Q. Application-de-la and .. Au-calcul-de-la-courbe-froide-et-de-l, Hugoniot Sommaire 4.1 Introduction, p.60

.. Résultats-expérimentaux-du-chosi, 167 6.3.1 Détermination des états (P, ?) sur l', p.167

F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen et al., Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak, Physical Review Letters, vol.49, issue.19, pp.1408-1412, 1982.
DOI : 10.1103/PhysRevLett.49.1408

C. Colin, Y. Durand, F. Floux, D. Guyot, and P. Langer, ??TUDE EXP??RIMENTALE DU PLASMA CR??E PAR LASER SUR UNE CIBLE CRYOG??NIQUE, Le Journal de Physique Colloques, vol.29, issue.C3, pp.3-59, 1968.
DOI : 10.1051/jphyscol:1968312

N. G. Basov, P. Kriukov, S. Zakharov, Y. Senatsky, and S. Tchekalin, Experiments on the observation of neutron emission at a focus of high-power laser radiation on a lithium deuteride surface, IEEE Journal of Quantum Electronics, vol.4, issue.11, pp.864-867, 1968.
DOI : 10.1109/JQE.1968.1074981

J. Nuckolls, J. Emmet, and L. Wood, Laser???induced thermonuclear fusion, Physics Today, vol.13, issue.8, p.46, 1973.
DOI : 10.1063/1.3128183

G. Debras, Etude expérimentale du séquencement des chocs pour la Fusion par Confinement Inertiel. Archives-ouvertes.fr, 2012.

D. C. Thomas and . Wilson, Capsule implosion optimization during the indirect-drive national ignition campaign, Physics of Plasmas, vol.18, issue.5, p.51002, 2011.

D. H. Munro, P. M. Celliers, G. W. Collins, D. M. Gold, B. Luiz et al., Shock timing technique for the National Ignition Facility, Physics of Plasmas, vol.8, issue.5, pp.2245-2250, 2001.
DOI : 10.1063/1.872006

K. G. Bowers, P. S. Krauter, and . Datte, Shock timing experiments on the national ignition facility : Initial results and comparison with simulation, Physics of Plasmas, vol.19, p.42706, 2012.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Physics of Plasmas, vol.23, issue.2, p.11, 2004.
DOI : 10.1063/1.1143460

S. Fujioka, A. Sunahara, K. Nishihara, N. Ohnishi, T. Johzaki et al., Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target, Physical Review Letters, vol.92, issue.19, 2004.
DOI : 10.1103/PhysRevLett.92.195001

S. X. Hu, G. Fiksel, V. N. Goncharov, S. Skupsky, D. D. Meyerhofer et al., Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-z dopants
DOI : 10.1103/physrevlett.108.195003

G. Fiksel, S. X. Hu, V. A. Goncharov, D. D. Meyerhofer, T. C. Sangster et al., Experimental reduction of laser imprinting and Rayleigh???Taylor growth in spherically compressed, medium-Z-doped plastic targets, Physics of Plasmas, vol.19, issue.6, p.62704, 2012.
DOI : 10.1103/PhysRevLett.95.215001

M. J. Atherton and . Edwards, Implosion dynamics measurements at the national ignition facility, Physics of Plasmas, vol.19, issue.12, p.122702, 2012.

T. R. Dittrich, S. W. Haan, M. M. Marinak, S. M. Pollaine, and R. Mceachern, Reduced scale National Ignition Facility capsule design, Physics of Plasmas, vol.31, issue.10, pp.3708-3713, 1998.
DOI : 10.1063/1.872865

S. W. Haan, M. C. Herrmann, T. R. Dittrich, A. J. Fetterman, M. M. Marinak et al., Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities, Physics of Plasmas, vol.35, issue.5, p.56316, 2005.
DOI : 10.1063/1.1914809

D. S. Clark, S. W. Haan, B. A. Hammel, J. D. Salmonson, D. A. Callahan et al., Plastic ablator ignition capsule design for the National Ignition Facility, Physics of Plasmas, vol.52, issue.16, p.52703, 2010.
DOI : 10.1063/1.2890123

S. W. Glenzer, N. Haan, J. A. Izumi, G. A. Koch, O. L. Kyrala et al., Diagnosing and controlling mix in national ignition facility implosion experiments a), Physics of Plasmas, vol.18, issue.5, p.56310, 2011.

