H. For, H308G rev : 5'-tcgctacggcgttatgggtcgcaacacctacctg-3' C51S for : 5'-caggctgttgctgctgacgatctcagcga-3' C51S rev : 5'-tcgctgagatcgtcagcagcaacagcctg-3' C51V for : 5'-gccacccaggctgttgctaacgacgatctcagcgaaacg-3' C51V rev : 5'-cgtttcgctgagatcgtcgttagcaagagcctgggtggc-3' C223A for : 5'-ccagttcttccaccggcaccgccgcttcgaaaaattccagt-3' C223A rev : 5'-actggaatttttcgaagcggcggtgccggtggaagaactgg-3' W214F for : 5'-tcgaaaaattccagtttttcaaaatcgtgtggggtgtgacgc-3' W214F rev : 5'-gcgtcacaccccacacgattttgaaaaactggaatttttcga-3' K282A for : 5'-cgtttctgttccggccacgccagacccgtctggaagc-3' K282A rev : 5'-gcttccagacgggtctggcgtggccggaacagaaacg-3' K287A for : 5'-gtctgaaatggccggaacaggcgcgcctgatccagatgattcc-3' K287A rev : 5'-ggaatcatctggatcaggcgcgcctgttccggccatttcagac-3' K409A for : 5'-ggtagaaggccgtatgggcgcgaaagaaaaacgtcaagcg -3' K409A rev : 5'-cgcttgacgtttttctttcgcgcccatacggccttctacc -3' K410A for : 5'-atacatcgcttgacgtttttccgccttgcccatacggccttctac -3' K410A rev, pp.5-8

. Bibliographie, Qu'est-ce que la vie ? : de la physiquè a la biologie, Points Sciences, p.29814507, 1986.

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, vol.9, issue.4356, pp.737-738, 1953.
DOI : 10.1016/0006-3002(53)90232-7

W. Gilbert, Origin of life: The RNA world, Nature, vol.7, issue.6055, pp.319618-618, 1986.
DOI : 10.1038/319618a0

K. B. Chapman and J. W. Szostak, In vitro selection of catalytic RNAs, Current Opinion in Structural Biology, vol.4, issue.4, pp.618-622, 1994.
DOI : 10.1016/S0959-440X(94)90227-5

W. Jack and . Szostak, The eightfold path to non-enzymatic RNA replication, Journal of Systems Chemistry, vol.3, issue.12, 2012.

R. Carballido-lópez, The Bacterial Actin-Like Cytoskeleton, Microbiology and Molecular Biology Reviews, vol.70, issue.4, pp.888-909, 2006.
DOI : 10.1128/MMBR.00014-06

Q. Xiao, X. Hu, Z. Wei, and K. Y. Tam, Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron, International Journal of Biological Sciences, vol.12, issue.9, pp.1083-1092, 2016.
DOI : 10.7150/ijbs.15633

URL : http://doi.org/10.7150/ijbs.15633

P. Woodman, ESCRT-III on endosomes: new functions, new activation pathway, Biochemical Journal, vol.473, issue.2, pp.5-8, 2016.
DOI : 10.1042/BJ20151115

L. Johansson, G. Gafvelin, and E. S. Arnér, Selenocysteine in proteins???properties and biotechnological use, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1726, issue.1, pp.1-13, 2005.
DOI : 10.1016/j.bbagen.2005.05.010

M. K. Krzycki and . Chan, A new UAG-encoded residue in the structure of a methanogen methyltransferase, Science, vol.296, issue.5572, pp.1462-1466, 2002.

G. Srinivasan, C. M. James, and J. A. Krzycki, Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA, Science, vol.296, issue.5572, pp.1459-1462, 2002.
DOI : 10.1126/science.1069588

M. Nirenberg, P. Leder, M. Bernfield, R. Brimacombe, J. Trupin et al., RNA codewords and protein synthesis, VII. On the general nature of the RNA code., Proceedings of the National Academy of Sciences, vol.53, issue.5, pp.1161-1168, 1965.
DOI : 10.1073/pnas.53.5.1161

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC301388

T. H. Jukes and S. Osawa, The genetic code in mitochondria and chloroplasts, Experientia, vol.82, issue.11-12, pp.1117-1126, 1990.
DOI : 10.1007/BF01936921

B. Peter, T. A. Moore, and . Steitz, The involvement of RNA in ribosome function, Nature, vol.418, issue.6894, pp.229-235, 2002.

U. Baumann and J. Oro, Three stages in the evolution of the genetic code, Biosystems, vol.29, issue.2-3, pp.133-141, 1993.
DOI : 10.1016/0303-2647(93)90089-U

F. H. Crick, The origin of the genetic code, Journal of Molecular Biology, vol.38, issue.3, pp.367-379, 1968.
DOI : 10.1016/0022-2836(68)90392-6

S. L. Miller, A Production of Amino Acids Under Possible Primitive Earth Conditions, Science, vol.117, issue.3046, pp.528-529, 1953.
DOI : 10.1126/science.117.3046.528

D. Lundin, G. Berggren, D. T. Logan, and B. Sjöberg, The Origin and Evolution of Ribonucleotide Reduction, Life, vol.4, issue.1, pp.604-636, 2015.
DOI : 10.4061/2011/532536

E. Torrents, M. Sahlin, and B. Drottz-sjöberg, The ribonucleotide reductase family : genetics and genomics, Nova Biomedical Books, p.701053859, 2009.

A. Poole, D. Penny, and B. M. Sjöberg, Confounded cytosine ! Tinkering and the evolution of DNA, Nature Reviews Molecular Cell Biology, vol.2, issue.2, pp.147-151, 2001.
DOI : 10.1038/35052091

H. Myllykallio, G. Lipowski, D. Leduc, J. Filee, P. Forterre et al., An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis, Science, vol.297, issue.5578, pp.105-107, 2002.
DOI : 10.1126/science.1072113

URL : https://hal.archives-ouvertes.fr/hal-00836930

F. Escartin, S. Skouloubris, U. Liebl, and H. Myllykallio, Flavin-dependent thymidylate synthase X limits chromosomal DNA replication, Proceedings of the National Academy of Sciences, vol.26, issue.13, pp.9948-9952, 2008.
DOI : 10.1038/sj.emboj.7601747

URL : https://hal.archives-ouvertes.fr/hal-00353456

H. Myllykallio, D. Leduc, J. Filee, and U. Liebl, Life without dihydrofolate reductase FolA, Trends in Microbiology, vol.11, issue.5, pp.220-223, 2003.
DOI : 10.1016/S0966-842X(03)00101-X

URL : https://hal.archives-ouvertes.fr/hal-00836432

M. Friedkin and D. Roberts, Conversion of uracil deoxyriboside to thymidine of deoxyribonucleic acid, J. Biol. Chem, vol.220, issue.2, pp.653-660, 1956.

