster risk

reduction. The diffusion of resilience has often been met with criticism, and has generated

debates that we summarize in the last section.

The material comes from extensive review of literature in a variety of disciplines,

including ecology, environmental sciences, economics, management sciences, along with

grey literature from international institutions. It has been enriched from personal com-

munications during seminars and conferences, including the Tenth Biennal Conference of

the European Society for Ecological Economics, that was held in Lille in 2013, and the

Third International Science and policy Conference on the Resilience of Social & Ecological

Systems, that was held in Montpellier in 2014.

1Paradigm is used in the sense of Kuhn (1962): an "implicit body of intertwined theoretical and method-
ological belief that permits selection, evaluation, and criticism" (Ibid., p. 16)
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Chapter 1. Persistence through resilience

1.1 Resilience: reviving the dynamic nature of systems

Resilience casts a fresh light on the dynamic of systems. Framed in the theory of dynamical

systems, it has enabled to move from an equilibrium-based view of ecosystems to an

enriched theory that better embrace the complexity of living systems.

1.1.1 Resilience versus equilibrium in the study of ecosystems

Holling (1973) introduces resilience to challenge stability. Using both theoretical and

empirical arguments, he disputes that the concept of stability limits our understanding

of ecosystem dynamics. In his paper, the focus on stability implies postulating that

ecosystems are fundamentally in equilibrium. This equilibrium hypothesis builds on a

static view inspired from mechanical physics. Ecosystem analysis focuses on measuring

abundance of species at an a postulated equilibrium point, and their dynamical behaviors

around this point. This approach ignores the fact that ecosystems are fluctuating open

systems that may undergo sudden changes.

Holling proposes instead to focus on the persistence of some qualitative properties,

such as the coexistence of species. A resilient ecosystem is one in which species keep

coexisting albeit large perturbations. Coexistence is compatible with fluctuations, and

resilient systems may be unstable. He takes as example the periodic break out of spruce

budworms. This pest regularly depletes spruce and balsam fir in Canadian forests, which

leaves space for other tree species to develop. These large scale fluctuations help maintain

the diversity of tree species, which would otherwise be reduced by competition.

Focusing on equilibrium and immediate stability tends to leave out of the scope

some processes that are critical for the functioning of ecosystems. For instance, harvest-

ing a seemingly stable fish population at the maximum sustained yield (MSY) may lead

to its collapse2. Holling documents cases of fish populations that were harvested and sud-

denly collapsed, without any apparent perturbations. Such collapse happened to trouts

in the American Great Lakes. Although fishing was not affecting their abundance, it

had slowly made the population overall younger with smaller individuals. When a new

species, sea lamprey, invaded the lake, the trout population collapsed. Fishing had made

the population less resilient.

Sudden collapses of fisheries are still vivid issues. In the northwestern Atlantic, cod

collapsed in the early 1990s due to overfishing3; see Fig. 1.1. Albeit a ban in 1992, the pop-

ulation has still not recovered, suggesting that fundamental processes have been lastingly
2The theory of MSY, nowadays called maximum sustainable yield, aims to determine the optimum

extraction rate of a renewable resource; it is based on so-called surplus production models. One of the
most popular ones for fisheries in Holling’s time in environmental economics is the Schaefer model (Schaefer,
1954). Using the logistic growth model of Verhulst (1838), this model predicts that the best catch of a fish
population occurs at its maximum growth rate.

3See Rose (2007) for a well-documented social and ecological account of the collapse of cod fisheries in
this region.
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1.1. Resilience: reviving the dynamic nature of systems

disturbed. Focusing on MSY, which is based on the equilibrium paradigm, hides such

processes. In a more recent paper, Holling further elaborates its critic of the dominant

practices in resource management. He describes the side effects of command-and-control

methods and efficiency-oriented approaches to ecosystems, which rely on simplistic under-

standing of ecological dynamics (Holling and Meffe, 1996).

Figure 1.1: Cod catches in the Northeast and Northwest Atlantic Ocean in the period 1950-2012.
Data provided by FAO. Source: Wikimedia Commons (2016).

By looking at how ecosystems persist through disturbances, Holling invites us to

investigate the slowly changing processes that underpins their functioning, and how these

processes interact with external factors at different scales in space and time. Studying

resilience therefore provides a deeper understanding of the functioning of ecosystems. Ta-

ble 1.1 summarizes the paradigmatic change proposed by Holling in terms of how ecosys-

tems are viewed, and how they should be analyzed and managed.

He concluded by two hypotheses that are still under scrutiny nowadays. He ar-

gued that heterogeneous systems tend to be more resilient, because they offer wider set of

options to react to unexpected events. This hypothesis has fed into the long-standing eco-

logical debates on whether diversity increases stability. Next, he postulated that resilience

results from evolutionary history. For instance, ecosystems that grow in self-contained en-

vironment, with steady climate conditions and few genetics exchanges with other ecosys-

tems, have developed very context-specific structures. Although they seem stable, and

are in fact very adapted to their biophysical constraints, they tend to be very sensitive

a sudden change of these constraints. This tension between adaptation and adaptability

will be central in further theoretical developments that are presented Sec. 1.2.2.

1.1.2 Alternative stable states, thresholds and tipping points

One of the central arguments for looking at resilience is the existence of alternative

stable states (ASS) (Beisner et al., 2003). Ecosystems exhibit ASS when, under the
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Chapter 1. Persistence through resilience

Table 1.1: Summary of the paradigmatic changes proposed by the resilience-based approach to
system analysis, compared to the equilibrium-based approach.

Category Equilibrium-based approach Resilience-based approach
View Unique equilibrium Multiple state

Short-term dynamical processes Slow dynamical processes
Fixed feedback structure Changing feedback structure

Analysis Quantitative Qualitative
Performance Persistence
Local dynamics Global dynamics

Management Plan according to predictions Prepare for the unexpected
Maximum sustainable yield Adaptive management

exact same environmental conditions, they can be in several states that have important

qualitative differences. One of the most documented examples is shallow lakes, which can

be either in an oligotrophic, clear-water state or in a eutrophic, turbid one (Scheffer et al.,

1997). Similarly, semi-arid savanna can have large areas of grass which enable grazing.

Following extreme droughts, they can turn into a shrub-dominated landscape without

grass (Walker et al., 1981) 4.

The detection of such behavior in simple theoretical models motivated Holling to

work out the concept of resilience (Folke, 2006). They were systems of two coupled ordinary

differential equations describing predator–prey interactions. In these models, ASSs emerge

when the predation response is nonlinear and when one of the two populations suffers from

the so-called Allee effect5 — a setting that will be studied in our first paper (Chapter 4). In

the 1960s and 1970s, the acknowledgement of the potential existence of alternate equilibra

stimulated a significant number of theoretical works and empirical investigations (see the

review by May, 1977).

Studying the dynamical behavior of systems with ASS requires not only to assess

the local stability of each state, but also to identify how it can switch from one state

to another. This switching behavior implies the existence of thresholds. Oligotrophic

lakes can enter a phase of rapid eutrophication when nutrient inflows, from agricultural

runoffs, cross certain rates. Drought-induced disappearance of grass in savanna rangeland

is favored by large grazing intensities.

The possibility of discontinuous shifts in the qualitative state of a system has been

known in the theory of dynamical systems since Poincaré (1885). He showed that a rotating

fluid takes increasingly complex shapes as the angular speed increases, with discontinuous

shift from one state to another, a prediction that was later confirmed experimentally (Hide,

1953). Poincaré coined the term bifurcation to describe this behavior, a first step towards

what will become later the theory of bifurcations.

4Further examples of ASS, including those experimentally confirmed, can be found in the review by
Schröder et al. (2005).

5The Allee effect describes the fact that the growth rate may particularly be low, even negative, for low
population density. It is a nonlinear behavior often modeled by introducing a density threshold.

20



1.1. Resilience: reviving the dynamic nature of systems

Empirical evidences that bifurcations take place in ecosystems have stimulated the

search for ‘tipping points’6 and other threatening ‘catastrophic shifts’ (Scheffer et al.,

2001), drawing upon the theory of bifurcations. For instance, the dynamics of lake eu-

trophication was described as a saddle-node bifurcation, in which the unstable branch

collides with a stable fixed point, giving rise to hysteresis (Scheffer, 2004).

For all compartments of the biosphere, there are attempts to find potential regime

shifts at the global scale; see for instance (Lenton et al., 2008) for climate. In particular,

Rockström et al. (2009) aims to define the thresholds delimiting the state of the world that

enabled human development. A related stream of research aims to understand whether the

advent of a tipping point can be anticipated by so-called early-warning signals (Scheffer

et al., 2009). Although promising (Scheffer et al., 2012), the universality and actual

performance of such signals have been criticized (Boettiger and Hastings, 2012). Our first

paper (Chapter 4) touches upon this topic. It analyzes a class of bifurcation which differs

from those studied in the literature on tipping points, which shows that more research is

needed before being able to generalize the properties of early-warning signals.

1.1.3 Resilience in the theory of dynamical systems

As seen in the previous sections, resilience and the other concept it brings along are rooted

in the theory of dynamical systems. For Holling (1973), the most important mathematical

object to evaluate resilience is the basin of attraction. Holling, like many authors,

defines resilience from the geometrical characteristics of this object. Let us consider the

pitchfork bifurcation in its normal form:

dx

dt
= x(µ − x2), (1.1)

where µ is a real-value parameter. Fig. 1.2(a) presents the corresponding bifurcation

diagram. For negative values of µ, there is only one fixed point. For positive values of µ,

there are two of them: the system is called bistable. These features can be more intuitively

represented with so-called stability landscapes. Such landscape can be rigorously defined

for gradient systems by introducing pseudo-potentials. Fig. 1.2(b) presents this landscape

for the pitchfork equation with µ = 1. It derives from the following pseudo-potential V :

V (x) = −x2(µ −
x2

4
). (1.2)

For µ < 0, the fixed point is globally stable. To understand the dynamics of this

state, analyzing its local behavior would suffice. For µ > 0, the resilience of each of the

6The term tipping was first used to describe neighborhood migrations in urban studies. Schelling (1978)
popularized this term by showing that a few tipping can lead to sudden changes in migration flows, such
as the emergence of community segregation. Since then, the concept of tipping point has been introduced
in a variety of fields.
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two fixed points is assessed by different geometric aspects of their respective basins of

attraction: [0, +∞[ and ]−∞, 0].

The depth of each basin, called resistance by Walker et al. (2004), measures the

strength of the attractor. Resistant system stays almost unchanged in the face of dis-

turbance (Begon et al., 2006). The slopes of the basins determine the speed at which

the perturbed system returns at equilibrium (Pimm, 1984; Peterson et al., 1998), or the

management efforts it takes to move the system to another basin (Walker et al., 2004).

In some fields, especially in engineering, these properties are called resilience. In material

engineering, for instance, it describes how well elastic compounds autonomously recover

from deformation.

Holling (1996) calls this view of resilience ‘engineering resilience’, in contrast to

‘ecological resilience’. The latter focuses on the size of the attractor basins. The size is

related to the amount of perturbation the system can sustain without switching to a new

attractor. For the lower branch of Fig. 1.2(a), this amount is
√

µ. Walker et al. (2004)

adds another measure, called preciariousness, which is the proximity of the system to the

boundary of the attractor basin.

By focusing on the boundaries of attractor basins, this approach de-emphasizes the

nature of the attractor, whether fixed point, limit cycle, or more complex ones7. Although

Holling draws a strong distinction between stability and resilience, assessing the geometry

of attractor basins in mathematical models often starts with assessing the local stability

of the attractors.

Even for non gradient systems, stability landscapes are often shown in the literature

to convey these various measurements of resilience; see an example Fig. 1.3. However, such

illustration suggests that landscapes are static. In fact, the resilience approach points to

the possibility of changes in the landscapes. Through slow processes, existing basins

may merge and new ones emerge. These reconfigurations can induce abrupt changes to

the system within short time scale (Beisner et al., 2003). These processes are typically

captured by the model parameters, the influence of which can be assessed by studying the

bifurcation pattern. In the pitchfork example, the resilience of the upper branch x =
√

µ

can be evaluated by the size of the parameter region in which this attractor exists, i.e.

µ > 0.

The viability theory of Aubin (2001) has been proposed to give a more precise math-

ematical definition of resilience (e.g., Deffuant and Gilbert, 2011). The aim of viability

theory is to analyze whether a system, given constraints and external control processes,

can stay within a specific region of the phase space. For a particular disturbance, Martin

(2004) defines resilience as the inverse of the cost of driving the system back to a desired

region. For an ensemble of disturbances, it is then possible to determine resilience at all

7Albeit Holling (1973) points out the generality of limit cycles, most resilience studies focus on fixed-
point attractors.
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points of the phase space (Deffuant and Gilbert, 2011). This framework has been applied

to a variety of systems, and extended to stochastic dynamics (Rougé et al., 2013). These

mathematical developments have however not diffused within resilience studies, which

have now a more interdisciplinary and applied focus.
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Figure 1.2: Geometric features of the pitchfork bifurcation dx

dt
= x(µ − x2). (a) Bifurcation

diagram. Solid curves indicate stable fixed points, the dashed line indicates unstable ones. (b)
Pseudo-potential for µ = 1 .

Figure 1.3: A fitness landscape. The green curves indicate the limit of the basins of attractions,
while the white curves are level lines.
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1.2 From ecology to interdisciplinary realms

From these ecological premises, the concept of resilience has been applied to a broader

spectrum of systems. In particular, it was used to assess the management of natural

resources, and was soon extended to socio-ecological systems (Sec. 1.2.1). This wider

application has generated significant conceptual extensions, with contributions from social

scientists and connections with the theory of complex adaptive systems (Sec. 1.2.2). These

extensions have generated a wide range of resilience definitions, which we will summarize

in three categories (Sec. 1.2.3).

1.2.1 From natural resources to socio-ecological systems

With the example of the collapse of fisheries, Holling (1973) pointed out the importance

of identifying the processes underpinning the persistence of a resource, along with their

interactions with larger systems. From this suggestion, some scholars proposed to study

not only the dynamics of ecosystems but also the social dynamics that influence how

resources are harvested. Social scientists studying the sustainable management of natural

resources started cooperating with ecologists (Berkes and Folke, 2000; Adger, 2000; Folke,

2006). Berkes et al. (2003) proposed socio-ecological systems (SESs) as the adequate

scope for studying the resilience of natural resources and local communities. This topic

attracted considerable interests, and led to structuring of a new research community8.

This stream of research highlights the constant interplay between social and eco-

logical dynamics, which generates complex dynamical behaviors (Liu et al., 2007). A

community adapts to the ecosystem it relies on, and thereby modifies some ecological

processes. As with the example of fisheries, these modifications might lead to unexpected

ecological responses, forcing the community to adapt to new conditions. The issue of

finding new way of managing resources emerged. Novel management principles have been

thus developed, such as community-based management (Berkes and Folke, 2000; Tompkins

and Adger, 2004) or adaptive co-managment (Olsson et al., 2004). The contributions of

social scientists are strongly connected to Ostrom’s work on the governance of commons

(Ostrom and Janssen, 2004). They revolve around learning, trust, local knowledge, self-

organization and multilevel governance (Lebel et al., 2006). Examples of SESs studied

through this lens are: forestry (Fischer et al., 2006), agroecosystems (Cabell and Oelofse,

2012) or coastal systems (Adger et al., 2005).

The study of SESs pointed to dynamical behaviors that were going beyond the con-

cept of ecological resilience originally proposed. SESs proved to sometimes exhibit rapid

structural changes, such as the introduction of technologies or new institutions. These

8Interdisciplinary research on resilience have long been undertaken at the Beijer Institute, Stockholm.
Two research institutions have then been founded on the concept of SES: the Resilience Alliance, a network
of scholars founded in 1999; the Stockholm Resilience Center, a research institute founded in 2007. Both
institutions emphasize interdisciplinarity, a commitment to sustainability, and policy-oriented research.
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results pointed out the limits of the metaphor of a slowly changing stability landscape.

Such observations stimulated the development of an integrated theory on the transforma-

tion of SESs, called panarchy (Gunderson and Holling, 2002). The central element of this

theory is the adaptive cycle; see Fig. 1.4. Originally developed to describe how productive

ecosystems in temperate regions undergo changes, the adaptive cycle appeared to be a

useful heuristic to qualitatively explore SES dynamics. The term ‘panarchy’ was used

to stress that SES dynamics are not determined by a unidirectional, hierarchical causal-

ity. They are rather shaped by cross-scale interactions between multiple adaptive cycles:

small-scale dynamics influence large-scale dynamics and vice-versa. Practical guidelines

based on the panarchy theory have been published to facilitate the empirical assessment

of SESs (Gunderson et al., 2010).

One of the successes of the panarchy theory is the description of several development

traps that seem to arise in many types of systems, such as the poverty trap or the rigidity

trap (Carpenter and Brock, 2008). According to this theory, poverty traps (Bowles et al.,

2006), which have been particularly documented for poor rural communities (Dasgupta,

2003), occur when a system fails to activate the minimal level of resources to put in place

the positive feedbacks that drive growth. On the other hand, the rigidity trap, or lock-in,

occurs when a system has developed so complex structures and processes, than it has

no room left for innovation, just for maintenance. They are strong but brittle, leading

to strong collapse following an unexpected crisis. It has been for instance described for

agricultural regions in West Australia (Allison and Hobbs, 2004). From a management

perspective, Fath et al. (2015) argue that recognizing the different stages and preparing for

them facilitate the successful ‘navigation’ through the adaptive cycle (Fath et al., 2015).

They provide examples of applications of such adaptive management principles to business

and public organizations.

1.2.2 Resilience and adaptive system theory

These latter conceptual developments have been strongly influenced by the paradigm of

complex adaptive systems (CASs) (Holland, 1992; Gell-Mann, 1994). The idea of

CAS has been shaped by a multidisciplinary corpus of theories from physics, genetics,

evolutionary biology, computer sciences, mathematics and social sciences. We list here

the most influencing theories: the theory of neural networks and cybernetics (McCulloch

and Pitts, 1943), cellular automata and their self-reproductive behavior (von Neumann,

1966), general system theory (von Bertalanffy, 1969), thermodynamics of phase transition

and dissipative structures (Nicolis and Prigogine, 1977), coevolution of self-organization at

‘the edge of chaos’ (Kauffman, 1993) and self-organized criticality (Bak and Chen, 1991).

All these theories describe open, out-of-equilibrium systems through an holistic lens, such

as living organisms, ecosystems, economies, brains and immune systems.

25



Chapter 1. Persistence through resilience

(b) (a) 

(c) 

Figure 1.4: Three visual interpretations of the adaptive cycle. (a) A version proposed by Gunder-
son and Holling (2002, p.34) in three dimensions: capacity for change, connectedness and resilience.
(b) The interpretation of Burkhard et al. (2011) emphasizes the erratic behavior of systems and
the existence of smaller scale cycle in the growth phase. (c) The interpretation of Fath et al. (2015)
adapted to the management of organizations.
(a–c) All adaptive cycles describe four stages, generally denoted by r, K, Ω and α. In the exploita-
tion phase (r), the system is loosely structured, dominated by generalist agents that are robust to
variability. They acquire resources and put in place positive feedback. Through self-organization,
structures emerge and connectedness increases. When most resources have been exploited, the
system enters the conservation phase (K). It is dominated by large and interconnected structures
competing for scarce resources and resisting environmental variability. They however become rigid
and their maintenance increasingly affects nearby systems. The system becomes less resilient.
Eventually, one particular event triggers a crisis followed by a release phase (Ω), in which struc-
tures are dissolved and resources scattered. The system goes through a reorganization phase (α),
where new linkages are tried, tested, until some become able to harness resources and grow, leading
to a new exploitation phase.
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CASs are composed of many interacting components which self-organize and create

structures which in turn affect the behavior of the components, hence their complexity,

the ‘C’ of CAS. Their second main feature is the ‘A’ of CAS, their ability to adapt to novel

conditions through change of its internal structure. It implies self-regulating and learning

processes, and the presence of enough diversity and degree of freedom to innovate, e.g.

the genetic diversity of a population. This malleability is balanced by memory, by which

successful structures persist through time and give to the system a persisting, yet evolving

identity.

In this framework, resilience is then strongly connected to the adaptability of the

system. It is its ability to self-organize and create new structures to maintain or rein-

vent its fundamental functions (Levin et al., 1998). This adaptability relies on a certain

freedom to reorganize, which Ulanowicz interprets as a structural indeterminacy and tries

to measure using information theory (Ulanowicz et al., 2009). He also calls this struc-

tural freedom the reserve capacity for adaptation. In the absence of perturbation, this

capacity is harnessed by autocatalytic loops but tends to be restored through environ-

mental variability (Ulanowicz, 1980). This theory is close to the hypothesis formulated by

Holling (1973) on the influence of evolutionary history on resilience. Fittest systems

are those maintaining a balance between adaptation and adaptability, between efficiency

and resilience (Costanza and Mageau, 1999; Ulanowicz, 2002; Ulanowicz et al., 2009).

Thanks to the theory of CAS, strong analogies can be drawn between resilience and

recent advances in system biology on robustness. Robustness generally describes models,

engineered systems and decision-making processes, whose output barely changes when in-

puts widely vary. However, biology increasingly studies the robustness of organisms and

biological processes, defined as their ability to “maintain [their] functions despite external

and internal perturbations” (Kitano, 2004). In particular, such works focus on adaptive

mechanisms, making robustness conceptually almost indistinguishable from resilience (An-

deries et al., 2013). Although few connections have been made between these two corpuses,

findings for biological systems, such as the intimate link between fragility and robustness

described by Csete and Doyle (2002), may be profitably transferred to resilience studies.

1.2.3 The three dimensions of resilience

These conceptual expansions towards larger, more complex systems and more holistic

theories may create perplexity and confusion (Brand and Jax, 2007)9. This confusion is

reinforced by the diffusion of the term through a wide range of disciplines. In each of

9This confusion is however not specific to the concept of resilience. In ecology, for instance, it echoes
discussions on the diversity of definitions of stability in the lasting diversity–stability debates, that authors
regularly attempt to clarify (e.g., Harrison, 1979; Pimm, 1984; Grimm and Wissel, 1997; Ives and Carpenter,
2007). This confusion has not prevented this debate to yield very interesting insights, also from the
perspective of resilience, on the response of ecosystems to global changes (see for instance McCann, 2000).
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them, the definition of resilience has been adjusted with different wording and emphasis
10.

Albeit these diversity of interpretation and conceptual extensions, we have mapped

these definitions along a complexity gradient. If the core idea of bouncing back after

remains, this gradient reveals different views of what exactly bounces back and how. We

distinguish three main levels on this gradient; see Tab. 1.2. This three-level distinction is

now often made in the literature (e.g., Martin-Breen and Anderies, 2011).

First, ‘engineering resilience’ characterizes a system that has good performance

in enduring stress and in returning to a normal state once stress disappears. Systems have

a single fixed point, and we analyze its local and global stability properties. For instance,

this standpoint applies to the study of bridges and their resistance to wind or loads, or to

the short-term effect of a drought on food prices.

Next, ‘ecological resilience’ focuses on persistence of feedback structures and their

functioning. Fluctuations do not matter, as long as the processes that sustain the most

significant qualitative properties are maintained. The scope is enlarged to a greater com-

plexity and includes the slow processes and interaction with connected systems. Systems

can have multiple alternative attractors, possible complex ones. We analyze the basins

of attractions, their size and how they might change through gradual parameter change.

This approach is useful to examine how the overall functioning of an ecosystem or an

economy can be lastingly affected by a change in environmental conditions.

Finally, ‘adaptive resilience’ is also concerns with the persistence of functions,

but acknowledges wide reorganizations, even changes of feedback structures and creations

of new processes. From a system dynamics perspective, the basins of attractions are

endogenously changing. Some parameters are no longer fixed but become adaptive traits

influenced by internal variables and external stimuli. Using this standpoint, we can analyze

how environmental perturbations — e.g., a hurricane — affect the internal structure of an

ecosystem or an economy, which in turn may modify its ability to withstand new shocks.

This mapping is useful to identify the specific standpoint adopted by an author. In-

deed, these three dimensions leads to different, yet complementary, inquiries on dynamical

systems. As will be underlined in Sec. 3.3 of Chap. 3, the study of each of these dimen-

sions requires the use of different modeling framework and of different methods. While we

might have reached a limit in the refinement and extension of the concept of resilience, its

diffusion to new fields is still ongoing.

10For instance, social scientists refer to institutions and organizations, while management scientists often
focus on decision-makers. Brand and Jax (2007) and Bhamra et al. (2011) provide systematic reviews of
resilience definitions.
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Table 1.2: Three dimensions of resilience and their main characteristics

What bounces back? How?
Engineering Quantitative property Stability
System Qualitative state Persistence of process and feedback structure
Adaptive Functions Adaptability, reorganization, renewal
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1.3 Spectacular diffusion and debated applications

The concept of resilience has spectacularly spread in a wide range of fields (Xu and Mari-

nova, 2013). It has also crossed the boundary of academia11 and reached a wider audience

in both grassroots movements and global policy discussions. It is particularly pronounced

for the topic of disaster risk reduction, which bridges science and policy. In contrast, the

use of resilience in economics revolves around regional studies, and is absent from economic

theory. In overall, the diffusion and application of the concept have sparked both scientific

and political debates, which highlight important issues concerning its application.

1.3.1 Resilience of people, communities and cities to disaster

Given the failure to mitigate climate change and other large-scale perturbations such as

the spectacular loss of biodiversity, human societies are likely to encounter novel environ-

mental conditions. Since the IPCC third assessment report (2001), the agenda of climate

change adaptation has been on the rise. However, given the levels of uncertainty and

the difficulty to provide small-scale projections, it is hard to envision to what particular

conditions societies will have to adapt. In this context, resilience appears to many as

a potential solution, because it emphasizes preparedness and adaptability to unexpected

changes (Comfort et al., 2010).

Resilience is now an essential part of the policy discussions on global sustainability

(UNSG, 2012; FAO/OECD, 2012), and has become particularly prominent in the preex-

isting policy discussion on disaster risk reduction and international development. It has

become a top priority of the United Nation International Strategy for Disaster Reduc-

tion (UNISDR, 2004), and enacted as the central objective of the 2005 Hyogo framework,

brought forward in 2015 in the newly adopted Sendai framework (UNISDR, 2005, 2015).

The field of disaster risk reduction lies at the crossroad of policy, academia and

practices. It is concerned with the vulnerability of communities to natural and man-made

disasters. In this field, resilience can be build by providing risk-mitigating infrastruc-

tures and organizing responsive emergency services. Scholars also pointed out the central

role played by social capital, and in particular by social bonds (Moser, 1998). This ap-

proach thus links ecological resilience with psychological resilience. The latter describes

the context-specific coping strategies that enable people to positively respond to adverse

conditions. In particular, Reich (2006) argues that public agencies dealing with natural

disasters could foster resilience at the individual level. This should be done by giving

people more control over their post-disaster recovery, by improving the diffusion of consis-

11Using bibliometric tools, Baggio et al. (2015) identified five main scientific fields that concentrate
resilience studies: psychology, ecology, social sciences, engineering, and the hybrid field of socio-ecological
systems (SES). Most fields tend to develop rather independently, especially in the sphere of engineering
and business management. The notable exception is SES, which is by nature interdisciplinary.
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tent information during a disaster, and by facilitating interpersonal communication and

contacts.

The political success of the resilience concept, along with its wide range of imple-

mentation, is well illustrated by the recent adoption of the 2030 sustainable development

goals (UN, 2015). Resilience appears in many goals, from poverty and food security to

economic development, and is applied to communities, infrastructures, management prac-

tices and ecosystems. Resilience has become a central topic when discussing international

development (Bahadur et al., 2013) and its funding (Muller, 2007), leading many NGOs

to develop specific resilience-based programs.

Cities, which concentrate over half of the world’s population, were identified as the

adequate scale to develop context-specific resilience strategies against disasters (Ahern,

2011; Leichenko, 2011). In addition to climate events, urban resilience revolves around a

wider spectrum of threat, from industrial accidents and terrorist attacks to geopolitical

events (Godschalk, 2003). While urban resilience has first focused on urban planning and

the design of robust infrastructures, the concept has been increasingly used to emphasize

the role of adaptive mechanisms to deal with risks. It now largely extends to ‘softer’

considerations, such as institutions and local governance, social innovations (Ernstson

et al., 2010) and decentralized organizations enabled by information technologies (Allenby

and Fink, 2005).

1.3.2 Boundary object, buzzword or political agenda?

The spectacular diffusion of resilience, a ‘viral spread’ in Bristow’s words (2010), may

be attributed to the malleability, perceived accessibility and positive connotation of the

concept. While the Cartesian idea of controlling nature12 is fading, resilience seems to

acknowledge the existence of surprise and uncertainty in a positive way (Davoudi, 2012).

Moreover, with the perceived failure of getting anywhere closer to sustainability, resilience

sketches out a way forward, stimulates novel solutions, and delivers a positive message.

Resilience is now firmly established in “the so-called ‘grey area’ between academic, policy

and practices discourses” (Bristow, 2010).

In each research community where it was introduced, debates have sparked between

those arguing that resilience brings a fresh view on lasting issues and others who chal-

lenge its scientific value (Klein et al., 2003; Janssen et al., 2006; Brand and Jax, 2007;

Hassink, 2010; Hudson, 2010) and highlight its potential political misuse (Pendall et al.,

12Opposing to a too speculative philosophy, Descartes considers that “it to be possible to arrive at
knowledge highly useful in life; [...] to discover a practical, by means of which, knowing the force and
action of fire, water, air, the stars, the heavens, and all the other bodies that surround us, as distinctly as
we know the various crafts of our artisans, we might also apply them in the same way to all the uses to
which they are adapted, and thus render ourselves like masters and possessors of nature. . And this is a
result to be desired, not only in order to the invention of an infinity of arts, by which we might be enabled
to enjoy without any trouble the fruits of the earth, and all its comforts, but also and especially for the
preservation of health” (Descartes, 1637, sixth part).
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2010; Reghezza-Zitt et al., 2012; Davoudi, 2012; Porter and Davoudi, 2012). Researchers

introducing resilience in their research community seek to propose a novel approach, which

usually rests on some of the central ideas presented in Sec. 1.1 the role of nonlinearities,

the possibility of alternative equilibria, the need for an adaptive or evolutionary approach.

By emphasizing local knowledge and the role of decentralized and grassroots institutions,

the concept of resilience stimulated disruptive social innovations13 (Shaw, 2012).

On the other hand, some scholars warn against the gradual dilution of the concept as

it crosses disciplinary boundaries (Brand and Jax, 2007). They argue that resilience gets

increasingly fuzzier because it is repeatedly stretched to describe more diverse systems.

They note that resilience has now acquired both a descriptive and normative content,

and warn that this confusion may hinder scientific progress. The interdisciplinary use of

the word led some author to interpret it has a ‘boundary object’ (Star and Griesemer,

1989), i.e. a concept that enables people from different background to communicate,

and that is plastic enough to satisfy different expectations. This malleability facilitates

communication across disciplines, although each community may use it to legitimize their

own research agenda.

In policy discourses, each party can stretch the concept to fit their own economical or

political interests, which may lead to apparent, yet fragile consensus. Reghezza-Zitt et al.

(2012) warn that operationalizing resilience may contain implicit political or ideological

purposes. For instance, resilience, like sustainability, can be proposed as a one-size-fits-

all solution to complex problems, and help disguise the lack of real strategy. Similarly,

Porter and Davoudi (2012) argue that resilience can be used as a way to depoliticised

topics. The Resilience Alliance states that it conducts research to foster sustainability,

without a critical assessment of the use of sustainability in a social context (Reghezza-Zitt,

2013). For Porter and Davoudi (2012), the questions of agency, in the sociological sense,

of fairness and justice need to be openly debated.

In international policies for disaster risk reduction, Reghezza-Zitt et al. (2012) noted

that the introduction of resilience came with a change of attitude from international or-

ganizations such as the UN/ISDR towards vulnerable communities. These communities

are not only victims, they are expected to take individual responsibility, to be proactive,

and are otherwise stigmatized. By focusing on their adaptive capacity and self-reliance,

Reghezza-Zitt et al. (2012) argue that these organizations tend to undermine the socioe-

conomical, political and historical contexts that underpin their vulnerability. Pushing it

to the limit, being resilient could turn into a moral judgment, leading to a new sort of

social Darwinism (Reghezza-Zitt et al., 2012; Porter and Davoudi, 2012).

Nevertheless, even critics acknowledge the main benefit of using resilience: building

bridges between research communities and fostering interdisciplinary projects (Brand and

13Shaw (2012) mentions the case of the Transition Towns, a grassroots movement that aims to renew
social, economic and environmental practices through local initiatives. The concept of resilience may have
promoted the decentralized functioning of this movement and the idea of empowering local communities.
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Jax, 2007). Debating resilience within communities are also opportunities to reassess as-

sumptions and clarify research stances (Christopherson et al., 2010; Reghezza-Zitt, 2013).

When it comes to its operationalization, the warnings formulated by social scientists should

be integrated. They recall that, when aiming at implementations, we should not only ana-

lyze resilience of what to what (Carpenter et al., 2001), but also question for whom (Lebel

et al., 2006) and finally understand who decides (Porter and Davoudi, 2012). This frame-

work will prove useful to apprehend the discussion of business and resilience, respectively

in Secs. 2.2 of Chapter 2 and 3.1.4 of Chapter 3.
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Conclusion

Introduced in ecology in 1973, the concept of resilience was used by Holling to change

the way ecosystems are seen and analyzed. Their dynamical nature reveals the need to

adopt larger scopes and include more complexities. Instead of focusing on quantitative

performance around postulated equilibria, Holling proposes to focus on the persistence

of processes that sustain qualitative properties. This approach benefited from advances

in the theory of nonlinear dynamical systems, which suggested the possibility of multiple

stable states, threshold behaviors and tipping points. Such properties could be empirically

observed in ecosystems.

Over the past two decades, the concept has been significantly extended, and has been

applied to a wide spectrum of systems. With inputs from the theory of complex adaptive

systems, resilience has become the building block of larger interdisciplinary frameworks.

Resilient behaviors not only allow to remain within a fixed attractor basin but also en-

able the reorganization of structure and the creation of new processes in response to

a shock. These more complex behaviors suggest potential trade-offs between adaptation

and adaptability, between efficiency and resilience. These truly systemic questions connect

many fields of research, from biology to engineering and economics.

For a complex system modeler, these interdisciplinary and conceptual extensions

are real challenges. Even so, we could map resilience along a complexity gradient. This

mapping provides guidance for modeling, by first focusing on simple behavior and then

move to more complex ones. Starting from the local stability of attractors and their

‘engineering’ features, we can then study their attractor basins and identify bifurcations,

and thus assess ‘ecological resilience’. To dive into ‘adaptive resilience’, we can use tools

from adaptive and evolutionary dynamics and analyze how emergent properties feedback

to micro-components and how structural properties adapt to perturbations.

It is also important to acknowledge the strong diffusion of the concept in the pol-

icy arena, both in global discussions and practical implementations. To many, resilience

sketches out potential solutions for our unsustainable era and inspires disruptive innova-

tions. The operationalization of the concept can however favor some political or economical

views, and some agents may use its relative fuzziness to impose their agenda. Such social

dynamics are worth being known to scientists interested in applied works.
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Introduction

All organizations involved in the production of a good or a service and its delivery to

consumers form a supply chain. Typical supply chains include raw material providers,

component producers, assemblers, wholesalers, retailers and transporters. It may some-

times be extended to financial intermediaries, marketing agencies, and other third party

contractors (Mentzer et al., 2001). All together, supply chains constitute the production

system of an economy. Some of them are highly critical — e.g., water, energy, commu-

nications — and support almost all other productive sectors. Many supply chains are

intertwined, such as those of cars and electronic goods, of chemicals and food.

This chapter aims to analyze the vulnerability of the production systems by looking

at its supply chains, which, over the past decades, have become increasingly global and

fragmented. We describe these facts and the associated process of vertical specialization

in Sec. 2.1, and analyze how they may have fostered the risk of disruptions and their

propagation. If one member of the supply chain cannot timely deliver its production to

the next one, delays and disruptions may occur and cascade down the chain. Recent

natural disasters, such as the eruption of the Eyjafjallajökull volcano in Island in 2010 or

the Tohoku earthquake and tsunami in Japan in 2011, have shown that, more than ever,

localized events may have consequences in distant locations.

We present in Sec. 2.2 the main challenges that firms face trying to mitigate such

domino effects. They are looking for novel solutions to design more resilient supply chains,

which may be in tension with competitiveness objectives. For management specialists,

resilience is also seen as a way to better compete in a turbulent business environment. In

Sec. 2.3 highlights that some limits may exist in how much individual firms can mitigate

these propagating disruptions. This share of unmanageable risk is often called systemic.

Although there is not yet a clear definition of the concept, it is a shared concern in other

types of highly interconnected systems, such as banking networks and power grids. In

supply chains, insurers are increasingly asked to cover these risks.

The materials presented in this chapter come from a review of several fields, in-

cluding trade economics, industrial organization, business management, and of documents

published by consultancies and business organizations. This review is complemented by

insights gained during five interviews1 with several professionals, including supply chain

managers, consultants and insurers.

1The purpose of these five interview was to provide insider insights on the topic. They were not meant
to constitute a research material, and were not conducted using a particular scientific method. They
however proved useful to deepen our understanding of the issue and to confront academic findings with
practical experiences.
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2.1 Interconnectedness and the propagation of disruptions

We present how production systems have become more globalized, specialized and frag-

mented (Sec. 2.1.1), and how these trends have generated new risks (Sec. 2.1.2).

2.1.1 More globalized production systems

Globalization has made economies more interconnected. International trade is reaching

unprecedented levels, and represents now about 33% of the world GDP (UNCTAD, 2013;

WTO, 2013, 2016). Trade is originally ‘horizontal’: goods and services are produced in one

location then exported to another. Over the past decades, the growth of trade flows has

been however increasingly driven by another type of trade, called vertical trade (Hummels

et al., 1998, 2001). In such trade, goods and services are intermediaries: they are imported

then used as inputs in production processes. It may occur within the same industry: a

component is imported, processed, and then reexported (Grubel and Lloyd, 1975). Over

the period 1990–2000, this vertical trade has grown globally at a yearly rate of 9.1%2,

while total trade was increasing by 6.5% per year (Jones et al., 2005).

These larger transnational flows of production inputs signal that supply chains are

becoming more scattered geographically and fragmented functionally. This trend is called

vertical specialization. It is particularly marked for the supply chains of technological

products such as cars of electronic goods, which are made of an increasing number of

component — modern cars are made of about 30,000 pieces. A mobile audio player may

be designed in the USA but assembled in China, with components from South Korea,

the USA, and Japan; those parts are themselves made of subcomponents from China, the

Philippines, etc. (Timmer, 2010). According to Sheffi (2005), some electronic products

travel half a dozen times the Pacific ocean before being sold.

This global fragmentation results from outsourcing and offshoring strategies. Some

companies have opened subsidiaries in other countries to offshore, i.e. relocate, some of

their activities. They generally seek to benefit from lighter production costs, in particular

through lower wages. Other companies have chosen to only keep a small segment of

their activities, the one where they are the most competitive and on which they will

concentrate their R&D, marketing and logistic efforts. They outsource other segments to

specialized suppliers and seek to benefit from their higher flexibility and reduced costs.

Large manufacturing companies are thereby going through vertical dis-integration, and

supply chains are getting fragmented.

2The exact figure depends on the precise definition given to vertical trade. In its broadest sense, even
fully manufactured goods are intermediaries, because they still need to be marketed an distributed. Most
trade — 76% — is then vertical (Baldwin and Lopez-Gonzalez, 2015). To isolate the exchange of goods at
intermediate level of processing, other authors use more restricted definitions, and speak of trade in parts
and components (Hummels et al., 2001; Jones et al., 2005).
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These practices have been facilitated by the removal of tariffs3 (Yi, 2003). Offshoring

started in the 1960s with the development in Mexico of subsidiaries of U.S. companies,

the so-called ‘maquiladora’ factories (Hummels et al., 2001). In Europe, Western Euro-

pean companies started to offshore activities in the Iberian Peninsula, and then largely

in Central and Eastern Europe (Kaminski and Ng, 2005). But the largest boom of verti-

cal specialization occurred in the 1980s with Japanese and US companies offshoring and

outsourcing activities in South East Asia and China, respectively (Baldwin and Lopez-

Gonzalez, 2015)4.

Managing distant production units and suppliers has been enabled by the develop-

ment, at affordable costs, of specific technologies and services, e.g., transportation and

communication technologies, financial intermediation and insurance services (Jones et al.,

2005). While the globalization of supply chains was initiated by multinational corpora-

tions (Helleiner, 1981), the lower cost and higher performance of these ‘service links’ gave

small companies the capacity to engage in outsourcing5.

In all sectors of the economy, supply chains are becoming longer and more specialized

(Osadchiy et al., 2016). This trend has generated new types of risks.

2.1.2 Supply chain risks and shock propagation

In global and fragmented supply chains, distant processes are interdependent, and un-

expected issues may quickly propagate. The ‘Albuquerque accident’ involving Swedish

company Ericsson is prototypical (Norrman and Jansson, 2004; Sheffi, 2005). In 2000, a

lightning bolt hits an electric line in Albuquerque, New Mexico’s largest city, and induces

a short power outage in a factory owned by the Dutch company Philipps. In the absence

of alternative power generator, fire sparks; it is extinguished ten minutes later, but has

affected some critical equipment. Two production lines are stopped for three weeks, and

stay insufficiently productive for months. The disrupted process was very specific and

Ericsson failed to promptly find an alternative supplier. In a booming market, the pro-

duction of cellphone was disrupted. The losses incurred by Ericsson were about 50 times

higher than the material damages6.

Trigger events may be of different nature — e.g., a geopolitical crisis, a social move-

ment, or, as in the ‘Albuquerque’ accident, a climate event — and they may disrupt

3The Auto Agreement reached in 1965 between the U.S.A. and Canada had for instance a well docu-
mented impact on the fragmentation of the North American car supply chains (Hummels et al., 2001).

4For an analysis of the global structure of vertical trades, see Baldwin and Lopez-Gonzalez (2015).
5As noted by Jones et al. (2005), financial firms in the City of London have been outsourcing computer

maintenance to Asia already in the 1980s. Such practices has nowadays expanded to many organization,
including in public ones.

6At the end of the year, the company announced a loss of US$2.3 billion for its mobile phone division,
while the material damages for Philipps amounted to US$40 million (Sheffi, 2005). Following this accident,
Ericsson sold its cellphone production activity to the joint venture Sony Ericsson, and profoundly renewed
the management of supply chain risks (Norrman and Jansson, 2004).
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production through a variety of mechanisms: damages on productive equipment, work-

force or transporters unable to access the production site, disruptions of basic utilities such

as gas, electricity, water, communication. After a natural disaster, many businesses may

get disrupted, even though they were not directly affected, as shown by Tierney’s study

(1997) on the aftermath of the 1994 Northridge earthquake. Natural events need not be

destructive to destabilize supply chains, as illustrated by the eruption of the Eyjafjalla-

jökull volcano in 2010 and its impact on global businesses through the disruption of air

transportation. Fujimoto (2011) documents similar chains of events that forced Toyota to

close plants between 1979 and 2007. Many more case studies can be found in the literature

(in particular in Sheffi, 2005).

Recent large natural disasters have cast the light on the role of supply chain in

propagating risks. The 2011 Tohoku earthquake and the tsunami that followed generated

the largest human and material damages in Japan since World War II. It also disrupted the

production of many critical components, leading to significant production losses worldwide

(World Economic Forum, 2012). In Japan only, Tokui (2012), cited by Todo et al. (2013),

estimated that about 90% of the losses of economic output were due to supply chain

disruptions. The same year, central Thailand was hit by floodings, the highest in 70

years, which heavily disrupted the global supply chains of cars and electronic components

(Chongvilaivan, 2012).

