J. Blanco-urgoiti, L. Añorbe, L. Pérez-serrano, G. Domínguez, and J. , The Pauson???Khand reaction, a powerful synthetic tool for the synthesis of complex molecules, Chem. Soc. Rev., vol.4, issue.1, pp.32-42, 2004.
DOI : 10.1039/B300976A

W. Lautens, W. Klute, and . Tam, Transition Metal-Mediated Cycloaddition Reactions, Chemical Reviews, vol.96, issue.1, pp.49-92, 1996.
DOI : 10.1021/cr950016l

. Rev, Cossy, Grignard reagents and transition metal catalysts, pp.1435-1462, 2010.

C. Fillon, J. Gosmini, and . Périchon, New Chemical Synthesis of Functionalized Arylzinc Compounds from Aromatic or Thienyl Bromides under Mild Conditions Using a Simple Cobalt Catalyst and Zinc Dust, Journal of the American Chemical Society, vol.125, issue.13, pp.3867-3870, 2003.
DOI : 10.1021/ja0289494

P. Giovannini, Ni(II)-Catalyzed Cross-Coupling between Polyfunctional Arylzinc Derivatives and Primary Alkyl Iodides, Journal of the American Chemical Society, vol.120, issue.43, pp.11186-11187, 1998.
DOI : 10.1021/ja982520o

R. M. Zhu, R. D. Wehmeyer, M. C. Rieke, P. Yeh, T. Knochel et al., The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, .alpha.,.beta.-unsaturated ketones, and allylic, aryl, and vinyl halides, The Journal of Organic Chemistry, vol.56, issue.4, pp.1445-1453, 1988.
DOI : 10.1021/jo00004a021

Y. Kuang and . Wang, Dirhodium(II)-Catalyzed Cross-Coupling Reactions of Aryl Aldehydes with Arylboronic Acids in Water, European Journal of Organic Chemistry, vol.39, issue.6, pp.1163-1166
DOI : 10.1002/ejoc.201301564

B. Ko, S. Kang, and . Chang, Cooperative Catalysis by Ru and Pd for the Direct Coupling of a Chelating Aldehyde with Iodoarenes or Organostannanes, Angewandte Chemie International Edition, vol.118, issue.3, pp.455-457, 2005.
DOI : 10.1002/anie.200462006

K. Kang, K. H. Lim, P. S. Ho, S. K. Yoon, and H. J. Son, Palladium-Catalyzed Carbonylative Cross-Coupling of Organoboranes with Hypervalent Iodonium Salts: Synthesis of Aromatic Ketones, Synthetic Communications, vol.9, issue.8, pp.1481-1489, 1998.
DOI : 10.1039/c39810000333

J. Hao, Y. Jiang, Z. Wang, and . Jin, An efficient and recyclable thermoregulated phosphine???palladium catalyst for the carbonylative Suzuki coupling of aryl halides with arylboronic acids in water, Catalysis Communications, vol.71, pp.106-110, 2015.
DOI : 10.1016/j.catcom.2015.08.008

H. Ueda, K. Konishi, and . Manabe, -Formylsaccharin as a CO Source, Angewandte Chemie International Edition, vol.130, issue.33, pp.8611-8615, 2013.
DOI : 10.1002/anie.201303926

URL : https://hal.archives-ouvertes.fr/in2p3-00932021

H. Cornforth, J. W. Cornforth, and G. Popják, Preparation of R- and S-mevalonolactones, Tetrahedron, vol.18, issue.12, pp.1351-1354, 1962.
DOI : 10.1016/S0040-4020(01)99289-0

I. Poos, G. E. Arth, R. E. Beyler, and L. H. Sarett, V. 4b-Methyl-7- ethylenedioxy-1,2,3,4,4a??,4b,5,6,7,8,10,10a ??-dodecahydrophenanthrene-4 ??-ol-1-one and Related Tricyclic Derivatives, Journal of the American Chemical Society, vol.75, issue.2, pp.422-429, 1953.
DOI : 10.1021/ja01098a049

L. Huang, K. Omura, and S. Swern, Oxidation of sterically hindered alcohols to carbonyls with dimethyl sulfoxide-trifluoracetic anhydride, The Journal of Organic Chemistry, vol.41, issue.20, pp.3329-3331, 1976.
DOI : 10.1021/jo00882a030

. Cependant, un des principaux inconvénients de ces réactions est la formation du sulfure de diméthyle, molécule malodorante

. Le-periodinane-de-dess, Martin est préparé à partir d'acide o-iodobenzoïque, d'acide sulfurique et d'Oxone®. Ce dernier peut également être utilisé comme agent d'oxydation. Ces réactions peuvent être réalisées dans l'eau, ce qui en fait des réactions « vertes », en présence de chlorure d'aluminium ou de palygorskite, une argile minérale, via la formation d'une liaison métal-alcool, p.145

. La-combinaison-d, une molécule porteuse d'un groupe nitroxyle présent en quantité catalytique avec une quantité stoechiométrique d'un co-oxydant permet l'oxydation rapide d'alcools, en particulier le couple TEMPO/hypochlorite de sodium, mais l'extraction des produits est généralement difficile. 146 L'utilisation de métaux de transition pour l'oxydation catalytique d'alcools a été moins développée

W. Ding, B. C. Zhao, W. Y. Ma, and . Qiu, for alcohol oxidation with hydrogen peroxide in water, Canadian Journal of Chemistry, vol.89, issue.1, pp.13-18, 2011.
DOI : 10.1139/V10-152

J. Catino, J. M. Nichols, H. Choi, S. Gottipamula, and M. P. Doyle, Benzylic Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate, Organic Letters, vol.7, issue.23, pp.5167-5170, 2005.
DOI : 10.1021/ol0520020

S. Nagano and . Kobayashi, Iron Catalyst for Oxidation in Water: Surfactant-type Iron Complex-catalyzed Mild and Efficient Oxidation of Aryl Alkanes Using Aqueous TBHP as Oxidant in Water, Chemistry Letters, vol.37, issue.10, pp.1042-1043, 2008.
DOI : 10.1246/cl.2008.1042

E. Bonvin, I. Callens, D. A. Larrosa, J. Henderson, A. J. Oldham et al., -Butyl Hydroperoxide, Organic Letters, vol.7, issue.21, pp.4549-4552, 2005.
DOI : 10.1021/ol051765k

URL : https://hal.archives-ouvertes.fr/hal-00955916

F. Ullmann, J. Bielecki-adams, and H. R. Snyder, (b) F. Ullmann, Ber. Dtsch. Chem. Ges. Justus Liebigs Ann. Chem. J. Am. Chem. Soc, vol.165, issue.60, pp.2174-2185, 1901.