. Wilson, Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility, Physics of Plasmas, vol.18, issue.5, p.51001, 2011.

D. G. Celliers, M. A. Hicks, D. Barrios, G. W. Fratanduono, and . Collins, Multiple spherically converging shock waves in liquid deuterium, Physics of Plasmas, vol.18, issue.9, p.92706, 2011.

D. S. Clark, S. W. Haan, B. A. Hammel, J. D. Salmonson, D. A. Callahan et al., Plastic ablator ignition capsule design for the National Ignition Facility, Physics of Plasmas, vol.52, issue.16, p.52703, 2010.
DOI : 10.1063/1.2890123

E. Loomis, D. Braun, S. Batha, C. Sorce, and O. Landen, Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth, Physics of Plasmas, vol.54, issue.9, p.92702, 2011.
DOI : 10.1063/1.2837045

. Woolsey, Absolute measurements of the equations of state of low-z materials in the multi-mbar regime using laser-driven shocks, Physics of Plasmas, vol.4, issue.5, pp.1857-1861, 1997.

M. Koenig, F. Philippe, A. Benuzzi-mounaix, D. Batani, M. Tomasini et al., Optical properties of highly compressed polystyrene using laser-driven shockwaves, Physics of Plasmas, vol.4, issue.7, pp.3026-3029, 2003.
DOI : 10.1017/S0263034601191172

N. Ozaki, T. Sano, M. Ikoma, K. Shigemori, T. Kimura et al., Shock Hugoniot and temperature data for polystyrene obtained with quartz standard, Shock hugoniot and temperature data for polystyrene obtained with quartz standard, p.62702, 2009.
DOI : 10.1063/1.359955

M. A. Barrios, D. G. Hicks, T. R. Boehly, D. E. Fratanduono, J. H. Eggert et al., High-precision measurements of the equation of state of hydrocarbons at 1???10 Mbar using laser-driven shock waves, Physics of Plasmas, vol.82, issue.5, p.56307, 2010.
DOI : 10.1016/B978-0-12-408950-1.50012-4

M. Koenig, A. Benuzzi, B. Faral, J. Krishnan, J. M. Boudenne et al., Brominated plastic equation of state measurements using laser driven shocks, Applied Physics Letters, vol.72, issue.9, pp.721033-1035, 1998.
DOI : 10.1063/1.872341

M. A. Barrios, T. R. Boehly, D. G. Hicks, D. E. Fratanduono, J. H. Eggert et al., Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves, Journal of Applied Physics, vol.111, issue.9, p.93515, 2012.
DOI : 10.1103/PhysRevB.79.014112

G. Huser, N. Ozaki, T. Sano, Y. Sakawa, K. Miyanishi et al., Hugoniot and mean ionization of laser-shocked Ge-doped plastic, Physics of Plasmas, vol.20, issue.12, p.122703, 2013.
DOI : 10.1103/PhysRevB.86.115102

F. Lambert and V. Recoules, Plastic ablator and hydrodynamic instabilities: A first-principles set of microscopic coefficients, Physical Review E, vol.86, issue.2, p.26405, 2012.
DOI : 10.1103/PhysRevE.86.026405

D. V. Knyazev and P. R. Levashov, Ab initio calculation of thermodynamic, transport, and optical properties of CH2 plastics, Physics of Plasmas, vol.22, issue.5, p.53303, 2015.
DOI : 10.1103/PhysRevB.85.094109

C. Wang, X. He, and P. Zhang, Thermophysical properties for shock compressed polystyrene, Physics of Plasmas, vol.82, issue.8, p.82707, 2011.
DOI : 10.1063/1.1581283