Since they are longer and more global, supply chains are more exposed. Events that

are rare for each firm become more likely when the whole chain is considered. But Barrot

and Sauvagnat (2016) also showed that vertical specialization — the fact that inputs are

more specific and sourced from distant suppliers — largely increases the propagation of

risks. In particular, disruptions not only cascade from suppliers to customers, but may also

affect supply chains horizontally: if a firm is affected by the disruption of one specialized

supplier, its other suppliers tend to suffer from losses due to demand reduction.

These supply chain intricacies may be one of the drivers behind the rising economic

impact of natural disasters (Stecke and Kumar, 2009; Swiss Re, 2014, 2016). In surveys

by the Business Continuity Institute (BCI)7, adverse weathers and climate extreme events

almost always rank among the three main sources of supply disruption (BCI, 2014). These

threats are not likely to fade out with climate change, which is likely to induce a shift in

the frequency, intensity and spatial distribution of weather-related extreme events (Ghil

et al., 2011).

7The Business Continuity Institute is a private consultancy specialized in supply chain disruptions. It
runs yearly surveys on 500 to 550 companies from about 70 countries.
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2.2 The quest for resilient supply chains

These phenomena are of high concern for businesses, insurers, and in general for orga-

nizations operating through such multi-tiered, complex web of intermediaries, such as

humanitarian organizations. Managing supply chain risks faces specific challenges, some

of which have been analyzed through the lens of resilience (Sec. 2.2.1). Although, compet-

itiveness objectives may hamper the design of resilient supply chains, certain aspects of

resilience, such as agility and permanent reorganization, are seen as being a way to better

compete (Sec. 2.2.2).

2.2.1 The challenges of mitigating risks in complex supply chains

Supply chain disruptions are rather frequent — at least one per year for 80% of the re-

spondents the BCI survey (2014). Their negative impact on the financial performance

of companies has been empirically confirmed (Hendricks and Singhal, 2003, 2005). Miti-

gating the risk of supply chain disruptions widely differs from the management of other

operational risks. Supply chains may indeed bring to your door the risks taken by another

firm far away, both its operational risks — e.g., an accident on a production line — and

its environmental risks — e.g., a climate or geopolitical event.

Managers therefore need to increase their monitoring capacity. However, they often

lack visibility over their supply chain. While firms usually know their direct suppliers, they

often struggle to keep track of their sub-suppliers, also called tier-2 suppliers, and of entities

further away in the chain (BCI, 2014; Wang et al., 2015). Half of the disruptions seem

however to originate from this deeper segment (BCI, 2014). In addition, supply chains are

fluctuating systems — e.g., suppliers change their contractors, firms go bankrupt, others

enter the market — and are therefore hard to map in real time.

Inherent difficulties of interorganizational communication may also accentuate the

propagation of supply disruptions. Jüttner et al. (2003) identify such network-related

risks: unclear responsibility, lack of responsiveness or overreaction, distorted information

and mistrust. A small fluctuation in demand at one point of the chain may be magnified

as orders cascade up the chain, leading to excess inventory, production down time, and

transportation peaks. This phenomenon, known as the bullwhip effect (Lee et al., 1997),

is well known by supply chain managers, empirical documented (e.g. Thun and Hoenig,

2011) and was has been experimentally tested for decades through the so-called beer game

(Sterman, 1989).

Managing the risk of supply disruption has become a prominent topic of supply

chain management (SCM)8. The main pillar of SCM is the coordination of processes

across organizational boundaries, in which managers need to engage to avoid these issues.
8SCM is a management philosophy that views the supply chain as a whole. It is oriented towards

cooperative efforts to coordinate operational and strategic capabilities within and across the boundary
of firms in order to enhance the value created to the end customer (Mentzer et al., 2001). This field

49



Chapter 2. Vulnerability and systemic risk of production systems

Management scientists have published frameworks to identify supply chain risks

and mitigation strategies, derived from interviews, focus groups and case studies — the

‘Albuquerque accident’ for instance (Chopra and Sodhi, 2004; Blackhurst et al., 2005;

Manuj and Mentzer, 2008). Such frameworks permeate across the business field towards

humanitarian aid (Wassenhove, 2005; Cozzolino, 2012). In some of them, resilience is

set as the target for SCM, without explicitly referring to the ecological or psychological

concept (Christopher and Peck, 2004; Blackhurst et al., 2005; Abe and Ye, 2013). Instead

of defining resilience for the supply chain as a whole, they focus on the development of

resilient strategies for individual firms, and emphasize the engineering standpoint described

in Sec. 1.2.3: shortening the return to normal operation.

Two types of measures are typically put forward. A first set aims to increase the in-

built robustness of the supply, e.g., hold safety stocks and multiple production facilities,

enlarge the supplier base, standardize inputs. Another set aims to improve the orga-

nizational agility to handle unexpected disruptions, e.g., collaboratively develop rescue

plans with suppliers, decentralize decision-making, increase communication between ser-

vices. These latter measures often go with the development of a more responsive corporate

culture (Sheffi, 2005).

Such measures can be well calibrated to deal with high-probability low-impact risks,

using, for instance operation research models (for a recent review, see Snyder et al., 2016).

However, preparing for rare events that may generate high damages is far more challenging

(Norrman and Lindroth, 2004). In the absence of meaningful metrics to handle such

uncertainties, managers may use stress tests, in the form of ‘what if’ scenarios, to identify

bottlenecks and particularly vulnerable points (Chopra and Sodhi, 2004; Christopher and

Peck, 2004).

Some measures aiming at designing a resilient supply chain, such as safety stocks

and multiple sourcing, are costly, and the benefits they generate may be hard to evaluate.

Therefore competitiveness often set the limit to how much resilient a supply chain can be.

2.2.2 Is resilience competitive?

Staying competitive is a matter of survival for firms, and balancing risks and return

their very nature. Supply chain managers permanently deal with contradicting objectives

(Cooper et al., 1997): reducing inventories while ensuring product availability, source

standardized inputs for customized products, maintaining a diverse supplier base but

reducing sourcing costs.

With heightened competitive pressure globally, companies have tended to streamline

their supply chains to cut costs. The number of suppliers per firm has often decreased

(Osadchiy et al., 2016). Some of the principles of the so-called Toyota model (Enkawa and

was originally concerned by inventory reduction and the involvement of suppliers to speed up product
development (Cooper et al., 1997).
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Schvaneveldt, 2001), such as just-in-time or lean management, have had a strong impact

on supply chain practices. Following them, firms develop stronger relationships with fewer

suppliers, which enable them to rely on fewer inventories and shorter time delivery. They

can also better manage product quality and design more customized products, and thereby

gain competitive advantages. These practices may even be implemented in conjunction

with global outsourcing (Das and Handfield, 1997).

According to many, these optimization processes have made supply chain more

sensitive to disruptions (Stecke and Kumar, 2009; World Economic Forum, 2012). For

instance, Fujimoto (2011) underlines that the high rate of customer-specific or buyer-

specific processes in Japanese industries has contributed to lengthen economic recovery

after the 2011 Tohoku earthquake. Similarly, Todo et al. (2013) have established the

positive effect on post-earthquake recovery of having geographically diverse suppliers and

customers, but have stressed that this diversification strategy might erode competitiveness.

Fujimoto (2011) argue that some Japanese sectors are globally competitive specif-

ically because of highly concentrated technology providers. He identified the ‘diamond

structure’ of many Japanese supply chains of manufactured goods: few final producers,

many tier-1 and tier-2 suppliers, and few tier-3 suppliers for basic components. This con-

centration at the base of the chain, driven by cost-effective technologies, came with large

economies of scale that boosted the competitiveness of many sectors. At the same time,

the chain has become less resilient, since a disruption affecting these few suppliers may

generate very large consequences.

The structural aspects that foster supply chain resilience, i.e. their in-built robust-

ness, seem too costly to allow firms to stay competitive. As shown in Sec. 2.1.1, outsourc-

ing has been driven by competitive pressures, but has amplified supply chain risks. Some

companies have however managed to compensate this loss of structural robustness by an

enhanced agility. They have developed the internal organizational capability to proactively

identify and manage unexpected events (Chopra and Sodhi, 2004). Incidentally, Toyota is

one of the top performers in this regards; it has often managed to resume production much

earlier than expected after disasters (Nishiguchi and Beaudet, 1998; Fujimoto, 2011).

Businesses may compete through resilience by developing such capabilities of adap-

tation and responsiveness (Sheffi, 2005). For Ponis and Koronis (2012), who reassess the

ecological foundations of the concept, resilience is not only about restarting the production

line, but how firms may learn from disruptions and reorganize. This view joins the broader

business strategy literature, in which, as proposed by Hamel and Välikangas (2003), re-

silience is the capacity for continuous reconstruction in a fast changing environment. This

view of resilience recognizes the possibility of sudden and abrupt changes, and that firms

alone cannot fully control their supply chain. This ‘limit of control’ connects to the idea

of a systemic risk.
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2.3 Systemic risks and the limits of risk mitigation

For some supply chain managers, even with mitigating efforts, a low-probability hazard

will inevitably occur, unexpectedly propagate and generate losses. This share of risks is

often called ‘systemic’. To many, systemic risk conveys the idea of a small event creating

unexpectedly large consequences. It recalls the image that popularized the mathematical

concept of chaos: a butterfly flapping its wings in one part of the world can create a

hurricane in another. However, while chaos may emerge in very small systems, systemic

risks arise precisely because systems are complex and highly connected (Helbing, 2009).

In the context of supply chains, the World Economic Forum (2012) defines a risk as

systemic when it has the three following property: it is triggered by an unexpected event,

it propagates and induces ripple effects, and it gets amplified because of the inability of

the network structure to absorb it. This definition emphasizes the role of the network

structures and implies that some structures are more prone to risk propagation than

others. From an economic standpoint, Lorenz et al. (2009, p. 441) defines systemic risk

“as an undesired externality arising from the strategic interaction of the agents”. It is an

externality, what individual firms cannot do about.

This perspective connects with two other networked systems where systemic risks

are a prominent issue: power grids and financial systems. In these networks, systemic

risks are also what the individual node — electricity consumers and power stations in

the first case, banks and financial firms in the second — cannot manage alone. In power

grids, a systemic risk is the potential occurrence of a sizeable and unexpected blackout

resulting from a small perturbation or a minor reconfiguration of the grid. The concept of

systemic risks is most used in finance, and is a central concern for central banks (National

Research Council of the National Academies, 2007)9. As experienced in many financial

crises, strong interlinkages between banks and other players make the system prone to

domino effects and bankruptcy chains. Contagion risks are well illustrated by the 2007

subprime mortgage crisis, which paved the way to the largest financial crisis since the

1930s. Information of systemic risks in power grids, financial systems and supply chains

are summarized in Tab. 2.1.

Table 2.1: Three domains concerned with systemic risks

Domain Power grid Financial system Supply chains

Nodes of the network Power plants, lines and substations Banks, funds and firms Non financial firms

Agent managing systemic risk Transmission network operators Central banks Insurers?

Examples of trigger events Disconnection of a line Misevaluation of an asset Accident in a facility

Propagation mechanisms Load redistribution Financial interdependence Supply disruption

Amplification mechanisms — Herding behavior Bullwhip effect

Consequences Blackout Bankruptcy chain Economic output loss

9This report is based on the conference New Directions for Understanding Systemic Risk organized in
2006 by the US National Academy of Science and the Federal Reserve Bank of New York. It was published
in 2007, a few months before the 2007–2009 financial crisis, and presciently starts with the following
words: “guarding against systemic risk in the financial system is a key undertaking for central banks”.
Interestingly, ecologists and engineers were invited to this conference, in addition to economists, regulators
and financial professionals, illustrating that an interdisciplinary stances may help understand the complex
mechanisms that underpin systemic risks.
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Supply chains differ in that no organization is supposed to tackle systemic risks.

Central bankers play this role for the financial system, although they only manage parts

of the global system. Power grids are managed by transmission system operators, which

are either public or heavily regulated.

Increasingly, firms are asking insurers to cover the economic loss generated by supply

chain disruptions (Allianz, 2012). Insurers, and especially reinsurers, might therefore

be the organizations that will have to deal with system risks in the global production

system. This transfer of risk is highly challenging to insurers, because of the difficulty

to evaluate the contribution of a particular firm to supply chain risks (Munsch, 2013).

With fragmentation and high connectivity of the production system, double counts and

misevaluation of potential damages triggered by one event are likely.

Systemic risks are indeed tricky to manage. The frequency and magnitude of black-

out have not decreased through time in the USA (Hines et al., 2008), neither have financial

crises at the global level (Reinhart and Rogoff, 2008). In this context, the word resilience is

often used as an antonym of systemic risks. Insurers, as central bankers and transmission

operators, are in high demand to better understand the role of the network structure on

systemic risks (Munsch, 2013). Newly developed tools to carry out such investigation will

be presented in the next chapter.
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Conclusion

Driven by competitive pressures, production systems are becoming more globalized, frag-

mented and vertically specialized. Consequently, localized disruptions may propagate

through supply chains and create considerable economic losses. For firms, such risks are

difficult to mitigate, because they often lack visibility over their supply chain, and coor-

dinating with other firms can be particularly challenging.

In the business management literature, frameworks have been proposed to deal

with supply chain risks, and many of them refer to engineering resilience as the goal:

resume activity as quick as possible. However, competition has streamlined supply chains,

especially through inventory reduction and more concentrated supply base. Another aspect

of resilience, called agility, is then put forward. By being responsive, and by resuming

operations quicker than a competitor, firms may also gain market shares.

This capability also connects with a wider understanding of resilience, which con-

nects to the concept of adaptive resilience presented in Sec. 1.2.3: the ability to reorga-

nize, change internal structure to adapt to novel conditions. This view acknowledges the

turbulence of the business world, and turns it into an opportunity to compete. It also

acknowledges that some risks cannot be avoided, especially systemic risks.

Systemic risks are common to many networked systems, and are not yet well defined

in the context of supply chains and production systems. They seem to emerge from the

network structure and manifest through disruption cascades. They are also externalities

— what managers cannot do about. This peculiarity of systemic risks thus suggests

that firm-level decisions are not enough to manage the resilience of the whole economy.

Articulating the micro-level of firms with the macroeconomic will be the key to design a

conceptual framework of economic resilience.
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Introduction

Productions systems seem to internally amplify their vulnerability to external shocks. To

make them more resilient, we should investigate such internal dynamics, and identify the

critical processes that accentuate disruptions.

In this dissertation, we have chosen to tackle this challenge by means of theoretical

models. To make a start, we need a modeling strategy. This chapter reviews a large

set of tools and theories. We first discuss them in light of the empirical facts and the

insider insights reported in Chapter 2. Next, we assess whether they can help us evaluate

the three dimensions of resilience presented in Chapter 1 — engineering, ecological and

adaptive resilience. The outcome of this analysis is the design of a conceptual framework

that outlines our modeling strategy.

Specifically, Sec. 3.1 reviews the tools and data available for studying the ripple

effects of natural disasters across firms and sectors. We also present insights from regional

economists, who have discussed the use of resilience in economics. These considerations

highlight the need to closely assess the kind of economic assumptions we aim to use in our

models. To that end, we revisit in Sec. 3.2 different schools of thought and the perspectives

they may or may not open on resilience. We try to identify the approach that can best

articulate the role of firms, the propagation of disruptions, and resilience. We eventually

present in Sec.3.3 the modeling framework.

The materials presented in the present chapter come from a review of the eco-

nomic literature, in particular the theory of input–output, the general equilibrium theory,

the economics of natural disasters, spatial economics, evolutionary economics, complex-

ity economics and econophysics. We also benefited from discussions during workshops

and seminars, in particular the Tenth Workshop on Economic Heterogeneous Interacting

Agents (WEHIA) that was held in June 2015 in Sophia Antipolis, France.
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3.1 Economic resilience and the challenge of interdepen-

dence

Mapping production interdependencies (Sec. 3.1.1) is the first necessary step towards the

analysis of the ripple impacts of natural disasters (Sec. 3.1.2). We highlight that finer mod-

els are still lacking to capture the propagation of disruptions and systemic risks (Sec. 3.1.3).

The differentiated responses of regions to disasters, but also to macroeconomic shocks, have

motivated some economists to investigate economic resilience (Sec. 3.1.4).

3.1.1 Mapping the structure of production

As discussed in Chapter 2, what makes a production system particularly vulnerable to a

localized disruption is that one produces what another needs. Mapping such interdepen-

dencies at the national scale was Leontief’s key motivation when developing the theory of

input–output tables (1936). Instead of describing the interactions between specific firms,

this theory views the whole production system as a network of sectors1. Each sector is

connected to others through financial flows, which correspond to exchanges of goods and

services. Each flow is the output of one sector and the input of another. To balance

the total amount of inputs consumed and of outputs produced, input–output tables also

account for imports, exports, and household consumption.

Input–output tables meaningfully aggregate business census data collected by na-

tional administrations, and may help guide public policies. Leontief published the first

tables of the U.S. economy for the year 1919 and 1929 with data from the U.S. National

Bureau of Economic Research (Polenske, 2004)2. Since then, the methodology has been

refined, standardized, and national statistics services of many countries now provide tables

with 15 to 70 sectors3.

Because of their high consistency, input–output tables are still nowadays the main

empirical tool to assess how economies are structured. For instance, with a 426-sector

table published by the U.S. Bureau of Economic Analysis for the year 2002, Xu et al.

(2011) identified highly interconnected clusters of industries and pinpointed the sectors

that play a pivotal role in bridging different part of the economy. International tables have

been produced by interpolating national input–output data with trade records (Timmer

et al., 2015); they have enabled Baldwin and Lopez-Gonzalez (2015) to follow over time the

1This view of the economy was inspired by Les Tableaux Economiques of Quesnay (1766), who analyzed
in the 18th century the dependence of the French economy on agricultural production.

2An anecdote reported by Polenske (2004) highlights the incredible progress of computational power
that were achieved over the past century. After using punchcards for the 1919 and 1929 tables, Leontief
used a computer from Harvard labs, which was taking 56 hours to invert a 42-sector matrix. The same
calculation takes today less than a millisecond

3In France, INSEE provides tables with 17 or 38 sectors. In the US, the Bureau of Economic Analysis
provides tables with 15 or 71 sectors, and roughly every five years, 389 sectors.
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unfolding of vertical specialization; see Sec. 2.1.1. The recent development of subnational

tables opens novel perspectives for even finer analyses (Ploszaj et al., 2015).

3.1.2 Evaluating the economic impacts of a disaster

Natural disasters reveal the amplifying effect induce by such input–output interlinkages

(Cochrane, 2004; Okuyama, 2007). Calibrated with regional tables, models have been

developed to evaluate their costs.

The first approach uses a class of static models called computable general equilib-

rium (CGE). The pre-disaster economy is assumed to be at equilibrium: on all markets,

supply equals demand. Because some facilities are hit by the disaster, some goods or

services become undersupplied. In this post-disaster situation, CGEs compute the si-

multaneous adjustment of prices, purchase plans and production processes that lead the

economy to a new equilibrium4. These models generally assume a certain degree of substi-

tutability between production inputs, and are calibrated using input–output data. CGEs

have been for instance used to anticipate the potential consequences of the disruption of

a water utility in Portland (Rose and Liao, 2005) or the breakdown of the Los Angeles

power grid (Rose et al., 2007).

From an economic standpoint, these models represent the best possible response

of an economy: prices perfectly capture the availability of goods and services, firms and

households make the most informed and rational decisions. These models do not describe

the dynamic process whereby the economy moves from pre- to post-disaster equilibrium.

The empirical insights exposed in Chapter 2 suggest, however, that most disruptions

occur precisely during this ‘out-of-equilibrium’ period: firms under or overreact, produc-

tion facilities fall short of workers or of inputs, basic service providers cannot cope with the

surge in demand, etc. These adjustments may be very quick, but other may be lasting.

According to Hallegatte (2014a), after hurricane Katrina hit New Orleans in 2005, the

lack of housing and of health care services hindered the return of workers, and thereby the

restart of the economy.

For these reasons, CGEs underestimate actual costs (Rose and Liao, 2005). But

they also show how an effective price mechanism may facilitate economic recovery. We

may assume, in contrast, that no economic adjustment takes place at all. This approach

could in turn overestimate the costs, but may well apply for short-term costs. Regional

input–output tables can then be readily used to assess how the loss of production in one

sector affects all others. No price changes and firms do not substitute any input5.

4A representative household adjusts its consumption basket to maximize a utility function given budget
constraints. Each sector is represented by a single firm that maximizes profit given budget and technological
constraints. The technology is typically captured by ‘constant elasticity of substitution’ (CES) production
functions, such as the Cobb-Douglas function. Impacts on import and export may also be modeled.

5As in CGEs, each sector is modeled by a single firm, but its production technology is represented by
a Leontief production function.
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Based on simple matrix calculation, this approach also benefits from the large avail-

ability of input–output data. It has been adapted into many modeling frameworks(e.g.,

Haimes and Jiang, 2001; Santos and Haimes, 2004; Steenge and Bockarjova, 2007). It was

used for instance by Brookshire et al. (1997) to assess the potential cost of earthquake

hitting the Boston metropolitan area. More realistic versions include inventories and fur-

ther technical details on production processes, and model how these quantities change in

time during and after the disaster (e.g., Okuyama, 2004; Santos, 2006)6. The adaptive

regional input–output (ARIO) model of Hallegatte (2008, 2014c) captures both the rigid-

ity of some processes with the adaptive response of others. ARIO has been applied to

hurricane Katrina (Hallegatte, 2008), to the Wenchuan earthquake (Wu et al., 2011), and

to assess the potential impacts of flooding in Copenhagen and Mumbai (Hallegatte et al.,

2010; Ranger et al., 2011).

This modeling of disaster impacts has provided general insights on the propagation

of risks through the production system. First, when interdependent activities are simulta-

neously disrupted, the losses are nonlinearly amplified. Consequently, when disasters get

more intense, indirect costs tend to grow quicker than direct costs. These insights matches

the anecdotal evidences on supply chain disruptions presented in Sec. 2.1.2.

Next, the level of aggregation used in these models does matter. When sectors are

represented by multiple heterogeneous firms instead of a single agent, the models indicate

higher impacts (Henriet et al., 2012; Hallegatte, 2014c). These observations suggest that

an explicit representation of input–output interlinkages at the firm-level may be necessary

to identify the vulnerable points in production systems, and thereby uncovering systemic

risks.

3.1.3 Analyzing systemic risks through networks

The sectoral aggregation of input–output tables prevents us to capture the fine grained

structure of production systems. This limitation has been recently overcome, and some

researchers have managed to reconstruct, from different firm-level data sets, a significant

part of the Japanese production network7, and a small part of the U.S. one8. Although

6Many dynamic input–output models are based on the so-called sequential interindustry model (SIM)
of Romanoff and Levine (1981, 1986). SIM’s purpose is to bring an engineering vision to the input-output
tables. It encompasses a wide class of models to represent production scheduling, inventories, production
capacity, etc.

7Two private databases were investigated. Both are built and maintained by private companies, which
were originally credit rating agencies: Tokyo Shoko Research and Teikoku Databank. Both databases list
the suppliers and customers of about a million firms, and cover about half of the Japanese economy.

8In the U.S., public firms — that means publicly traded firm, the equivalent of the French ‘societé
anonyme’ — have to disclose several information to the Securities and Exchange Commission (SEC).
Under the rule No. 131 of the Statement of Financial Accounting Standards, they have to disclose the
names of any customer representing more than 10% of the yearly sales. These data are publicly available
directly from the SEC, or through various private databases: CompuStat, Mergent Horizon, Bloomberg.
The latter enrich these public data with additional information on suppliers and customers. In 2015 there
were about 3,700 public firms in the U.S.
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these databases do not quantify the financial flows between firms, they have enabled a

fine topological characterization of these networks (Saito et al., 2007; Ohnishi et al., 2009,

2010; Fujiwara and Aoyama, 2010; Atalay et al., 2011). In addition, it has been possible to

link these structural features with the actual locations of firms (Bernard et al., 2014), and

with their dynamics of growth and bankruptcies (Fujiwara and Aoyama, 2010; Mizuno

et al., 2014).

These data sets open the opportunity to research statistical regularities in the struc-

ture of supply chains (Osadchiy et al., 2016) and the propagation of disruptions (Barrot

and Sauvagnat, 2016)9. In particular, they provide an empirical basis to investigate sys-

temic risks through network modeling.

To that end, we may tap into the toolbox of graph theory. For systemic risks, this

theory primarily analyzes how generic classes of network break into pieces when some

nodes or links are removed (Albert et al., 2000; Callaway et al., 2000; Cohen et al., 2000,

2001). In production system, however, systemic risks result from a dynamical process,

whereby disruptions propagate from one firm to another. In its most simple form, it is

a process of contagion (Watts, 2002; Dodds and Watts, 2004), which applies to cultural

phenomenon, diseases and of computer viruses (May and Lloyd, 2001; Newman, 2002).

Findings from these studies provide some insights for production systems, such as the

amplifying role of hubs.

For production systems, most models have focused on simple network structure.

Using a lattice and an explicit modeling of inventories, Bak et al. (1993) and Scheinkman

and Woodford (1994) have shown that the occurrence of disruption cascades is a very

generic phenomenon in production systems10. Similar models have investigated the emer-

gence of the bullwhip effect (Helbing et al., 2004; Lee et al., 2004). In operation research,

modeling frameworks for disruption propagation have been proposed (Wu et al., 2007).

They focus on simple supply chains and aim at a detailed modeling of the production

and management processes, building on the field the industrial dynamics (Forrester, 1961;

Towill, 1996).

Cascading failure in power grids and financial systems is easier to study. When an

electric substation breaks down, the electric load it was carrying is redistributed to other

nodes; some of them may receive a load that is larger than what they can stand, thus

triggering new failures (Crucitti et al., 2004; Zhao et al., 2004; Wang and Rong, 2011). If

a bank defaults, its liabilities — which are the asset of other banks — are written off, which

may precipitate new defaults (May and Arinaminpathy, 2010; Haldane and May, 2011;

Battiston et al., 2012b,a). In both cases, this process involves a redistribution of burden11.

9The results of these two studies have been presented in Secs. 2.1.1, 2.1.2 and 2.2.2.
10These researchers uncovered a few years before the mechanisms behind the avalanches of sand piles,

called self-organized criticality (SOC) (Bak and Chen, 1991). With this economic model, they have demon-
strated that, to a certain extent, disruption cascades may be interpreted the same way.

11Lorenz et al. (2009) has recently showed that a modeling framework can account for both contagion
and load redistribution processes(see also Tessone et al., 2013).

65



Chapter 3. The modeling of production systems and their resilience

This financial domino effect has been also studied for supply chains, since suppliers and

customers are also financially interdependent12, (Battiston et al., 2007; Delli Gatti et al.,

2009b), and Fujiwara (2008); Fujiwara and Aoyama (2010) could track such chains of

bankruptcy in the Japanese production system.

With the exception of Weisbuch and Battiston (2007), Coluzzi et al. (2011) and

Henriet et al. (2012), no model has yet tackled the cascade of supply disruptions and their

potential systemic impact. Building on Coluzzi et al. (2011), our second paper fills this

gap, using the recent empirical results on real production networks.

Such models tend however to overemphasize the importance of the network struc-

ture. This structure is not that rigid, and whether a disruption propagates also depends

on the capacity of firms to find new suppliers.

3.1.4 Economic resilience of regions

The propagation of disruptions plays a crucial role in increasing vulnerability, and ampli-

fying shocks. But the resilience of an economy depends on many more factors than the

production structure.

For Rose (2007), economic resilience may be observed both during a disaster —

how functional does the economy remain — and after — how it bounces back. From an

economic perspective, the first aspect is determined by the efficient allocation of available

resources, the second by the reinvestment pattern for reconstruction and the restart of

activities. As done in the field of disaster risk reduction, presented in Sec. 1.3.1, economists

aims to identify pre-disaster conditions that foster these two aspects, such as the financial

resources of households, the quality of the infrastructure, the access to wider markets,

and firm-level features that are common with the management literature on supply chain

risks presented in Sec. 2.2.1. Significant efforts have been dedicated to build resilience

indexes from these factors, which proved to be very challenging (see reviews by Rose and

Krausmann, 2013; Modica and Reggiani, 2015).

Many economists actually study resilience through a wider class of shocks, and aim,

for instance, to understand the differentiated responses of regions to a macroeconomic

shock, such as recession. For instance, Martin (2012) investigates why the Greater London

area and the South West region of England were more affected by the early 1990s recession

than northern regions, and why they recovered quicker afterwards. There, the question

of resilience connects to preexisting inquiries on regional innovation systems or regional

competitiveness, and focuses more largely on economic and institutional structures.

12A creditor-debtor relationship necessarily settles between a supplier and a customer. When the buyer
pays after the delivery of its command, it means that the supplier had financed the production costs. In
the time period between production and the payment, the supplier is a creditor and the customer a debtor.
On the other hand, if the customer pays upfront, until he receives its command it is a creditor and the
supplier a debtor.
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Resilience also invites economists to investigate the longer-term response of economy

to shocks, and how it may become more or less resilient over time. Actually, whether dis-

asters can have a positive impact on long-term growth remains a debated issue (Jaramillo,

2009; Hallegatte, 2014b). For Christopherson et al. (2010), the way to approach these

questions depends on the underlying assumption made on the economic equilibrium. First,

we may assume, as in Fig. 3.1(a), that there is a unique growth trajectory to which the

post-disaster region will eventually return, then ‘engineering resilience’ is the adequate

standpoint. Shocks are only delaying growth and what matters is the speed and efficiency

of the recovery. Alternatively, we may consider multiple dynamical attractors, in which

case a shock could push a region into another growth pathway. This view directly connects

to the ecological or adaptive resilience standpoint, cf. Figs. 3.1(b)–(c).

(b)  (c) (a) 

Figure 3.1: Hypothetical trajectories of economic output or employment in a region affected by a
recessionary shock, published by Martin (2012). (a) Assuming the existence of a unique economic
equilibrium, the region returns to the pre-shock growth trajectory. (b) and (c): The shock leads to
lasting negative or positive effects on the growth rate, suggesting that the economy has reorganized
into a structurally different state.

Several authors from the fields of economic geography and spatial economics argue

that economic resilience is conceptually richer in the second view (Christopherson et al.,

2010; Simmie and Martin, 2010). This approach is also closer to the Holling’s definition of

resilience (1973). Shocks do not only deviate an economy from a fundamental trend, they

may also spark profound changes and generate new development pathways. A prototypical

example of such shock-induced redirection is that of Reunion and Mauritius islands in the

early 19th century. Following a series of intense cyclones in 1806 and 1807, authorities

decided to shift the entire agriculture from coffee to sugar cane, a radical change that may

have had important impacts on the economic development of these islands (Garnier and

Desarthe, 2013).

Tor these authors, reorientation and renewal are crucial to resilience. They are

related to context-specific learning mechanisms, governance flexibility and civic capital

(Pike et al., 2010; Wolfe, 2010; Martin, 2012). We note that these factors are close to

those researched in the field of socio-ecological systems described in Sec. 1.2.1. To study

the nonlinear trajectories of economies, these authors propose to adopt the framework

of evolutionary economics (Dosi and Nelson, 1994). This branch of economics, which
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connects to the theory of complex adaptive systems described in Sec.1.2.2, acknowledges

that path dependency, lock-in and hysteresis may occur. These theories will be useful to

design our conceptual framework.

The conceptual richness of resilience, explored in Chapter 1, has been integrated in

this branch of economics. The question of economic equilibrium seems particularly central

to develop a conceptual framework on economic resilience. As for economic models, they

tend to focus on the engineering aspects of resilience, and revolve around the following

question: how quickly and how well does an economy recover from a shock. In fact, pro-

viding a robust answer to it is already very challenging. The usual approaches — whether

CGEs or input–output models — rely on a level of aggregation in which disruptions are

hard to track.
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3.2 Where does resilience fit in economic models?

We aim to design models that capture the network structure of production systems, but

that at the same time do not dwarf the role of firms. They should also allow us to

investigate dynamical processes and bifurcations. We now need to identify the adequate

economic assumptions.

The first question to be tackled is the status of equilibrium in economics. This

notion is intrinsically linked with the assumptions made by the modelers on agent behav-

ior. Different views may be taken, leading to important controversies between economic

schools of thought (Sec. 3.2.1). Although many economic models are based on equilibrium

conditions, there are many macroeconomic dynamic models in which resilience can be

readily studied (Sec. 3.2.2). To capture the vulnerability of production systems, however,

we need to fully account for the micro-level of firms and their interactions. We may study

resilience from the ‘bottom up’ using agent-based modeling (Sec. 3.2.3). Since the network

structure is so influential in driving resilience, we may use fairly simple, ‘zero-intelligence’,

representation of firms, and gradually detail their behavior (Sec. 3.2.4).

3.2.1 Is resilience heterodox?

Resilience does not fit naturally within classical economic theory. As mentioned through-

out Sec. 3.1, many models focus on equilibrium conditions. Bringing ecological resilience

into economics could thus be seen as an attempt to provoke a paradigmatic change, as

Holling (1973) did in ecology; see Sec. 1.1.1. In fact, such discussions have been ongoing

for decades in economics, and the concept of equilibrium is one of the many debates in

the antagonistic dispute between orthodox and heterodox economics. Without getting

bogged down in these controversies13, we will clarify the relationships between economic

equilibrium and our proposal for a modeling of economic resilience.

The main obstacles that prevent us from applying the ecological approach of Chap-

ter 1 are: (i) the forward-looking behavior of humans, and, connected to that, (ii) the

normative implications of economic theories. While dynamic models in natural sciences

can be expressed, for instance, as a dynamic map, where the future derives from the past

(e.g., xt+1 = f(xt)), most economic inquiries start the other way around, and investigate

what could be the present decisions of agents given their expectations for the future (e.g.,

xt = f(xt+1)). To reduce this almost infinite set of possible choices, economic theories

generally focus on what agents ‘should’ do, given precise assumptions about their behavior

and expectations. Classical economics focus on self-interested, fully rational and often om-

niscient individuals, while other fields investigating in human decisions may choose other

assumptions.

13See Lavoie (2014, Chap. 1) for an overview of the different school of thoughts and of some aspect of
the orthodox–heterodox dispute, from a Post-Keynesian, i.e. heterodox, perspective.
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Economic equilibrium then describes the state of an economy when all agents do

what they are supposed to do. The field of game theory has specialized in analyzing

such equilibria. Because it focuses on the ‘should do’, such description has normative

implications. In fact, economic theories sometimes generate interesting self-fulfilling phe-

nomena. As pointed out by Farmer and Geanakoplos (2009), equilibrium-based models on

the pricing of financial assets make accurate predictions once traders start to use them.

With these assumptions, the so-called general equilibrium theory aims to determine

the set of prices that balance supply and demand for all markets of an economy composed

of a multitude of agents. This theory has developed through the determination of the nec-

essary conditions of existence, uniqueness, efficiency and finally stability of the equilibrium

(Arrow and Debreu, 1954; Arrow, 1966).

However, the Sonnenschein–Mantel–Debreu theorem (e.g., Sonnenschein, 1973)

demonstrates that, under general conditions, the economic equilibrium is neither unique

nor stable. Albeit this result, which, to many, should have marked the end of equilibrium

theories (e.g., Kirman, 1989; Ackerman, 2002), equilibrium-based models, such as CGEs,

are still widely used. Instead of representing a multitude of agents, these models are based

on the assumption of a ‘representative agent’ — one agent represents all households,

one firm represents all firms in a sector, etc. — which enables the derivation of a single

equilibrium. However, because of the absence of any out-of-equilibrium dynamics, these

models miss processes that generate economic vulnerability, as discussed in Sec. 3.1.2.

The modeling of out-of-equilibrium behaviors has been an ongoing debate since the

19th century. It sparked a controversy between Walras, who produced the first complete

version of the general equilibrium theory, and Edgeworth (Walker, 1987). For Walras, his

theory had to explain how the equilibrium could be reached; to that end, he provided an

out-of-equilibrium mechanism called tatonnement14. Edgeworth vividly rejected this. For

him, only equilibrium can be known: the dynamics leading to it cannot be analyzed and

is ‘not part of the domain of the science’ (Edgeworth, 1891, cited by Walker, 1987).

That economics should not deal with out-of-equilibrium processes is still a dominant

view in orthodox economics. Even though the general equilibrium theory of Walras has

set the bases of neoclassical economics, his view on dynamics has inspired a large body

of works, especially in heterodox schools of thought, in which resilience seems to fit more

naturally.

3.2.2 Economic dynamics

In fact, in parallel to equilibrium-based models, many economists have developed dynamic

models in which bifurcations and basins of attraction may be analyzed. The tatonnement

14In the tatonnement process, the equilibrium is reached in a market through simultaneous auctions.
Given an initial price, agents adjust their production and purchase plans, which are aggregated by an
auctioneer and lead to a new price. This mechanism is iterated until the equilibrium prices are reached.
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process has been studied using differential equations (Samuelson, 1941), as well as a large

set of other out-of-equilibrium processes. These dynamical studies have shown that the

equilibrium may be unstable and can lead to limit cycles (Negishi, 1962; Heal, 1986). Al-

ternative theories have been elaborated to describe decisions made by agents when markets

are unbalanced, called ‘arbitrage’, and to analyze ‘disequilbirium dynamics’ (Fisher, 1989;

Barnett et al., 1996).

In fact, endogenous dynamics appear to be quite general as soon as the assumptions

of omniscience and unlimited cognitive capability — the ‘god-like powers’ in the words

of Farmer and Geanakoplos (2009) — are released. These undertakings are supported

by psychological experiments that have demonstrated that human decisions are generally

contextual, based on heuristics (Gigerenzer and Brighton, 2009), and framed by values and

beliefs (Kahneman and Tversky, 1979, 2000). The fields of experimental and behavioral

economics have developed novel theories based on these empirical assessments15 (e.g.,

Camerer et al., 2011).

This equilibrium-versus-dynamics debate has important implications for the under-

standing of economic fluctuations. In particular, business cycles — these ample and some-

what periodic ups and down of economic aggregates (Groth et al., 2015; Sella et al., 2016)

— are either interpreted as endogenous or as exogenous phenomena. In the equilibrium-

based approach (e.g., Kydland and Prescott, 1982; Long and Plosser, 1983), business cycles

are the consequences of the most rational decisions of agents16 in response to exogenous

shocks — e.g., new technologies, new policies, natural disasters. For others, business cycles

result from endogenous instabilities. A very wide range of dynamical models have been

proposed, in which limit cycles may emerge from Keynesian accelerators and multipliers

(Kalecki, 1937; Harrod, 1939; Samuelson, 1939), from inertia and delays (e.g., Hallegatte

et al., 2008), etc. Even with the assumptions of balanced markets and optimal forward-

looking behavior, business cycles and chaotic trajectories may endogenously occur (e.g.,

Benhabib and Nishimura, 1979; Day, 1983; Baumol and Benhabib, 1989).

In macroeconomic dynamic models, which are now fairly developed (see for instance

the textbook of Shone, 2002), we can use the theory of dynamical systems to study re-

silience. In particular, we note that the model proposed by Goodwin (1967), is made of a

system of differential equations that is of the same class as the Lotka–Voltera predator–

prey model used by Holling (1973). Investigating resilience in such models has not been

undertaken yet, and we argue that tackling the following questions can lead to inter-

esting studies: how external shocks may change the features of business cycles? Which

macroeconomic processes may abruptly shift the dynamical regime?

15In particular, alternative models have been proposed to describe the forward-looking behavior of human
beings. One of them is the heterogeneous expectation model (Brock and Hommes, 1997; Hommes, 2011),
which, when implemented in economic models, leads to complex dynamical behavior. With this type of
expectations, for instance, a higher use of apriori stabilizing financial instruments, such as hedging, can
destabilize markets (Brock et al., 2009).

16These decisions concern how they plan to allocate money (the consumption–investment trade-off) and
time (the labor–leisure trade-off) between the present and the end of their time horizon.
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These models adopt, however, a macroeconomic standpoint, and encode dynamical

relationships between economic aggregates, e.g., growth domestic product, investment,

savings. Although analyzing resilience in these models may be of high interest, the degree

of aggregation is not adapted to capture the vulnerability of production system described

in Chapter 2. In particular, the propagation of disruptions and the indirect impacts of

shock seem to be better captured by an explicit modeling of firms, as discussed in Sec. 3.1.

3.2.3 Resilience from the bottom up

Representing an aggregate property, such as resilience, from the modeling of economic

agents connects to another fierce orthodox–heterodox debate on the ‘microfoundation of

macroeconomic behavior’ (Kirman, 1992). As explained in Sec. 3.2.1, many equilibrium-

based models represent a multitude of individuals or firms by a single agent who is also

fully rational, omniscient etc. Many authors have been highlighted the weaknesses of this

aggregation procedure, especially Kirman (1992). As soon as agents interact, a group does

not behave like its average member, even when everyone is fully rational (Bouchaud, 2013).

This absence of direct correspondence between the micro and the macro level is even more

pronounced when the system is structured, as in production networks. In supply chains,

tor instance, the bullwhip effect emerges spontaneously, even in small and linear structures

and even if all firms act rationally (Lee et al., 2004).

In addition, the distributions of firms’ size, income, number of suppliers and cus-

tomers are highly unbalanced and exhibit fat tails (Axtell, 2001; Okuyama et al., 1999;

Fujiwara and Aoyama, 2010). Averaging these characteristics to form a representative

agent may thus be inappropriate. The importance of these heterogeneities in driving

macroeconomic variables has been recently underlined even in equilibrium-based models

(Gabaix, 2011; Acemoglu et al., 2012).

Providing an alternative to the representative agent is the key motivation behind

agent-based modeling (ABM) (Gallegati and Kirman, 2012). ABMs are made of multi-

ple autonomous agents, with internal and possibly heterogeneous rules on how they behave

and interact with each others. Methods from statistical physics may be used to analyti-

cally aggregate this ensemble of behavior (Durlauf, 1997). The field of econophysics has

specialized in applying such methods to economics, in particular to the study of financial

time series. In addition, through the physical concept of phase transition, econophysicists

have explored potential sudden changes of the qualitative structure of an economy (e.g.,

Bardoscia et al., 2015). We however note that, so far, detecting bifurcations in ABMs

— a crucial step in the analysis of resilience — has hardly been tried, and remains to be

tested. Our first paper tackles this gap (Chapter 4).

Through ABM, scientists may analyze the emergence of macro-level behavior and

structures from the ‘bottom up’ (Simon, 1962; Schelling, 1978; Epstein and Axtell, 1996).

They can then try to determine the kinds of agent-level behavior that lead to patterns
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observed in empirical data, often called ‘stylized facts’ (e.g., Delli Gatti et al., 2007).

For instance, Mandel (2012) have designed an ABM to assess the emergence of multiple

general equilibria, and to analyze whether the economy may shift from one equilibrium to

another.

For production systems, the flexibility of ABMs may thus be harnessed to study how

production networks emerge from the firm decisions. Game theory already provided results

for the formation of innovation and social networks (Goyal, 2007), however the focus on

fully rational and anticipating agents has somewhat limited its application to production

systems. In the ABM of Gualdi and Mandel (2015), instead, a network emerges from the

bottom up; it reproduces some features of real production systems, such as their scale-free

topology. The longer-term evolution of a production system and their resilience may thus

be modeled with this technique.

3.2.4 Rational versus ‘zero intelligence’ agents in structured systems

Which behavior should we then encode in our ABMs? The discussion on economic equi-

librium in Sec. 3.2.1 highlights that the specificity of economic modeling — the rationality

of agents and their expectation — needs a carefully assessment (Westley et al., 2002)17.

Which alternative assumptions on rationality and expectation should we make for firms

operating in interconnected production systems?