L. Eichinger, J. A. Pachebat, G. Glöckner, M. Rajandream, R. Sucgang et al., The genome of the social amoeba Dictyostelium discoideum, Nature, vol.129, issue.7038, pp.43543-57, 2005.
DOI : 10.1093/nar/30.7.1575

S. Skouloubris, K. Djaout, I. Lamarre, J. Lambry, K. Anger et al., thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones, Open Biology, vol.5, issue.6, p.150015, 2015.
DOI : 10.1128/AAC.44.10.2623-2629.2000

URL : https://hal.archives-ouvertes.fr/hal-01168931

S. Amanda, J. Fivian-hughes, E. O. Houghton, and . Davis, Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid, Microbiology (Reading, Engl.), pp.158308-318, 2012.

J. H. Hunter, R. Gujjar, K. T. Cullen, P. K. Pang, and . Rathod, Kinetics and Ligand-Binding Preferences of Mycobacterium tuberculosis Thymidylate Synthases, ThyA and ThyX, PLoS ONE, vol.269, issue.5, p.2237, 2008.
DOI : 10.1371/journal.pone.0002237.t002

URL : http://doi.org/10.1371/journal.pone.0002237

. Palfey, Detection of intermediates in the oxidative half-reaction of the FADdependent thymidylate synthase from Thermotoga maritima : carbon transfer without covalent pyrimidine activation, Biochemistry, vol.53, issue.32, pp.5199-5207, 2014.

T. V. Mishanina, L. Yu, K. Karunaratne, D. Mondal, J. M. Corcoran et al., An unprecedented mechanism of nucleotide methylation in organisms containing thyX, Science, vol.330, issue.2, pp.351507-510, 2016.
DOI : 10.1042/bj3300881

M. M. Yusupov, G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest et al., Crystal Structure of the Ribosome at 5.5 A Resolution, Science, vol.292, issue.5518, pp.292883-896, 2001.
DOI : 10.1126/science.1060089

C. Persaud, Y. Lu, A. Vila-sanjurjo, J. L. Campbell, J. Finley et al., Mutagenesis of the modified bases, m5U1939 and ??2504, in Escherichia coli 23S rRNA, Biochemical and Biophysical Research Communications, vol.392, issue.2, pp.223-227, 2010.
DOI : 10.1016/j.bbrc.2010.01.021

J. T. Kealey, X. Gu, and D. V. Santi, Enzymatic mechanism of tRNA (m5U54)methyltransferase, Biochimie, vol.76, issue.12, pp.1133-1142, 1994.
DOI : 10.1016/0300-9084(94)90042-6

A. Alian, T. T. Lee, S. L. Griner, R. M. Stroud, and J. Finer-moore, Structure of a TrmA-RNA complex: A consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases, Proceedings of the National Academy of Sciences, vol.15, issue.4
DOI : 10.1093/bioinformatics/15.4.305

C. Toft-madsen, J. Mengel-jørgensen, F. Kirpekar, and S. Douthwaite, Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23s rRNA using MALDI mass spectrometry, Nucleic Acids Res, issue.16, pp.314738-4746, 2003.

T. T. Lee, S. Agarwalla, and R. M. Stroud, Crystal Structure of RumA, an Iron-Sulfur Cluster Containing E. coli Ribosomal RNA 5-Methyluridine Methyltransferase, Structure, vol.12, issue.3, pp.397-407, 2004.
DOI : 10.1016/j.str.2004.02.009

C. Benoit-desmolaize, D. Fabret, S. Brégeon, H. Rose, S. Grosjean et al., A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA, Nucleic Acids Research, vol.39, issue.21, pp.9368-9375, 2011.
DOI : 10.1093/nar/gkr626

R. L. Tatusov, E. V. Koonin, and D. J. Lipman, A Genomic Perspective on Protein Families, Science, vol.278, issue.5338, pp.631-637, 1997.
DOI : 10.1126/science.278.5338.631

R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin et al., The COG database : an updated version includes eukaryotes, BMC Bioinformatics, vol.4, issue.1, p.41, 2003.
DOI : 10.1186/1471-2105-4-41

J. Urbonavicius, C. Brochier-armanet, S. Skouloubris, H. Myllykallio, and H. Grosjean, In Vitro Detection of the Enzymatic Activity of Folate???Dependent tRNA (Uracil???54,???C5)???Methyltransferase: Evolutionary Implications, Meth. Enzymol, vol.425, pp.103-119, 2007.
DOI : 10.1016/S0076-6879(07)25004-9

URL : https://hal.archives-ouvertes.fr/hal-00264052

J. Urbonavicius, S. Skouloubris, H. Myllykallio, and H. Grosjean, Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications, Nucleic Acids Research, vol.33, issue.13, pp.3955-3964, 2005.
DOI : 10.1093/nar/gki703

H. Nishimasu, R. Ishitani, K. Yamashita, C. Iwashita, A. Hirata et al., Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.8180-8185, 2009.
DOI : 10.1073/pnas.181342398

D. Hamdane, M. Argentini, D. Cornu, H. Myllykallio, S. Skouloubris et al., Insights into Folate/FAD-dependent tRNA Methyltransferase Mechanism: ROLE OF TWO HIGHLY CONSERVED CYSTEINES IN CATALYSIS, Journal of Biological Chemistry, vol.286, issue.42, pp.36268-36280, 2011.
DOI : 10.1074/jbc.M111.256966

URL : https://hal.archives-ouvertes.fr/hal-00780985

D. Hamdane, E. Bruch, S. Un, M. Field, and M. Fontecave, Activation of a Unique Flavin-Dependent tRNA-Methylating Agent, Biochemistry, vol.52, issue.49, pp.8949-8956, 2013.
DOI : 10.1021/bi4013879

D. Hamdane, M. Argentini, D. Cornu, B. Golinelli-pimpaneau, and M. Fontecave, FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a New Methyl-Transfer Agent, Journal of the American Chemical Society, vol.134, issue.48, pp.19739-19745, 2012.
DOI : 10.1021/ja308145p

URL : https://hal.archives-ouvertes.fr/hal-00780984

C. Lartigue, A. Lebaudy, A. Blanchard, B. El-yacoubi, S. Rose et al., 23S??rRNA, Nucleic Acids Research, vol.42, issue.12, pp.8073-8082, 2014.
DOI : 10.1093/nar/gku518