URL : http://arxiv.org/abs/1101.4793

S. X. Hu, T. R. Boehly, and L. A. Collins, Properties of warm dense polystyrene plasmas along the principal Hugoniot, Physical Review E, vol.89, issue.6, p.63104, 2014.
DOI : 10.1103/PhysRevE.89.063104

J. D. Mackinnon, H. F. Moody, E. Robey, P. A. Schwegler, and . Sterne, Equation of state of ch 1.36 : First-principles molecular dynamics simulations and shock-and-release wave speed measurements, Phys. Rev. B, vol.86, p.94113, 2012.

J. Danel and L. Kazandjian, Equation of state of a dense plasma by orbital-free and quantum molecular dynamics: Examination of two isothermal-isobaric mixing rules, Physical Review E, vol.91, issue.1, p.13103, 2015.
DOI : 10.1103/PhysRevE.91.013103

S. Mazevet, J. D. Kress, L. A. Collins, and P. Blottiau, Quantum molecular-dynamics study of the electrical and optical properties of shocked liquid nitrogen, Physical Review B, vol.67, issue.5, p.54201, 2003.
DOI : 10.1103/PhysRevB.67.054201

J. Clérouin, Y. Laudernet, V. Recoules, and S. Mazevet, study of the optical properties of shocked LiF, Physical Review B, vol.72, issue.15, p.155122, 2005.
DOI : 10.1103/PhysRevB.72.155122

G. Norman, I. Saitov, V. Stegailov, and P. Zhilyaev, calculation of shocked xenon reflectivity, Physical Review E, vol.91, issue.2, p.23105, 2015.
DOI : 10.1103/PhysRevE.91.023105

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Physics of Fluids, vol.27, issue.62, pp.313059-3078, 1988.
DOI : 10.1063/1.866963

. Tech and . Rep, LA-UR-92-3407, 1992.

R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Physics of Fluids, vol.27, issue.62, pp.313059-3078, 1958.
DOI : 10.1063/1.866963

J. Poirier, Introduction to the Physics of the Earth's Interior, Second Edition, 2009.

M. Ross, Generalized Lindemann Melting Law, Physical Review, vol.184, issue.1, pp.233-242, 1969.
DOI : 10.1103/PhysRev.184.233

F. Dowell, A simple eos for linear (high-density) polyethylene (marlex), 1982.
DOI : 10.2172/6578387

K. S. Holian, T-4 handbook of material properties data bases, 1984.

W. J. Dowell and S. P. Marsh, Hugoniot equation of state of polymers, 1995.

R. Piron, Variational Average-Atom in Quantum Plasmas, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00446558

J. F. Barnes, Statistical Atom Theory and the Equation of State of Solids, Physical Review, vol.153, issue.1, p.269, 1967.
DOI : 10.1103/PhysRev.153.269

A. David and . Liberman, Inferno : A better model of atoms in dense plasmas, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.27, issue.3, pp.335-339, 1982.

R. Piron and T. Blenski, Variational-average-atom-in-quantum-plasmas (VAAQP) code and virial theorem: Equation-of-state and shock-Hugoniot calculations for warm dense Al, Fe, Cu, and Pb, Physical Review E, vol.83, issue.2
DOI : 10.1103/PhysRevE.83.026403

D. A. Young and E. M. Corey, A new global equation of state model for hot, dense matter, Journal of Applied Physics, vol.47, issue.6, p.3748, 1995.
DOI : 10.1103/PhysRevA.5.1137

D. Gilles, F. Lambert, J. Clérouin, and G. Salin, Yukawa Monte Carlo and Orbital Free Molecular Dynamics approaches for the equation of state and structural properties of hot dense matter, High Energy Density Physics, vol.3, issue.1-2, pp.95-98, 2007.
DOI : 10.1016/j.hedp.2007.02.005

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, pp.2471-2474, 1985.
DOI : 10.1103/PhysRevLett.55.2471

