B. Balakrishnan, . Dooley, E. Kopia, and . Edelman, Thrombus causes fluctuations in arterial drug delivery from intravascular stents, Journal of Controlled Release, vol.131, issue.3, pp.173-180, 2008.
DOI : 10.1016/j.jconrel.2008.07.027

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852622

P. Ballyk, C. Da-steinman, and . Ethier, Simulation of non-newtonian blood flow in an end-toside anastomosis, Biorheology, vol.31, issue.5, pp.565-586, 1993.

R. Balossino, . Gervaso, G. Migliavacca, and . Dubini, Effects of different stent designs on local hemodynamics in stented arteries, Journal of Biomechanics, vol.41, issue.5, pp.1053-1061, 2008.
DOI : 10.1016/j.jbiomech.2007.12.005

A. Barakat, Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review)., International Journal of Molecular Medicine, vol.4, issue.4, pp.323-355, 1999.
DOI : 10.3892/ijmm.4.4.323

A. Barakat and E. Cheng, Numerical simulation of fluid mechanical disturbance induced by intravascular stents, Proceedings of the 11th International Conference on Mechanics in Medicine and Biology, pp.2-5, 2000.

R. Beaumont, . Bhaganagar, O. Segee, and . Badak, Using fuzzy logic for morphological classification of IVUS-based plaques in diseased coronary artery in the context of flow-dynamics, Soft Computing, vol.8, issue.3, pp.265-272, 2010.
DOI : 10.1007/s00500-009-0401-9

A. Ben and R. , Analyse des transferts pariétaux en régime de perturbations linéaires et non linéaire, 2004.

N. Bénard, Analyse de l'écoulement physiologique dans un stent coronarien, 2005.

S. Berger and L. Jou, Flows in Stenotic Vessels, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.347-382, 2000.
DOI : 10.1146/annurev.fluid.32.1.347

J. Berry, . Santamarina, . Moore, W. Roychowdhury, and . Routh, Experimental and Computational Flow Evaluation of Coronary Stents, Annals of Biomedical Engineering, vol.28, issue.4, pp.386-398, 2000.
DOI : 10.1114/1.276

G. Biswas, F. Breuer, and . Durst, Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers, Journal of Fluids Engineering, vol.126, issue.3, pp.362-374, 2004.
DOI : 10.1115/1.1760532

P. Blackshear, . Forstrom, . Lorberbaum, R. Vl-gott, and . Sovilj, A role of flow separation and recirculation in thrombus formation on prosthetic surfaces, 1971 Joint Conference on Sensing of Environmental Pollutants, 1971.

N. Bénard, . Coisne, R. Donal, and . Perrault, Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress, Journal of Biomechanics, vol.36, issue.7, pp.991-998, 2003.
DOI : 10.1016/S0021-9290(03)00068-X

A. Borghi, . Foa, . Balossino, G. Migliavacca, and . Dubini, Modelling drug elution from stents: effects of reversible binding in the vascular wall and degradable polymeric matrix, Computer Methods in Biomechanics and Biomedical Engineering, vol.187, issue.4, pp.367-377, 2008.
DOI : 10.1023/B:CARE.0000031547.39178.cb

P. Boutouyrie, . Laurent, . Benetos, . Girerd, M. Hoeks et al., Opposing effects of ageing on distal and proximal large arteries in hypertensives, Journal of Hypertension, vol.10, issue.Suppliment, pp.87-92, 1992.
DOI : 10.1097/00004872-199208001-00023

S. Carlier, . Van-damme, . Cp-blommerde, . Wentzel, . Van-langehove et al., Augmentation of Wall Shear Stress Inhibits Neointimal Hyperplasia After Stent Implantation: Inhibition Through Reduction of Inflammation?, Circulation, vol.107, issue.>21, pp.1072741-2746, 2003.
DOI : 10.1161/01.CIR.0000066914.95878.6D

C. Caro, The mechanics of the circulation, 2011.

C. Caro, The mechanics of the circulation, 2012.

C. Caro, R. Fitz-gerald, and . Schroter, Arterial Wall Shear and Distribution of Early Atheroma in Man, Nature, vol.173, issue.5211, 1969.
DOI : 10.1038/2231159a0

A. Carter, . Laird, . Farb, . Kufs, R. Wortham et al., Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model, Journal of the American College of Cardiology, vol.24, issue.5, pp.1398-1405, 1994.
DOI : 10.1016/0735-1097(94)90126-0

R. Cassanova and D. Giddens, Disorder distal to modeled stenoses in steady and pulsatile flow, Journal of Biomechanics, vol.11, issue.10-12, pp.441-453, 1978.
DOI : 10.1016/0021-9290(78)90056-8

K. Chandran, H. Udaykumar, and J. Reinhardt, Image-based computational modeling of the human circulatory and pulmonary systems, 2011.
DOI : 10.1007/978-1-4419-7350-4

Y. Cho and K. Kensey, Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. part 1 : Steady flows, Biorheology, vol.28, pp.3-4241, 1990.

