. Cukierman, D. Pankov, K. Stevens, and . Yamada, Taking Cell-Matrix Adhesions to the Third Dimension, Science, vol.294, issue.5547, pp.1708-1712, 2001.
DOI : 10.1126/science.1064829

M. Hay, W. David, . Thomas, L. John, C. Craighead et al., Clinical development success rates for investigational drugs, Nature Biotechnology, vol.32, issue.1, pp.40-51, 2014.
DOI : 10.1002/mde.1360

E. Cukierman, R. Pankov, M. Kenneth, and . Yamada, Cell interactions with three-dimensional matrices. Current opinion in cell biology, pp.633-639, 2002.
DOI : 10.1016/s0955-0674(02)00364-2

M. Vinken, P. Papeleu, S. Snykers, E. De-rop, T. Henkens et al., Involvement of Cell Junctions in Hepatocyte Culture Functionality, Critical Reviews in Toxicology, vol.69, issue.4, pp.299-318, 2006.
DOI : 10.1016/S0014-5793(03)00252-7

E. Elliot, . Hui, N. Sangeeta, and . Bhatia, Micromechanical control of cell-cell interactions, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.14, pp.5722-5728, 2007.

R. Steven, J. A. Caliari, and . Burdick, A practical guide to hydrogels for cell culture, Nature Methods, vol.13, issue.5, pp.405-414, 2016.

K. Hynda, . Kleinman, R. George, and . Martin, Matrigel: basement membrane matrix with biological activity, Seminars in cancer biology, pp.378-86, 2005.

H. Muhannand, A. L. Zaman, D. Sieminski, H. Mackellar, . Gong et al., Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proceedings of the National Academy of Sciences of the United States of America, 2006.

K. Mosiewicz, A. J. Kolb, M. Van-der-vlies, P. Martino, J. Lienemann et al., In situ cell manipulation through enzymatic hydrogel photopatterning, situ cell manipulation through enzymatic hydrogel photopatterning, pp.1072-1078, 2013.
DOI : 10.1038/nmat3766

URL : http://infoscience.epfl.ch/record/189942

J. M. Kelm and M. Fussenegger, Microscale tissue engineering using gravity-enforced cell assembly, Trends in Biotechnology, vol.22, issue.4, pp.195-202, 2004.
DOI : 10.1016/j.tibtech.2004.02.002

F. Pampaloni, G. Emmanuel, E. Reynaud, and . Stelzer, The third dimension bridges the gap between cell culture and live tissue, Nature Reviews Molecular Cell Biology, vol.48, issue.10, pp.839-845, 2007.
DOI : 10.1038/nrm2236

E. Fennema, N. Rivron, J. Rouwkema, C. Van-blitterswijk, and J. De-boer, Spheroid culture as a tool for creating 3D complex tissues, Trends in Biotechnology, vol.31, issue.2, pp.108-123, 2013.
DOI : 10.1016/j.tibtech.2012.12.003

URL : http://doc.utwente.nl/83313/1/2013-02-01_Fennema.pdf

S. Breslin and L. O. Driscoll, Three-dimensional cell culture: the missing link in drug discovery, Drug Discovery Today, vol.18, issue.5-6, pp.5-6240, 2013.
DOI : 10.1016/j.drudis.2012.10.003

D. Mueller, L. Krämer, E. Hoffmann, S. Klein, and F. Noor, 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies Toxicology in vitro : an international journal published in association with BIBRA, pp.104-116, 2014.

M. Richard, D. H. Eglen, and . Randle, Drug Discovery Goes Three-Dimensional: Goodbye to Flat High-Throughput Screening? ASSAY and Drug Development Technologies, p.150629132900006, 2015.

J. J. Burbaum, Miniaturization technologies in HTS: How fast, how small, how soon? Drug Discovery Today, pp.313-322, 1998.
DOI : 10.1016/s1359-6446(98)01203-3

A. Smith, Screening for drug discovery: The leading question, Nature, vol.418, issue.6896, pp.453-459, 2002.
DOI : 10.1038/418453a

M. Lorenz, D. Mayr, and . Bojanic, Novel trends in high-throughput screening, Current Opinion in Pharmacology, vol.9, issue.5, pp.580-588, 2009.