As seen in Chapter 2, production systems are highly structured. They are made of

multiple specialized firms connected through long and intricate supply chains. As done

in the various models presented in Sec. 3.1, production systems can be represented as a

network. Although its topology is not fixed, it strongly constrains the actions undertaken

by firms in the short term, especially in the event of a disruption. Small fluctuations

may thus amplify as it ripples through the production network, as explained in Sec. 2.2.1.

There are increasing empirical evidences that this amplification drives a sizeable portion of

macroeconomic volatility (Foerster et al., 2011; Atalay, 2014; di Giovanni et al., 2014)18.

To study how the network structure affects the aggregate dynamics, Farmer and

Geanakoplos (2009) argue that the assumptions of perfectly rational and anticipating

agents may be usefully released. They illustrate this approach with the examples of crowd

dynamics and road traffic. Whatever the subtle assumptions we may think of for the

17In the context of SES modeling, Westley et al. (2002) warn that the absence of such considerations can
negatively impact the interdisciplinary discussions on models made by natural scientists on socio-economic
systems. They take as an example the report Limits to Growth by Meadows et al. (1972). It encountered
fierce critics within the economic community, and still remains nowadays somewhat controversial, although
the business-as-usual scenario of their model compares favorably with the data (Turner, 2008).

18Foerster et al. (2011) show that sectoral shocks are increasingly driving economy-wide fluctuations
through shock propagation via input–output linkages between sectors. Atalay (2014) refines this analysis
by showing that this effect is amplified when substitutability is low. di Giovanni et al. (2014) perform a
similar analysis using more detailed data, and show that input–output relationships drive three times more
macroeconomic fluctuations than firm-level shocks.
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behavior and expectation of each driver, traffic is mostly determined by the road network19.

Such systems may thus be effectively studied with simple behavioral assumptions.

This approach has been successfully applied to the study of financial markets. Fi-

nancial time series exhibit some statistical regularities that indicate the presence of out-of-

equilibrium dynamics, such as the power-law distributions of autocorrelation coefficients

or transactions size (Lobato and Velasco, 2000; Bouchaud et al., 2006, 2009). ABMs with

‘zero intelligence’ traders have showed that many of these features were in fact related to

the trading mechanisms, and not so much by the rationality of agents (Bouchaud et al.,

2002; Farmer et al., 2005). The use of ‘zero intelligence’ firms might thus help us in-

vestigate the role of the network structure on resilience, at least over the time scale of

disruption cascades.

We should not, however, dwarf the capacity of firms to react and manage disruptions,

as well as their ability, in the longer run, to reorganize parts of their supply chain. Thanks

to the flexibility of ABMs, we may thus gradually bring more rationality into the behavior

of firms, and even allow them to act on the network structure.

19The dominance of the road structure over drivers’ decisions is well illustrated by the so-called Braess’s
paradox (Braess, 1968): counterintuitively, the travel time of all road user may increase by the addition of
new roads in the network, even assuming omniscience and full rationality.
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3.3 Conclusion: A new conceptual framework for economic

resilience

Economic resilience may be readily studied in a wide range of dynamic macroeconomic

models. However, a large share of the vulnerability of production systems precisely comes

from the micro-level. ABM represents a promising modeling paradigm to assess the link

between agents’ behavior and aggregate properties, such as resilience. We have identified

that, because production systems are so structured, we may at first consider very simple

behavioral rules for firms, and thereby isolate the effect of the network structure on re-

silience. More details may be added afterwards, using for instance the insights of operation

research and business management, briefly exposed in Sec. 2.2 of Chapter 2. Finally, in

the longer term, the production network is itself a result of the firm decisions.

In this section, we build a conceptual framework to articulate these feedback mech-

anisms across multiple scales. It will help us organize the pieces of knowledge reviewed in

these three first chapters, and guide the formulation and interpretation of the models of

our second and third papers (Chapters 5 and 6). The first paper (Chapter 4) will test

the use ABM for resilience analysis.

We first explain how we intend to evaluate resilience in our models (Sec. 3.3.1).

Next, we describe the conceptual framework (Sec. 3.3.2) and conclude by presenting our

three papers (Sec. 3.3.3).

3.3.1 Evaluating resilience and systemic risks

We aim to design theoretical models for economic resilience. They will represent in silico

artificial production systems made of interacting firms (Lane, 1993). We evaluate resilience

by analyzing the responses of production systems to shocks, using a variety of analytical

and statistical methods.

Table 3.1 summarizes the indicators20 we intend to use and their associated math-

ematical objects. They correspond to the three main dimensions of resilience presented

in Tab. 1.2 of Chapter 1. We have introduced a short and a long time scale. Adaptive

resilience is evaluated by the long-term evolution of the short-term indicators. Through

these metrics, we aim to analyze how some model ingredients affect resilience, e.g., how

the probability of collapse varies with certain parameters.

From Tab. 1.2, we may now clarify the link between resilience and systemic risks.

As discussed in Sec. 2.3, systemic risks are triggered by small events and have large

consequences. They correspond to rather short time scale, i.e. to the first and second

line of Tab. 1.2. From the engineering standpoint, systemic risk is the risk of disruption

20We emphasize that these indicators should not be equated to resilience, e.g., resilience is not the
intensity of disruption cascades.
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Table 3.1: Evaluating the three dimensions of resilience in theoretical models.

Dimension Mathematical object Indicators of resilience Time scale

Engineering Orbits
Intensity and duration of disruption
cascades after shocks

Short

Ecological
Attractor basins
and bifurcations

Shock intensity leading to a collapse,
collapse probability given certain shocks,
and how this change with parameters

Short

Adaptive
Evolutionary
trajectories

Change over time of the measures
of engineering and ecological resilience

Long

cascades, i.e. the expected loss due to disruption cascades. From the ecological standpoint,

systemic risk is the risk of collapse, what Helbing and Balietti (2011) has called ‘systemic

shifts’, e.g., for power grids, a large scale blackout. These two components of systemic

risks will be investigated in our second paper.

Although this definition corresponds to most uses of the term, it seems to loosely

encompass any network-related propagation of risks. In fact, as emphasized by Lorenz

et al. (2009), and reported by managers, systemic risks are externalities: they are the

shares of supply risks that firms cannot manage. We therefore define a risk as purely

systemic if it occurs while all firms has mitigated their own supply risks. In other

words, purely systemic risks are the risks of disruption cascades and of collapse that

remain even though all firms have implemented their best possible ‘resilient’ strategy. As

discussed in Sec. 2.2.2 of Chapter 2, many risk mitigation measures have to be balanced by

competitive objectives. We hypothesize that stronger competitive pressures induce higher

purely systemic risks. Our third paper will investigate this hypothesis. Because systemic

risks are good indicators for short-term resilience, i.e. the first and second lines of Tab. 1.2,

we may often refer to them in our papers.

3.3.2 Networks: a meso-level between agents and economic resilience

The conceptual framework, presented in Fig. 3.2, articulates three scales: firms at the

micro-level, network of interaction at the meso-level, and the whole production system at

the macro-level. Four links indicate interactions between these three scales.

That causality flows across scales is taken from the theory of complex adaptive

systems (CASs) exposed in Sec. 1.2.2 of Chapter 1. It also connects with the panarchy

theory presented in Sec. 1.2.1 of the same chapter. Studying the economy as a CAS as

been suggested by many authors (Anderson et al., 1988; Arthur et al., 1997; Blume and

Durlauf, 2005).

The originality of our conceptual framework is to introduce network a meso-scale

between agents and the production system. This intermediary step facilitates our investi-

gation.Arthur (2013) has suggested the use of meso-levels of aggregation. Related to our

topic, Carvalho (2014) has also identified that input–output networks, detailed at the firm

76



3.3. Conclusion: A new conceptual framework for economic resilience

level, are powerful to study the link between micro and macroeconomics. Linking agents

and economic macrostructure through networks has also been suggested by Schweitzer

et al. (2009).

In addition, the production system is not apriori assumed to be at equilibrium.

Instabilities may appear endogenously, as in Bonart et al. (2014). Such internal variability

can be crucial for resilience (Hallegatte and Ghil, 2008)21.

Micro 

Meso 

Macro 

Agents 

Network 

Produc1on system 

Resilience 

A 

B 

D  C 

Figure 3.2: Conceptual framework for the modeling of economic resilience. The three upward-
looking arrows A, B and C indicate emergence — from the bottom up — while the downward-
looking arrow D represents the influence of the macro onto the micro. The two horizontal lines
indicate that the network affects the two micro–macro relationships C and D.

We now detail the four different arrow of Fig. 3.2. The network emerges from the

the decisions taken by the firms (A-arrow). ABMs are well suited to study this link (e.g.,

Gualdi and Mandel, 2015).

The various characteristic of the network — e.g., its topology, the nature of the links

— strongly influence the short-term responses of the production system to shocks, and

therefore its engineering and ecological resilience (B-arrow). We may study this link using

ABM–network models, as in presented in Sec. 3.1.3, where the nodes are ‘zero-intelligence’

agents.

The internal agility and preparedness of firms also play a role in the disruption

of cascades (C -arrow). We may use our ABM–network models and gradually add more

agent-level details. These abilities, however, are constrained by the network structure

(horizontal bar).

Macro-level resilience influence the exposure of agents to disruption cascades.

Agents may react (D-arrow). This feedback enables adaptive resilience. For instance,

considering their records of past disruptions, firms may change supplier (A-arrow).

21Hallegatte and Ghil (2008) have uncovered the ‘vulnerability paradox’: a natural disaster may have
fewer impacts on an economy in recession than on the same one during a boom. During a recession, larger
quantities of unused resources — inventories for instance — are available to cope with damages.
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The network evolution becomes endogenous and depends on the agents’ experience,

as proposed by Kirman (1997). Firms may also update their emergency procedures

(C -arrow). ABM–network models are flexible enough to model these feedback loops, and

we may use the tools of evolutionary dynamics.

Over time, the D–A–B- and D–C -loops enable the production system to self-

organize. Expressed in the wording used in Sec. 2.2.1, this process will change the ‘in-built

robustness’ of the system (D–A–B-loop) and its agility (booth loops). Depending on the

learning capacity of agents (D-arrow), the network structures and agent behavior that

will evolve may depend on the pattern of exogenous shocks.

This conceptual framework offers many opportunities to generate research questions,

build theoretical models, and integrate different tools and knowledge.

3.3.3 An introduction to the three papers

We now introduce the three papers (Chapters 4 to 6) that will be included thereafter. The

main research perspectives they open are discussed in Chapter 7.

First paper (Chapter 4): Bifurcation analysis of an agent-based model for

predator–prey interactions. Agent-based modeling seems adapted to study resilience

as an emerging property of economic agents and their structure of interactions. We there-

fore aim to use ABMs to evaluate the dynamical trajectories of production systems, their

attractor basins and possible bifurcations. However, analyzing ABMs is not yet backed,

as for ordinary different equations (ODEs), by a large corpus of mathematical theories.

In particular, while fairly standard theorems and numerical methods can be applied to

ODEs for bifurcation analysis, no such well-established techniques exist for ABMs.

The first paper contributes to fill this gap. We study a Lotka–Voltera model for

predator–prey interactions; one of the kinds that inspired Holling to conceptualize eco-

logical resilience. We first perform the analysis of the model formulated as a system of

ordinary differential equations (ODEs). Next, we design an ABM on a two-dimensional

lattice that encodes, through the behavior of agents, the ingredients of the aggregate ODE

model. In accordance to the ABM paradigm, these mechanisms are not built in at the ag-

gregate level, and are entirely emerging from the bottom-up. We validate that, although

the two modeling approaches — ODE and ABM — differ, both models exhibit similar

bifurcation patterns.

Predator–prey interactions are not only at the origin of resilience thinking, they

also correspond to a very generic behavior and may be found in many systems. The eco-

nomic growth model of Goodwin (1967), mentioned in Sec. 3.2.2, exhibits for instance

predator–prey dynamics leading to endogenous business cycles. Delli Gatti et al. (2009a)

have found the same behavior from the study of industrial dynamics. In financial markets,
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Farmer (2002) uses all classes of Lotka–Voltera models, including competition, coopera-

tion, and predator–prey interactions, to study investment strategies. These models may

also describe economic interactions between social classes in more general socioeconomic

models (Samuelson, 1971; Motesharrei et al., 2014).

This first paper also explains our approach to modeling, which is based on a hier-

archy of models of different nature and level of complexity. By adding ingredients step

by step, we are better able to keep track of their impact on the outcome. In addition,

by employing a variety of modeling paradigms — e.g., ODEs, dynamical maps, ABMs —

one can get a richer view on a phenomenon and draw more robust conclusions. As Levins

(1966, 20) put it:

“[I]f these models, despite their different assumptions, lead to similar results,

we have what we can call a robust theorem that is relatively free of the details

of the model. Hence, our truth is at the intersection of independent lies.”

(1966, 20)

Having multiple models is also helpful from a practical standpoint, since the results of one

model may help formulate and analyze another.

Second paper (Chapter 5): Economic networks: Heterogeneity-induced vulner-

ability and loss of synchronization. This paper investigates resilience in production

systems, both the engineering and ecological dimensions exposed in Tab. 3.1. It focuses on

the B–arrow of the conceptual framework of Fig. 3.2. To that end, a network is populated

with ‘zero intelligence’ agents with very simple behavior and no expectation. We analyze

the interplay between topology, inventories and production delays, and how it affects the

risk of disruption cascades and collapse.

This work builds on the literature presented in Sec. 3.1.3 on systemic risks and

complex networks. The model is based on Coluzzi et al. (2011) and uses Boolean de-

lays equations (BDEs). This framework allows us to focus on core nonlinear ingredients

that influence the dynamics of propagation. The originality of the model is to study

the dynamical interactions between heterogeneous inventories, heterogeneous delays, and

complex topologies. We use a class of network calibrated with the empirical results of

Fujiwara and Aoyama (2010), and a class of ‘network of networks’, which has recently

be proposed to model interdependent supply chains and infrastructures (D’Agostino and

Scala, 2013).

Third paper (Chapter 6): The fragmentation of production amplifies systemic

risk in supply chains. This paper also investigates the dynamics of production net-

works subject to external perturbations, i.e. the B–arrow of Fig. 3.2. But, instead of

studying complex topologies — we use rather small acyclic structures — we focus on the

nature of supplier–customer interactions. Some agents may coordinate, others not. We
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compare ‘fully integrated’ structures, in which agents belong to the same firm and fully

coordinate, with ‘fully fragmented’ ones, in which each agent is a single firm. Together

with intermediate scenarios, they allow us to investigate how fragmentation may impact

resilience.

In contrast with the BDE model, agents make decisions based on rules. By learning

from past disruptions, they adjust inventory to increase profit. Their strategy depends on

the pattern of disruption cascades, and thus on overall resilience (D–arrow). Resilience is in

turn influenced by these firm-level decisions (C–arrow). Repeated over time, the C–D–loop

forms an evolutionary process, which is determined by the network structure (horizontal

line). Such application of evolutionary dynamics to production networks has not yet been

explored (Lieberman et al., 2005). Eventually, by iterating this loop, each agent ends with

the level of inventory that is the most adapted to the regime of perturbations. The risk

of disruption cascades that remains is truly systemic.
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When including an Allee effect on the prey, this model exhibits bistability and contains

a pitchfork bifurcation, a Hopf bifurcation and a heteroclinic bifurcation. We develop

an agent-based model (ABM) on a two-dimensional, square lattice that encompasses the

key assumptions of the aggregate model. Although the two modelling approaches – ODE

and ABM – differ, both models exhibit similar bifurcation patterns. The ABM model’s

behaviour is richer and it is analysed using advanced statistical methods. In particular,

singular spectrum analysis is used to robustly locate the transition between apparently

random, small-amplitude fluctuations around a fixed point and stable, large-amplitude

oscillations. Critical slowing down of model trajectories anticipates the heteroclinic bifur-

cation. Systematic comparison between the ABM and the ODE models’ behaviour helps

one understand the predator–prey system better; it provides guidance in model explo-
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a b  s t  r a  c  t

The Rosenzweig–MacArthur model  is a set  of  ordinary  differential  equations (ODEs)  that  provides  an

aggregate  description  of the  dynamics of a predator–prey  system.  When including  an  Allee effect on  the

prey,  this  model  exhibits bistability  and contains  a pitchfork  bifurcation, a Hopf bifurcation  and  a hete-

roclinic  bifurcation.  We  develop an  agent-based  model  (ABM)  on  a two-dimensional,  square  lattice  that

encompasses  the  key  assumptions  of  the aggregate  model.  Although  the  two  modelling  approaches  –  ODE

and  ABM –  differ,  both  models  exhibit similar  bifurcation  patterns. The ABM model’s  behaviour  is richer

and  it is  analysed  using  advanced  statistical  methods. In  particular,  singular  spectrum  analysis  is  used to

robustly locate  the  transition  between apparently random,  small-amplitude  fluctuations around  a  fixed

point  and  stable, large-amplitude oscillations. Critical  slowing  down  of  model  trajectories anticipates  the

heteroclinic  bifurcation.  Systematic  comparison  between the  ABM and the  ODE models’  behaviour  helps

one  understand  the  predator–prey  system better; it provides  guidance  in model  exploration and allows

one to draw more robust conclusions  on the nature of predator–prey  interactions.

© 2015  Elsevier  B.V. All  rights  reserved.

1. Introduction and motivation

Ecologists are more and more frequently asked to make predic-
tions about the potential effects of  specific changes to an ecosystem
or a community of species. This demand is particularly vivid in
the context of climate change (Lavergne et al.,  2010; Valladares
et al., 2014) or resource management. It especially applies when
anthropic harvesting is at play, as in fisheries (Lindegren et al.,
2010), or when biological factors might disturb an  established com-
munity of species, as in cases of  non-endemic species invading an
ecosystem (Crowl et al.,  2008). Understanding these consequences
is also relevant when the driver of  changes is internal, in particular
through evolutionary processes (Ferrière, 2009).

Whether the engine of change is external or internal, analysing
the consequences requires a comprehensive understanding of
the community dynamics. Achieving such an understanding has
proven to be a challenging task. Observational and experimental

∗ Corresponding author at: CERES, Ecole Normale Supérieure, F-75231 Paris Cedex

05,  France. Tel.: +33 144323025

E-mail address: celian.colon@polytechnique.edu (C. Colon).

data show that an ecological system composed of only two inter-
acting species can exhibit non-trivial dynamics, such as  bistability
and oscillations (e.g., Fussmann et al., 2000). The importance of
non-linear mechanisms in leading to such dynamics has motivated
theoretical work on simple models to characterise the dynamical
regimes, identify and circumscribe basins of attraction, and locate
bifurcations or regime shifts. To do so, ecologists have borrowed
mathematical concepts and tools from other disciplines and tried a
variety of modelling techniques, especially using systems of ordi-
nary differential equations (ODEs).

A recent innovation is  the development of  agent-based models
(ABMs), also called individual-based models in the ecological liter-
ature. ABMs simulate systems described by the rules of interaction
among autonomous individuals. According to DeAngelis and Mooij
(2005), some scholars view ABMs as exploratory tools that extend
classical aggregate models, whereas others suggest that ABMs
provide a methodological basis on which to build a novel research
paradigm (Grimm et al., 1999; Grimm and Railsback, 2005). In the
field of population dynamics, ABMs have helped investigate the role
of local interactions (Mccauley et al.,  1993)  and spatial dynamics
(Dieckmann et  al., 2000); they are also being increasingly employed
to study evolutionary dynamics (Łomnicki, 1999; Gras et al., 2009).

http://dx.doi.org/10.1016/j.ecolmodel.2015.09.004

0304-3800/© 2015 Elsevier B.V. All rights reserved.
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Can ABMs help the understanding of community dynamics?
How can their use complement the classic ODE approach? In
climate sciences, it has been proposed to advance knowledge
by moving across a hierarchy of models of  the same class of
phenomena (Schneider and Dickinson, 1974; Ghil, 2001; Dijkstra
and Ghil, 2005). This hierarchy ranges from low-resolution ‘toy’
models, which help understand the general behaviour of  the sys-
tem, all the way to very detailed ‘realistic’ models, which may  be
used for real-time forecasting of weather or climate. Moving up
the hierarchy implies adding mechanisms and improving resolu-
tion, which often comes at the cost of  losing analytical tractability
and insight. Detailed models have to be integrated numerically, and
analysing their outputs may  require complex statistical manipula-
tions. Going back and forth between different levels allows one to
test the robustness of  the conclusions and guide fruitful improve-
ments of the models at each level of the hierarchy.

The hierarchical modelling approach could be insightfully
applied to study the dynamics of  communities and even ecosys-
tems. It would thus appear that classical ODE systems, such as
the Lotka–Voltera equations, are toy models –  in  the hierarchical
modelling terminology (Ghil, 2001)  – whereas the ABM frame-
work is more appropriate for developing detailed models. ABMs
can be seen as more realistic, since agents often correspond to
observable organisms (Bonabeau, 2002).  Contrasting the results
of different models has already allowed ecologists to point out
some mechanisms that a single-model approach may  overlook,
such as the influence of spatial distribution and localised inter-
actions (Donalson and Nisbet, 1999; Durrett and Levin, 1994), of
physiological structure (De Roos and Persson, 2005)  and of het-
erogeneity (Hastings, 1990).  In  particular, Dieckmann et al. (2000)
pointed out instances in which the dynamics of mean-field models
differ from the ABMs they derive from, and proposed new math-
ematical methods to integrate the spatially distributed aspects of
ABMs into ODEs, such as moment methods (Law and Dieckmann,
2000) or pair-wise approximations (van Baalen, 2000).

In this paper, we illustrate the hierarchical modelling approach
by revisiting a classical predator–prey system and comparing the
dynamical behaviour of an ABM with that of an ODE model. The
guiding thread of  this comparison is  to determine whether the
two models’ bifurcation patterns –  which summarise the key fea-
tures of a system’s dynamics –  are qualitatively similar, even
though each model is built upon distinct and complementary prin-
ciples.

The key components of ODE models are the macro-level feed-
back mechanisms. Individuals, as distinct entities, do not play any
role per se. The dynamics results from the relative abundance of
each population, expressed through the principle of  ‘mass-action’.
In ABMs, the system-level dynamics results from the micro-level
actions of autonomous individuals. They follow rules, but their
effective actions depend on local contingencies. In addition, agents
may have only limited information on the system they are embed-
ded in. Grimm and Railsback (2005) argue that reproducing results
of a classical ODE model with ABMs often led to the design of models
that are incomplete, not robust, and therefore lacking in interest.

In this paper, we do  not aim to reproduce the outputs of  an
ODE model with an ABM, neither do we want to perform any
quantitative comparison. Our objective is to establish whether the
behaviour patterns of  the two models are in qualitative agreement,
i.e., whether the solution types –  bistable, oscillatory and irregular
–  are in one-to-one correspondence, including the transitions
between these regimes of behaviour, as  long as the two  models,
while conceptually different, rely on the same key assumptions
about the system under scrutiny. In addition, we are  interested to
find out – provided there is a good correspondence in regime types
and bifurcations between the aggregate ODE model and the ABM
–  whether ideas on early warning that were developed for ODE

models Scheffer et al. (2009) can help formulate such early war-
nings for ABMs.

The qualitative comparison between our ODE model and the
ABM is carried out by computing the corresponding bifurcation
diagrams of the two  models. To do this, we  need to locate the bifur-
cation points in our ABM. The identification of attractors has not
been the main emphasis of ecological ABM studies, which tend to
focus instead on the emergence of spatial patterns (Grimm and
Railsback, 2005; Railsback and Grimm,  2011). Analysing attrac-
tor types and the transitions between them as  significant model
parameters change – i.e., studying the models’ bifurcations – is
quite helpful in understanding regime shifts. These shifts are crucial
ecological phenomena and applying bifurcation-theoretical meth-
ods to ABM studies thus follows the call of  Scholl (2001) to tighten
connections between agent-based modelling and dynamical sys-
tems theory. In particular, we propose and apply a method to detect
the transition between regular oscillations and irregular fluctua-
tions around a steady state.

In Section 2.1,  we present the behaviour of a  classical ODE model
of predator–prey systems: the Rosenzweig–McArthur model with
strong Allee effect on the prey. In Section 2.2, we formulate an
ABM in which the key mechanisms that enter the aggregate model
emerge spontaneously; these mechanisms include the functional
response and the Allee effect. We  then define, in Section 2.4, the
experimental protocol of  the simulations and explain the methods
we use to analyse the resulting ABM model.

In Section 3, we present the results and compare the bifurcation
diagrams obtained for the two  models, while focussing on the Hopf
bifurcation in Section 3.2 and on the heteroclinic one in Section 3.3.
In Section 4,  we  explore early-warning signals for the global tran-
sitions and test them when endogenous processes or exogenous
forcing modify slowly the model parameters. Finally, we discuss
the methodological implications of our work within ABM studies.

2. Models and methodology

2.1.  The aggregate model and its behaviour

We  study the Rosenzweig–McArthur model with strong Allee
effect on the prey. Boukal et  al. (2007) analysed how the ‘route to
collapse’ featured in Rosenzweig–McArthur models is influenced
by the addition of  either a weak or a strong Allee effect, and by
the sigmoidicity of the functional response. The system’s collapse
occurs through a global bifurcation, characterised by an hetero-
clinic orbit (van Voorn et al., 2007). Wang et al. (2011) performed
a rigorous analysis of  the model, and focussed on the existence
and uniqueness of limit cycles after the Hopf bifurcation. González-
Olivares et al. (2006) performed a  similar analysis with an Holling
type III functional response.

Let  X denote the prey population and Y the predator population.
The dynamics is governed by the following two coupled ODEs:

dX

dt
=  rX

(

1 −
X

K

)

(X −  A) − ˛
X

X  +  S
Y, (1a)

dY

dt
= �˛

X

X +  S
Y − dY. (1b)

This model has  seven parameters, whose definitions and values
are listed in Table 1. We  will also use Z(t) = (X(t), Y(t)) to denote the
state of our two-species ecosystem as a function of  time t.

The model’s dynamics can be summarised in a two-dimensional
regime diagram usually plotted in the (d, A)-plane; see, for instance,
González-Olivares et al. (2006), Boukal et al. (2007) and van Voorn
et al. (2007). We  choose � instead of d, which leads to a very simi-
lar diagram, plotted here as Fig. 1. The regime boundaries between
regions (1) and (2) and between regions (2) and (3) were obtained
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Table  1

Summary of the parameters used in the ODE  model.

Parameter Definition Value

r Prey’s maximal growth rate 1

K  Prey’s carrying capacity 1

A  Prey’s Allee effect threshold 0.1

˛  Predator’s attack rate 1

S  Predator’s half saturation constant 0.4

�  Predators’ conversion rate 0 ≤ � ≤ 1

d  Predator’s death rate 0.4
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(3) ext. or
oscillatory coex.

(4) ext.

Fig. 1. Regime diagram of the aggregate model. The dashed line corresponds to the

section along which the bifurcation diagram in Fig. 3 is  calculated. ‘Ext.’ stands for

extinction, ‘coex.’ for  coexistence.

analytically. The location of  the boundary between regions (3)
and (4) was identified numerically, using continuation methods
(Dhooge et al., 2003) to track the growth and collapse of  the limit
cycle.

In region (4) of  the figure, there is  only one attractor, which is
a fixed point, and all orbits converge to the origin. Predators over-
exploit prey, whose density sinks below the Allee effect threshold.
The prey go extinct, followed by the predators.

In the three other regions, the system is  bistable: the state dia-
grams (not shown) exhibit two basins of attraction whose common
boundary is a smooth separatrix, cf. Fig. 2a. In the portion of the
phase plane located above the separatrix – i.e., at more abundant
predator population –  the system behaves as in region (4).

To understand better the dynamics below the separatrix in
Fig. 2a, we calculated the bifurcation diagram shown in Fig. 3  with
respect to the parameter �, at A  = 0.1 (dashed line in Fig. 1).

Four types of  behaviour are observed:

• Prey-only: for � < 0.56, (X = K /= 0, Y = 0) is an attractor. The preda-
tors are not efficient enough and go extinct; the prey, freed from
predation, fill  the carrying capacity; see region (1) of  Fig. 1.

• Steady-state coexistence:  when � exceeds 0.56, the non-trivial
steady state (X = K, Y = 0) changes from being a stable node, or sink,
to being a saddle, and a  new attracting fixed point PS emerges:
the two populations coexist at  steady densities; see region (2) in
the figure.

• Oscillatory coexistence: at � = 0.65, the new, stable fixed point
undergoes a Hopf bifurcation and an attracting limit cycle
emerges. The two populations coexist with periodic densities;
see region (3).

• Extinction: as �  increases further, the period and amplitude of the
oscillations continue to increase until the limit cycle merges with
the separatrix and becomes an  heteroclinic orbit linking the two
saddle points (K, 0) and (A,  0).  This  global bifurcation provokes
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Fig. 2. Phase plane of  the aggregate model with (a) � = 0.61  and (b) �  =  0.6808. The

solid curves correspond to the  invariant manifolds of the  saddle points (A, 0) and (K,

0), indicated by open circles. In panel (a),  the stable manifold of (A, 0) is  a  separatrix

that forms the mutual boundary of two regions. In either one of the two regions, all

the trajectories – illustrated by one dashed curve in either region –  converge to  a

fixed point, namely the origin and PS , respectively; the latter two  are indicated by

a  filled circle each. In panel (b), the unstable manifold of (K, 0) coincides with the

stable  manifold of (A, 0), thus forming a heteroclinic connection between the two

saddles.

the  collapse of  the bistability, and the system reaches region (4);
see Fig. 2b.

To understand the nature of the bifurcation at  � = 0.56, denoted
by ‘BP’ in Fig. 3,  requires a second look at the ODE system (2.1).
In fact, the predator equation (1b) is invariant under a change of
Y into −Y.  While negative populations are not realistic, this mirror
symmetry implies that BP is a  pitchfork bifurcation, with transfer
of stability from the prey-only fixed point (K, 0) to the new stable
fixed point with non-zero predator population, Y /= 0.

2.2. ABM model formulation

The model description follows the Overview, Design concepts,
Details (ODD) protocol of  Grimm et al. (2006, 2010).

2.2.1. Purpose

The purpose of the model is to understand how the dynamics of
a simple predator–prey system varies according to the predator’s
mean conversion rate.
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Fig. 3. Bifurcation diagram Z =  Z(�) of the ODE model with respect to the parameter

�, for A = 0.1; all the other parameters have the values in Table 1. (a)  For the prey

population X = X(�); and (b) for  the predator population Y  =  Y(�). Solid lines rep-

resent stable equilibria, dotted lines unstable equilibria. The prey-only fixed point

(X = K, Y = 0) undergoes a one-sided pitchfork bifurcation, constrained by the posi-

tivity of Y, and is denoted in  the figure by BP,  for branching point; see text for details.

This bifurcation from a  single to two fixed points is followed by a Hopf bifurcation

(Ho), with the dashed lines indicating the extrema of the limit cycles. The vertical

dashed line represents the location of the next, global bifurcation, via the  birth of  a

heteroclinic orbit (He); see Fig. 2(b).

2.2.2. Entities, state variables, and scales

Agents are of  two types: predators and prey. Each agent is
characterised by a specific identity number. The agent-level state
variables are their two spatial coordinates.

Agents evolve on a  two-dimensional, square lattice L2, whose
boundary conditions are periodic, with no apriori limit on the num-
ber of agents that can be located in a cell; see Section 2.3 for the
choice of the lattice parameter values. One time step represents
one week and simulations were run for 1000 weeks, i.e.,  about 19
years.

2.2.3. Process overview and scheduling

At each time step, agents apply a  set of rules, whose out-
comes depend on random variables and on the local environments,
defined as the cell where the agent stands and the eight surround-
ing cells. One time step corresponds to the implementation of eight
modules. First, prey follow the sequence move, reproduce and die.
Then predators act in the following order: move,  hunt, reproduce,
die and migrate.  Within each module, the order between agents is
random and updating is asynchronous.

2.2.4. Design concepts

Emergence.  The model was formulated so that the emergent
behaviour of both population matches the key  assumptions of the

Rosenzweig–MacArthur model with Allee effect on the prey, cf.  Sec-
tion 2.1; namely we expect the prey to exhibit logistic growth and
a strong Allee effect, while the predator should collectively exhibit
a Holling type II functional response.

Sensing.  Each agent can sense the presence of  other agents in
their local environment.

Interactions. Three types of inter-agent interactions are explic-
itly modelled. First, prey interact directly through mating: two prey
located in the same local environment can give birth to an offspring.
Second, prey interact indirectly through density-dependence: mat-
ing cannot occur if the number of prey in the local environment
exceeds a threshold. Third, predators and prey interact through
hunting: predators can hunt the prey located in their local envi-
ronment.

Stochasticity.  Many processes involve stochasticity. First, there
is spatial stochasticity: The movement of each agent is a two-
dimensional random walk on L2.  and each new offspring, prey and
predator alike, is  assigned to a random location. Next, behaviour
is stochastic: Most actions, including breeding, dying, hunting, are
probabilistic; specifically, they are realised if a random variable,
generally drawn from a uniform distribution between 0 and 1,
exceeds a  threshold value.

Observation. The main data analysed are the prey and predator
populations as  a function of time, X(t) and Y(t), respectively.

2.2.5. Initialisation

The model is initialised by setting the initial prey and predator
populations, X(0) and Y(0), and by assigning each agent a ran-
dom location on the lattice L2.  A wide range of  initial populations
Z(0) = (X(0), Y(0)) was tested during preliminary model exploration.
For the simulation experiments reported herein, we  chose the ini-
tial population pair (4000, 500), which leads to the most interesting
dynamics.

2.2.6. Input data

The model does not use input from external models or data files.

2.2.7. Submodels –  prey modules

Move. Prey move to a randomly selected adjacent cell, whether
occupied or not.

Reproduce.  When a prey senses at least one other prey in its
local environment, and if the local density of prey does not exceed
a saturation density S, it has a certain probability b to give birth to
another prey. This rule gives rise, at  the population level, to two
features of the aggregate model: (i)  At  high density, reproduction
is limited by  S, which leads to a density-dependent growth rate
and (ii) below a  certain density, low mating probabilities lead to
extinction. The latter phenomenon corresponds to the Allee effect,
cf. Fig. 15 in Appendix A. Offspring are assigned to a  random cell;
doing so avoids prey immediately mating with their offspring.

Die.  Each prey dies with probability v.

2.2.8. Submodels –  predator modules

Move. Predators move to a randomly selected adjacent cell,
whether occupied or not.

Hunt. When a predator senses prey in its local environment, it
has a certain chance s to catch and kill them, but it  cannot, in  any
event, kill more than N prey at a time. This limited handling capacity
gives rise, at the population level, to a functional response of  type
II,  cf. Fig. 17 in Appendix A.

Reproduce. After a successful hunt, a  predator has a  probability
� to breed a number of  offspring equal to the number of  prey it
killed. Like the prey, offspring are randomly located on the lattice.
Predators who  did not catch any prey cannot breed.

Die. Each predator dies with probability w.
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Table  2

Summary of the parameters used in the ABM model.

Parameter Definition Value

L Number of cells  along an  edge of  the square

lattice

100

b  Prey’s probability to breed when meeting

another prey

1

S  Prey’s local saturation density 5

v Prey’s probability to die 0.05

s  Predator’s probability to succeed in hunting 0.1

N  Predator’s handling saturation 3

� Predator’s mean conversion rate 0.21 ≤ � ≤ 0.7

w Predator’s probability to die 0.1

Migrate.  If all predators disappear but prey survive, a preda-
tor is added to the lattice; this model feature avoids premature
disappearance of  predators due to purely stochastic phenomena.

2.3. Choice of  parameter values

The ABM has eight parameters, one more than the ODE model;
these eight parameters are defined, and their values given, in
Table 2. The objective choosing a set of parameters for the ABM
is to approximate macro-level parameters of  the aggregate model
with corresponding ratios that emerge from the ABM simulations.

We  first focus on the Allee effect. In the ODE model, it is charac-
terised by its intensity, measured by the ratio A/K = 0.1. In the ABM,
for L = 100, b = 1, S  = 5,  v =  0.05 and Z(0) = (4000, 500), the average
prey population in the absence of  predators is denoted by K̂ and
it equals 6080. This K̂  is the emergent carrying capacity, which
mirrors the explicitly-defined parameter K in the ODEs.

By carrying out a series of  simulations, we also observe that,
when the prey population sinks below 520, it is more likely to go
extinct than to recover, cf. Fig. 15 in Appendix A. Additional experi-
ments based on feedback control confirm that this value, denoted Â,
is  the emergent quantity that corresponds to the Allee effect thresh-
old A; see Appendix A for details. We  obtain therewith Â/K̂ = 0.086,
which is close to A/K  = 0.1 from Table 1.

The functional response, in turn, is characterised in the ODE
model by a logistic curve with a half-saturation constant S = 0.4.
In the ABM, for s = 0.1, M = 3  and w =  0.1, we observe that the aver-
age number of prey killed per predator plateaus at 0.3 when prey
are abundant, i.e., X ≥  9000. When X  = 2750, the average kill  rate is
0.15 = 0.30/2, which equals the emerging half-saturation constant
Ŝ, cf. Fig. 17 in Appendix A. We  obtain Ŝ/K̂ = 0.45, which is close to
S/K = 0.4.

2.4. Numerical experiments and analysis methods

We  choose the predator’s mean conversion rate � as the bifur-
cation parameter. For each value of � between 0.21 and 0.70, in
steps of 0.01, we run the model 100 times and monitor the prey
population X(t) and predator population Y(t). Each run differs by
the realisation of  its random choices in agent actions and lasts for
Tf = 1000 time steps, i.e., 1000 weeks ≃19 years. We  obtain a set

of 50 × 100 = 5000 time series X(�)
i

(t)  and Y (�)
i

(t), with � = 0.21, 0.22,
. . .,  0.70; i = 1, 2, . .  ., 100; and t  = 1, 2, .  . .,  1000 . To characterise
the dynamics and identify threshold values, we carried out a series
of statistical analyses on this output. To deal only with statistically
stationary data, we dropped the first 400 points of  each time series,
so our data set has 5000 × 600 = 3000 000 points.

First, for each value of  �, we compute the probability distri-
butions of the corresponding run X(�) and Y(�), and derive the
proportion of runs in which prey go extinct (extinction), predators
go extinct (prey-only), or both populations coexist (coexistence).
Second, the time series in which the two species coexist were
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Fig. 4. Time series of the prey population X(�)(t) and the  predator population Y(�)(t),

shown as the upper and lower curves, respectively. Five  simulations with � = 0.41

and  (b) five simulations with �  =  0.57. In each panel, one of  the simulations is shown

as  the heavy solid curve, the other four as  light solid. The fluctuations in panel (a)

are more irregular and have smaller amplitudes than those in  panel (b). The use

of  statistical and spectral methods helps locate the transition between these two

regime  types.

analysed using spectral methods. A few examples of  such time
series are displayed in Fig. 4.

The ABM model was  implemented using NetLogo (Wilenski,
1999). The statistical analyses were performed with the R package
(R Core Team, 2012).

It is clear from this figure that the behaviour differs widely as  a
function of parameter value, with � = 0.41 in panel (a) and � = 0.57 in
panel (b). But, because of the stochastic processes that enter agent
behaviour, it is difficult to identify the structure of the underly-
ing attractor: Are the irregular fluctuations of the simulated time
series mere random noise around a  fixed point, or do they exhibit
oscillatory behaviour, which would point to a more complex attrac-
tor? How can we locate the transition between the two  seemingly
distinct regimes in Fig. 4a  and b?

For each value of �, we  analyse the time series in which the two
species coexist using singular spectrum analysis (SSA) (Vautard and
Ghil, 1989; Vautard et al.,  1992; Ghil et al., 2002)  and Monte-Carlo
SSA (MC-SSA) (Allen and Smith, 1989; Ghil et al., 2002). These meth-
ods have been widely used in climate dynamics and other areas,
including population dynamics (Loeuille and Ghil, 1994). They are
presented succintly here and more thoroughly in Appendix B.

SSA decomposes a time series into elementary components that
can be classified into trends, oscillatory patterns and noise. Each
component is associated with an  eigenvector and an eigenvalue
of the time series’s lag-covariance matrix. An oscillation, whether
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harmonic or anharmonic, is captured by a pair of  nearly equal
eigenvalues, whose associated eigenvectors have the same dom-
inant frequency and are in phase quadrature. Typically, oscillatory
behaviour can be traced back to deterministic processes that con-
tribute to generate the time series under study (Ghil et al., 2002).

MC-SSA tests the SSA results against a null hypothesis that is
modelled by a simpler, purely stochastic process which could have
generated it, typically white or red noise. Empirical analyses have
shown that ecological time series, and in particular population time
series, tend to have a ‘red-shifted’ spectrum (Pimm and Redfearn,
1988).  Consequently, we have chosen to test the time series against
the more stringent null hypothesis of red noise.

We  are interested in detecting statistically significant oscillatory
patterns and apply MC-SSA to identify pairs of  eigenvalues at the
5% confidence level or better, as  explained in Appendix B. Pairs that
survive this test will be called significant pairs of eigenvalues (SPEs)
and are indicative of  oscillations produced by limit cycles, and not
by purely stochastic effects.

2.5. Choice of time horizon

Our objective is to identify our predator–prey system’s dynam-
ical structure, namely the basins of attractions and bifurcation
points. In this perspective, how satisfactory is  our choice of Tf = 1000
weeks? To appraise the ecological significance of this time horizon,
we evaluate the generation times of the two species, defined as  the
inverse of the respective death rate. We  denote these quantities by
TC for the predator and by TR for the prey. Since the predator death
rate is w = 0.1 TC = 10 weeks.

The death rate of the prey is the sum of  the natural death rate
v = 0.05 and a predation rate, while the latter is the product of the
average number of prey killed per predator and of  the predator
abundance; this relationship is represented in Fig. 17 of  Appendix
A. Since the predator population typically ranges between 0 and
1500, as seen in Section 3  below, TR varies between 8  and 20 weeks.
The interval of 1000 weeks used in our study seems, therefore, long
enough to capture ecologically significant dynamics, and it suffices
in order to avoid the transients due to a choice of  initial state alone.

Is this time horizon of  1000 weeks also sufficient in  order to
account for long-term behaviour? Due to the model’s stochastic
ingredients, and given long enough simulation intervals, it is quite
possible that particular sequences of  events that are  a priori very
unlikely will occur and lead trajectories to change basins of attrac-
tion. Since there is no external input of prey, extinction is the only
absolutely inescapable regime, into which all trajectories will even-
tually fall. Focusing on genuinely asymptotic behaviour only would
therefore prevent us from identifying the basins of attraction and
bifurcation points that, according to the ODE model, do seem to
play an important role. The ecologically significant dynamics might
thus lie in what can be considered, from an asymptotic stand-
point, as merely very long transients (Hastings, 2004).  We  carried
out additional experiments with Tf = 10 000 weeks ≈200 years and
Tf = 100 000 weeks ≈2000 years to assess the robust persistence
of each attractor basin identified, along with evaluating associated
probabilities.

3. ABM model results

3.1. Dominant regime and fixed points

As in the ODE model, if the initial predator population is large
compared to the initial prey population, the prey will go extinct
first, followed by the predators. For smaller initial predator popula-
tions, several regimes can occur: extinction, prey-only or coexistence,
as shown in Fig. 5. As the parameter � – which measures the
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Fig. 5. Proportion of  ABM runs reaching one of three possible regimes – prey-only

(dashed line), coexistence (solid line) or extinction (dotted line) –  as the  parameter

�  varies, 0.21 ≤  � ≤ 0.70.

reproduction efficiency of the predator – increases, two  transi-
tions are detected: the first one between 0.35 and 0.36, where the
dominant regime switches from prey-only to coexistence, and the
second one between 0.60 and 0.61, where it changes from coexis-
tence to extinction.