T. Osawa, K. Ito, H. Inanaga, O. Nureki, K. Tomita et al., Conserved Cysteine Residues of GidA Are Essential for Biogenesis of 5-Carboxymethylaminomethyluridine at tRNA Anticodon, Structure, vol.17, issue.5, pp.713-724, 2009.
DOI : 10.1016/j.str.2009.03.013

S. Ghisla and V. Massey, Mechanisms of flavoprotein-catalyzed reactions, European Journal of Biochemistry, vol.262, issue.1, pp.1-17, 1989.
DOI : 10.1016/0166-6851(85)90037-4

B. G. Barman and G. Tollin, Flavine-protein interactions in flavoenzymes. Thermodynamics and kinetics of reduction of Azotobacter flavodoxin, Biochemistry, vol.11, issue.25, pp.4755-4759, 1972.
DOI : 10.1021/bi00775a019

C. Gomez-moreno, M. Choy, and D. E. Edmondson, Purification and properties of the bacterial flavoprotein : thiamin dehydrogenase, J. Biol. Chem, vol.254, issue.16, pp.7630-7635, 1979.

F. Müller, Flavin radicals : chemistry and biochemistry. Free Radic, Biol. Med, vol.3, issue.3, pp.215-230, 1987.

C. A. Brautigam, B. S. Smith, M. Ma, D. R. Palnitkar, M. Tomchick et al., Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana, Proceedings of the National Academy of Sciences, vol.294, issue.5540, pp.12142-12147, 2004.
DOI : 10.1126/science.1063630

A. M. Edwards, Structure and General Properties of Flavins, Methods Mol. Biol, vol.1146, pp.3-13, 2014.
DOI : 10.1007/978-1-4939-0452-5_1

W. J. Van-berkel, N. M. Kamerbeek, and M. W. Fraaije, Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts, Journal of Biotechnology, vol.124, issue.4, pp.670-689, 2006.
DOI : 10.1016/j.jbiotec.2006.03.044

B. Entsch, L. J. Cole, and D. P. Ballou, Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase, Archives of Biochemistry and Biophysics, vol.433, issue.1, pp.297-311, 2005.
DOI : 10.1016/j.abb.2004.09.029

T. Heine, K. Tucker, N. Okonkwo, B. Assefa, C. Conrad et al., Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins, Applied Biochemistry and Biotechnology, vol.4, issue.4, 2016.
DOI : 10.1007/s12010-016-2304-4

M. Bu?ko, P. Gemeiner, A. Schenkmayerová, T. Kraj?ovi?, F. Rudroff et al., Baeyer-Villiger oxidations: biotechnological approach, Applied Microbiology and Biotechnology, vol.19, issue.15, pp.6585-6599, 2016.
DOI : 10.1021/op500374x

A. Baeyer and V. Villiger, Einwirkung des Caro'schen Reagens auf Ketone, Berichte der deutschen chemischen Gesellschaft, vol.275, issue.3, pp.3625-3633, 1899.
DOI : 10.1002/cber.189903203151

A. Baeyer and V. Villiger, Ueber die Einwirkung des Caro'schen Reagens auf Ketone, Berichte der deutschen chemischen Gesellschaft, vol.32, issue.1, pp.858-864, 1900.
DOI : 10.1002/cber.190003301153

. Fraaije, Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase, Angew. Chem. Int. Ed. Engl, vol.55, issue.51, pp.15852-15855, 2016.

A. Cátia, P. Bonito, F. V. Leandro, R. C. Ventura, and . Guedes, Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations, Chem Biol Drug Des, vol.88, issue.2, pp.281-292, 2016.

K. S. Conrad, C. C. Manahan, and B. R. Crane, Photochemistry of flavoprotein light sensors, Nature Chemical Biology, vol.10, issue.10, pp.801-809, 2014.
DOI : 10.1021/sb400090s

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258882

G. F. Gardner and J. F. Feldman, The frq locus in Neurospora crassa : a key element in circadian clock organization, Genetics, vol.96, issue.4, pp.877-886, 1980.

D. Brian, K. H. Zoltowski, and . Gardner, Tripping the light fantastic : blue-light photoreceptors as examples of environmentally modulated proteinprotein interactions, Biochemistry, vol.50, issue.1, pp.4-16, 2011.

A. Losi and W. Gärtner, The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors, Annual Review of Plant Biology, vol.63, issue.1, pp.49-72, 2012.
DOI : 10.1146/annurev-arplant-042811-105538

J. Herrou and S. Crosson, Function, structure and mechanism of bacterial photosensory LOV proteins, Nature Reviews Microbiology, vol.135, issue.10, pp.713-723, 2011.
DOI : 10.1038/nrmicro2622

T. A. Maxime, T. Alexandre, C. Domratcheva, . Bonetti, J. G. Luuk et al., Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry, Biophys. J, vol.97, issue.1, pp.227-237, 2009.

A. Pfeifer, T. Majerus, K. Zikihara, D. Matsuoka, S. Tokutomi et al., Time-Resolved Fourier Transform Infrared Study on Photoadduct Formation and Secondary Structural Changes within the Phototropin LOV Domain, Biophysical Journal, vol.96, issue.4, pp.1462-1470, 2009.
DOI : 10.1016/j.bpj.2008.11.016

S. Braatsch, M. Gomelsky, S. Kuphal, and G. Klug, A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides, Molecular Microbiology, vol.180, issue.3, pp.827-836, 2002.
DOI : 10.1046/j.1365-2958.2002.03058.x

S. Masuda and C. E. Bauer, AppA Is a Blue Light Photoreceptor that Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides, Cell, vol.110, issue.5, pp.613-623, 2002.
DOI : 10.1016/S0092-8674(02)00876-0

M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga et al., A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis, Nature, vol.415, issue.6875, pp.4151047-1051, 2002.
DOI : 10.1038/4151047a

S. Masuda, Light Detection and Signal Transduction in the BLUF Photoreceptors, Plant and Cell Physiology, vol.54, issue.2, pp.171-179, 2013.
DOI : 10.1093/pcp/pcs173

V. Dragnea, M. Waegele, S. Balascuta, C. Bauer, and B. Dragnea, Time-resolved spectroscopic studies of the AppA bluelight receptor BLUF domain from Rhodobacter sphaeroides, Biochemistry, issue.49, pp.4415978-15985, 2005.

