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1.6.1 Réseaux électriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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General introduction

Context

The challenges concerning the energy resources limitation, the provision of available fossil fuel
sources and environmental issues linked to the greenhouse gases increment enforce human be-
ings to investigate the sustainable solutions. Renewable Energy Sources (RES) such as wind,
solar, geothermal, hydropower, biomass and biofuels are the leading sustainable solutions. Con-
cerning the environmental challenges and CO2 emissions the transportation sector is the major
producer after the energy producers (e.g. power generation plants and industries).

In addition, the transition from conventional internal combustion engine to electric machine
for vehicle’s propulsion system, in the concept of transportation electrification is accelerating
recently. Environmental concerns, by considering more green energy, generated from renewable
resources and fossil fuel source limitations lead to more electrification of transport sector. Sup-
porting the electricity demand of such growing fleet should be covered by more RES to prevent
extra dependency to the fossil fuels. In the future smart, grid the interaction between RES and
electric vehicles becomes more and more vital. Concurrently, the impact of increased electric
vehicles fleet on the electrical grid should be identified.

In France, a perspective view estimates 2 millions Electric Vehicle (EV) up to 2020 and
23% RES production of total energy productions [Louati 13]. Based on an average normal
distribution, the energy which is needed to support those EVs fleet is around 21 GWh per
day [Sarabi 13]. Comparing to registered statistics from 2011, (i.e. 52 MWh energy need for
EVs and 13% RES productions) EVs’ energy need increase much faster than RES productions.
Moreover, technological possibilities to achieve mostly EVs support by RES productions consid-
ering their location and availability limitations could not be guaranteed in near future. Based
on these facts, the necessity to identify the large number of EVs impact on electrical grid will
be increased.

It is important to consider that without any energy management system, the increasing
electricity energy demand could cause negative effects on the grid, especially at distribution
grid level. Charging coordination and time of charge management based on different electricity
tariff is introduced as an alternative. At higher level to cope with upcoming issues and taking
advantage from increased demand, the ability of delivering power from vehicle to the grid is
introduced. This technology for the first time has been coined Vehicle-to-Grid (V2G) by AC
propulsion Inc. [Emadi 05]. This ability opened new research horizons to take advantage of
EVs increment on the grid. One of these horizons can be assessed as V2G grid ancillary services
support. In response to the question of “Can customers contribute to the ancillary services?”
P. Sandrin [Sandrin 96] says that the customers can act as a generator and also interruptible
load, where these contributions should be rewarded for their participation to the grid services.
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In this thesis, the contribution of vehicle-to-grid technology into the electrical grid ancillary
service support is studied. The main objective is to provide a real-time supervision system
which is able to control the charging demand of a considerable amount of electric vehicle, let us
say fleet of electric vehicles, which are connected simultaneously to the distribution grid. These
vehicles are considered as V2G-enabled vehicles which have ability of delivering power to the
distribution grid.

Industrial Partners

This thesis benefits from Laboratory of Electrical Engineering and Power Electronics of Lille
(L2EP) experiences in the field of electrical networks and their interactions with multi source
and multi storage generation systems, their energy supervision strategies. On the other hand,
the experiences obtained from electric vehicle grid integration project, which is called VERDI
(Véhicule Électrique et Energies Renouvelable dans un Réseaux de Distribution Intelligent),
will be taken into account in this project, where the main features of current project compared
to VERDI is increasing the degree of freedom and ability of delivering power to the grid from
a fleet of EV. In addition, extension of case study for integration of electric vehicles in railway
station energy hub is investigated.

The industrial partnership of the SNCF, the French national railway station, Séolis, en-
ergy supplier Company and GEREDIS Deux-Sèvres, distribution system Operator Company at
Deux-Sèvres, increases the technical support and interests of the project. The concept of smart
grid for future electrical networks conveying the interaction between EVs inside the railway sta-
tion parking with the grid, and power market participation of EV fleet, for the aim of ancillary
services support for energy purchase price optimization from the energy supplier point of view,
and energy transmission cost optimization from the distribution operator point of view.