H. Choi and A. Barakat, Numerical study of the impact of non-newtonian blood behavior on flow over a two-dimensional backward facing step, Biorheology, vol.42, issue.6, pp.493-509, 2005.

J. Cole and C. Hartley, The pulsed Doppler coronary artery catheter preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man, Circulation, vol.56, issue.1, pp.18-25, 1977.
DOI : 10.1161/01.CIR.56.1.18

G. Coppola and C. Caro, Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance, Journal of The Royal Society Interface, vol.101, issue.5, p.2008, 2008.
DOI : 10.1152/japplphysiol.00051.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696143

C. Creel, M. Lovich, and E. Edelman, Arterial Paclitaxel Distribution and Deposition, Circulation Research, vol.86, issue.8, pp.879-884, 2000.
DOI : 10.1161/01.RES.86.8.879

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.588.7061

E. Cutrì, . Zunino, C. Morlacchi, F. Chiastra, and . Migliavacca, Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study, Biomechanics and Modeling in Mechanobiology, vol.4, issue.4, pp.657-669, 2013.
DOI : 10.1007/s10237-012-0432-5

P. Davies, Flow-mediated endothelial mechanotransduction, Physiological reviews, vol.75, issue.3, pp.519-560, 1995.

C. Deaton, . Es-froelicher, C. Wu, . Ho, T. Shishani et al., The global burden of cardiovascular disease, European Journal of Cardiovascular Nursing, vol.106, issue.3, pp.5-13, 2011.
DOI : 10.1016/S1474-5151(11)00111-3

J. Dodge, . Bg-brown, H. Bolson, and . Dodge, Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation, Circulation, vol.86, issue.1, pp.232-246, 1992.
DOI : 10.1161/01.CIR.86.1.232

C. Dotter and M. Judkins, Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application, Circulation, vol.30, issue.5, pp.654-670, 1964.
DOI : 10.1161/01.CIR.30.5.654

D. Eckmann and J. Grotberg, Experiments on transition to turbulence in oscillatory pipe flow, Journal of Fluid Mechanics, vol.114, issue.-1
DOI : 10.1017/S0022112082000214

A. Evans, . Blinder, C. Herfkens, . Spritzer, . Do-kuethe et al., Effects of Turbulence on Signal Intensity in Gradient Echo Images, Investigative Radiology, vol.23, issue.7, pp.512-518, 1988.
DOI : 10.1097/00004424-198807000-00006

A. Farb, . Weber, . Fd-kolodgie, R. Burke, and . Virmani, Morphological Predictors of Restenosis After Coronary Stenting in Humans, Circulation, vol.105, issue.25, pp.2974-2980, 2002.
DOI : 10.1161/01.CIR.0000019071.72887.BD

L. Formaggia, A. Quarteroni, and . Veneziani, Cardiovascular Mathematics : modeling and simulation of the circulatory system, 2010.
DOI : 10.1007/978-88-470-1152-6

J. Fox and A. Hugh, Localization of atheroma: a theory based on boundary layer separation., Heart, vol.28, issue.3, p.388, 1966.
DOI : 10.1136/hrt.28.3.388

A. Frank, J. Walsh, and . Moore, Computational Fluid Dynamics and Stent Design, Artificial Organs, vol.13, issue.7, pp.614-621, 2002.
DOI : 10.1114/1.276

M. Friedman, . Oj-deters, . Cb-bargeron, F. Hutchins, and . Mark, Shear-Dependent Thickening of the Human Arterial Intima, Atherosclerosis, vol.60, issue.2, pp.161-171, 1986.
DOI : 10.1016/0021-9150(86)90008-0

Y. Fung, BIOMECHANICS, SHOCK, vol.9, issue.2, 1997.
DOI : 10.1097/00024382-199802000-00018

M. Gimbrone, . Jn-topper, . Nagel, G. Anderson, and . Garcia-cardeña, Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesisa, Annals of the New York Academy of Sciences, vol.93, issue.2, pp.230-240, 2000.
DOI : 10.1111/j.1749-6632.2000.tb06318.x

S. Große, W. Burgmann, and . Schröder, Time-resolved piv measurements of oscillating flow in a non-collapsing flexible pipe, 2008.