T. J. Lindley, J. P. Mason, and . Lorimer, Sonochemically enhanced Ullmann reactions, Ultrasonics, vol.25, issue.1, pp.45-48, 1987.
DOI : 10.1016/0041-624X(87)90011-4

S. I. Matsumoto, R. D. Inaba, F. Rieke, J. J. Vanderesse, and . Brunet, Activated metallic nickel as a reagent for the dehalogenative coupling of halobenzenes, The Journal of Organic Chemistry, vol.48, issue.6, pp.840-843, 1983.
DOI : 10.1021/jo00154a018

N. Takagi, K. Hayama, and . Sasaki, Ni(0)-Trialkylphosphine Complexes. Efficient Homo-coupling Catalyst for Aryl, Alkenyl, and Heteroaromatic Halides, Bulletin of the Chemical Society of Japan, vol.57, issue.7, pp.1887-1890, 1984.
DOI : 10.1246/bcsj.57.1887

Y. Kuroboshi, H. Waki, and . Tanaka, Palladium-Catalyzed Tetrakis(dimethylamino)ethylene-Promoted Reductive Coupling of Aryl Halides, The Journal of Organic Chemistry, vol.68, issue.10, pp.3938-3942, 2003.
DOI : 10.1021/jo0207473

C. Hassan, C. Hathroubi, M. Gozzi, and . Lemaire, Preparation of unsymmetrical biaryls via palladium-catalyzed coupling reaction of aryl halides, Tetrahedron, vol.57, issue.37, pp.7845-7855, 2001.
DOI : 10.1016/S0040-4020(01)00752-9

J. Y. Percec, M. Bae, D. H. Zhao, M. Hill, Y. Mori et al., Aryl Mesylates in Metal-Catalyzed Homocoupling and Cross-Coupling Reactions. 1. Functional Symmetrical Biaryls from Phenols via Nickel-Catalyzed Homocoupling of Their Mesylates, The Journal of Organic Chemistry, vol.60, issue.1, pp.176-185, 1980.
DOI : 10.1021/jo00106a031

H. Gomes, C. Fillon, E. Gosmini, J. Labbé, and . Périchon, Synthesis of unsymmetrical biaryls by electroreductive cobalt-catalyzed cross-coupling of aryl halides, Tetrahedron, vol.58, issue.42, pp.8417-8424, 2002.
DOI : 10.1016/S0040-4020(02)01030-X

W. Wright, D. L. Hageman, L. D. Mcclure, T. Watanabe, N. Miyaura et al., Fluoride-Mediated Boronic Acid Coupling Reactions, The Journal of Organic Chemistry, vol.59, issue.20, pp.6095-6097, 1994.
DOI : 10.1021/jo00099a049

C. Baghbanzadeh, C. O. Pilger, S. Kappe, T. Darses, J. P. Jeffery et al., Rapid Nickel-Catalyzed Suzuki???Miyaura Cross-Couplings of Aryl Carbamates and Sulfamates Utilizing Microwave Heating, The Journal of Organic Chemistry, vol.76, issue.5, pp.1507-1510, 1996.
DOI : 10.1021/jo1024464

B. Blakey and D. W. Macmillan, The First Suzuki Cross-Couplings of Aryltrimethylammonium Salts, Journal of the American Chemical Society, vol.125, issue.20, pp.6046-6047, 2003.
DOI : 10.1021/ja034908b

C. Seyferth, A. B. Sarafidis, and . Evnin, Preparation and reactions of 1,2-bis-(trimethyltin)tetrahenylbenzene and related compounds. A novel bimolecular elimination of trimethyltin iodide, Journal of Organometallic Chemistry, vol.2, issue.5, pp.417-424, 1964.
DOI : 10.1016/S0022-328X(00)80474-X

H. Chem, L. L. Gundersen, A. K. Bakkestuen, A. J. Aasen, H. Overas et al., Couplage tandem de deux aryles en présence d'hexaméthyldiétain et de palladium, Tetrahedron Tetrahedron Lett, vol.31, issue.37, pp.1637-1639, 1994.

S. Su, P. A. Urgaonkar, J. G. Mclaughlin, G. P. Verkade, V. Roth et al., Highly Active Palladium Catalysts Supported by Bulky Proazaphosphatrane Ligands for Stille Cross-Coupling:?? Coupling of Aryl and Vinyl Chlorides, Room Temperature Coupling of Aryl Bromides, Coupling of Aryl Triflates, and Synthesis of Sterically Hindered Biaryls, Journal of the American Chemical Society, vol.126, issue.50, pp.16433-16439, 1995.
DOI : 10.1021/ja0450096

F. Littke, L. Schwartz, and G. Fu, :?? A Mild and General Catalyst for Stille Reactions of Aryl Chlorides and Aryl Bromides, Journal of the American Chemical Society, vol.124, issue.22, pp.6343-6348, 2002.
DOI : 10.1021/ja020012f

L. Zhang, B. Thomas, and . Wu, Palladium-Catalyzed Selective Cross-Coupling between 2-Bromopyridines and Aryl Bromides, The Journal of Organic Chemistry, vol.66, issue.4, pp.1500-1502, 2001.
DOI : 10.1021/jo005682n

G. C. Dai and . Fu, as a Catalyst, Journal of the American Chemical Society, vol.123, issue.12, pp.2719-2724, 2001.
DOI : 10.1021/ja003954y

E. Milne, S. L. Buchwald, J. J. Liu, Y. Deng, H. Wang et al., An Extremely Active Catalyst for the Negishi Cross-Coupling Reaction, Journal of the American Chemical Society, vol.126, issue.40, pp.13028-13032, 2004.
DOI : 10.1021/ja0474493

A. Thapa, S. K. Kafle, A. Gurung, P. Montoya, R. Riedel et al., Ligand-Free Copper-Catalyzed Negishi Coupling of Alkyl-, Aryl-, and Alkynylzinc Reagents with Heteroaryl Iodides, Angewandte Chemie International Edition, vol.130, issue.28, pp.8236-8240, 2015.
DOI : 10.1002/anie.201502379