During this second transition, we observe a small peak in the
number of occurrences of  the prey-only regime. In these simula-
tions, the combination of stochastic events with moderate � values
leads to the following scenario: the predators deplete the prey pop-
ulation down to a  level close to Â, which is insufficient for predator
survival, while the prey population –  being freed from predation
and with the help of  positive stochastic events – is able to persist.
For higher � values, predators deplete the prey population more
rapidly, so that it  falls well below Â and thus induces extinction of
both populations.

In Fig. 6  we  plot,  for each �-value, the distribution of  the popu-

lations {X(�)
i

(t)} and {Y (�)
i

(t)} over the realisations i  = 1,  .  .  ., 100,
and over the 600-week–long time interval 401 ≤ t  ≤  1000. Dur-

ing the first transition, at � ≃  0.36, the average populations Z̄
(�)

=

(X̄(�), Ȳ (�)) change rather smoothly, whereas the second transition,
at  � ≃ 0.61, is marked by a sudden drop in both population aver-
ages. Before the collapse, the range of their values increases rather
strikingly.

In the prey-only steady state, the prey population fluctuates
around K̂ = 6080, i.e., around a value that is almost 12  times the
Allee effect threshold. At this level, only a series of extremely high
death rates –  combined with very unlikely spatial distributions that
severely limit reproduction –  could lead the prey towards extinc-
tion. The probability of having more than 500 prey dying at once,
i.e., still a  fairly small number that only corresponds to one-eleventh
of the road to extinction is less than 10−30.  This basin of attraction is
so deep that, even on geological time scales, the prey-only regime
can be considered as stable.

The coexistence regime requires a  more thorough examination.
The presence of predators creates new opportunities for adverse
stochastic events; still, their probabilities remain extremely low for
moderate �-values. For � = 0.57, additional, 2000-year-long simu-
lations still show that less than 2% of  the runs lead to extinction.
As we approach the transition at  � ≃  0.61, the depth of the basin of
attraction decreases and coexistence is less and less likely to per-
sist. Had we initially set the duration of the simulations to 2000
years, rather than 200 years, as  in Fig. 6, the transition value of �
would be 0.59 instead of 0.61. This difference is still quite moderate
with respect to the size of the basins of attraction, in terms of the
parameter �, as shown in Fig. 5. The robustness of our results upon
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the  prey population {X(�)
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�-value.  The × symbols indicate the average values X̄(�) and Ȳ (�) , respectively, of

the distributions of 100 × 600 =  60 000 points at each �, while the bars indicate the

interval between the 5th and 95th percentiles of this distribution.

using longer simulations thus validates our more computationally
convenient time horizon of  1000 weeks ≃200 years.

By examining, in the two panels of  Fig. 7, the probability den-
sity function (PDF) of  the 100 runs × 600 points in time of the
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Fig. 7. Estimation of the  two-dimensional probability density function (PDF),

obtained from 100 runs with 600 points each. (a) � = 0.41; and (b) � = 0.57. The darker

the  area, the higher the density; see grey bar for  shading values.

Table 3

Location of the Hopf bifurcation.

M �-Interval (MCSSA

on prey)

�-Interval (MCSSA

on predator)

80 [0.49, 0.50] [0.49, 0.50]

100  [0.49, 0.50] [0.49, 0.50]

120  [0.48, 0.49] [0.48, 0.49]

140  [0.47, 0.48] [0.48, 0.49]

160  [0.46, 0.47] [0.46, 0.47]

180  [0.46, 0.47] [0.46, 0.47]

200  [0.46, 0.47] [0.46, 0.47]

two simulations at � = 0.41 vs. � = 0.57, we can distinguish two
distinct coexistence regimes. The first regime, in panel (a), is  charac-
terised by a  well-defined density peak, with lower-density regions
falling along a negatively slopped line in  the (X, Y) phase plane.
This regime corresponds to a fixed point, located at  the peak of the
PDF, and the negative correlation between prey and predator, away
from the peak, reflects the predominance of a top-down regulation
(McQueen et al., 1989; Pimm,  1991). The observed negative slope in
Fig. 7a is also consistent with the ODE model: near the stable fixed
point PS associated with the coexistence regime, the flow into PS is
tangent to a  unique characteristic direction, which has  a negative
slope; the direction is given by the tangent at PS to the heteroclinic
orbit form the saddle (K, 0); see Fig. 2a.

The second regime, in Fig. 7b, displays no dominant peaks; here,
the prey and predator populations are  not distributed along a line,
but fill a larger area. As we  shall see in the next subsection, this
regime corresponds to a stochastically perturbed limit cycle.

3.2. Hopf bifurcation and limit cycle

To locate the transition between the two coexistence regimes,
we apply MC-SSA to the simulated time series with 0.35 ≤ � ≤ 0.61,
using a set of  lag-window lengths M between 80 and 200 weeks,
in increments of 20; see Table 3. The transition occurs when MC-
SSA identifies at  least one SPE in more than 50% of the runs. For all
values of M in the table, the numerical results locate the transition
in the interval 0.46 ≤ � ≤ 0.50. MC-SSA analyses with M ≤ 60 weeks
(not shown) rarely reject the null hypothesis of  red noise, because
the period of the actual oscillations is larger than M;  see Table 4.  The
transition to a statistically significant SPE is illustrated in Fig. 8  by
the statistics of the MC-SSA analyses applied to the predator time
series with M = 120 weeks.

Results based on prey time series and on predator time  series
are consistent. In most simulations, only one SPE is detected. The
application of MC-SSA thus identifies the emergence of  a limit cycle
for � in the transition interval [0.46, 0.50]. This transition is  equiv-
alent to a Hopf bifurcation. The oscillatory coexistence regime lasts
from � = 0.50 until the transition to the extinction regime, which
occurs at � ≃ 0.60.

Throughout the oscillatory coexistence regime, the average fre-
quency of the limit cycle is  f = 0.012 cycle/week, i.e.,  a period

Table 4

Average periods P in  weeks and frequencies f = 1/P in cycles/week that are associated

with  the main SPEs detected via MC-SSA. The entries in the table are computed for

�-values at which SPEs are detected for more than 50% of the runs.

M P [weeks] (f =  1/P)

(SSA on prey)

P [weeks] (f  = 1/P)

(SSA on predator)

80 86.2  (0.0116) 80.6 (0.0124)

100  87.7  (0.0114) 84.7  (0.0118)

120  89.3  (0.0112) 80.6 (0.0124)

140  90.1  (0.0111) 76.9  (0.0130)

160  88.5  (0.0113) 80.0 (0.0125)

180  90.1  (0.0111) 78.1  (0.0128)

200  89.3  (0.0112) 78.7  (0.0127)

Chapter 4

99



100 C. Colon et al. / Ecological Modelling 317 (2015) 93–106

0.35 0.40 0.45 0.50 0.55 0.60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

κ

p
ro

p
o

ri
o

n
 o

f 
ru

n
s

Fig. 8. Proportion of runs for which MC-SSA applied to the  predator time series

yields  at least one SPE; M = 120 weeks. We locate the transition �* at  the point

at  which the curve crosses the 50% threshold, represented as a  dotted line; here

0.48 ≤ �* ≤ 0.49.
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Fig. 9. Average frequencies, expressed in cycle per week, associated with the main

SPEs  detected by MC-SSA on the predator time series for the same M  = 120 weeks as

in  Fig. 8.  Same symbols for average and spread as in  Fig. 6.  The average frequencies

before the transition, i.e., for  �  ≃  0.48, are on the average five times higher than those

after the transition, 0.49 ≤ �, namely 0.063 weeks−1 and 0.012 weeks−1 , respectively.

of about 83 weeks, cf. Table 4. The choice of  M barely impacts
the identification of  the periods, and the results using prey and
predator time series are in satisfactory agreement. We  do observe
a slight bias towards longer periods for the prey, though.

For instance, for M = 120 weeks, in 89% of the runs in which SPEs
are detected in both time  series, the period associated with the prey
is identical to the one associated with the predator. But in 86% of
the runs in which the periods are not equal – and especially when
� is close to the transition interval [0.46, 0.50], the prey time series
displays a larger period. This difference disappears as � increases,
i.e., as the amplitude of  the oscillations increases. While this phe-
nomenon has not specifically been addressed here, a  method to
investigate it in further work is proposed in Section 4.1.

In the steady-state regime, the generation times of  the predators
and the prey, denoted by TC and TR,  were 10 weeks and 8–20 weeks,
respectively. In the oscillatory coexistence regime, the period of the
oscillations varies between 70 and 94  weeks. This periodicity is con-
sistent with the finding of  Murdoch et al. (2002), who established
that most consumer-resources cycles exceed 4TC +  2TR.

The transition from steady-state to oscillatory coexistence also
becomes apparent when looking at the frequencies of  the SPEs. We
notice in Fig. 9 that the average frequencies of  the few SPEs detected
before the transition are several times higher than the average fre-
quencies of the SPEs detected after the transition. This transition
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Fig. 10. An ABM simulation that illustrates the model’s global bifurcation from a

stable  limit cycle to a single fixed point, via a heteroclinic orbit; in  this particular

simulation, �  = 0.61, X(0)  = 6080 and Y(0) = 0. Along this  single trajectory, the colour

changes from blue to black to red, in  order to highlight the two  transient, nearly

closed loops, blue and black, before the red segment that terminates in the origin.

The  larger, black loop is very similar to the heteroclinic curve of the ODE model in

Fig.  2b.

from high to low frequencies is also associated with a  marked
drop in variance. The box-and-whisker diagram (not shown) of
the frequencies plotted in Fig. 9  shows that the distributions are
markedly asymmetric around the transition, for 0.45 ≤  � ≤ 0.52,
with the mean lying outside the interquartile range.

The simultaneous jump in period and drop in spread reveals a
regime shift between noisy fluctuations around a fixed point –  in
which rapid and irregular oscillations are detected in a minority of
runs, with periodicities between 2  and 20 weeks – and a regular
pattern of oscillations with longer periods and larger amplitudes
that occur in most runs, with periodicities of 70–94 weeks.

3.3.  Heteroclinic bifurcation

In the ABM, we observe a global bifurcation pattern that does
resemble the one found in the aggregate model, cf.  Section 2.1,
and illustrated in particular in Figs. 2b and 3: as the limit cycles
grow larger, prey have a higher chance to fall below the Allee
effect threshold and go  extinct, as shown here in  Fig. 10. Addi-
tional experiments indicate that the actual transition takes place
for 0.607 ≤ � ≤  0.608; above this �-value, extinction occurs in more
than half of the runs.

This numerically inferred heteroclinic bifurcation shows two
further features: a marked increase of  the limit cycle’s amplitude
(Fig. 6), and period (Fig. 11). These features are  present in the ODE
model as well – as  � is increased, the limit cycle that arises from
the Hopf bifurcation expands in size and moves closer to the sep-
aratrix. The associated increase in  amplitude is clearly apparent in
Fig. 3  for both prey and predator, in panels (a)  and (b), respectively.

Another consequence is that the trajectories get closer to the
two saddle points, (A, 0) and (K, 0). They  approach each one of  them
along its stable manifold, and move away along the corresponding
unstable manifold. In the vicinity of these two saddles, the rate
of change becomes exponentially small. Thus, as � tends towards
the bifurcation point, the system increasingly slows down in the
vicinity of the two  saddles, and so the period tends towards infinity;
see Fig. 12.

In  the ABM, the average periodicity associated with the SPEs
is nearly constant throughout most of the oscillatory coexistence
domain. When � exceeds 0.58 and approaches the transition point,
the periods get longer and longer; see Fig. 11. After the transition,
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Fig. 11. Box-and-whisker diagram of the  frequencies, expressed in cycles per week,

associated with the main SPEs detected by MC-SSA on the predator time series for

M =  120 weeks. The bottom and top of the boxes are the first and third quartiles,

the heavy horizontal lines inside  the boxes are the medians, and the  ends of the

whiskers are the extrema. The width of  a  box is proportional to the square root of

the number of observations. There is  a marked decrease in  the frequencies of the

SPEs  for � ≥ 0.58. The results for the prey time series exhibit a  similar pattern (not

shown).

in the few runs where extinction does not occur, the periods keep
on increasing, but at  a slower pace.

The occurrence of a slowing down in the ABM is consistent with
the ODE model. As predators become more efficient, they push the
prey towards the Allee effect threshold; see Fig. 13. The fewer prey
survive, the slower they  find partners and repopulate the lattice.
More acute depletions of  prey lead to larger depletions of predators,
whose recovery is  delayed. This  delay allows prey to get closer to
the carrying capacity, before predators recover. This cycle repeats
until prey fail to recover and go  extinct.

The period in the ABM, though, increases less than that in the
ODE model. Because of the discreteness of  the state variables and
the resulting demographic stochasticity, trajectories do not stay on
the limit cycle along which the asymptotic slowing down occurs.
They either move back into the hinterland of  the coexistence region,
where the dynamics is faster, or cross the boundary and fall into
extinction. Hence, due to the noise in the ABM, the increase in
periodicity remains moderate.

The implications of  this slowing-down phenomenon for a poten-
tial early warning ahead of  the heteroclinic bifurcation will be
discussed in Section 4.2.
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Fig. 12. Period of the  limit cycle of the ODE model, in  log scale, as a  function of �.

0.56 0.57 0.58 0.59 0.60 0.61 0.62

0
5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

κ

a
ve

ra
g

e
 m

in
im

u
m

 v
a

lu
e

 o
f 

X

●

●

●
●●

●

●

●

Fig. 13. Box-and-whisker diagram of the average minimum prey abundance during

oscillations, as a function of �. Same conventions as in  Fig.  11. The horizontal dashed

line shows the Allee effect threshold Â.

4. Concluding remarks

4.1. Summary and discussion

Even simple ecological systems can exhibit complex dynamics.
In this paper, we have shown that an approach based on a  hierar-
chy of models can be highly effective in exploring such a complex
system. At  one end of the modelling spectrum, ABMs are  arguably
best adapted for ‘realistic’ modelling, inasmuch as  many observed
features of the individuals that are an  ecosystem’s building blocks
can be plugged in directly. We  argue that ABMs should, as  much
as possible, be developed in conjunction with simpler ‘toy’ models.
Doing so facilitates the analysis, allows one to compare results, and
finally to draw robust conclusions. This back-and-forth between
different models is also well illustrated by Siekmann (2015) in the
case of the dynamics of a two-strain infection process.

In this paper, we focused on a simple predator–prey system,
using a deterministic ODE model and a stochastic ABM. Running
ABM simulations and analysing their output were computationally
intensive and time-consuming tasks. For instance, the application
of MC-SSA required the generation and analysis of 200 surrogate
data – 100 for the prey time series, and 100 for the predator time
series –  for each one of the 100 simulations run per � value. Given
the 50  � values used, this yields 200 × 100 × 50 = 106 runs.

Nevertheless, the analysis could be conducted efficiently
because it was guided by the existence of a much simpler and,
in part, analytically tractable ODE model. The process was quite
straightforward in this case, since the ABM model was built a priori
to share certain features of the aggregate model. Still, the striking
success of the guidance provided by the simpler model suggests
that this approach might be of great interest across a richer hierar-
chy of  models.

An interesting addition would be a model of  intermediate com-
plexity based on stochastic differential equations (SDEs), which
combine some of the stochastic features of ABMs with the simple
deterministic ones of ODE models. Bifurcations of nonlinear SDEs
have been studied by Kuehn (2011),  and their usefulness in the
climate modelling hierarchy has been demonstrated by Ghil et al.
(2008) and Chekroun and Ghil (2011),  among others. In particular,
SDEs could be used to explore the possible stochastic origin of the
bias towards larger periodicities of the prey time series observed
in Tab. 4. An explanation might be that stochastic perturbations
occasionally block the oscillations of  the prey population, leading
to larger average periods. To investigate this hypothesis, one could
perturb the deterministic aggregate model by adding multiplicative
noise –  first to one ODE at a time, then to both.
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The guidance provided by the ODE model helped us decide on
which parameter to control and which bifurcations to expect. But to
actually perform the analysis, we needed to carefully design sim-
ulation experiments and develop or adapt appropriate statistical
methodology. Simple tests were used to detect transitions between
the main regimes. For more challenging tasks, such as the detection
of the Hopf bifurcation, we tapped into well-established methods of
time series analysis. The advanced spectral methods of SSA and its
derivatives were used to distinguish large-amplitude, regular and
stable oscillations from small-amplitude, irregular fluctuations. A
statistical test based on a Monte Carlo algorithm was used to iden-
tify oscillatory patterns that significantly differ, at the 5% level, from
a red noise process.

Whether applied to the predator or to the prey time series, the
analysis indicates a similar location of the Hopf bifurcation, which
in addition was robust to changes of the window-width. The tran-
sition region from steady states to oscillatory behaviour was also
marked by a sharp decrease in  the mean and variance of the oscil-
lations’ frequencies; this decrease provides further evidence for a
transition from a regime of small, rapid and erratic fluctuations
to  a regime of ample, regular and stable oscillations. MC-SSA thus
appears to be well-suited for the detection and analysis of oscilla-
tory dynamics in ABM-simulated time series.

Further methods of time series analysis could be integrated into
the toolbox of ABM users. For instance, Kolmogorov entropy or
Lyapunov exponents could provide further insights into whether
a  deterministically chaotic process has participated in generating a
given time series (Kantz, 1994; Schouten et al., 1994).  The appli-
cation of such observables to experimental time series is often
hampered by the limited length and accuracy of such series; this
impediment does not exist for ABM-generated output.

Time series analysis alone does, however, not take  advantage
of the modeller’s ability to freely design simulation experi-
ments. The application of  control-based methods –  such as the
one used to locate the Allee effect threshold, cf. Appendix A  –
seems to be a promising approach for the dynamical analysis
of ABMs. Besides, Kevrekidis and colleagues have developed an
‘equation-free’ approach, in  which macroscopic variables and their
derivatives are obtained from microscopically defined models –
such as ABMs – through the systematic implementation of a  set of
appropriately initialised simulations (Kevrekidis et al., 2004). This
coarse-graining process enables one to use numerical bifurcation
methods and it was applied to ABMs describing an epidemiological
network (Reppas et al., 2010)  and a  financial market (Siettos et  al.,
2012).

Our approach to bifurcation in ABMs conceptually differs from
the classic mathematical framework for bifurcation analysis in
ODEs. In the latter, bifurcations are precisely defined using the
same type of mathematical objects as those used to build the model.
For instance, Hopf bifurcations can be precisely detected through
the application of the Poincaré–Andronov–Hopf theorem. When
needed, numerical methods are employed to compute the local
structure of  the Jacobian matrix and identify a bifurcation. Bifur-
cations are, in other words, endogenous to the model.

In this paper we used MC-SSA and defined the Hopf bifurcation
as the point at which, in a majority of simulations, we  observed
the emergence of oscillations that are different from a red noise, at
a  preset significance level. In this approach, the analytical method
used is as important as the ABM formulation for the analysis of the
bifurcations.

4.2. Early warnings of a global bifurcation

Studying a hierarchy of  models is also instructive in testing
results on critical transitions and their ex-ante detection through
‘early-warning signals’. The heteroclinic bifurcation present in both

of our models belongs to the class of global bifurcations, which are
structurally unstable and hence harder to detect numerically (Hale
and Koç ak, 1991). Moreover, Scheffer et al. (2009) and Boettiger
et al. (2013) noted, in fact, that the early-warning signals of  such
bifurcations have been studied relatively little: most early-warning
signals proposed in the literature –  namely slowing down of trajec-
tories, as  well as increased variance, autocorrelation and skewness
–  derive from the properties of the saddle-node bifurcation, which
belongs to the class of local bifurcations (Hale and Koç ak, 1991).

In Section 3.3  we have seen that, in both models, some key
features of  the limit cycles change as the system approaches the
heteroclinc bifurcation. The limit cycles get closer to the boundary
of the basin of attraction, their amplitudes increase, and the oscil-
lations slow down as a  result of approaching the infinite period of
the exact heteroclinic orbit.

This type of period increase differs from the phenomenon
known as  critical slowing down (CSR) (Wissel, 1984; Nes and
Scheffer, 2007). The latter refers to the increase of return time after
perturbations near a threshold, due to the real part of the dominant
eigenvalue of a fixed point approaching zero. CSR has been theo-
retically demonstrated, and empirically tested, for a range of local
bifurcations, especially for saddle-node bifurcations (Boettiger
et al., 2013), and it  is interpreted as a loss of resilience in the vicinity
of a tipping point (Nes and Scheffer, 2007; Dai et al., 2012).

In the ODE model, after the Hopf bifurcation, the unstable fixed
point of region (4) of Fig. 1  becomes more repellent as � increases,
and the geometry of the flow near it changes. As  a consequence,
trajectories become gradually more affected by the specific dynam-
ics that occurs in the vicinity of the two  saddle points, (A,  0) and
(K, 0). The slowing down does not originate from the real part
of any eigenvalue vanishing; instead, it is due to a geometrical
change of the basin of attraction. Another difference with respect
to CSR is that this phenomenon is not observed through exogenous
perturbations, but affects the endogenous dynamics of the sys-
tem, i.e., the limit cycle. Even so, a broad-brush interpretation that
is similar to CSR could be proposed, namely, as the parameter
� – which is the conversion rate of the predator –  increases,
each population, which is periodically perturbed by the other one,
recovers more and more slowly, i.e., it is less resilient.

The system as a whole is also less resilient, as it lies closer to
the boundary of the basin of attraction, i.e., it is more ‘precarious’,
in the sense of Walker et al. (2004). This aspect is more adequately
captured by the amplitude of the limit cycles, to be compared with
some known boundaries of the basin, such as the Allee effect thresh-
old.

The slowing down near  the two  saddle points is also expected
to induce an  asymmetry in the distribution of the population
abundance. This asymmetry can be captured by computing the
skewness of the probability distribution in the time series. Guttal
and Jayaprakash (2008) have proposed skewness 
  as  a potential
early-warning signal for local bifurcation: 
 is simply a distribu-
tion’s third standardised moment, and it measures its  degree of
asymmetry. Given a  random variable Z, with mean �  and standard
deviation �, skewness 
  is defined as


 = E
[(

Z  − �

�

)]

. (2)

Results presented in  Fig. 14 show that, in the ODE model, the
asymmetry of both trajectories markedly increases as � approaches
the bifurcation value 0.6801. The system slows down in regions
with few predators, and accelerates when predators are abundant,
so that the oscillations of  the predator population are unbalanced
towards low values. We  can show analytically that, due to the
strong Allee effect, prey recovery near (A, 0)  is  much quicker than
predator recovery near (K, 0).  As a consequence, the slowing down
near (K, 0) is more marked than the slowing down near (A, 0), and
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Fig. 14. Skewness 
 of the  predator and prey time series (a) in the ODE model as a

function of �  and (b) in the ABM model as a function of �. In panel (b), the vertical

bar  represents the interquartile range.

the prey distribution tends to be unbalanced towards high values.
While Guttal and Jayaprakash (2008) applied skewness to study
perturbed trajectories around a fixed point in the vicinity of a  local
bifurcation, we see in Fig. 14a that this measure can also be used
for oscillatory regimes approaching a  global bifurcation, but for
different dynamical reasons.

Skewness results for the ABM differ widely from the ODE ones;
see Fig. 14b. Before the transition, which occurs for � ≃  0.60, the
skewness of predator time series moderately increases in average,
but we do not observe a decrease for the prey time series. Moreover,
the signs of the skewness seem surprising with regards to the ODE
results. This points out at one major difference between the two
models. In the ABM, the mating requirements for prey, which is not
modelled in the ODE, significantly slows down the systems in the
(Â, 0) region. In the ODE, the situation is opposite: because of the
strong Allee effect, the growth rate of  the prey in the (A, 0) region is
higher than in the other regions. The two models therefore exhibits
opposite results.

The preceding discussion stresses an interesting slowing down
phenomenon, which is different from CSR but, like it, also has con-
siderable potential as an  early warning signal. Skewness, however,
seems to be more ambiguous as a signal, since its  behaviour dif-
fers between the aggregate model and the ABM. This discrepancy
allowed us to identify rather subtle differences in the formulation
of the two models. By using a hierarchy of models, we are, there-
with, able to precisely understand the role of each mechanism in
the overall dynamics.

4.3. Exogenous and endogenous changes of  parameter values

In the ABM, the analyses were carried out for fixed �-values that
are kept constant over the duration of a run. This type of  analysis
can remain valid for rates of change of � that are slow compared to
the characteristic times of the system’s endogenous dynamics, i.e.,
in the ‘adiabatic limit’. We  sketch now two possible applications in
which � varies with time.

The simplest application is to add an exogenous rate of change
c  = const . for �(t). This scenario could help one study the effect
of external forcing that varies smoothly on an ecosystem or a
community of species. Rising temperatures have a  direct effect
on the metabolism, physiology and phenology of organisms; see
for instance Bale et al. (2002) for insect herbivores. Exogenously
increasing � can model, for instance, a situation in which rising tem-
peratures tend to increase the predators’ reproductive efficiency.
We performed additional simulations with �(0) = 0.55 and various
c-values.

When c ≤ 10−5�-unit/week, the results obtained in Sections 3
and 4.2  still apply. Both populations go  extinct for � ≃  0.60, and this
extinction is  preceded by a marked increase in the amplitudes and
periods of the oscillations. For higher rates of change, extinction
occurs more rapidly and fewer oscillations are  observed, but it tends
to occur for a higher �-value. For  instance, with 10−5 < c ≤  10−4�-
unit/week, the prey population crosses the Allee effect threshold
after 17  years, on average, and about 10 oscillations are observed.
While this number of  oscillations suffices in  order to observe their
increase in  amplitude, the increase in period cannot be robustly
established.

Another application is to introduce a  process which internally
modifies �. We  use an evolutionary framework, and set � as the
evolving trait. Instead of being exogenous and common to all
predators, we turn this parameter into an  endogenous agent-level
variable, that predators hand down to their offspring. The trans-
mission process occurs with an additive white noise, characterised
by its  standard deviation �. The starting �-value is  set to 0.55 for
all predators, and the initial prey and predator abundances are set
to (2500, 1400), respectively, in  the vicinity of the limit cycle.

In this formulation, the average �-value of the predator pop-
ulation increases. Predators with higher reproduction efficiency
always tend to invade, driving the system to extinction, a situa-
tion referred to as evolutionary suicide (Gyllenberg et al., 2002;
Ferrière, 2009). With � = 10−3, and using 100 repetitions, extinc-
tion is reached on average after 85 years, and the final average
�-value is 0.61, as in Fig. 6. Here the average � varies linearly in
time, although some runs exhibit phases of acceleration and decel-
eration. The amplitude and period of the oscillations increase, as
expected. Note that in some runs, prey succeed to survive and
repopulate the lattice, which corresponds to the small peak identi-
fied in Fig. 5.

4.4. Conclusions

We have built an ABM that reproduces the key mechanisms
of the Rosenzweig–McArthur model with strong Allee effect on
the prey; the mechanisms of interest are the density-dependent
growth rate of the prey and the Allee effect on it, as well as the
Holling type II function response of  the predator. The bifurcation
analysis of the classic ODE model shows that the system can exhibit
bistability between extinction and either a prey-alone or a coexis-
tence regime. A  Hopf  bifurcation divides the coexistence regime
into steady-state and oscillatory coexistence. Bistability collapses
into a single fixed point through a global bifurcation: the limit
cycle becomes a heteroclinic orbit and merges with the separatrix
between the two attractors.

The ABM displays the same qualitative behaviour as the
aggregate model. Early-warning signals of  the critical transition
associated with the heteroclinic orbit include the increase in the
amplitude and periodicities of the oscillations of both populations.

The study of the ABM was guided by knowledge of  the ODE
model’s behaviour. Going back and forth between the two  models
allowed us to identify and describe the role of each mechanism,
as well as  testing the robustness of assumptions about early-
warning signals. The solid understanding of the system’s dynamical
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Fig. 15. Proportion of predator-free runs, Y(0) = 0, in  which prey go extinct as a

function of the initial number of prey X(0) /= 0. The × symbols are the outcomes of

numerical simulations, the  dashed horizontal line indicates the 50% threshold, and

the  solid line is the result of linear regression. The two  straight lines are used to

determine the emerging Allee effect threshold Â.

structure can then be used to evaluate the response of the system
to  parameter changes, whether these changes are  exogenous or
endogenous.

The ABM’s bifurcations were detected through the use of sin-
gular spectrum analysis (SSA) and its derivatives. We  argue that
ABM practioners facing noisy and seemingly oscillatory responses
may benefit from methods of  time series analysis. We  showed
that MC-SSA can reliably detect the transition corresponding to
Hopf bifurcation. Studying their Lyapunov exponents and the Kol-
mogorov entropy could also be of interest in assessing the chaotic
behaviour of an ABM-generated process.

We  further argue that jointly developing models of different
level of complexity, from simple ‘toy’ models to detailed ‘realistic’
models, is an appropriate approach to study complex ecologi-
cal systems. Such a hierarchical approach can effectively guide
single-model exploration, help cross-check results, and derive
more robust conclusions.
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Appendix A. Choice of parameter values

In this appendix, we illustrate the connection between certain
local rules used in our ABM modelling of  Section 2.2  and the aggre-
gate properties of our ODE model in Section 2.1. Thus Fig. 15 shows
that, below a population of  X  = 520 the prey is more likely to become
extinct than not. To confirm that this value is associated with the
Allee effect threshold Â, we conducted an additional set of exper-
iments based on feedback control, as suggested by an  anonymous
reviewer.

In  the ODE model, (X = A, Y = 0) is an unstable equilibrium that
lies on the X−axis. To locate this  point in the ABM, we run at  each
time step – after implementing all the other procedures in the
ODD protocol described in Section 2.2 –  a feedback procedure that
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puted for 10 runs; see text for details.
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Fig. 17. Average number of prey killed per predator, as a function of prey population

X. The horizontal dashed line shows the saturation value of 0.3 that is attained at

roughly  X = 9000, while the dash-dotted horizontal line corresponds to the half-

saturation point at  0.15; the latter is attained at the value X =  2750, which is  indicated

by the dotted vertical line.

artificially maintains the prey population at a given value, denoted
by XS.  This procedure performs the following tasks: if X > XS,  X − XS

prey are  randomly removed; conversely, if X  < XS, X −  XS prey are
randomly added. The asymptotic mean value of X  −  XS, denoted
by U(XS), measures the sign and the intensity of the feedback that
maintain the prey population at XS. Fig. 16  shows that U(XS)  equals
zero when XS =  520 and that it  changes sign at this  point: when
XS <  520, on average, individuals have to be added to maintain the
population, while for XS < 520, on average, individuals have to be
removed. This result precisely locates the value of Â =  520, which
leads in turn to the ABM’s emergent Â/K̂ = 0.086 being a  good
approximation to the aggregate model’s pre-defined A/K = 0.1; see
Section 2.2 for details.

The effectiveness of this method at  identifying the saddle-
node suggests further explorations of the potential applications of
control-based approaches for the study of ABMs and their dynam-
ics. It could, in particular, be employed to perform numerical
continuation of  unstable equilibria or to track periodic solutions,
as demonstrated by Barton and Sieber (2013) for physical experi-
ments.

The intersection of the horizontal dash-dotted line in Fig. 17
with the dotted vertical line at X = 2750 gives the ABM’s emerging
half-saturation constant Ŝ and, therewith, an emerging Ŝ/K̂ =  0.45,
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which is close to the aggregate model’s S/K = 0.4; see Section 2.2 for
details.

Appendix B. Singular spectrum analysis (SSA)

The SSA methodology involves three basic steps: (1) embedding
a time series {X(t) : t  = 1, 2,  . .  .,  N} of  length N in a  vector space of
dimension M –  for the choice of  M,  see Vautard et al. (1992) and
Ghil et al. (2002); (2) computing the M × M lag-covariance matrix
CD of the data –  see the two different approaches of  Broomhead and
King (1986) and Vautard and Ghil (1989);  and (3) diagonalizing CD:

�D =  ET
DCDED; (B.1)

here �D = diag(�1, �2, . .  . �M), with �1,  �2, . .  .  �M > 0  the real, pos-
itive eigenvalues of the symmetric matrix CD, and ED is  the M × M

matrix having the corresponding eigenvectors E� , � = 1, . .  .  M,  as  its
columns.

For each E� we construct the time series of  length N −  M + 1,
called the �-th principal component (PC); this PC represents the
projection of the original time series on the eigenvector E� ,  also
called empirical orthogonal function (EOF). Each eigenvalue ��

gives the variance of the corresponding PC; its  square root is called
a singular value.

The Monte Carlo version of SSA (MC-SSA) is used to reliably iden-
tify oscillations in a time series (Allen and Smith, 1989; Ghil et al.,
2002). In MC-SSA, one assumes a  simple, random model for the
analysed time series, referred to as  the null hypothesis. We  choose
an autoregressive process Z(t) of  order one, also called a red noise,
as the null hypothesis. The process Z(t) solves

Z(t) = a1[Z(t −  1) − Z0] +  ��(t) + Z0, (B.2)

where a1, Z0 and � are  parameters and � is a  normally distributed
white noise of mean 0  and variance 1. For each time series X(t), the
three parameters of  the corresponding Z(t ; a1, Z0, �) are computed
by maximum-likehood fitting.

Next, a Monte Carlo ensemble of  surrogate time series is gen-
erated from the null hypothesis and SSA is applied to the data and
to the surrogates, to test whether it is possible to distinguish the
original time series from the surrogates. Specifically, the M × M lag-
covariance matrix of the Monte Carlo ensemble is projected onto
the EOFs of the analysed time series, and one computes the statistics
of the diagonal elements of  the projected matrices. If the eigenvalue
of a specific EOF of the analysed time series is larger than 95% of  the
corresponding diagonal elements computed from the surrogates,
then the null hypothesis is rejected with a  95% confidence level.

Ghil et al. (2002) provide an overview and a comprehensive set
of references; see also their free software at  http://www.atmos.
ucla.edu/tcd/ssa/.
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Chapter 5

Economic networks:

Heterogeneity-induced

vulnerability and loss of

synchronization

This paper has been submitted to the journal Chaos, for a focus issue entitled: Synchro-

nization in Large Networks and Continuous Media: Data, Models and Supermodels.

Authors: Célian Colon and Michael Ghil

Abstract: Interconnected systems are prone to propagation of disturbances, which can

under mine their resilience to external perturbations. Propagation dynamics can clearly be

affected by potential time delays in the underlying processes. We investigate how such de-

lays influence the resilience of production networks facing disruption of supply. We model

interdependencies between economic agents via Boolean delay equations (BDEs), which

allow one to introduce heterogeneity in production delays and in inventories. Complex

network topologies are considered that reproduce realistic economic features, including a

network of networks. Perturbations that would otherwise vanish can, because of delay

heterogeneity, amplify and lead to permanent disruptions. This phenomenon is enabled

by the interactions between short cyclic structures. Difference in delays between two in-

teracting, and otherwise resilient, structures can in turn lead to loss of synchronization in

damage propagation and thus prevent recovery. Finally, this study also shows that BDEs

on complex networks can lead to metastable relaxation oscillations, which are damped out

in one part of a network while moving to another part.
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Economic networks:

Heterogeneity-induced vulnerability and loss of synchronization

Resilience is increasingly proposed as a highly desirable property of many socioeconomic

systems, including populations that face natural disasters1,2, communities living on natural

resources3, financial systems4, or competitive companies5. Resilience building is seen as an

adequate response to the perceived rising economic, geopolitical and environmental uncer-

tainties, and to the threat of climate change and of the associated changes in the number

and size of extreme events6–8. This trend is particularly marked for financial markets and

supply chains, where globalization, decentralization and increased interconnectedness be-

tween economic agents are perceived as multiplying the sources of risks and their potential

propagations9,10. We formulate a toy model for economic networks facing production dis-

ruptions, and identify mechanisms that foster or deteriorate resilience. Delays in production

and inventories influence how localized disruptions ripple in the network and amplify. We

found that heterogeneity in delays or inventories increases vulnerability to shocks, especially

in strongly interdependent industries. The corresponding dynamics may be interpreted as a

loss of synchronization between economic processes, that we uncover using Boolean delays

equations (BDEs).

I. INTRODUCTION AND MOTIVATION

To frame our study, we use the well-established definitions of resilience proposed in ecology

— where the concept originated11 and adapted to the analysis of dynamical systems in

general. Resilience can be evaluated using one or more of three metrics: the size of the

basin of attraction of a specific dynamical regime12,13; the speed at which a system, after

a given perturbation, bounces back to its attractor14; and the intensity of the perturbation

that a system can sustain without switching to another, less desirable attractor15. The word

‘metric’ here is not used in its strict mathematical acceptance as a distance between two

points in an arbitrary space but in the broader sense used in measuring performance16.

We study these three metrics in a toy model for production networks. Dynamical models

have been proposed to examine the propagation of supply disruptions in interfirm or inter-

1
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sector input–output networks. The emergence and the amplitude of cascading failures17,18

and their potential consequences for production location19 have been investigated. The re-

lationship between network structure and vulnerability has recently been explored20,21, as

well as the role of adaptive agent behavior22 and that of delays23. We note that the ques-

tions addressed by these models do have conceptual connections with epidemic modeling,

which focuses on the spreading of human diseases or of computer viruses across a network

of agents24.

In this paper, we focus on the role of heterogeneities that are present at the network, node

and link levels. First, production networks are reported to have high heterogeneity in con-

nectivity, with few highly connected firms interacting with more peripheric ones. Fujiwara

and Aoyama 25 have analyzed the power-law distributions of in- and out-degrees, which can

influence how localized shocks aggregate Acemoglu et al. 26 . Vulnerability of various network

structures has been studied in other types of models: in general network theory27, in load

network dynamics28–31, in epidemic-spreading models32,33 and, most recently, in networks of

networks34.

Furthermore, many node-level characteristics are heterogeneous in economic networks,

such as their size35. Gabaix 36 found that a power-law distribution of firm size can affect the

aggregate volatility of economies. Few models have incorporated firm-level heterogeneities

in economic dynamics, with the exception of Hallegatte 37 , who found that heterogeneity in

capacity or in inventory can amplify supply-side shocks.

Finally, all links are not equivalent. In particular, they are associated with delays, which

primarily originate from decision-making, production and transportation. They represent a

key concern in operations research38, since they can lead to mismanagement of inventories,

synchronization issues and oscillations. A key example, which has been empirically and

experimentally verified, is the bullwhip effect39. Still, with the exception of the stock market

model developed by Mískiewicz 40 , no economic network model incorporates link delays. In

epidemic models, delays have been shown to foster the outbreak of epidemics41,42, but the

effect of delay heterogeneity has not been tackled so far. Buzna, Peters, and Helbing 43 have

developed a model of load dynamics on networks with uniformly distributed delays, but the

role of inhomogeneity in the delays was not included.

Understanding the role of delay heterogeneity in networks is therefore of interest in a

variety of fields. For economic networks Coluzzi et al. 23 took a first step in this direction,

2
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and their contribution is the basis of the present paper. We investigate here the influence of

heterogeneity in connectivity, inventory and delays on the resilience of production networks.

To do so, we formulate a model governed by a coupled system of Boolean delays equations

(BDEs), whose Boolean variables evolve in continuous time44,45.

The BDE framework is useful in building simple models of complex nonlinear systems.

They allow one to simplify many components while fully retaining some core dynamical

ingredients: threshold behavior, multiple feedbacks, and distinct time delays46. In fact,

the behavior of Boolean networks with homogeneous delays that use exclusively the ‘AND’

operator is well documented47. More general BDEs — with arbitrary Boolean operators

and with heterogeneous delays — have been successfully applied to the study of climate

dynamics48,49, earthquake physics50,51 and genomics52.

Our BDE model is based on Coluzzi et al. 23 , extended to incorporate inventories. It en-

compasses four elements: (i) production based on complementary inputs; (ii) heterogeneous

production and delivery delays; (iii) heterogeneous inventories; and (iv) supplier–buyer net-

works with heterogeneous connectivity. The addition of a simple economic process allows

us to go one step beyond the static effect of network structures on resilience. Thanks to the

BDE framework, we can focus on the key nonlinear components of this economic dynamics:

production interdependencies, heterogeneous delays and inventories.

To analyze the effects of heterogeneous connectivity, we developed a class of scale-free

networks that exhibits some empirical features of real economic networks. Specifically, Fuji-

wara and Aoyama 25 studied a large dataset of over 1 million Japanese firms and their supply

relationships, provided by the company Tokyo Shoko Research Ltd. They found that the

distributions of in- and out-degrees have a power-law distribution for degrees between 10

and 1000, followed by an exponential decay for higher degree, and an average connectivity

of 4. The exponents of the cumulative distributions P>(k) of in- and out-degree are respec-

tively 1.35± 0.02 and 1.26± 0.02, where the error corresponds to 1.96 times the estimated

standard deviation. We generate a class of networks that reproduce these features, which we

call SF–FA networks — SF for scale-free and FA for Fujiwara and Aoyama — and compare

their behavior with that of Erdős–Rényi (ER) networks.

Finally, we also explore networks of networks, which can represent the interdependence

between specific economic sectors, such as water, food and energy supply34. This setting

allows us to study the effects of synchronization and the loss thereof on resilience.
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We use our model to evaluate dynamical response to local perturbations. Initially, all

agents fully produce except one who gets temporarily disrupted. This initial perturbation

may spark a wave of disruptions, that may vanish or induce permanent disruptions. Through

extensive simulations, we characterize the network behavior and evaluate the influence of

heterogeneity in inventories and in delays. We use the three previously mentioned metrics

to gauge resilience: size of the attractor basin of the full activity state, transient speed,

and perturbation intensity. We then propose a resilience indicator and discuss its implica-

tions for resilience building. Our results also include intriguing synchronization behavior,

such as metasable relaxation oscillations, recalling the importance of delays in network

synchronization53.

In Sec. II, we first formulate the BDE model and its delays. Next, the simulation routines

and the algorithm generating the classes of networks investigated are specified. In Sec. III,

we start our investigation by studying how a single perturbation propagates in fundamental

network motifs. We build a probabilistic model to analyze the propagation in simple acyclic

structures in Sec. III A, and in Secs. III B–IIID, we identify the key mechanisms that can

prevent network recovery.

Section IV provides results for large interfirm networks. Guided by the results of the

previous sections, we study in Sec. IVA the global and local structures of SF–FA networks

that influence resilience, and contrast this analysis with ER networks. Sec. IVB presents

the effects of heterogeneity in inventories and in delays.

In Sec. V, we turn to systems of interdependent networks, and show how differences

between the networks can affect vulnerability via loss of synchronization. We measure in

Sec. VI the critical role played by individual agents and derive an aggregate resilience indi-

cator. Finally, we discuss in Sec. VII potential implications for resilience building, suggest

several extensions, and comment on the role of synchronization in network resilience.

II. METHOD

A. A dynamical model of supplier–buyer networks

The economy is modeled here as a network, in which each agent is represented as a node

and produces using inputs from other agents. These dependence relationships are repre-
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sented by directed links. The topology of the network is captured by an n× n connectivity

matrix M = (mij), where n is the number of agents, and mij = 1 if agent i supplies agent

j, and mij = 0 otherwise. No agent can supply itself, i.e. mii = 0. Some agents are primary

producers, and produce without supplier.

Each of the n agents can only be in one state, modeled as a Boolean variable xi with

i = 1, .., n: either it is fully active, xi = 1, or it is disrupted and xi = 0. A fully active agent

is able to deliver its outputs to its clients.

The Boolean variable xi is continuously updated over time via delay equations. Each

supplier–buyer relationship is characterized by a delay, denoted by τij; this delay represents

the time it takes agent j to produce and deliver inputs to agent i. With the exception of

primary producers, all agents need inputs from each one of their suppliers, and they produce

upon the simultaneous reception of all inputs.