A. Grüntzig, W. Senning, and . Siegenthaler, Nonoperative Dilatation of Coronary-Artery Stenosis, New England Journal of Medicine, vol.301, issue.2, pp.61-68, 1979.
DOI : 10.1056/NEJM197907123010201

T. Gundert, A. Marsden, J. Yang, and . Ladisa-jr, Optimization of Cardiovascular Stent Design Using Computational Fluid Dynamics, Journal of Biomechanical Engineering, vol.134, issue.1, p.11002, 2012.
DOI : 10.1115/1.4005542

E. Guyon, . Jp-hulin, P. Petit, and . De-gennes, Hydrodynamique physique, 2001.

A. Guyton and J. Hall, Overview of the circulation : medical physics of pressure, flow, and resistance. Textbook of medical physiology, 1996.

F. Henry, Simulation of flow through model stented arteries, pp.329-330, 2001.

C. Hodgman, Handbook of Chemistry and Physics., The Journal of Physical and Colloid Chemistry, vol.53, issue.7, pp.1139-1139, 1944.
DOI : 10.1021/j150472a018

R. Hoffmann and G. Mintz, Coronary in-stent restenosis???predictors, treatment and prevention, European Heart Journal, vol.21, issue.21, pp.1739-1749, 2000.
DOI : 10.1053/euhj.2000.2153

W. Hort, . Lichti, . Kalbfleisch, . Köhler, U. Frenzel et al., The size of human coronary arteries depending on the physiological and pathological growth of the heart the age, the size of the supplying areas and the degree of coronary sclerosis, Virchows Archiv A Pathological Anatomy and Histology, vol.29, issue.1, pp.37-59, 1982.
DOI : 10.1007/BF00430892

S. Hossainy and S. Prabhu, A mathematical model for predicting drug release from a biodurable drug-eluting stent coating, Journal of Biomedical Materials Research Part A, vol.75, issue.2, pp.487-493, 2008.
DOI : 10.1002/jbm.a.31787

J. Hurst, R. O-'rourke, V. Walsh, and . Fuster, Hurst's the heart manual of cardiology, 2009.

C. Hwang, E. Wu, and . Edelman, Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery, Circulation, vol.104, issue.5, pp.600-605, 2001.
DOI : 10.1161/hc3101.092214

C. Hwang, . Levin, . Jonas, E. Li, and . Edelman, Thrombosis Modulates Arterial Drug Distribution for Drug-Eluting Stents, Circulation, vol.111, issue.13, pp.1619-1626, 2005.
DOI : 10.1161/01.CIR.0000160363.30639.37

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.583.3074

M. Iguchi and M. Ohmi, Transition to Turbulence in a Pulsatile Pipe Flow : 3rd Report, Flow Regimes and the Conditions Describing the Generation and Decay of Turbulence, Bulletin of JSME, vol.27, issue.231, pp.1873-1880, 1984.
DOI : 10.1299/jsme1958.27.1873

C. Indolfi, C. Torella, . Coppola, . Stabile, . Esposito et al., Rat carotid artery dilation by PTCA balloon catheter induces neointima formation in presence of IEL rupture, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.2, pp.760-767, 2002.
DOI : 10.1152/ajpheart.00613.2001

M. Jahangiri, M. Saghafian, and . Sadeghi, Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid-solid interaction. Computational and mathematical methods in medicine, 2015.

. Bm-johnston, . Pr-johnston, D. Corney, and . Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of Biomechanics, vol.37, issue.5, pp.709-720, 2004.
DOI : 10.1016/j.jbiomech.2003.09.016

. Bm-johnston, . Pr-johnston, D. Corney, and . Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Transient simulations, Journal of Biomechanics, vol.39, issue.6, pp.1116-1128, 2006.
DOI : 10.1016/j.jbiomech.2005.01.034

A. Kadar and T. Glasz, Development of atherosclerosis and plaque biology, Vascular, vol.9, issue.2, pp.109-121, 2001.

T. Karino and H. Goldsmith, Flow Behaviour of Blood Cells and Rigid Spheres in an Annular Vortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.279, issue.967, pp.413-445, 1977.
DOI : 10.1098/rstb.1977.0095

R. Keane and R. Adrian, Theory of cross-correlation analysis of piv images Applied scientific research, pp.191-215, 1992.

T. Kim, A. Seo, and . Barakat, Numerical simulations of fluid mechanical interactions between two abdominal aortic branches, Korea-Australia Rheology Journal, vol.16, issue.2, pp.75-83, 2004.

