P. Adams, P. Afonine, G. Bunkóczi, V. Chen, I. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Cryst, vol.66, pp.213-221, 2010.

P. Barraud, E. Schmitt, Y. Mechulam, F. Dardel, and C. Tisne, A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis, Nucleic Acids Research, vol.36, issue.15, pp.4894-4901, 2008.
DOI : 10.1093/nar/gkn462

URL : https://hal.archives-ouvertes.fr/hal-00502059

R. Basavappa and P. Sigler, The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination, EMBO J, vol.10, pp.3105-3111, 1991.

D. Battle and J. Doudna, Specificity of RNA-RNA helix recognition, Proceedings of the National Academy of Sciences, vol.48, issue.1, pp.11676-11681, 2002.
DOI : 10.1002/(SICI)1097-0282(1998)48:1<3::AID-BIP2>3.0.CO;2-7

S. Chen, R. Byrne, E. Wood, and M. Cox, gene: a novel function involved in radiation resistance and double-strand break repair, Molecular Microbiology, vol.35, issue.5, pp.754-768, 2015.
DOI : 10.1111/mmi.12885

K. Datsenko and B. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.27, issue.2, pp.6640-6645, 2000.
DOI : 10.1093/nar/27.2.389

K. Diederichs and P. Karplus, Better models by discarding data?, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.7, pp.1215-1222, 2013.
DOI : 10.1107/S0907444913001121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689524

P. Durant and D. Davis, Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine, Journal of Molecular Biology, vol.285, issue.1, pp.115-131, 1999.
DOI : 10.1006/jmbi.1998.2297

S. Dutka, T. Meinnel, C. Lazennec, Y. Mechulam, and S. Blanquet, peptidyl-tRNA hydrolase, Nucleic Acids Research, vol.21, issue.17, pp.4025-4030, 1993.
DOI : 10.1093/nar/21.17.4025

P. Emsley, B. Lohkamp, W. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr, vol.66, pp.486-501, 2010.

D. Farruggio, J. Chaudhuri, U. Maitra, and U. Rajbhandary, The A1 x U72 base pair conserved in eukaryotic initiator tRNAs is important specifically for binding to the eukaryotic translation initiation factor eIF2., Molecular and Cellular Biology, vol.16, issue.8, pp.4248-4256, 1996.
DOI : 10.1128/MCB.16.8.4248

R. Giege, Toward a more complete view of tRNA biology, Nature Structural & Molecular Biology, vol.84, issue.10, pp.1007-1014, 2008.
DOI : 10.1073/pnas.0606449103

URL : https://hal.archives-ouvertes.fr/hal-00341708

J. Guillon, Y. Mechulam, S. Blanquet, and G. Fayat, Importance of formylability and anticodon stem sequence to give a tRNA(Met) an initiator identity in Escherichia coli., Journal of Bacteriology, vol.175, issue.14, pp.4507-4514, 1993.
DOI : 10.1128/jb.175.14.4507-4514.1993

J. Guillon, T. Meinnel, Y. Mechulam, C. Lazennec, S. Blanquet et al., Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNAfMet formyltransferase, Journal of Molecular Biology, vol.224, issue.2, pp.359-367, 1992.
DOI : 10.1016/0022-2836(92)91000-F

M. Guyer, R. Reed, J. Steitz, and K. Low, Identification of a Sex-factor-affinity Site in E. coli as ????, Cold Spring Harbor Symposia on Quantitative Biology, vol.45, issue.0, pp.135-140, 1981.
DOI : 10.1101/SQB.1981.045.01.022

H. Huang, H. Yoon, E. Hannig, and T. Donahue, GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces??cerevisiae, Genes & Development, vol.11, issue.18, pp.2396-2413, 1997.
DOI : 10.1101/gad.11.18.2396

S. Kapoor, G. Das, and U. Varshney, Crucial contribution of the multiple copies of the initiator tRNA genes in the fidelity of tRNA fMet selection on the ribosomal P-site in Escherichia coli, Nucleic Acids Research, vol.39, issue.1, pp.202-212, 2011.
DOI : 10.1093/nar/gkq760

L. Kapp, S. Kolitz, and J. Lorsch, Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation, RNA, vol.12, issue.5, pp.751-764, 2006.
DOI : 10.1261/rna.2263906

L. Kapp and J. Lorsch, GTP-dependent Recognition of the Methionine Moiety on Initiator tRNA by Translation Factor eIF2, Journal of Molecular Biology, vol.335, issue.4, pp.923-936, 2004.
DOI : 10.1016/j.jmb.2003.11.025

P. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, vol.65, issue.Pt 2, pp.1030-1033, 2012.
DOI : 10.1107/S0907444908037591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457925

T. Kenri, K. Kohno, N. Goshima, F. Imamoto, and Y. Kano, Construction and characterization of an Escherichia coli mutant with a deletion of the metZ gene encoding tRNA (f1Met), Gene, vol.103, pp.31-36, 1991.

S. Kolitz and J. Lorsch, Eukaryotic initiator tRNA: Finely tuned and ready for action, FEBS Letters, vol.7, issue.2, pp.396-404, 2010.
DOI : 10.1016/j.febslet.2009.11.047

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795131

A. Korostelev, S. Trakhanov, M. Laurberg, and H. Noller, Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements, Cell, vol.126, issue.6, pp.1065-1077, 2006.
DOI : 10.1016/j.cell.2006.08.032

C. Lee, B. Seong, and U. Ralbhandary, Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem, J Biol Chem, vol.266, pp.18012-18017, 1991.

X. Lu, H. Bussemaker, and W. Olson, DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Research, vol.43, p.142, 2015.
DOI : 10.1093/nar/gkv716

D. Mangroo and U. Rajbhandary, Mutants of Escherichia coli Initiator tRNA Defective in Initiation: EFFECTS OF OVERPRODUCTION OF METHIONYL-tRNA TRANSFORMYLASE AND THE INITIATION FACTORS IF2 AND IF3, Journal of Biological Chemistry, vol.270, issue.20, pp.12203-12209, 1995.
DOI : 10.1074/jbc.270.20.12203

C. Marck and H. Grosjean, tRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features, RNA, vol.8, issue.10, pp.1189-1232, 2002.
DOI : 10.1017/S1355838202022021

Y. Mechulam, L. Guillon, L. Yatime, S. Blanquet, and E. Schmitt, Protection-Based Assays to Measure Aminoacyl-tRNA Binding to Translation Initiation Factors, Methods Enzymol, vol.430, pp.265-281, 2007.
DOI : 10.1016/S0076-6879(07)30011-6

URL : https://hal.archives-ouvertes.fr/hal-00502061

P. Nissen, J. Ippolito, N. Ban, P. Moore, and T. Steitz, RNA tertiary interactions in the large ribosomal subunit: The A-minor motif, Proceedings of the National Academy of Sciences, vol.407, issue.6802, pp.4899-4903, 2001.
DOI : 10.1038/35030019

A. Rozov, N. Demeshkina, I. Khusainov, E. Westhof, M. Yusupov et al., Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code, Nature Communications, vol.336, p.10457, 2016.
DOI : 10.1038/ncomms10457

A. Rozov, N. Demeshkina, E. Westhof, M. Yusupov, and G. Yusupova, Structural insights into the translational infidelity mechanism, Nature Communications, vol.292, p.7251, 2015.
DOI : 10.1038/ncomms8251

J. Rudinger, R. Hillenbrandt, M. Sprinzl, and R. Giege, Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu, EMBO J, vol.15, pp.650-657, 1996.