In the absence of inventories, full activity of an agent i depends exclusively on the set

S(i) of its suppliers, and the n variables are updated as follows:

xi(t) =











1, if S(i) = ∅,

∏

j∈S(i) xj(t− τji), otherwise.
(1)

Here the operator
∏

is the repeated Boolean product ‘AND’, and we use the usual notation

AND ≡ ∧ and OR ≡ ∨.

We assume that agents hold inventories that allow them to stay active when their supply

is disrupted. A second Boolean variable, yi, is attached to each agent: it represents the

availability, yi(t) = 1, or unavailability, yi(t) = 0, of agent i’s inventory at time t. Disruption,

xi(t) = 0, only occurs if agent i does not receive some supply while its inventory is depleted;

see Eq. (2a) below.

Inventory is created through production: when agent i receives all its supply simulta-

neously, i.e. when
∏

j∈S(i) xj(t − τji) = 1, then i produces and it both delivers outputs to

clients and replenishes its own inventory; the latter will be available after λi time units; see

Eq. (2b) below. This real-valued quantity represents the size of the inventory: agents with

large λi can stand longer external perturbations, because their production can be stored for

a larger period of time.
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For non-primary producers, the dynamical system for xi(t) and yi(t) is:

xi(t) = yi(t) ∨
∏

j∈S(i)

xj(t− τji), (2a)

yi(t) =
∏

j∈S(i)

xj(t− τji − λi). (2b)

Equation (2b) can be substituted into (2a), yielding a single dynamical equation for activity:

xi(t) =
∏

j∈S(i)

xj(t− τji − λi) ∨
∏

j∈S(i)

xj(t− τji). (3)

Note that the system of BDEs in this equation is partially dissipative, in the precise sense

defined by Ghil and Mullhaupt 45 and reviewed by Ghil, Zaliapin, and Coluzzi 46 . There-

fore, we expect the solutions for all the network topologies and combinations of delays and

inventories that will be considered herein to contain initial transients and lead to asymp-

totic behavior — whether stationary, periodic or aperiodic — in finite time. Some of the

transients, however, may be very long, as found already by Coluzzi et al. 23 .

B. Small perturbations and key observables

This dynamical system has a trivial fixed-point attractor: if all agents are active, i.e.

if xi(t) = 1 for i = 1, . . . , n, the system remains stationary. We study the resilience of

this attractor, called full activity, to small perturbations: How quickly and how far do

external perturbations propagate? Does the network always get back to full activity, or can

perturbations push the system into other alternative states? How does the network topology

and the heterogeneity of delays and inventories influence such behavior?

An external perturbation is defined as the shutdown of a single agent’s production over

a certain time interval, denoted by δ0. We primarily focus on the consequences of such

perturbations that occur in isolation. For an initial perturbation δ0 affecting agent r, the

initial state is formulated as follows: for all i = 1, . . . , n and for t ≤ 0, xi(t) equals one.

From t = 0 onward, all the xi(t)’s are updated according to Eq. (3), except xr(t), which is

maintained at 0 for 0 ≤ t < δ0. Unless otherwise specified, we set δ0 = 1.

We will monitor how such initial perturbations propagate throughout the network. In

particular, they may create propagating “waves” of disrupted agents that are either damped
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out or continue to propagate indefinitely. The key observable is the relative number of fully

active agents over time, denoted by ρ(t):

ρ(t) =

∑n
i=1 xi(t)

n
. (4)

Alternative attractors are characterized by their dimension in the space Z
n
2 , where Z2 =

{0, 1}, and by the average asymptotic value of fully active agents, denoted by ρ∞. If the

asymptotic regime is a fixed point, ρ∞ is the value of ρ(t) at this point. If it is periodic,

ρ∞ is the average value of ρ(t) over one period. When ρ∞ is below 0.5, most agents are not

fully active anymore, and the network is said to have collapsed.

Transients are characterized by the speed and amplitude of the propagating wave. We

observe the ensemble A of agents that get perturbed at least once following the initial

perturbation. The cardinal of A, denoted by α, measures the propagation amplitude. We

also record the time at which each agent in A gets perturbed for the first time. The time of

first perturbation, denoted by ti, is such that xi(t) = 1 for t < ti and xi(ti) = 0. The average

time of first perturbation, denoted by θ, is a proxy for propagation speed: for comparable

amplitudes α, wave with a small θ propagates faster than one with a high θ.

C. Numerical experiments and network topologies

We start in Sec. III by a detailed investigation on how perturbations propagate in funda-

mental network motifs, such as lines, trees, and loops. We particularly focus on interacting

multiples loops. These studies allow us to identify the key propagation mechanisms that can

lead, in more complex networks, to alternative attractors. For these simple structures, we

build a probabilistic model to analyze how particular distributions of delays and inventories

influence propagation. We use in particular lognormal, exponential and uniform probability

distributions.

In Sec. IV, we analyze how the distributions of delays and inventories affect the resilience

of SF–FA and ER networks. To generate SF–FA networks, we use the algorithm first pro-

posed by Goh, Kahng, and Kim 54 , in the form used by Chung and Lu 55 . The number of

incoming and outgoing links attributed to each node is proportional to a weight, or load

factor. For a network with n nodes, the factor of the ith node is (i+i0−1)−1/(γ−1), where γ is

the targeted power-law exponent, and i0 an integer used to introduce an exponential decay
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for high degrees. To match the results of Fujiwara and Aoyama 25 for their huge data set of

Japanese firms, we use γ-values of 1.35 for in-degrees and of 1.26 for out-degrees, while i0

is set to 12. The connectivity c is defined as the average number of in- and out-degrees per

agent, and it is set to 4, i.e. there are 4 times more links than nodes.

Directed ER networks are generated through the so-called G(n,m) algorithms, where

n denotes the number of nodes and m the number of links56. To compare with SF–FA

networks, we choose m = 4n. Unless otherwise specified, all networks have n = 103 agents.

This number is large enough to be in qualitative agreement with the behavior of larger

networks, and low enough to be computationally feasible when exploring large regions of

the parameter space.

We design a simulation routine to comprehensively assess the behavior of the network

from all possible initial perturbations. For networks with n agents, this routine consists of n

simulations. Each of these simulations corresponds to the initial perturbation of a different

agent. For instance, in the kth simulation, agent k is initially perturbed, and we measure

the propagation amplitude a(k), the average time of first disruption θ(k) and the asymptotic

average density of fully active agents ρ
(k)
∞ . The statistics of the n-member ensembles {α(k)},

{θ(k)} and {ρ
(k)
∞ } captures the system’s response to small perturbations. We denote the

mean of these three ensembles by A, Θ and R∞, respectively.

We first study the homogeneous case, where all delays and inventories are equal, i.e.

τij ≡ τ and λi ≡ λ. We track how the three ensembles {α(k)}, {θ(k)} and {ρ
(k)
∞ } change in the

two-dimensional (2-D) parameter space (τ, λ). Then, to assess the effect of heterogeneities

in delays and inventories, we draw each delay τij and each inventory λi from two lognormal

distributions with means (µτ , µλ) and standard deviations (στ , σλ), respectively. We then

track how the dynamical response changes along an increase in στ and σλ. We use as a

baseline the homogeneous case where τ = 1 and λ = 0.2.

In Sec. V, we study how heterogeneities in delays and inventories affect propagation in

acyclic networks, where disruptions never persist indefinitely, i.e. where R∞ = 0. Weisbuch

and Battiston 19 , for instance (see Fig. 1 there), used homogeneous delays and a regular

lattice — which can be seen as a particularly simple case of acyclic topology — to model

production networks.

In this paper, we generate random acyclic networks, abbreviated RAs, by building ER

networks and removing the lower triangle of the connectivity matrix. In RAs, there is a
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Figure 1. Schematic diagram of the classes of networks studied in this paper. The first row shows

the simple network motifs analyzed in Sec. III: (a) linear networks; (b) trees; (c) isolated loops; (d)

and (e) two interacting loops, connected through a pivotal node; (f) and (g) three interacting loops.

The second row displays examples with n = 100 and connectivity c = 4 of the more complex classes

of networks investigated in Secs. IV-to-VI: (h) directed Erdős–Rényi (ER) networks; (i) scale-free

networks with specific SF–FA distributions of in- and out-degree; (j) random acyclic (RA) network

in which production moves upward; and (k) a system of two interdependent RA networks — in

the network placed on the left, production moves upward, while it moves downward in the one to

the right.

natural direction of the production flow from primary producers, i.e. agents without a

supplier, to final producers, i.e. agents without a customer. We characterize the sensibility

of RAs to small perturbation by evaluating the extent to which final producers are impacted

by initial perturbations of primary producers. We measure, for each primary producer, the

average time final producers are disrupted. The average of this quantity, divided by the

duration of the initial perturbation δ0, defines the transfer coefficient, denoted by TC.

Finally, we examine the resilience of a network of interdependent RA networks. We focus

on the case of two RA networks, where the primary producers of one network are supplied

by the final producers of the other. To generate these interlocked networks, we produce two

RA networks, and each primary producer of the first RA network randomly picks a supplier

among the final producers of the second one; reciprocally, primary producers of the second
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RA network pick suppliers among the final producers of the first one. Figure 1 illustrates

all classes of networks studied in the paper. Table I summarizes the parameters, variables,

Boolean operators and observables used in the model.

Table I. Summary of the variables, parameters, topologies, operators and observables used in the

model.
Variable Definition Initial value

xi(t) Agent i is fully active, xi(t) = 1, or disrupted, xi(t) = 0 1

yi(t) Agent i has inventory, yi(t) = 1, or not, yi(t) = 0 1

Parameter Definition Default

n Number of agents 103

c Average number of suppliers per agent 4

τij Production and delivery delay from agent i to agent j 1

µτ Mean of the lognormal distribution of delays 1

στ Standard deviation of the lognormal distribution of delays 0.2

λi Duration of inventory hold by agent i 0.2

µλ Mean of the lognormal distribution of inventories 0.2

σλ Mean of the lognormal distribution of inventories 0.1

δ0 Duration of the external perturbation 1

Topology Full name Reference

ER Directed Erdős–Rényi network 56

SF–FA Scale-free networks based on Fujiwara & Aoyama (2010) 25

RA Random acyclic networks 57

Operator Definition

∨ Boolean ‘OR’

∧ Boolean ‘AND’
∏

Repeated Boolean product ‘AND’

Observable Definition

ρ(t) Density of fully active agents, i.e.
∑

i xi(t)/n

ρ
(k)
∞ Asymptotic density of fully active agents following the external perturbation of agent k

R∞ Mean of the ensemble {ρ
(k)
∞ }

A(k) Ensemble of agents that get disrupted following the external perturbation of agent k

α(k) Cardinal of A(k)

A Mean of the ensemble {α(k)}

t
(k)
i Time at which agent i ∈ A(k) gets disrupted

θ(k) Mean of the ensemble {t
(k)
i } over i ∈ A(k)

Θ Mean of the ensemble {θ(k)}

TC Transfer coefficient: average time a final producer spends in a disrupted state, following

an external perturbation of a primary producer of unit duration.

δ
(i)
c Critical perturbation: the duration of the external perturbation affecting agent i over

which the OUT component collapses

∆c Mean of the ensemble {δ
(i)
c }
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III. ROLE OF KEY NETWORK MOTIFS

A. Decaying waves in simple acyclic networks

Consider a linear network, illustrated in Fig. 1a, with n ≫ 1 agents. Agent 0 is the

primary producer, it supplies agent 1, which itself supplies agent 2, an so on up to agent

n− 1. With this structure, the dynamical system of Eq. (3) becomes, for i > 0:

xi(t) = xi−1(t− τi−1,i) ∨ xi−1(t− τi−1,i − λi). (5)

If agent 0 is externally perturbed during δ0 unit of time, we can demonstrate that agent

1 will be temporarily disrupted if the initial perturbation is longer than its inventory, i.e.

if δ0 > λ1. In that case, agent 1 will be perturbed at t = τ01 + λ1 for δ0 − λ1 units of

time. Recursively, we can demonstrate that agent i will be perturbed if the duration of the

external perturbation exceeds the sum of the inventories of all agents between agent 1 and

itself, i.e. if:

δ0 >
i

∑

k=1

λk. (6)

If inequality (6) is satisfied, then the duration of the perturbation affecting agent i is

given by the difference between the duration of the initial perturbation and the sum of the

inventories δ0 −
∑i

k=1 λk. Both the delays and the inventories determine the time of first

perturbation:

ti =
i

∑

k=1

τk−1,k + λk. (7)

When all delays and inventories are homogeneous and equal to τ and to λ, respectively,

the initial perturbation propagates up to agent z ≡ ⌊δ0/λ⌋, where ⌊x⌋ denotes the integer

part of x. In linear networks, this ratio also corresponds to the number of disrupted agents.

α, which is thus inversely proportional to the inventories λ, and is not affected by delays.

The time ti of first disruption of agents within the set A is ti = (τ + λ)i. The average time

θ of first disruption is given by θ = (τ + λ)(a + 1)/2: it varies linearly with the sum of the

delays and the inventories, τ+λ. In such a linear network, there is no permanent disruption:

perturbations eventually decay.
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We can readily extend these results to trees which are illustrated in Fig. 1b. Layer 0 is

occupied by one root agent, which supplies d agents in layer 1, d2 in layer 2, and so on.

Ternary trees, with d = 3, were used, for instance, by Zaliapin, Keilis-Borok, and Ghil 50,51 .

In trees, the initial perturbation of the root agent can lead to significant propagating

waves. The formula z ≡ ⌊δ0/λ⌋, derived for linear networks, can be applied, where z now

represents the level to which the perturbation propagates. Given that layer k is occupied

by dk agents, we have:

α =
z

∑

k=0

dk, θ =
z

∑

k=0

k(τ + λ)dk

α
. (8)

For the heterogenous case, we build a probabilistic model to assess the effect of a change

in key features of the delay and inventory distribution on propagation. Letting each delay

and inventory be an independent, identically distributed random variable, our probabilistic

model is based on a recursive algorithm that yields the expected values of the amplitude and

average time of first disruption, E(α) and E(θ). The algorithm is presented in Appendix A

and its results are compared with those of numerical experiments. We find that, for both a

uniform and a lognormal distribution, the more heterogeneous inventories are, the further

the perturbation tends to propagate. In these simple network structures, in which pathways

never interesect, delay heterogeneity does not affect the propagation amplitude.

B. Fast collapse in isolated loops

While propagating disturbances eventually vanish in acyclic networks, they can be sus-

tained or even amplify in purely cyclic networks. Such isolated loops, in which agents belong

to one and only one loop, are illustrated in Fig.1c; in them, the asymptotic behavior involves

recovery, periodic disruptions or collapse.

In the absence of inventory, an initial perturbation propagates indefinitely around the

loop: it periodically affects each agent, and the period is equal to the sum of the delays. If

other agents depend directly or indirectly on this loop, they are also affected by the periodic

wave of disruptions.

When some agents hold inventories, propagating waves are gradually damped and even-

tually die out; their behavior can be derived using the analytic approach taken for the linear

network in Sec. III A. This damping can however be canceled by short time delays: if the

initial perturbation propagates around the loop so rapidly that the first agent has not yet
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recovered from its initial perturbation, then all agents remain permanently disrupted. In an

isolated loop with agents labeled k = 0, 1, . . . , n− 1, the condition for such fast collapse is:

δ0 ≥
n−1
∑

k=0

τk,k+1 + λk. (9)

C. Fine detuning in interacting loops

More complex types of behavior occur in networks in which multiple loops interact. In

this case, a new type of phenomenon arises, which we call “fine detuning.” Essentially, it

involves a proximity of two or more periodicities associated with the distinct loops to their

being commensurable i.e., to having an exact rational relationship. The precise definition is

given in Eq. (10) below.

When two loops interact through one agent, as in Figs. 1d and e, any perturbation

reaching this pivotal agent duplicates, inducing one propagating wave in each one of the two

loops. In the absence of inventory, these two waves propagate freely, duplicate again at the

pivotal agent, leading therewith to new propagating waves in each loop, and so on.

If the propagation times through either loop are equal, then the two waves return to the

pivotal agent at the same time. This exact overlapping leads to a periodic regime, as it does

in an isolated loop. More generally, if one propagation time is an integer multiple of the

other then, in the absence of inventory, a periodic regime sets in. In the absence of such

an integer-multiple relation between propagation times, any initial perturbation gradually

amplifies through duplication and eventually leads to permanent disruption of all agents.

Contrary to isolated loops, explored in Sec. III B, inventories do not guarantee recovery

in interacting loops, even for moderate initial perturbations. We refer to the case in which

the sum of the delays in one loop and that in the other differ by a small amount as fine

detuning. In this case, a single perturbation can permanently disrupt all agents through a

process of successive duplication and recombination of propagating waves.

When the difference in delays between both loops — i.e., the detuning — is large and

incommensurable, the wave that propagates in one loop behaves independently of the one in

the other loop; both waves gradually decay due to inventories, as seen in isolated loops in the

previous section. When both loops are tuned, i.e. when the sums of delays in each loop are

equal, the waves are perfectly superimposed at the pivotal agent, and they synchronously
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decay. Only when the difference in delays is small, i.e. when detuning is fine, do the waves

superimpose with a small shift and thus amplify.

Specifically, for an initial perturbation δ0 affecting the pivotal agent, fine detuning occurs

when the difference in total delays ∆T between the two loops falls within the following range:

La < ∆T < δ0 + λ0 − Lb, (10)

where La is the sum of inventories in the faster loop, labeled a, Lb the sum of inventories in

the slower loop, and λ0 the inventory of the pivotal agent. For this condition to hold, it is

furthermore necessary that δ0 > max{La, Lb} − λ0, in other words that the inventories be

low enough to allow the initial perturbation to propagate back to agent 0 in both branches.

The derivation of these conditions is provided in Appendix B, along with relevant examples

of time series.

T b

0
1

0 2 4 6 8T a=3

ρ
∞

Figure 2. Asymptotic density ρ∞ of fully active agents, as a function of the total delay Tb of loop

b, for networks with two loops connected through a single pivotal agent, as in Figs. 1d and e. The

total delay Ta in loop a equals 3. Initially, all agents are producing, except the pivotal agent, which

is perturbed during a time interval δ0 = 1. The heavy horizontal solid line corresponds to ρ∞. The

colored areas indicate full collapse of the network, while the vertical dashed lines pinpoint the

isolated occurrence of asymptotically periodic solutions. The red area corresponds to fast collapse,

as described in Sec. III B, while the green and blue ones correspond to fine detuning; see main text

for details. The total inventories in loops a and b are, respectively, La = 0.35 and Lb = 0.4; the

inventory of the pivotal agent is λ0 = 0.15. Note that the number of agents in each loop does not

change the results.
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For two loops as in Figs. 1d and e, Fig. 2 shows how the asymptotic density ρ∞ of fully

active agents varies with the total delay Tb of one of the two loops. The phenomenon of

fine detuning occurs in the blue areas, on either side of Ta, i.e. for Tb > Ta, as in the

inequalities (10), as well as for Tb < Ta, which also corresponds to these inequalities when

the loops labeled a and b are interchanged.

We notice the appearance of periodic solutions on the less detuned side of a collapsed

interval, i.e. closer to the “resonance” between the two “periods,” Ta and Tb. On the farther

side, there is an abrupt change from collapse to recovery, cf. Fig. 13 in Appendix B.

This detuning also occurs, to a lesser extent, when one of the total delays, Ta or Tb, is

close to an integer multiple of the other, as shown by the narrower green areas of Fig. 2:

when (Ta = 3, Tb = 6) and when (Ta = 3, Tb = 1.5). In the latter case, given the parameter

set chosen, fine detuning only occurs for Tb > Ta/2. The red area of Fig. 2 corresponds to

the phenomenon of rapid collapse described in the previous section: delays and inventories

are so short that the propagating waves return to agent 0, while it has not yet recovered

from the initial perturbation.

D. Synchronization in three interacting loops

When more than two loops interact, the process of wave duplication and recombination

can lead to even more complex dynamical behavior. In particular, given three interacting

loops, as illustrated in Figs. 1f and g, periodic regimes occur for continuous parameter

intervals, while for two interacting loops such regimes only set in at isolated parameter

values, as indicated by the vertical dotted lines in Fig. 2.

The dynamical response to initial perturbations of a specific network is shown in Fig. 3 for

six sets of parameters. This network has n = 4 agents, structured into three loops connected

through agent 0, as in Fig. 1f. As illustrated in panels (a) and (b), permuting delays within a

loop modifies the finite-length transient but does not alter the asymptotic periodic solution.

A minor change in one delay can lead to a discontinuous jump in period length: from 1 for

τ02 = 2 in panels (a,b) to 2 for τ02 = 1.9 in panel (c). Such period doubling is well known in

differentiable dynamical systems and has been discussed in the BDE context by Saunders

and Ghil 49 . Changing inventories does not modify the period length but it does affect the

actual periodic pattern; see panels (a), (d), (e) and (f).
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In this network, additional numerical simulations (not shown) suggest that, in addition

to full activity or collapse, periodic solutions occur in large regions of the 10-dimensional

parameter space (τ01, τ10, τ02, τ20, τ03, τ30, λ0, λ1, λ2, λ3). These regions have a finite volume

in R
10, in other words they are not points as in the case of two interacting loops, but

are a union of several disconnected sets. Within such a set, the period length can remain

stable or change discontinuously with a change in one delay. Additional results are shown

in Appendix C and require further study.
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Figure 3. Time series of the density ρ(t) of fully active agents in the 3-loop network of Fig. 1f.

Agent 0 is the pivotal agent, which is initially perturbed for a time interval δ0 = 1. (a) Results

for default values of delays and inventories — all delays are equal to 1 except τ02 = 2, while the

inventories are λ0 = 0, λ1 = 0.1, λ2 = 0.2 and λ3 = 0.3. (b,c) Results for changes in delays: (b)

the values of τ02 and τ20 are interchanged; and (c) τ02 = 1.9. (d)–(f) Changes in the inventory λ3

of the third agent: (d) λ3 = 0.35; (e) = 0.4; and (f) = 0.5.

IV. RESILIENCE OF COMPLEX NETWORKS

A. Influence of global and local structures

As shown in the previous sections, the presence of loops in a network, and in particular

that of interacting loops, enable permanent disruption. In complex networks, loops are the
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constitutive motif of their so-called strongly connected component (SCC)23,58. An SCC is a

maximal subset of agents within which each agent can reach and be reached by any other

agent through directed links. SCCs are embedded in a weakly connected component (WCC),

where the WCC is the maximal subset of agents within which each agent can reach and be

reached be any other agent, disregarding the direction of the links.

If a permanent disruption reaches an SCC, all agents in the SCC itself, along with those

that source their inputs in the SCC, get permanently disrupted. The whole disrupted re-

gion is called the out-component of the SCC, labeled OUT. Identifying all agents in OUT

allows one to predict the potential extent of permanent disruptions. Conversely, an initial

perturbation can only trigger permanent disruptions if it is located in the IN of an SCC, i.e.

among the agents producing inputs used by any agents within the SCC. Investigating all IN

agents allows one, therefore, to estimate the maximum probability that an initial perturba-

tion triggers a permanent disruption. The major WCC, SCC, IN and OUT components of

a network can be usefully mapped into a so-called bow-tie diagram; see Fig. 13 in Coluzzi

et al. 23 and discussion therein.

In ER networks, a giant SCC arises when the average connectivity is larger than 1; see

Fig. 4a. The expected sizes of the IN and OUT components of the giant SCC are equal,

and reach half of the network for c = 1.39 when n = 105. At this specific connectivity,

and in the absence of inventory, there is one chance in two that a random perturbation

triggers a permanent disruption. Such a disruption would then affect half of the agents. In

a scale-free network, the high concentration of links ensures that a giant SCC emerges for

very low connectivities; this is the case also in our SF–FA networks, as seen in Fig. 4b. The

asymmetry between in and out-degree distributions in SF–FA networks leads, moreover, to

different sizes of the IN and OUT components.

According to the results of Sec. III, the asymptotic response is determined by the presence

of interactions between multiple short loops. We investigate next the density of agents that

are engaged in at least two loops of five agents or less, as a function of network structure; this

quantity is denoted by DSIL, where the subscript SIL stands for “short interacting loops.”

Longer loops are expected to play only a minor role when the average inventory exceeds 0.2.

For both ER and SF–FA networks, DSIL increases with the average connectivity (not

shown), but tends to decreases with the network size, as shown in Fig. 4c. This decrease is,

however, much sharper for ER networks; hence, for large n, almost no agent is engaged in
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Figure 4. Properties of Erdős–Rényi (ER) networks vs. more realistic (SF–FA) supply networks.

(a,b) Relative size of the giant strongly connected component (SCC; solid black line) and of the

giant in and giant out components, IN (solid green) and OUT (solid red), as a function of the

connectivity c: (a) numerical results for ER networks of size n = 104; and (b) analogous results for

SF–FA networks of the same size. (c) Density DSIL of agents engaged in at least two loops of less

than five agents as a function of the network size n, for ER (black) and SF–FA (blue) networks of

connectivity c = 4.

multiple short loops. This result is consistent with the findings of Bianconi, Gulbahce, and

Motter 59 , who showed that the number of short loops becomes negligible in ER networks in

the limit of large n.

For SF–FA networks, though, the density of agents that are engaged in at least two short

loops, DSIL, stabilizes for large n and remains above 50%. Following Bianconi, Gulbahce,

and Motter 59 , this difference is likely to be related to the positive correlation in SF–FA

networks between in-degree and out-degree25.

The high occurrence of short interacting loops in SF–FA networks suggests that they

are more prone to permanent disruptions than ER networks. Moreover, for connectivity

below 1, SF–FA networks still exhibit SCCs, and can therefore permanently collapse, while

ER networks cannot. For larger connectivities, SF-FA networks have a smaller giant OUT

component than ER networks, suggesting that the extent of a possible collapse, in terms of

the number of inactive nodes, is expected to be lower.
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B. Heterogeneity in delays and inventories

In both ER and SF–FA networks, three asymptotic regimes are possible: full activity,

periodic disruption or permanent disruption. In the homogeneous case with τ = 1 and

λ = 0.2, both ER and SF–FA networks fully recover from any initial perturbation. However,

even a moderate level of heterogeneity in delays reduces resilience fairly abruptly; see Fig. 5a.

This effect is due to the occurrence of fine detuning, cf. Sec. III C. Slight variability in the

delays of multiple interacting loops can induce the collapse of these loops, which then extends

to the whole giant SCC and OUT components.

For ER networks, the transition between full recovery and collapse occurs for a standard

deviation of delays στ between 0.06 and 0.12; see Fig. 5a. The rapid drop ofR∞ is due, in fact,

to a change in the structure of the distribution of the individual values of {ρ
(k)
∞ }. Before the

transition, the network always recovers and all ρ
(k)
∞ equal 1. During the transition, a second

mode — in the statistical sense of the term — appears in the distribution. It corresponds

to the collapse of the giant OUT component, and it is equal to 1 minus the relative size of

the giant OUT component; for ER networks with n = 1000 and c = 4, this mode equals

1 − (0.98 ± 0.008). The weight of this mode in the statistical distribution of {ρ
(k)
∞ } starts

from 0% and reaches 82.5%± 3.0% after the transition.

In SF–FA networks, the transition is likewise shown in Fig. 5a and it occurs for even lower

heterogeneity levels, because of the higher density of short interacting loops; see the values

of DSIL in Fig. 4c at n = 103. These networks have smaller giant OUT components than

ER networks, namely 0.90 ± 0.02, but permanent disruption occurs more often, following

88.2% ± 0.9% of the initial perturbations. Furthermore, the στ -value at which transition

occurs is more variable among different SF–FA than for ER networks; see the blue vs. the

black interquartile ranges in Fig. 5a.

As στ increases, no persistent periodic orbits arise, in either ER or SF–FA networks.

Transients can, however, exhibit oscillations for moderate delay heterogeneity, στ . 0.15,

as illustrated by the time series of Figs. 5b, c and d. The period of these small oscillations

corresponds to the the mean delay µτ , and they quickly vanish for higher στ -values. Delay

heterogeneity tends to accelerate the disruption waves and shorten the transients. After the

transition from full recovery to collapse, a further increase in στ reduces the average time

of first disruption Θ. In SF-FA networks, it is reduced by about 11% between στ = 0.1 and
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Figure 5. Effect of heterogeneity in delays and inventories on the asymptotic behavior of ER and

SF–FA networks following small perturbations. (a,e) Average asymptotic number R∞ of fully

active agents as a function of (a) the standard deviation στ of the lognormally distributed delays,

when inventories are kept homogeneous; and (e) of the standard deviation σλ of inventories, when

delays are kept homogeneous. In both panels, the data points are represented by semi-transparent

dots (black for ER and blue for SF–FA networks), while the solid curves are trend lines based on

locally weighted polynomial regressions, and the vertical bars represent interquartile ranges. In

panel (e), the dashed curves represent the relative number of periodic attractors. Note that there

are no periodic attractors in (a) because, when the delays are heterogenous, the transition from

full activity to permanent disruption is too rapid. (b)–(d) Sample time series of ρ(t) obtained in

ER networks for στ = 0, 0.1 and 0.2; and (f)–(h) sample time series for σλ = 0.1, 0.2 and 0.5.
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στ = 0.5, from 4.4± 0.09 to 3.9± 0.09.

Inventory heterogeneity also deteriorates the ability of the system to recover, i.e. its

resilience. As seen in Fig. 5e, a similar transition occurs as σλ increases; this transition,

however, occurs for much larger σλ-values. For instance, for ER networks, the decrease in

R∞ starts when the standard deviation of inventories σλ reaches 0.15, i.e. for a coefficient

of variation of 75%, as opposed to a coefficient of variation of 6% for delay heterogeneity.

In this case, though, the transition between full recovery and collapse is accompanied by

the emergence of asymptotically stable periodic orbits: these are represented by the dashed

lines in Fig. 5e, and illustrated by the time series of Fig. 5g. In addition to full recovery

and collapse of the giant OUT component, the distribution of ρ
(k)
∞ has intermediate values,

which correspond to the time average of ρ(t) during one period of these oscillations. The

presence of these periodic orbits tends to soften the transition from high to low 〈ρ∞〉-values,

which is less abrupt than in Fig. 5a.

As for the delays, the transition in SF-FA networks occurs for lower σλ. The emergence

of asymptotically periodic orbits is related to the interaction between multiple short loops,

as illustrated in Sec. IIID, and it is largely fostered by the homogeneity of the delays. As

soon as delays become heterogeneous, fine detuning occurs and most oscillations become

transient and lead to collapse. In this case, the counterpart (not shown) of the diagram in

Fig. 5e does not exhibit periodic orbits.

C. Interplay between delays and inventories

The detrimental role of heterogeneity on resilience can be observed by comparing panels

(a) and (c), in which delays and inventories are homogeneous, with panels (b) and (d) of

Fig. 6, in which they are heterogeneous with a coefficient of variation of 50%. For both

ER and SF–FA networks, the portion of the parameter plane (µτ , µλ) corresponding to full

recovery (dark blue) is significantly reduced. As previously illustrated, this detrimental

effect of heterogeneity on resilience mostly comes from the heterogeneity of delays. When

delays are heterogeneous, the exact mean value of the distribution has almost no impact

on resilience; see Figs. 6b and d. This result provides additional evidence for permanent

disruption occurring through fine detuning, in which only the difference in delays matters

and not their absolute value, in agreement with inequalities (10).
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Figure 6. Average asymptotic density R∞ of fully active agents, as a function of the mean inventory

µλ and the mean delay µτ , for ER networks in panels (a) and (b) and SF–FA networks in panels

(c) and (d). In the two panels on the left, (a) and (c), inventories and delays are homogeneous:

they are all equal to µλ and µτ , respectively. In the two panels on the right, (b) and (d), they are

heterogeneous. The inventories are lognormally distributed with standard deviation σλ = 0.1, and

so are the delays, with standard deviation στ = 0.1. The four plots are based on interpolation of

grid data, and represent average values of R∞ for ten networks.

In the homogeneous case, collapse occurs for short delays only. Since all delays are equal,

fine detuning can only occur between loops of distinct length, e.g. between a 2-loop and a

3-loop, or between a 2-loop and a 4-loop. The smallest difference in delays between such

interacting loops — i.e., the quantity ∆T in Eq. (10) — is therefore τ : that is why small τ -

values are necessary for fine detuning. For instance, using Eq. (10), if the initial perturbation

hit an agent connecting a 2-loop and a 3-loop, fine detuning occurs for λ ≤ τ < 1− λ.

Small delays also enable fast collapse when the sum of delays and inventories in one loop

falls below the initial perturbation, see Sec. III B. In loops of two agents, for instance, fast

collapse occurs when τ < δ0/2 − λ. Further mechanisms are also likely to induce collapse,

such as those underlying the behavior of three interacting loops, as illustrated in Sec. IIID.

Comparing Figs. 6b and 6d shows that SF–FA networks are less resilient than ER net-

works. The transition between full recovery — the dark region — and permanent disruption

— the light region — occurs for larger inventory levels. According to the results of Sec. IVA,

SF-FA networks have a larger number of short interacting loops, and thus a higher proba-
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bility for fine detuning.

In the homogeneous case, Figs. 6a and 6c are very similar. However, because of the

same topological feature, the parameter region of full activity is slightly reduced for SF–FA

networks in the general area (0 ≤ τ ≤ 0.5, 0.25 ≤ λ ≤ 0.45) of low delays and relatively high

inventories. On the other hand, because SF–FA have smaller giant OUT component, the

extent of collapse is lower than in ER networks. This can be seen in Figs. 6b and d, where

the light region is slightly darker than in Figs. 6a and c, indicating larger R∞-values.

V. NETWORK OF ACYCLIC NETWORKS

A. Propagation in acyclic networks

In an acyclic network, no permanent disruption occurs. Still, heterogeneities in delays and

inventories do have an impact on certain features of the transient regime. A random acyclic

(RA) network can be seen as a sequence of linear chains that intersect without forming a

loop. Recalling the study of linear networks in Sec. III A, the amplitudes of the propagating

waves induced by the perturbation of primary producers are likely to increase as inventory

heterogeneity increases.

This prediction is confirmed in Fig. 7a, which shows that the transfer coefficent TC

increases with σλ. This indicator measures the average disruption time of final produc-

ers following the external perturbation of a primary producer. In other words, a broader

distribution of inventories makes an RA network more permeable, i.e. final producers are

more likely to be disrupted due to the failure of primary producers. Since more agents get

perturbed, full recovery takes longer.

Fig. 7b shows a positive, yet moderate, impact of delay heterogeneity on TC. This

phenomenon is due to a process similar to fine detuning, which occurs between parallel

pathways. The initial perturbation generates several propagating waves, some of which

get recombined further down the network. This recombination can potentially amplify the

disruption, as shown in Sec. III C for fine detuning between loops. This explanation is

confirmed by the fact that TC increases only for small στ -values; this amplifying effect then

vanishes, as in the transition for cyclic networks illustrated in Fig. 5a, where fine detuning

only requires a small degree of delay heterogeneity.
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Figure 7. Transfer coefficient TC for random acyclic (RA) networks, as a function of (a) the

standard deviation σλ of the inventories; and (b) the standard deviation στ of the delays; see

Tab. I for the definition of TC. Five networks were used for each plot. The × symbols indicate

individual TC values obtained from simulations, and the solid curve indicates the local average.

B. Resilience of interdependent RA networks

In a system of two interdependent RA networks — where each primary producer of one

network is supplied by one final producer of the other — delay heterogeneity significantly

reduces resilience. When the delays in both networks are drawn from the same lognormal

distribution, the behavior (not shown) is qualitatively similar to that of the ER and SF–FA

networks in Fig. 5a, with a quick transition to collapse for moderate στ .

Two time series are displayed in Fig. 8, where the red curves correspond to the network

where the inital perturbation occurs. When delays are homogeneous or almost homogeneous,

as in Fig. 8a, the propagating waves fade out, while in Fig. 8b they amplify through fine

detuning due to delay heterogeneity. Inventory heterogeneity can also lead to collapse, but

for even larger σλ-values than in ER and SF–FA networks, while periodic orbits arise to a

smaller extent during the transition (not shown).

In all propagation phenomena in these paired networks, whether leading to recovery or

to collapse, we observe a back-and-forth pendulum movement: disruptions are alternately

stronger in one network, then in the other, an so on. In Figs. 8(a,b), the red curve starts
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Figure 8. Time series of the density ρ(t) of fully active agents in two systems of two interdependent

RA networks, each with n = 500 agents and connectivity c = 4. The red curve indicates the time

series corresponding to the network a where the initial perturbation occurs and the blue curve the

second network, called network b. Both the delays and the inventories are lognormally distributed,

with mean delay µτ = 1 in both panels, and inventories having mean µλ = 0.2 and standard

deviation σλ = 1. The two panels differ by a distinct value of the standard deviation στ of the

delay distribution that is common to both networks: (a) στ = 0.05; and (b) στ = 0.5.

below the blue curve, then crosses above it, and so on, until the asymptotically stationary

regime is reached. Additional simulations show that the time between two crossings lasts

between 3.5 and 5.5 time steps, which is slightly higher the total delays along an average

pathway from primary to final producers. We also observe a slight acceleration of these

crossing throughout the transients leading to collapse.

When the delay distributions are distinct from one network to the other, collapse can

occur even for distributions that are both homogeneous. In the so-called dichotomous case,

where all delays are equal to τa in network a and to τb in network b, a phenomenon of

resonance occurs due to fine detuning, as shown in Fig. 9. When τa and τb are close to

be multiple of one another, both networks recover; otherwise, they collapse. This process

involves longer loops formed by the interconnection between the two networks, and thus

occurs for lower inventories — λ = 0.1 in Fig. 9. Rebounds are observed for intermediate

multiplicity, for τb ≈ 1.5 or 2.6. This observation suggests finer mechanisms of interactions

between propagation waves, that could be examined in further work.
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Figure 9. Average asymptotic density R∞ of fully active agents in a system of two interdependent

RA networks, a and b, connected as in Fig. 8; all inventories are homogeneous and equal to 0.1. In

both networks, n = 200 and c = 4, while the delays are homogeneous and equal to 1 in network a.

The figure shows how R∞ varies with the delay τb.

VI. CRITICAL PERTURBATIONS

A. How critical are individual agents?

An important aspect of resilience is the maximum intensity of perturbations that the

system can handle without leaving the attractor basin of full activity; this question connects

to the original inquiry of Albert, Jeong, and Barabási 27 into the “tolerance” of complex

network. In our Boolean setting, the intensity of an external perturbation is apprehended

by its duration. For SF–FA and ER networks, we measure for each agent the critical duration

of external perturbation beyond which the giant OUT component collapses. For all agents

i = 1, .., n, we denote by δ
(i)
c this duration, also called the critical perturbation. We determine

the values of δ
(i)
c through simulations. External perturbations lasting less than δ

(i)
c are called

subcritical perturbations: they do not threaten the stability of the network.

Agents that are not in the giant IN component cannot induce permanent disruptions:

they have no critical perturbation, i.e. δ
(i)
c = ∞ for all agents xi 6∈ IN. All other agents in

the giant IN component have a finite δ
(i)
c -value, which depends on the topology, the delays

and on the inventories of the other agents. The lower δ
(i)
c , the more important agent i is for

global resilience. Fig. 10a shows an example of how critical durations are spread over an

SF–FA network with n = 50 agents. The spread of δ
(i)
c -values is relatively limited.

This indicator is now compared with the canonical centrality measures developed in

network theory58. We determine whether central nodes, according to closeness, betweenness

and eigenvector centrality, have also low critical perturbations δ
(i)
c . Additional simulations
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Figure 10. Distribution of critical perturbations δc over a network. (a) Distribution over an SF–FA

network with n = 50 and c = 4. For each agent, δ
(i)
c is the maximal duration of perturbations

that does not lead to collapse. Delays and inventories are lognormally distributed with parameters

(µτ = 1, στ = 0.5) and (µλ = 0.2, σλ = 0.1). Nodes are colored according to their δ
(i)
c -value: dark

red for highly critical agents, and light yellow for less critical one. The agent colored in white

is not in the giant IN component and its δ
(i)
c is infinite. (b) Histogram of δc in an ER network

(gray and black) and in an SF–FA network (light and dark blue). Both networks have the same

characteristics as in (a), except for n = 200 in both. The sum of δ
(i)
c in the ER network is 389.4,

while it is 216.2 in the SF–FA network.

are performed for five ER and five. SF–FA networks with lognormally distributed delays

with parameters (µτ = 1, στ = 0.5) and inventories with (µλ = 0.2, σλ = 0.1).

We observe that, on average, the ensemble {δ
(i)
c : i ∈ IN} is satisfactorily correlated with

closeness centrality: −0.72± 0.066 for ER networks and −0.68± 0.031 for SF–FA networks.

Closeness centrality is the inverse of the average geodesic distance linking one node to all

other nodes, and therefore captures the potential damages that the failure of this node could

cause. The correlation coefficient is not higher, in absolute terms, when the geodesic distance

is replaced by the propagation time, i.e. by the sum of delays and inventories.

The remaining variability that is not captured by closeness centrality is due to the partic-

ular propagation phenomena studied in Sec. III, especially fine detuning. These mechanisms,

enabled by the interaction between short loops, occur more often in SF–FA networks. This

behavior is a plausible explanation for the correlation coefficient being lower for SF–FA

networks than for ER ones.

Correlations are weaker for betweenness centrality: −0.36 ± 0.06 for ER networks and

−0.37±0.04% for SF–FA networks; they are also weaker for eigenvector centrality: −0.01%±
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0.06% for ER networks and −0.36% ± 0.04% for SF–FA networks. Betweeness centrality,

which measures how important a node is in connecting each pair of nodes, captures wider

information on the structure of the incoming links, which are not relevant for propagation.

Eigenvector centrality, based on in and out-degree concentration, has a particularly low

correlation coefficient for ER networks, where degrees are more evenly spread.

B. Aggregate indicators of resilience

The ensemble {δ
(i)
c } condenses information on one of the three aspects of resilience. We

study how this ensemble varies with a change in the topology and the distribution of delays

and inventories. In particular, the sum ∆c of the δ
(i)
c ’s over the complement of the IN set can

be used as a scalar indicator for resilience: the higher this indicator, the larger perturbations

a network can sustain without collapsing. The following results present quantities that are

averaged over five repetitions of the same class of networks, and confirm the findings in

Sec. IV concerning the attractor basins and propagation speed.

First, the ∆c-values of SF–FA networks are lower by almost 50% than those of ER

networks with similar delay and inventory distributions. In networks of 1000 agents with

heterogeneous delay and inventory distribution, ∆c = 817 ± 34 in the ER networks and

∆c = 440± 37 in the SF–FA neworks.

To illustrate this result, two distributions of δ
(i)
c ’s are shown in Fig. 10b, one for SF–FA

networks, the other for ER networks. First, the shape of the two histograms is similar and

their widths are approximately equal. Second, as expected from the results of Sec. IV, delay

heterogeneity tends to reduce ∆c. For ER networks with στ = 0.05 (not shown), i.e. before

the sharp drop in R∞ apparent in Fig. 5a, ∆c = 910 ± 51, while it drops to 817 ± 34 in

Fig. 10b, where στ = 0.5.

C. Resilience to recurrent perturbations

The networks under consideration here recover from any initial subcritical perturbation.

However, the critical perturbations δ
(i)
c were determined for initial perturbations occurring

one by one only. They apply to situations where, after each perturbation, the system has

enough time to recover. What happens when additional subcritical perturbations occur
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during the recovery process?

Additional simulations where carried out, where, instead of imposing a unique perturba-

tion at the beginning of the run, random perturbations occur. Specifically, agents have a

certain probability to get perturbed per unit of time; this failure rate is denoted by f . The

duration of theses subcritical perturbations is set to 0.8δ
(i)
c for agents that are in the giant

IN component and to 1 for agents that are not in it. The following results are based on a

limited set of numerical simulations, and should therefore be considered as merely indicative.

