M. Dans-les-interrupteurs-capacitifs, accumulation uniforme de charges sur la surface translate les courbes de fonctionnement capacité-tension (C-V) des systèmes, et par suite, les tensions d'actionnement des interrupteurs Au cours des cycles, la densité de charge piégées augmente et peut meneràmenerà une perte totale du contrôlé electrostatique (membrane collée, voir Figure B.3) La durée de vie du dispositif est ainsi limitée par le nombre de cycle, dû l'accumulation de charges [193]. Dans une capacité plane, si lesélectrodes lesélectrodes sont recouvertes d'une couche diélectrique, les charges libres de la cavité ont tendancè a s'y accumuler

A. Chapitre, nous avons simulé l'effet d'une chargè a la surface de l'oxyde de notre structure sur le champàchampà l'apex du nanotube. Nous avons mis enévidenceenévidence une valeur critique de densité de chargesàchargesà partir de laquelle nous n'observions plus d

. Matériau, tandis que lesélectrodeslesélectrodes de contrôle formant le réseau seraient faites d'un matériau inoxydable. Les nanotubes parasites situés sur la grille en TiN par exemple, se retrouveraient sur TiO 2 après un recuit oxydant. N'´ etant plus connectésconnectésélectriquementconnectésélectriquementà la cathode (où a toute autre sourcé electrique)

. Pour-finir, ´ emission des parasites en les encapsulant sous une couche d'isolant. Un dépôt conforme de silice a ainsí eté déposé par PECVD sur des nanotubes (Figure D.15) Les résultats d'´ emission de champ montrent que le coating de Figure D.15: Image MEB d'un nanotube a) avat et b) après

. Mais, option de l'encapsulation des nanotubes post-croissance pour inhiber l'´ emission nous semble une voie prometteuse, qui mériterait

R. J. Parmee and C. M. Collins, X-ray generation using carbon nanotubes, Nano Convergence, vol.35, issue.Part 2, p.2014
DOI : 10.1186/s40580-014-0034-2

URL : http://doi.org/10.1186/s40580-014-0034-2

K. B. Teo and E. Minoux, Carbon nanotubes as cold cathodes, Nature, p.437, 2005.

T. Lemoine, Imagerie médicale par rayons X -Dose et sources de rayons X, 2015.

C. Thiery, Tomographiè a rayons X, 2013.

T. Lemoine, Imagerie médicale par rayons X -Equipements et procédures, 2015.

V. B. Neculaes and P. M. Edic, Multisource X-Ray and CT: Lessons Learned and Future Outlook, IEEE Access, vol.2, pp.1568-1585, 2014.
DOI : 10.1109/ACCESS.2014.2363949

M. Otendal, A compact high-brightness liquid-metal-jet X-Ray source, Royal Institute of Technology, 2006.

S. Dushman, Electron Emission from Metals as a Function of Temperature, Physical Review, vol.21, issue.6, pp.623-636, 1923.
DOI : 10.1103/PhysRev.21.623

O. W. Richardson, Electron Emission from Metals as a Function of Temperature, Physical Review, vol.23, issue.2, pp.153-155, 1924.
DOI : 10.1103/PhysRev.23.153

R. O. Jenkins, A review of thermionic cathodes, Vacuum, vol.19, issue.8, pp.353-359, 1969.
DOI : 10.1016/S0042-207X(69)80077-1

J. L. Cronin, Modern dispenser cathodes, IEE Proceedings I Solid State and Electron Devices, vol.128, issue.1, pp.19-32, 1981.
DOI : 10.1049/ip-i-1.1981.0012

L. Cultrera, Cathodes for photoemission guns, Proceedings of 2011 Particle Accelerator Conference, pp.2099-2013, 2011.

N. Yamamoto and M. Yamamoto, Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes, Journal of Applied Physics, vol.2, issue.2, p.24904, 2007.
DOI : 10.1016/S0168-9002(98)00552-X

N. Yamamoto and T. Nakanishi, High brightness and high polarization electron source using transmission photocathode with GaAs-GaAsP superlattice layers, Journal of Applied Physics, vol.83, issue.6, p.64905, 2008.
DOI : 10.1063/1.1311307

O. J. Luiten and S. B. Van-der-geer, How to Realize Uniform Three-Dimensional Ellipsoidal Electron Bunches, Physical Review Letters, vol.93, issue.9, p.94802, 2004.
DOI : 10.1103/PhysRevLett.93.094802

URL : http://repository.tue.nl/646827

J. Mazellier and C. D. Giola, CVD nanodiamond thin films as high yield photocathodes driven by UV laser pulses, 2014 27th International Vacuum Nanoelectronics Conference (IVNC), 2014.
DOI : 10.1109/IVNC.2014.6894736

R. L. Bell, L. W. James, and R. L. Moon, Transferred electron photoemission from InP, Applied Physics Letters, vol.25, issue.11, p.25, 1974.
DOI : 10.1049/el:19730221

M. Niigaki and T. Hirohata, Field-assisted photoemisison from InP/InGaAsP photocathode with p/n junction, Applied Physic Letters, issue.17, pp.71-2493, 1997.
DOI : 10.1063/1.120098

D. Temple and C. A. Ball, Fabrication of column-based silicon field emitter arrays for enhanced performance and yield, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.1, pp.150-157, 1995.
DOI : 10.1116/1.587973

S. H. Jo and J. Y. Lao, Field-emission studies on thin films of zinc oxide nanowires, Applied Physics Letters, vol.83, issue.23, p.4821, 2003.
DOI : 10.1021/la960445u

X. T. Zhou and N. Wang, Growth and emission properties of ??-SiC nanorods, Materials Science and Engineering: A, vol.286, issue.1, pp.119-124, 2003.
DOI : 10.1016/S0921-5093(00)00654-7

F. G. Tarntair and C. Y. Wen, Field emission from quasi-aligned SiCN nanorods, Applied Physics Letters, vol.76, issue.18, p.2630, 2003.
DOI : 10.1016/0925-9635(95)00417-3

J. A. Nation and L. Schachter, Advances in cold cathode physics and technology, Proceedings of the IEEE, 1999.
DOI : 10.1109/5.757258

S. W. Lee, S. S. Lee, and E. H. Yang, A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block, Nanoscale Research Letters, vol.91, issue.10, pp.1218-1221, 2009.
DOI : 10.1007/s11671-009-9384-9

