Symmetries and Distances : two intriguing challenges in Mathematical Programming

Résumé : Cette thèse est consacrée à l’étude et à la discussion de deux questions importantes qui se posent dans le domaine de la Programmation Mathématique: les symétries et les distances. En arrière-plan, nous examinons la Programmation Semidéfinie (PSD) et sa pertinence comme l’un des principaux outils employés aujourd’hui pour résoudre les Programmes Mathématiques (PM) durs. Après le chapitre introductif, nous discutons des symétries au Chapitre 2 et des distances au Chapitre 5. Entre ces deux chapitres, nous présentons deux courts chapitres que nous préférons en fait appeler entr’actes: leur contenu ne mérite pas d’être publié pour le moment, mais ils fournissent un lien entre les deux Chapitres 2 et 5 apparemment distincts, qui contiennent les principales contributions de cette thèse. Il est bien connu que les PMs symétriques sont plus difficiles à résoudre pour l’optimalité globale en utilisant des algorithmes du type Branch-and-Bound (B&B). Il est également bien connu que certaines des symétries de solution sont évidentes dans la formulation, ce qui permet d’essayer de traiter les symétries en tant qu’étape de prétraitement. L’une des approches les plus simples consiste à rompre les symétries en associant les Contraintes de Rupture de Symétrie (CRS) à la formulation, en supprimant ainsi des optima globaux symétriques, puis à résoudre la reformulation avec un solveur générique. Ces contraintes peuvent être générés à partir de chaque orbite de l’action des symétries sur l’ensemble des indices des variables. Cependant, il est difficile de savoir si et comment il est possible de choisir deux ou plus orbites distinctes pour générer des CRSs qui sont compatibles les unes avec les autres (elles ne rendent pas tous les optima globaux infaisables). Dans le Chapitre 2, nous discutons et testons un nouveau concept d’Indépendance Orbitale (IO) qui clarifie cette question. Les expériences numériques réalisées à l’aide de PLMEs et de PNLMEs soulignent l’exactitude et l’utilité de la théorie de l’IO. Programmation Quadratique Binaire (PQB) est utilisée pour étudier les symétries et SDP dans Entr'acte 3. Programmes quadratiques binaires symétriques ayant une certaine structure de symétrie sont générés et utilisés pour illustrer les conditions dans lesquelles l'utilisation de CRSs est avantageuse. Une discussion préliminaire sur l'impact des symétries et des CRSs dans la performance des solveurs PSD est également réalisée. Le Problème Euclidien de l'Arbre de Steiner est étudié dans Entr'acte 4. Deux modèles sont dérivés, ainsi que des relaxations SDP. Un algorithme heuristique basé à la fois sur les modèles mathématiques et sur les principes d'IO présentés au Chapitre 2 est également proposé. Concernant ces méthodes, des résultats préliminaires sur un petit ensemble d'exemples bien connus sont fournis. Finalement, dans le Chapitre 5, nous abordons le problème fondamental qui se pose dans le domaine de la Géométrie de Distance: il s’agit de trouver une réalisation d’un graphe pondéré non orienté dans RK pour un certain K donné, de sorte que les positions pour les sommets adjacents respectent la distance donnée par le poids de l’arête correspondante. Le Problème de la Géométrie de Distance Euclidienne (PGDE) est d’une grande importance car il a de nombreuses applications en science et en ingénierie. Il est difficile de calculer numériquement des solutions, et la plupart des méthodes proposées jusqu’à présent ne sont pas adaptées à des tailles utiles ou sont peu susceptibles d’identifier de bonnes solutions. La nécessité de contraindre le rang de la matrice représentant des solutions réalisables du PGDE rend le problème si difficile. Nous proposons un algorithme heuristique en deux étapes basé sur la PSD (en fait basé sur le paradigme de la PDD) et la modélisation explicite de Contraintes de Rang. Nous fournissons tests informatiques comprenant des instances générées de façon aléatoire ainsi que des exemples réalistes de conformation de protéines.
Type de document :
Thèse
Modeling and Simulation. Université Paris-Saclay, 2017. English. 〈NNT : 2017SACLX008〉
Liste complète des métadonnées

Littérature citée [94 références]  Voir  Masquer  Télécharger

https://pastel.archives-ouvertes.fr/tel-01511408
Contributeur : Abes Star <>
Soumis le : jeudi 20 avril 2017 - 22:16:08
Dernière modification le : jeudi 10 mai 2018 - 02:06:25
Document(s) archivé(s) le : vendredi 21 juillet 2017 - 14:14:17

Fichier

52617_DIASDASILVA_2017_archiva...
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01511408, version 1

Citation

Gustavo Dias da Silva. Symmetries and Distances : two intriguing challenges in Mathematical Programming. Modeling and Simulation. Université Paris-Saclay, 2017. English. 〈NNT : 2017SACLX008〉. 〈tel-01511408〉

Partager

Métriques

Consultations de la notice

413

Téléchargements de fichiers

195