K. Trapani and M. R. Santafé, A review of floating photovoltaic installations: 2007-2013, Progress in Photovoltaics: Research and Applications, vol.35, issue.4, pp.524-532, 2015.
DOI : 10.1002/pip.2466

C. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, vol.3, issue.156, pp.465-472, 1883.
DOI : 10.2475/ajs.s3-26.156.465

D. M. Chapin, C. S. Fuller, and G. L. Pearson, Solar energy converting apparatus, pp.5-1957

E. Berman, The Down-to-Earth Story of Photovoltaics, Science, vol.287, issue.5451, pp.233-233, 2000.
DOI : 10.1126/science.287.5451.233d

J. Perlin, A History of Photovoltaics, Available atA%20History%20of%20Photovoltaics.pdf), 2008.

. Sunpower-corporation-website, SunPower History Available at (https://us.sunpower.com/company, 2016.

P. J. Cousins, D. D. Smith, H. C. Luan, J. Manning, T. D. Dennis et al., Generation 3: Improved performance at lower cost, 2010 35th IEEE Photovoltaic Specialists Conference, pp.275-000278, 2010.
DOI : 10.1109/PVSC.2010.5615850

H. K. Trabish, Are PV Modules a Commodity? Available at (http://www.greentechmedia.com/articles/read/are-pv-modules-a-commodity.) (accessed on, 2016.

J. Tao and S. Yu, Review on feasible recycling pathways and technologies of solar photovoltaic modules, Solar Energy Materials and Solar Cells, vol.141, pp.108-124, 2015.
DOI : 10.1016/j.solmat.2015.05.005

C. Stark, J. Pless, J. Logan, E. Zhou, and D. J. Arent, Renewable Electricity: Insights for the coming decade, 2015.
DOI : 10.2172/1176740

G. Research, Polysilicon 2015-2018: Supply, Demand, Cost and Princing Available at (https://www.greentechmedia.com/research, 2015.

A. Jäger-waldau, Photovoltaics: Status and Perspectives until 2020, pp.277-290, 2011.

M. A. Green, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E: Low-dimensional Systems and Nanostructures, vol.14, issue.1-2, pp.65-70, 2002.
DOI : 10.1016/S1386-9477(02)00361-2

D. D. Smith, M. Reich, M. Baldrias, N. Reich, G. Boitnott et al., Silicon solar cells with total area efficiency above 25 %, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.3351-3355, 2016.
DOI : 10.1109/PVSC.2016.7750287

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (Version 45), Progress in Photovoltaics: Research and Applications, vol.73, issue.6, pp.1-9, 2015.
DOI : 10.1002/pip.2573

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.529.4214

D. C. Jordan and S. R. Kurtz, Photovoltaic Degradation Rates-an Analytical Review, Progress in Photovoltaics: Research and Applications, vol.94, issue.1, pp.12-29, 2013.
DOI : 10.1002/pip.1182

. Mit-energy-iniatitve, The Future of Solar Energy Available at (http://energy.mit, 2016.

P. K. Dash, Effect of Temperature on Power Output from Different Commercially available Photovoltaic Modules, Int. J. Eng. Res. Appl, vol.1, issue.5, pp.148-151

M. Ebert, H. Stascheit, I. Hädrich, and U. Eitner, The impact of angular dependent loss measurement on PV module energy yield prediction, 29th EU PVSEC Proceedings, no. 5CV.2.10, pp.3244-3247, 2014.

H. Kim, P. Choi, K. Kim, H. Kuh, D. Beak et al., Performance Degradation of <I>c</I>-Si Solar Cells Under UV Exposure, Journal of Nanoscience and Nanotechnology, vol.14, issue.5, pp.3561-3563, 2014.
DOI : 10.1166/jnn.2014.7887

T. Wen and C. Yin, Crack detection in photovoltaic cells by interferometric analysis of electronic speckle patterns, Solar Energy Materials and Solar Cells, vol.98, pp.216-223, 2012.
DOI : 10.1016/j.solmat.2011.10.034

M. Abdelhamid, R. Singh, and M. Omar, Review of Microcrack Detection Techniques for Silicon Solar Cells, IEEE Journal of Photovoltaics, vol.4, issue.1, pp.514-524, 2014.
DOI : 10.1109/JPHOTOV.2013.2285622

J. Bauer, J. Wagner, A. Lotnyk, H. Blumtritt, B. Lim et al., Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits, physica status solidi (RRL) - Rapid Research Letters, vol.10, issue.2-3, pp.2-3, 2009.
DOI : 10.1002/pssr.200802250

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.6, issue.17, pp.510-519, 1961.
DOI : 10.1109/JRPROC.1957.278348

S. Pothecary, Kaneka achieves new efficiency record for a practical size crystalline silicon PV cell PV Magazine Available at (http://www.pv-magazine.com/news/details/beitrag/kaneka-achieves- new-efficiency-record-for-a-practical-size-crystalline-silicon-pv

I. Gordon, L. Carnel, D. Van-gestel, G. Beaucarne, and J. Poortmans, 8% Efficient thin-film polycrystalline-silicon solar cells based on aluminum- induced crystallization and thermal CVD, Progress in Photovoltaics: Research and Applications, vol.90, issue.512, pp.575-586, 2007.
DOI : 10.1002/pip.765

C. Park, J. Lee, D. Yang, N. Balaji, M. Ju et al., Dislocation and Saturation Current Density Analysis by Rear-Side Al Amount Variation for <I>n</I>-Type Al-p<SUP>+</SUP> Emitter Crystalline Silicon Solar Cell, Science of Advanced Materials, vol.8, issue.3, pp.563-568, 2016.
DOI : 10.1166/sam.2016.2506

M. Mocza?a, N. Sosa, A. Topol, and T. Gotszalk, Investigation of multi-junction solar cells using electrostatic force microscopy methods, Ultramicroscopy, vol.141, pp.1-8, 2014.
DOI : 10.1016/j.ultramic.2014.02.007

I. Gordon, Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications, Solar Energy Materials and Solar Cells, vol.95, pp.2-7, 2011.
DOI : 10.1016/j.solmat.2010.11.031

E. Wesoff, Beamreach Unstealths (Again) With Lightweight PV Module for Commercial Roofs Available at: http://www.greentechmedia.com/articles/read/Beamreach-Unstealths-Again-With- Light-Weight-PV-Module-For-Commercial-Roo, 2016.

R. Cariou, Epitaxial growth of Si(Ge) materials on Si and GaAs by low temperature PECVD: towards tandem devices, phdthesis, Ecole Polytechnique, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01113794

R. Cariou, Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process, Progress in Photovoltaics: Research and Applications, vol.84, issue.138, pp.1075-1084, 2016.
DOI : 10.1002/pip.2762

URL : https://hal.archives-ouvertes.fr/hal-01401066

V. Depauw, Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals, IEEE Journal of Photovoltaics, vol.4, issue.1, pp.215-223, 2014.
DOI : 10.1109/JPHOTOV.2013.2286521

URL : https://hal.archives-ouvertes.fr/hal-01489893

W. Chen, Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells, Journal of Physics D: Applied Physics, vol.49, issue.12, p.125603, 2016.
DOI : 10.1088/0022-3727/49/12/125603

URL : https://hal.archives-ouvertes.fr/hal-01401076

A. Gaucher, Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping, Nano Letters, vol.16, issue.9, pp.5358-5364, 2016.
DOI : 10.1021/acs.nanolett.6b01240

URL : https://hal.archives-ouvertes.fr/hal-01489134

X. Meng, Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells, Optics Express, vol.20, issue.S4, p.465, 2012.
DOI : 10.1364/OE.20.00A465

F. Haguenau, P. W. Hawkes, J. L. Hutchison, B. Satiat, ?. Jeunemaître et al., Key Events in the History of Electron Microscopy, Microscopy and Microanalysis, vol.9, issue.02, pp.96-138, 2003.
DOI : 10.1017/S1431927603030113

F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski et al., Lateral resolution and potential sensitivity in Kelvin probe force microscopy: Towards understanding of the sub-nanometer resolution, Physical Review B, vol.77, issue.23, p.235427, 2008.
DOI : 10.1103/PhysRevB.77.235427

L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, G. Bilger et al., Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy, Applied Physics Letters, vol.38, issue.8, pp.1359-1361, 2004.
DOI : 10.1016/S0039-6028(98)00943-1

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

P. Klapetek, I. Ohlídal, and J. Bur?ík, Applications of scanning thermal microscopy in the analysis of the geometry of patterned structures, Surface and Interface Analysis, vol.104, issue.4, pp.383-387, 2006.
DOI : 10.1002/sia.2191

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope???force mapping and profiling on a sub 100????? scale, Journal of Applied Physics, vol.119, issue.10, pp.4723-4729, 1987.
DOI : 10.1063/1.97288

Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. Lett, vol.290, issue.1, pp.688-692, 1993.
DOI : 10.1016/0039-6028(93)90582-5

M. Nonnenmacher, M. P. O-'boyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Applied Physics Letters, vol.160, issue.25, pp.2921-2923, 1991.
DOI : 10.1116/1.585195

L. Kelvin, Contact electricity of metals, Philos. Mag. Ser, vol.5, issue.46 278, pp.82-120, 1898.

W. A. Zisman, A NEW METHOD OF MEASURING CONTACT POTENTIAL DIFFERENCES IN METALS, Review of Scientific Instruments, vol.3, issue.7, pp.367-370, 1932.
DOI : 10.1063/1.1748947

T. Glatzel, S. Sadewasser, and M. C. Lux-steiner, Amplitude or frequency modulation-detection in Kelvin probe force microscopy, Applied Surface Science, vol.210, issue.1-2, pp.84-89, 2003.
DOI : 10.1016/S0169-4332(02)01484-8

W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surface Science Reports, vol.66, issue.1, pp.1-27, 2011.
DOI : 10.1016/j.surfrep.2010.10.001

S. Wu and J. Yu, Quantitative Surface Potential Measurement Using KFM: Effects of Imaging Parameters and Experimental Conditions, 2014.