D. Ye and S. Moussa, Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays, Nano Letters, vol.12, issue.3, pp.1265-1268, 2012.
DOI : 10.1021/nl203742s

M. J. Fransen, T. L. Van-rooy, and P. Kruit, Field emission energy distributions from individual multiwalled carbon nanotubes, Applied Surface Science, vol.146, issue.1-4, pp.312-327, 1999.
DOI : 10.1016/S0169-4332(99)00056-2

N. De-jonge and Y. Lamy, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.266, issue.95, pp.393-395, 2002.
DOI : 10.1016/0304-3991(89)90278-7

T. Utsumi, Vacuum microelectronics: what's new and exciting, IEEE Transactions on Electron Devices, vol.38, issue.10, pp.2276-2283, 1991.
DOI : 10.1109/16.88510

C. J. Edgecombe and U. Valdré, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters, Journal of Microscopy, vol.203, issue.2, pp.188-194, 2001.
DOI : 10.1046/j.1365-2818.2001.00890.x

X. Q. Wang and M. Wang, Model calculation for the field enhancement factor of carbon nanotube, Journal of Applied Physics, vol.96, issue.11, p.6752, 2004.
DOI : 10.1016/S0304-3991(02)00297-8

S. Podenok and M. Sveningsson, ELECTRIC FIELD ENHANCEMENT FACTORS AROUND A METALLIC, END-CAPPED CYLINDER, Nano, vol.87, issue.01, pp.87-93, 2006.
DOI : 10.1016/S0304-3991(02)00296-6

E. G. Pogorelov and Y. Chang, Corrected field enhancement factor for the floating sphere model of carbon nanotube emitter, Journal of Applied Physics, vol.108, issue.4, p.44502, 2010.
DOI : 10.1103/PhysRevLett.89.197602

E. Minoux, Etude et développement de sourcesélectroniquesàémissionsourcesélectroniquessourcesélectroniques`sourcesélectroniquesàsourcesélectroniquesàémission de champà champà base de nanotubes de carbone. Applications aux tubes hyperfréquences, 2006.

P. Guiset, Contrôle optique des cathodes froidesàfroidesà base de nanotubes de carbone pour les sources THz, 2010.

C. A. Spindt, A thin-film field-emisison cathode, Journal of Applied Science, vol.39, issue.7, pp.3504-3505, 1968.
DOI : 10.1063/1.1656810

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.33, issue.5, pp.89-90, 1964.
DOI : 10.1063/1.1722675

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

C. A. Spindt and I. Brodie, Physical properties of thin???film field emission cathodes with molybdenum cones, Journal of Applied Physics, vol.44, issue.12, pp.47-5248, 1976.
DOI : 10.1116/1.568550

C. O. Bozler and C. T. Harris, Arrays of gated field-emitter cones having 0.32 ??m tip-to-tip spacing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.2, pp.629-632, 1994.
DOI : 10.1116/1.587401

C. A. Spindt and C. E. Holland, Field-emitter arrays for vacuum microelectronics, IEEE Transactions on Electron Devices, vol.38, issue.10, pp.2355-2363, 1991.
DOI : 10.1109/16.88525

C. A. Spindt and I. Brodie, Spindt Field Emitter Arrays, 2001.
DOI : 10.1002/0471224332.ch4

C. A. Spindt and C. E. Holland, Field emitter array development for microwave applications. II, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.2, pp.758-761, 1998.
DOI : 10.1116/1.589898

P. R. Schwoebel, J. M. Boone, and J. Shao, Studies of a prototype linear stationary x-ray source for tomosynthesis imaging, Physics in Medicine and Biology, vol.59, issue.10, pp.2393-2413, 2014.
DOI : 10.1088/0031-9155/59/10/2393

C. Xie and Y. Wei, Emission sensitivity to tip position of Spindt-type field emitters, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.4, p.1833, 2000.
DOI : 10.1116/1.1303852

S. Tsujino and M. Paraliev, Nanosecond pulsed field emisison from single-gate metallic field emitter arrays fabricated by molding, Journal of Vacuum Science and Technology B, vol.29, issue.2, pp.2-117, 2011.
DOI : 10.1116/1.3569820

A. Ghis and R. Meyer, Sealed vacuum devices: fluorescent microtip displays, IEEE Transactions on Electron Devices, vol.38, issue.10, pp.2320-2322, 1991.
DOI : 10.1109/16.88518

P. Helfenstein and E. Kirk, Highly collimated electron beams from double-gate field emitter arrays with large collimation gate apertures, Applied Physics Letters, vol.98, issue.6, pp.98-061502, 2011.
DOI : 10.1116/1.3151852

URL : http://www.zora.uzh.ch/45773/1/highly1.pdf

J. H. Jung and N. Y. Lee, Electron emission performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter arrays, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.933, 2000.
DOI : 10.1116/1.591301

M. Ding, G. Sha, and A. I. Akinwande, Silicon field emission arrays with atomically sharp tips: turn-on voltage and the effect of tip radius distribution, IEEE Transactions on Electron Devices, vol.49, issue.12, pp.2333-2342, 2002.
DOI : 10.1109/TED.2002.805230

T. Hirano and S. Kanemaru, Fabrication of a New Si Field Emitter Tip with Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) Structure, Japanese Journal of Applied Physics, vol.35, issue.Part 1, No. 12B, pp.6637-6640, 1996.
DOI : 10.1143/JJAP.35.6637

S. Cheng and F. A. Hill, A Compact X-ray Generator Using a Nanostructured Field Emission Cathode and a Microstructured Transmission Anode, Journal of Physics: Conference Series, vol.476, pp.476-012016, 2013.
DOI : 10.1088/1742-6596/476/1/012016

F. C. Au and K. W. Wong, Electron field emission from silicon nanowires, Applied Physics Letters, vol.75, issue.12, pp.1700-1702, 1999.
DOI : 10.1116/1.588976

B. D. Liu and Y. Bando, Excellent Field-Emission Properties of P-Doped GaN Nanowires, The Journal of Physical Chemistry B, vol.109, issue.46, pp.21521-21524, 2005.
DOI : 10.1021/jp052351b

Z. Pan and H. Lai, Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties, Advanced Materials, vol.12, issue.16, pp.1186-1190, 2000.
DOI : 10.1002/1521-4095(200008)12:16<1186::AID-ADMA1186>3.0.CO;2-F