L. Collins, I. Kwon, and J. Kess, Quantum molecular dynamics simulations of hot, dense hydrogen, Physical Review E, vol.52, issue.6, p.6202, 1995.
DOI : 10.1103/PhysRevE.52.6202

J. Clérouin, Y. Laudernet, and V. Recoules, study of the optical properties of shocked LiF, Physical Review B, vol.72, issue.15, p.155122, 2005.
DOI : 10.1103/PhysRevB.72.155122

D. V. Minakov, P. R. Levashov, K. V. Khishchenko, and V. E. Fortov, Quantum molecular dynamics simulation of shock-wave experiments in aluminum, Journal of Applied Physics, vol.70, issue.22, p.115223512, 2014.
DOI : 10.1063/1.321928

S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and N. H. Magee, Simulations of the optical properties of warm dense aluminum, Physical Review E, vol.71, issue.1, p.16409, 2005.
DOI : 10.1103/PhysRevE.71.016409

J. Bouchet, F. Bottin, G. Jomard, and G. Zérah, molecular dynamics simulations, Physical Review B, vol.80, issue.9, p.94102, 2009.
DOI : 10.1103/PhysRevB.80.094102

J. Dai, Y. Hou, and J. Yuan, Unified First Principles Description from Warm Dense Matter to Ideal Ionized Gas Plasma: Electron-Ion Collisions Induced Friction, Physical Review Letters, vol.104, issue.24, p.245001, 2010.
DOI : 10.1103/PhysRevLett.104.245001

D. E. Hanson, L. A. Collins, J. D. Kress, and M. P. Desjarlais, Calculations of the thermal conductivity of National Ignition Facility target materials at temperatures near 10 eV and densities near 10 g/cc using finite-temperature quantum molecular dynamics, Physics of Plasmas, vol.55, issue.3, p.18082704, 2011.
DOI : 10.1080/14786436508211931

J. Dai, Y. Hou, D. Kang, H. Sun, J. Wu et al., Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core, New Journal of Physics, vol.15, issue.4, p.45003, 2013.
DOI : 10.1088/1367-2630/15/4/045003

C. Wang, Z. Wang, Q. Chen, and P. Zhang, Quantum molecular dynamics study of warm dense iron, Physical Review E, vol.89, issue.2, p.23101, 2014.
DOI : 10.1103/PhysRevE.89.023101

S. X. Hu, T. R. Boehly, and L. A. Collins, Properties of warm dense polystyrene plasmas along the principal Hugoniot, Physical Review E, vol.89, issue.6, p.63104, 2014.
DOI : 10.1103/PhysRevE.89.063104

C. Wang, X. He, and P. Zhang, Thermophysical properties for shock compressed polystyrene, Physics of Plasmas, vol.82, issue.8, p.82707, 2011.
DOI : 10.1063/1.1581283

URL : http://arxiv.org/abs/1101.4793

J. D. Mackinnon, H. F. Moody, E. Robey, P. A. Schwegler, and . Sterne, Equation of state of ch 1.36 : First-principles molecular dynamics simulations and shock-and-release wave speed measurements, Phys. Rev. B, vol.86, p.94113, 2012.

J. Danel and L. Kazandjian, Equation of state of a dense plasma by orbital-free and quantum molecular dynamics: Examination of two isothermal-isobaric mixing rules, Physical Review E, vol.91, issue.1, p.13103, 2015.
DOI : 10.1103/PhysRevE.91.013103

F. Thompson, G. S. Pierce, and . Grest, First-principles and classical molecular dynamics simulation of shocked polymers, Phys. Rev. B, vol.81, 2010.