U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy, Physical Review B, vol.71, issue.12, p.125424, 2005.
DOI : 10.1103/PhysRevB.71.125424

G. Cohen, E. Halpern, S. U. Nanayakkara, J. M. Luther, C. Held et al., Reconstruction of surface potential from Kelvin probe force microscopy images, Nanotechnology, vol.24, issue.29, p.295702, 2013.
DOI : 10.1088/0957-4484/24/29/295702

D. Ziegler and A. Stemmer, Force gradient sensitive detection in lift-mode Kelvin probe force microscopy, Nanotechnology, vol.22, issue.7, p.75501, 2011.
DOI : 10.1088/0957-4484/22/7/075501

S. Morita, T. Ishizaka, Y. Sugawara, T. Okada, S. Mishima et al., Surface Conductance of Metal Surfaces in Air Studied with a Force Microscope, Japanese Journal of Applied Physics, vol.28, issue.Part 2, No. 9, pp.1634-1636, 1989.
DOI : 10.1143/JJAP.28.L1634

M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D. F. Ogletree et al., Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films, Langmuir, vol.9, issue.12, pp.3600-3611, 1993.
DOI : 10.1021/la00036a041

C. Shafai, D. J. Thomson, M. Simard-normandin, G. Mattiussi, and P. J. Scanlon, Delineation of semiconductor doping by scanning resistance microscopy, Applied Physics Letters, vol.12, issue.3, pp.342-344, 1994.
DOI : 10.1116/1.585467

F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Applied Physics Letters, vol.21, issue.13, pp.1975-1977, 1996.
DOI : 10.1063/1.117179

O. Schneegans, F. Houze, R. Meyer, and L. Boyer, Study of the local electrical properties of metal surfaces using an AFM with a conducting probe, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.21, issue.1, pp.76-81, 1998.
DOI : 10.1109/95.679036

M. Gadenne, O. Schneegans, F. Houzé, P. Chrétien, C. Desmarest et al., First AFM observation of thin cermet films close to the percolation threshold using a conducting tip, Physica B: Condensed Matter, vol.279, issue.1-3, pp.1-3, 2000.
DOI : 10.1016/S0921-4526(99)00678-X

J. P. Kleider, C. Longeaud, R. Brüggemann, and F. Houzé, Electronic and topographic properties of amorphous and microcrystalline silicon thin films, Thin Solid Films, vol.383, issue.1-2, pp.57-60, 2001.
DOI : 10.1016/S0040-6090(00)01614-X

J. Alvarez, F. Houzé, J. P. Kleider, M. Y. Liao, and Y. Koide, Electrical characterization of Schottky diodes based on boron doped homoepitaxial diamond films by conducting probe atomic force microscopy, Superlattices and Microstructures, vol.40, issue.4-6, pp.4-6, 2006.
DOI : 10.1016/j.spmi.2006.07.027

URL : https://hal.archives-ouvertes.fr/hal-00320298

N. Gogneau, P. Chrétien, E. Galopin, S. Guilet, L. Travers et al., Impact of the GaN nanowire polarity on energy harvesting, Impact of the GaN nanowire polarity on energy harvesting, p.213105, 2014.
DOI : 10.1063/1.4818794

URL : https://hal.archives-ouvertes.fr/hal-01096617

T. Massoud, V. Maurice, L. H. Klein, A. Seyeux, and P. Marcus, Nanostructure and local properties of oxide layers grown on stainless steel in simulated pressurized water reactor environment, Corrosion Science, vol.84, pp.198-203, 2014.
DOI : 10.1016/j.corsci.2014.03.030

P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, and W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques, Nanotechnology, vol.26, issue.35, p.355702, 2015.
DOI : 10.1088/0957-4484/26/35/355702

URL : https://hal.archives-ouvertes.fr/hal-01310822

G. Wexler, The size effect and the non-local Boltzmann transport equation in orifice and disk geometry, Proc. Phys. Soc, p.927, 1966.
DOI : 10.1088/0370-1328/89/4/316

Y. V. Sharvin, On the Possible Method for Studying Fermi Surfaces, Sov Phys JETP, vol.48, pp.655-656, 1965.

J. C. Maxwell, A Treatise on Electricity and Magnetism, 1891.
DOI : 10.1017/cbo9780511709333

URL : http://www.e-rara.ch/download/pdf/2506524?name=Vol.%25201

G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.
DOI : 10.1109/T-ED.1983.21207

J. Cazaux, Material contrast in SEM: Fermi energy and work function effects, Ultramicroscopy, vol.110, issue.3, pp.242-253, 2010.
DOI : 10.1016/j.ultramic.2009.12.002

I. Volotsenko, M. Molotskii, Z. Barkay, J. Marczewski, P. Grabiec et al., Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements, Journal of Applied Physics, vol.107, issue.1, p.14510, 2010.
DOI : 10.1016/0039-6028(89)90362-2

A. K. Chee, R. F. Broom, C. J. Humphreys, and E. G. Bosch, A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations, Journal of Applied Physics, vol.22, issue.1, p.13109, 2011.
DOI : 10.1063/1.3276090

D. D. Perovic, M. R. Castell, A. Howie, C. Lavoie, T. Tiedje et al., Field-emission SEM imaging of compositional and doping layer semiconductor superlattices, Ultramicroscopy, vol.58, issue.1, pp.104-113, 1995.
DOI : 10.1016/0304-3991(94)00183-N

J. T. Heath, C. Jiang, and M. M. , Measurement of semiconductor surface potential using the scanning electron microscope, Journal of Applied Physics, vol.111, issue.4, p.46103, 2012.
DOI : 10.1063/1.123458

D. Tsurumi, K. Hamada, and Y. Kawasaki, Energy-Filtered Secondary-Electron Imaging for Nanoscale Dopant Mapping by Applying a Reverse Bias Voltage, Japanese Journal of Applied Physics, vol.51, issue.10R, p.106503, 2012.
DOI : 10.7567/JJAP.51.106503

P. Kapur, M. Moslehi, A. Deshpande, V. Rana, J. Kramer et al., A manufacturable, non-plated, non-Ag metallization based 20.44% efficient, 243 cm2 area, back contacted solar cell on 40 ?m thick mono-crystalline silicon, pp.2228-2231, 2013.

R. Cariou, M. Labrune, P. Roca, and . Cabarrocas, Thin crystalline silicon solar cells based on epitaxial films grown at 165??C by RF-PECVD, Solar Energy Materials and Solar Cells, vol.95, issue.8, pp.2260-2263, 2011.
DOI : 10.1016/j.solmat.2011.03.038

URL : https://hal.archives-ouvertes.fr/hal-00749873

R. Cariou, J. Tang, N. Ramay, R. Ruggeri, P. Roca et al., Low temperature epitaxial growth of SiGe absorber for thin film heterojunction solar cells, Solar Energy Materials and Solar Cells, vol.134, pp.15-21, 2015.
DOI : 10.1016/j.solmat.2014.11.018

URL : https://hal.archives-ouvertes.fr/hal-01230699

P. Roca-i-cabarrocas, R. Cariou, and M. Labrune, Low temperature plasma deposition of silicon thin films: From amorphous to crystalline, Journal of Non-Crystalline Solids, vol.358, issue.17, pp.2000-2003, 2012.
DOI : 10.1016/j.jnoncrysol.2011.12.113

URL : https://hal.archives-ouvertes.fr/hal-00806450

D. D. Smith, M. Reich, M. Baldrias, N. Reich, G. Boitnott et al., Silicon solar cells with total area efficiency above 25 %, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.3351-3355, 2016.
DOI : 10.1109/PVSC.2016.7750287

S. Pothecary, Kaneka achieves new efficiency record for a practical size crystalline silicon PV cell PV Magazine Available at (http://www.pv-magazine.com/news/details/beitrag/kaneka-achieves- new-efficiency-record-for-a-practical-size-crystalline-silicon-pv

Y. Gan, Atomic and subnanometer resolution in ambient conditions by atomic force microscopy, Surface Science Reports, vol.64, issue.3, pp.99-121, 2009.
DOI : 10.1016/j.surfrep.2008.12.001

M. Mocza?a, N. Sosa, A. Topol, and T. Gotszalk, Investigation of multi-junction solar cells using electrostatic force microscopy methods, Ultramicroscopy, vol.141, pp.1-8, 2014.
DOI : 10.1016/j.ultramic.2014.02.007

Z. Zhang, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, thin-film solar cells under defined white light illumination analyzed by Kelvin probe force microscopy, Applied Physics Letters, vol.102, issue.2, p.23903, 2013.
DOI : 10.1103/PhysRevLett.105.116802

P. Narchi, Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination, Nanoscale Research Letters, vol.81, issue.5, 2016.
DOI : 10.1186/s11671-016-1268-1

URL : https://hal.archives-ouvertes.fr/hal-01238543

T. Glatzel, M. Rusu, S. Sadewasser, and M. C. Lux-steiner, Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy, Nanotechnology, vol.19, issue.14, p.145705, 2008.
DOI : 10.1088/0957-4484/19/14/145705

M. Takihara, T. Takahashi, and T. Ujihara, Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy, Applied Physics Letters, vol.93, issue.2, p.21902, 2008.
DOI : 10.1149/1.1836650

J. S. Yun, Benefit of Grain Boundaries in Organic???Inorganic Halide Planar Perovskite Solar Cells, The Journal of Physical Chemistry Letters, vol.6, issue.5, pp.875-880, 2015.
DOI : 10.1021/acs.jpclett.5b00182

Y. Ji, Characterization of the photocurrents generated by the laser of atomic force microscopes, Review of Scientific Instruments, vol.87, issue.8, p.83703, 2016.
DOI : 10.1063/1.3491956

H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Potential shielding by the surface water layer in Kelvin probe force microscopy, Applied Physics Letters, vol.80, issue.8, pp.1459-1461, 2002.
DOI : 10.1021/la9809067

F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Applied Physics Letters, vol.21, issue.13, pp.1975-1977, 1996.
DOI : 10.1063/1.117179

O. Schneegans, F. Houze, R. Meyer, and L. Boyer, Study of the local electrical properties of metal surfaces using an AFM with a conducting probe, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.21, issue.1, pp.76-81, 1998.
DOI : 10.1109/95.679036

J. P. Kleider, C. Longeaud, R. Brüggemann, and F. Houzé, Electronic and topographic properties of amorphous and microcrystalline silicon thin films, Thin Solid Films, vol.383, issue.1-2, pp.57-60, 2001.
DOI : 10.1016/S0040-6090(00)01614-X

A. Vetushka, A. Fejfar, M. Ledinský, B. Rezek, J. Stuchlík et al., Comment on ???Current routes in hydrogenated microcrystalline silicon???, Physical Review B, vol.81, issue.23, p.237301, 2010.
DOI : 10.1103/PhysRevB.81.237301

N. Duhayon, Assessing the performance of two-dimensional dopant profiling techniques, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.1, pp.385-393, 2004.
DOI : 10.1116/1.1638775

A. A. Tseng, A. Notargiacomo, and T. P. Chen, Nanofabrication by scanning probe microscope lithography: A review, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.23, issue.3, pp.877-894, 2005.
DOI : 10.1116/1.1926293

N. Yang, Water-mediated electrochemical nano-writing on thin ceria films, Nanotechnology, vol.25, issue.7, p.75701, 2014.
DOI : 10.1088/0957-4484/25/7/075701

P. Avouris, R. Martel, T. Hertel, and R. Sandstrom, AFM-tip-induced and current-induced local oxidation of silicon and metals, Applied Physics A: Materials Science & Processing, vol.66, issue.7, pp.659-667
DOI : 10.1007/s003390051218