M. Bégouin and C. Gosmini, Cobalt-Catalyzed Cross-Coupling Between In Situ Prepared Arylzinc Halides and 2-Chloropyrimidine or 2-Chloropyrazine, The Journal of Organic Chemistry, vol.74, issue.8, pp.3221-3224, 2009.
DOI : 10.1021/jo900240d

F. Shirakawa, E. Tamakuni, N. Kusano, W. Uchiyama, R. Konagaya et al., Single-Electron-Transfer-Induced Coupling of Arylzinc Reagents with Aryl and Alkenyl Halides, Angewandte Chemie International Edition, vol.49, issue.2, pp.521-525, 2014.
DOI : 10.1002/anie.201308200

). V. Bonnet, F. Mongin, F. Trécourt, G. Quéguiner, P. Knochel et al., Syntheses of substituted pyridines, quinolines and diazines via palladium-catalyzed cross-coupling of aryl Grignard reagents, Tetrahedron, vol.58, issue.22, pp.4429-4438, 2002.
DOI : 10.1016/S0040-4020(02)00411-8

K. Steib, O. M. Kuzmina, S. Fernandez, D. Flubacher, and P. , Centers, Journal of the American Chemical Society, vol.135, issue.41, pp.15346-15349, 2013.
DOI : 10.1021/ja409076z

S. M. Lee and . Nolan, Efficient Cross-Coupling Reactions of Aryl Chlorides and Bromides with Phenyl- or Vinyltrimethoxysilane Mediated by a Palladium/Imidazolium Chloride System, Organic Letters, vol.2, issue.14, pp.2053-2055, 2000.
DOI : 10.1021/ol005956t

S. Yanase, Y. Mori, H. Monguchi, and . Sajiki, Pd/C-catalyzed and Water-mediated Hiyama Cross-coupling Reaction Using an Electron-deficient Phosphine Ligand, Chemistry Letters, vol.40, issue.9, pp.910-912, 2011.
DOI : 10.1246/cl.2011.910

J. Hirabayashi, Y. Kawashima, A. Nishihara, T. Mori, and . Hiyama, A New Transformation of Silanols. Palladium-Catalyzed Cross-Coupling with Organic Halides in the Presence of Silver(I) Oxide, Organic Letters, vol.1, issue.2, pp.299-301, 1999.
DOI : 10.1021/ol990614c

R. Stuart, E. Villemure, and K. Fagnou, Elements of Regiocontrol in Palladium-Catalyzed Oxidative Arene Cross-Coupling, Journal of the American Chemical Society, vol.129, issue.40, pp.12072-12073, 2007.
DOI : 10.1021/ja0745862

B. Xia and S. L. You, C???H Activations:?? Synthesis of Ferrocenyl Oxazoline Derivatives, Organometallics, vol.26, issue.20, pp.4869-4871, 2007.
DOI : 10.1021/om700806e

J. Li, S. L. Tian, Z. Fang, and Z. J. Shi, Multiple C???H Activations To Construct Biologically Active Molecules in a Process Completely Free of Organohalogen and Organometallic Components, Angewandte Chemie International Edition, vol.31, issue.6, pp.1115-1118, 2008.
DOI : 10.1002/anie.200704092

H. Cho, S. J. Hwang, and S. Chang, -Oxides: Highly Selective Alkenylation and Direct Arylation with Unactivated Arenes, Journal of the American Chemical Society, vol.130, issue.29, pp.9254-9256, 2008.
DOI : 10.1021/ja8026295

URL : https://hal.archives-ouvertes.fr/inria-00158082

F. Xi, S. Yang, D. Qin, J. Zhao, G. Lan et al., Palladium(II)-Catalyzed Oxidative C???H/C???H Cross-Coupling of Heteroarenes, Journal of the American Chemical Society, vol.132, issue.6, pp.1822-1824, 2010.
DOI : 10.1021/ja909807f

C. S. Zhao, V. M. Yeung, and . Dong, -Phenylcarbamates with Simple Arenes and Sodium Persulfate, Journal of the American Chemical Society, vol.132, issue.16, pp.5837-5844, 2010.
DOI : 10.1021/ja100783c

URL : https://hal.archives-ouvertes.fr/hal-00807197

S. Yeung, X. Zhao, N. Borduas, and V. M. Dong, Pd-catalyzed ortho-arylation of phenylacetamides, benzamides, and anilides with simple arenes using sodium persulfate, Chemical Science, vol.131, issue.3, pp.331-336, 2010.
DOI : 10.1039/c0sc00231c

M. Dohi, K. Ito, M. Morimoto, Y. Iwata, and . Kita, Oxidative Cross-Coupling of Arenes Induced by Single-Electron Transfer Leading to Biaryls by Use of Organoiodine(III) Oxidants, Angewandte Chemie International Edition, vol.126, issue.7, pp.1301-1304, 2008.
DOI : 10.1002/anie.200704495

K. Kita, M. Morimoto, C. Ito, A. Ogawa, T. Goto et al., Metal-Free Oxidative Cross-Coupling of Unfunctionalized Aromatic Compounds, Journal of the American Chemical Society, vol.131, issue.5, pp.1668-1669, 2009.
DOI : 10.1021/ja808940n

M. E. Grandbois, M. Mayer, S. K. Bédard, T. Collins, and . Michel, -Symmetric BINOLs Employing N-Heterocyclic Carbene-Copper Complexes, Chemistry - A European Journal, vol.14, issue.38, pp.9655-9659, 2009.
DOI : 10.1002/chem.200901295

URL : https://hal.archives-ouvertes.fr/hal-00823442

K. Egami, T. Matsumoto, T. Oguma, T. Kunisu, and . Katsuki, -Symmetric BINOLs: Iron-Catalyzed Cross-Coupling of 2-Naphthols and Some Mechanistic Insight, Journal of the American Chemical Society, vol.132, issue.39, pp.13633-13635, 2010.
DOI : 10.1021/ja105442m

URL : https://hal.archives-ouvertes.fr/jpa-00225141

D. E. Ames, D. E. Bull, A. Ames, T. Opalko, and . Lett, Some reactions of 3-halogenocinnolines catalysed by palladium compounds, Tetrahedron, vol.38, issue.3, pp.383-387, 1982.
DOI : 10.1016/0040-4020(82)80178-6