C. J. Lee and T. J. Lee, Field emission from well-aligned zinc oxyde nanowires grown at low temperature, Applied Physic Letters, issue.19, pp.81-3648, 2002.
DOI : 10.1063/1.1518810

Y. W. Zhu and H. Z. Zhang, Efficient field emission from ZnO nanoneedle arrays, Applied Physics Letters, vol.83, issue.1, pp.144-146, 2003.
DOI : 10.1063/1.1449537

C. Li and Y. Zhang, Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers, Applied Physics Letters, vol.96, issue.14, pp.96-143114, 2010.
DOI : 10.1088/0957-4484/14/2/321

Y. Choi and M. Michan, Field-emission properties of individual GaN nanowires grown by chemical vapor deposition, Journal of Applied Physics, vol.111, issue.4, p.44308, 2012.
DOI : 10.1016/j.mee.2005.07.069

J. Bonard and M. Croci, Carbon nanotube films as electron field emitters, Carbon, vol.40, issue.10, pp.1715-1728, 2001.
DOI : 10.1016/S0008-6223(02)00011-8

G. S. Bocharov and A. V. Eletskii, Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters, Nanomaterials, vol.81, issue.3, pp.393-442, 2013.
DOI : 10.1134/S1063784211040086

URL : http://doi.org/10.3390/nano3030393

Y. Cheng and O. Zhou, Electron field emission from carbon nanotubes, Comptes Rendus Physique, vol.4, issue.9, pp.1021-1033, 2003.
DOI : 10.1016/S1631-0705(03)00103-8

S. Frank and P. Poncharal, Carbon Nanotube Quantum Resistors, Science, vol.280, issue.5370, pp.1744-1746, 1998.
DOI : 10.1126/science.280.5370.1744

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.485.1769

S. T. Purcell and P. Vincent, Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current, Physical Review Letters, vol.88, issue.10, p.105502, 2002.
DOI : 10.1103/PhysRevLett.88.105502

R. Gao, Z. Pan, and Z. L. Wang, Work function at the tips of multiwalled carbon nanotubes, Applied Physics Letters, vol.278, issue.12, pp.78-1757, 2001.
DOI : 10.1103/PhysRevB.2.1

P. Liu and Q. Sun, Measuring the Work Function of Carbon Nanotubes with Thermionic Method, Nano Letters, vol.8, issue.2, pp.647-651, 2008.
DOI : 10.1021/nl0730817

J. Kim and J. H. Hwang, Work function engineering of single layer graphene by irradiation-induced defects, Applied Physics Letters, vol.103, issue.17
DOI : 10.1002/adfm.200900167

B. Robrieux, R. Faure, and J. Dussaulcy, Résistivité et travail de sortie du carbone en couches très minces, C. R. Acad. Sc. Paris Série B, vol.278, issue.2, pp.659-662, 1974.

E. Minoux and O. Groening, Achieving High-Current Carbon Nanotube Emitters, Nano Letters, vol.5, issue.11, pp.2135-2138, 2005.
DOI : 10.1021/nl051397d

C. L. Cheung and A. Kurtz, Diameter-Controlled Synthesis of Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.10, pp.2429-2433, 2002.
DOI : 10.1021/jp0142278

K. B. Teo and S. B. Lee, Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres??how uniform do they grow?, Nanotechnology, vol.14, issue.2, pp.204-211, 2003.
DOI : 10.1088/0957-4484/14/2/321

B. O. Boskovic and V. Stolojan, Large-area synthesis of carbon nanofibres at room temperature, Nature Materials, vol.1, issue.3, pp.165-168, 2002.
DOI : 10.1038/nmat755

S. Hofmann and C. Ducati, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.239, issue.1, 2003.
DOI : 10.1063/1.1525854

H. Cui, O. Zhou, and B. R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.88, issue.10, p.6072, 2000.
DOI : 10.1016/S0008-6223(97)00223-6

K. B. Teo and C. Singh, Catalytic synthesis of carbon nanotubes and nanofibers, Encyclopedia of Nanoscience and Nanotechnology, 2003.

C. Bower and W. Zhu, Plasma-induced alignment of carbon nanotubes, Applied Physics Letters, vol.282, issue.6, p.830, 2000.
DOI : 10.1038/46241

V. I. Merkulov and A. V. Melechko, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition, Applied Physics Letters, vol.79, issue.18, pp.79-2970, 2001.
DOI : 10.1016/S0009-2614(99)00282-1

R. C. Pearce and A. V. Vasenkov, Role of Ion Flux on Alignment of Carbon Nanofibers Synthesized by DC Plasma on Transparent Insulating Substrates, ACS Applied Materials & Interfaces, vol.3, issue.9, pp.3501-3507, 2011.
DOI : 10.1021/am200722c

M. H. Ng and L. T. Hartadi, Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates, Nanotechnology, vol.19, issue.20, p.205703, 2008.

E. Artukovic and M. Kaempgen, Transparent and Flexible Carbon Nanotube Transistors, Nano Letters, vol.5, issue.4, pp.757-760, 2005.
DOI : 10.1021/nl050254o

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.455.1149

D. Shiffler and O. Zhou, A High-Current, Large-Area, Carbon Nanotube Cathode, IEEE Transactions on Plasma Science, vol.32, issue.5, pp.2152-2154, 2004.
DOI : 10.1109/TPS.2004.835519

S. J. Oh and J. Zhang, Liquid-phase fabrication of patterned carbon nanotube field emission cathodes, Applied Physics Letters, vol.84, issue.19, p.3738, 2004.
DOI : 10.1002/1521-4095(20020618)14:12<899::AID-ADMA899>3.0.CO;2-2

X. Calderon-colon and H. Geng, A carbon nanotube field emission cathode with high current density and long-term stability, Nanotechnology, vol.20, issue.32, p.325707, 2009.
DOI : 10.1088/0957-4484/20/32/325707

R. P. Tortorich and J. Choi, Inkjet Printing of Carbon Nanotubes, Nanomaterials, vol.51, issue.3, pp.453-468, 2013.
DOI : 10.1063/1.4801496

T. Wang and B. Carlberg, Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive, Applied Physics Letters, vol.2005, issue.9, p.93123, 2007.
DOI : 10.1088/0957-4484/18/12/125203