V. Kolachalama, . Tzafriri, E. Dy-arifin, and . Edelman, Luminal flow patterns dictate arterial drug deposition in stent-based delivery, Journal of Controlled Release, vol.133, issue.1, pp.24-30, 2009.
DOI : 10.1016/j.jconrel.2008.09.075

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836846

L. Kornet, . Lambregts, R. Hoeks, and . Reneman, Differences in Near-Wall Shear Rate in the Carotid Artery Within Subjects Are Associated With Different Intima-Media Thicknesses, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.18, issue.12, pp.1877-1884, 1998.
DOI : 10.1161/01.ATV.18.12.1877

R. Krams, . Wentzel, . Jaf-oomen, . Vinke, . Schuurbiers et al., Evaluation of Endothelial Shear Stress and 3D Geometry as Factors Determining the Development of Atherosclerosis and Remodeling in Human Coronary Arteries in Vivo : Combining 3D Reconstruction from Angiography and IVUS (ANGUS) with Computational Fluid Dynamics, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.10, pp.172061-2065, 1997.
DOI : 10.1161/01.ATV.17.10.2061

D. Ku, Blood flow in arteries Annual review of fluid mechanics, pp.399-434, 1997.

J. Ladisa, L. Olson, . Da-hettrick, . Dc-warltier, and . Jr-kersten, Axial stent strut angle influences wall shear stress after stent implantation : analysis using 3d computational fluid dynamics models of stent foreshortening, BioMedical Engineering OnLine, vol.4, issue.1, p.59, 2005.
DOI : 10.1186/1475-925X-4-59

J. Ladisa, L. Olson, . Rc-molthen, . Da-hettrick, . Pratt et al., Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries, AJP: Heart and Circulatory Physiology, vol.288, issue.5, pp.2465-2475, 2005.
DOI : 10.1152/ajpheart.01107.2004

. Jf-ladisa-jr, L. Guler, . Olson, . Da-hettrick, . Jr-kersten et al., Threedimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation, Annals of biomedical engineering, issue.8, pp.31972-980, 2003.

M. Lovich and E. Edelman, Mechanisms of Transmural Heparin Transport in the Rat Abdominal Aorta After Local Vascular Delivery, Circulation Research, vol.77, issue.6, pp.1143-1150, 1995.
DOI : 10.1161/01.RES.77.6.1143

M. Lovich and E. Edelman, Computational simulations of local vascular heparin deposition and distribution, American Journal of Physiology-Heart and Circulatory Physiology, issue.5, p.271

R. Macalpin, . Abbasi, L. Jh-grollman-jr, and . Eber, Human Coronary Artery Size During Life, Radiology, vol.108, issue.3, pp.567-576, 1973.
DOI : 10.1148/108.3.567

A. Malek, S. Sl-alper, and . Izumo, Hemodynamic Shear Stress and Its Role in Atherosclerosis, JAMA, vol.282, issue.21
DOI : 10.1001/jama.282.21.2035

M. Marcus, . Wright, C. Doty, . Eastham, . Laughlin et al., Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans, Circulation Research, vol.49, issue.4, pp.877-891, 1981.
DOI : 10.1161/01.RES.49.4.877

C. Markou, . Sr-hanson, D. Siegel, and . Ku, The role of high wall shear rate on thrombus formation in stenoses, pp.555-555, 1993.

B. Maurel, Resténose intra-stent : évaluation de nouvelles thérapeutiques in vivo et élaboration d'un modèle in vitro hémodynamique, 2012.

D. Mcdonald, The relation of pulsatile pressure to flow in arteries, The Journal of Physiology, vol.127, issue.3, pp.533-552, 1955.
DOI : 10.1113/jphysiol.1955.sp005275

D. Mcdonald, Blood Flow in Arteries, The American Journal of the Medical Sciences, vol.245, issue.1, 1974.
DOI : 10.1097/00000441-196301000-00017

C. Mceniery, . Hall, . Qasem, J. Wilkinson, and . Cockcroft, Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity, Journal of the American College of Cardiology, vol.46, issue.9, pp.1753-1760, 2005.
DOI : 10.1016/j.jacc.2005.07.037

H. Mcgill, C. Mcmahan, . Herderick, . Malcom, J. Tracy et al., Origin of atherosclerosis in childhood and adolescence. The American journal of clinical nutrition, pp.1307-1315, 2000.