N. Nakamura, Y. Tajima, and K. Sakai, Direct Phenylation of Isoxazoles Using Palladium Catalysts. Synthesis of 4-Phenylmuscimol, HETEROCYCLES, vol.17, issue.1, pp.235-245, 1982.
DOI : 10.3987/S-1982-01-0235

Y. Satoh, M. Kawamura, M. Miura, C. Nomura, L. Gozzi et al., Palladium-Catalyzed Regioselective Mono- and Diarylation Reactions of 2-Phenylphenols and Naphthols with Aryl Halides, Angewandte Chemie International Edition in English, vol.36, issue.16, pp.1740-17742, 1997.
DOI : 10.1002/anie.199717401

). F. Chen, Q. Q. Min, and X. Zhang, Ligand, The Journal of Organic Chemistry, vol.77, issue.6, pp.2992-2998, 2012.
DOI : 10.1021/jo300036d

URL : https://hal.archives-ouvertes.fr/hal-00345190

B. Bedford, S. J. Coles, M. B. Hursthouse, and M. E. Limmert, The Catalytic Intermolecular Orthoarylation of Phenols, Angewandte Chemie International Edition, vol.42, issue.1, pp.112-114, 2003.
DOI : 10.1002/anie.200390037

B. Bedford and M. E. Limmert, Catalytic Intermolecular Ortho-Arylation of Phenols, The Journal of Organic Chemistry, vol.68, issue.22, pp.8669-8682, 2003.
DOI : 10.1021/jo030157k

J. A. Bergman and . Ellman, Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines, Journal of the American Chemical Society, vol.130, issue.45, pp.14926-14927, 2008.
DOI : 10.1021/ja8059396

R. Proch and . Kempe, An Efficient Bimetallic Rhodium Catalyst for the Direct Arylation of Unactivated Arenes, Angewandte Chemie International Edition, vol.40, issue.17, pp.3135-3138, 2007.
DOI : 10.1002/anie.200604988

M. Kamigata, T. Yoshikawa, and . Shimizu, Perfluorophenylation of aromatic and heteroaromatic compounds with pentafluorobenzenesulfonyl chloride catalyzed by a ruthenium (II) phosphine complex, Journal of Fluorine Chemistry, vol.87, issue.1, pp.91-95, 1998.
DOI : 10.1016/S0022-1139(97)00120-6

S. Oi, N. Fukita, N. Hirata, S. Watanuki, Y. Miyano et al., Ruthenium Complex-Catalyzed Direct Ortho Arylation and Alkenylation of 2-Arylpyridines with Organic Halides, Organic Letters, vol.3, issue.16, pp.2579-2581, 2001.
DOI : 10.1021/ol016257z

T. Pivsa-art, Y. Satoh, M. Kawamura, M. Miura, and . Nomura, Palladium-Catalyzed Arylation of Azole Compounds with Aryl Halides in the Presence of Alkali Metal Carbonates and the Use of Copper Iodide in the Reaction, Bulletin of the Chemical Society of Japan, vol.71, issue.2, pp.467-473, 1998.
DOI : 10.1246/bcsj.71.467

Q. Do and O. Daugulis, Copper-Catalyzed Arylation of Heterocycle C???H Bonds, Journal of the American Chemical Society, vol.129, issue.41, pp.12404-12405, 2007.
DOI : 10.1021/ja075802+

Q. Do, O. Daugulis, J. Am, T. Yoshizumi, H. Tsurugi et al., Copper-Catalyzed Arylation and Alkenylation of Polyfluoroarene C???H Bonds, Journal of the American Chemical Society, vol.130, issue.4, pp.1128-1129, 2008.
DOI : 10.1021/ja077862l

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536496

K. Hachiya, T. Hirano, M. Satoh, and . Miura, Nickel-Catalyzed Direct Arylation of Azoles with Aryl Bromides, Organic Letters, vol.11, issue.8, pp.1737-1740, 2009.
DOI : 10.1021/ol900159a

A. Núñez, C. Sánchez, J. Burgos, and . Alvarez-builla, Synthesis of carbo- and heterobiaryls by intermolecular radical addition of aryl bromides onto aromatic solvents, Tetrahedron, vol.60, issue.29, pp.6217-6224, 2004.
DOI : 10.1016/j.tet.2004.05.038

). W. Liu, H. Cuo, H. Zhang, K. H. Chung, C. He et al., Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct C???H Arylation of Unactivated Benzene, Journal of the American Chemical Society, vol.132, issue.47, pp.16737-16740, 2010.
DOI : 10.1021/ja103050x

W. Li, Y. Wei, C. Xu, X. Zhang, and . Wan, Ru-catalyzed aerobic oxidative coupling of arylboronic acids with arenes, Chem. Commun., vol.130, issue.5, pp.1497-1499, 2011.
DOI : 10.1039/C0CC04322B

N. Giri, J. J. Maugel, D. H. Li, S. P. Wang, L. B. Breazzano et al., C???H Bonds in Simple Carboxylic Acids, Journal of the American Chemical Society, vol.129, issue.12, pp.3510-3511, 2007.
DOI : 10.1021/ja0701614

H. Wang, T. S. Mei, and J. Q. Yu, Versatile Pd(II)-Catalyzed C???H Activation/Aryl???Aryl Coupling of Benzoic and Phenyl Acetic Acids, Journal of the American Chemical Society, vol.130, issue.52, pp.17676-17677, 2008.
DOI : 10.1021/ja806681z

B. Shi, X. Li, J. Wan, Z. Cheng, B. Fang et al., Suzuki???Miyaura Coupling Reaction by PdII-Catalyzed Aromatic C???H Bond Activation Directed by anN-Alkyl Acetamino Group, Angewandte Chemie International Edition, vol.128, issue.29, pp.5554-5558, 2007.
DOI : 10.1002/anie.200700590

B. Yang, X. Li, Z. Wan, and . Shi, Ortho Arylation of Acetanilides via Pd(II)-Catalyzed C???H Functionalization, Journal of the American Chemical Society, vol.129, issue.19, pp.6066-6067, 2007.
DOI : 10.1021/ja070767s