M. C. Gupta and A. L. Ruoff, Static compression of silicon in the [100] and in the [111] directions, Journal of Applied Physics, vol.50, issue.2, pp.1072-1075, 1980.
DOI : 10.1103/PhysRevB.7.1479

R. C. Germanicus, On the effects of a pressure induced amorphous silicon layer on consecutive spreading resistance microscopy scans of doped silicon, Journal of Applied Physics, vol.6, issue.24, p.244306, 2015.
DOI : 10.1063/1.333819

P. De-wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel et al., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.1
DOI : 10.1116/1.591198

A. Vecchiola, Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode, Applied Physics Letters, vol.108, issue.24, p.243101, 2016.
DOI : 10.1021/nl049401t

URL : https://hal.archives-ouvertes.fr/cea-01331971

Z. Lin, H. Jheng, and H. Ding, An innovative method and experiment for fabricating bulgy shape nanochannel using AFM, Applied Surface Science, vol.347, pp.347-358, 2015.
DOI : 10.1016/j.apsusc.2015.04.042

P. Narchi, Surface potential investigation on interdigitated back contact solar cells by Scanning Electron Microscopy and Kelvin Probe Force Microscopy: Effect of electrical bias, Solar Energy Materials and Solar Cells, vol.161
DOI : 10.1016/j.solmat.2016.12.009

L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, vol.37, issue.1-5, pp.1-206, 1999.
DOI : 10.1016/S0167-5729(99)00002-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.8047

D. Cavalcoli, M. Rossi, A. Tomasi, and A. Cavallini, Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy, Nanotechnology, vol.20, issue.4, p.45702, 2009.
DOI : 10.1088/0957-4484/20/4/045702

Y. Rosenwaks, R. Shikler, T. Glatzel, and S. Sadewasser, Kelvin probe force microscopy of semiconductor surface defects, Physical Review B, vol.70, issue.8, p.85320, 2004.
DOI : 10.1103/PhysRevB.70.085320

Y. Leng, C. C. Williams, L. C. Su, and G. B. Stringfellow, Atomic ordering of GaInP studied by Kelvin probe force microscopy, Applied Physics Letters, vol.12, issue.10, pp.1264-1266, 1995.
DOI : 10.1063/1.113257

M. Arakawa, S. Kishimoto, and T. Mizutani, Kelvin Probe Force Microscopy for Potential Distribution Measurement of Cleaved Surface of GaAs Devices, Japanese Journal of Applied Physics, vol.36, issue.Part 1, No. 3B, pp.1826-1829, 1997.
DOI : 10.1143/JJAP.36.1826

D. Álvarez, J. Hartwich, M. Fouchier, P. Eyben, and W. Vandervorst, Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips, Applied Physics Letters, vol.82, issue.11, pp.1724-1726, 2003.
DOI : 10.1116/1.589820

H. Nie and N. S. Mcintyre, A Simple and Effective Method of Evaluating Atomic Force Microscopy Tip Performance, Langmuir, vol.17, issue.2, pp.432-436, 2001.
DOI : 10.1021/la001035f

S. Mekid, S. Bashmal, and H. M. Ouakad, Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents, Recent Patents on Nanotechnology, vol.10, issue.1, pp.44-58, 2016.
DOI : 10.2174/187221051001160322155420

A. Fejfar, Microscopic measurements of variations in local (photo)electronic properties in nanostructured solar cells, Solar Energy Materials and Solar Cells, vol.119, pp.228-234, 2013.
DOI : 10.1016/j.solmat.2013.07.042

URL : https://hal.archives-ouvertes.fr/hal-01083471

A. Fejfar, Correlative microscopy of radial junction nanowire solar cells using nanoindent position markers, Solar Energy Materials and Solar Cells, vol.135, pp.106-112, 2015.
DOI : 10.1016/j.solmat.2014.10.027

URL : https://hal.archives-ouvertes.fr/hal-01230116

T. Mélin, S. Barbet, H. Diesinger, D. Théron, and D. Deresmes, Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy, Review of Scientific Instruments, vol.82, issue.3, p.36101, 2011.
DOI : 10.1016/j.ultramic.2008.01.003

S. Barbet, M. Popoff, H. Diesinger, D. Deresmes, D. Théron et al., Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study, Journal of Applied Physics, vol.115, issue.14, p.144313, 2014.
DOI : 10.2478/s11534-011-0096-2

URL : https://hal.archives-ouvertes.fr/hal-00981142

T. Machleidt, E. Sparrer, D. Kapusi, and K. Franke, Deconvolution of Kelvin probe force microscopy measurements???methodology and application, Measurement Science and Technology, vol.20, issue.8, p.84017, 2009.
DOI : 10.1088/0957-0233/20/8/084017

H. O. Jacobs, H. F. Knapp, S. Müller, and A. Stemmer, Surface potential mapping: A qualitative material contrast in SPM, Ultramicroscopy, vol.69, issue.1, pp.39-49, 1997.
DOI : 10.1016/S0304-3991(97)00027-2

Z. M. Ma, L. Kou, Y. Naitoh, Y. J. Li, and Y. Sugawara, The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes, Nanotechnology, vol.24, issue.22, p.225701, 2013.
DOI : 10.1088/0957-4484/24/22/225701

H. Li, C. S. Jiang, W. K. Metzger, C. K. Shih, and M. , Microscopic Real-Space Resistance Mapping Across CdTe Solar Cell Junctions by Scanning Spreading Resistance Microscopy, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.395-400, 2015.
DOI : 10.1109/JPHOTOV.2014.2363569

B. E. Mccandless and S. Rykov, Cross-section potential analysis of CdTe/CdS solar cells by kelvin probe force microscopy, 2008 33rd IEEE Photovolatic Specialists Conference, pp.1-4, 2008.
DOI : 10.1109/PVSC.2008.4922532

P. Eyben, Development and optimization of scanning spreading resistance microscopy for measuring the two-dimensional carrier profile in solar cell structures, physica status solidi (a), vol.26, issue.1, pp.596-599, 2011.
DOI : 10.1002/pssa.201000306

H. Diesinger, D. Deresmes, and T. Mélin, Capacitive Crosstalk in AM-Mode KPFM, pp.25-44, 2012.
DOI : 10.1007/978-3-642-22566-6_3

URL : https://hal.archives-ouvertes.fr/hal-00798961

U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy, Physical Review B, vol.71, issue.12, p.125424, 2005.
DOI : 10.1103/PhysRevB.71.125424

T. Glatzel, H. Steigert, S. Sadewasser, R. Klenk, and M. C. Lux-steiner, Potential distribution of Cu(In,Ga)(S,Se)2-solar cell cross-sections measured by Kelvin probe force microscopy, Thin Solid Films, vol.480, issue.481, pp.480-481, 2005.
DOI : 10.1016/j.tsf.2004.11.065

?. Borowik, K. Kusiaku, D. Théron, and T. Mélin, Calculating Kelvin force microscopy signals from static force fields, Applied Physics Letters, vol.96, issue.10, p.103119, 2010.
DOI : 10.1103/PhysRevB.56.16010

URL : https://hal.archives-ouvertes.fr/hal-00549047

O. Vatel and M. Tanimoto, Kelvin probe force microscopy for potential distribution measurement of semiconductor devices, Journal of Applied Physics, vol.77, issue.6, pp.2358-2362, 1995.
DOI : 10.1143/JJAP.33.L279

F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski et al., Lateral resolution and potential sensitivity in Kelvin probe force microscopy: Towards understanding of the sub-nanometer resolution, Physical Review B, vol.77, issue.23, p.235427, 2008.
DOI : 10.1103/PhysRevB.77.235427

J. L. Garrett and J. N. Munday, Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy, Nanotechnology, vol.27, issue.24, p.245705, 2016.
DOI : 10.1088/0957-4484/27/24/245705

URL : http://arxiv.org/abs/1601.02503

T. Hochwitz, A. K. Henning, C. Levey, C. Daghlian, and J. Slinkman, Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.1, pp.457-462, 1996.
DOI : 10.1116/1.588494

G. Cohen, Reconstruction of surface potential from Kelvin probe force microscopy images, Nanotechnology, vol.24, issue.29, p.295702, 2013.
DOI : 10.1088/0957-4484/24/29/295702

Z. Yang and M. G. Spencer, Improve the Accuracy of Scanning Kelvin Probe Microscopy by Eliminating the Cantilever Effect, MRS Proceedings, vol.X, 2004.
DOI : 10.1063/1.1384004

A. Kikukawa, S. Hosaka, and R. Imura, Vacuum compatible high???sensitive Kelvin probe force microscopy, Review of Scientific Instruments, vol.67, issue.4, pp.1463-1467, 1996.
DOI : 10.1116/1.578303

I. Volotsenko, Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements, Journal of Applied Physics, vol.107, issue.1, p.14510, 2010.
DOI : 10.1016/0039-6028(89)90362-2

L. Collins, Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy, Nanotechnology, vol.27, issue.10, p.105706, 2016.
DOI : 10.1088/0957-4484/27/10/105706

R. Proksch, T. E. Schäffer, J. P. Cleveland, R. C. Callahan, and M. B. Viani, Finite optical spot size and position corrections in thermal spring constant calibration, Nanotechnology, vol.15, issue.9, p.1344, 2004.
DOI : 10.1088/0957-4484/15/9/039

J. T. Heath, C. S. Jiang, and M. M. , Diffused junctions in multicrystalline silicon solar cells studied by complementary scanning probe microscopy and scanning electron microscopy techniques, 2010 35th IEEE Photovoltaic Specialists Conference, pp.227-000232, 2010.
DOI : 10.1109/PVSC.2010.5614484

T. Ando, High-speed atomic force microscopy coming of age, Nanotechnology, vol.23, issue.6, p.62001, 2012.
DOI : 10.1088/0957-4484/23/6/062001

I. S. Bozchalooi, A. Houck, J. M. Alghamdi, and K. Youcef-toumi, Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging, Ultramicroscopy, vol.160, pp.213-224, 2016.
DOI : 10.1016/j.ultramic.2015.10.016

A. K. Sinensky and A. M. Belcher, Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy, Nature Nanotechnology, vol.46, issue.10, pp.653-659, 2007.
DOI : 10.1116/1.585423

N. Anspach, F. Hitzel, F. Zhou, and S. Eyhusen, Hybrid SEM/AFM System from Carl Zeiss Revolutionizes Analysis of Functional Micro- and Nanostructured Specimen, Microscopy and Microanalysis, vol.20, issue.S3, pp.992-993, 2014.
DOI : 10.1017/S1431927614006680

A. Lewis, A. Komissar, A. Ignatov, O. Fedoroyov, E. Maayan et al., AFM Integrated with SEM/FIB for Complete 3D Metrology Measurements, Microscopy and Microanalysis, vol.21, issue.S3, pp.1112-1113, 2014.
DOI : 10.1017/S1431927615007941

U. Gysin, Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices, Beilstein Journal of Nanotechnology, vol.6, pp.2485-2497, 2015.
DOI : 10.3762/bjnano.6.258

B. Bhushan and A. V. Goldade, Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Applied Surface Science, vol.157, issue.4, pp.373-381, 2000.
DOI : 10.1016/S0169-4332(99)00553-X

C. Jiang, D. J. Friedman, J. F. Geisz, H. R. Moutinho, M. J. Romero et al., Distribution of built-in electrical potential in GaInP2/GaAs tandem-junction solar cells, Applied Physics Letters, vol.83, issue.8, p.1572, 2003.
DOI : 10.1063/1.123458

T. Glatzel, D. Fuertes-marron, T. Schedel-niedrig, S. Sadewasser, and M. C. Lux-steiner, CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum, Applied Physics Letters, vol.81, issue.11, pp.2017-2019, 2002.
DOI : 10.1016/S0040-6090(99)00803-2

A. Kikukawa, S. Hosaka, and R. Imura, junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy, Applied Physics Letters, vol.11, issue.25, pp.3510-3512, 1995.
DOI : 10.1063/1.113780

S. , M. Flores, and J. L. Toca-herrera, The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques, Nanoscale, vol.1, issue.1, p.40, 2009.