SF–FA networks with 1000 agents and lognormally distributed delays and inventories —

where (µτ = 1, στ = 0.5) and (µλ = 0.2, σλ = 0.1) — are robust when f is lower than 0.3%,

i.e. when 3 subcritical perturbations occur on average per unit of time. For higher rates,

collapse occurs within 500 units of time; this latency time interval decreases dramatically

as f increases. For smaller networks, collapse occurs for even lower f -values. For instance,

in SF–FA networks with 100 agents, collapse often occurs within 500 units of time for f as

low as 0.03%. The two situations are illustrated in Figs. 11(a,b).

We observe that, at such low rates, collapse occurs following two perturbations that

are very close to each other in time, within one or two units of time. It suggests that

the combined perturbations, even subcritical, of interacting agents could lead to collapse.

The different behavior observed in large and small networks could originate from the higher

density of short interacting loops in smaller networks, as shown in Sec. IVA. The probability

that two perturbations concomitantly affect the same loops or two loops in interaction is

therefore higher.

These analyses show that large networks are robust to random subcritical perturbations

occurring at a moderate rate — less than 3 per time steps for n = 1000. However, if

perturbations are not random and exhibits some spatial correlations, even lower failure rates

can induce collapse. Combination of localized perturbations occurring in specific regions of

the network, whether ER or SF–FA, can have significant economy-wide impacts.
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Figure 11. Time series of the density ρ(t) of fully active agents, for two SF–FA networks, given

recurrent subcritical perturbations; both networks have lognormally distributed delays and inven-

tories, with parameters (µτ = 1, στ = 0.5) and (µλ = 0.2, σλ = 0.1), respectively. (a) 100 agents,

while f = 0.04%; and (b) 1000 agents, while f = 0.4%. Along the the x-axis, each red dot indicates

the occurrence of a subcritical perturbation.

VII. CONCLUDING REMARKS

A. Summary and discussion

The point in time at which dynamical processes occur on networks does matter. In this

paper, we have demonstrated that heterogeneity in delay values significantly influences how

economic networks react to small, localized perturbations. Several aspects of a network’s

resilience are affected by the heterogeneity of its delays: the size of the economically desirable

basin of attraction is reduced, the intensities of the perturbations from which the network

can recover are smaller, and the speeds at which perturbations propagate are higher. We

argue that the distribution of delays is crucial in influencing the dynamics of input–output

networks, a factor well worth considering when building or analyzing such economic models.

In particular, the destabilizing effect of short delays in production and delivery is rather

counterintuitive. Unlike feedback control systems, in which short delays prevent oscilla-

tions and instabilities, quick interactions between interdependent processes speed up the

propagation of a disruption, resulting in a longer recovery or a collapse.

We found that inventory heterogeneity can also play a major role in acyclic supply chains,

by increasing the permeability of the network, i.e. the probability that final producers get
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affected by the failures among primary producers. This finding confirms the conclusions

of Hallegatte 37 , who found an adverse effect of both capacity and inventory heterogeneity

upon a network’s recovery from natural disasters. Imbalances in inventories, though, have

a weaker effect on a network’s vulnerability than the one induced by delay heterogeneity.

We identified the key mechanisms underpinning these results. Of particular significance

is the process of fine detuning, whereby a single perturbation induces multiple disturbance

waves in a network with interacting loops; these waves subsequently recombine and form new,

longer perturbations. The latter originate from interactions between loops with short and

slightly distinct time delays. The aggregate behavior of large, complex networks was thus

found to be related to their local topological features. This finding allowed us to explain why

real production-and-supply networks, represented here as SF–FA networks, are consistently

less resilient than comparable ER networks. The higher vulnerability of scale-free networks

is consistent with conclusions drawn from epidemic-spreading models32,33, a consistency that

suggests conceptual linkages between contagion dynamics and disruption propagation. Our

findings on SF–FA networks could be refined by incorporating other features of real economic

networks identified by Fujiwara and Aoyama 25 , in particular disassortativity, clustering, and

community structures.

The process of fine detuning was also observed in networks of networks, and it is induced

by heterogeneity in delays between networks. An acyclic network with homogeneous delays

can safely interact with other acyclic structures, as long as their respective delays are integer

multiples of each other. But the absence of integer multiplicity between delays leads to a

loss of synchronization between the disruption waves, and may thus prevent the joint recov-

ery of the networks Buldyrev et al. 60 have shown, in effect, that interacting networks can

exhibit very different failure behavior than single networks, and our findings here contribute

therewith to the study of networks of networks.

Finally, while aiming mainly at gaining insight into their resilience, we explored many

aspects of a network’s behavior, such as the size of its attractor basins, as well as the transient

speed of damage propagation and the effects of the intensity of exogenous perturbations.

Studying these various aspects separately, as well as in combination with each other, allowed

us to increase the robustness of our conclusions.

We argue that, although sometimes it may be presented as ill-defined, the concept of

resilience can usefully guide system analyses and stimulate original investigations.
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B. The challenge of resilience indicators

In Sec. VI, we evaluated how critical individual agents are for overall resilience. We built

an agent-level indicator δ
(i)
c based on the maximum perturbation intensity — measured here

by its duration — that an agent i can handle without causing permanent disruptions to a

large fraction of the network. The importance of individual agents can be partly predicted

by closeness centrality, but not by two additional, commonly used centrality measures that

we considered — betweenness and eigenvector centrality.

It appears, therewith, that no one-size-fits-all indicator can measure the importance of

nodes, independently of context. Hence, vulnerability indicators need to be specifically

tailored to capture the relevant dynamical processes at stake. In a real-world context, to

evaluate how critical a specific firm is using the concept of a critical perturbation, one would

need to quantify the levels of inventory of its direct partners, and the extent to which they

depend on each other, as well as on the travel times of the damages.

How powerful can such vulnerability indicators be in mitigating risks? Section VIC shows

that our indicator δ
(i)
c can be used to map the vulnerability of the production networks

to localized perturbations. From this information, critical nodes could be targeted with

measures that speed up their post-shock recovery. Such a strategy could help alleviate the

system-wide consequences of events that are uncorrelated, both in time and in space.

Our study suggests, however, that vulnerability assessments based on single-failure sce-

narios do not capture the whole risk landscape: they have serious limitations, for instance,

when it comes to large-scale events, such as natural disasters, or to coordinated attacks,

which can lead to concomitant failures of specific combinations of agents. Comprehensively

assessing the individual role of firms for such low-probability high-impact risks is particularly

challenging.

We argue that progress can be made by identifying critical network structures, as done

in Sec. III. We found that it is the interactions between basic structures, more than the

structures themselves taken in isolation, that give rise to vulnerabilities. For large, complex

networks, it is likely that no single indicator can cover all types of damage mechanisms.

From a regulatory perspective, then, several vulnerability or resilience indicators should be

combined in applications, without underestimating the remaining uncertainties.
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C. Synchronization

Besides our results on network resilience, this work has revealed some intriguing aspects

of Boolean processes with delays. Rosin et al. 61,62 observed somewhat similar characteristics

of such processes in experimental realizations of BDEs using electronic logic circuits.

In large regions of parameter space, we found relaxation oscillations emerging in the

density ρ(t) of undamaged agents. This was the case, in particular, for networks consisting

of three interacting loops, as apparent in the time series of Figs. 3 and 14, as well as for

complex networks with homogeneous delays and heterogeneous inventories, cf. Figs. 5(f–

h) and Fig. 15 in Appendix C below. These oscillations asymptote, after a transient, to a

periodic limit cycle, over whose period the initial perturbation propagates and synchronously

affects a large number of nodes.

Within a period, inventories first attenuate the beginning of the disruption, but are not

large enough to stop it completely. Next they are gradually emptied out, thus leading to the

reappearance of disruptions. Finally, inventories get replenished, the disruptions temporarily

disappear again entirely, and the cycle can start all over.

Since delays are homogeneous, the replenishment of the inventories occurs simultaneously,

so that all disruptions disappear more suddenly than they decrease, which leads to a very

step upward slope of ρ(t) within each period; see, for instance, Fig. 5g. The pattern of the

relaxation dynamics, i.e. the downward slope of ρ(t), is directly related to the fact that

inventories become used gradually, one agent after the other.

We observe in Fig. 14 that modifying one inventory changes the relaxation pattern. The

higher the average level of inventories, the longer the relaxation phase within each period.

Delays determine the return of the inventories, and therefore the timing of the steep

upward peak in ρ(t). They therefore determine the periodicity. As seen in Sec. III, these

oscillations are due to interactions between multiple loops. A change of delay in one loop

can desynchronise different loops, and lead to a different period. A small change in delay can

have a strong discontinuous effect on the length of the period; see Figs. 14(a–c). However,

delays that are too heterogeneous tend to desynchronize the loops, which can lead either to

recovery or to complete collapse. These phenomena are further discussed in Appendix C.

The patterns seen in Fig. 15 below suggest that metastable oscillations can stabilize and

persist indefinitely. The fact that, within a given network, the same propagation phenomena
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can lead at first to a relaxation pattern, that lasts for several periods, and then to a different

pattern, with sometimes a distinct periodicity, suggests that relaxation oscillations may

temporarily set in over different regions of the network. The transition from one oscillatory

regime to another is marked by a temporary desynchronization, and can span multiple

periods; see Figs. 15(b–f). This behavior gives rise to increasingly long transients. D’Huys

et al. 63 found experimentally a different phenomenon that also generates very long transients

in Boolean loops with ‘NOT’ operators.

The fact that oscillations can move throughout the network is of particular interest for

networks with several centers, such as the system of interdependent networks studied in

Sec. V. This movement is likely to be at the origin of the pendulum alternation between

two acyclic networks observed in Fig. 8.

D. Conclusion

In this paper, we have formulated a simple model of an economic network, and ana-

lyzed how heterogeneity in delays, inventories and connectivity negatively affect resilience

to small perturbations. We identified the key underpinning mechanisms leading to different

dynamical responses, and established robust correspondences between the local structure

of the networks and their aggregate behavior. We investigated resilience using three ma-

jor network characteristics: size of attractor basins, duration of transients, and intensity of

perturbations. These three characteristics allowed us to compare and combine our partial

results throughout this paper and provide more robust final findings.

The use of BDEs allowed us to capture the highly nonlinear processes at work without

modeling the exact production levels. Thanks to this key simplification, we were able to

perform extensive numerical simulations on complex networks and study large portions of

the models’ parameter space. Even if the quantitative results herein cannot be tested directly

on real data, the qualitative understanding gained allows us to identify new directions for

empirical studies.

We argue that variability in production and delivery delays and inventory unbalances

could amplify the economy-wide impacts of localized supply disruptions. This hypothesis is

empirically verifiable using econometric methods. We also suggest that, beyond the simple

message that interdependencies between key industries increase vulnerability, it is the time
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scale over which the connections actually happen that matters, as well as the existence and

nature of a given connection. Case studies could reveal whether, indeed, short interactions

between interdependent industries can lead to sizeable disruption risks.

Albeit restricted to Boolean variables, it was possible to satisfactorily model inventories.

The BDE framework seems therefore flexible enough to integrate more detailed represen-

tations of economic processes. Our model could thus incorporate, for instance, a certain

degree of substitutability between inputs, known to alleviate propagation phenomena. Such

a modification could be achieved by replacing the operator AND by OR, or by introducing

other Boolean operators. Agents could also be allowed, when disruptions become severe,

to switch to alternative suppliers within the same network, or, as implemented by Coluzzi

et al. 23 , to receive external provisions of inputs.
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Appendix A: Damage propagation in simple heterogeneous networks

1. Algorithm

We consider a linear network of n ≫ 1 agents, where inventories and delays are random

variables, respectively denoted by Λ0, ...,Λn−1 and T01, ..., T1−2n−1. Each of these variables

are independent, and follows a certain probability distribution. The duration of the dis-

ruption affecting each agent is also random variables, denoted by ∆0, ...,∆n−1. We further

denote by fX the probability distribution function of a random variable X, and by gX its

cumulative distribution function. The duration of the initial perturbation, ∆0, is exogenous,

and its probability distribution function is given, along with those of each inventory and de-

lay. We denote by Ωk with 1 ≤ k < n the occurrence of a disruption at agent k, following
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the initial perturbation of agent 0. We add to this set the event Ω0, which represent the

occurrence of the exogenous perturbation on agent 0. The probability of this event, Pr(Ω0),

is 1.

The probability that the perturbation affecting agent 0 propagates to agent 1 corre-

sponds to the probability that the inventory of agent 1 is lower than the initial perturbation.

This probability, denoted by Pr(Ω1|Ω0) and called the transmission probability, is obtained

through the following formula:

Pr(Ω1 | Ω0) = Pr(Λ1<∆0) (A1)

=

∫ ∞

0

Pr(Λ1<x)f∆0
(x)dx (A2)

=

∫ ∞

0

gΛ1
(x)f∆0

(x)dx. (A3)

We assume that the perturbation reaches agent 1. To determine whether it propagates

further and reaches agent 2, we need to gauge the relative value of ∆1 and Λ2. To that

end, we need to determine the probability distribution of ∆1 = ∆0 − Λ1 conditional to the

occurrence of Ω1. It is the probability distribution for ∆1 for positive values of ∆1. We can

write:

Pr(∆1=x | Ω1) =
Pr(∆0 − Λ1=x

⋂

x > 0)

Pr(Ω1 | Ω0)
. (A4)

We can then use the convolution product only to determine the probability distribution of

∆1 | Ω1:

f∆1 | Ω1
(x) =

1

Pr(Ω1 | Ω0)

∫ ∞

x

f∆0
(u)fΛ1

(u−x)du. (A5)

We can use those results to initiate an iterative algorithm to compute the duration of all

perturbations ∆k conditional to their occurrence Ωk. The following set of equations allows

one to compute the probability distribution of (∆k | Ωk) given the probability distribution

of (∆k−1 | Ωk−1) and the apriori probability distribution chosen for inventories:

Pr(Ωk | Ωk−1) =

∫ ∞

0

gΛk
(x)f∆k−1 | Ωk−1

(x)dx, (A6)

f∆k | Ωk
(x) =

1

Pr(Ωk | Ωk−1)

∫ ∞

0

f∆k−1 | Ωk−1
(u)fΛk

(u−x)du. (A7)

This algorithm yields as a by-product all transmission probabilities Pr(Ωk |Ωk−1) for k > 0.
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We compound these probabilities to obtain the probability that the kth agent get disrupted:

Pr(Ωk) =
k
∏

i=1

Pr(Ωi | Ωi−1)Pr(Ω0). (A8)

The expected amplitude of the propagation is simply the sum of all probabilities:

E(A) =
n

∑

k=0

Pr(Ωk). (A9)

The discrete probability distribution of A can also be obtained. The probability that A

equals an integer a is the probability that the initial perturbation propagates up to agent a

without propagating further:

Pr(A = a) = Pr(Ωa)− Pr(Ωa+1). (A10)

For trees, we make the simplifying assumption that each pathways connecting the root

agent to the final agents are independent. In a tree composed of L layers, with each agent

supplying to d agents, the expected amplitude is E(A) =
∑K

k=0 d
kPr(Ωk). Figs. 12 shows

how the average amplitude changes with the mean and standard deviation of inventories for

different probability distribution, using numerical simulations and the algorithm described

in this Appendix.

2. Application with exponential distributions

Suppose that the duration of the initial perturbation is a random variable which follow

an exponential distribution probability with rate parameter r, and that all inventories fol-

lows the same exponential distribution with rate parameter q. The probability distribution

function and cumulative distribution function of inventories are:

fΛ(x) = qe−qx (A11)

gΛ(x) = 1− e−qx (A12)

(A13)

Using Eqs. (A6) and (A7), we have:

Pr(Ω1 | Ω0) =
q

r + q
, (A14)

f∆1 | Ω1
(x) = re−rx. (A15)
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Figure 12. Propagation amplitude A in tree networks of 1023 agents, with one root agent and d = 2

descendants per agent, as a function of (a) the mean inventory µλ or (b) the standard deviation

of inventories, and for different classes of probability distribution. In panel (a), the exponent of

the exponential distribution, shown in red, is 1/µλ. In blue, the uniform distribution spans over

the range [0, µλ], and in black the lognormal distribution has a standard deviation of 0.2. In panel

(b), the lognormal distribution has mean µλ = 0.3, and the uniform distribution is centered on the

same value. The × symbol indicates the averages of numerical simulations, which are compared

with the expected behavior predicted by the probabilistic model, indicated by the solid curves.

In other words, if agent 1 gets disrupted, the probability distribution of the duration of

this disruption is the same as the probability distribution of the initial perturbation. This

result applies to all agents. Consequently, for all k = 1, .., n, the transmission probability is

constant and equal to q/(r + q).

Appendix B: Analysis of fine detuning

Fine detuning can occur in a network composed of two interacting loops, whose topology

is illustrated in Figs. 1d and 1e. Due to this phenomenon, an initial perturbation can

amplify and lead to the full and permanent disruption of the network. In this appendix, we

determine the conditions that lead to such small detuning. We denote by Ta and Tb the sum

of the delays in each loop and assume, without loss of generality, that Ta ≥ Tb. Similarly,

we denote by La and Lb the sum of inventories in each loop, including the inventory of the

pivotal agent, called agent 0, whose inventory equals λ0. We assume that La and Lb are

strictly positive.
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When agent 0 gets perturbed at t = 0, two waves of disruption emerge, one in each loop.

If we consider each loop as independent, then Eq. (6) states that agent 0 gets disrupted

through loop a if the duration of the initial perturbation exceeds La. We call this event

a direct disruption (a). Conversely, a direct disruption (b) occurs if the duration of the

initial perturbation exceeds Lb. If either one of these two conditions is not met, then the

study of the propagation in this system boils down to the one in isolated loops, where the

propagating wave eventually vanishes.

If both propagating waves, though, reach agent 0 again, they can interact. We denote

by a′ the supplier of agent 0 belonging to loop a, and by b′ its supplier from loop b. The

dynamical equation governing the behavior x0(t) of agent 0 is:

x0(t) = [xa(t− τa′0) ∧ xb′(t− τb′0)] ∨ [xa′(t− τa′0 − λ0) ∧ xb′(t− τb′0 − λ0)] , (B1)

where τa′0 and τb′0 are the delays between agent a′ and agent 0, and between agent b′ and

agent 0, respectively.

Direct disruption (a) corresponds to the case in which the inventory is emptied due the

disruption of supplier a′, and the production is stopped due to the same disruption, and

likewise for direct disruption (b). But another disruption can also occur when the inventory

of agent 0 is emptied by the disruption of one supplier, and the production is then stopped by

the perturbation of another one. Specifically, agent 0 is disrupted at t if agent a′ is disrupted

at t − τa′0 − λ0 and agent b at t − τb′0. We call this phenomenon an (ab) cross-disruption.

Conversely, a (ba) cross-disruption occurs when agent 0 is disrupted at t because agent b′ is

disrupted at t− τb′0 − λ0 and agent a′ at t− τa′0.

To study these cross-disruptions, we need to know when the propagation waves hit sup-

pliers a′ and b′. From Eq. (7), supplier a′ is perturbed at (Ta − τa′0) + (La − λ0) until

(Ta − τa′0)+ δ0, and supplier b at (Tb − τb′0)+ (Lb −λ0) until (Tb − τb′0)+ δ0. The conditions

for an (ab) cross-disruption to occur are therefore:

(Ta − τa′0) + (La − λ0) ≤ t− τa′0 − λ0 ≤ (Ta − τa′0) + δ0, (B2)

(Tb − τb′0) + (Lb − λ0) ≤ t− τb′0 ≤ (Tb − τb′0) + δ0. (B3)

They can be rewritten as:

Ta + La ≤ t ≤ Ta + λ0 + δ0, (B4)

Tb + Lb − λ0 ≤ t ≤ Tb + δ0. (B5)
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Both conditions can be realized at the same time if:

Ta + La ≤ Tb + δ0, (B6)

Tb + Lb − λ0 ≤ Ta + λ0 + δ0. (B7)

Since Ta < Tb and La < δ0, the first condition is always met. The second condition can be

rewritten as: ∆T < δ0 − Lb + 2λ0.

The same analysis for a (ba) cross-disruption, yields that the first necessary condition for

such a disruption to occur is Tb + Lb ≤ Ta + δ0; under the present assumptions, the latter

condition is not met. Hence, if Ta < Tb, only an (ab) cross-disruption is possible.

The starting and ending times of the cross-disruption (ab) are, respectively max{Ta +

La, Tb+Lb−λ0} and min{Ta+λ0+δ0, Tb+δ0}. Since the direct disruption (a) occurs between

Ta + La and Ta + δ0, the cross-disruption (ab) always occurs after the direct disruption

(a). Both disruptions overlap if disruption (ab) starts before the end of disruption (a),

i.e. if ∆T < La − Lb + λ0 or if ∆T < δ0 − Lb + λ0. Since δ0 > La, the second condition

∆T < δ0 − Lb + λ0 is sufficient for overlapping to occur. Similarly, given that the direct

disruption (b) occurs between Tb + Lb and Tb + δ0, the cross-disruption (ab) always occurs

before. Both disruptions overlap if disruption (ab) ends after the start of disruption (b), i.e.

if ∆T < λ0 or if ∆T < δ0 − Lb + λ0. Since δ0 > Lb, the second condition ∆T < δ0 − Lb + λ0

is sufficient for overlapping to occur.

Thus, the cross-disruption (ba) never occurs, and the cross-disruption (ab) only occurs

if ∆T < δ0 − Lb + 2λ0; if so, it overlaps with both direct disruptions (a) and (b) provided

∆T < δ0−Lb+λ0. In such a case, the disruption of agent 0 spans the time interval from the

beginning of disruption (a) up to the end of disruption (b), i.e. Ta + La ≤ t ≤ Tb + δ0. The

duration of this disruption is therefore ∆T + δ0 −La, which exceeds the initial perturbation

if ∆T > La. Conversely, if Tb < Ta, by exchanging a and b, we obtain that the cross-

disruption (ba) occurs if ∆T < δ0 − La + 2λ0 and overlaps with both direct disruptions if

∆T < δ0 − La + λ0. Finally, the new disruption of agent 0 exceeds the initial perturbation

if ∆T > Lb.

To summarize, the phenomenon of fine detuning occurs when the difference ∆T in delays

between the two loops falls within the following range:

La < ∆T < δ0 + λ0 − Lb; (B8)
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Figure 13. Time series of the production of the pivotal agent x0(t) connecting two loops, called

loop a and loop b, as in Figs. 1d or 1e. The sum Ta of all delays in loop a is 3, and the sum of

inventories, La is 0.35. The inventory λ0 of agent 0 is 0.15. For loop b, Lb = 0.4 and Tb = Ta+∆T,

where ∆T is the fine detuning parameter, which decreases from panel (a) to panel (e) : (a) ∆T = 1,

(b) ∆T = 0.85, (c) ∆T = 0.7, (d) ∆T = 0.35 and (e) ∆T = 0.05. Colors are added to the second

disruption wave, for 3.5 ≤ t ≤ 4.5. The red color indicates a disruption coming from loop a, the

green color indicates a disruption coming from loop b, and the blue color corresponds to so-called

cross-perturbations originating from the interaction between the two loops; see text for details.

here La is the sum of inventories in the quick loop, Lb the sum of inventories in the slow

loop and λ0 the inventory of the pivotal agent. When ∆T < δ0 − Lb + 2λ0, as in Fig. 13a,

no cross disruption (ab) is generated and the two direct disruptions do not overlap. Each

propagation wave keeps propagating but the duration of each disruption keeps decreasing,

until the propagation ends. If δ0 − Lb + λ0 < ∆T < δ0 − Lb + 2λ0, as in Fig. 13b, a

cross-disruption (ab) occurs but it fails to overlap with the direct disruptions.

When the inequalities (B8) is verified, then both overlapping and amplification occur,and

thus the initial perturbation amplifies each times it returns to agent 0, until all agents are

permanently perturbed; see Fig. 13c. In particular, when La < ∆T < δ0 − Lb, both direct

disruptions overlap, without being bridged by a cross-disruption. For ∆T = La, the duration
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of the new disruption is exactly equal to the initial perturbation, such that a periodic regime

sets in: the initial perturbation is identically regenerated at each period; see Fig. 13d. When

∆T falls below La, overlapping is so strong that the new disruption is shorter than the initial

perturbation, and the damage propagation eventually vanishes, cf. Fig. 13e.

Appendix C: Complex behavior for further investigation

Figure 14 presents additional results for the 3-loop network of Fig. 1f, which was studied

in Sec. IIID, with a second set of parameters, whose values are described in the caption of

the figure. The periods of the oscillations seen in this figure are longer than for the first

set of parameters studied in Fig. 3, for which the periods were of 1 or 2 units of time. The

period of the reference case is 4 in panel (a), and it is modified by small changes in single

delays to equal 2 in panel (b), 4.1 in panel (c).
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Figure 14. Time series of the density ρ(t) of fully active agents in the 3-loop network shown in

Fig. 1f. The three loops are only connected through a pivotal agent, called agent 0. The initial

perturbation affects agent 0 during δ0 = 1 unit of time. (a) Results for the default delays — all

delays are equal to 1 except τ20 = 2 and τ30 = 3 — and default inventories — λ0 = 0, λ1 = 0.1,

λ2 = 0.2 and λ3 = 0.4. (b, c) Effects of changes in delays on ρ(t): (b) τ20 = 1.9; and (c) τ30 = 3.1.

(d)–(f) Effects of changes in the allocation of inventories on ρ(t): (d) λ1 = 0.08; (e) λ3 = 0.87; and

(f) λ2 = 0.57.

The main difference with respect to Fig. 3 is a more heterogeneous distribution of the

delays, with two delays different from 1: τ20 = 2 and τ30 = 3. The fact that each one of

the three loops have distinct delays seems to give rise to longer transients — namely 3 to

4 times higher than in Fig. 3, to be exact. In panels (d), (e) and (f), specific inventories

42

Chapter 5

150



are changed which can widely modify the periodic pattern. Although these changes do not

modify the period of the oscillation, they can induce disruption peaks in the middle of the

period, as observed in panel (f).
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0
1

(c)

0
1
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ρ(
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0
1
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1
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Figure 15. Examples of time series of the density ρ(t) of fully active agents in ER networks. (a,

b) Inventories are all equal to 0.2 and delays are lognormally distributed with (µτ = 1, στ = 0.16).

(c)–(f) Delays are homogeneous and equal to 1, while inventories are lognormally distributed with

µλ = 0.2 and (c, d) σλ = 0.1; (e) σλ = 0.12; and (f) σλ = 0.13.

Figure 15 displays additional results for large ER networks, with n = 104, that illustrate

particularly interesting types of behavior. Panels (a) and (b) show long transients with

a strong periodic component before collapse. Although delays are too heterogeneous for

a limit cycle to occur, the transient lasts for about 20 oscillations. In panel (b), these

oscillations even cease for a few periods before returning and eventually inducing collapse.

This temporary damping of transient oscillations is also seen in panels (c) to (f), where

delays are homogeneous. In these 4 panels, we observe at first an amplitude-modulated

periodic pattern that sets in for 4–8 oscillations, and then evolves to another asymptotically

stable one. This change of pattern suggests that the disruption waves move from one set of

agents to another one. In panel (c), this movement even leads to a new periodicity, shifting

from 1 to 0.2 time units.
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40J. Mískiewicz, “Economy with the time delay of information flow—The stock market case,”

Physica A: Statistical Mechanics and its Applications 391, 1388–1394 (2012).

41X.-J. Xu, H.-O. Peng, X.-M. Wang, and Y.-H. Wang, “Epidemic spreading with time

delay in complex networks,” Physica A: Statistical Mechanics and its Applications 367,

46

Chapter 5

154



525–530 (2006).

42C. Xia, L. Wang, S. Sun, and J. Wang, “An SIR model with infection delay and propa-

gation vector in complex networks,” Nonlinear Dynamics 69, 927–934 (2012).

43L. Buzna, K. Peters, and D. Helbing, “Modelling the dynamics of disaster spreading in

networks,” Physica A: Statistical Mechanics and its Applications 363, 132–140 (2006).

44D. Dee and M. Ghil, “Boolean difference equations, I: Formulation and dynamic behavior,”

SIAM Journal on Applied Mathematics 44, 111–126 (1984).

45M. Ghil and A. Mullhaupt, “Boolean delay equations, II. Periodic and aperiodic solutions,”

Journal of Statistical Physics 41, 125–173 (1985).

46M. Ghil, I. Zaliapin, and B. Coluzzi, “Boolean delay equations: A simple way of looking

at complex systems,” Physica D: Nonlinear Phenomena 237, 2967–2986 (2008).

47G. Weisbuch, Complex Systems Dynamics: An Introduction to Automata Networks

(Addison-Wesley, Boston, 1991).

48M. Darby and L. Mysak, “A Boolean delay equation model of an interdecadal Arctic

climate cycle,” Climate Dynamics 8, 241–246 (1993).

49A. Saunders and M. Ghil, “A Boolean delay equations model of ENSO variability,” Physica

D 2801, 1–25 (2001).

50I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A boolean delay equation model of colliding

cascades. Part I: Multiple seismic regimes,” Journal of Statistical Physics 111, 815–837

(2003).

51I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A boolean delay equation model of colliding

cascades. Part II: Prediction of critical transitions,” Journal of Statistical Physics 111,

839–861 (2003).
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Abstract: Unexpected localized disruptions can cascade along supply chains and induce

disproportionately high losses. Mitigating such risks can be challenging as nowadays,

through outsourcing, supply chains are becoming more complex and specialized. We

formulate a stylized model in which firms in a supply chain mitigate the risk of supply

disruption using inventories. The mitigating strategy of one firm influences the profit of

the other; we analyze such interactions using evolutionary game theory. We find that the

mitigating effort that each firm should commit largely varies depending on the position

of a firm in the supply chain. Vertical fragmentation, whereby the design and production

stages of a good or service are split across multiple firms, reduces their incentives to

maintain inventories and gives rise to systemic risk. Finally, we show how decision-makers

can mitigate systemic risk using a network indicator based on the ecological concept of

“trophic level” to allocate inventory.
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The fragmentation of production amplifies systemic risk in supply chains 

Introduction 

Supply chain disruptions raise significant concerns for businesses (1–6) and their adverse financial 

effects have been empirically established (7–9). Trigger events include natural disasters, industrial 

accidents, bankruptcies, and social movements. Localized disruptions may cascade from one firm to 

another and cause significant economic losses in distant locations (10). For example, such ripple 

mechanisms gave Tohoku’s earthquake and Thailand’s 2011 floods a global reach (11–13). Even 

minor accidents may generate sizeable impacts to supply chains (e.g., 12), especially when they 

affect the production of very specific inputs (9).  

 Firms often lack visibility over the supply chain in which they are a part (15–17). In this 

context, incurring losses due to a cascading disruption appears to be a systemic risk, a concept more 

commonly associated with financial systems (18). Systemic risk emerges in networked systems, in 

which the state of a node depends on the activity of the others. Production systems are becoming a 

global network as a result of large-scale transformations developed over the past decades, namely 

offshoring, outsourcing and vertical specialization (19–21). In many sectors, production has been 

split into multiple sequential stages operated by geographically diverse firms. Many manufactured 

goods are now assembled from a large number of outsourced components. These trends have 

resulted in longer and more interconnected supply chains, whose shapes can be tracked with 

sectorial input–output tables (e.g., 22) or supplier–buyer data (e.g., 23). The consequence of a 

greater structural complexity of production networks for the systemic risk has started to be 

investigated empirically (13) and theoretically (24, 25). 

 Another effect of outsourcing and vertical specialization is the increased fragmentation of 

supply chains, whereby production stages get highly segmented and each segment is run by a 

legally distinct firm (19). Fragmentation creates additional challenges to the mitigation of systemic 

risk. Even though at their level firms are taking risk-mitigating measures, such as inventories, 

supplier diversification, or operational flexibility, their exposure to systemic risk also depends on 

the measures implemented by others. For instance, in a lean management perspective, 

manufacturers reduce inventory by working with few and highly reliable suppliers. Conversely, if a 

supplier decides to engage in more risk-prone operations, its clients may, in response, build larger 

inventories or find alternative suppliers. In a supply chain, even if firms first aim to design a risk-

mitigating strategy that improves their own profitability, in practice this strategy depends on the one 

implemented by the others. If now a supply chain becomes more fragmented, then its exposure to 
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systemic risk depends on an even larger number of other firms. We aim to evaluate how this 

proliferation of distinct yet interdependent risk-mitigating strategies affects the overall level of 

systemic risk in a supply chain.  

 The strategies adopted by economic agents that interact and aim to maximize their profit can 

be adequately studied with game theory. This analytical framework has been used in operations 

research and management sciences to elicit optimal strategies for firms to mitigate supply 

disruptions (26) and to identify ways to foster cooperation along supply chains (27, 28). The 

assumption of strong rationality, according to which agents instantaneously process the full 

decision-trees of all players over an infinite time horizon, has however limited the application of 

game theory to small or very idealized supply chains, in which the link between systemic risk and 

fragmentation cannot be addressed. To overcome this limitation, we develop a model of supply 

chain based on the evolutionary dynamics, which belong to the class of evolutionary games on 

networks (29, 30). Firms follow simple behavioral rules to explore and adjust risk-mitigating 

strategies in order to increase their profits. We are able to elicit the outcome of the strategic 

interactions in complex supply chains and study the effect of fragmentation. 

 In our model, final producers attempt to fulfill a fixed demand from households. They 

produce goods using inputs from suppliers, who themselves purchase inputs from other firms, and 

so on up to primary producers, thus forming a supply chain. Production of each single firm is 

subject to randomly occurring failures. Firms use an inventory to mitigate the risk of supply 

disruptions. Given the level of systemic risk they experience, they adjust the rate at which inventory 

is replenished in order to increase their expected profit. If the supply chain is fully fragmented, each 

firm aims to increase its own profit; if it is fully integrated, all firms are concerned with the total 

profit of the supply chain. Intermediate fragmentation scenarios are also studied. 

 We found that supply chain fragmentation inherently fosters systemic risk. When the 

different stages of a supply chain get operated by an increasing number of firms, the overall level of 

inventory is reduced, resulting in a higher systemic risk. Moreover, the risk-mitigating efforts of 

firms are heterogeneous and highly depend on their position in the supply chain. To address this 

issue, we investigate network indicators that could offer guidance for the allocation of inventories, 

and find that an indicator equivalent to the ecological “trophic level” prescribes the mitigation 

strategy rather effectively. This approach requires a precise mapping of the whole supply chains and 

could help business managers, insurers or policy makers mitigate fragmentation-induced systemic 

risk. 
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Model 

Supply chain as input–output network. We model a supply chain as a directed acyclic network of 

� firms with a predefined adjacency matrix �, such that �!" = 1 if firm � is supplying goods to 

firm � and �!" = 0 otherwise. No firm supplies to itself and hence �!! = 0. Firms that have no 

incoming links in the network produce using raw materials and are called “primary producers”; at 

the other end of the chain, firms that do not have outgoing links to other firms sell their production 

to households and are called “final producers”. Since the supply chain is acyclic, all other firms are 

intermediary producers. The economic activity is driven by a fixed final demand from households, 

represented by vector �, where �!  =  1 �! if firm � is one of the �! final producers and �! = 0 

otherwise. To meet this demand, final producers order inputs from their suppliers, which themselves 

order inputs from their suppliers, and so on up to primary producers. Firms equally divide the total 

amount of input they need between their suppliers. Each firm has a linear production function, i.e., 

it transforms quantity �! of input into quantity �! of output with productivity �  >  1—the same for 

all firms—such that �! = � �!, where �! and �! are expressed in the same monetary terms. Inputs are 

assumed to be fully substitutable and storable with durability �, which means that, at the end of 

each time step, while all inputs that a firm did not use are added to its inventory, a portion 1− � of 

this inventory gets obsolete and is thrown away. In the absence of external perturbations, firms 

order the exact quantity of inputs required to meet the demand they face. We form an input–output 

matrix �, whose coefficients are �!"  =  �!" (� �!), where �! is the number of suppliers of firm �. It 

describes how much input from firm � is needed by firm � to produce one unit of output. Using 

linear algebra, we obtain that the vector of production targets � is equal to � − � !!
�, where � is 

the identity matrix. In the absence of a supply disruption, each firm produces its production target 

�!. In these conditions, the profit of each firm, �!!, defined as sales minus inputs costs, is equal to 

�! 1− 1 � �! ; all other costs involved in production such as labor and capital costs are 

considered to be fixed and are omitted from the model. 

Dynamic responses to external perturbations. To model supply disruptions, we assume that at 

each time step, every firm can lose its entire production with probability � ∈ [0,1] which is the 

same for all firms. Such perturbed firms are unable to supply goods to their clients, who may as a 

result lack the necessary inputs to meet their demand. Rationing may occur and the disruption may 

cascade further along the supply chain, leading to profit losses by firms located downstream from 

the initial failure. To mitigate this risk, firms build inventories of inputs by ordering at each time 

step some extra units from their suppliers. Specifically, if firm � faces demand �!, it constantly 

orders a quantity �!(1+ �!) (� �!) of inputs from each of its supplier, in which �! > 0 is the 

overordering rate specific to each firm and constant over time. Overordering leads to greater input 

Chapter 6

161



 4 

costs, such that when no perturbation occurs, profit is reduced; but in the event of a supply 

disruption, it compensates for potential losses. The input–output coefficients become �!"  =

 �!" 1+ �! (� �!); they are used to compute the production target �! of each firm. Because, over 

time, production disruptions occur randomly, the actual production of firms varies over time, and so 

do their profits. To evaluate the impact of firms’ overordering on their profits, we conduct 

numerical simulations and calculate the average profits of each firm �! over a long time horizon �. 

For simple supply chains, we derive reduced-form dynamical equations; see SI Text, S1. In addition, 

for specific classes of layered supply chains, we have developed an algorithm that enables us to 

calculate the exact expected value of firms’ profits; see SI Text, S5.  

The aggregate losses of the entire supply chain measure the decrease in all firms’ profit, using as a 

baseline the case without perturbations and without overordering: 

  � = (�!! − �!)
!

. [1] 

Aggregate losses can be split into direct losses �!, incurred by perturbed firms, and indirect losses 

�!, resulting from the propagation of disruption throughout the supply chain. In a simulation, direct 

losses can be evaluated by summing the profit loss of firms only when they are externally perturbed. 

Indirect losses are then the difference between aggregate and direct losses. 

To evaluate the “mitigation success” �  produced by a vector of overordering rates 

� = �!,  �!,… ,  �! , we measure a relative change in the indirect losses compared to a 

counterfactual case in which firms ignore disruptions risks and do not overorder, i.e., �! =

0,  0,… ,  0 : 

  �(�;�, �, �,�) =
 �!(�)− �!(�!)

�!(�!)
. [2] 

Adjustment of overordering and supply chain fragmentation. Firms can adjust their 

overordering rate to achieve a certain objective. In this analysis we assume firms to be risk-neutral. 

We consider a scenario of “full fragmentation”, in which firms overorder at a rate that maximizes 

their own expected profits. Since the overordering rate chosen by one firm may affect the profits of 

other firms, firms interact strategically, which means that each firm responds optimally to the 

decisions of others. The vector of overordering rates at which no firm can unilaterally increase its 

profit corresponds to a Nash equilibrium; we denote it by �∗. To study this situation, we apply an 

evolutionary process based on a stochastic gradient ascent algorithm, whereby each firm iteratively 

tries and tests various rates and adopts the ones that increase its profit. The details are presented in 

SI Text, S6. We demonstrate the existence and uniqueness of the Nash equilibrium analytically for 

simple supply chains in SI Text, S4; numerical evidence is provided for the general case; see SI Text, 
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S7. We then evaluate the mitigation success �∗ that is achieved when all firms adopt the Nash 

equilibrium overordering rates.  

Next, we contrast the “full fragmentation” scenario with scenarios of a partial fragmentation. 

Specifically, we consider firms allocated into groups, such that, within a group, each firm adjusts its 

overordering rate to maximize the group’s profit. A group can only be composed of adjacent firms: 

each one has to be the supplier or the client of one other firm in the group. A supply chain with � 

groups has a fragmentation level � = (� − 1) (� − 1). We generate a large number of group 

configurations, and study how fragmentation � affects mitigation success �∗. 

Numerical and analytical study. General results are derived from numerical investigation of large 

ensembles of random supply chains generated with the classic algorithm for Erdős–Rényi graphs 

restricted to the upper triangle of the adjacency matrix (31). As a baseline, we have chosen supply 

chains with � = 30 firms and an average of � = 2 suppliers per firm; we also perform a robustness 

checks for 10 ≤ � ≤ 100 and 1 ≤ � ≤ 4. We explore the full parameter space: � ≥ 1, 0 ≤ � ≤

100%, and 0 ≤ � ≤ 100%, as well as the cases with distributed values of the firm-level parameters, 

in which a different �, �, and � is given to each firm. To illustrate the results, we selected 

representative examples by using the following benchmark values: � = 2, � = 50% and � = 10%. 

To advance the understanding of the role of each parameter in the overordering decisions, we 

perform analytical studies of simpler supply chains: a single producer supplied by multiple firms 

and a class of multi-layered networks. These analytical results, given in SI Text, S1 to S5, are 

qualitatively similar to the results in the general case and helped facilitate its interpretation. 
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Results 

Optimal levels of inventory are widely unbalanced along supply chains. Through the 

evolutionary process, firms gradually adapt their overordering rates to increase their profits. This 

objective can be met by diminishing their loss induced by the supply disruptions. Since the 

exposure to this risk largely differs from one firm to another, these decentralized profit-increasing 

decisions lead to very heterogeneous overordering rates. Figure 1(a) shows for the benchmark 

example the evolution of the overordering rates, initially at 0%, in a fully fragmented supply chain 

represented in Fig. 1(b). For some firms, overordering has a strong impact on their profits. They 

rapidly increase their rate to cope with the 10% failure rate. In this example, the evolutionary 

trajectory largely fluctuates around a stationary value. This volatility is due to the time-averaging 

procedure done by the firms to assess the profitability of different overordering rates. Since 

perturbations are stochastic, the time-averaged profit associated to a particular overordering rate 

may vary from one evolutionary time step to the other. The impact of the stochasticity on the 

evolutionary process is discussed in further details in SI Text, S6. For other firms, in contrast, the 

marginal effect of overordering on their profits is smaller, so that they exhibit slower and less 

volatile trajectories. 

Figure 1(b) shows how the resulting overordering rates are distributed in the supply chain. In 

this instance, more than a half of the firms do not overorder at all, mainly those located upstream 

that have five or fewer total suppliers—“total” meaning that suppliers of all tiers are counted. This 

particular observation lies in accordance with the distributions of overordering rates obtained from 

an ensemble of 2,000 fragmented supply chains with similar number of firms and average 

connectivity but different topologies; see Fig. 1(c). Given that the inflow of raw materials is not 

subject to perturbations, primary producers never overorder. As we move downstream, firms 

become increasingly subject to supply disruptions, because each supplier, direct and indirect, is a 

potential source of disruption. Risks gradually pile up, until thresholds are crossed and overordering 

becomes beneficial. Using simpler supply chains, we demonstrate analytically the existence of such 

thresholds, and show how they arise from the limited number of independent suppliers and from the 

non-durability of goods; see SI Text, Figs. S2 and S4. The threshold value of five total suppliers 

observed in Fig. 1(c) diminishes with greater failure rates, more productive firms or more durable 

goods. 