D. Yang, C. L. Sun, Z. Fang, B. J. Li, Y. Z. Li et al., Palladium-Catalyzed Direct Arylation of (Hetero)Arenes with Aryl Boronic Acids, Angewandte Chemie International Edition, vol.19, issue.8, pp.1473-1476, 2008.
DOI : 10.1002/anie.200704619

A. Norinder, N. Matsumoto, E. Yoshikai, and . Nakamura, Iron-Catalyzed Direct Arylation through Directed C???H Bond Activation, Journal of the American Chemical Society, vol.130, issue.18, pp.5858-5859, 2008.
DOI : 10.1021/ja800818b

C. Gooßen, N. Linder, P. P. Rodríguez, and . Lange, Biaryl and Aryl Ketone Synthesis via Pd-Catalyzed Decarboxylative Coupling of Carboxylate Salts with Aryl Triflates, Chemistry - A European Journal, vol.61, issue.37, pp.9336-9349, 2009.
DOI : 10.1002/chem.200900892

J. Gooßen, N. Rodríguez, P. P. Lange, and C. Linder, Decarboxylative Cross-Coupling of Aryl Tosylates with Aromatic Carboxylate Salts, Angewandte Chemie International Edition, vol.48, issue.6, pp.1111-1114, 2010.
DOI : 10.1002/anie.200905953

Y. Yamamoto, W. R. Sekine, H. Bowman, P. H. Heaney, . Smith et al., Condensation of thiophenols with aryl halides using metallic copper as a reactant. Intermediation of cuprous thiophenolates, Canadian Journal of Chemistry, vol.62, issue.8, pp.1544-1547, 1984.
DOI : 10.1139/v84-263

V. Kalinin, J. F. Bower, P. Riebel, and V. Snieckus, The Directed Ortho Metalation???Ullmann Connection. A New Cu(I)-Catalyzed Variant for the Synthesis of Substituted Diaryl Ethers, The Journal of Organic Chemistry, vol.64, issue.9, pp.2986-2987, 1999.
DOI : 10.1021/jo990114x

P. Reddy, K. Swapna, A. V. Kumar, and K. R. Rao, Indium-Catalyzed C???S Cross-Coupling of Aryl Halides with Thiols, The Journal of Organic Chemistry, vol.74, issue.8, pp.3189-3191, 2009.
DOI : 10.1021/jo802731j

A. Fernández-rodríguez and J. F. Hartwig, One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate, Chemistry - A European Journal, vol.248, issue.8, pp.2355-2359, 2010.
DOI : 10.1002/chem.200902313

. Bergstrom-en, 431 La réaction se produit à partir d'un acide nucléique mercurique en présence d'une quantité stoechiométrique de palladium, et les rendements obtenus en thioéthers sont moyens, 1989.

J. Ham, I. Yang, and H. Kang, A Facile One-Pot Synthesis of Alkyl Aryl Sulfides from Aryl Bromides, The Journal of Organic Chemistry, vol.69, issue.9, pp.3236-3239, 2004.
DOI : 10.1021/jo049758h

S. Bradshaw, J. A. South, and R. H. Hales, Reaction of the bromo- and fluoronaphthalenes with butyl mercaptide in dimethyl sulfoxide, The Journal of Organic Chemistry, vol.37, issue.15, pp.2381-2383, 1972.
DOI : 10.1021/jo00980a004

P. Bergstrom, A. Beal, R. Husain, J. Lind, and . Jenson, Palladium-mediated coupling between organic disulfides and nucleic acid constituents, Journal of the American Chemical Society, vol.111, issue.1, pp.374-375, 1989.
DOI : 10.1021/ja00183a061

J. Dickens, J. P. Gilday, T. J. Mowlem, and D. A. Widdowson, Transition metal mediated thiation of aromatic rings, Tetrahedron, vol.47, issue.40, pp.8621-8634, 1991.
DOI : 10.1016/S0040-4020(01)82405-4

F. Ranken and B. G. Mckinnie, Alkylthio aromatic amines, The Journal of Organic Chemistry, vol.54, issue.12, pp.2985-2988, 1989.
DOI : 10.1021/jo00273a044

H. Q. Popov, O. Do, and . Daugulis, In Situ Generation and Trapping of Aryllithium and Arylpotassium Species by Halogen, Sulfur, and Carbon Electrophiles, The Journal of Organic Chemistry, vol.74, issue.21, pp.8309-8313, 2009.
DOI : 10.1021/jo9015369

P. Zhang, M. Qian, M. Zhang, J. Hu, and . Cheng, Copper-Catalyzed Thiolation of the Di- or Trimethoxybenzene Arene C???H Bond with Disulfides, The Journal of Organic Chemistry, vol.75, issue.19, pp.6732-6735, 2010.
DOI : 10.1021/jo1014849

V. Varun, K. R. Prabhu, D. Nematollahi, E. Tammari, E. Tammari et al., Regioselective Thiolation of Arenes and Heteroarenes: C???H Functionalization Strategy for C???S Bond Formation, The Journal of Organic Chemistry, vol.79, issue.20, pp.9655-9668, 2005.
DOI : 10.1021/jo501793q

J. Moghaddam, . Electrochem, and . Soc, par substitution électrophile. 467 Des rendements moyens à excellents ont été obtenus (Schéma 173) De moins bons rendements sont cependant obtenus à partir d'indoles. Schéma 173. Alkyl-and arylthiolation d'uraciles L'arylthiolation d'indoles en position C-3 à, J. Org. Chem, vol.155, issue.77, pp.120-124, 2008.

. Schéma-174, Arylthiolation d'arènes non activés par catalyse au palladium à partir de N-thioimides 467 K. Anzai, J. Heterocyclic Chem, pp.567-569, 1979.