W. Saenger, Principles of Nucleic Acid Structure, 1984.
DOI : 10.1007/978-1-4612-5190-3

L. Samhita, V. Nanjundiah, and U. Varshney, How Many Initiator tRNA Genes Does Escherichia coli Need?, Journal of Bacteriology, vol.196, issue.14, pp.2607-2615, 2014.
DOI : 10.1128/JB.01620-14

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097586

L. Samhita, S. Shetty, and U. Varshney, Unconventional initiator tRNAs sustain Escherichia coli, Proceedings of the National Academy of Sciences, vol.266, issue.27, pp.13058-13063, 2012.
DOI : 10.1016/j.jmb.2010.02.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420168

S. Sarkhel, A. Rich, and M. Egli, Water???Nucleobase ???Stacking???:?? H????? and Lone Pair????? Interactions in the Atomic Resolution Crystal Structure of an RNA Pseudoknot, Journal of the American Chemical Society, vol.125, issue.30, pp.8998-8999, 2003.
DOI : 10.1021/ja0357801

E. Schmitt, M. Panvert, S. Blanquet, and Y. Mechulam, Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet, The EMBO Journal, vol.286, issue.23, pp.6819-6826, 1998.
DOI : 10.1093/emboj/17.23.6819

E. Schmitt, M. Panvert, C. Lazennec-schurdevin, P. Coureux, J. Perez et al., Structure of the ternary initiation complex aIF2???GDPNP???methionylated initiator tRNA, Nature Structural & Molecular Biology, vol.430, issue.4, pp.450-454, 2012.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/hal-00764443

L. Schrodinger, The PyMOL Molecular Graphics System, Version 1, 2010.

M. Selmer, C. Dunham, M. Fvt, A. Weixlbaumer, S. Petry et al., Structure of the 70S Ribosome Complexed with mRNA and tRNA, Science, vol.313, issue.5795, pp.1935-1942, 2006.
DOI : 10.1126/science.1131127

J. Senecoff, P. Rossmeissl, and M. Cox, DNA recognition by the FLP recombinase of the yeast 2 ?? plasmid, Journal of Molecular Biology, vol.201, issue.2, pp.405-421, 1988.
DOI : 10.1016/0022-2836(88)90147-7

H. Shi and P. Moore, The crystal structure of yeast phenylalanine tRNA at 1.93 ??? resolution: A classic structure revisited, RNA, vol.6, issue.8, pp.1091-1105, 2000.
DOI : 10.1017/S1355838200000364

U. Von-pawel-rammingen, S. Astrom, and A. Bystrom, Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.12, issue.4, pp.1432-1442, 1992.
DOI : 10.1128/MCB.12.4.1432

L. Yatime, E. Schmitt, S. Blanquet, and Y. Mechulam, Functional Molecular Mapping of Archaeal Translation Initiation Factor 2, Journal of Biological Chemistry, vol.279, issue.16, pp.15984-15993, 2004.
DOI : 10.1074/jbc.M311561200

URL : https://hal.archives-ouvertes.fr/hal-00770710

J. Zhang and A. Ferre-d-'amare, Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA, Nature, vol.33, issue.7462, pp.363-366, 2013.
DOI : 10.1038/nature12440

G. Zubay, The isolation and fractionation of soluble ribonucleic acid, Journal of Molecular Biology, vol.4, issue.5, pp.347-356, 1962.
DOI : 10.1016/S0022-2836(62)80015-1

. De-plus, ils sont très similaires Le profil est décalé vers les positions +14 et +15. Cependant, les positions +12 et +13 restent présentes (figure 3.48 ci-dessus) Ces résultats nous indiquent (c) Fit of h44 (pink) into IC0-P OUT map is shown. The view shows that the structure of h44 from Pf-30S subunit (blue, PDB entry 4V6U 39 ) had to be remodeled to account for the density. (d) View showing how aIF2 subunits wrap the initiator tRNA in IC0-P OUT . The cryo-EM map is low-pass filtered to 8.5 Å. REFERENCES 1. Hershey Principles of translational control: an overview, Cold Spring Harb. Perspect. Biol, vol.4, p.11528, 2012.

A. G. Hinnebusch and J. Lorsch, The Mechanism of Eukaryotic Translation Initiation: New Insights and Challenges, Cold Spring Harbor Perspectives in Biology, vol.4, issue.10, p.11544, 2012.
DOI : 10.1101/cshperspect.a011544

R. J. Jackson, C. U. Hellen, and T. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nature Reviews Molecular Cell Biology, vol.4, issue.2, pp.113-127, 2010.
DOI : 10.1038/nrm2838

K. Asano, Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation, The EMBO Journal, vol.20, issue.9, pp.2326-2337, 2001.
DOI : 10.1093/emboj/20.9.2326

R. Majumdar, A. Bandyopadhyay, and U. Maitra, Mammalian Translation Initiation Factor eIF1 Functions with eIF1A and eIF3 in the Formation of a Stable 40 S Preinitiation Complex, Journal of Biological Chemistry, vol.278, issue.8, pp.6580-6587, 2003.
DOI : 10.1074/jbc.M210357200

T. V. Pestova, S. I. Borukhov, and C. Hellen, Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons, Nature, vol.394, issue.6696, pp.854-859, 1998.
DOI : 10.1038/29703

M. A. Algire, D. Maag, and J. R. Lorsch, Pi Release from eIF2, Not GTP Hydrolysis, Is the Step Controlled by Start-Site Selection during Eukaryotic Translation Initiation, Molecular Cell, vol.20, issue.2, pp.251-262, 2005.
DOI : 10.1016/j.molcel.2005.09.008

Y. N. Cheung, Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo, Genes & Development, vol.21, issue.10, pp.1217-1230, 2007.
DOI : 10.1101/gad.1528307

H. K. Huang, H. Yoon, E. M. Hannig, and T. Donahue, GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces??cerevisiae, Genes & Development, vol.11, issue.18, pp.2396-2413, 1997.
DOI : 10.1101/gad.11.18.2396

A. Unbehaun, S. I. Borukhov, C. U. Hellen, and T. Pestova, Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP, Genes & Development, vol.18, issue.24, pp.3078-3093, 2004.
DOI : 10.1101/gad.1255704

C. E. Aitken and J. R. Lorsch, A mechanistic overview of translation initiation in eukaryotes, Nature Structural & Molecular Biology, vol.16, issue.6, pp.568-576, 2012.
DOI : 10.1186/1752-0509-5-131

F. Voigts-hoffmann, S. Klinge, and N. Ban, Structural insights into eukaryotic ribosomes and the initiation of translation, Current Opinion in Structural Biology, vol.22, issue.6, pp.768-777, 2012.
DOI : 10.1016/j.sbi.2012.07.010

Y. Hashem, Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29, Cell, vol.153, issue.5, pp.1108-1119, 2013.
DOI : 10.1016/j.cell.2013.04.036

J. L. Llacer, Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex, Molecular Cell, vol.59, issue.3, pp.399-412, 2015.
DOI : 10.1016/j.molcel.2015.06.033

I. B. Lomakin and T. A. Steitz, The initiation of mammalian protein synthesis and mRNA scanning mechanism, Nature, vol.16, issue.7462, pp.307-311, 2013.
DOI : 10.1038/nsmb850

M. Weisser, F. Voigts-hoffmann, J. Rabl, M. Leibundgut, and N. Ban, The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A, Nature Structural & Molecular Biology, vol.37, issue.8, pp.1015-1017, 2013.
DOI : 10.1038/nsmb.2622