In addition the concept of environmental issues concerning the impact of future electrical
grid on the environment, increases the motivation for interaction of renewable energy sources
and green transportation concepts (zero emission vehicles) where this project is coming an
appropriate point for Agence De l’Environnement et de la Mâıtrise de l’Energie (ADEME) to
cover half finance of the project.

Problem and objective

In this project the objective is to firstly, identify the impacts and limitations of electric vehicles
on the electrical distribution grid where the possibility of grid ancillary services support by
electric vehicle fleet is also addressed. Secondly, thanks to the concept of V2G, which provide
bidirectional power flow between vehicles and grid, a supervision system capable to coordinate
the charging and/or discharging interval of the electric vehicle fleet will be designed. The
present thesis is the results of the three years studies on the subject which is represented in 5
main chapters.

In chapter 1, a bibliographical study on the electrical grid, electric vehicles and Vehicle-to-
Grid technology is presented. In this context, different technologies for electric vehicles, their
charging infrastructures and communication protocols are discussed. The possible criteria of
research in this domain also are discussed.

In chapter 2, the impacts and contribution of V2G-enabled electric vehicles are discussed,
where these studies are concentrated on two particular case studies, a regional distribution grid
and a railway station serving plug-in electric vehicles charging infrastructure in its parking.
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In third chapter, V2G ancillary services and the PEV potential for participation in different
services are studied, where the vehicles availability and grid localization limitation are modeled
as uncertainties.

In chapter 4, the main contribution of thesis about real-time energy management system for
V2G-enabled PEV fleet is presented. Different parts containing, forecasting algorithms, off-line
optimization algorithms and real-time supervision system are presented precisely. The impact
of V2G technology on battery degradation is also discussed and modeled in this chapter.

In fifth chapter, a co-simulation approach has been used in order to validate the supervision
system at the distribution grid level and identify the technical impacts of supervision system
on the voltage drop and losses in the distribution grid.

[Emadi 05] Ali Emadi. Handbook of automotive power electronics and motor drives. CRC
press, 2005. 3

[Louati 13] Sami Louati, Didier Reynaud, Hélène Thiénard & Arnaud Bouissou. Chiffres clés
des energies renouvelables, edition 2013, June 2013. 3

[Sandrin 96] Patrick Sandrin. System-services: several questions, in an integrated utility per-
spective [ancillary services]. In Pricing of Ancillary Services: an International
Perspective (Digest No: 1996/164), IEE Colloquium on, page 7–1. IET, 1996. 3

[Sarabi 13] Siyamak Sarabi, Laid Kefsi, Asma Merdassi & Benoit Robyns. Supervision of Plug-
in Electric Vehicles Connected to the Electric Distribution Grids. International
Journal of Electrical Energy, vol. 1, no. 4, pages 256–263, 2013. 3

PhD Thesis, S. Sarabi 5

General Introduction

References



Chapter 1

Introduction to electrical networks and
grid integration of electric vehicles

“ The important criterion of your
impact is: has what you have done
generated a following? With fuzzy sets,
I can definitely say, ’Yes’. ”

Lotfi A. Zadeh
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CHAPTER 1. INTRODUCTION TO ELECTRICAL NETWORKS AND GRID
INTEGRATION OF ELECTRIC VEHICLES

1.1 Electrical networks

One of the cleanest way of energy transfer is the electrical form of transformation. In actual
electrical grid structure, the power plants, mainly constructed in countryside and far away
from the cities, transfer the energy of different sources such as coal, gas, fossil fuels, nuclear,
wind, solar and hydro to the electricity and the transmission lines transfer the clean and safe
electricity to the cities and consumers sites. The nominal rate of output voltage of the power
plants are in the range of 20 to 30 kV with extremely high current which provide for instance
the nominal range of output power of 400, 600 to 1000 MW for combined cycle and 900, 1300
and 1500 MW for each nuclear tower in nuclear power plants. This high range of current in
the output in term of losses inside the transmission and distribution grid bring the interest of
using step-up transformers as a substation unit at the output of the power plants. Hence, the
nominal output power of such substations is in range of 400 kV. The electricity transmitted to
the cities using the transmission grid, will be distributed to the consumers in cities using the
distribution grids. In France, the management of French public electricity networks assigned
by article 2 of the Law of 10 February 2000 to two types of actors:

� The Transmission System Operator (TSO) (Gestionaire du Réseau de Transport (GRT))
that operates the high and very high voltage grid and so-called Réseau de Transport
d’Electricité (RTE) operates at voltages of 63 kV, 90 kV, 150 kV, 225 kV and 400 kV.