L. J. Raban and . Chern, Reactions of arenesulfenyl chlorides with indole. Carbon-13 and proton nuclear magnetic resonance spectra of 3-(arylthio)indoles, The Journal of Organic Chemistry, vol.45, issue.9, pp.1688-1691, 1980.
DOI : 10.1021/jo01297a033

H. Anbarasan, M. Neumann, and . Beller, Novel C???H functionalization of arenes: palladium-catalyzed synthesis of diaryl sulfides, Chemical Communications, vol.41, issue.11, pp.3233-3235, 2011.
DOI : 10.1039/c0cc04405a

Z. Lecher and E. M. Hardy, SOME NEW METHODS FOR PREPARING BUNTE SALTS, The Journal of Organic Chemistry, vol.20, issue.4, pp.475-487, 1955.
DOI : 10.1021/jo01122a010

A. Umemoto and . Ando, -nitrosotrifluoromethanesulfonamide as a New Type of Trifluoromethylating Agent, Bulletin of the Chemical Society of Japan, vol.59, issue.2, pp.447-452, 1986.
DOI : 10.1246/bcsj.59.447

URL : https://hal.archives-ouvertes.fr/hal-01002208

P. Zhang, Z. L. Wang, Q. Y. Chen, C. T. Zhang, Y. C. Gu et al., Copper-Mediated Trifluoromethylation of Heteroaromatic Compounds by Trifluoromethyl Sulfonium Salts, Angewandte Chemie International Edition, vol.131, issue.8, pp.1896-1900, 2011.
DOI : 10.1002/anie.201006823

M. Wiemers and D. J. Burton, Pregeneration, spectroscopic detection and chemical reactivity of (trifluoromethyl)copper, an elusive and complex species, Journal of the American Chemical Society, vol.108, issue.4, pp.832-834, 1986.
DOI : 10.1021/ja00264a043

G. Dubinina, H. Furutachi, and D. A. Vicic, Complexes, Journal of the American Chemical Society, vol.130, issue.27, pp.8600-8601, 2008.
DOI : 10.1021/ja802946s

G. Dubinina, J. Ogikubo, and D. A. Vicic, Structure of Bis(trifluoromethyl)cuprate and Its Role in Trifluoromethylation Reactions, Organometallics, vol.27, issue.23, pp.6233-6235, 2008.
DOI : 10.1021/om800794m

A. Mcreynolds, R. S. Lewis, L. K. Ackerman, G. G. Dubinia, W. W. Brennessel et al., Decarboxylative trifluoromethylation of aryl halides using well-defined copper???trifluoroacetate and ???chlorodifluoroacetate precursors, Journal of Fluorine Chemistry, vol.131, issue.11, pp.1108-1112, 2010.
DOI : 10.1016/j.jfluchem.2010.04.005

M. A. Zanardi, E. Novikov, J. Martin, V. V. Benet-buchholz, and . Grushin, Direct Cupration of Fluoroform, Journal of the American Chemical Society, vol.133, issue.51, pp.20901-20913, 2011.
DOI : 10.1021/ja2081026

A. Tomashenko, E. C. Escudero-adán, M. M. Belmonte, and V. V. Grushin, Simple, Stable, and Easily Accessible Well-Defined CuCF3 Aromatic Trifluoromethylating Agents, Angewandte Chemie International Edition, vol.50, issue.33, pp.7655-7659, 2011.
DOI : 10.1002/anie.201101577

T. Morimoto, N. D. Tsubogo, J. F. Litvinas, and . Hartwig, A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides, Angewandte Chemie International Edition, vol.8, issue.16, pp.3793-3798, 2011.
DOI : 10.1002/anie.201100633

J. Roche and W. R. Jr, Electrophilic Substitution of 1,1,2,2,9,9,10,10-Octafluoro[2.2]paracyclophane, The Journal of Organic Chemistry, vol.64, issue.25, pp.9137-9143, 1999.
DOI : 10.1021/jo9910536

. Le and . Connu-sous-le-nom-de-réactif-de-ruppert-prakash, 519 est l'une des sources d'anion trifluorométhyle les plus utilisées, ainsi que ses dérivés, bien qu'ils soient sensibles à l'humidité. Amii a été le premier à décrire la trifluorométhylation d'iodures d'aryle en utilisant une quantité catalytique de cuivre et le (trifluorométhyl)triéthylsilane. 520 Des rendements moyens à excellents

Y. Wang, F. Xu, G. Mo, D. Ji, J. Qiu et al., Silver-Mediated Trifluoromethylation of Aryldiazonium Salts: Conversion of Amino Group into Trifluoromethyl Group, Journal of the American Chemical Society, vol.135, issue.28, pp.10330-10333, 2013.
DOI : 10.1021/ja4056239

. Liu-a-décrit-la-trifluorométhylation-oxydative-d-'indoles-par-catalyse-au-palladium-en-utilisant-le-réactif-de-ruppert-prakash, 547 Le (diacétoxyiodo)benzène joue le rôle d'oxydant, permettant de passer via un intermédiaire Ar-Pd(IV)-CF 3 comme démontré par Sanford ci-dessus. Le TEMPO est utilisé pour éviter la formation radicalaire de sous-produits. La réaction se fait à température ambiante et de bons rendements en produits de trifluorométhylation d'indoles en position C2 sont obtenus

G. P. Stahly and D. R. Bell, A new method for synthesis of trifluoromethyl-substituted phenols and anilines, The Journal of Organic Chemistry, vol.54, issue.12, pp.2873-2877, 1989.
DOI : 10.1021/jo00273a020

V. Grushin and W. J. Marshall, )Ph], Journal of the American Chemical Society, vol.128, issue.39, pp.12644-12645, 2006.
DOI : 10.1021/ja064935c

URL : https://hal.archives-ouvertes.fr/hal-00429126

D. Ball, J. W. Kampf, and M. S. Sanford, Bond-Forming Reductive Elimination from Palladium(IV), Journal of the American Chemical Society, vol.132, issue.9, pp.2878-2879, 2010.
DOI : 10.1021/ja100955x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832076

S. Mu, X. Chen, G. Zhen, and . Liu, Palladium-Catalyzed Oxidative Trifluoromethylation of Indoles at Room Temperature, Chemistry - A European Journal, vol.112, issue.22, pp.6039-6042, 2011.
DOI : 10.1002/chem.201100283

K. Zhang, G. Chen, B. J. Chen, S. Li, Q. Y. Luo et al., Palladium-Catalyzed Trifluoromethylation of Aromatic C???H Bond Directed by an Acetamino Group, Organic Letters, vol.15, issue.1, pp.10-13, 2013.
DOI : 10.1021/ol302814x

L. Wang, J. Q. Truesdale, and . Yu, -Trifluoromethylation of Arenes Using TFA as a Promoter, Journal of the American Chemical Society, vol.132, issue.11, pp.3648-3649, 2010.
DOI : 10.1021/ja909522s