A. K. Saini, J. S. Nanda, J. R. Lorsch, and A. G. Hinnebusch, Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNAiMet binding to the ribosome, Genes & Development, vol.24, issue.1, pp.97-110, 2009.
DOI : 10.1101/gad.1871910

B. S. Shin, Initiation factor eIF2?? promotes eIF2???GTP???Met-tRNAiMet ternary complex binding to the 40S ribosome, Nature Structural & Molecular Biology, vol.318, issue.11, pp.1227-1234, 2011.
DOI : 10.1016/S0076-6879(07)30006-2

D. Hasenöhrl, A. Fabbretti, P. Londei, C. O. Gualerzi, and U. Bläsi, Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus, RNA, vol.15, issue.12, pp.2288-2298, 2009.
DOI : 10.1261/rna.1662609

S. H. Scheres, A Bayesian View on Cryo-EM Structure Determination, Journal of Molecular Biology, vol.415, issue.2, pp.406-418, 2012.
DOI : 10.1016/j.jmb.2011.11.010

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, Journal of Structural Biology, vol.180, issue.3, pp.519-530, 2012.
DOI : 10.1016/j.jsb.2012.09.006

T. Hussain, Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex, Cell, vol.159, issue.3, pp.597-607, 2014.
DOI : 10.1016/j.cell.2014.10.001

J. Rabl, M. Leibundgut, S. F. Ataide, A. Haag, and N. Ban, Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1, Science, vol.8, issue.4, pp.730-736, 2011.
DOI : 10.1016/S1097-2765(01)00356-2

E. Schmitt, Structure of the ternary initiation complex aIF2???GDPNP???methionylated initiator tRNA, Nature Structural & Molecular Biology, vol.430, issue.4, pp.450-454, 2012.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/hal-00764443

L. Yatime, E. Schmitt, S. Blanquet, and Y. Mechulam, Functional Molecular Mapping of Archaeal Translation Initiation Factor 2, Journal of Biological Chemistry, vol.279, issue.16, pp.15984-15993, 2004.
DOI : 10.1074/jbc.M311561200

URL : https://hal.archives-ouvertes.fr/hal-00770710

E. Stolboushkina, Crystal Structure of the Archaeal Translation Initiation Factor 2 in Complex with a GTP Analogue and Met-tRNAfMet, Journal of Molecular Biology, vol.425, issue.6, pp.989-998, 2013.
DOI : 10.1016/j.jmb.2012.12.023

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structural Switch of the ?? Subunit in an Archaeal aIF2???? Heterodimer, Structure, vol.14, issue.1, pp.119-128, 2006.
DOI : 10.1016/j.str.2005.09.020

URL : https://hal.archives-ouvertes.fr/hal-00502073

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states, Proceedings of the National Academy of Sciences, vol.54, issue.Pt 5, pp.18445-18450, 2007.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/hal-00767380

M. Naveau, Roles of yeast eIF2?? and eIF2?? subunits in the binding of the initiator methionyl-tRNA, Nucleic Acids Research, vol.41, issue.2, pp.1047-1057, 2013.
DOI : 10.1093/nar/gks1180

URL : https://hal.archives-ouvertes.fr/hal-00840386

A. V. Pisarev, Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex, Genes & Development, vol.20, issue.5, pp.624-636, 2006.
DOI : 10.1101/gad.1397906

C. A. Fekete, N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection, The EMBO Journal, vol.24, issue.6, pp.1602-1614, 2007.
DOI : 10.1038/sj.emboj.7601613

M. Selmer, Structure of the 70S Ribosome Complexed with mRNA and tRNA, Science, vol.313, issue.5795, pp.1935-1942, 2006.
DOI : 10.1126/science.1131127

T. M. Schmeing, The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA, Science, vol.18, issue.13, pp.688-694, 2009.
DOI : 10.1093/emboj/18.13.3800

M. Valle, Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process, The EMBO Journal, vol.21, issue.13, pp.3557-3567, 2002.
DOI : 10.1093/emboj/cdf326

K. S. Vassilenko, O. M. Alekhina, S. E. Dmitriev, I. N. Shatsky, and A. S. Spirin, Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation, Nucleic Acids Research, vol.39, issue.13, pp.5555-5567, 2011.
DOI : 10.1093/nar/gkr147

D. R. Dorris, F. L. Erickson, and E. M. Hannig, Mutations in GCD11, the structural gene for eIF-2 gamma in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis, EMBO J, vol.14, pp.2239-2249, 1995.

J. P. Armache, Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution, Nucleic Acids Research, vol.41, issue.2, pp.1284-1293, 2013.
DOI : 10.1093/nar/gks1259

G. Z. Yusupova, M. M. Yusupov, J. H. Cate, and H. Noller, The Path of Messenger RNA through the Ribosome, Cell, vol.106, issue.2, pp.233-241, 2001.
DOI : 10.1016/S0092-8674(01)00435-4

G. Erauso, Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent, Archives of Microbiology, vol.160, issue.5, pp.338-349, 1993.
DOI : 10.1007/BF00252219

Y. Mechulam, L. Guillon, L. Yatime, S. Blanquet, and E. Schmitt, Protection-Based Assays to Measure Aminoacyl-tRNA Binding to Translation Initiation Factors, Methods Enzymol, vol.430, pp.265-281, 2007.
DOI : 10.1016/S0076-6879(07)30011-6

URL : https://hal.archives-ouvertes.fr/hal-00502061

X. Li, Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nature Methods, vol.16, issue.6, pp.584-590, 2013.
DOI : 10.1038/nmeth.2472

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684049

S. Chen, High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy, Ultramicroscopy, vol.135, pp.24-35, 2013.
DOI : 10.1016/j.ultramic.2013.06.004

P. B. Rosenthal and R. Henderson, Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy, Journal of Molecular Biology, vol.333, issue.4, pp.721-745, 2003.
DOI : 10.1016/j.jmb.2003.07.013

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr, vol.66, pp.486-501, 2010.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

A. Amunts, Structure of the Yeast Mitochondrial Large Ribosomal Subunit, Science, vol.284, issue.1, pp.1485-1489, 2014.
DOI : 10.1016/0014-5793(91)80759-V

A. Brown, Structure of the large ribosomal subunit from human mitochondria, Science, vol.93, issue.6, pp.718-722, 2014.
DOI : 10.1016/S0092-8674(00)81203-9

F. Weis, Mechanism of eIF6 release from the nascent 60S ribosomal subunit, Nature Structural & Molecular Biology, vol.90, pp.914-919, 2015.
DOI : 10.1016/j.jmb.2007.05.022

URL : https://hal.archives-ouvertes.fr/hal-01220639

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

E. Stolboushkina, Crystal Structure of the Intact Archaeal Translation Initiation Factor 2 Demonstrates Very High Conformational Flexibility in the ??- and ??-Subunits, Journal of Molecular Biology, vol.382, issue.3, pp.680-691, 2008.
DOI : 10.1016/j.jmb.2008.07.039

R. 1. Nguyen and T. H. , The architecture of the spliceosomal U4/U6.U5 tri-snRNP, Nature, vol.3, issue.7558, pp.47-52, 2015.
DOI : 10.1038/nature14548

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1617, 2004.
DOI : 10.1002/jcc.20084

L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.3r1, 2010.