P. Liu and L. Liu, Enhanced field emission from imprinted carbon nanotube arrays Applied Physic Letters, p.73101, 2006.
DOI : 10.1063/1.2336205

L. Nilsson and O. Groening, Scanning field emission from patterned carbon nanotube films, Applied Physics Letters, vol.76, issue.15, p.2071, 2000.
DOI : 10.1002/(SICI)1521-4095(199910)11:15<1285::AID-ADMA1285>3.0.CO;2-J

W. Zhu and C. Bower, Large current density from carbon nanotube field emitters, Applied Physic Letters, vol.75, issue.873, 1999.
DOI : 10.1063/1.124541

S. H. Heo and H. J. Kim, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters, Nanoscale Research Letters, vol.7, issue.1, 2012.
DOI : 10.1103/RevModPhys.39.78

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494558

H. J. Kim and J. M. Ha, Small-Sized Flat-Tip CNT Emitters for Miniaturized X-Ray Tubes, Journal of Nanomaterials, vol.93, issue.7, 2012.
DOI : 10.1116/1.1340668

URL : http://doi.org/10.1155/2012/854602

W. B. Choi and D. S. Chung, Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, vol.85, issue.20, pp.75-3129, 1999.
DOI : 10.1063/1.124837

Y. C. Kim and E. H. Yoo, Printed Carbon Nanotube Field Emitters for Backlight Applications, Japanese Journal of Applied Physics, vol.44, issue.No. 15, pp.44-454, 2005.
DOI : 10.1143/JJAP.44.L454

A. Kumar and V. L. Pushparaj, Contact transfer of aligned carbon nanotube arrays onto conducting substrates, Applied Physics Letters, vol.89, issue.16, p.163120, 2006.
DOI : 10.1063/1.124541

C. Kottler and R. Longtin, X-ray source downscaling enabled by combining microfabricated electrodes with carbon nanotube cold electron emitters, Microelectronic Engineering, vol.122, pp.13-19, 2014.
DOI : 10.1016/j.mee.2014.03.010

S. Berhanu and O. Gröning, Microscopic analysis of performance variations in carbon nanotube field emission cathodes: Implications for device optimization, physica status solidi (a), vol.17, issue.11, pp.2114-2125, 2012.
DOI : 10.1002/pssa.201228296

C. Bonard and . Klinke, Degradation and failure of carbon nanotube field emitters, Physical Review B, vol.67, issue.11, p.115406, 2003.
DOI : 10.1103/PhysRevB.67.115406

A. Pandey and A. Prasad, Stable Electron Field Emission from PMMA???CNT Matrices, ACS Nano, vol.4, issue.11, pp.6760-6766, 2007.
DOI : 10.1021/nn100925g

C. Bower and W. Zhu, On-chip vacuum microtriode using carbon nanotube field emitters, Applied Physics Letters, vol.80, issue.20, p.3820, 2002.
DOI : 10.1002/j.1538-7305.1950.tb03650.x

G. Pirio and P. Legagneux, Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode, Nanotechnology, vol.13, issue.1, 2002.
DOI : 10.1088/0957-4484/13/1/301

L. Gangloff and E. Minoux, Self-Aligned, Gated Arrays of Individual Nanotube and Nanowire Emitters, Nano Letters, vol.4, issue.9, pp.1575-1579, 2004.
DOI : 10.1021/nl049401t

J. H. Choi and A. R. Zoulkarneev, Carbon nanotube field emitter arrays having an electron beam focusing structure, Applied Physics Letters, vol.84, issue.6, p.1022, 2004.
DOI : 10.1116/1.1358859

P. Y. Chen and C. H. Chen, Optimal design of integrally gated CNT field-emission devices using a genetic algorithm, Nanotechnology, vol.18, issue.39, p.395203, 2007.
DOI : 10.1088/0957-4484/18/39/395203

J. Wu and M. Wyse, Fabrication and Field Emission Properties of Triode-Type Carbon Nanotube Emitter Arrays, Nano Letters, vol.9, issue.2, pp.595-600, 2009.
DOI : 10.1021/nl802777g

K. Chen and C. Chen, Low-temperature CVD growth of carbon nanotubes for field emission application, Diamond and Related Materials, vol.16, issue.3, pp.566-569, 2007.
DOI : 10.1016/j.diamond.2006.11.058

G. Ulisse and F. Bruneti, A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency, Nanotechnology, vol.26, issue.21, p.215204, 2015.
DOI : 10.1088/0957-4484/26/21/215204

H. Yoo and W. Sung, Novel Triode-Type Field Emission Arrays and Appropriate Driving Method for Flat Lamp Using Carbon Nanofibers Grown by Plasma Enhanced Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.46, issue.7A, pp.46-4381, 2007.
DOI : 10.1143/JJAP.46.4381

Y. J. Jung and G. H. Son, Fabrication and properties of under-gated triode with CNT emitter for flat lamp, Diamond and Related Materials, vol.14, issue.11-12, pp.2109-2112, 2005.
DOI : 10.1016/j.diamond.2005.07.029

Y. S. Choi and J. H. Kang, An under-gate triode structure field emission display with carbon nanotube emitters, Diamond and Related Materials, vol.10, issue.9-10, pp.1705-1708, 2001.
DOI : 10.1016/S0925-9635(01)00399-5

C. Li and Y. Zang, Individually Transistor-Ballasted Carbon Nanotube Arrays, ACS Nano, vol.6, issue.4, pp.3236-3242, 2012.
DOI : 10.1021/nn300111t

L. Hudanski and E. Minoux, Carbon nanotube based photocathodes, Nanotechnology, vol.19, issue.10, 2008.
DOI : 10.1088/0957-4484/19/10/105201

F. Andrianiazy and J. Mazellier, Quantitative characterization of field emission parameters: Application to statistical analysis of individual carbon nanotubes/nanofibers, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.33, issue.1, p.12201, 2015.
DOI : 10.1116/1.4902019

L. Sabaut and J. Mazellier, Electrostatic modeling of an in-plane gated field emisison cathode, Journal of Vacuum Science and Technology B, vol.34, issue.2, pp.2-101, 2015.