M. Gauden, H. M. Ivo, J. M. Van-stokkum, D. C. Key, R. Lührs et al., Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor, Proceedings of the National Academy of Sciences, vol.1657, issue.2-3, pp.10895-10900, 2006.
DOI : 10.1073/pnas.051501298

H. Ishikita, Light-induced Hydrogen Bonding Pattern and Driving Force of Electron Transfer in AppA BLUF Domain Photoreceptor, Journal of Biological Chemistry, vol.283, issue.45, pp.30618-30623, 2008.
DOI : 10.1074/jbc.M803864200

A. María, J. A. Mussi, M. Gaddy, B. A. Cabruja, A. M. Arivett et al., The opportunistic human pathogen Acinetobacter baumannii senses and responds to light, J. Bacteriol, vol.192, issue.24, pp.6336-6345, 2010.

M. Ryu, O. V. Moskvin, J. Siltberg-liberles, and M. Gomelsky, Natural and Engineered Photoactivated Nucleotidyl Cyclases for Optogenetic Applications, Journal of Biological Chemistry, vol.285, issue.53, pp.41501-41508, 2010.
DOI : 10.1074/jbc.M110.177600

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009876

M. Stierl, P. Stumpf, D. Udwari, R. Gueta, R. Hagedorn et al., Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa, Journal of Biological Chemistry, vol.286, issue.2, pp.1181-1188, 2011.
DOI : 10.1074/jbc.M110.185496

A. Sancar, Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors, Chemical Reviews, vol.103, issue.6, pp.2203-2237, 2003.
DOI : 10.1021/cr0204348

R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, Cryptochrome mediates light-dependent magnetosensitivity in Drosophila, Nature, vol.21, issue.7207, pp.1014-1018, 2008.
DOI : 10.1038/nature07183

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559964

D. Heyers, M. Manns, H. Luksch, O. Güntürkün, and H. Mouritsen, A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds, PLoS ONE, vol.85, issue.373, p.937, 2007.
DOI : 10.1371/journal.pone.0000937.t001

E. Deniz and B. Erman, Long noncoding RNA (lincRNA), a new paradigm in gene expression control, Functional & Integrative Genomics, vol.48, issue.2-3, 2016.
DOI : 10.1007/s10142-016-0524-x

H. A. Davis, M. A. Kirkpatrick, D. J. Goeden, B. Rose, Y. Mau et al., The complete genome sequence of Escherichia coli K-12, Science, issue.5331, pp.2771453-1462, 1997.

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Molecular Systems Biology, vol.170, p.8, 2006.
DOI : 10.1038/msb4100050

F. W. Studier and B. A. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, Journal of Molecular Biology, vol.189, issue.1, pp.113-130, 1986.
DOI : 10.1016/0022-2836(86)90385-2

G. Bertani, Lysogeny at Mid-Twentieth Century: P1, P2, and Other Experimental Systems, Journal of Bacteriology, vol.186, issue.3, pp.595-600, 2004.
DOI : 10.1128/JB.186.3.595-600.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321500

D. Hanahan, Studies on transformation of Escherichia coli with plasmids, Journal of Molecular Biology, vol.166, issue.4, pp.557-580, 1983.
DOI : 10.1016/S0022-2836(83)80284-8

M. K. Chaveroche, J. M. Ghigo, and C. , A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans, Nucleic Acids Research, vol.28, issue.22, p.97, 2000.
DOI : 10.1093/nar/28.22.e97

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

A. Kornberg, A. Tania, and . Baker, DNA replication University Science, p.60419190, 2005.

P. P. Cherepanov and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant, Gene, vol.158, issue.1, pp.9-14, 1995.
DOI : 10.1016/0378-1119(95)00193-A

J. A. Mosberg, M. J. Lajoie, and G. M. Church, Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single-Stranded Intermediate, Genetics, vol.186, issue.3, pp.791-799, 2010.
DOI : 10.1534/genetics.110.120782

J. A. Sawitzke, L. C. Thomason, N. Costantino, M. Bubunenko, S. Datta et al., Recombineering: In Vivo Genetic Engineering in E. coli, S. enterica, and Beyond, Meth. Enzymol, vol.421, pp.171-199, 2007.
DOI : 10.1016/S0076-6879(06)21015-2

R. Martínez and U. Schwaneberg, A roadmap to directed enzyme evolution and screening systems for biotechnological applications, Biological Research, vol.46, issue.4, pp.395-405, 2013.
DOI : 10.4067/S0716-97602013000400011

J. Cohen, How DNA Shuffling Works, Science, vol.293, issue.5528, p.237, 2001.
DOI : 10.1126/science.293.5528.237

J. L. Lin-goerke, D. J. Robbins, and J. D. Burczak, PCR-based random mutagenesis using manganese and reduced dNTP concentration, BioTechniques, vol.23, issue.3, pp.409-412, 1997.

R. C. Cadwell and G. F. Joyce, Randomization of genes by PCR mutagenesis., Genome Research, vol.2, issue.1, pp.28-33, 1992.
DOI : 10.1101/gr.2.1.28

R. Verma, U. Schwaneberg, and D. Roccatano, 3D: A Sequence/Structure Based Server for Protein Engineering, ACS Synthetic Biology, vol.1, issue.4, pp.139-150, 2012.
DOI : 10.1021/sb200019x

W. Chen, Y. Li, J. Li, L. Wu, Y. Li et al., An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis, Protein & Cell, vol.76, issue.9, pp.673-683, 2016.
DOI : 10.1007/s13238-016-0289-y

URL : http://doi.org/10.1007/s13238-016-0289-y

V. Massey, The Chemical and Biological Versatility of Riboflavin, Biochemical Society Transactions, vol.28, issue.4, pp.283-296, 2000.
DOI : 10.1042/bst0280283

A. Emidio-fortunato, R. Annunziata, M. Jaubert, J. Bouly, and A. Falciatore, Dealing with light: The widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms, Journal of Plant Physiology, vol.172, pp.42-54, 2015.
DOI : 10.1016/j.jplph.2014.06.011

J. R. Totter and M. J. Cormier, The relation of bacterial luciferase to alternative pathways of dihydroflavin mononucleotide oxidation, J. Biol. Chem, vol.216, issue.2, pp.801-811, 1955.

J. Kirsty, D. Mclean, J. Luciakova, . Belcher, A. W. Kang-lan-tee et al., Biological diversity of cytochrome P450 redox partner systems, Adv. Exp. Med. Biol, vol.851, pp.299-317, 2015.