S. Sadewasser, Characterization of the CuGaSe2/ZnSe Interface Using Kelvin Probe Force Microscopy, MRS Proceedings, vol.668, 2001.
DOI : 10.1063/1.1146874

R. Saive, Imaging the Electric Potential within Organic Solar Cells, Advanced Functional Materials, vol.14, issue.47, pp.5854-5860, 2013.
DOI : 10.1002/adfm.201301315

M. W. Xu, T. Hantschel, and W. Vandervorst, Three-dimensional carrier profiling of InP-based devices using scanning spreading resistance microscopy, Applied Physics Letters, vol.4, issue.1, pp.177-179, 2002.
DOI : 10.1063/1.122408

C. Jiang, A. Ptak, B. Yan, H. R. Moutinho, J. V. Li et al., Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy, Ultramicroscopy, vol.109, issue.8, pp.952-957, 2009.
DOI : 10.1016/j.ultramic.2009.03.048

H. R. Moutinho, R. G. Dhere, C. Jiang, Y. Yan, D. S. Albin et al., Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy, Journal of Applied Physics, vol.108, issue.7, p.74503, 2010.
DOI : 10.1016/j.tsf.2006.12.057

W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surface Science Reports, vol.66, issue.1, pp.1-27, 2011.
DOI : 10.1016/j.surfrep.2010.10.001

D. Álvarez, J. Hartwich, M. Fouchier, P. Eyben, and W. Vandervorst, Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips, Applied Physics Letters, vol.82, issue.11, pp.1724-1726, 2003.
DOI : 10.1116/1.589820

F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski et al., Lateral resolution and potential sensitivity in Kelvin probe force microscopy: Towards understanding of the sub-nanometer resolution, Physical Review B, vol.77, issue.23, p.235427, 2008.
DOI : 10.1103/PhysRevB.77.235427

K. Okamoto, K. Yoshimoto, Y. Sugawara, and S. Morita, KPFM imaging of Si(1 1 1)-Sb surface for atom distinction using NC-AFM, Applied Surface Science, vol.210, issue.1-2, pp.128-133, 2003.
DOI : 10.1016/S0169-4332(02)01492-7

F. Bocquet, L. Nony, C. Loppacher, and T. Glatzel, Analytical approach to the local contact potential difference on (001) ionic surfaces: Implications for Kelvin probe force microscopy, Physical Review B, vol.78, issue.3, p.35410, 2008.
DOI : 10.1103/PhysRevB.78.035410

URL : https://hal.archives-ouvertes.fr/hal-00294267

L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, vol.37, issue.1-5, pp.1-206, 1999.
DOI : 10.1016/S0167-5729(99)00002-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.8047

T. Hantschel, P. Niedermann, T. Trenkler, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Applied Physics Letters, vol.33, issue.12, pp.1603-1605, 2000.
DOI : 10.1116/1.589820

P. De-wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel et al., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.1
DOI : 10.1116/1.591198

T. S. Druzhinina, S. Hoeppener, and U. S. Schubert, Microwave-Assisted Fabrication of Carbon Nanotube AFM Tips, Nano Letters, vol.10, issue.10, pp.4009-4012, 2010.
DOI : 10.1021/nl101934j

Z. Zhang, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, thin-film solar cells under defined white light illumination analyzed by Kelvin probe force microscopy, Applied Physics Letters, vol.102, issue.2, p.23903, 2013.
DOI : 10.1103/PhysRevLett.105.116802

T. Glatzel, M. Rusu, S. Sadewasser, and M. C. Lux-steiner, Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy, Nanotechnology, vol.19, issue.14, p.145705, 2008.
DOI : 10.1088/0957-4484/19/14/145705

S. Sadewasser, T. Glatzel, M. Rusu, A. Jäger-waldau, and M. C. Lux-steiner, High-resolution work function imaging of single grains of semiconductor surfaces, Applied Physics Letters, vol.668, issue.16, pp.2979-2981, 2002.
DOI : 10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G

J. Kleider, J. Alvarez, A. V. Ankudinov, A. S. Gudovskikh, E. V. Gushchina et al., Characterization of silicon heterojunctions for solar cells, Nanoscale Research Letters, vol.6, issue.1, p.152, 2011.
DOI : 10.1186/1556-276X-6-152

URL : https://hal.archives-ouvertes.fr/hal-00555254

A. Breymesser, V. Schlosser, D. Peiró, C. Voz, J. Bertomeu et al., Kelvin probe measurements of microcrystalline silicon on a nanometer scale using SFM, Solar Energy Materials and Solar Cells, vol.66, issue.1-4, pp.171-177, 2001.
DOI : 10.1016/S0927-0248(00)00170-7

P. Narchi, J. Alvarez, P. Chrétien, G. Picardi, R. Cariou et al., Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination, Nanoscale Research Letters, vol.81, issue.5, 2016.
DOI : 10.1186/s11671-016-1268-1

URL : https://hal.archives-ouvertes.fr/hal-01238543

C. S. Jiang, H. R. Moutinho, R. Reedy, M. M. , and A. Blosse, Two-dimensional junction identification in multicrystalline silicon solar cells by scanning Kelvin probe force microscopy, Journal of Applied Physics, vol.104, issue.10
DOI : 10.1063/1.2885679

P. Lavenus, A. Messanvi, L. Rigutti, A. D. Bugallo, H. Zhang et al., Experimental and theoretical analysis of transport properties of core???shell wire light emitting diodes probed by electron beam induced current microscopy, Nanotechnology, vol.25, issue.25, p.255201, 2014.
DOI : 10.1088/0957-4484/25/25/255201

C. Loppacher, U. Zerweck, S. Teich, E. Beyreuther, T. Otto et al., FM demodulated Kelvin probe force microscopy for surface photovoltage tracking, Nanotechnology, vol.16, issue.3, p.1, 2005.
DOI : 10.1088/0957-4484/16/3/001

M. Takihara, T. Takahashi, and T. Ujihara, Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy, Applied Physics Letters, vol.93, issue.2, p.21902, 2008.
DOI : 10.1149/1.1836650

M. Mocza?a, N. Sosa, A. Topol, and T. Gotszalk, Investigation of multi-junction solar cells using electrostatic force microscopy methods, Ultramicroscopy, vol.141, pp.1-8, 2014.
DOI : 10.1016/j.ultramic.2014.02.007

S. Saraf, R. Shikler, J. Yang, and Y. Rosenwaks, Microscopic surface photovoltage spectroscopy, Applied Physics Letters, vol.80, issue.14, pp.2586-2588, 2002.
DOI : 10.1063/1.125039

P. Narchi, G. Picardi, R. Cariou, M. Foldyna, and P. , Prod'homme, and P. Roca i Cabarrocas Kelvin Probe Force Microscopy Study of Electric Field Homogeneity in Epitaxial Silicon Solar Cells Cross- Section, pp.1026-1029

A. Ankudinov, Solar cell diagnostics using Kelvin force microscopy and local photoexcitation, Microsc. Anal, 2012.

?. Borowik, H. Lepage, N. Chevalier, D. Mariolle, and O. Renault, Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy, Nanotechnology, vol.25, issue.26, p.265703, 2014.
DOI : 10.1088/0957-4484/25/26/265703

G. Shao, M. S. Glaz, F. Ma, H. Ju, and D. S. Ginger, Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics, ACS Nano, vol.8, issue.10, pp.10799-10807, 2014.
DOI : 10.1021/nn5045867

T. Meoded, R. Shikler, N. Fried, and Y. Rosenwaks, Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy, Applied Physics Letters, vol.75, issue.16, pp.2435-2437, 1999.
DOI : 10.1103/PhysRev.111.153

T. Kato, T. Matsukawa, H. Koyama, K. Fujikawa, and R. Shimizu, Scanning electron microscopy of charging effect on silicon, Journal of Applied Physics, vol.54, issue.5, pp.2288-2292, 1975.
DOI : 10.1063/1.1754224

M. P. Davidson and N. T. Sullivan, Investigation of the effects of charging in SEM-based CD metrology, Metrology, Inspection, and Process Control for Microlithography XI, pp.226-242, 1997.
DOI : 10.1117/12.275912

D. Tsurumi, K. Hamada, and Y. Kawasaki, Energy-Filtered Secondary-Electron Imaging for Nanoscale Dopant Mapping by Applying a Reverse Bias Voltage, Japanese Journal of Applied Physics, vol.51, issue.10R, p.106503, 2012.
DOI : 10.7567/JJAP.51.106503

J. T. Heath, C. Jiang, and M. M. , Measurement of semiconductor surface potential using the scanning electron microscope, Journal of Applied Physics, vol.111, issue.4, p.46103, 2012.
DOI : 10.1063/1.123458

J. T. Heath, C. S. Jiang, and M. M. , Diffused junctions in multicrystalline silicon solar cells studied by complementary scanning probe microscopy and scanning electron microscopy techniques, 2010 35th IEEE Photovoltaic Specialists Conference, pp.227-000232, 2010.
DOI : 10.1109/PVSC.2010.5614484

P. Narchi, V. Neplokh, V. Piazza, T. Bearda, F. Bayle et al., Surface potential investigation on interdigitated back contact solar cells by scanning electron microscopy and Kelvin probe force microscopy: effect of electrical bias Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy, Submitted to Sol. Energy Mater. Sol. Cells Nanotechnology, vol.20, issue.4, p.45702, 2009.