D. V. Knyazev and P. R. Levashov, Ab initio calculation of thermodynamic, transport, and optical properties of CH2 plastics, Physics of Plasmas, vol.22, issue.5, p.53303, 2015.
DOI : 10.1103/PhysRevB.85.094109

J. Hansen and I. R. Mcdonald, Theory of simple liquids, 1976.

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.159, issue.1, pp.98-103, 1967.
DOI : 10.1103/PhysRev.159.98

L. Verlet, Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review, vol.165, issue.1, pp.201-214, 1968.
DOI : 10.1103/PhysRev.165.201

R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Reviews of Modern Physics, vol.87, issue.3, pp.897-923, 2015.
DOI : 10.1103/RevModPhys.87.897

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Zeitschrift f???r Physik, vol.48, issue.1-2, pp.73-79, 1928.
DOI : 10.1007/BF01351576

S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. Mccrory et al., Firstprinciples investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications, Physics of Plasmas, vol.23, issue.4, p.42704, 2016.

W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A
DOI : 10.1103/PhysRev.140.A1133

N. D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Physical Review, vol.137, issue.5A, pp.1441-1443, 1965.
DOI : 10.1103/PhysRev.137.A1441

J. Clerouin, De la matière condensée au plasma : un challenge pour la simulation, 2008.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol.45, pp.13244-13249, 1992.

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, issue.7, pp.566-569, 1980.
DOI : 10.1103/PhysRevLett.45.566

D. R. Hamann, M. Schluter, and C. Chiang, Norm-Conserving Pseudopotentials, Physical Review Letters, vol.43, issue.20, pp.1494-1497, 1979.
DOI : 10.1103/PhysRevLett.43.1494

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, pp.17953-17979, 1994.
DOI : 10.1103/PhysRevB.50.17953

N. A. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng, Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids, Physical Review B, vol.55, issue.4, pp.2005-2017, 1997.
DOI : 10.1103/PhysRevB.55.2005

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.59, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.59.1758

M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, Computational Materials Science, vol.42, issue.2, pp.337-351, 2008.
DOI : 10.1016/j.commatsci.2007.07.020

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Physical Review B, vol.71, issue.3, p.35109, 2005.
DOI : 10.1103/PhysRevB.71.035109

G. Oliveira, Y. Onida, T. Pouillon, G. Rangel, D. Rignanese et al., Abinit : First-principles approach to material and nanosystem properties, Computer Physics Communications, issue.12, pp.1802582-2615, 2009.

{. {of}-cpc, A celebratory issue focused on quality software for high performance, grid and novel computing architectures

F. Bottin, A. Stãl-'phane-leroux, G. Knyazev, and . Zãl-'rah, Large-scale ab initio calculations based on three levels of parallelization, Computational Materials Science, vol.42, issue.2, pp.329-336, 2008.
DOI : 10.1016/j.commatsci.2007.07.019

M. Theobald, D. Dumay, C. Chicanne, J. Barnouin, O. Legaie et al., Roughness optimization at high modes for gdp ch microshells, Fusion Science and Technology, vol.45, pp.176-179, 2004.

S. Le-tacon, C. Chicanne, M. Theobald, and O. Legaie, Development in glass shells production from silicon-doped gdp for noncryogenic lmj target, Fusion Science and Technology, vol.59, pp.99-104, 2011.

H. Huang, D. M. Haas, Y. T. Lee, J. J. Wu, K. A. Moreno et al., Oxygen Profile Determination in NIF GDP Capsules Using Contact Radiography, Fusion Science and Technology, vol.63, issue.2, pp.142-150, 2013.
DOI : 10.13182/FST13-TFM20-26

P. Minary, G. J. Martyna, and M. E. Tuckerman, Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, The Journal of Chemical Physics, vol.104, issue.6, pp.2510-2526, 2003.
DOI : 10.1063/1.1534582

G. Huser, V. Recoules, N. Ozaki, T. Sano, Y. Sakawa et al., investigations of microscopic properties of laser-shocked Ge-doped ablator, Physical Review E, vol.92, issue.6, p.63108, 2015.
DOI : 10.1103/PhysRevE.92.063108

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

D. R. Lide, CRC Handbook of Chemistry and Physics, volume 90th edition. CRC Handbook of Chemistry and Physics, 2009.

P. G. Johannsen, Refractive index of the alkali halides.mI. Constant joint density of states model, Physical Review B, vol.55, issue.11, pp.6856-6864, 1997.
DOI : 10.1103/PhysRevB.55.6856