URL : https://hal.archives-ouvertes.fr/jpa-00209906

G. Zhang, H. X. Dai, M. Wasa, and J. Q. Yu, Pd(II)-Catalyzed Ortho Trifluoromethylation of Arenes and Insights into the Coordination Mode of Acidic Amide Directing Groups, Journal of the American Chemical Society, vol.134, issue.29, pp.11948-11951, 2012.
DOI : 10.1021/ja305259n

R. Stanek, A. Koller, and . Togni, Reactivity of a 10-I-3 Hypervalent Iodine Trifluoromethylation Reagent With Phenols, The Journal of Organic Chemistry, vol.73, issue.19, pp.7678-7685, 2008.
DOI : 10.1021/jo8014825

S. Wiehn, E. V. Vinogradova, and A. Togni, Electrophilic trifluoromethylation of arenes and N-heteroarenes using hypervalent iodine reagents, Journal of Fluorine Chemistry, vol.131, issue.9, pp.951-957, 2010.
DOI : 10.1016/j.jfluchem.2010.06.020

N. D. Ye, J. W. Ball, M. S. Kampf, and . Sanford, ???: Formation and Reactivity of a Catalytically Competent Monomeric Pd(IV) Aquo Complex, Journal of the American Chemical Society, vol.132, issue.41, pp.14682-14687, 2010.
DOI : 10.1021/ja107780w

. Prakash-et-de-triflate, argent, via formation du trifluorométhyle d'argent. 575 Ce dernier se décompose par chauffage pour donner le CF 3 · . De très bons rendements sont généralement obtenus

U. Cependant and . Large-excès-d, arène est utilisé, la réaction est lente et la régiosélectivité est moyenne à partir d'arènes monosubstitués. Bräse a également réalisé la trifluorométhylation de triazènes à partir de trifluorométhyle d'argent, mais ce dernier est généré, p.576

D. Yang, K. Iwamoto, E. Tokunaga, and N. Shibata, Transition-metal-free oxidative trifluoromethylation of unsymmetrical biaryls with trifluoromethanesulfinate, Chemical Communications, vol.133, issue.48, pp.5510-5512, 2013.
DOI : 10.1039/c3cc41667d

C. Still, M. Kahn, and A. Mitra, Rapid chromatographic technique for preparative separations with moderate resolution, The Journal of Organic Chemistry, vol.43, issue.14, pp.2923-2925, 1978.
DOI : 10.1021/jo00408a041

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.476.6501

B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers, Safe and Convenient Procedure for Solvent Purification, Organometallics, vol.15, issue.5, pp.1518-1520, 1996.
DOI : 10.1021/om9503712

E. Polleux, O. Labbé, J. Buriez, and . Périchon, CoI- and Co0-Bipyridine Complexes Obtained by Reduction of CoBr2bpy: Electrochemical Behaviour and Investigation of Their Reactions with Aromatic Halides and Vinylic Acetates, Chemistry - A European Journal, vol.562, issue.16, pp.4678-4686, 2005.
DOI : 10.1002/chem.200400971

A. Cotton, O. D. Faut, D. M. Goodgame, and R. H. Holm, Complexes Containing Phosphines and the Position of Phosphines in the Spectrochemical Series, Journal of the American Chemical Society, vol.83, issue.8, pp.1780-1785, 1961.
DOI : 10.1021/ja01469a002

. Di, Prepared according to general procedure B from p-tolyl bromide (855 mg, 5 mmol) and ethyl chloroformate (0.20 mL, 2 mmol) Purification on silica gel with petroleum ether-ethyl acetate (25-20:1) afforded the title compound in 92% (389 mg) yield as a pale pink powder, ). 13 C- NMR (75 MHz, pp.15-29

. Bis, tert-butyl)phenyl)methanone C 21 H 26 O (CAS: 15796-82-4): Prepared according to general procedure B from 4-tert-butyl-1-bromobenzene (0

. Hz, 38 (s, 18H) 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 196, HRMS (EI+) (C 21 H 26 O): calculated m, pp.294-294, 1984.

. Bis, methylthio)phenyl)methanone C 15 H 14 OS 2 (CAS: 63084-99-1): Prepared according to general procedure B from 4-bromothioanisole (1.016 g, 5 mmol

4. Hz, 53 (s, 6H) 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 194

M. Dekan, M. W. Mobli, E. Pennington, E. Fung, P. F. Nemeth et al., Total Synthesis of Human Hepcidin through Regioselective Disulfide-Bond Formation by using the Safety-Catch Cysteine Protecting Group 4,4???-Dimethylsulfinylbenzhydryl, Angewandte Chemie International Edition, vol.15, issue.11, pp.2931-2934, 2014.
DOI : 10.1002/anie.201310103

. Hz, 36 (t, J = 7.2 Hz, 6H) 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 195, pp.4-36

. Bis, C 13 H 8 Cl 2 O (CAS: 90-98-2): The arylzinc derivative was prepared according to general procedure C from 1-bromo-4-chlorobenzene (957 mg, 5 mmol) It was obtained in 90% GC yield (4.5 mmol)

2. Hz, CDCl 3 ) ?/ppm: 193 (q, J = 272 Hz). 19 F- NMR (282 MHz, CDCl 3 , bis(trifluoromethane)sulfonimide as external reference) ?/ppm: -62, Hz, 2H). 13 C-NMR (75 MHz HRMS (EI+), pp.71-318

. Bis, CAS: 13102-33-5): The arylzinc derivative was prepared according to general procedure C from 2-bromoanisole (0.62 mL, 5 mmol) It was obtained in 79% GC yield (3.95 mmol), pp.15-29

. Hz, 91 (d, J = 8.3 Hz, 2H). 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 195

J. =. Ddd, Purification on silica gel with petroleum ether-ethyl acetate (15-12:1) afforded the title compound in 53% (290 mg) yield as a white powder. 1 H-NMR (300 MHz, CDCl 3 ) ?/ppm: 8.45 (dd, J = 1.5, 1.3 Hz, and ethyl chloroformate (0.17 mL, 1.68 mmol) was then added to the reaction mixture (q, J = 7.1 Hz, 4H), 1.40 (t, J = 7.1 Hz, 6H). 13 C-NMR (75 MHz, pp.29-61, 1998.