� Distribution System Operator (DSO) (Gestionaire des Réseaux de Distribution (GRD))
who operates medium and low voltage networks.

Managers of transmission and distribution networks employ monopolies regulated by the Energy
Regulatory Commission (Commission de Régulation de l’Energie (CRE)).

1.1.1 French public transmission grid

In France the public transmission of electricity consists of a grid called ”large transport and
interconnection”, on the one hand, and a network called ”Repartition”, on the other. Their total
length is about 100,000 km. The large transportation network and interconnection, operating
at 400 and 225 kV (called ”High Voltage (HV) networks”), can carry large amounts of power
over long distances. Its lines form what they can be called ”electricity highways”. They serve
the interconnections with the networks of foreign countries, nuclear power plants and some
large hydro and thermal production facilities, and distribution networks. The distribution grid
transports electricity regionally. It is operated with other voltage levels Haute Tension B (HTB)
(225, 90 and 63 kV). Its lines are used to transmit electricity to industrial consumers and to
distribution grid. They also collect energy from the intermediate-sized production facilities. The
public transmission of electricity is the property of RTE Transport, a subsidiary of Electricité
de France (EDF) in 100%, and is operated by itself.

1.1.2 French public distribution grid

Public distribution grid routes electrical energy not only among individuals but also among
small industries. They also collect the energy produced by most wind farms, photovoltaic
production facilities and the majority of co-generation plants. They are composed of networks
operating at 20 kV and 15 kV, called ”Medium Voltage (MV) networks”, and networks operating
at 400 V and 230 V AC single phase, called ”Low Voltage (LV) networks”. Their total length
is over 1.3 million kilometers in France. The interface between the public transmission network
and public distribution networks consists of about 2,200 transformer stations HV / MV called
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CHAPTER 1. INTRODUCTION TO ELECTRICAL NETWORKS AND GRID
INTEGRATION OF ELECTRIC VEHICLES

”substations” (”Poste source” in French). The interface between the MV and LV networks
is made by the said transformer stations ”distribution substation” (”Poste de distribution” in
French). There are more than 700,000.

The public distribution networks are owned by municipalities. These may delegate all or
part of their competence the licensing authority for inter-departmental or unions. If they do not
provide themselves governed through these, licensing authorities have entrusted the manage-
ment of their distribution network to Major French Distribution System Operator (ENEDIS),
a subsidiary of EDF in 100% (95% for networks distribution of the continental metropolitan
territory), or local distribution companies (LDCs) through concession contracts. In Corsica
and in the departments and communities overseas, EDF Island Energy Systems (IES) is the
manager of public distribution systems. Boards and ELD number are about 160. Four of them
have over 100,000 customers. They are named GEREDIS (Deux-Sèvres), Strasbourg Electricity
Networks (ESR - Bas-Rhin), DTH and URM (Metz).

1.1.3 Electricity production in France

Electricity production in France is dominated by nuclear power (77% of total production in
2012). This is while renewable energies and fossil fuels are accounted for 15% and 8%, respec-
tively. The largest share of nuclear power in the world is dedicated to France with the biggest
net exports of electricity.

According to the International Energy Agency (IEA), France electricity production of 559
TWh in 2012, slightly down from 570 and 567 TWh produced in 2008 and 2004, respectively.
France is the world’s 8th largest producer of electricity. In 2012, the top ten countries produced
7,290 TWh, or 66.7% of global electricity production of 22,668 TWh. These countries were
China (22%), followed by the United States (18.8%), India (5.0%), Russia (4.7%), Japan (4.5%),
Canada (2.8%), Germany (2.7%), France (2.5%), Brazil(2.4%), and South Korea (2.3%). The
rest of the world produced 32.3% [IEA 15].