P. I. Dorogokupets and A. Dewaele, Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales, High Pressure Research, vol.87, issue.4, pp.431-446, 2007.
DOI : 10.1103/PhysRevB.39.11820

P. Vinet, J. Ferrante, J. Smith, and . Rose, A universal equation of state for solids, Journal of Physics C: Solid State Physics, vol.19, issue.20, p.467, 1986.
DOI : 10.1088/0022-3719/19/20/001

D. Liberman, Self-consistent field model for condensed matter, Physical Review B, vol.20, issue.12, pp.4981-4989, 1979.
DOI : 10.1103/PhysRevB.20.4981

S. W. Haan, H. Huang, M. A. Johnson, M. Stadermann, S. Baxamusa et al., Instability growth seeded by oxygen in CH shells on the National Ignition Facility, Physics of Plasmas, vol.2, issue.3, p.32708, 2015.
DOI : 10.1088/0029-5515/44/1/014

F. Lambert and V. Recoules, Plastic ablator and hydrodynamic instabilities: A first-principles set of microscopic coefficients, Physical Review E, vol.86, issue.2, p.26405, 2012.
DOI : 10.1103/PhysRevE.86.026405

J. Danel and L. Kazandjian, Equation of state of a dense plasma by orbital-free and quantum molecular dynamics: Examination of two isothermal-isobaric mixing rules, Physical Review E, vol.91, issue.1, p.13103, 2015.
DOI : 10.1103/PhysRevE.91.013103

Y. B. Zel-'dovichand and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, pp.1966-1967

A. Benuzzi, Génération de hautes pressions par choc laser : Application à la mesure d'équation d'état. Archives-ouvertes.fr, 1997.

G. Huser, Equation d'état du fer comprimé par choc laser. Archives-ouvertes.fr, 2004.

P. M. Celliers, G. W. Collins, D. G. Hicks, and J. H. Eggert, Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al, Journal of Applied Physics, vol.15, issue.11, p.113529, 2005.
DOI : 10.1063/1.324094

M. D. Furnish and E. Ito, Experimental measurements of the hugoniot of stishovite, 1995.
DOI : 10.2172/161450

R. F. Trunin, G. V. Simakov, M. A. Podurets, B. N. Moiseyev, and L. V. Popov, Dynamic compressibility of quartz and quartzite at high pressure, Earth Physics, vol.1, 1970.

R. F. Trunin, Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions, Physics-Uspekhi, vol.37, issue.11, p.1123, 1994.
DOI : 10.1070/PU1994v037n11ABEH000055

R. F. Trunin, Shock compression of condensed materials (laboratory studies), Physics-Uspekhi, vol.44, issue.4, p.371, 2001.
DOI : 10.1070/PU2001v044n04ABEH000919

S. Luo, J. L. Mosenfelder, P. D. Asimov, and T. J. Ahrens, Stishovite and its implications in geophysics: new results from shock-wave experiments and theoretical modeling, Physics-Uspekhi, vol.45, issue.4, p.435, 2002.
DOI : 10.1070/PU2002v045n04ABEH001155

S. Luo, J. L. Mosenfelder, P. D. Asimov, and T. J. Ahrens, Direct shock wave loading of stishoviste to 235 gpa : Implications for perovskite stability relative to an oxide assemblage at lower mantle conditions, Geophysical research letters, vol.29, p.1691, 2002.

T. W. , J. , and J. M. Dawson, Correct values for high frequency power absorption by inverse bremsstrahlung in plasmas, Physics of Fluids, vol.16, issue.5, pp.722-722, 1973.

S. Brygoo, Chocs laser sur le diamant, l'hélium et l'hydrogène : une étude expérimentale de la Warm Dense Matter. Archives-ouvertes.fr, 2010.