S. V. Kalinin and D. A. , bicrystals, Physical Review B, vol.62, issue.15, pp.10419-10430, 2000.
DOI : 10.1103/PhysRevB.62.10419

D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy, Nano Letters, vol.7, issue.3, pp.738-744, 2007.
DOI : 10.1021/nl062989e

Y. Kutes, B. A. Aguirre, J. L. Bosse, J. L. Cruz-campa, D. Zubia et al., Mapping photovoltaic performance with nanoscale resolution, Progress in Photovoltaics: Research and Applications, vol.60, issue.432, pp.315-325, 2016.
DOI : 10.1023/B:VISI.0000029664.99615.94

D. Lausch, M. Werner, V. Naumann, J. Schneider, and C. Hagendorf, junctions in crystalline silicon on glass solar cells, Journal of Applied Physics, vol.6, issue.8, p.84513, 2011.
DOI : 10.1002/sca.20000

J. Bonard and J. Ganière, As heterostructures, Journal of Applied Physics, vol.14, issue.9, pp.6987-6994, 1996.
DOI : 10.1063/1.94016

I. Volotsenko, M. Molotskii, Z. Barkay, J. Marczewski, P. Grabiec et al., Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements, Journal of Applied Physics, vol.107, issue.1, p.14510, 2010.
DOI : 10.1016/0039-6028(89)90362-2

T. H. Chang and W. C. Nixon, Electron beam induced potential contrast on unbiased planar transistors, Solid-State Electronics, vol.10, issue.7, pp.701-704, 1967.
DOI : 10.1016/0038-1101(67)90099-8

A. K. Chee, R. F. Broom, C. J. Humphreys, and E. G. Bosch, A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations, Journal of Applied Physics, vol.22, issue.1, p.13109, 2011.
DOI : 10.1063/1.3276090

D. D. Perovic, M. R. Castell, A. Howie, C. Lavoie, T. Tiedje et al., Field-emission SEM imaging of compositional and doping layer semiconductor superlattices, Ultramicroscopy, vol.58, issue.1, pp.104-113, 1995.
DOI : 10.1016/0304-3991(94)00183-N

M. Mentink, T. Von-sprekelsen, R. Maltezopoulos, L. Wiesendanger, and . Hellemans, Assessing the performance of two-dimensional dopant profiling techniques, J. Vac. Sci. Technol. B, vol.22, issue.1, pp.385-393, 2004.

P. Narchi, T. Bearda, M. Foldyna, G. Picardi, and P. , Prod'homme, and P. Roca i Cabarrocas Interdigitated back contact silicon solar cells: diode and resistance investigation at nanoscale using Kelvin Probe Force Microscopy, 43rd IEEE Photovoltaic Specialists Conference (PVSC), pp.3082-3085, 2016.

D. Fujita, K. Onishi, and M. Xu, Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance, Journal of Physics: Conference Series, vol.159, issue.1, p.12002, 2009.
DOI : 10.1088/1742-6596/159/1/012002

V. Palermo, M. Palma, and P. Samorì, Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy, Advanced Materials, vol.5, issue.9, pp.145-164, 2006.
DOI : 10.1002/adma.200501394

L. Collins, S. Jesse, J. I. Kilpatrick, A. Tselev, M. B. Okatan et al., Kelvin probe force microscopy in liquid using electrochemical force microscopy, Beilstein Journal of Nanotechnology, vol.6, pp.201-214, 2015.
DOI : 10.3762/bjnano.6.19

URL : http://doi.org/10.3762/bjnano.6.19

S. , M. Flores, and J. L. Toca-herrera, The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques, Nanoscale, vol.1, issue.1, p.40, 2009.

P. Karageorgiev, H. Orendi, B. Stiller, and L. Brehmer, Scanning near-field ellipsometric microscope-imaging ellipsometry with a lateral resolution in nanometer range, Applied Physics Letters, vol.79, issue.11, pp.1730-1732, 2001.
DOI : 10.1063/1.371126

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chemical Physics Letters, vol.318, issue.1-3, pp.1-3, 2000.
DOI : 10.1016/S0009-2614(99)01451-7

N. Anspach, F. Hitzel, F. Zhou, and S. Eyhusen, Hybrid SEM/AFM System from Carl Zeiss Revolutionizes Analysis of Functional Micro- and Nanostructured Specimen, Microscopy and Microanalysis, vol.20, issue.S3, pp.992-993, 2014.
DOI : 10.1017/S1431927614006680

A. Wetzel, A. Socoliuc, E. Meyer, R. Bennewitz, E. Gnecco et al., A versatile instrument for insitu combination of scanning probe microscopy and time-of-flight mass spectrometry

C. Fauquet, M. Dehlinger, F. Jandard, S. Ferrero, D. Pailharey et al., Combining scanning probe microscopy and x-ray spectroscopy, Nanoscale Research Letters, vol.6, issue.1, p.308, 2011.
DOI : 10.1186/1556-276X-6-308

URL : https://hal.archives-ouvertes.fr/hal-00975161

S. Watanabe, Y. Fukuchi, M. Fukasawa, T. Sassa, A. Kimoto et al., In Situ KPFM Imaging of Local Photovoltaic Characteristics of Structured Organic Photovoltaic Devices, Situ KPFM Imaging of Local Photovoltaic Characteristics of Structured Organic Photovoltaic Devices, pp.1481-1487, 2014.
DOI : 10.1021/am4038992

T. Machleidt, E. Sparrer, D. Kapusi, and K. Franke, Deconvolution of Kelvin probe force microscopy measurements???methodology and application, Measurement Science and Technology, vol.20, issue.8, p.84017, 2009.
DOI : 10.1088/0957-0233/20/8/084017

G. Cohen, E. Halpern, S. U. Nanayakkara, J. M. Luther, C. Held et al., Reconstruction of surface potential from Kelvin probe force microscopy images, Nanotechnology, vol.24, issue.29, p.295702, 2013.
DOI : 10.1088/0957-4484/24/29/295702

D. Axford, J. J. Davis, N. Wang, D. Wang, T. Zhang et al., Molecularly Resolved Protein Electromechanical Properties, The Journal of Physical Chemistry B, vol.111, issue.30, pp.9062-9068, 2007.
DOI : 10.1021/jp070262o

E. Strelcov, S. M. Yang, S. Jesse, N. Balke, R. K. Vasudevan et al., Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach, Nanoscale, vol.72, issue.10, pp.13838-13858, 2016.
DOI : 10.1039/C6NR01524G

M. Beu, K. Klinkmüller, and D. Schlettwein, Use of Kelvin probe force microscopy to achieve a locally and time-resolved analysis of the photovoltage generated in dye-sensitized ZnO electrodes, physica status solidi (a), vol.709, issue.44, pp.1960-1965, 2014.
DOI : 10.1002/pssa.201431336

D. W. Cardwell, A. R. Arehart, C. Poblenz, Y. Pei, J. S. Speck et al., Nm-scale measurements of fast surface potential transients in an AlGaN/GaN high electron mobility transistor, Applied Physics Letters, vol.2008, issue.19, p.193507, 2012.
DOI : 10.1063/1.1371941

E. Strelcov, S. Jesse, Y. Huang, Y. Teng, I. I. Kravchenko et al., Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices, ACS Nano, vol.7, issue.8, pp.6806-6815, 2013.
DOI : 10.1021/nn4017873

R. Giridharagopal, G. E. Rayermann, G. Shao, D. T. Moore, O. G. Reid et al., Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics, Nano Letters, vol.12, issue.2, pp.893-898, 2012.
DOI : 10.1021/nl203956q

D. U. Karatay, J. S. Harrison, M. S. Glaz, R. Giridharagopal, and D. S. Ginger, Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution, Review of Scientific Instruments, vol.28, issue.5, p.53702, 2016.
DOI : 10.1039/B510618B

J. R. O-'dea, L. M. Brown, N. Hoepker, J. A. Marohn, and S. Sadewasser, Scanning probe microscopy of solar cells: From inorganic thin films to organic photovoltaics, MRS Bull, vol.37, issue.7, pp.642-650, 2012.

D. C. Coffey and D. S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells, Nature Materials, vol.6, issue.9, pp.735-740, 2006.
DOI : 10.1038/nmat1712

L. Collins, A. Belianinov, S. Somnath, B. J. Rodriguez, N. Balke et al., Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy, Nanotechnology, vol.27, issue.10, p.105706, 2016.
DOI : 10.1088/0957-4484/27/10/105706

P. Narchi, R. Cariou, M. Foldyna, P. Prod-'homme, and P. R. Cabarrocas, Nanoscale Investigation of Carrier Lifetime on the Cross Section of Epitaxial Silicon Solar Cells Using Kelvin Probe Force Microscopy, IEEE Journal of Photovoltaics, vol.6, issue.6
DOI : 10.1109/JPHOTOV.2016.2598258

J. Sun, A. Adhikari, B. S. Shaheen, H. Yang, and O. F. Mohammed, Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy, Chapter 5 ? Material Investigations, pp.985-994, 2016.
DOI : 10.1021/acs.jpclett.5b02908

URL : http://doi.org/10.1021/acs.jpclett.5b02908

M. Mentink, T. Von-sprekelsen, R. Maltezopoulos, L. Wiesendanger, and . Hellemans, Assessing the performance of two-dimensional dopant profiling techniques, J. Vac. Sci. Technol. B, vol.22, issue.1, pp.385-393, 2004.

P. De-wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel et al., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.1
DOI : 10.1116/1.591198

P. Gargini, J. Glaze, and O. Williams, The SIA's 1997 National Technology Roadmap for Semiconductors, Solid State Technol, vol.41, issue.1, pp.73-76, 1998.

P. De-wolf, E. Brazel, and A. Erickson, Electrical characterization of semiconductor materials and devices using scanning probe microscopy, Materials Science in Semiconductor Processing, vol.4, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S1369-8001(00)00174-8

P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, and W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques, Nanotechnology, vol.26, issue.35, p.355702, 2015.
DOI : 10.1088/0957-4484/26/35/355702

URL : https://hal.archives-ouvertes.fr/hal-01310822

L. Zhang, Y. Mitani, A. Kinoshita, S. Takeno, K. Suguro et al., Direct observation of boron dopant fluctuation by sitespecific scanning spreading resistance microscopy, IEEE Reliability Physics Symposium pp. 2D.4.1-2D.4, p.2012

P. Eyben, F. Seidel, T. Hantschel, A. Schulze, A. Lorenz et al., Development and optimization of scanning spreading resistance microscopy for measuring the two-dimensional carrier profile in solar cell structures, physica status solidi (a), vol.26, issue.1, pp.596-599, 2011.
DOI : 10.1002/pssa.201000306

A. Uruena, J. John, G. Beaucarne, P. Choulat, P. Eyben et al., Local Al-alloyed contacts for next generation Si solar cells, pp.1483-1486, 2009.