G. , C. , and S. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, vol.40, pp.319-336, 2007.

J. Jeremy, E. Agresti, . Antipov, R. Adam, K. Abate et al., Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.9, pp.4004-4009, 2010.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Reports on Progress in Physics, vol.75, issue.1, p.16601, 2012.
DOI : 10.1088/0034-4885/75/1/016601

P. Abbyad, R. Dangla, A. Alexandrou, N. Charles, and . Baroud, Rails and anchors: guiding and trapping droplet microreactors in two dimensions, Lab Chip, vol.48, issue.5, pp.813-821, 2011.
DOI : 10.1039/C0LC00104J

URL : https://hal.archives-ouvertes.fr/hal-00804598

R. Ismagilov, A Microfluidic System for Controlling Reaction Networks in Time, Angewandte Chemie, vol.42, issue.7, pp.767-772, 2003.

D. Ferraro, J. Champ, B. Teste, M. Serra, L. Malaquin et al., Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis, Scientific Reports, vol.162, issue.1, p.25540, 2016.
DOI : 10.1016/0003-2697(87)90021-2

URL : https://hal.archives-ouvertes.fr/hal-01323999

S. Feng, L. Yi, L. Zhao-miao, C. Ren-tuo, G. et al., Advances in Micro-Droplets Coalescence Using Microfluidics, Chinese Journal of Analytical Chemistry, issue.12, pp.431942-1954, 2015.

B. Kintses, L. D. Van-vliet, S. Devenish, and F. Hollfelder, Microfluidic droplets: new integrated workflows for biological experiments, Current Opinion in Chemical Biology, vol.14, issue.5, pp.548-555, 2010.
DOI : 10.1016/j.cbpa.2010.08.013

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski et al., Droplet microfluidic technology for single-cell high-throughput screening, Proceedings of the National Academy of Sciences, vol.8, issue.10, pp.14195-200, 2009.
DOI : 10.1039/b806706f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732882

E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets, Cell, vol.161, issue.5, pp.1611202-1214, 2015.
DOI : 10.1016/j.cell.2015.05.002

J. Clausell-tormos, D. Lieber, J. C. Baret, A. El-harrak, O. J. Miller et al., Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms, Chemistry & Biology, vol.15, issue.5, pp.427-437, 2008.
DOI : 10.1016/j.chembiol.2008.04.004

A. Dewan, J. Kim, R. H. Mclean, S. A. Vanapalli, and M. Karim, Growth kinetics of microalgae in microfluidic static droplet arrays, Biotechnology and Bioengineering, vol.117, issue.4, pp.2987-2996, 2012.
DOI : 10.1002/bit.24568

L. Yu, C. Michael, . Chen, C. Karen, and . Cheung, Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing, Lab on a Chip, vol.12, issue.18, pp.2424-2432, 2010.
DOI : 10.1039/c004590j

C. Kim, S. Chung, Y. E. Kim, S. H. Kang-sun-lee, K. W. Lee et al., Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid, Lab Chip, vol.7, issue.1, pp.246-52, 2011.
DOI : 10.1039/C0LC00036A

Y. Morimoto and S. Takeuchi, Three-dimensional cell culture based on microfluidic techniques to mimic living tissues, Biomater. Sci., vol.30, issue.12, p.257, 2013.
DOI : 10.1002/adhm.201200189

Y. Amy, Y. Hsiao, Y. Torisawa, S. Tung, . Sud et al., Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids, Biomaterials, issue.16, pp.303020-303027, 2009.

H. Ota and N. Miki, Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sensors and Actuators A: Physical, pp.266-273, 2011.
DOI : 10.1016/j.sna.2011.03.051

D. Mark, C. Ungrin, A. Joshi, C. Nica, . Bauwens et al., Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates, PloS one, vol.3, issue.2, p.1565, 2008.