D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers et al., Dissociation of Liquid Silica at High Pressures and Temperatures, Physical Review Letters, vol.97, issue.2, p.25502, 2006.
DOI : 10.1103/PhysRevLett.97.025502

M. D. Knudson and M. P. Desjarlais, -quartz as a shock standard in the multimegabar regime, Physical Review B, vol.88, issue.18
DOI : 10.1103/PhysRevB.88.184107

URL : https://hal.archives-ouvertes.fr/in2p3-00085063

M. D. Knudson, M. P. Desjarlais, and A. , Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime, Physical Review B, vol.91, issue.22, p.224105, 2015.
DOI : 10.1103/PhysRevB.91.224105

E. P. Wenger and . Yu, Pulsed-power-driven high energy density physics and inertial confinement fusion research), Physics of Plasmas, vol.12, issue.5, p.55503, 2005.

C. Garban-labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff et al., Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection, Physical Review Letters, vol.48, issue.15, pp.1018-1021, 1982.
DOI : 10.1103/PhysRevLett.48.1018

I. P. Shkarovsky, T. W. Johnson, and M. P. Bashynski, The Particle Kinetics of Plasmas, American Journal of Physics, vol.35, issue.6, 1966.
DOI : 10.1119/1.1974182

P. Mora, Theoretical model of absorption of laser light by a plasma, Physics of Fluids, vol.25, issue.6, pp.1051-1056, 1982.
DOI : 10.1063/1.863837

L. M. Barker and R. E. Hollenbach, Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials, Review of Scientific Instruments, vol.36, issue.11, pp.1617-1620, 1965.
DOI : 10.1063/1.1718911

L. M. Barker and R. E. Hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.13, issue.10, pp.414208-4226, 1970.
DOI : 10.1063/1.1709181

L. M. Barker and R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.61, issue.11, pp.4669-4675, 1972.
DOI : 10.1063/1.1685074

L. M. Barker and K. W. Schuler, Correction to the velocity???per???fringe relationship for the VISAR interferometer, Journal of Applied Physics, vol.45, issue.8, pp.3692-3693, 1974.
DOI : 10.1063/1.1658439

M. D. Knudson and M. P. Desjarlais, Shock Compression of Quartz to 1.6 TPa: Redefining a Pressure Standard, Physical Review Letters, vol.103, issue.22, p.225501, 2009.
DOI : 10.1103/PhysRevLett.103.225501

P. M. Celliers, P. Loubeyre, J. H. Eggert, S. Brygoo, R. S. Mcwilliams et al., Insulator-to-Conducting Transition in Dense Fluid Helium, Physical Review Letters, vol.104, issue.18
DOI : 10.1103/PhysRevLett.104.184503

T. Qi, M. Millot, R. G. Kraus, S. Root, and S. Hamel, Optical and transport properties of dense liquid silica, Physics of Plasmas, vol.22, issue.6, p.62706, 2015.
DOI : 10.1063/1.1807008

A. Denoeud, Etude de la matière dense et tiède à l'aide de diagnostics X : Applications aux intérieurs planétaires. Archives-ouvertes.fr, 2014.

J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers et al., Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA, Review of Scientific Instruments, vol.78, issue.3, p.78034903, 2007.
DOI : 10.1103/PhysRevLett.97.025502

A. Benuzzi, M. Koenig, B. Faral, J. Krishnan, F. Pisani et al., Preheating study by reflectivity measurements in laser-driven shocks, Physics of Plasmas, vol.24, issue.6, pp.2410-2420, 1998.
DOI : 10.1103/PhysRevLett.74.2260

Y. A. Vasilenko and . Shoidin, Absolute measurements of shock compressibility of aluminum at pressures above 1 tpa, Zh. Eksp. Teor. Fiz, vol.88, pp.1452-1459, 1985.