L. Carnel, I. Gordon, D. V. Gestel, D. Vanhaeren, P. Eyben et al., Impact of Preferential P-Diffusion Along the Grain Boundaries on Fine-Grained Polysilicon Solar Cells, IEEE Electron Device Letters, vol.28, issue.10, pp.899-901, 2007.
DOI : 10.1109/LED.2007.904244

I. Volotsenko, M. Molotskii, Z. Barkay, J. Marczewski, P. Grabiec et al., Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements, Journal of Applied Physics, vol.107, issue.1, p.14510, 2010.
DOI : 10.1016/0039-6028(89)90362-2

C. Baumgart, M. Helm, and H. Schmidt, Quantitative dopant profiling in semiconductors: A Kelvin probe force microscopy model, Physical Review B, vol.80, issue.8, p.85305, 2009.
DOI : 10.1103/PhysRevB.80.085305

C. Jiang, I. L. Repins, C. Beall, H. R. Moutinho, K. Ramanathan et al., Investigation of micro-electrical properties of Cu2ZnSnSe4 thin films using scanning probe microscopy, Solar Energy Materials and Solar Cells, vol.132, pp.342-347, 2015.
DOI : 10.1016/j.solmat.2014.08.046

J. Kleider, J. Alvarez, A. V. Ankudinov, A. S. Gudovskikh, E. V. Gushchina et al., Characterization of silicon heterojunctions for solar cells, Nanoscale Research Letters, vol.6, issue.1, p.152, 2011.
DOI : 10.1186/1556-276X-6-152

URL : https://hal.archives-ouvertes.fr/hal-00555254

P. D. Wolf, T. Clarysse, and W. Vandervorst, Quantification of nanospreading resistance profiling data, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, pp.320-326, 1998.
DOI : 10.1116/1.589804

T. Hantschel, P. Niedermann, and W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy, Applied Physics Letters, vol.33, issue.12, pp.1603-1605, 2000.
DOI : 10.1116/1.589820

A. Schulze, T. Hantschel, P. Eyben, A. S. Verhulst, R. Rooyackers et al., Quantitative three-dimensional carrier mapping in nanowire-based transistors using scanning spreading resistance microscopy, Ultramicroscopy, vol.125, pp.18-23, 2013.
DOI : 10.1016/j.ultramic.2012.10.008

P. Eyben, J. Mody, A. Nazir, A. Schulze, T. Clarysse et al., Subnanometer Characterization of Nanoelectronic Devices, Fundamentals of Picoscience, pp.677-704, 2013.
DOI : 10.1201/b15523-46

H. Li, C. S. Jiang, W. K. Metzger, C. K. Shih, and M. , Microscopic Real-Space Resistance Mapping Across CdTe Solar Cell Junctions by Scanning Spreading Resistance Microscopy, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.395-400, 2015.
DOI : 10.1109/JPHOTOV.2014.2363569

M. W. Xu, T. Hantschel, and W. Vandervorst, Three-dimensional carrier profiling of InP-based devices using scanning spreading resistance microscopy, Applied Physics Letters, vol.4, issue.1, pp.177-179, 2002.
DOI : 10.1063/1.122408

J. Mody, G. Zschätzsch, S. Kölling, A. De-keersgieter, G. Eneman et al., 3D-carrier profiling in FinFETs using scanning spreading resistance microscopy, 2011 International Electron Devices Meeting, pp.5-7, 2011.
DOI : 10.1109/IEDM.2011.6131498

M. Wilson, A. Savtchouk, J. Lagowski, K. Kis-szabo, F. Korsos et al., QSS-??PCD measurement of lifetime in silicon wafers: advantages and new applications, Energy Procedia, pp.128-134, 2011.
DOI : 10.1016/j.egypro.2011.06.113

I. Cosme, R. Cariou, W. Chen, M. Foldyna, R. Boukhicha et al., Lifetime assessment in crystalline silicon: From nanopatterned wafer to ultra-thin crystalline films for solar cells, Solar Energy Materials and Solar Cells, vol.135, pp.93-98
DOI : 10.1016/j.solmat.2014.10.019

URL : https://hal.archives-ouvertes.fr/hal-01230115

J. A. Giesecke, M. C. Schubert, B. Michl, F. Schindler, and W. Warta, Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence, Solar Energy Materials and Solar Cells, vol.95, issue.3
DOI : 10.1016/j.solmat.2010.12.016

D. W. Cardwell, A. R. Arehart, C. Poblenz, Y. Pei, J. S. Speck et al., Nm-scale measurements of fast surface potential transients in an AlGaN/GaN high electron mobility transistor, Applied Physics Letters, vol.2008, issue.19, p.193507, 2012.
DOI : 10.1063/1.1371941

E. Strelcov, S. Jesse, Y. Huang, Y. Teng, I. I. Kravchenko et al., Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices, ACS Nano, vol.7, issue.8, pp.6806-6815, 2013.
DOI : 10.1021/nn4017873

M. Beu, K. Klinkmüller, and D. Schlettwein, Use of Kelvin probe force microscopy to achieve a locally and time-resolved analysis of the photovoltage generated in dye-sensitized ZnO electrodes, physica status solidi (a), vol.709, issue.44, pp.1960-1965, 2014.
DOI : 10.1002/pssa.201431336

L. Collins, A. Belianinov, S. Somnath, B. J. Rodriguez, N. Balke et al., Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy, Nanotechnology, vol.27, issue.10, p.105706, 2016.
DOI : 10.1088/0957-4484/27/10/105706

E. Strelcov, S. M. Yang, S. Jesse, N. Balke, R. K. Vasudevan et al., Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach, Nanoscale, vol.72, issue.10, pp.13838-13858, 2016.
DOI : 10.1039/C6NR01524G

D. C. Coffey and D. S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells, Nature Materials, vol.6, issue.9, pp.735-740, 2006.
DOI : 10.1038/nmat1712

P. A. Cox, M. S. Glaz, J. S. Harrison, S. R. Peurifoy, D. C. Coffey et al., Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy, The Journal of Physical Chemistry Letters, vol.6, issue.15, pp.2852-2858, 2015.
DOI : 10.1021/acs.jpclett.5b01360

URL : http://doi.org/10.1021/acs.jpclett.5b01360

G. Shao, G. E. Rayermann, E. M. Smith, and D. S. Ginger, Morphology-Dependent Trap Formation in Bulk Heterojunction Photodiodes, The Journal of Physical Chemistry B, vol.117, issue.16, pp.4654-4660, 2013.
DOI : 10.1021/jp3090843

R. Giridharagopal, G. E. Rayermann, G. Shao, D. T. Moore, O. G. Reid et al., Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics, Nano Letters, vol.12, issue.2, pp.893-898, 2012.
DOI : 10.1021/nl203956q

D. U. Karatay, J. S. Harrison, M. S. Glaz, R. Giridharagopal, and D. S. Ginger, Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution, Review of Scientific Instruments, vol.28, issue.5, p.53702, 2016.
DOI : 10.1039/B510618B

W. Liang, K. J. Weber, D. Suh, and J. Bullock, Humidity degradation and repair of ALD Al2O3 passivated silicon, 39th IEEE Photovoltaic Specialists Conference (PVSC), pp.38-044, 2013.

I. Electric-field, 3 Measurements under modulated frequency electrical bias, p.130

.. Devices-investigation-under-illumination, Measurements under different illumination intensities, p.135

R. Radziemska, The effect of temperature on the power drop in crystalline silicon solar cells, Renewable Energy, vol.28, issue.1, pp.1-12, 2003.
DOI : 10.1016/S0960-1481(02)00015-0

D. Lange, P. Roca-i-cabarrocas, N. Trantafyllidis, and D. Daineka, Mechanical loading effects on the resistivity of thin film semiconductors, 29th EU PVSEC Proceedings, no. 3DV.4.8, pp.1890-1893, 2014.

J. B. Li, V. Chawla, and B. M. Clemens, Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy, Advanced Materials, vol.104, issue.362, pp.720-723, 2012.
DOI : 10.1002/adma.201103470

C. Jiang, I. L. Repins, C. Beall, H. R. Moutinho, K. Ramanathan et al., Investigation of micro-electrical properties of Cu2ZnSnSe4 thin films using scanning probe microscopy, Solar Energy Materials and Solar Cells, vol.132, pp.342-347, 2015.
DOI : 10.1016/j.solmat.2014.08.046

C. Jiang, D. J. Friedman, J. F. Geisz, H. R. Moutinho, M. J. Romero et al., Distribution of built-in electrical potential in GaInP2/GaAs tandem-junction solar cells, Applied Physics Letters, vol.83, issue.8, p.1572, 2003.
DOI : 10.1063/1.123458

C. Jiang, A. Ptak, B. Yan, H. R. Moutinho, J. V. Li et al., Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy, Ultramicroscopy, vol.109, issue.8, pp.952-957, 2009.
DOI : 10.1016/j.ultramic.2009.03.048

H. R. Moutinho, R. G. Dhere, C. Jiang, Y. Yan, D. S. Albin et al., Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy, Journal of Applied Physics, vol.108, issue.7, p.74503, 2010.
DOI : 10.1016/j.tsf.2006.12.057

M. Mocza?a, N. Sosa, A. Topol, and T. Gotszalk, Investigation of multi-junction solar cells using electrostatic force microscopy methods, Ultramicroscopy, vol.141, pp.1-8, 2014.
DOI : 10.1016/j.ultramic.2014.02.007

R. Ihly, S. U. Nanayakkara, J. Gao, J. Zhang, M. Law et al., Imaging interfacial layers and internal fields in nanocrystalline junctions, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.3498-3501, 2014.
DOI : 10.1109/PVSC.2014.6925686

C. S. Jiang, H. R. Moutinho, R. Reedy, M. M. , and A. Blosse, Two-dimensional junction identification in multicrystalline silicon solar cells by scanning Kelvin probe force microscopy, Journal of Applied Physics, vol.104, issue.10
DOI : 10.1063/1.2885679

C. Jiang, H. R. Moutinho, M. J. Romero, M. M. Al-jassim, Y. Q. Xu et al., Distribution of the electrical potential in hydrogenated amorphous silicon solar cells, Thin Solid Films, vol.472, issue.1-2, pp.203-207, 2005.
DOI : 10.1016/j.tsf.2004.07.049

J. T. Heath, C. Jiang, and M. M. , Measurement of semiconductor surface potential using the scanning electron microscope, Journal of Applied Physics, vol.111, issue.4, p.46103, 2012.
DOI : 10.1063/1.123458

J. T. Heath, C. S. Jiang, and M. M. , Diffused junctions in multicrystalline silicon solar cells studied by complementary scanning probe microscopy and scanning electron microscopy techniques, 2010 35th IEEE Photovoltaic Specialists Conference, pp.227-000232, 2010.
DOI : 10.1109/PVSC.2010.5614484

P. Tchoulfian, F. Donatini, F. Levy, A. Dussaigne, P. Ferret et al., Direct Imaging of p???n Junction in Core???Shell GaN Wires, Nano Letters, vol.14, issue.6, pp.3491-3498, 2014.
DOI : 10.1021/nl5010493

URL : https://hal.archives-ouvertes.fr/hal-00999730

D. Tsurumi, K. Hamada, and Y. Kawasaki, Energy-Filtered Secondary-Electron Imaging for Nanoscale Dopant Mapping by Applying a Reverse Bias Voltage, Japanese Journal of Applied Physics, vol.51, issue.10R, p.106503, 2012.
DOI : 10.7567/JJAP.51.106503

T. H. Chang and W. C. Nixon, Electron beam induced potential contrast on unbiased planar transistors, Solid-State Electronics, vol.10, issue.7, pp.701-704, 1967.
DOI : 10.1016/0038-1101(67)90099-8

I. Volotsenko, M. Molotskii, Z. Barkay, J. Marczewski, P. Grabiec et al., Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements, Journal of Applied Physics, vol.107, issue.1, p.14510, 2010.
DOI : 10.1016/0039-6028(89)90362-2

D. Venables, Secondary electron imaging as a two-dimensional dopant profiling technique: Review and update, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.1, p.362, 1998.
DOI : 10.1116/1.589811

P. Narchi, V. Neplokh, V. Piazza, T. Bearda, F. Bayle et al., Surface potential investigation on interdigitated back contact solar cells by scanning electron microscopy and Kelvin probe force microscopy: effect of electrical bias Interdigitated back contact silicon solar cells: diode and resistance investigation at nanoscale using Kelvin Probe Force Microscopy, Prod'homme, and P. Roca i Cabarrocas 43rd IEEE Photovoltaic Specialists Conference (PVSC), pp.3082-3085, 2016.