A. Melling, Tracer particles and seeding for particle image velocimetry, Measurement Science and Technology, vol.8, issue.12, p.1406, 1997.
DOI : 10.1088/0957-0233/8/12/005

J. Merillon, C. Motte, . Masquet, . Azancot, R. Guiomard et al., Relationship between physical properties of the arterial system and left ventricular performance in the course of aging and arterial hypertension, European Heart Journal, vol.3, issue.suppl A, pp.95-102, 1982.
DOI : 10.1093/eurheartj/3.suppl_A.95

E. Merrill, Rheology of blood, Physiol. Rev, vol.49, issue.4, pp.863-888, 1969.

H. Mohammed, N. Aswadi, R. Shuaib, and . Saidur, Convective heat transfer and fluid flow study over a step using nanofluids: A review, Renewable and Sustainable Energy Reviews, vol.15, issue.6, pp.2921-2939, 2011.
DOI : 10.1016/j.rser.2011.02.019

URL : http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S136403211100061X&originContentFamily=serial&_origin=article&_ts=1488569829&md5=5242059a91afa85a525c24af856b06d8

R. Mongrain, . Leask, . Brunette, N. Faik, T. Bulman-feleming et al., Numerical modeling of coronary drug eluting stents, Studies in health technology and informatics, vol.113, pp.443-458, 2004.

R. Mongrain, . Faik, . Leask, . Rod´crod´c, and . Bertrand, Effects of Diffusion Coefficients and Struts Apposition Using Numerical Simulations for Drug Eluting Coronary Stents, Journal of Biomechanical Engineering, vol.129, issue.5, pp.733-742, 2007.
DOI : 10.1115/1.2768381

C. Moreno and K. Bhaganagar, Modeling of stenotic coronary artery and implications of plaque morphology on blood flow. Modelling and Simulation in Engineering, p.14, 2013.

J. Murphy and F. Boyle, Comparison of stent designs using computational fluid dynamics, 2007.

M. Nichols, . Townsend, M. Scarborough, and . Rayner, Cardiovascular disease in Europe 2014: epidemiological update, European Heart Journal, vol.35, issue.42, p.299, 2014.
DOI : 10.1093/eurheartj/ehu299

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.654.3861

W. Nichols, M. O-'rourke, and C. Vlachopoulos, McDonald's blood flow in arteries : theoretical, experimental and clinical principles, 2011.

C. O-'brien, . Vb-kolachalama, . Barber, E. Simmons, and . Edelman, Impact of flow pulsatility on arterial drug distribution in stent-based therapy, Journal of Controlled Release, vol.168, issue.2, pp.115-124, 2013.
DOI : 10.1016/j.jconrel.2013.03.014

B. Connell and M. Walsh, Arterial mass transport behaviour of drugs from drug eluting stents, 2012.

B. Connell, M. Tm-mcgloughlin, and . Walsh, Factors that affect mass transport from drug eluting stents into the artery wall, BioMedical Engineering OnLine, vol.9, issue.1, p.15, 2010.
DOI : 10.1186/1475-925X-9-15

M. Oliveira, . Oliveira, M. Pinho, and . Alves, Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case, Journal of Non-Newtonian Fluid Mechanics, vol.147, issue.1-2, pp.92-108, 2007.
DOI : 10.1016/j.jnnfm.2007.07.009

I. Ozolanta, . Tetere, V. Purinya, and . Kasyanov, Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex, Medical Engineering & Physics, vol.20, issue.7, pp.523-533, 1998.
DOI : 10.1016/S1350-4533(98)00050-2

J. Palmaz, . Sibbitt, . Sr-reuter, F. Garcia, and . Tio, Expandable intrahepatic portacaval shunt stents: early experience in the dog, American Journal of Roentgenology, vol.145, issue.4, pp.821-825, 1985.
DOI : 10.2214/ajr.145.4.821

M. Papafaklis, C. Bourantas, C. Pe-theodorakis, D. Katsouras, L. Fotiadis et al., Relationship of shear stress with in-stent restenosis: Bare metal stenting and the effect of brachytherapy, International Journal of Cardiology, vol.134, issue.1, pp.25-32, 2009.
DOI : 10.1016/j.ijcard.2008.02.006

J. Peacock, C. Jones, R. Tock, and . Lutz, The onset of turbulence in physiological pulsatile flow in a straight tube, Experiments in Fluids, vol.24, issue.1, pp.1-9, 1998.
DOI : 10.1007/s003480050144

K. Pielhop, W. Klaas, and . Schröder, Experimental analysis of the fluid???structure interaction in finite-length straight elastic vessels, European Journal of Mechanics - B/Fluids, vol.50, pp.71-88, 2015.
DOI : 10.1016/j.euromechflu.2014.11.001

J. Poiseuille, Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, 1844.

G. Pontrelli and F. De-monte, A multi-layer porous wall model for coronary drug-eluting stents, International Journal of Heat and Mass Transfer, vol.53, issue.19-20, pp.3629-3637, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.031

J. Puel, . Lacapere, . Sabathier, . Schmitt, . Monassier et al., [coronary revascularization at the acute phase of myocardial infarction. short and median-term survival of 359 patients. multicenter study], Archives des maladies du coeur et des vaisseaux, vol.79, issue.4, pp.409-417, 1986.