France is also the world’s second largest producer of nuclear electricity, behind the United
States and ahead of Russia and Korea. In terms of nuclear share on the total domestic electricity
generation, France has by far the highest percentage portion of any country in the world. While
during last decade, renewable energy production (mainly solar and wind) are replacing the share
of nuclear. As shown in the Figure 1.1, the share of nuclear energy is decreased while renewable
energy sources are developing more and more. This is the new era of energy industry, where
classical energy sources are giving the place to the renewable sources.

1.1.4 Electricity consumption in France

Electric energy consumption is the form of energy consumption that uses the electric energy.
Consumption of electric energy is measured in watt-hours (Wh). The electricity consumption
depends on different factors based on each country features. In France, the electricity consump-
tion is highly sensitive to the climate condition . In 2014, the hottest year on record since the
beginning of the 20th century according to Météo France, gross power consumption contracted
by 6% versus 2013 and ended the year at 465.3 TWh, the lowest level since 2002 [RTE 15a].

The moderate level of national consumption and the relatively low prices on the French bulk
electricity market provided the opportunity for France to assist its European neighbors with
electricity exports (Shown in Figure 1.2). Net exports amounted to 65.1 TWh as at the end of
2014, + 18 TWh against 2013 and a record high since 2003. Electricity trades were especially
high in 2014 (exports: 92 TWh, imports: 27 TWh) [RTE 15b].
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Figure 1.1: This chart shows the indicator called Electricity production by sources with the unit % of
total for France between 1960 to 2013 [BLU 15].
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Figure 1.2: Contractual trades in TWh in 2014 [RTE 15b].
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1.1.5 Energy market in France

The French energy market is highly concentrated. Electricity is still largely dominated by
EDF, the vertically incorporated French utility holder that is still organized by the state. RTE,
and the distribution system operator, ENEDIS, are totally owned by EDF. ENEDIS manages
about 95% of the electricity distribution network in mainland France. This network belongs to
municipalities or groups of municipalities that subcontract to ENEDIS as an operator through
a public service delegation. In 2010, the French government approved an energy law (Nouvelle
Organisation du Marché de l’Électricité (NOME)) designed to increase competition in the retail
electricity market. By this law, EDF has the obligation to make available up to 25% of the
nuclear electricity it generates to alternative suppliers on the wholesale market at a regular
price, which has set at 42 ¿/MWh in 2012 [DEL 15].

 

Deregulated 

EDF, CNR (GDF-Suez) 
& Eon France : >95% 

IPPs <5% 

NOME law capacity 
market being introduced 

EDF as main actor 

EPEX Spot (Paris) 
EEX (Leipzig) 

Producers  
Traders 

OTC 

EPEX Spot 
EEX future 

Cross-border markets 

Optional 

Balancing 
market 

RTE/ERDF 
(GEREDIS) 

Interconnections 
BE, DE, GB, CH, IT, ES 

Regulated return on 
Transport & Distribution 

assets (TURPE) 
(-46% of final price) 

ITO model for RTE 

Consumers can 
choose 

Regulated Tariffs 

Market offers 

100% liberalized 

Regulators: Commission de Régulation de l’Energie (CRE), Independent administrative body  

Generation Power Market Transmission & Distribution Retail 

Figure 1.3: Market mechanism [DEL 15].

The different phases and relations in French energy market is represented in Figure 1.3.
In the deregulated market, the electricity is owned majorly by EDF, CNR and Eon France
upto 95% where the rest is dedicated to the Independent Power Producers (IPP). In the next
phase, the producers and traders and deregulated market members participate in European
energy markets such as EPEX1 and EEX2 in an OTC3 market way. The TSO and DSO

1The European Power Exchange SE (EPEX SPOT SE) is an exchange for power spot trading in Germany,
France, Austria, Switzerland and Luxembourg. EPEX SPOT is 100 % owner of APX Group, which operates
the power spot markets in Belgium, the Netherland and the United Kingdom.