E. W. Evans, C. A. Dodson, K. Maeda, T. Biskup, C. J. Wedge et al., Magnetic field effects in flavoproteins and related systems, Interface Focus, vol.11, issue.23, pp.20130037-20130037, 2013.
DOI : 10.1039/c1lc20854c

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915827

P. Sergey, L. Laptenok, J. Bouzhir-sima, H. Lambry, U. Myllykallio et al., Ultrafast real-time visualization of active site flexibility of flavoenzyme thymidylate synthase ThyX, Proc. Natl

D. Hamdane, V. Guerineau, S. Un, and B. Golinelli-pimpaneau, A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis, Biochemistry, issue.23, pp.505208-5219, 2011.
DOI : 10.1021/bi1019463

URL : https://hal.archives-ouvertes.fr/hal-00606171

R. Yamagami, K. Yamashita, H. Nishimasu, C. Tomikawa, A. Ochi et al., The tRNA Recognition Mechanism of Folate/FAD-dependent tRNA Methyltransferase (TrmFO), Journal of Biological Chemistry, vol.287, issue.51, pp.42480-42494, 2012.
DOI : 10.1074/jbc.M112.390112

. Petit-larousse-illustré, 000 articles, 5.535 illustrations, 215 cartes en noir, 56 pages en couleurs, dont 26 hors-texte cartographiques, et un atlas en couleursàcouleursà la fin de l'ouvrage. Dictionnaire encyclopédique pour tous, pp.71-612351790, 1979.

T. Heyduk and J. C. Lee, Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction., Proceedings of the National Academy of Sciences, vol.87, issue.5, pp.1744-1748, 1990.
DOI : 10.1073/pnas.87.5.1744

R. Joseph and . Lakowicz, Principles of fluorescence spectroscopy, p.700510097, 2010.

K. Sato, Y. Nishina, and K. Shiga, Purification of Electron-Transferring Flavoprotein from Megasphaera elsdenii and Binding of Additional FAD with an Unusual Absorption Spectrum, Journal of Biochemistry, vol.134, issue.5, pp.719-729, 2003.
DOI : 10.1093/jb/mvg199

M. W. Janssen and . Fraaije, The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum, Biochem. J, vol.413, issue.1, pp.175-183, 2008.

R. Hille and S. M. Miller, Oxidases, dehydrogenases and related systems, Number ed. by Russ Hille, vol.1

P. Sergey, P. Laptenok, A. Nuernberger, M. H. Lukacs, and . Vos, Subpicosecond Kerr-gate spectrofluorometry, Methods Mol. Biol, vol.1076, pp.321-336, 2014.

J. Jonsson, M. Sandberg, and S. Wold, The evolutionary transition from uracil to thymine balances the genetic code, Journal of Chemometrics, vol.10, issue.2, pp.163-170, 1996.
DOI : 10.1002/(SICI)1099-128X(199603)10:2<163::AID-CEM415>3.0.CO;2-S

R. Yamagami, C. Tomikawa, N. Shigi, A. Kazayama, S. Asai et al., Folate-/FADdependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures, Genes Cells, 2016.
DOI : 10.1111/gtc.12376

P. De, Vérification de l'excision de la cassette kan par migration sur gel d'agarose des produits, p.51

.. De-trmfo, 11Étude11´11Étude de l'effet du substrat minimal ribonucléique sur le spectre d'absorption, p.75

L. Résultats-de and .. De-trmfo, du surnageant obtenu après précipitation d'une préparation, p.88

R. 1. Agarwalla, S. Kealey, J. Santi, and D. , Characterization of the 23 S Ribosomal RNA m5U1939 Methyltransferase from Escherichia coli, Journal of Biological Chemistry, vol.277, issue.11, pp.8835-8840, 2002.
DOI : 10.1074/jbc.M111825200

S. Agarwalla, R. Stroud, and B. Gaffney, Redox Reactions of the Iron-Sulfur Cluster in a Ribosomal RNA Methyltransferase, RumA: OPTICAL AND EPR STUDIES, Journal of Biological Chemistry, vol.279, issue.33, pp.34123-34129, 2004.
DOI : 10.1074/jbc.M405702200

L. Alexandrova, V. Chekhov, E. Shmalenyuk, S. Kochetkov, R. El-asrar et al., Synthesis and evaluation of C-5 modified 2???-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase, Bioorganic & Medicinal Chemistry, vol.23, issue.22, 2009.
DOI : 10.1016/j.bmc.2015.09.053

T. Basta, Y. Boum, J. Briffotaux, H. F. Becker, I. Lamarre-jouenne et al., Mechanistic and structural basis for inhibition of thymidylate synthase ThyX, Open Biology, vol.266, issue.32, p.120120, 2012.
DOI : 10.1021/bi00579a021

URL : https://hal.archives-ouvertes.fr/hal-00817165

H. F. Becker, K. Djaout, I. Lamarre, J. E. Ulmer, D. Schaming et al., Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX, Biochemical Journal, vol.2, issue.1, pp.37-45
DOI : --- Either first page or author must be supplied.

URL : https://hal.archives-ouvertes.fr/hal-01086044

G. Björk, Transductional mapping of gene trmA responsible for the production of 5- methyluridine in transfer ribonucleic acid of Escherichia coli, J Bacteriol, vol.124, issue.1, pp.92-98, 1975.

C. W. Carreras and D. V. Santi, The Catalytic Mechanism and Structure of Thymidylate Synthase, Annual Review of Biochemistry, vol.64, issue.1, pp.721-762, 1995.
DOI : 10.1146/annurev.bi.64.070195.003445

W. Chen, An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis, Protein & Cell, vol.76, issue.9, pp.673-683, 2016.
DOI : 10.1007/s13238-016-0289-y

URL : http://doi.org/10.1007/s13238-016-0289-y

M. Choi, K. Karunaratne, and A. Kohen, 2016 Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target. Molecules, 2016.
DOI : 10.3390/molecules21050654

URL : http://doi.org/10.3390/molecules21050654

J. Conrad, M. Ortiz-maldonado, S. Hoppe, and B. Palfey, Detection of intermediates in the oxidative half-reaction of the FAD-dependent thymidylate synthase from Thermotoga maritima: carbon transfer without covalent pyrimidine activation, Biochemistry, 2014.

A. Delk and J. Rabinowitz, Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine., Proceedings of the National Academy of Sciences, vol.72, issue.2, pp.528-558, 1975.
DOI : 10.1073/pnas.72.2.528

A. Delk, D. Nagle, . Jr, and J. Rabinowitz, Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2, J Biol Chem, vol.255, issue.10, pp.4387-90, 1980.