M. Raffel, C. Willert, and J. Kompenhans, Particle image velocimetry : a practical guide, 2013.
DOI : 10.1007/978-3-662-03637-2

. Sv-ranade, . Miller, . Richard, . Chan, M. Mj-allen et al., Physical characterization of controlled release of paclitaxel from the taxus T M express 2T M drug-eluting stent, Journal of Biomedical Materials Research Part A, vol.71, issue.4, pp.625-634, 2004.

F. Rikhtegar, . Wyss, . Stok, . Poulikakos, V. Müller et al., Hemodynamics in coronary arteries with overlapping stents, Journal of Biomechanics, vol.47, issue.2, pp.505-511, 2014.
DOI : 10.1016/j.jbiomech.2013.10.048

URL : http://www.zora.uzh.ch/89363/1/Hemodynamics_in_coronary.pdf

C. Rogers and E. Edelman, Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis, Circulation, vol.91, issue.12, pp.912995-3001, 1995.
DOI : 10.1161/01.CIR.91.12.2995

R. Ross and J. Glomset, Atherosclerosis and the Arterial Smooth Muscle Cell, Science, vol.180, issue.4093, pp.1332-1339, 1973.
DOI : 10.1126/science.180.4093.1332

D. Sakharov, D. Kalachev, and . Rijken, Numerical Simulation of Local Pharmacokinetics of a Drug after Intravascular Delivery with an Eluting Stent, Journal of Drug Targeting, vol.10, issue.6, pp.507-513, 2002.
DOI : 10.1080/1061186021000038382

M. Sanmartín, C. Goicolea, . García, . García, . Crespo et al., Influence of Shear Stress on In-Stent Restenosis: In Vivo Study Using 3D Reconstruction and Computational Fluid Dynamics, Revista Espa??ola de Cardiolog??a (English Edition), vol.59, issue.1, pp.20-27, 2006.
DOI : 10.1016/S1885-5857(06)60044-3

G. Sarno, O. Lagerqvist, . Fröbert, G. Nilsson, . Olivecrona et al., Lower risk of stent thrombosis and restenosis with unrestricted use of ???new-generation??? drug-eluting stents: a report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR), European Heart Journal, vol.33, issue.5, pp.606-613, 2012.
DOI : 10.1093/eurheartj/ehr479

T. Sarpkaya, Experimental Determination of the Critical Reynolds Number for Pulsating Poiseuille Flow, Journal of Basic Engineering, vol.88, issue.3, p.589, 1966.
DOI : 10.1115/1.3645920

R. Schatz, J. Palmaz, . Tio, . Garcia, S. Garcia et al., Balloon-expandable intracoronary stents in the adult dog, Circulation, vol.76, issue.2, pp.450-457, 1987.
DOI : 10.1161/01.CIR.76.2.450

T. Seo, A. Schachter, and . Barakat, Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents, Annals of Biomedical Engineering, vol.103, issue.4, pp.444-456, 2005.
DOI : 10.1007/s10439-005-2499-y

T. Seo and . Barakat, The assessment of the performance of drug-eluting stent using computational fluid dynamics, Korea-Australia Rheology Journal, vol.21, issue.4, pp.281-288, 2009.

P. Serruys, . Strauss, . Beatt, . Bertrand, . Puel et al., Angiographic Follow-up after Placement of a Self-Expanding Coronary-Artery Stent, New England Journal of Medicine, vol.324, issue.1, pp.13-17, 1991.
DOI : 10.1056/NEJM199101033240103

T. Sharkawi, D. Leyni-barbaz, N. Chikh, and J. Mcmullen, Evaluation of the In Vitro Drug Release from Resorbable Biocompatible Coatings for Vascular Stents, Journal of Bioactive and Compatible Polymers, vol.46, issue.4, pp.153-168, 2005.
DOI : 10.1177/0883911505051661

D. Sibley, P. Millar, and . Whitlow, Subselective measurement of coronary blood flow velocity using a steerable doppler catheter, Clinical research A175?A175. Slack INC 6900 Grove RD, 1986.
DOI : 10.1016/S0735-1097(86)80305-9

T. Simard, . Hibbert, . Ramirez, . Froeschl, E. O. Chen et al., The Evolution of Coronary Stents: A Brief Review, Canadian Journal of Cardiology, vol.30, issue.1, pp.35-45, 2014.
DOI : 10.1016/j.cjca.2013.09.012