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states, Proceedings of the National Academy of Sciences, vol.54, issue.Pt 5, pp.18445-50, 2007.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/hal-00767380

E. Stolboushkina, Crystal Structure of the Intact Archaeal Translation Initiation Factor 2 Demonstrates Very High Conformational Flexibility in the ??- and ??-Subunits, Journal of Molecular Biology, vol.382, issue.3, pp.680-691, 2008.
DOI : 10.1016/j.jmb.2008.07.039

E. Dubiez, A. Aleksandrov, C. Lazennec-schurdevin, Y. Mechulam, and E. Schmitt, Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2, Nucleic Acids Research, vol.43, issue.5, pp.2946-2957, 2015.
DOI : 10.1093/nar/gkv053

URL : https://hal.archives-ouvertes.fr/hal-01223323

E. Schmitt, Structure of the ternary initiation complex aIF2???GDPNP???methionylated initiator tRNA, Nature Structural & Molecular Biology, vol.430, issue.4, pp.450-454, 2012.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/hal-00764443

M. Selmer, Structure of the 70S Ribosome Complexed with mRNA and tRNA, Science, vol.313, issue.5795, pp.1935-1942, 2006.
DOI : 10.1126/science.1131127

T. Hussain, Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex, Cell, vol.159, issue.3, pp.597-607, 2014.
DOI : 10.1016/j.cell.2014.10.001

S. Abyssi-et-ayant-une-région and . Forte, Un mélange d'hybridation (« annealing ») est constitué de volume final 2X µL, X étant le nombre d'expériences à réaliser. Pour 15 expériences par exemple, il faut prévoir un volume de 30µL de composition suivante : 1picomole d'ARNm purifié, 3pmoles d'oligonucléotide amorce, ) ; on complète à 30µL par de l'eau MQ. La solution est chauffée 3min à 60°C

. La-dernière-Étape-consiste-À-mélanger-les-différents-facteurs, Le volume final est de 10 µL par jeu de facteurs Le prémix est présent à raison de 4.5µL/expériences. S'ils sont présents, les facteurs aIF2, aIF1 et aIF1A de P. abyssi sont ajoutés à raison de 1µL/jeu après avoir été dilués à 2.5µM dans leur tampon de dilution (500mM NaCl, 10mM Hepes pH7.5, 10mM ?-mercaptoéthanol) Le Met-ARNt (élongateur ou initiateur), s'il est présent, est ajouté à raison d'1µL/expériences après avoir été dilué à 10µM dans de l'eau MQ. Le tout est incubé une première fois 10min à 51°C. Après l'ajout de 0

A. Oligonucléotide, ARNt cible. L'oligo est marqué en 3'-biotin et 5'-atto488. 2 à 3 adénosine sont rajoutées à l'extrémité 3' pour faciliter la liaison aux billes

S. Arnt-i, solfataricus : Biotin- AAATGGTAGCGGGGCCTGGATTTGAACCAGGGACCTCGGGGTTATGAGCCCCGCGGCCTTACCAGG CTAGCCCACCCCGCT-Atto488 ARNt m Met P

M. A. Algire, D. Maag, and J. R. Lorsch, Pi Release from eIF2, Not GTP Hydrolysis, Is the Step Controlled by Start-Site Selection during Eukaryotic Translation Initiation, Molecular Cell, vol.20, issue.2, pp.251-62, 2005.
DOI : 10.1016/j.molcel.2005.09.008

URL : http://doi.org/10.1016/j.molcel.2005.09.008

G. S. Allen, A. Zavialov, R. Gursky, M. Ehrenberg, and E. J. Frank, The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli, Cell, vol.121, issue.5, 2005.
DOI : 10.1016/j.cell.2005.03.023

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Basic Local Alignment Search Tool, pp.403-413, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

J. Anderson, L. Phan, R. Cuesta, B. A. Carlson, M. Pak et al., The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA, Genes & Development, vol.12, issue.23, pp.3650-62, 1998.
DOI : 10.1101/gad.12.23.3650

A. Antoun, M. Y. Pavlov, and K. Andersson, Tanel Tenson, et Måns Ehrenberg « The Roles of Initiation Factor 2 and Guanosine Triphosphate in Initiation of Protein Synthesis, The EMBO Journal, vol.22, issue.20, 2003.

J. P. Armache, A. M. Anger, V. Marquez, S. Franckenberg, T. Frohlich et al., Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution, Promiscuous Behaviour of Archaeal Ribosomal Proteins: Implications for Eukaryotic Ribosome Evolution, pp.1284-93, 2013.
DOI : 10.1093/nar/gks1259

N. Ban, R. Beckmann, H. Jamie, J. D. Cate, F. Dinman et al., A new system for naming ribosomal proteins, Current Opinion in Structural Biology, vol.24, 2014.
DOI : 10.1016/j.sbi.2014.01.002

P. Barraud, E. Schmitt, Y. Mechulam, F. Dardel, and C. Tisne, A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis, Nucleic Acids Research, vol.36, issue.15, pp.4894-4901, 2008.
DOI : 10.1093/nar/gkn462

URL : https://hal.archives-ouvertes.fr/hal-00502059

D. Bartig, K. Lemkemeier, J. Frank, F. Lottspeich, and E. F. Klink, The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A, European Journal of Biochemistry, vol.264, issue.2, pp.751-58, 1992.
DOI : 10.1016/0167-4781(90)90159-Y

J. L. Battiste, T. V. Pestova, C. U. Hellen, and E. G. Wagner, The eIF1A Solution Structure Reveals a Large RNA-Binding Surface Important for Scanning Function, Molecular Cell, vol.5, issue.1, pp.109-128, 2000.
DOI : 10.1016/S1097-2765(00)80407-4

D. J. Battle, J. A. Et, and . Doudna, Specificity of RNA-RNA helix recognition, Proceedings of the National Academy of Sciences, vol.48, issue.1, 2002.
DOI : 10.1002/(SICI)1097-0282(1998)48:1<3::AID-BIP2>3.0.CO;2-7

D. Benelli, E. Maone, and P. Londei, Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation, Molecular Microbiology, vol.4, issue.2, pp.635-678, 2003.
DOI : 10.1046/j.1365-2958.2003.03721.x

A. Ben-shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The Structure of the Eukaryotic Ribosome at 3.0 A Resolution, Science, vol.25, issue.24, 2011.
DOI : 10.1093/nar/25.24.4872

. Berk, W. Veysel, R. D. Zhang, J. H. Pai, J. H. Cate et al., Structural basis for mRNA and tRNA positioning on the ribosome, Proceedings of the National Academy of Sciences, vol.277, issue.5, pp.15830-15864, 2006.
DOI : 10.1016/S0092-8674(02)01086-3

V. Biou, F. Shu, and E. V. Ramakrishnan, « X-Ray Crystallography Shows That Translational Initiation Factor IF3 Consists of Two Compact Alpha/beta Domains Linked by an Alpha- Helix, The EMBO Journal, vol.14, issue.16, pp.4056-64, 1995.