M. Filipi?, Z. C. Holman, F. Smole, S. D. Wolf, C. Ballif et al., Analysis of lateral transport through the inversion layer in amorphous silicon/crystalline silicon heterojunction solar cells, Journal of Applied Physics, vol.41, issue.7, p.74504, 2013.
DOI : 10.1063/1.4769041

P. Narchi, G. Picardi, R. Cariou, M. Foldyna, and P. , Prod'homme, and P. Roca i Cabarrocas Kelvin Probe Force Microscopy Study of Electric Field Homogeneity in Epitaxial Silicon Solar Cells Cross- Section, 31st EU PVSEC Proceedings, pp.1026-1029, 2015.

P. Narchi, R. Cariou, M. Foldyna, P. Prod-'homme, and P. R. Cabarrocas, Nanoscale Investigation of Carrier Lifetime on the Cross Section of Epitaxial Silicon Solar Cells Using Kelvin Probe Force Microscopy, IEEE Journal of Photovoltaics, vol.6, issue.6
DOI : 10.1109/JPHOTOV.2016.2598258

M. Dapor, B. J. Inkson, C. Rodenburg, and J. M. Rodenburg, A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging, EPL (Europhysics Letters), vol.82, issue.3, p.30006, 2008.
DOI : 10.1209/0295-5075/82/30006

C. S. Jiang, J. T. Heath, H. R. Moutinho, J. V. Li, and M. M. , Two-dimensional measurement of n<sup>&#x002B;</sup>-p asymmetrical junctions in multicrystalline silicon solar cells using AFM-based electrical techniques with nanometer resolution, 2011 37th IEEE Photovoltaic Specialists Conference, pp.1972-001977, 2011.
DOI : 10.1109/PVSC.2011.6186340

J. D. Major, L. Bowen, R. Treharne, and K. Durose, Assessment of photovoltaic junction position using combined focused ion beam and electron beam-induced current analysis of close space sublimation deposited CdTe solar cells, Progress in Photovoltaics: Research and Applications, vol.10, issue.17, pp.1096-1104, 2014.
DOI : 10.1002/pip.2507

R. Cariou, W. Chen, I. Cosme-bolanos, J. Maurice, M. Foldyna et al., Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process, Progress in Photovoltaics: Research and Applications, vol.84, issue.138, pp.1075-1084, 2016.
DOI : 10.1002/pip.2762

URL : https://hal.archives-ouvertes.fr/hal-01401066

R. Cariou, Epitaxial growth of Si(Ge) materials on Si and GaAs by low temperature PECVD: towards tandem devices, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01113794

M. Takihara, T. Takahashi, and T. Ujihara, Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy, Applied Physics Letters, vol.93, issue.2, p.21902, 2008.
DOI : 10.1149/1.1836650

?. Borowik, H. Lepage, N. Chevalier, D. Mariolle, and O. Renault, Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy, Nanotechnology, vol.25, issue.26, p.265703, 2014.
DOI : 10.1088/0957-4484/25/26/265703

G. Shao, M. S. Glaz, F. Ma, H. Ju, and D. S. Ginger, Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics, ACS Nano, vol.8, issue.10, pp.10799-10807, 2014.
DOI : 10.1021/nn5045867

Y. Nakajima, M. Takihara, T. Minemoto, and T. Takahashi, Photovoltage decay measurements on Cu(In,Ga)Se2 solar cells by photo-assisted Kelvin probe force microscopy, 38th IEEE Photovoltaic Specialists Conference (PVSC), pp.1736-001738, 2012.

Z. Schumacher, Y. Miyahara, A. Spielhofer, and P. Grutter, Measurement of Surface Photovoltage by Atomic Force Microscopy under Pulsed Illumination, Physical Review Applied, vol.5, issue.4, p.44018, 2016.
DOI : 10.1103/PhysRevApplied.5.044018

Z. Schumacher, A. Spielhofer, Y. Miyahara, and P. Grutter, The lower limit for time resolution in frequency modulation atomic force microscopy, ArXiv160902362 Cond-Mat, 2016.

R. H. Kingston, Switching Time in Junction Diodes and Junction Transistors, Proceedings of the IRE, pp.829-834, 1954.

C. L. Ma and P. O. Lauritzen, A simple power diode model with forward and reverse recovery, 22nd Annual IEEE Power Electronics Specialists Conference PESC, pp.411-415, 1991.
DOI : 10.1109/pesc.1991.162708

K. Yamazaki and S. , Forward transient behavior of PiN and super junction diodes, Proceedings of the 16th International Symposium on Power Semiconductor Devices & IC's, 2014.
DOI : 10.1109/WCT.2004.239905

D. C. Lewis, On the determination of the minority carrier lifetime from the reverse recovery transient of pnR diodes, Solid-State Electronics, vol.18, issue.1, pp.87-91, 1975.
DOI : 10.1016/0038-1101(75)90074-X

D. Macdonald and A. Cuevas, Trapping of minority carriers in multicrystalline silicon, Applied Physics Letters, vol.8, issue.12, pp.1710-1712, 1999.
DOI : 10.1016/0038-1101(69)90006-9

T. Glatzel, M. Rusu, S. Sadewasser, and M. C. Lux-steiner, Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy, Nanotechnology, vol.19, issue.14, p.145705, 2008.
DOI : 10.1088/0957-4484/19/14/145705

E. M. Tennyson, J. L. Garrett, J. A. Frantz, J. D. Myers, R. Y. Bekele et al., Nanoimaging of Open-Circuit Voltage in Photovoltaic Devices, Advanced Energy Materials, vol.71, issue.23, 2015.
DOI : 10.1002/aenm.201501142

C. Loppacher, U. Zerweck, S. Teich, E. Beyreuther, T. Otto et al., FM demodulated Kelvin probe force microscopy for surface photovoltage tracking, Nanotechnology, vol.16, issue.3, p.1, 2005.
DOI : 10.1088/0957-4484/16/3/001

T. Takahashi, Photoassisted Kelvin Probe Force Microscopy on Multicrystalline Si Solar Cell Materials, Jpn. J. Appl. Phys, vol.50, issue.8, pp.8-13, 2011.
DOI : 10.7567/jjap.50.08la05

Z. Zhang, M. Hetterich, U. Lemmer, M. Powalla, and H. Hölscher, thin-film solar cells under defined white light illumination analyzed by Kelvin probe force microscopy, Applied Physics Letters, vol.102, issue.2, p.23903, 2013.
DOI : 10.1103/PhysRevLett.105.116802

S. Saraf, R. Shikler, J. Yang, and Y. Rosenwaks, Microscopic surface photovoltage spectroscopy, Applied Physics Letters, vol.80, issue.14, pp.2586-2588, 2002.
DOI : 10.1063/1.125039

T. Meoded, R. Shikler, N. Fried, and Y. Rosenwaks, Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy, Applied Physics Letters, vol.75, issue.16, pp.2435-2437, 1999.
DOI : 10.1103/PhysRev.111.153

C. Jiang, H. R. Moutinho, D. J. Friedman, J. F. Geisz, and M. M. , Measurement of built-in electrical potential in III???V solar cells by scanning Kelvin probe microscopy, Journal of Applied Physics, vol.93, issue.12, pp.10035-10040, 2003.
DOI : 10.1063/1.124357

A. Ankudinov, Solar cell diagnostics using Kelvin force microscopy and local photoexcitation, Microsc. Anal, 2012.

R. Nowak, D. Moraru, T. Mizuno, R. Jablonski, and M. Tabe, Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy, Thin Solid Films, vol.557, pp.249-253, 2014.
DOI : 10.1016/j.tsf.2013.08.115

L. Kronik and Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications, Surface Science Reports, vol.37, issue.1-5, pp.1-206, 1999.
DOI : 10.1016/S0167-5729(99)00002-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.471.8047

Y. Kutes, B. A. Aguirre, J. L. Bosse, J. L. Cruz-campa, D. Zubia et al., Mapping photovoltaic performance with nanoscale resolution, Progress in Photovoltaics: Research and Applications, vol.60, issue.432, pp.315-325, 2016.
DOI : 10.1023/B:VISI.0000029664.99615.94

J. Heo and S. Won, Scanning probe study on the photovoltaic characteristics of a Si solar cell by using Kelvin force microscopy and photoconductive atomic force microscopy, Thin Solid Films, vol.546, pp.353-357, 2013.
DOI : 10.1016/j.tsf.2013.04.076

A. Fejfar, M. Hývl, M. Ledinský, A. Vetushka, J. Stuchlík et al., Microscopic measurements of variations in local (photo)electronic properties in nanostructured solar cells, Solar Energy Materials and Solar Cells, vol.119, pp.228-234, 2013.
DOI : 10.1016/j.solmat.2013.07.042

URL : https://hal.archives-ouvertes.fr/hal-01083471

J. Alvarez, J. P. Kleider, F. Houzé, M. Y. Liao, and Y. Koide, Local photoconductivity on diamond metal-semiconductor-metal photodetectors measured by conducting probe atomic force microscopy, Diamond and Related Materials, vol.16, issue.4-7, pp.4-7, 2007.
DOI : 10.1016/j.diamond.2007.01.038

URL : https://hal.archives-ouvertes.fr/hal-00320360

D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy, Nano Letters, vol.7, issue.3, pp.738-744, 2007.
DOI : 10.1021/nl062989e