2European Energy Exchange AG, Germany’s energy exchange, is the leading energy exchange in Central
Europe. It develops, operates and connects secure, liquid and transparent markets for energy and related
products. On the EEX spot and derivatives markets, power, natural gas, CO2 emission allowances, coal and
guarantees of origin are traded

3An over-the-counter (OTC) market is a decentralized market, without a central physical location, where
market participants trade with one another through various communication modes such as the telephone, email
and proprietary electronic trading systems. An OTC market and an exchange market are the two basic ways of
organizing financial markets. In an OTC market, dealers act as market makers by quoting prices at which they
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will participate in balancing market in order to stabilize the grid. This is in connection with
all European neighbors. This makes a bidirectional market between European markets and
national market. Finally, in next phase the liberalization of the markets aiming to provide
regulated tariff energy to the customers will be implemented.

1.1.5.1 NOME law

In December 2010, France approved the law NOME to promote competition in the retail electric-
ity market. In practice, the law allows retailers to buy nuclear production from the incumbent,
at a regulated access price. This mechanism works up to a ceiling of 100 TWh, which represents
one quarter of the incumbent’s production from nuclear plants. Each retailer is assigned a share
of that amount proportionally to its portfolio of clients.

In the continue of the following chapter, the integration of electric vehicle in to the electrical
networks, electric vehicle types and technologies and Vehicle-to-Grid technology as the main
part of the thesis are introduced.

1.2 Integration of electric vehicle into the electrical grid

Nowadays, the concept of smart grid and its definition, application, impacts and contribution
to the conventional electrical grid are widely discussed in academic and industrial societies. The
problem of traditional energy sources restrictions, their environmental impacts and technical
criteria improvement of electrical grids lead to introducing new concept of grids which have
bidirectional contribution between production and consumption. In such idea, the presence of
renewable energy sources such as solar and wind and electric vehicle (EV) with vehicle-to-grid
(V2G) technology become highlighted. These distributed generation sources can be stored in
peak hours and reused during off-peak hours. On the contrary, it is important also to take into
consideration the unwanted impacts of growing electrified transportation on the electrical grid,
due to the coincidence of daily load peak and charging time of EVs [Shafiee 13].

In France, a perspective planning estimates 2 million electric vehicles up to year 2020
[Negre 11]. However, the new scenqrios studied by ENEDIS qnd RTE are estimating much
less that that, compared to the actual evolution of electric vehicle market, something between
400,000 to 850,000 EV on 2020. ENEDIS, an electricity distribution network company in France
for a fleet of 1 million EV has estimated 2.5TWh annual energy consumption during charging
process, which counts 0.5% of total consumption in 2013. While, in term of instantaneous
power demand for case of rapid charging with 43 kW charging power, 47% of available power
of the national grid can be solicited. This can be reached up to 100% at MV and LV dis-
tribution network level [ERDF 14]. To cope with upcoming issues due to this large demand,
the implementation of charging infrastructures and supervised intelligent charging/discharging
energy management strategies are in hand projects for future. In order to define potentials of
electric vehicles to respond to the grid services, the impacts of different scenarios, containing
coordinated and uncontrolled charging at different operational modes, should be taken into
consideration.

In addition to that, in order to provide contribution of EVs to the electrical network the
concept of Vehicle-to-Grid should be studied deeply along with possible ancillary services which
are applicable from both grid and EV side. Integration of EVs to the electrical networks needs
both technical and financial consideration. The technical points are related to the standards,

will buy and sell a security or currency. A trade can be executed between two participants in an OTC market
without others being aware of the price at which the transaction was effected. In general, OTC markets are
therefore less transparent than exchanges and are also subject to fewer regulations [INV 15].
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protections and safe charging process particularly for EV and EV owner. While from grid point
of view, respecting the connection standards containing admissible voltage and current level and
power quality respecting. These requirements are thoroughly discussed after an introduction
on electric vehicles in the next sections. before that, a possible market contribution of electric
vehicle and particularly, EVs with V2G technology are presented thereafter.