G. Boileau, P. Butler, J. W. Hershey, and R. R. Traut, Direct crosslinks between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane, Direct Cross-Links between Initiation Factors 1, 2, and 3 and Ribosomal Proteins Promoted by 2-Iminothiolane, pp.3162-70, 1983.
DOI : 10.1021/bi00282a020

G. Borck, B. S. Shin, B. Stiller, A. Mimouni-bloch, H. Thiele et al., eIF2?? Mutation that Disrupts eIF2 Complex Integrity Links Intellectual Disability to Impaired Translation Initiation, Molecular Cell, vol.48, issue.4, pp.641-687, 2012.
DOI : 10.1016/j.molcel.2012.09.005

URL : http://doi.org/10.1016/j.molcel.2012.09.005

R. J. Britten, R. B. Et, and . Roberts, High-Resolution Density Gradient Sedimentation Analysis, Science, vol.131, issue.3392, 1960.
DOI : 10.1126/science.131.3392.32

J. W. Brown, C. J. Daniels, and J. N. Reeve, Gene Structure, Organization, And Expression In Archaebacteria, Gene Structure, Organization, and Expression in Archaebacteria, pp.287-338, 1989.
DOI : 10.1016/0092-8674(87)90358-8

C. J. Bult, O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann et al., Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii, Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii, pp.1058-73, 1996.
DOI : 10.1126/science.273.5278.1058

M. Bycroft, T. J. Hubbard, M. Proctor, S. M. Freund, and A. G. Murzin, The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid???Binding Fold, Cell, vol.88, issue.2, pp.235-277, 1997.
DOI : 10.1016/S0092-8674(00)81844-9

A. P. Carter, W. M. Clemons-jr, D. E. Brodersen, R. J. Morgan-warren, T. Hartsch et al., Crystal Structure of an Initiation Factor Bound to the 30S Ribosomal Subunit, Crystal structure of an initiation factor bound to the 30S ribosomal subunit, pp.498-501, 2001.
DOI : 10.1126/science.1057766

B. Castilho-valavicius, H. Yoon, and T. F. Donahue, « Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression, Genetics, vol.124, issue.3, pp.483-95, 1990.

Y. N. Cheung, D. Maag, S. F. Mitchell, C. A. Fekete, M. A. Algire et al., Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo, Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo, pp.1217-1247, 2007.
DOI : 10.1101/gad.1528307

A. M. Cigan, E. K. Pabich, L. Feng, and T. F. Donahue, Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares sequence identity with the human alpha subunit., Proc. Natl. Acad. Sci. USA, pp.2784-88, 1989.
DOI : 10.1073/pnas.86.8.2784

M. J. Clemens, U. A. Et, and . Bommer, Translational control: the cancer connection, The International Journal of Biochemistry & Cell Biology, vol.31, issue.1, pp.1-23, 1999.
DOI : 10.1016/S1357-2725(98)00127-7

M. J. Clemens, Does protein phosphorylation play a role in translational control by eukaryotic aminoacyl-tRNA synthetases?, Trends in Biochemical Sciences, vol.15, issue.5, pp.172-75, 1990.
DOI : 10.1016/0968-0004(90)90153-3

. Costa-mattioli, D. Mauro, E. Gobert, K. Stern, R. Gamache et al., « eIF2alpha Phosphorylation Bidirectionally Regulates the Switch from Short-to Long-Term Synaptic Plasticity and Memory », Cell, vol.129, issue.1, 2007.

G. M. Culver, G. M. Heilek, and H. F. Noller, Probing the rRNA environment of ribosomal protein S5 across the subunit interface and inside the 30 S subunit using tethered Fe(II), Journal of Molecular Biology, vol.286, issue.2, pp.355-64, 1999.
DOI : 10.1006/jmbi.1998.2483

G. M. Culver and H. F. Noller, Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins, RNA, vol.5, issue.6, pp.832-875, 1999.
DOI : 10.1017/S1355838299990714

H. S. Cummings, J. W. Et, and . Hershey, Translation initiation factor IF1 is essential for cell viability in Escherichia coli., Journal of Bacteriology, vol.176, issue.1, pp.198-205, 1994.
DOI : 10.1128/jb.176.1.198-205.1994

K. D. Dahlquist, J. D. Et, and . Puglisi, Interaction of translation initiation factor IF1 with the E. coli ribosomal A site, Journal of Molecular Biology, vol.299, issue.1, 2000.
DOI : 10.1006/jmbi.2000.3672

A. Dallas and H. F. Noller, Interaction of Translation Initiation Factor 3 with the 30S Ribosomal Subunit, Molecular Cell, vol.8, issue.4, pp.855-64, 2001.
DOI : 10.1016/S1097-2765(01)00356-2

K. A. Datsenko, B. L. Et, and . Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.27, issue.2, pp.6640-6685, 2000.
DOI : 10.1093/nar/27.2.389

D. Bellis, D. , D. Liveris, D. Goss, S. Ringquist et al., Structure-function analysis of Escherichia coli translation initiation factor IF3: tyrosine 107 and lysine 110 are required for ribosome binding, Biochemistry, vol.31, issue.48, pp.11984-90, 1992.
DOI : 10.1021/bi00163a005

E. De-cock, M. Springer, and E. F. Dardel, The interdomain linker of Escherichia coli initiation factor IF3: a possible trigger of translation initiation specificity, Molecular Microbiology, vol.86, issue.1, pp.193-202, 1999.
DOI : 10.1021/bi971185y

G. L. Dettman, W. M. Et, and . Stanley, Recognition of eukaryotic initiator tRNA by an initiation factor and the transfer of the methionine moiety into peptide linkage, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, vol.287, issue.1, pp.124-157, 1972.
DOI : 10.1016/0005-2787(72)90336-X

T. F. Donahue, A. M. Cigan, E. K. Pabich, and B. C. Valavicius, Mutations at a Zn(II) finger motif in the yeast elF-2?? gene alter ribosomal start-site selection during the scanning process, Cell, vol.54, issue.5, pp.621-653, 1988.
DOI : 10.1016/S0092-8674(88)80006-0

D. R. Dorris, F. L. Erickson, and E. M. Hannig, « Mutations in GCD11, the structural gene for eIF-2 gamma in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis », EMBO J, vol.14, issue.10, pp.2239-2288, 1995.

F. L. Erickson, E. M. Et, and . Hannig, « Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit », EMBO J, vol.15, issue.22, pp.6311-6320, 1996.

C. A. Fekete, D. J. Applefield, S. A. Blakely, N. Shirokikh, T. Pestova et al., The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo, The EMBO Journal, vol.21, issue.20, pp.3588-3601, 2005.
DOI : 10.1128/MCB.24.21.9437-9455.2004

C. M. Fletcher, T. V. Pestova, C. U. Hellen, and E. G. Wagner, Structure and interactions of the translation initiation factor eIF1, The EMBO Journal, vol.18, issue.9, pp.2631-2668, 1999.
DOI : 10.1093/emboj/18.9.2631

C. Garcia, P. L. Fortier, S. Blanquet, J. Y. Lallemand, and E. F. Dardel, 1H and 15N Resonance Assignments and Structure of the N-Terminal Domain of Escherichia coli Initiation Factor 3, 1H and 15N Resonance Assignments and Structure of the N-Terminal Domain of Escherichia Coli Initiation Factor 3, pp.395-402, 1995.
DOI : 10.1107/S0021889891004399

C. Garcia, P. L. Fortier, S. Blanquet, J. Y. Lallemand, and E. F. Dardel, Solution Structure of the Ribosome-binding Domain ofE. coliTranslation Initiation Factor IF3. Homology with the U1A Protein of the Eukaryotic Spliceosome, Journal of Molecular Biology, vol.254, issue.2, pp.247-59, 1995.
DOI : 10.1006/jmbi.1995.0615

B. J. Greber, P. Bieri, M. Leibundgut, A. Leitner, R. Aebersold et al., The complete structure of the 55S mammalian mitochondrial ribosome, Science, vol.60, issue.Pt 12 Pt 1, 2015.
DOI : 10.1107/S0907444904026460

R. Green and H. F. Noller, « Reconstitution of Functional 50S Ribosomes from in Vitro Transcripts of Bacillus Stearothermophilus 23S rRNA », Biochemistry, vol.38, issue.6, 1999.