F. Escartin, S. Skouloubris, U. Liebl, and H. Myllykallio, Flavin-dependent thymidylate synthase X limits chromosomal DNA replication, Proceedings of the National Academy of Sciences, vol.26, issue.13, pp.9948-9952, 2008.
DOI : 10.1038/sj.emboj.7601747

URL : https://hal.archives-ouvertes.fr/hal-00353456

E. Onen, F. Boum, Y. Jacquement, C. Spanedda, M. V. Jaber et al., Design, synthesis and evaluation of potent thymidylate synthase X inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.12, pp.3628-3631, 2008.
DOI : 10.1016/j.bmcl.2008.04.080

URL : https://hal.archives-ouvertes.fr/hal-00297137

A. Fivian-hughes, J. Houghton, and E. O. , Davis Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid Microbiology, Feb, vol.158, issue.2, pp.308-318, 2012.
DOI : 10.1099/mic.0.053983-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352284

P. Forterre, J. Filée, and H. Myllykallio, Origin and Evolution of DNA and DNA Replication Machineries The genetic code and the origin of life, Landes Bioscience, pp.145-168, 2004.

S. Gattis and B. Palfey, -Encoded Thymidylate Synthase, Journal of the American Chemical Society, vol.127, issue.3, pp.832-835, 2005.
DOI : 10.1021/ja0432214

URL : https://hal.archives-ouvertes.fr/hal-01298224

S. Graziani, J. Bernauer, S. Skouloubris, M. Graille, C. Z. Zhou et al., Catalytic Mechanism and Structure of Viral Flavin-dependent Thymidylate Synthase ThyX, Journal of Biological Chemistry, vol.281, issue.33, pp.24048-24057, 2006.
DOI : 10.1074/jbc.M600745200

URL : https://hal.archives-ouvertes.fr/inria-00431698

D. Hamdane, M. Argentini, D. Cornu, H. Myllykallio, S. Skouloubris et al., Insights into Folate/FAD-dependent tRNA Methyltransferase Mechanism: ROLE OF TWO HIGHLY CONSERVED CYSTEINES IN CATALYSIS, Journal of Biological Chemistry, vol.286, issue.42, pp.36268-36280, 2011.
DOI : 10.1074/jbc.M111.256966

URL : https://hal.archives-ouvertes.fr/hal-00780985

D. Hamdane, M. Argentini, D. Cornu, B. Golinelli-pimpaneau, and M. Fontecave, FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a New Methyl-Transfer Agent, Journal of the American Chemical Society, vol.134, issue.48, pp.19739-19784, 2012.
DOI : 10.1021/ja308145p

URL : https://hal.archives-ouvertes.fr/hal-00780984

D. Hamdane, E. Bruch, U. S. Field, M. Fontecave, and M. , Activation of a Unique Flavin-Dependent tRNA-Methylating Agent, Biochemistry, vol.52, issue.49, pp.8949-56, 2013.
DOI : 10.1021/bi4013879

C. Knetsch, M. Hensgens, C. Harmanus, M. Van-der-bijl, P. Savelkoul et al., Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology, pp.3113-3136, 2011.
DOI : 10.1099/mic.0.051953-0

E. M. Koehn, T. Fleischmann, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene, Nature, vol.30, issue.7240, pp.919-923, 2009.
DOI : 10.1038/nature07973

E. M. Koehn and A. Kohen, Flavin-dependent thymidylate synthase: A novel pathway towards thymine, Archives of Biochemistry and Biophysics, vol.493, issue.1, pp.96-102
DOI : 10.1016/j.abb.2009.07.016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812616

M. Kögler, B. Vanderhoydonck, D. Jonghe, S. Rozenski, J. Van-belle et al., Synthesis and evaluation of 5-substituted-2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis, Collection Symposium Series, pp.4847-62, 2009.
DOI : 10.1135/css201112364

M. Kögler, R. Busson, D. Jonghe, S. Rozenski, J. Van-belle et al., Synthesis and Evaluation of 6-Aza-2???-deoxyuridine Monophosphate Analogs as Inhibitors of Thymidylate Synthases, and as Substrates or Inhibitors of Thymidine Monophosphate Kinase in Mycobacterium tuberculosis, Chemistry & Biodiversity, vol.4, issue.3, 2012.
DOI : 10.1002/cbdv.201100285

D. Leduc, S. Graziani, L. Meslet-cladiere, A. Sodolescu, U. Liebl et al., Two distinct pathways for thymidylate (dTMP) synthesis in (hyper)thermophilic Bacteria and Archaea, Biochemical Society Transactions, vol.32, issue.2, pp.231-235
DOI : 10.1042/bst0320231

URL : https://hal.archives-ouvertes.fr/hal-00844797

D. Leduc, S. Graziani, G. Lipowski, C. Marchand, L. Marechal et al., Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers, Proceedings of the National Academy of Sciences, vol.25, issue.24, pp.7252-7257, 2002.
DOI : 10.1093/nar/25.24.4876

URL : https://hal.archives-ouvertes.fr/hal-00831844

J. Lehmann, D. Fouts, D. Haft, A. Cannella, J. Ricaldi et al., Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans, PLoS Neglected Tropical Diseases, vol.56, issue.2, 2013.
DOI : 10.1371/journal.pntd.0002468.s001

R. Luciani, P. Saxena, S. Surade, M. Santucci, A. Venturelli et al., Virtual Screening and X-ray Crystallography Identify Non-Substrate Analog Inhibitors of Flavin-Dependent Thymidylate Synthase, Journal of Medicinal Chemistry, vol.59, issue.19, pp.9269-9275, 2016.
DOI : 10.1021/acs.jmedchem.6b00977

D. Lundin, G. Berggren, D. Logan, and B. Sjöberg, The origin and evolution of ribonucleotide reduction. Life (Basel), Feb, vol.275, issue.1, pp.604-640, 2015.

C. Madsen, J. Mengel-jorgensen, and F. Kirpekar, Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry, Nucleic Acids Res, issue.16, pp.314738-4746, 2003.

C. Mcguigan, M. Derudas, B. Gonczy, K. Hinsinger, S. Kandil et al., ProTides of N-(3-(5-(2???-deoxyuridine))prop-2-ynyl)octanamide as potential anti-tubercular and anti-viral agents, Bioorganic & Medicinal Chemistry, vol.22, issue.9, pp.2816-2840, 2014.
DOI : 10.1016/j.bmc.2014.02.056

M. Merker, T. Kohl, A. Roetzer, L. Truebe, E. Richter et al., Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One, 2013.