Y. Tung, Y. Amy, . Hsiao, G. Steven, Y. Allen et al., High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array, The Analyst, vol.240, issue.3, pp.473-481, 2011.
DOI : 10.1039/C0AN00609B

C. Holtze, J. J. Rowat, J. Agresti, . Hutchison, C. Eangiì-e et al., Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab on a Chip, vol.12, issue.10, pp.1632-1641, 2008.
DOI : 10.1039/b806706f

J. Baret, Surfactants in droplet-based microfluidics, Lab Chip, vol.101, issue.135, pp.422-455, 2012.
DOI : 10.1039/C1LC20582J

R. Dangla, S. Lee, and C. N. Baroud, Trapping Microfluidic Drops in Wells of Surface Energy, Physical Review Letters, vol.107, issue.12, p.124501, 2011.
DOI : 10.1103/PhysRevLett.107.124501

URL : https://hal.archives-ouvertes.fr/hal-00998003

E. Fradet, C. Mcdougall, P. Abbyad, R. Dangla, D. Mcgloin et al., Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays, Lab on a Chip, vol.424, issue.24, pp.4228-4262, 2011.
DOI : 10.1039/c1lc20541b

URL : https://hal.archives-ouvertes.fr/hal-00804596

E. Verneuil, M. Cordero, F. Gallaire, N. Charles, and . Baroud, Laser-Induced Force on a Microfluidic Drop: Origin and Magnitude, Langmuir, vol.25, issue.9, pp.5127-5161, 2009.
DOI : 10.1021/la8041605

URL : https://hal.archives-ouvertes.fr/hal-01002595

R. Dangla, C. Kayi, N. Charles, and . Baroud, Droplet microfluidics driven by gradients of confinement, Proceedings of the National Academy of Sciences, vol.11, issue.22, pp.853-861, 2013.
DOI : 10.1039/c1lc20561g

URL : https://hal.archives-ouvertes.fr/hal-00995145

E. Fradet, Y. Lopez, N. Charles, and . Baroud, The physical mechanisms of step emulsification, Journal of Physics D: Applied Physics, vol.46, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996486

V. Chokkalingam, S. Herminghaus, and R. Seemann, Self-synchronizing pairwise production of monodisperse droplets by microfluidic step emulsification, Applied Physics Letters, vol.7, issue.25, p.254101, 2008.
DOI : 10.1063/1.2164393

J. Baret, F. Kleinschmidt, . Harrak, D. Andrew, and . Griffiths, Kinetic Aspects of Emulsion Stabilization by Surfactants: A Microfluidic Analysis, Langmuir, vol.25, issue.11, pp.6088-93, 2009.
DOI : 10.1021/la9000472

J. David, A. Collins, A. Neild, A. Demello, Y. Liu et al., The Poisson distribution and beyond : methods for microfluidic droplet production and single cell, Lab on a Chip, vol.15, issue.17, pp.3439-3459, 2015.

D. Jeffrey, S. D. Martin, and . Hudson, Mass transfer and interfacial properties in two-phase microchannel flows, New Journal of Physics, vol.11, 2009.

N. Pernodet and . Maaloum, Pore size of agarose gels by atomic force microscopy, Electrophoresis, vol.54, issue.1, pp.55-58, 1997.
DOI : 10.1002/elps.1150180111

J. Narayanan, J. Xiong, and X. Liu, Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques, Journal of Physics: Conference Series, vol.28, pp.83-86, 2006.
DOI : 10.1088/1742-6596/28/1/017

P. Chen, X. Feng, D. Chen, C. Liu, W. Du et al., Investigating intercellular calcium waves by microfluidic gated pinched-flow, Sensors and Actuators B: Chemical, vol.234, pp.583-592, 2016.
DOI : 10.1016/j.snb.2016.04.184

M. Cordero, E. Verneuil, F. Gallaire, and C. Baroud, Time-resolved temperature rise in a thin liquid film due to laser absorption, Physical Review E, vol.79, issue.1, p.11201, 2009.
DOI : 10.1103/PhysRevE.79.011201