G. E. Vibrans, Field Emission in Vacuum Voltage Breakdown, 1964.

H. C. Miller, Change in Field Intensification Factor ?? of an Electrode Projection (Whisker) at Short Gap Lengths, Journal of Applied Physics, vol.18, issue.11, p.4501, 1967.
DOI : 10.1063/1.1722191

F. Andrianiazy, Cathodes froidesàfroidesà base de nanotubes de carbone : vers les hautes densités de courant, 2015.

J. Lekner, Comparison of hyperbolic and hyperboloid conductor electrostatics, European Journal of Physics, vol.27, issue.1, pp.87-94, 2006.
DOI : 10.1088/0143-0807/27/1/009

E. Durand, Electrostatique Tome 2 :Probì emes généraux conducteurs, Electrostatique . Masson, 1966.
DOI : 10.1063/1.3034331

E. Durand, Electrostatique Tome 2 :Probì emes généraux conducteurs, page 229, Electrostatique. Masson, 1966.
DOI : 10.1063/1.3034331

T. Ernst and R. Ritzenthaler, A Model of Fringing Fields in Short-Channel Planar and Triple-Gate SOI MOSFETs, IEEE Transactions on Electron Devices, vol.54, issue.6, pp.1366-1375, 2007.
DOI : 10.1109/TED.2007.895241

URL : https://hal.archives-ouvertes.fr/hal-00392888

M. Ravi and K. S. Bhat, Effective emission area calculation for single tip CNT cathode, 2011 IEEE International Vacuum Electronics Conference (IVEC), pp.189-190, 2011.
DOI : 10.1109/IVEC.2011.5746939

M. S. Wang and L. M. Peng, Electron Field Emission Characteristics and Field Evaporation of a Single Carbon Nanotube, The Journal of Physical Chemistry B, vol.109, issue.1, pp.110-113, 2005.
DOI : 10.1021/jp046526d

M. S. Wang and L. M. Peng, Quantitative Analysis of Electron Field-Emission Characteristics of Individual Carbon Nanotubes:?? The Importance of the Tip Structure, The Journal of Physical Chemistry B, vol.110, issue.19, pp.9397-9402, 2006.
DOI : 10.1021/jp054971i

J. Bonard and H. Kind, Field emission from carbon nanotubes : the first five years. Solid-State Electronics, pp.893-914, 2001.

D. Kim and J. Choi, Shortening multiwalled carbon nanotube on atomic force microscope tip: Experiments and two possible mechanisms, Journal of Applied Physics, vol.101, issue.6, p.64317, 2007.
DOI : 10.1103/PhysRevB.68.113406

Z. L. Wang, P. Poncharal, and W. A. De-heer, Nanomeasurements in transmission electron microscopy, Microscopy and Microanalysis, vol.6, issue.3, pp.224-230, 2000.

N. De-jonge and M. Allioux, Low noise and stable emission from carbon nanotube electron sources, Applied Physics Letters, vol.1, issue.13, 2005.
DOI : 10.1116/1.570275

Z. Xu and X. D. Bai, tip image and real work function, Applied Physics Letters, vol.6, issue.16, p.163106, 2005.
DOI : 10.1021/nl034342p

W. S. Lau and D. S. Chan, True oxide electron beam induced current for low???voltage imaging of local defects in very thin silicon dioxide films, Applied Physics Letters, vol.38, issue.16, pp.2240-2242, 1993.
DOI : 10.1149/1.2120116

K. Nikawa, Optical beam induced resistance change (OBIRCH): overview and recent results, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003., p.742, 2003.
DOI : 10.1109/LEOS.2003.1253014

E. I. Cole and B. D. , Failure site isolation : photon emission microscopy optical/electron beam techniques. In Failure analysis of integrated circuits : tools and techniques, pp.87-112, 1999.
DOI : 10.1007/978-1-4615-4919-2_6

Y. Choi and I. Lee, Pinholes on thermally grown oxide under polysilicon layer after plasma etching, Metals and Materials, vol.5, issue.4, pp.377-380, 1999.

M. S. Dresselhaus and G. Dresselhaus, Raman spectroscopy of carbon nanotubes, Physics Reports, vol.409, issue.2, pp.47-99, 2005.
DOI : 10.1016/j.physrep.2004.10.006

A. M. Rao and D. Jacques, -grown carbon nanotube array with excellent field emission characteristics, Applied Physics Letters, vol.76, issue.25, pp.3813-3815, 2000.
DOI : 10.1098/rspa.1928.0091

URL : https://hal.archives-ouvertes.fr/hal-00159700

W. T. Lee and A. C. Fowler, Blowing Polysilicon Fuses, AIP Conference Proceedings, p.23502, 2010.
DOI : 10.1063/1.3241370

R. G. Forbes and J. H. Deane, Extraction of emission area from Fowler???Nordheim plots, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.3, pp.1222-1226, 2004.
DOI : 10.1116/1.1691410

URL : http://epubs.surrey.ac.uk/1492/1/fulltext.pdf

S. Helveg and C. Lopez-cartes, Atomic-scale imaging of carbon nanofibre growth, Nature, vol.427, issue.6973, pp.426-429, 2004.
DOI : 10.1038/nature02278

G. Zhao and J. Zhang, Fabrication and characterization of single carbon nanotube emitters as point electron sources, Applied Physics Letters, vol.89, issue.19, 2006.
DOI : 10.1103/PhysRevLett.89.197602

J. Bonard and K. A. Dean, Field emisison of individual carbon nanotubes in the scanning electron microscope, Physical Review Letters, vol.89, issue.19, 2002.

J. D. Carey and S. R. Silva, Conditioning of hydrogenated amorphous carbon thin films for field emission via current stressing, Applied Physics Letters, vol.78, issue.3, p.347, 2001.
DOI : 10.1063/1.119078

C. Jin and J. Wang, In-situ studies of electron field emission of single carbon nanotubes inside the TEM, Carbon, vol.43, issue.5, pp.1026-1031, 2005.
DOI : 10.1016/j.carbon.2004.11.038

J. Zhang and J. Tang, Efficient Fabrication of Carbon Nanotube Point Electron Sources by Dielectrophoresis, Advanced Materials, vol.16, issue.14, pp.1219-1222, 2004.
DOI : 10.1002/adma.200400124

F. Houdellier and L. De-knoop, Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip, Ultramicroscopy, vol.151, issue.107, 2015.
DOI : 10.1016/j.ultramic.2014.11.021

URL : https://hal.archives-ouvertes.fr/hal-01430585

K. A. Dean and B. R. Chalamala, Field emission microscopy of carbon nanotube caps, Journal of Applied Physics, vol.3, issue.7, p.3832, 1999.
DOI : 10.1103/PhysRevB.47.15923