M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney et al., Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique, Journal of Applied Physics, vol.23, issue.7, pp.944420-4431, 2003.
DOI : 10.1080/08957959108203212

D. G. Hicks, P. M. Celliers, G. W. Collins, J. H. Eggert, and S. J. Moon, and LiF into Semiconducting Liquids, Physical Review Letters, vol.91, issue.3, p.35502, 2003.
DOI : 10.1103/PhysRevLett.91.035502

A. Gregory, T. J. Lyzenga, and . Ahrens, Shock temperature measurements in mg2sio4 and sio2 at high pressures, Geophysical Research Letters, vol.7, issue.2, pp.141-144, 1980.

S. Brygoo, . Henry, . Loubeyre, . Eggert, . Koenig et al., Laser-shock compression of diamond and evidence of a negative-slope melting curve, Nature Materials, vol.52, issue.4, pp.274-277, 2007.
DOI : 10.1038/nmat1863

S. Brygoo, M. Millot, P. Loubeyre, A. E. Lazicki, S. Hamel et al., application to warm dense hydrogen and helium, Journal of Applied Physics, p.118, 2015.

D. D. Collins and . Meyerhofer, High-precision measurements of the equation of state of hydrocarbons at 1-10 mbar using laser-driven shock wavesa), Physics of Plasmas, vol.17, issue.5, 2010.

M. A. Barrios, T. R. Boehly, D. G. Hicks, D. E. Fratanduono, J. H. Eggert et al., Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves, Journal of Applied Physics, vol.111, issue.9, p.2012
DOI : 10.1103/PhysRevB.79.014112

R. Ramis, R. Schmalz, and J. Meyer-ter-vehn, MULTI ??? A computer code for one-dimensional multigroup radiation hydrodynamics, Computer Physics Communications, vol.49, issue.3, pp.475-505, 1988.
DOI : 10.1016/0010-4655(88)90008-2

G. Huser, N. Ozaki, T. Sano, Y. Sakawa, K. Miyanishi et al., Hugoniot and mean ionization of laser-shocked Ge-doped plastic, Physics of Plasmas, vol.20, issue.12, p.122703, 2013.
DOI : 10.1103/PhysRevB.86.115102

K. Takamatsu, N. Ozaki, K. A. Tanaka, T. Ono, K. Nagai et al., Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves, Physical Review E, vol.67, issue.5, p.56406, 2003.
DOI : 10.1103/PhysRevE.67.056406

D. D. Collins and . Meyerhofer, High-precision measurements of the equation of state of hydrocarbons at 1-10 mbar using laser-driven shock waves, Physics of Plasmas, vol.17, issue.5, p.56307, 2010.

M. A. Barrios, T. R. Boehly, D. G. Hicks, D. E. Fratanduono, J. H. Eggert et al., Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves, Journal of Applied Physics, vol.111, issue.9, p.2012
DOI : 10.1103/PhysRevB.79.014112

. Funtikov, The isentropic compressibility of aluminium, copper, lead, and iron at high pressures

P. M. Celliers, G. W. Collins, L. B. Da-silva, D. M. Gold, R. Cauble et al., Shock-Induced Transformation of Liquid Deuterium into a Metallic Fluid, Physical Review Letters, vol.84, issue.24
DOI : 10.1103/PhysRevLett.84.5564

W. Theobald, J. E. Miller, T. R. Boehly, E. Vianello, D. D. Meyerhofer et al., X-ray preheating of window materials in direct-drive shock-wave timing experiments, Physics of Plasmas, vol.50, issue.12, p.122702, 2006.
DOI : 10.1103/PhysRevLett.90.235002

R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan, vol.12, issue.6, pp.570-586, 1957.
DOI : 10.1143/JPSJ.12.570

D. Greenwood, The Boltzmann Equation in the Theory of Electrical Conduction in Metals, Proceedings of the Physical Society, p.585, 1958.
DOI : 10.1088/0370-1328/71/4/306

S. Mazevet, M. Torrent, V. Recoules, and F. Jollet, Calculations of the transport properties within the PAW formalism, High Energy Density Physics, vol.6, issue.1, pp.84-88, 2010.
DOI : 10.1016/j.hedp.2009.06.004