URL : https://hal.archives-ouvertes.fr/hal-01002603

O. Frey, M. Patrick, D. A. Misun, . Fluri, G. Jan et al., Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis, Nature Communications, vol.11, p.4250, 2014.
DOI : 10.1038/ncomms5250

URL : http://doi.org/10.1038/ncomms5250

K. Kwapiszewska, . Michalczuk, . Rybka, Z. Kwapiszewski, and . Brzózka, A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening, Lab Chip, vol.20, issue.12, 2014.
DOI : 10.1039/C4LC00291A

B. Patra, C. Peng, W. Liao, C. Lee, and Y. Tung, Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device, Scientific Reports, vol.12, issue.1, p.21061, 2015.
DOI : 10.1200/JCO.1994.12.6.1323

K. Alessandri, V. Bibhu-ranjan-sarangi, B. Valér¨valér¨?évitch-gurchenkov, T. R. Sinha, L. Kießling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proceedings of the National Academy of Sciences of the United States of America, pp.11014843-11014851, 2013.
DOI : 10.1073/pnas.1118910109

URL : https://hal.archives-ouvertes.fr/inserm-01356886

Y. Hon-fai-chan, Y. Zhang, Y. Ho, Y. Chiu, . Jung et al., Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment Scientific reports, p.3462, 2013.

C. Siltanen, M. Yaghoobi, A. Haque, J. You, J. Lowen et al., Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids, Acta Biomaterialia, vol.34, pp.1-8, 2016.
DOI : 10.1016/j.actbio.2016.01.012

P. Sabhachandani, V. Motwani, N. Cohen, S. Sarkar, V. Torchilin et al., Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform, Lab Chip, vol.13, issue.11, pp.497-505, 2016.
DOI : 10.5402/2012/516461

S. Kay, M. Mcmillan, M. Boyd, and . Zagnoni, Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids, Lab on a Chip, vol.16, issue.18, pp.3548-3555, 2016.

T. Lucas, R. R. Vu, P. Less, and . Rajagopalan, The promise of organotypic hepatic and gastrointestinal models, Trends in biotechnology, vol.32, issue.8, pp.406-413, 2014.

Y. Sakai, S. Yamagami, and K. Nakazawa, Comparative Analysis of Gene Expression in Rat Liver Tissue and Monolayer- and Spheroid-Cultured Hepatocytes, Cells Tissues Organs, vol.191, issue.4, pp.281-288, 2010.
DOI : 10.1159/000272316

J. Landry, D. Bernier, C. Ouellet, R. Goyette, and N. Marceau, Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities, The Journal of Cell Biology, vol.101, issue.3, pp.914-923, 1985.
DOI : 10.1083/jcb.101.3.914

F. Van, Z. , and W. Mikulits, Hepatospheres: Three dimensional cell cultures resemble physiological conditions of the liver, World Journal of Hepatology, vol.2, issue.1, pp.1-7, 2010.

T. Tammy, M. Chang, and . Hughes-fulford, Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates, Biomaterials, vol.35, issue.7, pp.2162-71, 2014.

G. Linda, A. Griffith, D. B. Wells, and . Stolz, Engineering Liver, Hepatology, vol.60, issue.4, pp.1426-1434, 2014.

S. Fung-wong, Y. Y. Da-yoon-no, D. S. Choi, B. G. Kim, S. Chung et al., Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model, Biomaterials, vol.32, issue.32, pp.328087-96, 2011.
DOI : 10.1016/j.biomaterials.2011.07.028

M. A. Saber, M. A. Zern, and D. A. Shafriz, Use of in situ hybridization to identify collagen and albumin mRNAs in isolated mouse hepatocytes., Proceedings of the National Academy of Sciences, vol.80, issue.13, pp.4017-4020, 1983.
DOI : 10.1073/pnas.80.13.4017