T. V. Mishanina, E. M. Koehn, J. A. Conrad, B. A. Palfey, S. A. Lesley et al., Trapping of an Intermediate in the Reaction Catalyzed by Flavin-Dependent Thymidylate Synthase, Journal of the American Chemical Society, vol.134, issue.9, pp.4442-44481021, 2120822.
DOI : 10.1021/ja2120822

T. V. Mishanina, J. M. Corcoran, and A. Kohen, Substrate Activation in Flavin-Dependent Thymidylate Synthase, Journal of the American Chemical Society, vol.136, issue.30, pp.10597-10600
DOI : 10.1021/ja506108b

T. V. Mishanina, L. Yu, K. Karunaratne, D. Mondal, J. M. Corcoran et al., An unprecedented mechanism of nucleotide methylation in organisms containing thyX, Science, vol.330, issue.2, pp.507-510
DOI : 10.1042/bj3300881

H. Myllykallio, G. Lipowski, D. Leduc, J. Filee, P. Forterre et al., An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis, Science, vol.297, issue.5578, pp.105-107, 2002.
DOI : 10.1126/science.1072113

URL : https://hal.archives-ouvertes.fr/hal-00836930

H. Myllykallio, D. Leduc, J. Filee, and U. Liebl, Life without dihydrofolate reductase FolA, Life without dihydrofolate reductase FolA, pp.220-223, 2003.
DOI : 10.1016/S0966-842X(03)00101-X

URL : https://hal.archives-ouvertes.fr/hal-00836432

T. Ny and G. Björk, Cloning and restriction mapping of the trmA gene coding for transfer ribonucleic acid (5-methyluridine)-methyltransferase in Escherichia coli K-12, J Bacteriol, vol.142, pp.371-380, 1980.

A. Parchina, M. Froeyen, L. Margamuljana, J. Rozenski, D. Jonghe et al., Discovery of an acyclic nucleoside phosphonate that inhibits Mycobacterium Tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue, Collection Symposium Series, pp.1373-83, 2013.
DOI : 10.1135/css201414342

A. Poole, D. Penny, and B. Sjöberg, Confounded cytosine! Tinkering and the evolution of DNA, Nature Reviews Molecular Cell Biology, vol.2, issue.2, pp.147-51, 2001.
DOI : 10.1038/35052091

J. Romeo, A. Delk, and J. Rabinowitz, The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA, Biochemical and Biophysical Research Communications, vol.61, issue.4, pp.1256-61, 1974.
DOI : 10.1016/S0006-291X(74)80419-5

D. Santi and L. Hardy, Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: evidence for convalent catalysis, Biochemistry, vol.26, issue.26, pp.8599-8606, 1987.
DOI : 10.1021/bi00400a016

S. Skouloubris, K. Djaout, I. Lamarre, J. C. Lambry, K. Anger et al., thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones, Open Biology, vol.5, issue.6, p.150015
DOI : 10.1128/AAC.44.10.2623-2629.2000

URL : https://hal.archives-ouvertes.fr/hal-01168931

F. W. Stull, S. M. Bernard, A. Sapra, J. L. Smith, E. R. Zuiderweg et al., Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase, Biochemistry, vol.55, issue.23, pp.3261-3269
DOI : 10.1021/acs.biochem.6b00510

E. Torrents, Ribonucleotide reductases: essential enzymes for bacterial life, Frontiers in Cellular and Infection Microbiology, vol.73, issue.12, 2014.
DOI : 10.1158/0008-5472.CAN-13-1094

URL : http://doi.org/10.3389/fcimb.2014.00052

J. Urbonavicius, S. Skouloubris, H. Myllykallio, and H. Grosjean, Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications, Nucleic Acids Research, vol.33, issue.13, pp.3955-3964, 2005.
DOI : 10.1093/nar/gki703

H. Zhang, D. Li, L. Zhao, J. Fleming, N. Lin et al., Genome sequencing of 161, 2013.

H. Myllykallio, K. Djaout, P. Sournia, S. Skouloubris, U. Liebl et al., onmouseover="self.status='Parses the feature table of an EMBL file and returns the protein translations.'; return true;" onmouseout="self.status=' '; return true onmouseover="self.status='Removes non-DNA characters from text.'; return true;" onmouseout="self.status=' '; return true>-Filter DNA</a><br /> <a href="filter_protein.html" onmouseover="self.status='Removes non-protein characters from text.'; return true;" onmouseout="self.status=' '; return true>-Filter Protein</a><br /> <a href="genbank_fasta.html" onmouseover="self.status='Returns the entire sequence contained in a GenBank file in FASTA format.'; return true;" onmouseout="self.status=' '; return true>-GenBank to FASTA</a><br /> <a href="genbank_feat.html" onmouseover="self.status='Parses the feature table of a GenBank file and returns the feature sequences.'; return true;" onmouseout="self.status=' '; return true>-GenBank Feature Extractor</a><br /> <a href="genbank_trans.html" onmouseover="self.status='Parses the feature table of a GenBank file and returns the protein translations.'; return true;" onmouseout="self.status=' '; return true>-GenBank Trans Extractor</a><br /> <a href="one_to_three.html" onmouseover="self.status='Converts single letter amino acid codes to three letter codes.'; return true;" onmouseout="self.status=' '; return true>-One to Three</a><br /> <a href="range_extract_dna.html" onmouseover="self.status='Reads a list of positions and ranges and returns those parts of a DNA sequence.'; return true;" onmouseout="self.status=' '; return true>-Range Extractor DNA</a><br /> <a href="range_extract_protein.html" onmouseover="self.status='Reads a list of positions and ranges and returns those parts of a protein sequence.'; return true;" onmouseout="self.status=' '; return true>-Range Extractor Protein</a><br /> <a href="rev_comp.html" onmouseover="self.status='Determines the reverse-complement, reverse, or complement of the sequence you enter.'; return true;" onmouseout="self.status=' '; return true>-Reverse Complement</a><br /> <a href="split_codons.html" onmouseover="self.status='Separates bases according to codon position.'; return true;" onmouseout="self.status=' '; return true>-Split Codons</a><br /> <a href="split_fasta.html" onmouseover="self.status='Converts a FASTA sequence into multiple sequences.'; return true;" onmouseout="self.status=' '; return true>-Split FASTA</a><br /> <a href="three_to_one.html" onmouseover="self.status='Converts three letter amino acid codes to one letter codes.'; return true;" onmouseout="self.status=' '; return true onmouseover="self.status='Returns DNA sequence segments specified by a position and window size.'; return true;" onmouseout="self.status=' '; return trueReturns protein sequence segments specified by a position and window size.'; return true;" onmouseout="self.status=' '; return true, self.status='Parses the feature table of an EMBL file and returns the feature sequencesWindow Extractor DNA</a><br /> <a href="window_extract_protein.html" onmouseover="self.status=Window Extractor Protein</a> </div> <div class="category"> Sequence Analysis, 2014.