H. Li, C. S. Jiang, W. K. Metzger, C. K. Shih, and M. , Microscopic Real-Space Resistance Mapping Across CdTe Solar Cell Junctions by Scanning Spreading Resistance Microscopy, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.395-400, 2015.
DOI : 10.1109/JPHOTOV.2014.2363569

M. Gwon, A. Sohn, Y. Cho, S. Phark, J. Ko et al., Plasmon-Enhanced Surface Photovoltage of ZnO, Sci. Rep, vol.5, 2015.

P. Narchi, J. Alvarez, P. Chrétien, G. Picardi, R. Cariou et al., Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination, Nanoscale Research Letters, vol.81, issue.5, 2016.
DOI : 10.1186/s11671-016-1268-1

URL : https://hal.archives-ouvertes.fr/hal-01238543

L. Weber, M. Lehr, and E. Gmelin, Electrical properties of silicon point contacts, Physical Review B, vol.43, issue.5, pp.4317-4322, 1991.
DOI : 10.1103/PhysRevB.43.4317

A. Kikukawa, S. Hosaka, and R. Imura, junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy, Applied Physics Letters, vol.11, issue.25, pp.3510-3512, 1995.
DOI : 10.1063/1.113780

E. M. Tennyson, J. L. Garrett, C. Gong, J. A. Frantz, J. D. Myers et al., Assessing local voltage in CIGS solar cells by nanoscale resolved Kelvin Probe Force Microscopy and sub-micron photoluminescence, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.691-0694, 2014.
DOI : 10.1109/PVSC.2014.6925014

R. Giridharagopal, P. A. Cox, and D. S. Ginger, Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials, Chapter 7 ? Conclusions & Perspectives Contents, pp.1769-1776, 2016.
DOI : 10.1021/acs.accounts.6b00255

URL : http://doi.org/10.1021/acs.accounts.6b00255

R. A. Saunin, V. E. Sizov, and M. P. Temiryazeva, Magnetic force microscopy study of domain structures in magnetic films, Bull. Russ. Acad. Sci. Phys, vol.78, issue.1, pp.49-52, 2014.

M. Scherer, R. Saive, D. Daume, M. Kröger, and W. Kowalsky, Sample preparation for scanning Kelvin probe microscopy studies on cross sections of organic solar cells, AIP Advances, vol.3, issue.9, p.92134, 2013.
DOI : 10.1016/j.orgel.2013.02.040

C. Smith, I. Kaufman, E. Mazor, D. Chen, and . Vilenski, Method and apparatus for cleaving semiconductor wafers, US5740953 A, 1998.

Y. Chen, Z. Zhang, S. Ko, W. Hsu, and M. Matsuo, Methods and apparatus for low cost and high performance polishing tape for substrate bevel and edge polishing in seminconductor manufacturing, 2008.

S. Barbet, M. Popoff, H. Diesinger, D. Deresmes, D. Théron et al., Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study, Journal of Applied Physics, vol.115, issue.14, p.144313, 2014.
DOI : 10.2478/s11534-011-0096-2

URL : https://hal.archives-ouvertes.fr/hal-00981142

L. Collins, A. Belianinov, S. Somnath, B. J. Rodriguez, N. Balke et al., Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy, Nanotechnology, vol.27, issue.10, p.105706, 2016.
DOI : 10.1088/0957-4484/27/10/105706

J. L. Garrett and J. N. Munday, Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy, Nanotechnology, vol.27, issue.24, p.245705, 2016.
DOI : 10.1088/0957-4484/27/24/245705

URL : http://arxiv.org/abs/1601.02503

T. Machleidt, E. Sparrer, D. Kapusi, and K. Franke, Deconvolution of Kelvin probe force microscopy measurements???methodology and application, Measurement Science and Technology, vol.20, issue.8, p.84017, 2009.
DOI : 10.1088/0957-0233/20/8/084017

E. Strelcov, A. Belianinov, Y. Hsieh, S. Jesse, A. P. Baddorf et al., Deep Data Analysis of Conductive Phenomena on Complex Oxide Interfaces: Physics from Data Mining, ACS Nano, vol.8, issue.6, pp.6449-6457, 2014.
DOI : 10.1021/nn502029b

P. A. Garillo, L. Borowik, F. Caffy, R. Demadrille, and B. Grevin, Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells, ACS Appl. Mater. Interfaces, 2016.

S. , M. Flores, and J. L. Toca-herrera, The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques, Nanoscale, vol.1, issue.1, p.40, 2009.

N. A. Geisse, AFM and combined optical techniques, Materials Today, vol.12, issue.7-8, pp.40-45, 2009.
DOI : 10.1016/S1369-7021(09)70201-9

URL : http://doi.org/10.1016/s1369-7021(09)70201-9

B. V. Tata and B. Raj, Confocal laser scanning microscopy: Applications in material science and technology, Bulletin of Materials Science, vol.103, issue.4, pp.263-278
DOI : 10.1007/BF02744951

URL : http://repository.ias.ac.in/40515/1/194_pub.pdf

A. Lewis, A. Komissar, A. Ignatov, O. Fedoroyov, E. Maayan et al., AFM Integrated with SEM/FIB for Complete 3D Metrology Measurements, Microscopy and Microanalysis, vol.21, issue.S3, pp.1112-1113, 2014.
DOI : 10.1017/S1431927615007941

D. Tsurumi, K. Hamada, and Y. Kawasaki, Energy-Filtered Secondary-Electron Imaging for Nanoscale Dopant Mapping by Applying a Reverse Bias Voltage, Japanese Journal of Applied Physics, vol.51, issue.10R, p.106503, 2012.
DOI : 10.7567/JJAP.51.106503

J. Sun, A. Adhikari, B. S. Shaheen, H. Yang, and O. F. Mohammed, Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy, The Journal of Physical Chemistry Letters, vol.7, issue.6, pp.985-994, 2016.
DOI : 10.1021/acs.jpclett.5b02908

R. Saive, M. Scherer, C. Mueller, D. Daume, J. Schinke et al., Imaging the Electric Potential within Organic Solar Cells, Advanced Functional Materials, vol.14, issue.47, pp.5854-5860, 2013.
DOI : 10.1002/adfm.201301315

R. Saive, C. Mueller, J. Schinke, R. Lovrincic, and W. Kowalsky, Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe, Applied Physics Letters, vol.103, issue.24, p.243303, 2013.
DOI : 10.1021/nn700190t

@. P. Narchi, J. Alvarez, P. Chrétien, G. Picardi, R. Cariou et al., Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination, List of publications Peer reviewed publications, 2016.
DOI : 10.1186/s11671-016-1268-1

URL : https://hal.archives-ouvertes.fr/hal-01238543

@. P. Narchi, R. Cariou, M. Foldyna, P. Prod-'homme, and P. R. Cabarrocas, Nanoscale Investigation of Carrier Lifetime on the Cross Section of Epitaxial Silicon Solar Cells Using Kelvin Probe Force Microscopy, IEEE Journal of Photovoltaics, vol.6, issue.6
DOI : 10.1109/JPHOTOV.2016.2598258

P. Tchernycheva, V. Roca-i-cabarrocas, I. Depauw, R. Abdo, R. Boukhicha et al., Surface potential investigation on interdigitated back contact solar cells by scanning electron microscopy and Kelvin probe force microscopy: effect of electrical bias, Nanophotonics for Ultra-Thin Crystalline Silicon Photovoltaics: When Photons (Actually) Meet Electrons 29th EUPVSEC Proceedings, pp.1461-1469, 2014.

@. P. Narchi, G. Picardi, R. Cariou, M. Foldyna, and P. , Prod'homme, and P. Roca i Cabarrocas Kelvin Probe Force Microscopy Study of Electric Field Homogeneity in Epitaxial Silicon Solar Cells Cross-Section, 31st EU PVSEC Proceedings, pp.1026-1029

@. P. Narchi, T. Bearda, M. Foldyna, G. Picardi, and P. , Prod'homme, and P. Roca i Cabarrocas Interdigitated back contact silicon solar cells: diode and resistance investigation at nanoscale using Kelvin Probe Force Microscopy, 43rd IEEE Photovoltaic Specialists Conference (PVSC), pp.3082-3085, 2016.

P. Pending, @. P. Narchi, and F. Farci, European Procedure International Distinctions ? EUPVSEC Student Award Category: Thin Films ? Siebel Scholarship, Category: Energy Science Résumé, 2015.

C. Ensuite-de, Nous montrons que cette technique peut détecter des changements de dopage dans la gamme 10 15 à 10 20 atomes.cm -3 , avec une résolution nanométrique et un bon ratio signal/bruit. Puis, nous présentons des mesures de durée de décroissance sur des wafers silicium cristallin passivés. Les mesures sont réalisées sur la tranche non-passivée des échantillons. Nous montrons que, même si la tranche n'est pas passivée, les durées de décroissance obtenue par KPFM ont une bonne corrélation avec les temps de vie des wafers mesurées par décroissance de la photoconductivité détectée par micro-ondes. Par la suite, nous nous concentrons sur les analyses dispositif. A l'aide du KPFM, nous analysons deux types de cellules solaires silicium cristallin : les cellules solaires silicium épitaxié (epi-Si) et les cellules solaires hétérojonctions à contact arrière (IBC) En particulier, nous nous focalisons sur l'analyse de dispositifs en condition d'opération. Nous étudions d'abord l'influence de la tension électrique appliquée et nous montrons que les effets de résistance et de diode peuvent être détectés à l'échelle nanométrique, Les mesures de KPFM sont comparées aux mesures de microscopie électronique à balayage (SEM) dans les mêmes conditions, puisque le SEM est aussi sensible au potentiel de surface. Nous montrons que les mesures KPFM sur la tranche de cellules solaires epi-Si peuvent permettre d'étudier les changements de champ électrique avec la tension électrique appliquée

. De and . La-tension-Électrique-est-modulée-en-fréquence, nous montrons que des mesures de temps de vie peuvent être effectuées à l'échelle locale sur la tranche de cellules solaires epi-Si, ce qui peut permettre de détecter les interfaces limitantes. Puis, nous étudions l'influence de l'illumination sur les mesures KPFM et CP-AFM. Nous effectuons des mesures sur la tranche de cellules epi-Si sous différentes valeurs d'intensité et longueurs d'onde d'illumination. Nous montrons une bonne sensibilité des mesures KPFM à l'illumination. Cependant, nous montrons que pour différentes longueurs d'onde, à tension de circuit ouvert fixé, nos mesures ne sont pas corrélées avec les mesures de rendement quantique interne, comme nous le pensions. Enfin, nous résumons notre travail dans un tableau qui représente les forces et faiblesses des techniques pour les différentes mesures d'intérêt exposées précédemment. A partir de ce tableau, nous imaginons un setup de microscopie « idéal