E. W. Plummer, J. W. Gadzuk, and R. D. Young, Resonance tunneling of field emitted electrons through adsorbates on metal surfaces, Solid State Communications, vol.7, issue.6, pp.487-491, 1969.
DOI : 10.1016/0038-1098(69)90001-5

A. V. Arkhipov, M. V. Mishin, and I. V. Parygin, Hysteresis of pulsed characteristics of field emission from nanocarbon materials, Surface and Interface Analysis, vol.49, issue.2-3, pp.149-154, 2007.
DOI : 10.1002/sia.2479

V. P. Mammana and T. E. Santos, Field emission properties of porous diamond-like films produced by chemical vapor deposition, Applied Physics Letters, vol.81, issue.18, 2002.
DOI : 10.1116/1.1372915

J. Chen and J. Li, The hysteresis phenomenon of the field emission from the graphene film, Applied Physic Letters, issue.17, pp.99-173104, 2011.

S. C. Lim and H. J. Jeong, Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.4, p.1786, 2001.
DOI : 10.1116/1.1372915

Y. Zuo and Y. Ren, Enhanced field emission and hysteresis characteristics of aligned carbon nanotubes with Ti decoration, Organic Electronics, vol.14, issue.9, pp.2306-2314, 2013.
DOI : 10.1016/j.orgel.2013.05.027

S. L. Yue and C. Z. Gu, Field emission characteristics of oriented-AlN thin film on tungsten tip, Applied Surface Science, vol.251, issue.1-4, pp.215-219, 2005.
DOI : 10.1016/j.apsusc.2005.03.105

A. Wadhawan, R. E. Stallcup, and I. , Effects of O2 , Ar, and H2 gases on the fieldemission properties of single-walled and multiwalled carbon nanotubes, Applied Physic Letters, issue.12, pp.79-1867, 2001.

S. C. Lim and Y. C. Choi, Effect of Gas Exposure on Field Emission Properties of Carbon Nanotube Arrays, Advanced Materials, vol.13, issue.20, pp.1563-1567, 2001.
DOI : 10.1002/1521-4095(200110)13:20<1563::AID-ADMA1563>3.0.CO;2-H

K. Hata, A. Takakura, and Y. Saito, Field emission from multiwall carbon nanotubes in controlled ambient gases, H2, CO, N2 and O2, Ultramicroscopy, vol.95, p.95, 2003.
DOI : 10.1016/S0304-3991(02)00304-2

B. Panella, M. Hirscher, and S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon, vol.43, issue.10, pp.2209-2214, 2005.
DOI : 10.1016/j.carbon.2005.03.037

URL : http://hdl.handle.net/11858/00-001M-0000-0010-280F-3

S. S. Tholeti, A. Alexeenko, and S. Macheret, Modeling of microplasmas with nanoengineered electrodes, 54th AIAA Aerospace Sciences Meeting 2016, p.14275, 2016.
DOI : 10.2514/6.2016-1694

M. Itsumi and F. Kiyosumi, thermally grown on Czochralski silicon substrate, Applied Physics Letters, vol.16, issue.6, p.496, 1982.
DOI : 10.1149/1.2401924

K. Notsu, N. Honma, and T. Yonehara, Detection of SOI fatal defects by Cu decoration in conjunction with HF immersion, Silicon-on-Insulator Technology and Devices X : Proceedings of the Tenth International Symposium, pp.57-62, 2001.

J. Kassabov, UV and plasma effects in the Si/SiO2 system, In Insulating Films on Semiconductors, p.33, 1991.

B. Wu and A. Kumar, Extreme ultraviolet lithography: A review, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.25, issue.6, p.1743, 2008.
DOI : 10.1116/1.2794048

N. Yang and H. Uetsuka, Vertically Aligned Nanowires from Boron-Doped Diamond, Nano Letters, vol.8, issue.11, p.3572, 2008.
DOI : 10.1021/nl801136h

V. N. Mochalin and O. Shenderova, The properties and applications of nanodiamonds, Nature Nanotechnology, vol.3, issue.1, 2012.
DOI : 10.1038/nnano.2011.209

F. P. Bundy and H. T. Hall, Man-Made Diamonds, Nature, vol.81, issue.4471, p.51, 1955.
DOI : 10.1063/1.1746434

L. Fang, H. Ohfuji, and T. Irifune, A Novel Technique for the Synthesis of Nanodiamond Powder, Journal of Nanomaterials, vol.60, issue.10, 2013.
DOI : 10.1016/j.carbon.2006.10.005

T. Petit, Modifications de surface des nanodiamants : compréhension des mécanismes d'´ echangesélectroniquesechangesélectroniques et mise enévidenceenévidence d'un effet thérapeutique, 2013.

A. M. Schrand, S. A. Hens, and O. A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications, Critical Reviews in Solid State and Materials Sciences, vol.34, issue.1, pp.18-74, 2012.
DOI : 10.1080/10408430902831987

M. Couty, H. A. Girard, and S. Saada, Nanoparticle Adhesion and Mobility in Thin Layers: Nanodiamonds As a Model, ACS Applied Materials & Interfaces, vol.7, issue.29, pp.15752-15764, 2015.
DOI : 10.1021/acsami.5b02364

H. A. Girard and S. Perruchas, Electrostatic Grafting of Diamond Nanoparticles: A Versatile Route to Nanocrystalline Diamond Thin Films, ACS Applied Materials & Interfaces, vol.1, issue.12, pp.2738-2746, 2009.
DOI : 10.1021/am900458g

N. A. Kotov, I. Dekany, and J. H. Fendler, Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films, The Journal of Physical Chemistry, vol.99, issue.35, pp.99-13065, 1995.
DOI : 10.1021/j100035a005

H. A. Girard and E. Scorsone, Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures, Diamond and Related Materials, vol.23, pp.83-87, 2012.
DOI : 10.1016/j.diamond.2012.01.021

J. Zhang and M. Zhou, Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods, Plasma Science and Technology, vol.15, issue.6, p.552, 2013.
DOI : 10.1088/1009-0630/15/6/12

R. W. Wood, -Rays, together with Some Notes on Diffraction. Preliminary Communication, Physical Review (Series I), vol.5, issue.1, p.1897
DOI : 10.1103/PhysRevSeriesI.5.1