R. Lin, L. Chou, C. Chien, and H. Chang, Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and ??1-integrin, Cell and Tissue Research, vol.311, issue.3, pp.411-433, 2006.
DOI : 10.1007/s00441-005-0148-2

D. Drasdo and S. Höhme, : monolayers and spheroids, Physical Biology, vol.2, issue.3, pp.133-147, 2005.
DOI : 10.1088/1478-3975/2/3/001

S. Emmanouhl, L. K. Tzanakakis, W. Hansen, and . Hu, The role of actin filaments and microtubules in hepatocyte spheroid self-assembly, Cell Motility and the Cytoskeleton, vol.48, pp.175-189, 2001.

R. Glicklis, C. Jose, S. Merchuk, and . Cohen, Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions, Biotechnology and Bioengineering, vol.23, issue.6, pp.672-80, 2004.
DOI : 10.1002/bit.20086

L. Jennifer, G. Luebke-wheeler, L. Nedredal, B. P. Yee, S. L. Amiot et al., E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism, Cell Transplantation, vol.18, issue.12, pp.1281-1287, 2009.

G. Cheng, J. Tse, K. Rakesh, . Jain, L. Lance et al., Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells, PLoS ONE, vol.321, issue.2, p.4632, 2009.
DOI : 10.1371/journal.pone.0004632.s008

URL : http://doi.org/10.1371/journal.pone.0004632

F. Montel, M. Delarue, J. Elgeti, D. Vignjevic, G. Cappello et al., Isotropic stress reduces cell proliferation in tumor spheroids, New Journal of Physics, vol.14, issue.5, 2012.
DOI : 10.1088/1367-2630/14/5/055008

URL : https://hal.archives-ouvertes.fr/hal-01138975

M. Rui, . Tostões, B. Sofia, M. Leite, J. Serra et al., Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing, Hepatology, issue.4, pp.551227-551263, 2012.

C. Sreenivasa, . Ramaiahgari, W. Michiel, B. Den-braver, V. Herpers et al., A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies, Archives of Toxicology, vol.88, issue.5, pp.1083-1095, 2014.

C. M. Brophy, J. L. Luebke-wheeler, B. P. Amiot, H. Khan, R. P. Remmel et al., Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function, Hepatology, vol.29, issue.2, pp.578-586, 2009.
DOI : 10.1002/hep.22674

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680349

E. Gevaert, L. Dollé, T. Billiet, P. Dubruel, L. Van-grunsven et al., High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering, PLoS ONE, vol.35, issue.8, p.105171, 2014.
DOI : 10.1371/journal.pone.0105171.s010

D. Mueller, A. Koetemann, and F. Noor, Organotypic Cultures of Hepg2 Cells for In Vitro Toxicity Studies, Journal of Bioengineering and Biomedical Sciences, vol.01, issue.S2, p.1, 2011.
DOI : 10.4172/2155-9538.S2-002

P. Gunness, D. Mueller, and V. Shevchenko, 3D Organotypic Cultures of Human HepaRG Cells: A Tool for In Vitro Toxicity Studies, Toxicological Sciences, vol.133, issue.1, pp.67-78, 2013.
DOI : 10.1093/toxsci/kft021

J. Yang, A. Ichikawa, and T. Tsuchiya, A novel function of connexin 32: marked enhancement of liver function in a hepatoma cell line, Biochemical and Biophysical Research Communications, vol.307, issue.1, pp.80-85, 2003.
DOI : 10.1016/S0006-291X(03)01117-3

M. H. Bae-hoon-lee, J. Kim, D. Ho-lee, N. Seliktar, L. Cho et al., Modulation of Huh7.5 Spheroid Formation and Functionality Using Modified PEG-Based Hydrogels of Different Stiffness, Plos One, vol.10, issue.2, p.118123, 2015.