C. O. Gualerzi, M. Severini, R. Spurio, A. L. Teana, and C. L. Pon, « Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains, J. Biol. Chem, issue.25, pp.266-16356, 1991.

C. O. Gualerzi, R. Spurio, A. L. Teana, R. Calogero, B. Celano et al., translation initiation factor IF1. Identification of the amino acids involved in its ribosomal binding and recycling, Identification of the Amino Acid Involved in Its Ribosomal Binding and Recycling, pp.133-171, 1989.
DOI : 10.1093/protein/3.2.133

C. Gualerzi, G. Risuleo, and C. L. Pon, Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3, Biochemistry, vol.16, issue.8, pp.1684-89, 1977.
DOI : 10.1021/bi00627a025

J. M. Guillon, S. Heiss, J. Soutourina, Y. Mechulam, S. Laalami et al., « Interplay of Methionine tRNAs with Translation Elongation Factor Tu and Translation Initiation Factor 2 in Escherichia Coli », J Biol Chem, vol.271, issue.37, pp.22321-22346, 1996.

J. M. Guillon, Y. Mechulam, S. Blanquet, and E. G. Fayat, Importance of formylability and anticodon stem sequence to give a tRNA(Met) an initiator identity in Escherichia coli., Journal of Bacteriology, vol.175, issue.14, pp.4507-4521, 1993.
DOI : 10.1128/jb.175.14.4507-4514.1993

J. M. Guillon, Y. Mechulam, J. M. Schmitter, S. Blanquet, and E. G. Fayat, Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli., Journal of Bacteriology, vol.174, issue.13, pp.4294-4301, 1992.
DOI : 10.1128/jb.174.13.4294-4301.1992

J. Harms, F. Schluenzen, R. Zarivach, A. Bashan, S. Gat et al., High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium, High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium, pp.679-88, 2001.
DOI : 10.1016/S0092-8674(01)00546-3

D. Hartz, J. Binkley, T. Hollingsworth, and E. L. Gold, Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3., Domains of Initiator tRNA and Initiation Codon Crucial for Initiator tRNA Selection by Escherichia Coli IF3, pp.1790-1800, 1990.
DOI : 10.1101/gad.4.10.1790

D. Hasenöhrl, D. Benelli, A. Barbazza, P. Londei, and E. U. Bläsi, Sulfolobus solfataricus translation initiation factor 1 stimulates translation initiation complex formation, RNA, vol.12, issue.4, 2006.
DOI : 10.1261/rna.2289306

D. Hasenöhrl, A. Fabbretti, P. Londei, C. O. Gualerzi, and E. U. Bläsi, Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus, RNA, vol.15, issue.12, 2009.
DOI : 10.1261/rna.1662609

A. G. Hinnebusch, Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2, Molecular Microbiology, vol.86, issue.2, pp.215-238, 1993.
DOI : 10.1111/j.1365-2958.1993.tb01947.x

A. G. Hinnebusch, J. R. Et, and . Lorsch, The Mechanism of Eukaryotic Translation Initiation: New Insights and Challenges, Cold Spring Harbor Perspectives in Biology, vol.4, issue.10, 2012.
DOI : 10.1101/cshperspect.a011544

L. Holmberg and H. F. Noller, Mapping the ribosomal RNA neighborhood of protein L11 by directed hydroxyl radical probing, Journal of Molecular Biology, vol.289, issue.2, 1999.
DOI : 10.1006/jmbi.1999.2706

H. K. Huang, H. Yoon, E. M. Hannig, and T. F. Donahue, GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces??cerevisiae, Genes & Development, vol.11, issue.18, pp.2396-2413, 1997.
DOI : 10.1101/gad.11.18.2396

L. Jovine, S. Djordjevic, and D. Rhodes, The crystal structure of yeast phenylalanine tRNA at 2.0 ?? resolution: cleavage by Mg2+ in 15-year old crystals, Journal of Molecular Biology, vol.301, issue.2, pp.401-415, 2000.
DOI : 10.1006/jmbi.2000.3950

L. D. Kapp, S. E. Kolitz, and J. R. Lorsch, Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation, RNA, vol.12, issue.5, 2006.
DOI : 10.1261/rna.2263906

M. A. Kasperaitis, H. O. Voorma, and A. A. Thomas, The amino acid sequence of eukaryotic translation initiation factor 1 and its similarity to yeast initiation factor SUI1, FEBS Letters, vol.2, issue.1, pp.47-50, 1995.
DOI : 10.1016/0014-5793(95)00427-B

H. Khatter, A. G. Myasnikov, S. Kundhavai-natchiar, P. Bruno, and . Klaholz, Structure of the human 80S ribosome, Structure of the Human 80S Ribosome, pp.640-685, 2015.
DOI : 10.1038/nature14427

M. Kozak, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucleic Acids Research, vol.9, issue.20, pp.5233-52, 1981.
DOI : 10.1093/nar/9.20.5233

M. Kozak, Pushing the limits of the scanning mechanism for initiation of translation, Gene, vol.299, issue.1-2, pp.1-34, 2002.
DOI : 10.1016/S0378-1119(02)01056-9

J. H. Kycia, V. Biou, F. Shu, S. E. Gerchman, V. Graziano et al., Prokaryotic Translation Initiation Factor IF3 Is an Elongated Protein Consisting of Two Crystallizable Domains, Biochemistry, vol.34, issue.18, pp.6183-87, 1995.
DOI : 10.1021/bi00018a022

N. C. Kyrpides, C. R. Et, and . Woese, Universally conserved translation initiation factors, Proc. Natl. Acad. Sci. USA, pp.224-232, 1998.
DOI : 10.1093/nar/19.22.6215

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18182

C. P. Lee, B. L. Seong, and U. L. Ralbhandary, Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem, J. Biol. Chem, issue.27, pp.266-18012, 1991.

D. H. Levin, D. Kyner, and E. G. Acs, Messenger activity in mammalian cell-free extracts of reovirus single-stranded RNA prepared in vitro, Biochemical and Biophysical Research Communications, vol.42, issue.3, pp.454-61, 1971.
DOI : 10.1016/0006-291X(71)90392-5

S. Li, N. V. Kumar, U. Varsney, and U. L. Rajbhandary, Important Role of the Amino Acid Attached to tRNA in Formylation and in Initiation of Protein Synthesis in Escherichia coli, Journal of Biological Chemistry, vol.271, issue.2, pp.1022-1050, 1996.
DOI : 10.1074/jbc.271.2.1022

I. B. Lomakin, V. G. Kolupaeva, A. Marintchev, G. Wagner, and T. V. Pestova, Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing, Genes & Development, vol.17, issue.22, pp.2786-97, 2003.
DOI : 10.1101/gad.1141803

I. B. Lomakin, T. A. Et, and . Steitz, The initiation of mammalian protein synthesis and mRNA scanning mechanism, Nature, vol.16, issue.7462, 2013.
DOI : 10.1038/nsmb850

J. Lorsch, T. Et, and . Dever, Molecular View of 43 S Complex Formation and Start Site Selection in Eukaryotic Translation Initiation, Journal of Biological Chemistry, vol.285, issue.28, 2010.
DOI : 10.1074/jbc.R110.119743