As seen in Fig. 1(c), after the threshold, there is still a positive relationship between 

overordering rates and number of total suppliers, which shows that, on average, having an 

additional supplier exposes a firm to a larger risk. However, the horizontal dispersion of the results 

implies that this behavior does not apply to all situations. A supplier that maintains large inventories 

abates the risk of supply disruption for its clients, who may then overorder less. In Fig. 1(b), for 
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instance, the two green final producers with 17 total suppliers overorder less than their blue 

suppliers with 12 total suppliers. This type of interactions also explains that the directions of some 

trajectories of Fig. 1(a) significantly change along the evolutionary time. In specific supply chains, 

this mechanism may lead to surprising patterns, as shown in SI Text, Fig. S6. Additional results on 

potential correlations between the position of the firms and their optimal overordering rates are 

presented in SI Text, S10. 

 

Fig. 1. Heterogeneous overordering patterns emerge from strategic interactions. Panel (a) presents the evolution of the 

overordering rates of the 29 firms of the supply chain displayed in panel (b). Firms start without overordering, then 

adjust their rate to increase their own profit. The thick black curve indicates the average overordering rate. Each other 

curve corresponds to a firm; it is colored according to the final overordering rate adopted by the firm. In panel (b), firms 

are nodes, colored in correspondence to the curves of panel (a). The 61 grey arrows represent supplier–buyer 

interactions, while the black arrows indicate the flows that go in and out the chain: inflows of raw materials and 

outflows of final goods. The vertical position of the firms is proportional to their number of total suppliers. Panel (c) 

uses the same vertical axis to compare this specific pattern with statistics from an ensemble of 2,000 supply chains with 

the same � and �. The × symbols indicate the mean, and the bars the interquartile interval. 

Inventories alleviate disruption cascades. Without inventories, most economic losses provoked 

by external perturbations are indirect. Any supply disruption propagates downstream, leading to 

large disruption cascades. Systemic risk is larger in longer and more interconnected supply chains. 

For instance, in the fairly complex supply chain of Fig. 1(b), a random external perturbation that 

disrupts one firm generates profit losses for 5.4 other firms on average, and indirect losses are more 

than twice as high as direct ones; see Fig. 2(a). Note that, because we assumed that inputs are 

perfectly substitutable, these indirect losses are certainly smaller than in situations with only partial 

or without substitutability. Once firms have picked the overordering rates that maximize their 

profits, they maintain inventories, which act as buffers against disruption cascades; in Fig. 2(a), for 

instance, the average size of disruption cascades is more than halved, down to 2.1 firms. In 

particular, the chance that a final producer experiences an input shortage following the disruption of 

a primary producer is reduced from 1 to 0.55 for the supply chain on Fig. 1(b), leading to a 39% 

drop of indirect losses; see Fig. 2(b). We generally observe an increase in direct loss associated with 

overordering. Because they buy more inputs, the overordering firms are running a more costly 
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production process. When externally perturbed, they lose their production but still have to pay for 

the extra inputs they ordered, and thus experience greater direct loss. This negative impact remains 

moderate compared with the mitigation of indirect losses. Even in a fully fragmented supply chain, 

the decentralized profit-driven decisions allow to generate inventories that decrease systemic risk. 

 

Fig. 2. Overordering diminishes disruption cascades and mitigates risks. Both panels refer to the supply chain of 

Figs. 1(a–b). Panel (a) shows how the distribution of the size of disruption cascades changes between the initial state in 

blue, in which no firms overorder, and the end of the evolutionary process in green. The thick vertical lines indicate the 

mean, which moves from 5.4 to 2.1 firms. The cascade size is the number of firms affected by supply shortage 

following one external perturbation; the distribution is obtained by perturbing each firm one by one. Panel (b) displays 

how mitigation success changes during the evolutionary process of Fig. 1(a). 

Supply chain fragmentation disincentivizes overordering. When firms are grouped together and 

aim at increasing the group profit instead of their own, they overorder more. This behavior induces 

larger inventories, and lead to a stronger risk mitigation. This result is valid over the whole 

parameter space and is robust to changes of the supply chain structure. It is shown in Fig. 3 for six 

classes of networks. Mitigation success is minimal for the case of the full fragmentation, and 

maximal for the case of the full integration. For supply chains with 30 firms and two suppliers per 

firm, for instance, full integration helps increase the mitigation success by two thirds compared to 

full fragmentation. This stronger mitigation comes from the internalization of positive externalities. 

When a firm overorders, it generates positive outcomes both upstream and downstream: upstream 

firms receive a larger demand; downstream firms are less subject to disruption cascades. For them, 

these benefits do not cost anything: they are externalities. If now the firm is grouped together with 

some of its suppliers or customers, a share of these indirect benefits feedbacks into its decision-

making process, making overordering more attractive. Integration therefore enables the 

internalization of the positive externalities associated with overordering, resulting in larger 

inventories and less risks of supply disruptions. The steepest slopes for low levels of fragmentation 

show that, in otherwise fully integrated supply chains, a slight degree of fragmentation has a 

relatively high impact. The vertical ordering of the curves also suggests that mitigation is larger in 

more interconnected supply chains. Although such systems are prone to longer disruption cascades, 

firms are better able manage them because they have access to a larger number of fully substitutable 

suppliers. The positive impact of supplier diversification is shown in the analytical results of SI Text, 

Figs. S2 and S4. 
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Fig. 3. Supply chain integration favors risk mitigation. The figure presents how mitigation success changes with 

fragmentation for six classes of supply chains, defined by the number of firms � and the average number of supplier per 

firm �. Fragmentation is defined as follows: (� − 1) (� − 1), where � represents the number of groups of integrated 

firms. Each curve is the average over 20 supply chains, and for each of them, 10×� group configurations are assessed. 

The dispersion of the data is shown in SI Text, Fig. S6. 

Durable inventories enable robust risk mitigation. While systemic risk is robustly reduced by 

supply chain integration, the exact level of optimal mitigation depends on the three parameters: 

productivity �, failure rate � and durability �. The behavior of the mitigation success in this 

parameter space exhibit some regularities; there are shown in Fig. 4 for fully integrated supply 

chains. First, when failure rate � is high compared to productivity �, supply chains can become 

unproductive. This phenomenon occurs when � ≥ 1− 1 �, whatever durability � and the supply 

chain; see the grey regions of Fig. 4’s three panels.  There, firms use on average more than one unit 

of input to produce one unit of output, i.e. they are unproductive. Next, inside the productive region, 

the mitigation success peaks for intermediate failure rates; see vertical intersects in Fig. 4. When 

firms get more productive—moving rightward within each panel—or when goods become more 

durable—moving rightward across the panels—this peak gradually flattens and becomes a plateau; 

see in particular Fig. 4(c) for � ≥ 2. With durable goods, the cost of replenishing the inventory is 

equal to the cost of the used inputs, which, within the productive region, is smaller than the 

additional sales it generates in case of disruption. Keeping an inventory is therefore always 

profitable, leading to a high mitigation success for any failure rate. With less durable goods, the cost 

of maintaining an inventory is no longer proportionate to sales. For high failure rates, very large 

overordering rates are needed. Building such large inventories may become unprofitable, so that the 

mitigation success drops; see the upper limit of the productive regions in Figs. 4(a–b). On the other 

hand, for low failure rates, firms may prefer to undergo occasional disruptions than to permanently 

maintain inventories, hence we observe a weaker mitigation successes at the bottom of Figs. 4(a–b). 

The mechanisms that underpin this behavior are analytically assessed in simple supply chains; see 

SI Text, Figs. S2 and S3. 
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Fig. 4. Durable goods lead to robust mitigation. The three panels present the mitigation success of integrated supply 

chains in the parameter plane (�, �) and for three levels of durability: (a) 0%, (b) 50%, and (c) 100%. The 0% contour 

corresponds to the boundary between the productive and the unproductive regions. Results are averages over 10 supply 

chains with 30 firms and an average of two suppliers per firms.  

Mapping supply chains helps identify benchmarks for mitigation. So far, we have elicited the 

optimal overordering rates through a decentralized process that takes into account strategic 

interactions between firms. We now examine whether a simple mapping of the supply chain can 

help decision-makers allocate, in a top-down manner, some reasonable overordering rates. To that 

end, we define ten different indicators that capture information on the position of each firm in the 

supply chain; see SI Text, Table S2 for a full list and definition. For each indicator, for instance the 

number of suppliers, each firm � is associated with a value �!. To compare across indicators, we 

center and normalize the values of �! for each indicator; the resulting �!
! values average to 0 and 

their standard deviation is 1. We then determine the overordering rate of each firm � as �! = � + ��!
!, 

in which � is a prescribed average overordering rate and � is an elasticity factor that modulates the 

information captured by the indicator. For each indicator, we pick the values of � and � that lead to 

the highest mitigation success. Figure 5(a) illustrates the results for the three most and the three 

least successful indicators, and Fig. 5(b) compares the maximum mitigation successes obtained over 

a large ensemble of supply chains. These quantitative results depend on the choice of parameters 

but illustrate a qualitative behavior that is general in the model. 

 The three least-performing indicators fail to significantly outperform a uniform allocation, 

whereby all firms receive the same overordering rate. These are the number of clients, and two 

centrality measures from network theory: closeness and betweenness centrality (33). Instead, three 

other indicators significantly improve the mitigation outcome: the number of direct suppliers, the 

number of total suppliers, and the supply-chain level. The latter is formally equivalent to the trophic 

level used in ecology (34): it is the average number of links connecting a firm to primary producers, 

taking into account all possible pathways. It has so far not been used to describe the position of 

firms in supply chains. In our model, it captures the most appropriate information to allocate the 

mitigation efforts. For the specific yet representative case displayed in Fig. 5(a), the average 

overordering rate at which the mitigation success peaks is similar across the indicators. This 

similarity illustrates that the stronger mitigation success of the top three indicators is not merely due 

to larger risk-mitigating efforts but to more appropriately allocated ones. In addition, the top three 
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indicators significantly reduce systemic risk compared to decentralized decisions in fragmented 

supply chains—the right side of the sloping bar of Fig. 5(b). Nevertheless, even supply-chain level 

does reach the level of mitigation achieved when supply chains are fully integrated—the left side of 

the same bar. For the parameter value chosen, the average maximum mitigation success reached by 

supply-chain level is 48%, achieved with an average overordering rate of 18%, whereas full 

integration reaches 56% mitigation success with an average rate of 14%. This comparison 

demonstrates that a decentralized optimization process, whereby strategic interactions are taken into 

account, mitigates risk not only more effectively—delivering a greater mitigation success—but also 

more efficiently—keeping smaller inventories. In addition, the peaks of Fig. 5(a) are relatively 

narrow, suggesting that wrong decisions on the overall overordering efforts, or inaccurate 

information on the position of the firm, can rapidly deteriorate mitigation success. Combining 

indicators do not improve significantly the mitigation success. A more detailed statistical analysis 

on the information provided by these indicators are presented in SI Text, S10. 

 

Fig. 5. Network indicators help allocate inventories. Panel (a) shows, for a specific supply chain with 30 firms and 60 

supplier–buyer relationships, the mitigation success of six indicators. In each subpanel, the � values of the indicator are 

centered, normalized, then mapped into 262 vectors of overordering rates using an affine transformation: the average 

rate corresponds to the �-axis, the elasticity to the �-axis. With high elasticity, some rates may fall below 0%, implying 

that some firms should underorder. Such combinations are removed from the study, hence the upper white triangle. The 

eight-branch star symbols pinpoint the maximum mitigation successes. Panel (b) displays the maximum mitigation 

successes of the six indicators averaged over 200 supply chains. The vertical arrows indicate the interquartile intervals. 

These performances are contrasted with the uniform allocation of overordering rates, whereby all firms receives the 

same rate, and with the decentralized evolutionary process.  
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Discussion 

Systemic risk occurs due to cascading failures that propagate far through economical systems, 

resulting in potentially large financial loss. Here, we have for the first time demonstrated that, under 

very general conditions, supply chain fragmentation increases systemic risk. The more fragmented a 

supply chain is, the more likely small disruptions propagate and get amplified. This additional risk 

arises from the strategic interactions between individual firms. In fragmented supply chains, the 

system-level benefits of inventory become externalities, in the economic sense, and individual firms 

have less incentive to maintain them. This theoretical finding is also consistent with the empirical 

observations that inventories have been decreasing during the outsourcing boom. Although these 

practices have allowed firms to be more competitive, we argue that, if not managed, they can lead to 

a larger systemic risk as side effect. Systemic risk could thus be seen as a common good problem: 

as a whole, the supply chain benefits from the provision of inventories, but firms are not sufficiently 

incentivized to do so.  

 The benefits of having more integrated decision-making processes along a supply chain 

have been described a long ago in the supply chain management literature (33). Coordination 

among firms could re-incentivize risk-mitigating measures in fragmented supply chains. In practice, 

it could take various forms (36, 37). For instance, bilateral supply chain contracts such as revenue 

sharing contracts could facilitate information sharing and directly extend the scope of risk 

management (39). Sales rebate, buy-back, and quantity flexibility contracts could also lessen the 

financial risk of maintaining a safety stock (see 39 for a review of supply chain contracts). Third-

party “orchestrators” could also help firms coordinate larger and specialized subcomponents of the 

chain (41, 42). 

 Our work shows that, through a precise supply chain mapping, several simple indicators can 

be used to define the inventory levels that firms should keep to minimize systemic risks. In practice, 

which agents could use such benchmark levels? Central the banks are legitimate decision-makers to 

deal with systemic risk in financial systems, but no equivalent agents exist for supply chains. We 

suggest that three types of agents could be interested in such a top-down approach to systemic risk 

mitigation. First, within large corporations, supply chain managers could use this information to 

facilitate coordination between subsidiaries or production sites. Next, to secure the provision of 

critical goods, such as food or health-related products, policy-makers could be interested in setting 

minimum inventory requirements within the relevant supply chains. Last, insurers are increasingly 

asked to cover the economic losses generated by supply chain disruptions. The use of such 

indicators could thus help them tailor their insurance policy according to the position of firms in 

their supply chains. 
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Our results also point to a trade-off between environmental performance and economic 

resilience. Supply chains are able to deliver a steadier flow of outputs in the face of external 

perturbations through the maintenance of inventories. This resilient behavior comes with a higher 

input consumption, especially when goods are perishable, leading to a loss of material efficiency. 

For instance, in our model, with the benchmark parameter values, the sales of an integrated supply 

chain can be 22% greater compared to a fragmented one, but it will consume 40% more raw 

materials. These figures suggests a possible trade-off between a green (43) and resilient supply 

chain (44). This trade-off could be particularly marked for perishable goods such as food. For 

instance, to ensure high on-shelf availability of food products (45), retailers might build larger 

stocks, inducing extra wastage (46, 47). In a turbulent environment, securing a disruption-free 

supply of such goods can thus be a conflicting objective with the reduction of environmental 

degradation. 
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SI Text 

The SI Text is composed of three parts. 

1. Sections S1 to S5 present analytical results for simple supply chains. They allow us to 

identify the mechanisms that drive the results shown in the Main Text. Section S1 to S4 

focus on a single producer connected to multiple primary producers. The dynamical 

equations for inventory and profit are established in Section S1. Section S2 shows how the 

overordering rate that maximizes profits changes with parameters. Section S3 describes the 

mechanism that determines this behavior for fully durable goods. Section S4 presents the 

analytical treatment for fully perishable goods. Section S5 exposes a method to 

algorithmically compute the exact expected values of profits and overordering for a large 

class of complex supply chain. 

2. Sections S6 and S7 provide information on the evolutionary process. Section S6 describes in 

details the evolutionary process used in the simulations. Section S7 provides evidence on the 

existence of evolutionary equilibria. 

3. Sections S8 to S10 present additional numerical results. Section S8 shows a topologically 

periodic distribution of the overordering rates obtained with a layered supply chain. 

Section S9 presents the distribution of the mitigation success as a function of fragmentation. 

Section S10 presents the statistical correlations between the profit-maximizing overordering 

rates and a selection of ten network indicators. 

 

Figure S1. Analytical results are derived for simpler supply chains. Panel (a) displays a two-layer supply chain with one 

final producer supplied by five primary producers. Panel (b) shows a fully connected five-layer supply chain. The 

network topology is summarized by the vector (3,5,2,4,2), which gives the number of firms that corresponds to each 

one of the five layers: 3 primary producers, 5 layer-two firms, …, and 2 final producers. This supply chain is fully 

connected, because each on of the layer-� firms is supplied by all of the layer-(� − 1) firms, for � = 2,… , 5. 

S1: A single producer supplied by multiple firms: dynamical equations. This situation is 

illustrated in Fig. S1(a) for � = 5 suppliers. The � suppliers are primary producers. Since the inflow 

of raw materials is not subject to external perturbations, they do not overorder. We focus on the 

inventory of the final producer, denoted by �!. It changes through time as follows: 

 �!!! = �! + ℐ! − �! − 1− � �! + ℐ! − �! , [S2] 

Chapter 6

174



 17 

where ℐ! is the quantity received, �! the quantity used for production. The last term represents the 

impact of non durability: a share 1− � of the remaining inventory is lost at each time step. This 

expression can be rewritten as follows: 

 �!!! = � �! + ℐ! − �! . [S3] 

We denote by �! the random variable representing the number of externally perturbed suppliers at 

time � . This variable — which can take up to � + 1 values: 0, 1,… , �  — follows a binomial 

distribution: 

 Pr � = � =
�

�
�! 1− � !!!

. [S4] 

When �! suppliers are perturbed, the quantities ℐ! and �! are: 

 ℐ! =
� − �!

�

1+ �

�
, [S5] 

 �! = min
1

�
, �! + ℐ! . [S6] 

To eliminate the min   function, we determine the maximum number of suppliers that can 

simultaneously fail without impacting final production. It is the largest �! such that �! + ℐ! ≥ 1 �. 

Using Eq. [S4] in the inequality, this number is the largest integer lower than or equal to: 

 �! =
� � + � �!

1+ �
. [S7] 

We can thus rewrite Eq. [S2] by distinguishing whether is threshold is crossed: 

 �!!! =
� �! +

�

�
−
�!

�

1+ �

�
, if �! ≤

�� + ��!

1+ �
,

0, otherwise.                                                  

 [S8] 

The profit — sales minus input costs — can be derived from the inventory: 

 �! =

�! −
� − �!

�

1+ �

�
, if �! ≤

�� + ��!

1+ �
,                        

�!��! +
� − �!

�
1+ � 1− � −  

1

�
, otherwise,

 [S9] 

where �! is a random variable equals to 0 with probability � and 1 otherwise. If either inventory or 

overordering gets larger, the threshold value �! also grows. The firm is less vulnerable to supply 

disruption and meet the full demand more often; see the first Eq. of [S8]. If both inventory and 

overordering are low enough, a combination of perturbation may induce a shortage. The entire 

inventory is used for production and a share of the demand remains unmet; see the second equations 

of [S5] and [S6]. 

S2: A single producer supplied by multiple firms: a summary of the influence of parameters 

on the optimal overordering rate. We present how the overordering rate that maximizes the 
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expected profit of the final producer, denoted by �∗, changes with durability �, failure rate �, 

productivity � , and number of suppliers � . We focus on the productive region, defined by 

� < 1− 1 �. Results are shown in Fig. S2, and are commented for three scenario of durability. 

• When � = 100%, there is a smooth continuous relationship between �∗ and �, namely: 

�
∗
= � 1− � . This equation is not affected by � or �. The mechanism underpinning this 

result is explained in Section S3. 

• When � = 0%, the relationships between �∗ and � and between �∗ and � are discontinuous. 

The optimal rate �∗ can take up to � values, equal to � � − �  with � = 0, 1,… , � − 1. It 

jumps from one of this value to another as � or � crosses specific threshold values; these 

values are explicitly derived in Section S4. With more numerous suppliers, a larger set of 

values is accessible to �∗, so that the firm can more finely manage a particular failure rate. 

For instance, considering the three 0%-durability curves in Fig. S1, we observe that it is 

never profitable to overorder with one or two suppliers, whereas for five suppliers the 

optimal rate �∗ jumps from 0 to 25% when � crosses 25%. 

• The behavior of  �∗ for intermediate durability interpolates between the features described 

for � = 100% and � = 0%. In Fig. S2, as � decreases, a threshold behavior appears for low 

and high failure rates. Overordering is profitable only for intermediate failure rates. This �-

interval gets reduced as � decreases. The set of accessible �∗-values gets also smaller, 

leading to a more discontinuous behavior. Having mores suppliers smoothen these 

nonlinearities; see the 90%-durability curves across all three panels of Fig. S2.  

 

Figures S2. Profit-maximizing overordering rates depends nonlinearly on parameters. These curves concern a final 

producer supplied by (a) one, (b) two and (c) five suppliers, as illustrated in Fig. S1(a). The panels contain 11 curves, 

corresponding to different durability. Productivity is 2, and only the productive region of the parameter space is shown, 

i.e. with failure rates between 0 to 50%. 

S3: Origin of the large overordering rates when goods are fully durable. When the final 

producer is supplied by a single primary producer, the dynamics of its inventory, denoted by �!, can 

be interpreted as a one-dimensional asymmetric random walk in the positive real line. At each time 

step, inventory increases by � � with probability 1− �, or decreases by min �! , 1 � . The origin 

of the positive real line, 0, is a so-called sticky wall: because of the min  function, any trajectory 

below 1 � that undergoes a negative step simply lands on the wall. This behavior is to be 
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distinguished from that of reflecting walls, on which trajectories bounce back, and of absorbing 

walls, in which trajectories get caught. In this class of random walk, trajectories are expected to 

diverge if the expected growth rate � �!!! �! is higher than one, i.e. when the positive step has a 

larger expected size than the negative step. Otherwise, trajectories are expected to sometimes touch 

the wall. In our model, this condition is 1− � � � ≥ � �. The overordering rate that maximize 

profit, �∗, is the one that turns this inequality into an equality: 

 �
∗
=

�

1− �
. [S10] 

This solution can be explained by the following decision-making heuristics. When � is higher than 

� (1− �), inventory eventually diverges. Consequently, most extra inputs purchased are not used, 

implying that the amount of sales could be achieved with less overordering. Conversely, when � is 

lower than � (1− �), inventory is sometimes below 1/�, which leaves the firm vulnerable to 

supply disruption, and some sales are missed. With fully durable goods, however, it is always 

profitable not too miss sales. When one unit of output is sold, cost only consists of the associated 

quantity of input consumed — there is not need to purchase extra inputs to replace an obsolete 

inventory. As a consequence, if sales are missed, it is profitable to increase overordering. This 

heuristics also applied when the firm has more than one supplier. 

S4: Nonlinear behavior of the optimal overordering rate when goods are not durable. We first 

aim to write an explicit equation of the expected profit of a final producer supplied by � primary 

producers, as in Fig. S1(a), for � = 0%. To that end, we determine for one time step all the possible 

value of profit and their associated probability. Since inputs are not storable, the firm can only tap 

into the inputs received during the same time step. Costs are directly proportional to the number of 

failed suppliers, denoted by � = 0,… , �. Sales depend nonlinearly on �: they are proportional to � 

but cannot exceed the final demand, which equals one. Combining Bernoulli distributions, we 

obtain the expression of the expected profit � � : 

 � � =
�

�
�! 1− � !!!

1− p  min
� − �

�
1+ � , 1 −

� − �

�

1+ �

�

!

!!!

. [S11] 

We note that the overordering rates of the primary producers do not affect � � . The min function 

corresponds to the fact that sales cannot exceed the demand. To eliminate this function in [S8], we 

identify the largest �-value for which the min expression yields one. It is immediate that this value, 

denoted by � � , is: 

 � � = �
��

1+ �
, [S12] 

 

Chapter 6

177



 20 

where operator � transform a real number into the highest integer less than or equal to this number. 

Integer � �  represents the maximum number of suppliers that, for a given level of overordering, 

can be shocked without loss of sales. Using � � , expression [S8] can be rewritten as: 

 

� � = (1− �)
�

�
�! 1− � !!!

1− 1−
�

�
1+ �

! !

!!!

+ 1+ � 1− � −
1

�
. 

[S13] 

In the full fragmentation scenario, the objective of the final producer is to select the overordering 

rate �∗ that maximize its expected profit � � . We define on ℝ! the function �: �⟼ � � � ; it 

represents the fitness landscape. For any � > 1 , any � ∈ 0,1  and any � ∈ ℕ∗ , function �  is 

continuous and piecewise linear. As � increases from 0% onward, � �  jumps from one integer 

value to the next, from 0 all the way to � − 1. Each time � �  increases, a new term in the sum of 

[S9] is added, leading to a new linear piece for �. The number of linear pieces of � is equal to the 

number of values that � �  can take, which is �. Using Eq. [S11], we find the (� − 1) values of � 

separating the � pieces: 

 �
!
=

�

� − �
  , [S14] 

with � = 1,… , � − 1. We add to this ensemble the term �! = 0, which corresponds to the left 

boundary of the first linear piece. The last linear piece of � lies on the interval �!!!,+∞ . There, 

given [S12], � is decreasing in � with coefficient of variation − 1− � !
z. It follows that, since � 

is continuous, it reaches a maximum on the interval �!, �!!! . Suppose that a maximum is located 

between two boundaries, say �! and �!!!. Then, because � is linear on the segment �! , �!!! ,  it 

would necessarily be maximum on the whole segment. Consequently, it suffices to look for maxima 

of � among the boundaries �!,… , �!!!. Using [S12], we can write the expression of �(�!): 

 �(�!) = 1− � 1− � −  
1

�

�

� − �
+

�

�
�! 1− � !!!

� − �

� − �

!

!!!

. [S15] 

We now demonstrate that the set {� �
! } has a unique maximum. When � = 1, the set has only one 

value; � is therefore maximum for �! = 0. When � > 1, we study the sign of the difference 

�(�!!!)− �(�!) using Eq. [S14] for � = 0,… , � − 2: 

 � �
!!!

− � �
!
=

�  1− �

� − � − 1 � − �
  �! � −  

1

�
, [S16] 

where �! �  is the term: 
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 �! � = 1− � −
�

�
�! 1− � !!!

!

!!!

1−  
�

�
. [S17] 

From Eq. [S15], we observe that, unless � = 1, for which � is always null, the sign of �(�!!!)−

�(�!) is determined by the relative value of �! �  and 1 � . From Eq. [S16], the �! � s are 

decreasing when � increases from 0 to � − 2. We are left with three possibilities. 

1. When �! � < 1 � , we have � �
!!!

< �(�!)  for � = 0,… , � − 2 . It implies that �  is 

maximum at �! = 0. 

2. When �!!! � > 1 �, we have � �
!!!

> �(�!) for � = 0,… , � − 2. It implies that �  is 

maximum at �!!! = � − 1. 

3. Otherwise, we can find an integer �∗ between 0 and � − 2 such that �! � > 1 � for � < �
∗ 

and �! � ≤ 1 � for � ≥ �
∗. It implies that � is maximum at �!

∗

= �
∗ (� − �∗). 

For particular values of � and �, defined by the following equations: 

 � = 1 �!(�), [S18] 

with � = 0,… , � − 2, we have � �
!!!

= � �
! . It implies that � is maximum both at �! and �!!!, 

and therefore on the whole segment �! , �!!! . In these particular cases, we suppose that firms select 

the smallest overordering rate that maximizes �, i.e., �!. In conclusion we have established that, for 

a combination of � and � values, the profit-maximizing overordering rate is unique. As � and � vary, 

it can take only a limited set of values: � � − �  with � = 0,… , � − 1. Equation [S17] defines the 

regions of the (�,�) parameter plane corresponding to the different profit-maximizing overordering 

rates. They are shown in Fig S3. A small modification of �  or �  either has no impact on 

overordering decisions, or lead to a discontinuous adjustment. With more suppliers, the number of 

potentially optimal overordering rates increases; see the growing number of regions in Fig. 3 from 

panel (a) to (c). Consequently, discontinuities fade out as the number of suppliers grows; see 

Fig. S4(a). In other words, the wider supplier base, the finer firms can adapt to a particular level of 

risk. The loss due to supplier failures thus decreases as 1 �; see Fig. S4(b). 
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Figures S3. The optimal overordering of fully perishable inputs discontinuously changes with productivity and failure 

rate. The three panels show, in the parameter plane (�, �), the overordering rates that maximize the profit of a firm 

supplied by (a) � = 2, (b) � = 5 or (c) � = 10 primary producers. The regions are separated by the curves defined in Eq. 

[S17]. 

 

Figure S4. A larger supplier base enables finer adaptation to risks. Both panels concern a single firm supplied by 

multiple primary producers. Panel (a) shows how the relationship between profit-maximizing overordering rate and 

failure rate changes with the number of suppliers. In particular, the 5- and 10-supplier curves are the vertical intersects 

of Fig. S3(b) and (c) for � = 2. Note that over 50% failure rate, in the grey region, firms are unproductive. Panel (b) 

presents how the expected indirect loss decreases with the number of suppliers for a failure rate of 10%. The red curve 

is a fit, showing that indirect loss decreases as 1 �. 

In the full integration scenario, all firms belong to the same group. They aim to maximize the 

expected profit of the group, denoted by � �! . We infer from the symmetry of the supply chain 

that all primary producers choose the same overordering rate �! and have the same expected profit 

� �! : 

 � �! =
1+ �!

� �
1− � −

1+ �!

�
, [S19] 

where �! the overordering rate of the final producer. The group profit � �!  is thus equal to 

� �! + �� �! , where � �!  is the expected profit of the final producer defined in Eq. [S10]. 

Since �! only influences � �!  and not � �! , primary producers choose the overordering rate that 

maximizes their own profit. From Eq. [S18], this overordering rate is 0%, whatever the choice of 

the final producer. As for the latter, we define on ℝ! the function ℋ: �! ⟼ � �!(�!) , which is, as 

�, piecewise linear and has the same boundaries �! between linear pieces, given in Eq. [S13]. The 

last linear piece on �!!!,+∞  is decreasing in �! with coefficient of variation − 1 �
!, which 

ensures that, as �, ℋ has a unique maximum among the values �!, with � = 0,… , � − 1. 
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S5: Algorithmic computation of the expected profits in fully connected and layered networks. 

In large acyclic networks, we cannot write an explicit expression of expected profits for each firm. 

For the general case, we approach these values through the numerical simulations of the stochastic 

process. For a specific class of structure, however, we can write a deterministic algorithm that 

allows us to access the exact values of the expected profit. An example of such network is shown in 

Fig. 1(b). It is said to be “layered”, because, firms are organized in layers: at layer 1 lie the primary 

producers, at layer 2 the direct customers of primary producer, and layer 3 the direct customers of 

layer-2 firms, and so on all the way to final producers. It is said to be “fully connected”, because 

each firm at one layer is supplied by all the firms of the layer underneath, except primary producers 

which are externally supplied. The topology is described by the number of firms �! occupying each 

layer � = 1,… , �, where � denotes the number of layers. In this class of supply chain, all firms 

occupying the same layer share the exact same suppliers and customers. They all face the exact 

same demand and the same supply risk. This symmetry allows us to make the following analytical 

simplification: all firms at one layer have the exact same behavior. In particular, they choose the 

same overordering rate �!. The production targets of each firm can either be computed using the 

input–output relationships, as proposed in the Main Text for general acyclic networks, or using the 

following relationships: 

 

�! =
1

�!
    for    � = �,                                               

�!!! =
�
!�! 1+ �!

�!!!�
   for    � = 1,… , � − 1.      

 [S20] 

In addition, all firms at one layer simultaneously receive the exact same amount of inputs. We 

denote by �! the random variable representing the quantity of inputs received by a layer-� firm. The 

random variable �! is discrete; we denote by �!
!  each of its �! realizations, with � = 1,… , �!. The 

core of the algorithm consists in computing, layer by layer, the probability distribution of �!. After 

computing all production targets �! using Eq. [S19], we initialize the process with the primary 

producers, � = 1.  The probability distribution of �! is �!/� 1+ �!  with probability one. Next, 

suppose that we know the probability distribution of  �!, i.e., the value of its realization �!
!  and its 

associated probability Pr �! = �!
! . To find the probability distribution of �!!!, we distinguish 

between �! + 1 cases, each case corresponding to the number of direct layer-� firms perturbed: case 

(1) no firm is perturbed; case (2) one firm is perturbed; case (3) two firms; and so on up to case 

�
!
+ 1  in which all of the �! firms are perturbed. For each case, we do the following computation. 

1. We evaluate the probability of the case using combinatory formulas. For instance, the 

probability of case (� + 1), in which � layer-� firms is perturbed, is 
!
!

!
�! 1− � !!!. 
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2. We determine the probability distribution of the total quantity produced by layer-� firms, 

using the known probability distribution of �! and production targets �!. For the case � + 1, 

the total quantity produced by layer-� firms is �! − �  min ��! ,�! . 

3.  We deduce the probability distribution of inputs received by layer- � + 1  firms. For the 

case � + 1, each layer- � + 1  firms receives �! − �   �!!!min ��! ,�!  inputs.  

Each case thus provides a part of the probability distribution of �!!!. Case � + 1  provides the 

following potential realizations of �!!!: 

 
�
!
− �  

�!!!
min ��!

! ,�! ,  for � = 1,… , �! , [S21] 

 along with their corresponding probabilities: 

 
�
!

�
�! 1− � !

!
!!
Pr �! = �!

! ,    for � = 1,… , �! . [S22] 

We recombine all of the �! + 1 cases to elicit the complete probability distribution of �!!!. By 

applying the recursive process from primary producers all the way to final producers, we can 

determine the probability distributions of �! for all � = 1,… , �. Next, we deduce directly from these 

distribution the probability distribution of the sales, denoted by �!. Sales are null with probability � 

or otherwise equal to min ��! ,�! . Last, knowing the probability distribution of the inputs and 

sales of each firms, we can compute the expected profits � �
!
= � �

!
− �! . 

S6: Detailed description of the evolutionary process. The optimization problem of each firm is to 

find the overordering rate that maximizes the profit of the group it belongs to. We define an 

evolutionary process to elicit the solutions. We call strategy the choice of a particular overordering 

rate. The set of strategies for which no firm has any interest in choosing another strategy is called 

the set of evolutionarily stable strategies (ESSs); it corresponds to a Nash equilibrium. We call 

fitness landscape of firm � at evolutionary step � the mapping of its overordering rate �!
! into the 

expected profit of the group �(�!
!
 ); it is determined by the topology � , by the firm-level 

parameters �, � and �, and by the overordering rates of the other firms �!!!
! . The evolutionary 

process proceeds through gradient ascent. One firm at a time performs an explore-and-adjust 

procedure: it explores its fitness landscape by testing different strategies, then makes a small 

adjustment to move up the landscape. We denote by �! the ensemble of firms that have not reached 

their ESS at the evolutionary step �. The initial ensemble �! gathers all firms except primary 

producers. Since the latters receive riskless supply of raw materials, they always find it more 

profitable not to overorder. An initial overordering rate of typically 0% is attributed to each firm. At 
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evolutionary step �, firms in �! perform the explore-and-adjust procedure, one after the other, in a 

random order. Exploration consists in three trials, whereby to three strategies are tested: 

max (0, �!
!
− �), �!

! and �!
!
+ �. To test a strategy, we run the model over � time steps and compute 

the corresponding time-averaged group profit �!
!
! . For the three tests, we apply the same 

sequence of perturbations, randomly generated by � simultaneous Bernoulli processes—one per 

firm—of length � and probability �. The three pairs �!
!
, �!

!
!  are used to estimate the local 

geometry of the fitness landscape. An estimate of the gradient, denoted by �!
!, is given by the 

derivative in �!
! of a parabola fitted in a least square sense to the three points. The overordering rate 

of firm � is then updated as follows: �!
!
= �!

!
+ �!(ℎ �!

!), where ℎ is a scaling constant and �! a 

bounding function that returns � if its argument exceeds �, -� if its argument falls below – �, or the 

argument itself otherwise. These bounds limit the size of the updating step. Once all firms in �! 

have gone through this procedure, all updated strategies are carried forward: �!
!!!

= �!
!. Some firms 

may have reached their ESS and will therefore be removed from the new ensemble of updating firm 

�!!!. The whole process is repeated until �! becomes empty. A firm is considered to have reached 

its ESS if its strategy has become stationary. Stationarity is tested as follows. Within an 

evolutionary-time window of length �, which spans the interval � −� + 1, �  , we randomly 

select two smaller windows that are longer than � 2. An evolutionary time series is considered 

stationary when the linear trend on each one of the two windows falls below a threshold �. In this 

case, the ESS is estimated by the average value over the last � steps. Table S1 summaries the 

relevant parameters and their values. 

Table S1. Summary of the parameters used in the evolutionary process 

Parameter Definition Value 

�  Duration of the trials, in economic time step 100  

�  Exploration step  5. 10
!!  

�  Maximum updating step size 2. 10
!!  

�  Evolutionary time window for testing stationarity  30  

�  Stationary threshold 10
!!  

The stochastic nature of the external perturbations poses several challenges to the design of the 

evolutionary process. The three trials only provide estimates of the fitness landscape. When each 

trial is made under different sequences of perturbations, we observe that the estimated fitness 

landscape sometimes lead to ambiguous results. Specifically, as soon as the local geometry of the 

expected fitness landscape becomes flatter, the estimated landscape gets rugged, even with longer 

duration of the trials, such as  � = 10,000. Instead, when the three trials use a common sequence of 

perturbations, they produce comparable results and enable unambiguous adjustments. This solution 

however generates evolutionary fluctuations. Since a new sequence of perturbations is used at each 
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evolutionary time step, the estimation of the same fitness landscape may slightly vary. These 

varying estimates produce noises in the evolutionary time series of the strategies, as observed in Fig. 

1(a) of the Main Text. Consequently, to determine whether a firm has reached its ESS, we use a 

stationarity condition. Note that, using the same sequence of perturbation over a whole simulation 

would lead to overordering decisions that are adapted to this precise sequence, but not to the overall 

failure rate, leading to large variability across simulations. In Tab. S1, we selected the parameter 

values that lead, within reasonable computation time, to reproducible results: the standard 

deviations over the evolutionary stable overordering rates is below 1%. For fully connected and 

layered networks, illustrated in Fig. 1(b), we can use the algorithm of Sec. S5 to obtain the exact 

expected profits. At each evolutionary time step, we have access to the exact fitness landscape. For 

this class of supply chain, we can therefore determine the exact ESS. 

S7: Evidences for the existence and uniqueness of Nash equilibria. As studied in Secs. S2 to S4, 

a firm supplied by multiple primary producers has a unique solution to its optimization problem, 

both in the fully fragmented and in the fully integrated scenarios. For specific combinations of �, � 

and � — e.g., Eq. [S17] — a continuous range of strategies could solve the optimization problem. 

To ensure uniqueness, we have assumed that firms have a waste-minimizing behavior: when a 

range of overordering rates yield similar outcome, they choose the smallest one. The uniqueness of 

the solution applies to any two-layer supply chains. Strategic interactions occur in supply chain of 

three or more layers. The strategy chosen by a layer-2 firm influences the fitness landscape of layer-

3 firms. In fact, extensive numerical simulations show that all fitness landscapes have a unique 

maximum, as those of studied in Sec. S4. Examples are shown in Fig. S5 for � = 0%, both for the 

fully fragmented scenario in panels (b) and (e) and for the fully integrated one in panels (c) and (f). 

In fully connected and layered network, as in Figs. S5(a–c), the number of linear pieces increases as 

we move down the supply chains. In random acyclic network, as in Figs. S5(d–f), the fitness 

landscape become even smoother. This property of the fitness landscapes suggests that a unique 

Nash equilibrium exist generically in a supply chain. Numerical experiments using very diverse set 

of initial conditions show that the evolutionary process leads to similar ESSs, within 1% standard 

deviation. The remaining variability is attributed to the fluctuations discussed in Sec. S6. 
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Figure S5. Fitness landscapes always have a unique maximum. Panels (b–c) (resp. panels (e–f)) show the fitness 

landscape at ESS of the colored firm of the supply chain displayed in panel (a) (resp. panel (d)). Panels (a) and (e) 

concern full fragmentation: the fitness landscape is the relationship between the colored-firm profit and its overordering 

rate. Panels (b) and (f) concern full integration: it shows the relationship between the profit of the whole supply chain 

and the colored-unit overordering rate. In all panels, � = 30%, � = 2. Durability is 0% in panels (b–c) and 50% in 

panels (e–f). 

S8: Periodic patterns of inventory emerging from threshold behavior. As mentioned in the 

Main Text, two main mechanisms shape the overordering decisions. First, as each supplier, both 

direct and indirect, is a potential source of hazard, leading to stronger overordering for firms located 

downstream. Next, the inventory maintained by a supplier may sufficiently damp disruption cascade, 

so that can its clients may overorder less. In random acyclic network, the first mechanism 

dominates, as shown in Fig. 1(c) of the Main Text, but the second generates a large variability. For 

layered structures, however, firms belonging to the same layer share a very similar position, and 

tend to act alike. Consequently, the second mechanism gets more detrimental in shaping the 

outcome. Figure S6 presents the periodic pattern that emerges from these interactions in a fully 

connected and layered network. According Sec. S4, with two suppliers and non-durable goods, the 

overordering rates that maximize the profit of firm is either 0% or 100%. Clients of primary 

producers face too low risks, so that overordering is not profitable. As we move down, risks pile up. 

At layer 9 a threshold is crossed and a 100%-overordering becomes profitable. Because of this 

decision, the level of risks is reduced so much that layer-10 firms have no incentive to overorder. 

As we move the next layers, risks pile up again until a new threshold is met, and overordering 

becomes profitable, at layer 15. This sequence repeats and leads to a periodic pattern of length 5. 
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Fig. S6. A periodic overordering pattern emerges from strategic interactions. Panel (a) presents the evolutionary 

dynamics corresponding of the full fragmentation scenario that settles in the fully connected 30-layer supply chain with 

2 firms per layer displayed on panel (b). The average overordering rate of each of the 30 layers is indicated by a color 

code: grey corresponding to no overordering and purple to a 100%-overordering rate. Panel (b) displays the resulting 

pattern: only firms located at layers 9, 15, 20, 25 and 30 overorder. 

S9: Robustness check of the negative impact of fragmentation on mitigation. Figure 3 of the 

Main Text shows how the average mitigation success changes with fragmentation for six classes of 

acyclic random network. Each point of these curves is, for a given level of fragmentation, an 

average over 20 supply chains, and for each supply chain with �  firms, over 10×�  group 

configurations. Using the same colors, each panel of Fig. S7 presents the dispersion of underlying 

data. The top subpanels show the inter-network dispersion: how mitigation success, averaged over 

the group configurations, varies across the 20 networks. The bottom subpanels present the inter-

group dispersion: how mitigation success, scaled by the average over all networks, varies across the 

10×�  group configurations. Such variability is sizeable, indicating that, for specific group 

configurations, a slightly more fragmented supply chain may have a larger mitigation success. But 

the overall finding remains robust: in average fragmentation hampers risk mitigation. The 

variability between networks is much larger, indicating that the overall mitigation success is 

strongly influenced by the structure of the supply chain. This finding point towards further 

investigations aiming at identifying the structural features that influence risk mitigation. 
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Figure S7. Dispersion of the data underpinning the six curves of Fig. 3 of the Main Text. Each panel corresponds to one 

of the curves. For each fragmentation level, two distributions of mitigation success are shown. The top one represents 

the network dispersion: it is made of 20 data points, which are the average mitigation success over the 10×� group 

configuration generated for each network. The bottom one represents the group dispersion, made of 20×10×� data 

points. To shown only the group-configuration-induced variability, we remove the network dispersion effect by 

rescaling each data points by the average mitigation success. Specifically, each data point is the mitigation success 

obtained with one network and one group configuration, minus the average mitigation success over all configurations 

for the specific network, plus the average over all configurations and all networks. The bottom and top of the boxes 

indicates the first and third quartiles, the heavy horizontal lines inside the boxes pinpoint the medians, and the whiskers 

extends to the extrema. 