J. Sousa, M. Costa, . Sousa, . Abizaid, . Seixas et al., Two-Year Angiographic and Intravascular Ultrasound Follow-Up After Implantation of Sirolimus-Eluting Stents in Human Coronary Arteries, Circulation, vol.107, issue.3, pp.381-383, 2003.
DOI : 10.1161/01.CIR.0000051720.59095.6D

E. Sprague, J. Luo, and . Palmaz, Human Aortic Endothelial Cell Migration onto Stent Surfaces under Static and Flow Conditions, Journal of Vascular and Interventional Radiology, vol.8, issue.1, pp.83-92, 1997.
DOI : 10.1016/S1051-0443(97)70521-9

E. Stamhuis, Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows, Aquatic Ecology, vol.36, issue.12, pp.463-479, 2006.
DOI : 10.1007/s10452-005-6567-z

G. Stefanini and D. Holmes-jr, Drug-Eluting Coronary-Artery Stents, New England Journal of Medicine, vol.368, issue.3, pp.254-265, 2013.
DOI : 10.1056/NEJMra1210816

P. Stein, . Sabbah, E. Marzilli, and . Blick, Comparison of the distribution of intramyocardial pressure across the canine left ventricular wall in the beating heart during diastole and in the arrested heart. Evidence of epicardial muscle tone during diastole, Circulation Research, vol.47, issue.2, pp.258-267, 1980.
DOI : 10.1161/01.RES.47.2.258

D. Steinman and C. Taylor, Flow Imaging and Computing: Large Artery Hemodynamics, Annals of Biomedical Engineering, vol.35, issue.12, pp.1704-1709, 2005.
DOI : 10.1007/s10439-005-8772-2

J. Stettler and A. Hussain, On transition of the pulsatile pipe flow, Journal of Fluid Mechanics, vol.88, issue.-1, pp.169-197, 1986.
DOI : 10.1017/S0022112072000564

G. Stone, . Ellis, . Da-cox, C. O. Hermiller, . Shaughnessy et al., A Polymer-Based, Paclitaxel-Eluting Stent in Patients with Coronary Artery Disease, New England Journal of Medicine, vol.350, issue.3, pp.221-231, 2004.
DOI : 10.1056/NEJMoa032441

P. Stone, . Saito, Y. Takahashi, . Makita, . Nakamura et al., Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The PREDICTION Study, Circulation, vol.126, issue.2, p.112, 2012.
DOI : 10.1161/CIRCULATIONAHA.112.096438

J. Strony, . Beaudoin, B. Brands, and . Adelman, Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis, American Journal of Physiology-Heart and Circulatory Physiology, vol.265, issue.5, pp.1787-1796, 1993.

J. Stroud, D. Berger, and . Saloner, Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture, Journal of Biomechanics, vol.33, issue.4, pp.443-455, 2000.
DOI : 10.1016/S0021-9290(99)00207-9

A. Tajaddini, . Kilpatrick, E. Schoenhagen, . Tuzcu, D. Lieber et al., Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study, AJP: Heart and Circulatory Physiology, vol.288, issue.1, pp.250-255, 2005.
DOI : 10.1152/ajpheart.00646.2004

J. Tarbell, Mass transport in arteries and the localization of atherosclerosis. Annual review of biomedical engineering, pp.79-118, 2003.

R. Theunissen, M. Scarano, and . Riethmuller, An adaptive sampling and windowing interrogation method in PIV, Measurement Science and Technology, vol.18, issue.1, p.275, 2006.
DOI : 10.1088/0957-0233/18/1/034

R. Theunissen, M. Scarano, and . Riethmuller, Spatially adaptive PIV interrogation based on data ensemble, Experiments in Fluids, vol.15, issue.2, pp.875-887, 2010.
DOI : 10.1007/s00348-009-0782-7

A. Thury, . Wentzel, . Vinke, . Fjh-gijsen, . Schuurbiers et al., Focal In-Stent Restenosis Near Step-Up: Roles of Low and Oscillating Shear Stress?, Circulation, vol.105, issue.23, pp.185-187, 2002.
DOI : 10.1161/01.CIR.0000018282.32332.13

S. Tiari, M. Ahmadpour-b, M. Tafazzoli-shadpour, and M. Sadeghi, An experimental study of blood flow in a model of coronary artery with single and double stenoses, 2011 18th Iranian Conference of Biomedical Engineering (ICBME), pp.33-36, 2011.
DOI : 10.1109/ICBME.2011.6168580