A conceptual market model containing different actors from production to consumption level
is presented in Figure 1.4. This concept inspired from [Lopes 11, Rious 13] explains different
actions between market actors. An aggregator entity responsible for power aggregation of
electric vehicle plays the roll of interface between electricity market and single EVs. TSO,
DSO and Energy provider are the classical players of the market. In addition, retailer entities
in connection with EVs contribution such as parking facilities and battery providers are also
considered as possible market players in relation with EVs and aggregators. Sell and Buy
offers between different market actors are illustrated in the figure. The novelty of the market
is related to the contribution of EVs to the market where the V2G and Grid-to-Vehicle (G2V)
are presented. Selling energy and reserve offer to the market by aggregator is showing the
contribution of V2G to the market. The G2V is related to the energy need for charging the
battery bought by aggregator. This concept certainly can be evaluated in order to provide an
accurate market contribution defining the share of each actors.

Electricity Market

EV owner

Parking
facilities

Battery
suppliers

Aggregator

Energy
Provider

TSO

DSO

a

a

a: Communication

b

b

b c

Sell reserve and energy (V2G)Sell reserve and energy (V2G)b:

Sell reserve and energyc:

d

Buy reserved:

e

Buy energy (G2V)e:

f

Buy parkingf:

g

Buy battery replacement offerg:

Figure 1.4: EV integration in to the electricity market.
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1.2.1 Electric Vehicle (EV)

The main feature of a EV is its propulsion system which is an electric motor instead of Internal
Combustion Engine (ICE). This motor is running by power stored in the battery. In the case
of plug-in EVs the battery will be charged frequently by plugging in to the grid (120V or 240V)
[Emadi 05]. The charging process for Hybrid Electric Vehicle (HEV) will be done by ICE when
the vehicle is working on nonelectric mode. EVs because of their no direct emission feature are
called as Zero Emission Vehicle (ZEV) and are often, regarding GHG emissions and depending
on the electric mix, more environment friendly compared to gasoline or liquefied petroleum gas
(LPG) powered vehicles. As there are less mechanical movements maintenance is also minimal.
They are also more energy efficient than combustion engines.

In the EVs the electrical energy is stored in a battery or supercapacitor, where in a fuel cell is
converted from chemical energy or in a flywheel converted from mechanical energy. This energy
will be used to power the electric motor for making the propulsion to the vehicle by turning the
wheels. As in this process there is no fuel to burn no local pollution will be produced at the end
of the process. Although the main drawback of the EVs is about their autonomy that makes
them weak compare to ICE vehicles. In fact by a full-charged battery they could only travel in
the average range of 100 km, where the recharging process takes some hours. While the ICE
vehicles could be driven much more than that with a tankful and they will be refueled rapidly.
However, the technology is trying to find the best solution to improve the disadvantages of EVs
compared to ICE. Maybe this point is a key feature to bring another type of vehicle called as
Hybrid EV, the electric vehicles with ICE propulsion system in side.

1.2.2 Hybrid electric vehicle (HEV)

The other type of electric vehicles is hybrid electric vehicles. In fact in these cars both electric
motor and IC engine are embedded. The IC engine has more efficiency in high speed and load
where the EVs are more efficient in low range speed and load. This gives the opportunity
to use electric propulsion in the urban area and IC engine mode in the road and out of the
cities. There are different types of hybrid vehicles which are depending to the connection of
the propulsion systems.

1.2.2.1 Parallel hybrid

In the parallel hybrid vehicles there is a direct connection between hybrid unit and the wheels
like the conventional vehicles but an electric motor driving the wheels as well (Fig. 2.12(a)).
In this type the vehicle can use the power generated from ICE for highway driving and power
generated from electric motor for accelerating. This type of configuration is more powerful
compared to series configuration as there are two propulsion systems driving the wheels simul-
taneously. There are different type of mechanical coupling in the parallel hybrid configuration
such as torque, speed and torque and speed coupling.