D. Maag, M. A. Algire, and J. R. Lorsch, Communication between Eukaryotic Translation Initiation Factors 5 and 1A within the Ribosomal Pre-initiation Complex Plays a Role in Start Site Selection, Journal of Molecular Biology, vol.356, issue.3, pp.724-761, 2006.
DOI : 10.1016/j.jmb.2005.11.083

D. Maag, C. A. Fekete, Z. Gryczynski, and J. R. Lorsch, A Conformational Change in the Eukaryotic Translation Preinitiation Complex and Release of eIF1 Signal Recognition of the Start Codon, Molecular Cell, vol.17, issue.2, pp.265-75, 2005.
DOI : 10.1016/j.molcel.2004.11.051

D. Maag, J. R. Et, and . Lorsch, Communication Between Eukaryotic Translation Initiation Factors 1 and 1A on the Yeast Small Ribosomal Subunit, Journal of Molecular Biology, vol.330, issue.5, pp.917-941, 2003.
DOI : 10.1016/S0022-2836(03)00665-X

N. Mandal, U. L. Et, and . Rajbhandary, Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12., Journal of Bacteriology, vol.174, issue.23, pp.7827-7857, 1992.
DOI : 10.1128/jb.174.23.7827-7830.1992

C. Marck and H. Grosjean, tRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features, RNA, vol.8, issue.10, pp.1189-1232, 2002.
DOI : 10.1017/S1355838202022021

A. Marintchev, V. G. Kolupaeva, T. V. Pestova, and G. Wagner, Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: A new interaction between old partners, Proceedings of the National Academy of Sciences, vol.292, issue.5518, 2003.
DOI : 10.1126/science.1060089

P. Martin-marcos, J. Nanda, R. E. Luna, G. Wagner, J. R. Lorsch et al., « Beta- Hairpin Loop of eIF1 Mediates 40S Ribosome Binding to Regulate Initiator tRNAMet Recruitment and Accuracy of AUG Selection in Vivo, J. Biol. Chem, 2013.

P. Milón, C. Maracci, L. Filonava, C. O. Gualerzi, and M. V. Rodnina, Real-time assembly landscape of bacterial 30S translation initiation complex, Nature Structural & Molecular Biology, vol.257, issue.6, 2012.
DOI : 10.1073/pnas.92.6.1945

S. F. Mitchell and J. R. Lorsch, Should I Stay or Should I Go? Eukaryotic Translation Initiation Factors 1 and 1A Control Start Codon Recognition, Journal of Biological Chemistry, vol.283, issue.41, pp.27345-27394, 2008.
DOI : 10.1074/jbc.R800031200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562056

D. Moazed, R. R. Samaha, C. Gualerzi, and H. F. Noller, « Specific Protection of 16 S rRNA by Translational Initiation Factors », Journal of Molecular Biology, vol.248, issue.2, pp.207-217, 1995.

M. Moreau, E. De-cock, P. L. Fortier, C. Garcia, C. Albaret et al., Heteronuclear NMR studies of E. coli translation initiation factor IF3. evidence that the inter-domain region is disordered in solution 1 1 Edited by K. Nagai, Journal of Molecular Biology, vol.266, issue.1, pp.15-22, 1997.
DOI : 10.1006/jmbi.1996.0756

J. M. Moreno, L. Drskjøtersen, J. E. Kristensen, K. K. Mortensen, and H. U. Sperling-petersen, initiation factor IF2 responsible for recognition of the ribosome, Characterization of the Domains of E. Coli Initiation Factor IF2 Responsible for Recognition of the Ribosome, pp.130-164, 1999.
DOI : 10.1016/S0014-5793(99)00858-3

P. Nissen, J. A. Ippolito, N. Ban, P. B. Moore, and T. A. Steitz, RNA tertiary interactions in the large ribosomal subunit: The A-minor motif, Proceedings of the National Academy of Sciences, vol.407, issue.6802, pp.4899-4903, 2001.
DOI : 10.1038/35030019

C. L. Olsson, M. Graffe, M. Springer, and J. W. Hershey, « Physiological Effects of Translation Initiation Factor IF3 and Ribosomal Protein L20 Limitation in Escherichia Coli, Molecular & General Genetics: MGG, vol.250, issue.6, pp.705-719, 1996.

M. Panvert, E. Dubiez, L. Arnold, J. Perez, Y. Mechulam et al., Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features, Structure, vol.23, issue.9, 1993.
DOI : 10.1016/j.str.2015.06.014

URL : https://hal.archives-ouvertes.fr/hal-01222821

L. A. Passmore, T. M. Schmeing, D. Maag, D. J. Applefield, M. G. Acker et al., The Eukaryotic Translation Initiation Factors eIF1 and eIF1A Induce an Open Conformation of the 40S Ribosome, The Eukaryotic Translation Initiation Factors eIF1 and eIF1A Induce an Open Conformation of the 40S Ribosome, pp.41-50, 2007.
DOI : 10.1016/j.molcel.2007.03.018

T. V. Pestova, S. I. Borukhov, and C. U. Hellen, « Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons », Nature, vol.394, issue.6696, pp.854-863, 1998.
DOI : 10.1038/29703

T. V. Pestova, V. G. Et, and . Kolupaeva, The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection, Genes & Development, vol.16, issue.22, pp.2906-2928, 2002.
DOI : 10.1101/gad.1020902

D. Petrelli, A. Lateana, C. Garofalo, R. Spurio, C. L. Pon et al., Translation initiation factor IF3: two domains, five functions, one mechanism?, The EMBO Journal, vol.20, issue.16, 2001.
DOI : 10.1093/emboj/20.16.4560

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125572

C. L. Pon, M. Paci, R. T. Pawlik, and C. O. Gualerzi, « Structure-Function Relationship in Escherichia Coli Initiation Factors. Biochemical and Biophysical Characterization of the Interaction between IF-2 and Guanosine Nucleotides, The Journal of Biological Chemistry, vol.260, issue.15, pp.8918-8942, 1985.

J. Rabl, M. Leibundgut, S. F. Ataide, A. Haag, and E. N. Ban, Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1, Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1, pp.730-766, 2011.
DOI : 10.1016/S1097-2765(01)00356-2

V. Ramakrishnan, Ribosome Structure and the Mechanism of Translation, Ribosome Structure and the Mechanism of Translation, pp.557-72, 2002.
DOI : 10.1016/S0092-8674(02)00619-0

J. D. Robertus, J. E. Ladner, J. T. Finch, D. Rhodes, R. S. Brown et al., Structure of yeast phenylalanine tRNA at 3 ??? resolution, Structure of Yeast Phenylalanine tRNA at 3 A Resolution, pp.546-51, 1974.
DOI : 10.1038/250546a0

C. Sacerdot, G. Fayat, P. Dessen, M. Springer, J. A. Plumbridge et al., « Sequence of a 1.26-Kb DNA Fragment Containing the Structural Gene for E.coli Initiation Factor IF3: Presence of an AUU Initiator Codon, The EMBO Journal, vol.1, issue.3, pp.311-326, 1982.

A. K. Saini, J. S. Nanda, J. R. Lorsch, and A. G. Hinnebusch, « Regulatory Elements in eIF1A Control the Fidelity of Start Codon Selection by Modulating tRNA(i)(Met) Binding to the Ribosome, Genes Dev, vol.24, issue.1, 2009.