K. Kon, J. Kim, H. Jaeschke, and J. J. Lemasters, Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes, Hepatology, vol.33, issue.5, pp.1170-1179, 2004.
DOI : 10.1002/hep.20437

G. Willem, . Schoonen, C. Joe, . Stevenson, M. Walter et al., Cytotoxic effects of 109 reference compounds on rat H4IIE and human HepG2 hepatocytes. III: Mechanistic assays on oxygen consumption with MitoXpress and NAD(P)H production with Alamar Blue???, Toxicology in Vitro, vol.26, issue.3, pp.511-525, 2012.

H. Fujimura, N. Murakami, S. Miwa, C. Aruga, and W. Toriumi, The suitability of rat hepatoma cell line H4IIE for evaluating the potentials of compounds to induce CYP3A23 expression, Experimental and Toxicologic Pathology, vol.64, issue.5, pp.527-533, 2012.
DOI : 10.1016/j.etp.2010.11.010

N. Sangeeta, . Bhatia, H. Gregory, . Underhill, S. Kenneth et al., Cell and tissue engineering for liver disease, Science Translational Medecine, vol.6, issue.245, p.2014

A. J. Becker, E. A. Mcmulloch, and J. E. , Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells, Nature, vol.192, issue.4866, pp.912-914, 1963.
DOI : 10.1016/0014-4827(60)90251-2

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

I. Friedenstein, K. Piatetzky-shapiro, and . Petrakova, Osteogenesis in transplants of bone marrow cells, Journal of embryology and experimental morphology, vol.16, issue.3, pp.381-390, 1966.

P. Bianco, P. G. Robey, and P. J. Simmons, Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays, Cell Stem Cell, vol.2, issue.4, pp.313-319, 2008.
DOI : 10.1016/j.stem.2008.03.002

URL : http://doi.org/10.1016/j.stem.2008.03.002

P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore et al., Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, biotechnology, vol.123, pp.29-54, 2010.
DOI : 10.1007/10_2009_15

I. Arnold, D. Caplan, and . Correa, The MSC: An injury drugstore, Cell Stem Cell, vol.9, issue.1, pp.11-15, 2011.

I. Arnold and . Caplan, Mesenchymal stem cells, 1991.

S. Lindolfo, P. C. Meirelles, N. Chagastelles, and . Beyer-nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues, Journal of cell science, vol.119, pp.2204-2217, 2006.

M. Dominici, L. Blanc, I. Mueller, F. Slaper-cortenbach, D. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-322, 2006.
DOI : 10.1080/14653240600855905

B. Sacchetti, A. Funari, S. Michienzi, S. Di-cesare, S. Piersanti et al., Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment, Cell, vol.131, issue.2, pp.324-336, 2007.
DOI : 10.1016/j.cell.2007.08.025

L. Da and S. Meirelles, Aparecida Maria Fontes, Dimas Tadeu Covas, and Arnold I. Caplan. Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine and Growth Factor Reviews, vol.20, pp.5-6419, 2009.

S. Bajada, I. Mazakova, J. B. Richardson, and N. Ashammakhi, Updates on stem cells and their applications in regenerative medicine, Journal of Tissue Engineering and Regenerative Medicine, vol.2, issue.4, pp.169-183, 2008.
DOI : 10.1002/term.83

A. Trounson and C. Mcdonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges, Cell Stem Cell, vol.17, issue.1, pp.11-22, 2015.
DOI : 10.1016/j.stem.2015.06.007

J. Thomas, . Bartosh, H. Joni, A. Ylöstalo, N. Mohammadipoor et al., Aggregation of human mesenchymal stromal cells ( MSCs ) into 3D spheroids enhances their antiin fl ammatory properties, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.31, pp.13724-13729, 2010.