<. /-div>-<div-class=, onmouseover="self.status='Calculates the molecular weight of DNA sequences.'; return true;" onmouseout="self.status=' '; return true>-DNA Molecular Weight</a><br /> <a href="dna_pattern.html" onmouseover="self.status='Returns positions of the patterns you enter.'; return true;" onmouseout="self.status=' '; return true>-DNA Pattern Find</a><br /> <a href="dna_stats.html" onmouseover="self.status='Returns basic sequence statistics.'; return true;" onmouseout="self.status=' '; return true>-DNA Stats</a><br /> <a href="fuzzy_search_dna.html" onmouseover="self.status='Returns sequences that are identical or similar to a query sequence.'; return true;" onmouseout="self.status=' '; return true>-Fuzzy Search DNA</a><br /> <a href="fuzzy_search_protein.html" onmouseover="self.status='Returns sequences that are identical or similar to a query sequence.'; return true;" onmouseout="self.status=' '; return true>-Fuzzy Search Protein</a><br /> <a href="ident_sim.html" onmouseover="self.status='Accepts aligned sequences in FASTA format and calculates the identity and similarity of each sequence pair.'; return true;" onmouseout="self.status=' '; return true>-Ident and Sim</a><br /> <a href="multi_rev_trans.html" onmouseover="self.status='Can be used to predict a DNA sequence in another species using a protein sequence alignment.'; return true;" onmouseout="self.status=' '; return true>-Multi Rev Trans</a><br /> <a href="mutate_for_digest.html" onmouseover="self.status='Finds DNA sequences that can easily be converted to a restriction site.'; return true;" onmouseout="self.status=' '; return true>-Mutate for Digest</a><br /> <a href="orf_find.html" onmouseover="self.status='Determines the positions of open reading frames.'; return true;" onmouseout="self.status=' '; return true>-ORF Finder</a><br /> <a href="pairwise_align_codons.html" onmouseover="self.status='Returns the optimal global alignment for two coding DNA sequences.'; return true;" onmouseout="self.status=' '; return true>-Pairwise Align Codons</a><br /> <a href="pairwise_align_dna.html" onmouseover="self.status='Returns the optimal global alignment for two DNA sequences.'; return true;" onmouseout="self.status=' '; return true>- Pairwise Align DNA</a><br /> <a href="pairwise_align_protein.html" onmouseover="self.status='Returns the optimal global alignment for two protein sequences.'; return true;" onmouseout="self.status=' '; return true>-Pairwise Align Protein</a><br /> <a href="pcr_primer_stats.html" onmouseover="self.status='Returns a report describing PCR primer properties'; return true;" onmouseout="self.status=' '; return true>-PCR Primer Stats</a><br /> <a href="pcr_products.html" onmouseover="self.status='Generates PCR products from a template and two primer sequences.'; return true;" onmouseout="self.status=' '; return true>-PCR Products</a><br /> <a href="protein_gravy.html" onmouseover="self.status='Returns the grand average of hydropathy value of protein sequences.'; return true;" onmouseout="self.status=' '; return true>-Protein GRAVY</a><br /> <a href="protein_iep.html" onmouseover="self.status='Returns the predicted isoelectric point of protein sequences.'; return true;" onmouseout="self.status=' '; return true>- Protein Isoelectric Point</a><br /> <a href="protein_mw.html" onmouseover="self.status='Calculates the molecular weight of protein sequences.'; return true;" onmouseout="self.status=' '; return true>-Protein Molecular Weight</a><br /> <a href="mutate_dna.html" onmouseover="self.status='Introduces random mutations into DNA sequences.'; return true;" onmouseout="self.status=' '; return true>-Mutate DNA</a><br /> <a href="mutate_protein.html" onmouseover="self.status='Introduces random mutations into protein sequences.'; return true;" onmouseout="self.status=' '; return true>-Mutate Protein</a><br /> <a href="random_coding_dna.html" onmouseover="self.status='Generates a random coding sequence of the length you specify.'; return true;" onmouseout="self.status=' '; return true>-Random Coding DNA</a><br /> <a href="random_dna.html" onmouseover="self.status='Generates a random DNA sequence of the length you specify.'; return true;" onmouseout="self.status=' '; return true>-Random DNA Sequence</a><br /> <a href="random_dna_regions.html" onmouseover="self.status='Replaces regions of the DNA sequences you enter with random bases.'; return true;" onmouseout="self.status=' '; return true>-Random DNA Regions</a><br /> <a href="random_protein.html" onmouseover="self.status='Generates a random protein sequence of the length you specify.'; return true;" onmouseout="self.status=' '; return true>-Random Protein Sequence</a><br /> <a href="random_protein_regions.html" onmouseover="self.status='Replaces regions of the protein sequences you enter with random residues.'; return true;" onmouseout="self.status=' '; return true>-Random Protein Regions</a><br /> <a href="sample_dna.html" onmouseover="self.status='Samples bases from a DNA sequence with replacement.'; return true;" onmouseout="self.status=' '; return true>-Sample DNA</a><br /> <a href="sample_protein.html" onmouseover="self.status='Samples residues from a protein sequence with replacement.'; return true;" onmouseout="self.status=' '; return true>-Sample Protein</a><br /> <a href="shuffle_dna.html" onmouseover="self.status='Randomly shuffles the DNA sequences you enter.'; return true;" onmouseout="self.status=' '; return true>-Shuffle DNA</a><br /> <a href="shuffle_protein.html" onmouseover="self.status='Randomly shuffles the protein sequences you enter.'; return true;" onmouseout="self.status=' '; return true'; return true;" onmouseout="self.status=' '; return trueself.status='The genetic codes used in the Sequence Manipulation Suite.'; return true;" onmouseout="self.status=' '; return true'; return true;" onmouseout="self.status=' '; return true onmouseout="self.status=' '; return true onmouseout="self.status=' '; return true>-About this site<, self.status='Plots codon frequency (according to the codon table you enter) for each codon in a DNA sequenceBrowser compatibility</a><br /> <a href="mirror.html" onmouseover="self.status='Mirror the Sequence Manipulation Suite.'; return true;" onmouseout="self.status=' '; return true;">-Mirror this site</a><br /> <a href="mirror.html" onmouseover="self.status='Use the Sequence Manipulation Suite offline .'; return trueUse this site offline</a><br /> <a href="about.html" onmouseover="self.status='About the Sequence Manipulation Suite.'; return true