J. F. Sands, H. S. Cummings, C. Sacerdot, L. Dondon, M. Grunberg-manago et al., , the gene for protein synthesis initiation factor IFI, Nucleic Acids Research, vol.15, issue.13, pp.5157-68, 1987.
DOI : 10.1093/nar/15.13.5157

URL : http://doi.org/10.1093/nar/15.13.5157

E. Schmitt, M. Naveau, and Y. Mechulam, Eukaryotic and archaeal translation initiation factor 2: A heterotrimeric tRNA carrier, FEBS Letters, vol.20, issue.2, 2010.
DOI : 10.1016/j.febslet.2009.11.002

URL : https://hal.archives-ouvertes.fr/hal-00498253

E. Schmitt, M. Panvert, S. Blanquet, and Y. Mechulam, Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet, The EMBO Journal, vol.286, issue.23, pp.6819-6845, 1998.
DOI : 10.1093/emboj/17.23.6819

E. Schmitt, M. Panvert, C. Lazennec-schurdevin, P. D. Coureux, J. Perez et al., Structure of the ternary initiation complex aIF2???GDPNP???methionylated initiator tRNA, Structure of the Ternary Initiation Complex aIF2-GDPNP-Methionylated Initiator tRNA, pp.450-54, 2012.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/hal-00764443

M. H. Schreier, B. Erni, and E. T. Staehelin, Initiation of mammalian protein synthesis, Journal of Molecular Biology, vol.116, issue.4, pp.727-53, 1977.
DOI : 10.1016/0022-2836(77)90268-6

M. H. Schreier, T. Et, and . Staehelin, Initiation of Eukaryotic Protein Synthesis: [Met-tRNAf.40S Ribosome] Initiation Complex Catalysed by Purified Initiation Factors in the Absence of mRNA, Nature New Biology, vol.242, issue.115, pp.35-38, 1973.
DOI : 10.1038/newbio242035a0

L. Schrodinger, « The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1, 2010.

M. Selmer, C. M. Dunham, F. V. Murphy, A. Weixlbaumer, S. Petry et al., Structure of the 70S Ribosome Complexed with mRNA and tRNA, Structure of the 70S Ribosome Complexed with mRNA and tRNA, pp.1935-1977, 2006.
DOI : 10.1126/science.1131127

B. L. Seong, U. L. Et, and . Rajbhandary, Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop., Proceedings of the National Academy of Sciences of the, pp.334-372, 1987.
DOI : 10.1073/pnas.84.2.334

M. Sette, P. Van-tilborg, R. Spurio, R. Kaptein, M. Paci et al., The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif, The EMBO Journal, vol.16, issue.6, pp.1436-1479, 1997.
DOI : 10.1093/emboj/16.6.1436

H. Shi, P. B. Et, and . Moore, The crystal structure of yeast phenylalanine tRNA at 1.93 ??? resolution: A classic structure revisited, RNA, vol.6, issue.8, pp.1091-1105, 2000.
DOI : 10.1017/S1355838200000364

J. Shine, L. Et, and . Dalgarno, The 3'-Terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites, Proceedings of the National Academy of Sciences of the United States of America, pp.1342-1388, 1974.
DOI : 10.1073/pnas.71.4.1342

E. A. Stringer, P. Sarkar, and E. U. Maitra, « Function of Initiation Factor 1 in the Binding and Release of Initiation Factor 2 from Ribosomal Initiation Complexes in Escherichia Coli, The Journal of Biological Chemistry, vol.252, issue.5, pp.1739-1783, 1977.

F. L. Suddath, G. J. Quigley, A. Mc-pherson, D. Sneden, J. J. Kim et al., Three-dimensional structure of yeast phenylalanine transfer RNA at 3. 0??? resolution, Threedimensional structure of Yeast phenylalanine transfer RNA at 3.0 Å resolution, pp.20-24, 1974.
DOI : 10.1038/248020a0

R. Sundari, L. Stringer, L. Schulman, and E. U. Maitra, « Interaction of initiation factor 2 with initiator tRNA, J. Biol. Chem, vol.251, pp.3338-3383, 1976.

A. Thomas, H. Goumans, H. O. Voorma, and E. R. Benne, The Mechanism of Action of Eukaryotic Initiation Factor 4C in Protein Synthesis, European Journal of Biochemistry, vol.60, issue.1, pp.39-45, 1980.
DOI : 10.1016/0003-2697(72)90183-2

J. Tomsic, L. A. Vitali, T. Daviter, A. Savelsbergh, R. Spurio et al., Late events of translation initiation in bacteria: a kinetic analysis, The EMBO Journal, vol.19, issue.9, 2000.
DOI : 10.1093/emboj/19.9.2127

H. Trachsel, B. Erni, M. H. Schreier, and E. T. Staehelin, Initiation of mammalian protein synthesis, Journal of Molecular Biology, vol.116, issue.4, pp.755-67, 1977.
DOI : 10.1016/0022-2836(77)90269-8

A. Tsai, A. Petrov, R. A. Marshall, J. Korlach, S. Uemura et al., Heterogeneous pathways and timing of factor departure during translation initiation, Nature, vol.487, issue.7407, pp.390-93
DOI : 10.1038/nsmb831

L. Valásek, K. H. Nielsen, F. Zhang, C. A. Fekete, and A. G. Hinnebusch, Interactions of Eukaryotic Translation Initiation Factor 3 (eIF3) Subunit NIP1/c with eIF1 and eIF5 Promote Preinitiation Complex Assembly and Regulate Start Codon Selection, Molecular and Cellular Biology, vol.24, issue.21, 2004.
DOI : 10.1128/MCB.24.21.9437-9455.2004

F. Voigts-hoffmann, S. Klinge, and E. N. Ban, Structural insights into eukaryotic ribosomes and the initiation of translation, Current Opinion in Structural Biology, vol.22, issue.6, 2012.
DOI : 10.1016/j.sbi.2012.07.010

C. L. Wei, S. E. Macmillan, and J. W. Hershey, « Protein Synthesis Initiation Factor eIF-1A Is a Moderately Abundant RNA-Binding Protein, The Journal of Biological Chemistry, vol.270, issue.11, pp.5764-71, 1995.

J. Weiel, J. W. Et, and . Hershey, « The Binding of Fluorescein-Labeled Protein Synthesis Initiation Factor 2 to Escherichia Coli 30 S Ribosomal Subunits Determined by Fluorescence Polarization, The Journal of Biological Chemistry, vol.257, issue.3, pp.1215-1235, 1982.

E. Westhof, P. Dumas, and E. D. Moras, Crystallographic refinement of yeast aspartic acid transfer RNA, Journal of Molecular Biology, vol.184, issue.1, pp.119-164, 1985.
DOI : 10.1016/0022-2836(85)90048-8

N. P. Williams, A. G. Hinnebusch, and T. F. Donahue, Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA., Proceedings of the National Academy of Sciences of the United States of America, pp.7515-7534, 1989.
DOI : 10.1073/pnas.86.19.7515

W. Wintermeyer, C. Et, and . Gualerzi, Effect of Escherichia coli initiation factors on the kinetics of N-AcPhe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study, Biochemistry, vol.22, issue.3, pp.690-94, 1983.
DOI : 10.1021/bi00272a025

C. R. Woese, G. E. Et, and . Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.5088-90, 1977.
DOI : 10.1177/026327640602300263

H. J. Yoon, T. F. Et, and . Donahue, The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon., Molecular and Cellular Biology, vol.12, issue.1, pp.248-60, 1992.
DOI : 10.1128/MCB.12.1.248

M. M. Yusupov, G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest et al., Crystal Structure of the Ribosome at 5.5 A Resolution, Crystal structure of the ribosome at 5.5 A resolution, pp.883-96, 2001.
DOI : 10.1126/science.1060089