F. D. Wang, H. Y. Liu, A. D. Tu, and . Zhang, One-Pot Synthesis of Diarylmethanones through Palladium-Catalyzed Sequential Coupling and Aerobic Oxidation of Aryl Bromides with Acetophenone as a Latent Carbonyl Donor, The Journal of Organic Chemistry, vol.79, issue.14, pp.6554-6562, 2014.
DOI : 10.1021/jo5010185

. Bis, -methylphenyl)methanone C 15 H 12 F 2 O: The arylzinc derivative was prepared according to general procedure C from 2-bromo-4-fluorotoluene (0.62 mL, 5 mmol) It was obtained in 95% GC yield (4.75 mmol)
URL : https://hal.archives-ouvertes.fr/halshs-00459328

J. Hzd, 4 Hz), 19.96. 19 F-NMR (282 MHz, CDCl 3 , bis(trifluoromethane)sulfonimide as external reference) ?/ppm: -116 HRMS (EI+) (C 15 H 12 F 2 O): calculated m/z: 246.0856, found: 246.0853. FT-IR (KBr, cm-1): 2930, 1171.

. Di, CAS: 127158-63-8): The arylzinc derivative was prepared according to general procedure C from 3-bromofuran (0.25 mL, 2.78 mmol), pp.9-15

2. Hz, 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 191

. Bis, CAS: 90-96-0): (4-methoxyphenyl)zinc bromide was prepared according to general procedure A and was obtained in 60% yield. The reaction medium was then filtered through a syringe filter, and N-formylsaccharin (211 mg, 1 mmol, 1 equiv.) was added to the filtered solution (3.3 mL, 2.5 equiv. of arylzinc bromide) The reaction was stirred at room temperature and followed by GC on idolised aliquots, until (4-methoxyphenyl)zinc bromide was consumed (1 hour) Aqueous hydrochloric acid (1M, 10 mL) was then added to the reaction mixture. The phases were separated, and the aqueous phase was extracted with dichloromethane (3 x 10 mL) The combined organic phases were washed with a saturated solution of NaCl, pp.15-29

F. Duplais, I. Bures, T. J. Sapountzis, G. Korn, and P. Cahiez, An Efficient Synthesis of Diaryl Ketones by Iron-Catalyzed Arylation of Aroyl Cyanides, Angewandte Chemie International Edition, vol.43, issue.22, pp.2968-2970, 2004.
DOI : 10.1002/anie.200453696

H. Gehrtz, V. Hirschbeck, and I. Fleischer, A recyclable CO surrogate in regioselective alkoxycarbonylation of alkenes: indirect use of carbon dioxide, Chem. Commun., vol.101, issue.63, pp.12574-12577, 2015.
DOI : 10.1039/C5CC05012J

. Hz, 86 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H) 13 C-NMR (75 MHz, CDCl 3 ) ?/ppm: 166

. Hz, bis(trifluoromethane)sulfonimide as external reference) ?/ppm: -62, p.595

Z. X. Wu and . Wang, P,N,N-Pincer nickel-catalyzed cross-coupling of aryl fluorides and chlorides, Organic & Biomolecular Chemistry, vol.135, issue.33, pp.6414-6424
DOI : 10.1039/C4OB01041H

4. Hz, 13, C-NMR (75 MHz

S. Sodium and . Sulfurothioate, CAS: 6313-36-6): To a solution of sodium thiosulfate (3.80 g, 24 mmol, 1.2 equiv.) in water (10 mL) and methanol (30 mL) was added benzyl bromide (2.34 mL, 20 mmol, 1 equiv.). The reaction mixture was stirred at 65 °C for 4 h, then cooled to room temperature and concentrated under pressure to remove water and methanol. The reaction mixture was dissolved in methanol (100 mL), heated to 50 °C and filtrated. The filtrate was then concentrated to give the title, 77% (5.49 g, 77 wt.% purity by assay) yield as a white solid. 1 H-NMR (300 MHz, D 2 O): ?/ppm

S. Sodium, CAS: 1561023-51-5): To a solution of sodium thiosulfate (2, pp.3-7

F. González, J. P. Brand, and J. Waser, Ethynyl-1,2-benziodoxol-3(1???H)-one (EBX): An Exceptional Reagent for the Ethynylation of Keto, Cyano, and Nitro Esters, Chemistry - A European Journal, vol.11, issue.31, pp.9457-9461, 2010.
DOI : 10.1002/chem.201001539

T. Frei, M. D. Courant, J. Wodrich, and . Waser, General and Practical Formation of Thiocyanates from Thiols, Chemistry - A European Journal, vol.8, issue.6, pp.2662-2668, 2015.
DOI : 10.1002/chem.201406171

URL : http://infoscience.epfl.ch/record/208540

S. Eisenberger, A. Gischig, and . Togni, Novel 10-I-3 Hypervalent Iodine-Based Compounds for Electrophilic Trifluoromethylation, Chemistry - A European Journal, vol.42, issue.9, pp.2579-2586, 2006.
DOI : 10.1002/chem.200501052

1. Hz, 83 (s, 3H) 13 C-NMR (75 MHz, CDCl 3 ): ?/ppm: 154, p.89

2. Hz, 77 (s, 3H) 13 C-NMR (75 MHz CDCl 3 ): ?/ppm: 156.21 (d, J = 2, 128.89 (d, J = 2.2 Hz), 126.00 (d, J = 2.3 Hz), 122.22 (d, J = 2.3 Hz), 53.77 (d, J = 2.4 Hz). HRMS (EI+), pp.167-0582

. Methoxy, (trifluoromethyl)sulfinyl)benzene C 8 H 7 F 3 O 2 S (CAS: 32916-20-4): (4-Methoxyphenyl)zinc bromide was prepared according to general procedure A. It was obtained in 62% GC yield (3.1 mmol) and the arylzinc solution was then filtrated to remove excess of zinc, Trifluoromethyl(thio)silver (540 mg, pp.4-58

R. Y. Tang, P. Zhong, and Q. L. Lin, Selective oxidation and chlorination of trifluoromethylsulfide using trichloroisocyanuric acid in ionic liquid, Journal of Fluorine Chemistry, vol.128, issue.6, pp.636-640, 2007.
DOI : 10.1016/j.jfluchem.2007.02.018