S. Sart, A. Tsai, Y. Li, and T. Ma, Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications, Tissue Engineering Part B: Reviews, vol.20, issue.5, pp.1-46, 2013.
DOI : 10.1089/ten.teb.2013.0537

J. H. Ylöstalo, T. J. Bartosh, K. Coble, and D. J. Prockop, Human Mesenchymal Stem/Stromal Cells Cultured as Spheroids are Self-activated to Produce Prostaglandin E2 that Directs Stimulated Macrophages into an Anti-inflammatory Phenotype, STEM CELLS, vol.29, issue.10, pp.302283-2296, 2012.
DOI : 10.1002/stem.1191

T. J. Bartosh, J. H. Ylöstalo, N. Bazhanov, J. Kuhlman, and D. J. Prockop, Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1), STEM CELLS, vol.466, issue.11, pp.312443-2456, 2013.
DOI : 10.1002/stem.1499

Q. Faris, M. Alenzi, R. Lotfy, and . Wyse, Swords of cell death: caspase activation and regulation. Asian Pacific journal of cancer prevention : APJCP, pp.271-80, 2010.

R. Porter and . Jänicke, Emerging roles of caspase-3 in apoptosis, Cell Death and Differentiation, vol.6, issue.2, pp.99-104, 1999.
DOI : 10.1038/sj.cdd.4400476

H. Cen, F. Mao, I. Aronchik, R. Fuentes, L. Gary et al., DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells, The FASEB Journal, vol.22, issue.7, pp.222243-2252, 2008.
DOI : 10.1096/fj.07-099234

J. Tullis, C. L. Park, and P. Abbyad, Selective fusion of anchored droplets via changes in surfactant concentration, Lab on a Chip, vol.15, issue.17, pp.3285-3289, 2014.
DOI : 10.1039/C4LC00558A

B. Bhattacharjee and S. A. Vanapalli, Electrocoalescence based serial dilution of microfluidic droplets, Biomicrofluidics, vol.3, issue.4, p.44111, 2014.
DOI : 10.1063/1.4885079

M. Sesen, T. Alan, and A. Neild, Microfluidic on-demand droplet merging using surface acoustic waves, Lab on a Chip, vol.6, issue.17, pp.3325-3333, 2014.
DOI : 10.1039/C4LC00456F

N. Bremond, R. Abdou, J. Thiam, and . Bibette, Decompressing Emulsion Droplets Favors Coalescence, Physical Review Letters, vol.100, issue.2, pp.1-4, 2008.
DOI : 10.1103/PhysRevLett.100.024501

URL : https://hal.archives-ouvertes.fr/hal-00264516

I. Akartuna, D. M. Aubrecht, T. E. Kodger, and D. A. Weitz, Chemically induced coalescence in droplet-based microfluidics, Lab Chip, vol.112, issue.4, pp.1140-1144, 2014.
DOI : 10.1039/C4LC01285B

E. Fradet, P. Abbyad, H. Marten, . Vos, N. Charles et al., Parallel measurements of reaction kinetics using ultralow-volumes, Lab on a Chip, vol.84, issue.22, pp.4326-4356, 2013.
DOI : 10.1039/c3lc50768h

URL : https://hal.archives-ouvertes.fr/hal-00996478

R. A. Brualdi, Inroductory Combinatorics -Fifth Edition, 2010.

L. Mazutis, D. Andrew, and . Griffiths, Selective droplet coalescence using microfluidic systems, Lab on a Chip, vol.19, issue.10, pp.1800-1806, 2012.
DOI : 10.1039/c2lc40121e

M. Chabert, K. D. Dorfman, and J. L. Viovy, Droplet fusion by alternating current (AC) field electrocoalescence in microchannels, ELECTROPHORESIS, vol.298, issue.19, pp.3706-3715, 2005.
DOI : 10.1002/elps.200500109

R. Adam, T. Abate, P. Hung, J. J. Mary, D. Agresti et al., High-throughput injection with microfluidics using picoinjectors, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.45, pp.19163-19166, 2010.

A. B. Theberge, E. Mayot, F. Harrak, W. T. Kleinschmidt, A. D. Huck et al., Microfluidic platform for combinatorial synthesis in picolitre droplets, Lab on a Chip, vol.82, issue.7, p.1320, 2012.
DOI : 10.1039/c2lc21019c

URL : http://repository.ubn.ru.nl/bitstream/2066/93966/1/93966.pdf

J. Lance, B. Zheng, . Spencer-roach, F. Rustem, and . Ismagilov, Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets, Journal of the American Chemical Society, vol.125, issue.37, pp.11170-11171, 2003.