URL : https://hal.archives-ouvertes.fr/in2p3-00003507

A. Sommerfeld, Zur elektronentheorie der metalle auf grund der fermischen statistik . Zeitschrift fur Physik, 1928.
DOI : 10.1007/bf01391052

E. L. Murphy and R. H. Good, Thermionic Emission, Field Emission, and the Transition Region, Physical Review, vol.102, issue.6, p.1464, 1956.
DOI : 10.1103/PhysRev.102.1464

W. P. Dyke and W. W. Dolan, Field emisison, Advances in Electronics and Electron Physics, pp.89-185, 1956.

N. De-jonge and M. Allioux, Characterization of the field emission properties of individual thin carbon nanotubes, Applied Physics Letters, vol.85, issue.9, p.1607, 2004.
DOI : 10.1063/1.1356442

D. L. Carroll and P. Redlich, Electronic Structure and Localized States at Carbon Nanotube Tips, Physical Review Letters, vol.78, issue.14, p.2811, 1997.
DOI : 10.1103/PhysRevLett.78.2811

P. Kim and T. W. Odom, Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States, Physical Review Letters, vol.82, issue.6, p.1225, 1999.
DOI : 10.1103/PhysRevLett.82.1225

K. A. Dean, P. Von-allmen, and B. R. Chalamala, Three behavioral states observed in field emission from single-walled carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.17, issue.5, 1959.
DOI : 10.1116/1.590856

J. Cazaux, Some considerations on the electric field induced in insulators by electron bombardment, Journal of Applied Physics, vol.136, issue.5, p.1418, 1986.
DOI : 10.1063/1.321759

C. Bonnelle and G. Blaise, Effet d'accumulation de charges, 2010.

I. W. Wu and R. H. Bruce, Damage to gate oxides in reactive ion etching, SPIE, p.284, 1989.
DOI : 10.1117/12.978067

C. Goldsmith and J. Randall, Characteristics of micromachined switches at microwave frequencies, 1996 IEEE MTT-S International Microwave Symposium Digest, p.1141, 1996.
DOI : 10.1109/MWSYM.1996.511231

W. M. Van-spengen, Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations, Journal of Micromechanics and Microengineering, vol.22, issue.7, p.74001, 2012.
DOI : 10.1088/0960-1317/22/7/074001

J. Wibbeler, G. Pfeifer, and M. Hietschold, Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors and Actuators A, pp.74-80, 1998.

Z. A. Weinberg, On tunneling in metal???oxide???silicon structures, Journal of Applied Physics, vol.20, issue.7, p.5052, 1982.
DOI : 10.1063/1.1653240

Y. Maneglia, Analyse en profondeur des défauts de l'interface Si-SiO2 par la technique du pompage de charges, 1998.

E. Klaussmann, W. R. Farhner, and D. Bräunig, The intrinsic states and fixed charges of the Si-SiO2 interface, Instabilities in silicon devices, pp.171-247, 1989.

D. J. Dimaria, E. Cartier, and D. Arnold, Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon, Journal of Applied Physics, vol.64, issue.7, 1993.
DOI : 10.1063/1.104801

D. Braga, Etude des phénomènes de charge des matériaux isolants sous faisceau d'´ electrons de bassé energie (200 eV -30 keV), 2003.

R. A. Anderson, Mechanism of fast surface flashover in vacuum, Applied Physics Letters, vol.15, issue.2, p.54, 1974.
DOI : 10.1063/1.1708934

F. Wang and Q. Zhang, Insulator surface charge accumulation under DC voltage, Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316), p.426, 2002.
DOI : 10.1109/ELINSL.2002.995966

V. D. Bochkov and M. M. Pogorelsky, Investigation of charge distribution on the dielectric envelope of high-voltage vacuum tube, Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum, p.415, 1996.
DOI : 10.1109/DEIV.1996.545393

C. Goldsmith and J. Ehmke, Lifetime characterization of capacitive RF MEMS switches, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), pp.227-230, 2001.
DOI : 10.1109/MWSYM.2001.966876

H. J. Blennow and M. L. Sjöberg, Electric field reduction due to charge accumulation in a dielectric-covered electrode system, IEEE Transactions on Dielectrics and Electrical Insulation, vol.7, issue.3, p.340, 2000.
DOI : 10.1109/94.848912

R. T. Baker and M. A. Barber, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis, vol.26, issue.1, pp.51-62, 1972.
DOI : 10.1016/0021-9517(72)90032-2

R. T. Baker and R. J. Waite, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene, Journal of Catalysis, vol.37, issue.1, pp.101-105, 1975.
DOI : 10.1016/0021-9517(75)90137-2

Y. Homma and Y. Kobayashi, Role of Transition Metal Catalysts in Single-Walled Carbon Nanotube Growth in Chemical Vapor Deposition, The Journal of Physical Chemistry B, vol.107, issue.44, pp.12161-12164, 2003.
DOI : 10.1021/jp0353845

S. Hofmann and R. Blume, State of Transition Metal Catalysts During Carbon Nanotube Growth, The Journal of Physical Chemistry C, vol.113, issue.5, pp.1648-1656, 2009.
DOI : 10.1021/jp808560p

URL : http://hdl.handle.net/11858/00-001M-0000-0010-FA52-F

P. T. Reilly and W. B. Whitten, The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process, Carbon, vol.44, issue.9, pp.1653-1660, 2006.
DOI : 10.1016/j.carbon.2006.01.018

D. Takagi, Y. Kobayashi, and Y. Homma, Carbon Nanotube Growth from Diamond, Journal of the American Chemical Society, vol.131, issue.20, p.6922, 2009.
DOI : 10.1021/ja901295j

Y. Homma and H. Liu, Single-walled carbon nanotube growth with non-iron-group ???catalysts??? by chemical vapor deposition, Nano Research, vol.8, issue.10, pp.793-799, 2009.
DOI : 10.1007/s12274-009-9082-z

URL : http://dx.doi.org/10.1007/s12274-009-9082-z

L. Tan and W. Ong, Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments, Catalysis Today, vol.217, pp.1-12, 2013.
DOI : 10.1016/j.cattod.2012.10.023

A. Dupuis, The catalyst in the CCVD of carbon nanotubes???a review, Progress in Materials Science, pp.929-961, 2005.
DOI : 10.1016/j.pmatsci.2005.04.003