S10: Predicting the optimal overordering rates with network indicator. Could the optimal 

overordering rate of a particular firm be predicted by its position in the supply chain, without an 

explicit analysis of the strategic interactions? We use linear and multilinear regression analyses to 

test the ten network indicators presented in Table S2. Each of them captures a particular aspect of 

the position of the firm in the supply chain. Three indicators focus on the supply side: the number of 

direct suppliers, of total suppliers, and the supply-chain level. Three others are their counterparts for 

the demand side: the number of direct clients, of total clients, and the inverted supply-chain level. 

The number of similar firms captures the density of firms sharing the same clients. The three last 

indicators are centrality measures: closeness and betweenness centrality, page ranks. 
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Table S2. Summary of the ten network indicators. 

Name Explanation 

# Direct suppliers Number of direct suppliers. 

# Total suppliers Number of all direct and indirect suppliers, up 

to primary producers. 

Supply-chain level Average length—i.e. number of links—of all 

pathways connecting the firm to primary 

producers. It is equivalent to the ecological 

trophic level (26). 

# Direct clients Number of direct clients. 

# Total clients Number of all direct and indirect clients, up to 

primary producers. 

Inverted supply-chain 

level 

Average length of all pathways connecting the 

firm to final producers. It is the supply-chain 

level of the network in which all links have 

been reverted. 

# Similar firms Number of other suppliers of the firm’s clients 

Closeness centrality Inverse of the sum of the length of the shortest 

path connecting the firm to all others (25). 

Betweenness centrality Importance in connecting any two regions of 

the network (25). 

Page ranks Importance in supplying clients that are 

themselves important suppliers (25). 

 

We performed linear and multilinear regressions of the indicators on the ESSs, both full 

fragmentation and full integration. We exhaustively tested combinations of indicators, using 

stepwise algorithms for model selection. For each scenario, the dataset contains 60,000 points, 

corresponding to 2,000 directed acyclic random networks with � = 30, � = 3, � = 2, � = 50% and 

� = 10%. We first performed linear regressions using one indicator at a time. Results are presented 

in Table S3. The highest coefficient of determination is reached by the number of total suppliers in 

the fragmentation scenario, and by the supply-chain level in the integration one. Overall, the 

indicators focusing on the supply side, including page rank, outperform those focusing on the 

demand side. This difference is slightly reduced in the integration scenario, in which the impact of 

overordering on clients is taken into account by firms. We note, in particular, that closeness and 

betweenness centrality do not capture relevant information for the allocation of overordering rates. 

These results confirm the findings exposed in Fig. 5 of the Main Text. The overordering rates 

leading to the higher mitigation success are those of the full integration scenario. Therefore, supply-

chain level is the most accurate tool that decision-makers can use to find an allocation of 

overordering rates that reduces systemic risks. With full fragmentation, after removing the 

variability captured by the number of total suppliers, a large dispersion of the overordering rate 

remains, as seen in Fig. 1(c) of the Main Text. No other indicator, however, is able to capture the 

remaining variability. Even a multilinear model containing all indicators increases the coefficient of 

determination by only 0.03. With full integration, a similar multilinear model increases more 

significantly the coefficient of determination, from 0.48 with supply-chain level only to 0.62. Using 
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stepwise model selection, we found that the inverted supply-chain level is the second best indicator. 

This result confirms that, in integrated supply chains, the position of a firm in relation to its clients 

could also be taken into account to improve the allocation of overordering rates. The large 

remaining variability however suggests that strategic interactions fail to be captured by linear 

models. Decentralized decisions always outperform centralized ones based on linear models. 

Table S3. Results of the linear regressions made for each indicator of Table S2 on the evolutionary stable overordering 

rates of individual firms for the fully fragmented and fully integrated scenarios. Each regression contains only one 

indicator at a time. For each scenario, the indicator with the highest coefficient of determination is highlighted. All p-

values are below 10!!". Each dataset contains 60,000 points, corresponding to 2,000 networks with parameters � = 30, 

� = 3, � = 2, � = 50% and � = 10%. 

Indicator Full fragmentation Full integration 

 Estimated coefficient 

(standard error) 

Coefficient of 

determination 

Estimated coefficient 

(standard error) 

Coefficient of 

determination 

# Direct suppliers 0.033 

(0.00018) 
0.59 

0.052 

(0.00060) 
0.20 

# Total suppliers 0.016 

(0.000049) 
0.69 

0.023 

(0.00017) 
0.40 

Supply-chain level 0.042 

(0.00027) 
0.49 

0.11 

(0.00066) 
0.48 

# Direct clients -0.019 

(0.00024) 
0.20 

-0.060 

(0.00058) 
0.26 

# Total clients -0.0064 

(0.000079) 
0.21 

-0.018 

(0.00019) 
0.24 

Inverted supply-chain level -0.030 

(0.00033) 
0.26 

-0.096 

(0.00073) 
0.36 

# Similar firms -0.0054 

(0.000095) 
0.12 

-0.019 

(0.00022) 
0.19 

Closeness centrality 9.97 

(0.21) 
0.084 

-3.41 

(0.54) 
0.0013 

Betweenness centrality 0.0014 

(0.000069) 
0.017 

-0.0022 

(0.00017) 
0.0055 

Page ranks 2.34 

(0.014) 
0.55 

4.42 

(0.042) 
0.27 
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Chapter 7

Research outlook

Conceptual framework and methods. The conceptual framework of Fig. 3.2 has

helped us formulate two theoretical models for economic resilience. In both models, the

building blocks are economic agents who follow simple dynamical rules. The flexibility of

ABMs has enabled the study of both short dynamics and long term adaptive behavior.

From the engineering resilience standpoint, we can apply simple statistical methods and

measure the amplitude and timing of disruption cascades. But for ecological resilience,

we may need a wider toolbox, including, for instance, feedback control and advanced

spectral analysis. The study of adaptive resilience, which implies longer time scale, may

be performed using evolutionary approaches and the theory of adaptive dynamics.

In the first paper, ABM analysis was productively steered by the results of the

ODE model. Without this guidance, we perceived that formulating an ABM may quickly

resemble a ‘kitchen sink’ approach: many ingredients are put together, but we loose sight of

their impacts on the outcomes. Many ABM users have expressed this risk. Like Gallegati

and Kirman (2012), we argue that purely simulation-based analyses should be avoided.

Instead, we may advance the exploration of an ABM step by step, through a hierarchy of

models of intermediate complexity that are analytically solvable.

We applied this approach in the two subsequent papers. In the large and complex ER

and SF–FA networks, we zoomed in on smaller structures to uncover the dynamics of ‘fast

desaturation’ and ‘fine detuning’. In the last paper, we reformulated our dynamical system

on simpler and symmetrical supply chains in order to solve the evolutionary trajectories

either explicitly or algorithmically. These intermediate steps have allowed us to build

more robust conclusions. We have however noticed that tractability may be quickly lost

with complex and more realistic typologies. That is why, even with detailed data on

real production systems, generic motifs (e.g., loops, tree) and classes (e.g., Erdős–Rényi

graphs) are still useful for exploring the dynamics of the aggregate system.
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Novel hypotheses on economic resilience. The BDE model has offered a rich view

on the potential structural fragility of production systems. While the adverse effect of

superconnected hubs is now fairly recognized in economics (e.g., Acemoglu et al., 2012), the

negative impact of stock unbalances found in our model has only been recently investigated

(Hallegatte, 2014). Inventory data being disclosed by publicly-traded firms in the U.S., we

believe that the empirical study of our finding could be undertaken. For instance, Barrot

and Sauvagnat (2016) have correlated these data with the U.S. structure of production and

disasters data, and assessed the damping effect of inventory on disruption propagation.

Following the preliminary results of Coluzzi et al. (2011), our second paper has

uncovered the striking role of production delays and their heterogeneity. We have found

that short and unbalanced production delays between interdependent processes may ham-

per their recovery to shocks. The formal sobriety of BDEs has allowed us to identify

the dynamical and topological patterns from which this nonlinear behavior originates. It

would be interesting to identify how frequent are these ‘short interacting loops’ in the U.S.

and Japanese production systems, using for instance the data explored by Fujiwara and

Aoyama (2010) or Mizuno et al. (2014). In addition, consistent dataset on production

delay has not yet been published. We argue such data may be highly relevant to better

grasp the dynamics of production systems and their resilience.

The behavior of the BDE model also suggests potential conflicts between firm-level

and system-level resilience. For instance, from a managerial standpoint, it may seem

adequate to shorten production delays and to ask suppliers to deliver more rapidly, not

only for efficiency purposes but to also enable quicker response to disruptions. But if such

reductions take place between interdependent industries, it may actually take longer to

recover. This concern for speed has also been expressed in financial systems, in which,

according to professionals, efficiency-driven reduction of time lags have increased fragility

(National Research Council of the National Academies, 2007).

In the last model, the evolutionary adaptation of agents, albeit limited to ordering,

has allowed us to evaluate the level of resilience that emerges from optimal risk-mitigating

strategies. We have found that systemic risks, in the form of disruption cascades, increase

with the fragmentation of the supply chains. Although the set of observations presented

in Sec. 2.1.2 seems to support this view, a specific empirical investigation may still be

undertaken to test statistically this theoretical finding.

In reality, fragmentation results from business strategies and is implemented by firms

to cope with competition. Through outsourcing, a share of the risks that could before be

internally managed is externalized to the production system. The economy may as a

result become more turbulent. As suggested in Sec. 2.2.2, firms may compensate for the

higher fragility of their supply chains by being more agile. Turbulence is an opportunity to

compete through resilience. This interpretation could fit within the idea of a self-organized

criticality (Bak and Chen, 1991): competitive pressure drives the system towards higher
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systemic risk, leading to disruption avalanches. The most resilient firms adapt through

new strategies, and systemic risk builds up again.

We then could, as proposed by May et al. (2008) for the banking systems, use

such ABM models to test potential firm-level regulations or incentives that could pull

the system back to a ‘subcritical’ state. Such investigations would be of high interest for

insurers and reinsurers, who are increasingly asked to cover for systemic risks.

Indicators, heuristics, and ‘Black Swans’. To deal with such risks, there is a ten-

dency to overemphasize the role of quantitative indicators. Designing metrics is for in-

stance the top priority of the expert panel on systemic risks of the World Economic Forum

(2012). This dissertation has highlighted significant limitations for the measurement of

resilience. For both models of disruption propagation, we have designed quantitative indi-

cators linked to specific classes of ‘well behaved’ shocks. In reality, disasters and accidents

are much wilder, and vary in their duration, intensity, spatial extent, and may exhibit

spatial and temporal correlations.

In the BDE model, our metrics were linked to short perturbation affecting single

agents one by one. Although interesting findings on resilience could be built on such indi-

cators, it became ineffective to apprehend the response of the system to stochastic shocks.

A series of small perturbations, occurring in a certain order and at specific place, could

destabilize the whole network. With only 1,000 firms, robustly assessing the resilience of

the network to these rare sequences of events is very challenging.

In the third paper, production units were independently hit by failures that follow

a simple stochastic, Poisson process. Agents could learn from these perturbations through

time-averaging procedure and update their strategy accordingly. Real shocks seem how-

ever to behave more erratically, and are better represented by fat-tailed distributions.

Our measurement of resilience would become meaningless. Using ‘Black Swan’ events

(Taleb, 2007) as external perturbations, the evolutionary process would have probably

not converged, and the notion of ‘optimal strategy’ would have to be redefined.

This more realistic setting leads to reassess our assumption on the decision-making

process of agents and their expectations. With such wild uncertainties, it may be, as in

Dosi et al. (2015), that agents with very simple heuristic-based decisions outperform those

using advanced analytics to infer trends.

We argue that designing an indicator of resilience that is freed from any assumption

on the shocks is impossible. Resilience is not purely determined by internal structures

and processes, but by how these factors interact with the environment. The extended

conceptual framework of Fig. 7.1 makes these interactions more explicit.

An extended conceptual framework for the Anthropocene. We have emphasized

in the general introduction that the forcing exerted by human societies on environmental
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processes is likely to generate higher variability. This dissertation has contributed to

uncover economic processes that may amplify such instabilities. However, by limiting our

scope to purely economic processes, we have found limits in our evaluation of resilience.

Since environmental shocks may increasingly be linked with economic activities, as

suggested by the Anthropocene paradigm, we propose to extend our conceptual framework

to explicitly account for this feedback; see Fig. 7.1. In other words, we make the same

step as Holling did with other resilience scientists in the 1990s, but the other way around.

While they realized that, in an anthropogenized planet, socioeconomic dynamics had to be

included in the study of ecological resilience, we here propose, for the exact same reason,

to account for environmental processes in the study of economic resilience.

Micro 

Meso 

Macro 

Agents 

Network 

Produc1on system 

Resilience 

A 

B 

D  C 

Economic module 

Environment 

module 

E 

F 

Figure 7.1: Conceptual framework for the modeling of economic resilience in the Anthropocene.
The economy exerts a forcing on environmental processes (E–arrow), which in turn affect the econ-
omy (F–arrow). The F–arrow could represent, for instance, climate-and-weather–related extreme
events. The description of the economic module can be found in Fig. 3.2.

This extended conceptual framework opens novel exciting perspectives. For in-

stance, in our model of supply chain fragmentation, we may link perturbation frequency

with the waste generated by the economy. We expect that this feedback loop will penal-

ize the building of high safety stocks. Firms may accept a certain degree of fluctuations

in order to avoid getting into an even more turbulent environment. However, as for the

climate and other common goods, pollution is caused by individuals but damages are felt

globally. This coordination issue however differs from most studies of such ‘tragedy of the

commons’ (Hardin, 1968), in that agents share the same supply chain and are therefore

interdependent.

Evolutionary path of production systems. Already within the original concep-

tual framework, our models can be extended in many directions: studying more realistic

decision-making processes, better representing the production process, its constraints and

its flexibility, introducing multiple sectors, calibrating input–output relationships from
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data, etc. One particularly interesting direction is to investigate the evolutionary path of

the structure of production through the B–D–A–loop, and especially how the shocks, i.e.

the F -arrow or the E–F–arrow, are memorized into the network.

A somewhat similar approach was adopted by Weisbuch and Battiston (2007) on

the emergence of spatial pattern in an initially symmetric production network. In models

studying the emergence of production network, as in Gualdi and Mandel (2015), we could

study how different classes of perturbation regimes — well-behaved and wilder ones —

may affect the resulting topology.

We have started to explore this question in the BDE model. By allowing agents to

replace disrupted suppliers by others, highly interconnected structures quickly disappear,

and the resilience of the system greatly increases. This result is in line with Holling’s

hypothesis (1973): systems subject to environmental fluctuations evolutionarily encode

more resilient structures, while unperturbed ones become fragile. We have also observed

that the amount and quality of information processed by agents when they change suppliers

significantly boost the resilience of the system.

We thus believe that our thesis has opened a wide research outlook. New theoretical

hypotheses may be empirically tested, and new data collected. The extended conceptual

framework may usefully guide new theoretical projects, whether based on the models

presented in our papers, or on new ones.
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Conclusion

We cannot understand the resilience of economies without a deep look at their structure.

Businesses now operate through a variety of networked infrastructures and are engaged

in complex supply chains. Such increased interconnectivity generates economic volatility,

which may be also amplified by a more turbulent climate. By modeling the economy as a

dynamic network, we have identified factors that could attenuate these phenomena: less

concentrated sectors, shorter and more integrated supply chains, less inventory unbalances,

more even production delays. These findings now wait to be empirically investigated.

What perspective do they bring for managing our ‘Spaceship Earth’? First, they

indicate that the conventional formula “if you can’t measure it, you can’t manage it” does

not quite apply for resilience. It is hard to quantitatively capture this property, even in

theoretical models. Instead, we should investigate the wide set of economic processes that

underpin it, and assess, in light of some general principles that we are starting to uncover,

whether they contribute or not to resilience. We may start with the following questions:

Are there any weak points in the supply of basic services? How interdependent are the

critical players and how fast do they interact? To which extent supply chains are visible

to consumers and businesses?

We should however not forget why there is a need for resilience. Indeed resilience

has become a solution to climate change due to the collective inability to sustainably

manage socioeconomic development. Steering our societies towards resilience should not

be an end in itself but a mean to tackle the roots of the initial problem.

In fact, most economic volatility is not yet caused by climate change, nor by another

environmental transformation, but arose from internal economic processes. Through tech-

nological innovation and heightened competition, firms have engaged in outsourcing and

inventory reduction, making supply chains more sensitive to shocks. They have simultane-

ously become more agile, more able to cope in a changing environment. Nowadays, many

of them embrace resilience as the process of ‘perpetual reconstruction’, which, in the end,

may increase economic fluctuations.

Resilience is not intrinsically virtuous, and we suggest that, when presented as a

practical solution, it should always be questioned. However, regardless of its socioeco-

nomic implications, the concept is extremely valuable for complex system scientists. This
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mainly qualitative notion opens very rich perspectives to reassess the dynamics of our an-

thropogenized planet. It also opens new interpretations on how complex systems co-evolve

with their environment and may persist through time.

Our thesis has been an exciting intellectual journey. We have explored a broad

spectrum of disciplines, discussed innovative methods, and manipulated intriguing math-

ematical objects. The conceptual framework we have formulated was helpful to make a

start on our exploration of resilience. We believe that it can guide the development of

many more projects, and hope that this dissertation will contribute to advancement of

knowledge on complex systems.
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Résumé long en français

Introduction

Les défis climatiques et environnementaux s’accompagnent d’incertitudes et d’instabilités

grandissantes. Le changement climatique ne conduit pas seulement à une hausse pro-

gressive des températures moyennes, il se traduit également par une modification de la

variabilité interne des processus climatiques et de leurs interactions. En conséquence, les

évènements climatiques extrêmes se transforment, et pourraient devenir plus fréquents,

plus intenses, et affecter de nouvelles régions du globe.

Pour devenir soutenable, il ne suffit donc pas de réduire notre empreinte écologique,

il faut aussi s’adapter à ces turbulences. Comment s’adapter à un environnement

changeant et incertain ? Pour beaucoup, la solution réside dans la résilience, cette

capacité à rebondir après des chocs, à se réadapter rapidement face à de nouvelles

conditions. Comment ce concept, surtout développé en écologie, se traduit-il en terme

économique ? Comment bâtir une économie résiliente face aux chocs environnementaux ?

Nous nous concentrons dans cette thèse sur l’un des mécanismes amplifiant l’impact des

catastrophes naturelles sur l’économie : la propagation des ruptures d’approvisionnement

dans les systèmes de production.

Etant donné l’originalité du sujet abordé et sa dimension interdisciplinaire, nous

consacrons les trois premiers chapitres à introduire la problématique, à en exposer les

enjeux, et à expliciter nos choix méthodologiques. Nous développons d’abord une discus-

sion approfondie du concept de résilience et exposons certaines de ses implications socio-

politiques. Nous relions ensuite notre problématique aux enjeux économiques actuels, en

particulier à l’interconnexion grandissante des processus de production et à l’émergence

du risque systémique. Enfin, à partir d’une revue multidisciplinaire des modèles existants,

nous justifions nos choix méthodologiques et proposons un cadre conceptuel nouveau pour

modéliser de la résilience économique.

La deuxième partie rassemble les trois articles préparés au cours du travail de thèse.

Ils en constituent le substrat scientifique. La première étude valide, à partir d’un système

dynamique proie–prédateur classique en écologie, l’approche multi-agent proposée dans

notre cadre méthodologique. Nous analysons ensuite l’impact de l’hétérogénéité des délais
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d’approvisionnement sur la résilience des chaînes de production, à partir d’un modèle

original basé sur des équations booléennes à retard. Le troisième article mobilise la théorie

des jeux évolutionnaires pour montrer comment la fragmentation des chaînes de production

exacerbe le risque systémique et diminue la résilience.

Pourquoi et comment modéliser la résilience économique ?

Contexte, enjeux et méthodes

La résilience invite à saisir la complexité dynamique des systèmes

En 1973, Holling introduit le concept de résilience en écologie pour souligner le caractère

fondamentalement dynamique des écosystèmes. Son argument se base sur l’observation

de certaines communautés d’espèces dont les populations persistent dans le temps tout

en étant très fluctuantes, et d’autres qui, d’apparence très stable, s’effondrent brusque-

ment. Etudier la stabilité d’un écosystème n’est donc pas suffisant pour comprendre sa

capacité à perdurer dans le temps. Il propose de s’intéresser à leur résilience, c’est-à-dire

à leur capacité à rester ou à retourner dans un même état qualitatif malgré des pertur-

bations extérieures. Du point de vue mathématique, il s’agit de passer de l’analyse des

points d’équilibre et de leurs stabilités locales à une étude des comportements dynamiques

globaux, caractérisés par la géométrie des bassins d’attractions et la survenance de bifur-

cations.

Des dynamiques socio-économiques ont été intégrées à l’étude écologique de la

résilience, notamment dans un contexte d’exploitation de ressources renouvelables. Ce

faisant, plusieurs auteurs ont proposé d’intégrer le concept de résilience dans le corpus

théorique des systèmes complexes adaptatifs, lequel s’intéresse aux phénomènes d’auto-

organisation, de rétroactions multi-échelles, d’adaptation et d’apprentissage. Au-delà de

la capacité d’un système à retrouver son état normal après un choc, la résilience devient

dans cette perspective la faculté d’un système à s’adapter à des chocs, à apprendre pour

évoluer vers un nouvel état.

Ces différentes définitions montrent que, suivant les échelles de temps et les processus

considérés, l’analyse de la résilience peut s’effectuer selon différentes profondeurs de champ.

Trois niveaux sont généralement admis : (i) la résilience ingéniériale — le temps de retour

à l’équilibre, (ii) la résilience écologique — la capacité à rester dans le même état qualitatif,

et (iii) la résilience adaptive — la capacité à se réorganiser face à de nouvelles contraintes.

Le concept de résilience porte également des enjeux socio-politiques, qu’il convient

d’identifier tant la pratique scientifique ne peut s’en extraire. Dans le champ scientifique,

de très nombreuses communautés se sont saisies de ce concept, dans les sciences politiques

ou la géographie par exemple. Il est souvent utilisé pour réinterroger des hypothèses

de travail, ou même pour proposer un changement de paradigme ; l’article de Holling
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en est l’exemple archétypal. Si le concept est jugé inutile par certains car trop flou,

pour d’autres il constitue un « objet-frontière », dont la malléabilité stimule les échanges

interdisciplinaires. Le concept de résilience est par ailleurs très largement répandu dans la

« zone grise » entre sciences, politiques publiques, et institutions internationales. Du fait

de son écho novateur et fédérateur, le terme y est parfois utilisé dans des jeux de pouvoir

et des logiques institutionnelles dépassant sa portée scientifique.

L’interconnexion des chaînes de production, une menace pour la

résilience ?

Etudier la résilience économique, c’est étudier les facteurs qui déterminent la façon dont

une économie répond à des chocs. Le concept de résilience semble adéquat, car, à l’instar

des écosystèmes, le système économique est hautement dynamique, et les grandeurs

macroéconomiques sont sujettes à de larges variations. Dans cette thèse, nous nous

concentrons sur l’un des mécanismes amplificateurs des chocs exogènes dans l’économie,

à savoir les liens d’interdépendances au sein des chaînes de production. Ce phénomène,

encore mal compris, constitue un enjeu économique majeur.

Depuis plusieurs décennies, les processus de production de biens et de services sont

marqués par la désintégration verticale des industries manufacturières et un développement

exceptionnel de la sous-traitance à l’échelle mondiale. En conséquence, les chaînes de

production sont plus longues, plus complexes et plus fragmentées. Un dysfonctionnement

à un point de ces chaînes peut engendrer des ruptures d’approvisionnement, qui, par

effet ricochet, risquent de se propager d’une entreprise à l’autre. De tels phénomènes

ont été mis en évidence empiriquement, et de nombreux rapports émanant d’assureurs et

d’organisations professionnelles témoignent de la difficulté des entreprises à faire face à ce

type de risque.

Dans un système productif devenu réseau mondialisé hautement interconnecté, ces

phénomènes sont perçus comme un risque systémique. Ce risque tend à être exacerbé par

les forces concurrentielles, car elles limitent certaines pratiques renforçant la résilience du

système, comme les stocks-tampons ou la diversification des sources d’approvisionnement.

Pour être individuellement résilientes, certaines entreprises développent des capacités or-

ganisationnelles d’anticipation, de réactivité et d’agilité afin de s’adapter aux turbulences

économiques.

S’intéresser à la résilience des systèmes de production conduit donc à articuler deux

niveaux d’analyse. D’une part, le réseau des interdépendances entre processus de produc-

tion est la matrice à travers laquelle se propagent et s’amplifient les chocs. D’autre part,

les entreprises, qui sont les nœuds de ce réseau, anticipent, réagissent et s’adaptent à ces

perturbations. Leurs décisions, soumises aux forces concurrentielles, modifient la forme

du réseau et sa résilience.
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Pour une modélisation multi-échelle de la résilience des réseaux de pro-

duction

De nombreux modèles exploitent les tableaux de comptabilité intersectorielle entrée–

sortie pour analyser les interdépendances productives. Ils permettent d’obtenir des es-

timations quantitatives des répercussions d’un choc exogène sur l’ensemble des secteurs

d’une économie. Ces estimations dépendent d’hypothèses technologiques et économiques :

ajustement des prix, flexibilité des processus de production, recours à des stocks, réactivité

des entreprises, etc.

Le défi principal de ces modèles est leur granularité, car l’agrégation sectorielle ne

rend compte que de manière très partielle du processus de propagation de choc. Ce dernier

s’opère précisément du fait de l’éclatement structurel de la production entre des agents

différents. Il est donc nécessaire de modéliser le réseau de production à l’échelle des firmes.

Un tel projet se heurte cependant à l’absence de jeux de données déjà structurés. Des

travaux sont en cours pour résorber ce problème. Par exemple, des données fournisseurs–

clients ont déjà permis de reconstituer la majorité du réseau de production du Japon. Ce

résultat sera utilisé pour calibrer l’un de nos modèles.

Modéliser la propagation des chocs sur des réseaux aussi complexes est un autre défi

scientifique, et rejoint la question plus générale des processus dynamiques et adaptatifs au

sein des réseaux. D’importants résultats ont été obtenus par la modélisation des cascades

de défauts sur les dettes, ce qui a permis de mieux caractériser le risque systémique dans

les réseaux interbancaires. La modélisation des réseaux de production et des ruptures

d’approvisionnement en est encore à ses débuts. Quelques modèles ont commencé à étudier

le lien entre topologie et risque systémique, un autre a mis à jour la tendance de ces réseaux

à concentrer la production sur quelques nœuds. Ces contributions établissent la base de

travail sur laquelle s’appuient nos modèles.

Ces processus dynamiques et adaptatifs déterminent la réponse de ces réseaux à des

chocs exogènes. C’est à partir de ces réponses que nous évaluons la résilience du système.

La résilience est donc une propriété macroéconomique qui émerge du comportement des

entreprises et de leurs interactions. Nous adoptons une modélisation dite multi-agent. A la

différence des modèles macroéconomiques classiques qui utilisent des agents représentatifs,

cette approche granulaire est adaptée à l’étude de propriétés émergentes. Notre revue de

littérature montre plus généralement les limites de l’analyse économique classique pour

l’étude de ce phénomène. La majorité des modèles économiques se concentrent sur les états

d’équilibre, alors que la résilience relève justement des comportements hors équilibre. Pour

étudier de telles trajectoires dynamiques, nous n’adoptons pas les hypothèses de rationalité

parfaite et d’anticipations rationnelles, et modélisons les agents économiques par des règles

comportementales adaptatives.

Le cadre de modélisation que nous proposons articule trois niveaux d’agrégation :

les entreprises (micro), la structure du réseau (méso), et le système productif (macro).
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Ces trois niveaux interagissent : par exemple, en fonction des risques macroéconomiques,

les entreprises ajustent leur stratégie microéconomique, ce qui peut modifier la forme du

réseau. En formulant des modèles de différents niveaux de complexité, nous pouvons

méthodiquement étudier plusieurs niveaux de détails, et ce faisant, faire varier la pro-

fondeur de champ de notre analyse de la résilience.

La résilience ingénieriale caractérise l’ampleur des phénomènes de propagation qui

suivent un choc exogène. Nous la mesurons à partir des trajectoires dynamiques de vari-

ables macroéconomiques. La résilience écologique décrit la vulnérabilité du système à des

changements de régime. Nous l’évaluons par la géométrie des bassins d’attraction et à la

survenance de bifurcations. Enfin la résilience adaptative, qui présuppose la modélisation

de processus évolutionnaire d’apprentissage, se mesure par l’amélioration, sur une échelle

de temps plus longue, de la résilience ingénieriale et écologique.

Trois contributions scientifiques pour modéliser la résilience

Analyser les bifurcations d’un modèle multi-agent

Nous avons identifié la pertinence des modèles multi-agents pour modéliser les réseaux de

production. Or, l’analyse de cette classe de modèles est encore peu standardisée. Il n’existe

en particulier aucune méthode établie pour détecter les bifurcations, étape fondamentale

pour étudier la résilience. Nous nous attaquons à ce problème à partir d’un système

classique d’équations différentielles. Il s’agit du modèle Rosenzweig–MacArthur avec effet

Allee sur la proie, qui décrit la dynamique d’interaction entre une proie et son prédateur.

Nous formulons un modèle multi-agent qui en reprend les caractéristiques principales. La

définition du modèle respecte strictement le paradigme de la modélisation multi-agent,

à savoir qu’aucune propriété dynamique globale n’est encodée a priori dans les règles

comportementales des agents. Nous concevons ensuite des méthodes statistiques afin de

détecter les bifurcations.

La séquence de bifurcations du modèle multi-agent est qualitativement équivalente

à celle du modèle original. La bifurcation de Hopf est détectée grâce à des méthodes

avancées d’analyse des séries temporelles ; les points-selles sont localisés grâce à des algo-

rithmes de rétroactions issus du contrôle automatique. Ce résultat valide l’utilisation des

modèles multi-agents pour l’étude de la résilience. En outre, nous montrons que les sig-

naux annonciateurs des changements de régime, comme le ralentissement des rétroactions

ou l’asymétrie des séries temporelles, sont très dépendants de la nature des bifurcations

sous-tendant les transitions.

Enfin, notre travail démontre l’intérêt de s’appuyer sur une hiérarchie de modèles de

différents niveaux de complexité. Le comportement d’un modèle éclaire celui de l’autre,

et leur comparaison facilite l’identification du lien entre comportement dynamique et hy-

pothèses de modélisation. Ce premier travail valide notre modélisation de la résilience dans
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un champ où ce concept est déjà connu. Dans les deux autres articles, nous la mettons en

œuvre pour étudier la résilience économique.

Désynchronisation et perte de résilience dans des réseaux de production

hétérogènes

Une caractéristique incontournable des réseaux de production est la présence de délais

d’approvisionnement. Ces délais sont extrêmement hétérogènes : de la seconde pour

l’électricité à plusieurs mois pour certains composants technologiques spécifiques. Jusqu’à

présent, les modèles de propagation considèrent implicitement que ces délais sont égaux.

Plus généralement, l’impact de l’hétérogénéité des délais d’interactions entre nœuds sur la

dynamique des réseaux n’a encore jamais été étudié.

Nous analysons la résilience de réseaux de production dans lesquels les délais

d’approvisionnement sont hétérogènes. Notre modèle est constitué d’équations booléennes

à retard. Ce formalisme a été introduit récemment pour l’étude des interactions entre

phénomènes climatiques dont la fréquence d’apparition est hétérogène. Dans notre

modèle, l’activité des firmes dépend de la production de leurs fournisseurs, et, en cas de

rupture d’approvisionnement, de l’existence de stocks-tampons. L’ensemble des firmes

forme un réseau complexe. Nous évaluons la réponse dynamique de ce système à des

chocs, définis comme l’arrêt soudain de la production d’une firme pendant une certaine

durée. Nous comparons différentes topologies de réseaux, depuis des réseaux de réseaux

très idéalisés à des structures calibrées sur des résultats empiriques.

De manière générale, l’hétérogénéité des délais d’approvisionnement réduit la

résilience de ces systèmes. Grâce à une étude détaillée du processus de propagation,

nous identifions les méso-structures topologiques qui déterminent ce résultat macro.

La présence au sein de ces réseaux de plusieurs chaînes circulaires en interactions

les rend vulnérables à des phénomènes de désynchronisation. Lorsque les délais sont

homogènes, les firmes se rétablissent mutuellement et conjointement; dans le cas contraire,

l’asynchronie des processus empêche ce retour à la production et amplifie les ruptures

d’approvisionnement. Ce risque est d’autant plus marqué dans des réseaux observés

empiriquement, dans lesquels quelques firmes sont extrêmement interconnectées. Dans

une moindre mesure, l’hétérogénéité des stocks peut également conduire à une perte de

résilience.

Nous construisons et testons un indicateur évaluant la contribution de chaque firme

au risque systémique. Il s’agit de la durée minimale d’arrêt de la production engendrant

une paralysie générale. L’agrégation de ces durées fournit une mesure de la résilience qui

est très pertinente dans le cas de chocs ponctuels et isolés, mais devient inopérante en cas

d’attaques coordonnées. Une série de chocs affectant certaines firmes dans un certain ordre

peut, même dans un réseau a priori résilient, engendrer un dysfonctionnement généralisé.

Ce résultat montre combien tout indicateur de résilience dépend largement des chocs
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auxquels est soumis le système. Par ailleurs, nous mettons en lumière des oscillations de

relaxation métastable. Ces comportements remarquables sont encore mal compris dans

ces réseaux booléens. Dans certaines régions de l’espace des paramètres, un choc initial

peut engendrer des vagues de dysfonctionnements périodiques, qui s’installent dans une

partie du réseau puis se déplacent vers d’autres, avant de s’éteindre ou de s’étendre à

l’ensemble du système.

La fragmentation de la production amplifie les risques systémiques

Les systèmes de production ont subi de profondes transformations au cours des dernières

décennies. La désintégration verticale des industries manufacturière, la complexité gran-

dissante de certains produits et la généralisation de la sous-traitance a conduit à la

fragmentation des chaînes de production. En d’autres termes, un nombre grandissant

d’entreprises distinctes participent à la conception, la production et le transport d’un

même produit. Quel est l’impact de cette fragmentation des supply chains sur le risque

systémique de rupture d’approvisionnement ? Si des cas isolés suggèrent une corrélation

entre fragmentations des supply chains et difficulté de gérer le risque systémique, aucun

modèle théorique n’a encore été proposé pour étudier ce lien.

Dans une supply chain, la défaillance d’une firme peut générer des ruptures

d’approvisionnement en chaîne. Chaque firme met en œuvre, à son niveau, des mesures

pour gérer ce risque. Les mesures prises par une firme sont susceptibles de modifier

l’exposition aux risques des autres membres de la supply chain. Si un fournisseur décide

d’augmenter son stock-tampon, ses clients seront moins sensibles à des dysfonction-

nements intervenant chez les fournisseurs de ce fournisseur. Ils sont donc susceptibles

d’en profiter et de décider de réduire leur propre stock. Cet exemple montre que les

stratégies face aux risques sont interdépendantes. Plus la chaîne est fragmentée, plus

ces interdépendances se multiplient. Quel est l’effet de cet accroissement sur le risque

systémique ?

Pour répondre à cette question, nous formulons un modèle basé sur la théorie des

jeux évolutionnaires en réseau. Une supply chain est modélisée par un graphe acyclique.

Chaque nœud est une firme, dont la production peut être temporairement interrompue.

Chaque firme a besoin des produits de ses fournisseurs pour fonctionner. Afin d’amortir les

ruptures d’approvisionnement, les entreprises maintiennent un stock-tampon. Le niveau de

ce stock est évolutionnairement ajusté pour accroître le profit du groupe auquel appartient

la firme. Dans une supply chain intégrée, toutes les firmes appartiennent au même groupe ;

chaque firme correspond à un seul groupe dans une supply chain fragmentée.

Notre modèle montre que plus une supply chain est fragmentée, moins les firmes

ont intérêt à maintenir un stock, engendrant une propagation accrue des ruptures

d’approvisionnement et donc une perte de résilience. Ce comportement est dû au fait que,

plus une supply chain se fragmente, plus les effets positifs des stocks-tampons deviennent
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des externalités, au sens économique du terme. En effet, lorsqu’une firme accroît son

stock, ses clients sont mieux protégés contre les risques et ses fournisseurs bénéficient de

ventes additionnelles. Si ces entreprises appartiennent au même groupe, tous ces bénéfices

sont intégrés dans la décision de maintenir ou non un stock. Si le groupe est fragmenté,

chaque firme ne prend compte que son propre bénéfice, si bien qu’elle réduit le niveau de

son stock-tampon.

En l’absence de mécanisme de coordination, la fragmentation des supply chains

génère donc un transfert du risque des entreprises individuelles vers le système. Comment

contrebalancer ce phénomène ? Nous montrons que le risque systémique peut être en

partie réduit en prescrivant aux firmes des niveaux de stock-tampon en fonction de leur

position dans la supply chain. L’indicateur permettant d’allouer le plus efficacement les

stocks provient de l’écologie : il s’agit du niveau trophique, qui décrit la position d’une

espèce dans une chaîne alimentaire. Un tel indicateur pourrait par exemple servir aux

assureurs dans la conception de produits couvrant les risques d’approvisionnement.

Perspectives de recherche : vers un couplage des dynamiques

économiques et environnementales

Modéliser la résilience économique face aux chocs environnementaux invite à s’interroger

sur les liens entre décisions microéconomiques, structure des réseaux et dynamique macroé-

conomique. En construisant des modèles multi-agents, analysés grâce à la théorie des

systèmes dynamiques, des graphes et des jeux évolutionnaires, nous avons mis en lu-

mière certains facteurs susceptibles d’affecter la résilience des chaînes de production :

des formes particulières d’interdépendance entre entreprises, l’hétérogénéité des délais

d’approvisionnement et des stocks, la fragmentation des supply chains. Ces résultats

théoriques sont appelés à être testés par des analyses empiriques. De nombreuses ex-

tensions de ces deux modèles sont en outre envisageables. Par exemple, endogénéiser la

structure des réseaux permettrait d’examiner l’évolution de la résilience en fonction de la

manière dont les firmes adaptent leurs choix de fournisseurs aux chocs. Plus généralement,

les principes de modélisation énoncés dans la première partie offrent un cadre fertile pour

générer de nouvelles études théoriques et structurer la comparaison de leurs résultats.

Enfin, notre thèse a montré que la résilience ne saurait être une propriété intrin-

sèque d’un système, mais ne se définit, au contraire, qu’en relation avec le régime de

perturbations auquel il est soumis. Pour concevoir des stratégies de résilience face aux

chocs environnementaux, il faut non seulement étudier la topologie du système économique

et ses rétroactions internes, mais aussi caractériser finement les interactions entre ce sys-

tème et les processus environnementaux. L’élaboration de modèles dynamiques couplant

économie et environnement constitue donc une perspective de recherche prometteuse pour

approfondir notre compréhension de la résilience économique.
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Résumé : De grandes transformations écologiques et clima-

tiques sont aujourd’hui à l’œuvre. Elles sont sources d’insta-

bilité environnementale, à l’image d’évènements climatiques

extrêmes devenus plus fréquents, plus intenses, et touchant

de nouvelles régions du globe. A défaut de pouvoir empêcher

ces changements, comment les sociétés humaines pourraient-

elles s’y adapter ? Pour beaucoup de chercheurs et de dé-

cideurs, c’est par la résilience qu’elles y parviendront. Ce

concept semble renfermer des solutions nouvelles, adaptées à

un monde turbulent et incertain. Par définition, les systèmes

résilients sont capables de rebondir face à des chocs inatten-

dus, d’apprendre rapidement et de s’adapter à des conditions

inédites. Malgré l’intérêt suscité par cette notion, les proces-

sus qui permettent à une société d’être résiliente restent en-

core mal connus. Cette thèse développe un cadre conceptuel

nouveau permettant, via la modélisation mathématique, d’ex-

plorer les liens théoriques entre mécanismes économiques et

résilience. Ce cadre repose sur une analyse critique de la ré-

silience en écologie — domaine d’origine du concept — et en

économie — notre champ d’application. Nous l’appliquons aux

systèmes de production économique, modélisés comme des ré-

seaux de firmes et analysés à travers la théorie des systèmes

dynamiques. Cette thèse évalue l’aptitude de tels modèles, dits

multi-agents, à générer des profils de bifurcations, étape incon-

tournable de l’analyse mathématique de la résilience. Nous

étudions pour cela une dynamique proie–prédateur très gé-

nérale en écologie et en économie. Ensuite, cette thèse s’at-

taque à un facteur majeur qui entrave la résilience : les fortes

interdépendances entre activités économiques, par lesquelles

les retards et interruptions de production se propagent d’une

entreprise à l’autre. En utilisant des réseaux de production

réalistes, nous montrons comment les délais d’approvisionne-

ment, lorsque intégrés dans des topologies particulières, dé-

multiplient ces phénomènes de propagation. Ensuite, grâce à

un modèle évolutionnaire, nous mettons en lumière l’existence

d’un risque systémique : les cascades d’incidents ont lieu alors

même que tous les agents possèdent des inventaires adaptés au

niveau de risque. Ce phénomène s’amplifie lorsque les chaînes

d’approvisionnement se spécialisent et se fragmentent. Ces ré-

sultats théoriques ont une valeur générale, et pourront servir

à orienter de futures recherches empiriques. Cette thèse fait

en outre avancer les connaissances sur des méthodes et objets

mathématiques très récents, comme les équations booléennes

à retard formant un réseau complexe, et les dynamiques évo-

lutionnaires sur les graphes. Les modèles et le cadre concep-

tuel proposés ouvrent de nouvelles perspectives de recherche

sur la résilience, en particulier sur l’impact des rétroactions

environnementales sur l’évolution structurelle des réseaux de

production.

Title : Modeling Economic Resilience

Keywords : complex systems, dynamical systems, agent-based modeling, networks, supply chains, systemic risks

Abstract : A wide range of climatic and ecological changes

are unfolding around us. These changes notably manifest

themselves through an increased environmental variability,

such as shifts in the frequency, intensity, and spatial distri-

bution of weather-related extreme events. If human societies

cannot mitigate these transformations, to which conditions

should they adapt? To many researchers and stakeholders,

the answer is resilience. This concept seems to subsume a va-

riety of solutions for dealing with a turbulent and uncertain

world. Resilient systems bounce back after unexpected events,

learn novel conditions and adapt to them. Theoretical models,

however, to explore the links between socioeconomic mecha-

nisms and resilience are still in their infancy. To advance such

models, the present dissertation proposes a novel conceptual

framework. This framework relies on an interdisciplinary and

critical review of ecological and economic studies, and it is ba-

sed on the theory of dynamical systems and on the paradigm

of complex adaptive systems. We identify agent-based models

as crucial for socioeconomic modeling. To assess their applica-

bility to the study of resilience, we test at first whether such

models can reproduce the bifurcation patterns of predator–

prey interactions, which are a very important factor in both

ecological and economic systems. The dissertation then ta-

ckles one of the main challenges for the design of resilient

economic system: the large interconnectedness of production

processes, whereby disruption may propagate and amplify. We

next investigate the role of delays in production and supply

on realistic economic networks, and show that the interplay

between time delays and topology may greatly affect a net-

work’s resilience. Finally, we investigate a model that encom-

passes adaptive responses of agents to shocks, and describes

how disruptions propagate even though all firms do their best

to mitigate risks. In particular, systemic amplification gets

more pronounced when supply chains are fragmented. These

theoretical findings are fairly general in character and may

thus help the design of novel empirical studies. Through the

application of several recent ideas and methods, this disserta-

tion advances knowledge on innovative mathematical objects,

such as Boolean delay equations on complex networks and evo-

lutionary dynamics on graphs. Finally, the conceptual models

herein open wide perspectives for further theoretical research

on economic resilience, especially the study of environmen-

tal feedbacks and their impacts on the structural evolution of

production networks.
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