M. Thiele, J. Zi-en, A. Soh, D. Knauer, O. Malsch et al., Gold nanocubes ??? Direct comparison of synthesis approaches reveals the need for a microfluidic synthesis setup for a high reproducibility, Chemical Engineering Journal, vol.288, pp.432-440, 2016.
DOI : 10.1016/j.cej.2015.12.020

J. Cao, D. Kürsten, S. Schneider, A. Knauer, M. Günther et al., Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles, Lab Chip, vol.6, issue.3, p.474, 2012.
DOI : 10.1039/C1LC20584F

A. Y. Hsiao, Y. C. Tung, X. Qu, L. R. Patel, K. J. Pienta et al., 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids, Biotechnology and Bioengineering, vol.10, issue.5, pp.1293-1304, 2012.
DOI : 10.1002/bit.24399

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306496

M. S. Steinberg, Reconstruction of Tissues by Dissociated Cells, Science, vol.141, issue.3579, pp.401-408, 1963.
DOI : 10.1126/science.141.3579.401

S. Pawlizak, A. W. Fritsch, S. Grosser, D. Ahrens, T. Thalheim et al., ??s. Testing the differential adhesion hypothesis across the epithelialmesenchymal transition, New Journal of Physics, issue.8, p.1783049, 2015.

Y. Morimoto, R. Tanaka, and S. Takeuchi, Construction of 3D, Layered Skin, Microsized Tissues by Using Cell Beads for Cellular Function Analysis, Advanced healthcare materials, pp.261-265, 2013.
DOI : 10.1002/adhm.201200189

A. Ranga, Y. Gobaa, . Okawa, . Mosiewicz, M. Negro et al., 3D niche microarrays for systems-level analyses of cell fate, Nature Communications, vol.11, p.4324, 2014.
DOI : 10.1038/ncomms5324

S. Bruce, . Edwards, A. Larry, and . Sklar, Flow Cytometry: Impact on Early Drug Discovery, Journal of biomolecular screening, vol.20, issue.6, pp.689-707, 2015.

C. Wenzel, B. Riefke, S. Gründemann, A. Krebs, S. Christian et al., Abstract 317: 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions, Cancer Research, vol.75, issue.15 Supplement, pp.131-143, 2014.
DOI : 10.1158/1538-7445.AM2015-317

O. Sirenko, T. Mitlo, J. Hesley, S. Luke, W. Owens et al., High-Content Assays for Characterizing the Viability and Morphology of 3D Cancer Spheroid Cultures, ASSAY and Drug Development Technologies, vol.13, issue.7, pp.402-414, 2015.
DOI : 10.1089/adt.2015.655

E. W. Esch, A. Bahinski, and D. Huh, Organs-on-chips at the frontiers of drug discovery, Nature Reviews Drug Discovery, vol.6, issue.4, pp.1-13, 2015.
DOI : 10.1038/nmeth1085

A. Funfak, R. Hartung, J. Cao, K. Martin, K. H. Wiesmüller et al., Highly resolved dose???response functions for drug-modulated bacteria cultivation obtained by fluorometric and photometric flow-through sensing in microsegmented flow, Sensors and Actuators B: Chemical, vol.142, issue.1, pp.66-72, 2009.
DOI : 10.1016/j.snb.2009.07.017

S. Tomasz, S. Kaminski, M. A. Jakiela, W. Czekalska, P. Postek et al., Automated generation of libraries of nL droplets, Lab on a chip, vol.12, issue.20, pp.3995-4002, 2012.

P. Abbyad, P. Tharaux, J. Martin, N. Charles, A. Baroud et al., Sickling of red blood cells through rapid oxygen exchange in microfluidic drops, Lab on a Chip, vol.70, issue.19, pp.2505-2517, 2010.
DOI : 10.1039/c004390g

URL : https://hal.archives-ouvertes.fr/hal-00807883