Z. P. Huang and D. Z. Wang, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.74, issue.3, pp.387-391, 2002.
DOI : 10.1007/s003390101186

K. Maex and M. Van-rossum, Properties of metal silicides, In EMIS Data Reviews INSPEC, vol.14, 1995.

R. L. Vander-wal, T. M. Ticich, and V. E. Curtis, Substrate???support interactions in metal-catalyzed carbon nanofiber growth, Carbon, vol.39, issue.15, pp.39-2277, 2001.
DOI : 10.1016/S0008-6223(01)00047-1

A. C. Wright and Y. Xiong, The influence of the substrate on the growth of carbon nanotubes from nickel clusters???an investigation using STM, FE-SEM, TEM and Raman spectroscopy, Materials Science and Engineering: C, vol.23, issue.1-2, pp.279-283, 2003.
DOI : 10.1016/S0928-4931(02)00254-0

J. Robertson and S. Hofmann, Controlling the Catalyst During Carbon Nanotube Growth, Journal of Nanoscience and Nanotechnology, vol.8, issue.11, pp.1-7, 2008.
DOI : 10.1166/jnn.2008.SW08

A. B. Murcia and J. Geng, Growth of Carbon Nanotubes on Surfaces: The Effects of Catalyst and Substrate, Journal of Nanoscience and Nanotechnology, vol.13, issue.8, pp.5849-5854, 2013.
DOI : 10.1166/jnn.2013.7535

K. B. Teo and M. Chhowalla, Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.1, 2002.
DOI : 10.1116/1.1428281

E. Kurimoto and H. Harima, Raman study on the Ni/SiC interface reaction, Journal of Applied Physics, vol.4, issue.342, pp.91-10215, 2002.
DOI : 10.1063/1.1473226

F. A. Ghavanini and M. Lopez-damian, Controlling the initial phase of PECVD growth of vertically aligned carbon nanofibers on TiN, Sensors and Actuators A: Physical, vol.172, issue.1, 2011.
DOI : 10.1016/j.sna.2011.04.036

B. L. Crossley and M. Kossler, Effects of hydrogen pretreatment on physicalvapor-deposition nickel catalyst for multi-walled carbon nanotube growth, Journal of Nanophotonics, vol.4, 2010.

M. S. Saheed, N. M. Mohamed, and Z. A. Burhanudin, Effect of different catalyst deposition technique on aligned multiwalled carbon nanotubes grown by thermal chemical vapor deposition, Journal of Nanomaterials, 2014.

H. S. Uh, S. W. Ko, and J. D. Lee, Growth and field emission properties of carbon nanotubes on rapid thermal annealed Ni catalyst using PECVD, Diamond and Related Materials, vol.14, issue.3-7, pp.3-7, 2005.
DOI : 10.1016/j.diamond.2004.10.036

P. Ayala and A. Grüneis, Influence of the Catalyst Hydrogen Pretreatment on the Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes, Chemistry of Materials, vol.19, issue.25, pp.6131-6137, 2007.
DOI : 10.1021/cm0715592

R. Löffler and M. Häffner, Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters, Carbon, vol.49, issue.13, pp.49-4197, 2011.
DOI : 10.1016/j.carbon.2011.05.055

R. T. Baker and M. A. Barber, The formation of filamentous carbon, Chemistry and Physics of Carbon. Dekker, 1978.

K. Shimamura and T. Oguri, study of dissociation reaction of ethylene molecules on Ni cluster, Journal of Physics: Conference Series, vol.454, p.12022, 2013.
DOI : 10.1088/1742-6596/454/1/012022

Y. Shibuta and S. Maruyama, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method, Chemical Physics Letters, vol.382, issue.3-4, p.381, 2003.
DOI : 10.1016/j.cplett.2003.10.080

S. Hofmann and R. Sharma, In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, Nano Letters, vol.7, issue.3, pp.602-608, 2007.
DOI : 10.1021/nl0624824

J. Gao and J. Zhong, Revealing the Role of Catalysts in Carbon Nanotubes and Nanofibers by Scanning Transmission X-ray Microscopy, Scientific Reports, vol.64, issue.1, p.3606, 2014.
DOI : 10.1103/PhysRevB.64.214422

J. Maurice and D. Pribat, Catalyst faceting during graphene layer crystallization in the course of carbon nanofiber growth, Carbon, vol.79, pp.93-102, 2014.
DOI : 10.1016/j.carbon.2014.07.047

URL : https://hal.archives-ouvertes.fr/hal-01084443

M. Chhowalla and K. B. Teo, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.236, issue.10, pp.90-5308, 2001.
DOI : 10.1103/PhysRevB.60.11180

S. Hofmann and G. Csanyi, Surface Diffusion: The Low Activation Energy Path for Nanotube Growth, Physical Review Letters, vol.95, issue.3, p.36101, 2005.
DOI : 10.1103/PhysRevLett.95.036101

R. P. Smith, Transactions of the Metallurgist Society of AIME, 1966.

Z. F. Ren and Z. P. Huang, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot, Applied Physics Letters, vol.75, issue.8, pp.75-1086, 1999.
DOI : 10.1063/1.118978

M. S. Bell and K. B. Teo, Carbon nanotubes by plasma-enhanced chemical vapor deposition, Pure and Applied Chemistry, vol.78, issue.6, pp.1117-1125, 2006.
DOI : 10.1351/pac200678061117

J. H. Yang and Y. J. Lee, Effects of N2 on the growth of multiwalled carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition, Japanese Journal of Applied Physics, issue.10, pp.42-6713, 2003.

Z. B. He and J. Maurice, Etchant-induced shaping of nanoparticle catalysts during chemical vapour growth of carbon nanofibres, Carbon, vol.49, issue.2, pp.435-444, 2011.
DOI : 10.1016/j.carbon.2010.09.040

URL : https://hal.archives-ouvertes.fr/hal-00525194

K. B. Teo and M. Chhowalla, Uniform patterned growth of carbon nanotubes without surface carbon, Applied Physics Letters, vol.79, issue.10, pp.79-1534, 2001.
DOI : 10.1063/1.126790

S. T. Retterer and A. Melechko, Positional control of catalyst nanoparticles for the synthesis of high density carbon nanofiber arrays, Carbon, vol.46, issue.11, pp.46-1378, 2008.
DOI : 10.1016/j.carbon.2008.05.012