R. Tominaga, . Kambic, . Emoto, . Harasaki, J. Sutton et al., Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits, American Heart Journal, vol.123, issue.1, pp.21-28, 1992.
DOI : 10.1016/0002-8703(92)90742-E

A. Tzafriri, . Vukmirovic, . Vb-kolachalama, E. Astafieva, and . Edelman, Lesion complexity determines arterial drug distribution after local drug delivery, Journal of Controlled Release, vol.142, issue.3, pp.332-338, 2010.
DOI : 10.1016/j.jconrel.2009.11.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994187

G. Vairo, . Cioffi, . Cottone, F. Dubini, and . Migliavacca, Drug release from coronary eluting stents: A multidomain approach, Journal of Biomechanics, vol.43, issue.8, pp.1580-1589, 2010.
DOI : 10.1016/j.jbiomech.2010.01.033

A. Valencia and L. Hinojosa, Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step. Heat and mass transfer, pp.143-148, 1997.

A. Velazquez, B. Arias, and . Mendez, Laminar heat transfer enhancement downstream of a backward facing step by using a pulsating flow, International Journal of Heat and Mass Transfer, vol.51, issue.7-8, pp.2075-2089, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.06.009

S. Venkatraman and F. Boey, Release profiles in drug-eluting stents: Issues and uncertainties, Journal of Controlled Release, vol.120, issue.3, pp.149-160, 2007.
DOI : 10.1016/j.jconrel.2007.04.022

H. Vernhet, . Demaria, . Juan, J. Mc-oliva-lauraire, M. Sénac et al., Changes in Wall Mechanics After Endovascular Stenting in the Rabbit Aorta, American Journal of Roentgenology, vol.176, issue.3
DOI : 10.2214/ajr.176.3.1760803

G. Watson, A Treatise on the Theory of Bessel Functions, The Mathematical Gazette, vol.18, issue.231, 1995.
DOI : 10.2307/3605513

J. Wentzel, . Krams, J. Schuurbiers, . Oomen, . Kloet et al., Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries, Circulation, vol.103, issue.13, pp.1740-1745, 2001.
DOI : 10.1161/01.CIR.103.13.1740

R. Wessely, A. Schömig, and . Kastrati, Sirolimus and Paclitaxel on Polymer-Based Drug-Eluting Stents, Journal of the American College of Cardiology, vol.47, issue.4, pp.708-714, 2006.
DOI : 10.1016/j.jacc.2005.09.047

R. Wilson, P. De-laughlin, W. Ackell, . Chilian, . Holida et al., Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man, Circulation, vol.72, issue.1, pp.82-92, 1985.
DOI : 10.1161/01.CIR.72.1.82

J. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, The Journal of Physiology, vol.127, issue.3, pp.553-563, 1955.
DOI : 10.1113/jphysiol.1955.sp005276

J. Womersley, XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube???I: The linear approximation for long waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.154, issue.9, pp.199-231, 1955.
DOI : 10.1121/1.1907335

G. Woolam, C. Schnur, H. Vallbona, and . Hoff, The Pulse Wave Velocity as an Early Indicator of Atherosclerosis in Diabetic Subjects, Circulation, vol.25, issue.3, pp.533-539, 1962.
DOI : 10.1161/01.CIR.25.3.533

D. Wootton and D. Ku, Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis, Annual Review of Biomedical Engineering, vol.1, issue.1, pp.299-329, 1999.
DOI : 10.1146/annurev.bioeng.1.1.299

R. Yin, J. Yang, and . Wu, Nanoparticle Drug- and Gene-eluting Stents for the Prevention and Treatment of Coronary Restenosis, Theranostics, vol.4, issue.2, p.175, 2014.
DOI : 10.7150/thno.7210

D. Young, Fluid Mechanics of Arterial Stenoses, Journal of Biomechanical Engineering, vol.101, issue.3, pp.157-175, 1979.
DOI : 10.1115/1.3426241

C. Zarins, . Dp-giddens, . Bharadvaj, . Vs-sottiurai, S. Mabon et al., Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circulation Research, vol.53, issue.4, pp.502-514, 1983.
DOI : 10.1161/01.RES.53.4.502

P. Zunino, Multidimensional Pharmacokinetic Models Applied to the Design of Drug-Eluting Stents, Cardiovascular Engineering, vol.4, issue.2, pp.181-191, 2004.
DOI : 10.1023/B:CARE.0000031547.39178.cb

P. Zunino, C. D. Angelo, C. Petrini, C. Vergara, F. Capelli et al., Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46
DOI : 10.1016/j.cma.2008.07.019