1.2.2.2 Series hybrid

In the series configuration the thermal engine by using a generator is supplying the battery to
feed the electric motor (Fig. 2.12(b)). In this configuration there is no mechanical connection
between hybrid unit and the wheels therefore all the power is transferred electrically to an
electric motor which drives the wheels. One of the advantages of series compared to parallel is
that the IC engine will never work idle which reduces the emissions. This configuration leads to
no need to a transmission system for some type of series configuration [Emadi 05], [Ehsani 09],
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[Skvarenina 01]. This drive train may need a battery charger to charge the batteries by a wall
plug-in from the power network. In this case, the vehicle will be able to be connected to the
electrical grid where these types of EV and HEVs are called as Plug-in Electric Vehicle (PEV)
and Plug-in Hybrid Electric Vehicle (PHEV), respectively,

Figure 1.5: Configuration of (a) a parallel hybrid and (b) a series hybrid electric drive train

1.2.3 Plug-in Electric/Hybrid Vehicles (PEV/PHEV)

Plug-in electric vehicles are those motor vehicles which can be connected to an electrical source
to charge their energy storage unit (battery, supercapacitor) [Sandalow 09]. This feature makes
them more flexible compared to hybrid vehicles with no outside recharging ability. These
configurations are based on IEC 62196 which is an international standard for set of electrical
connectors and charging modes for electric vehicles maintained by International Electrotechnical
Commission. In France, currently three types of charging infrastructure are delivering charging
services to the electric vehicles (Table.1.1)[IEC 03].

The ability of connection between plug-in EVs and electrical grids brings new challenges
for both electric vehicles and the grids. The increasing number of electric vehicles asking
to charge their battery through their plug-in connections causes some negative effects on the
electrical grids. Moreover, bidirectional power flow between the vehicles and grids opens new
technological domains containing advantages and drawbacks. As in this thesis the concentration
is on this recent discussed technology an introduction to the concepts of vehicle-to-Grid would
be proper. Before that, a review on EV charging systems and standards are brought.

1.2.4 Electric vehicle charging system

Recently, large amount of researchers are concerning the charger models. However, most of the
actual chargers of EVs and PHEVs in the market are devices with nonlinear behavior generating
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Table 1.1: Different charging mode for PEV/PHEV

Charging mode Power Connector socket

Normal Charging
3.7kW single phase

(230V - 16A)
IEC 62196

Type 3

Accelerated Charging
23kW three phase

(400V - 32A)
IEC 62196

Type 3

Fast Charging
43kW three phase

(400V - 64A)
Cable attached to the station

Fast Charging 50kW DC Cable attached to the station
Mixed AC and DC

harmonics of current. The power quality of the EV chargers are the important factor where
it is expected to have major electrified transportation. These are concerning voltage profile,
harmonic and fundamental losses and current Total Harmonic Distortion (THD) and current
imbalance. In addition, for V2G technology, there is no bidirectional charger available in the
market. Hence the main challenge for the V2G technology remains at the level of modelling
for bidirectional power flow between the grid and the battery. The other important factor is
considering the time consumed for charging process. This depends on total energy amount
stored in the battery and the power rate of the charger. Based on the topology of the charger
the possibility of reactive power control is another aspect of the chargers that should be taken
into accounts. Here in this thesis at first a brief introduction on actual technology of charging for
the electric vehicles is presented. Afterwards, the proposed topologies for bidirectional charging
system are presented which are compatible for V2G technology. These topologies are gathered
from the recent researches from all around the world.

1.2.4.1 Level 1 charging

Level 1 charging is the use of a standard AC 230 Volt household outlet (in Europe). Electric
vehicles come with on-board charging electronics, as well as cords and equipment that allow the
driver to plug their car into an outlet in their garage, carport or driveway. This is the cheapest
and most convenient home-based charging method, but it is also the slowest. Charging times
vary greatly from vehicle to vehicle, but generally take around 5-10 twenty hours for a fully
depleted battery to be at full capacity. However, since the average French drives less than 30
km per day and many electric vehicles have battery capacities of 100 km or more, most drivers
find that their daily commutes barely deplete battery charge and only require Level 1 charging
overnight. For example, if the driver of a Renault ZOE – which has about a 210 km range –
drives 30 km daily, the battery will only be depleted 15% each day. Since Level 1 charging will
recover about 35 km of range per hour, the Renault ZOE will be back to full charge after 2
hours.

1.2.4.2 Level 2 charging

Level 2 chargers uses a 230 V single phase AC outlet or 400 V three phase AC outlet, and is
therefore a bit faster than Level 1 charging. Drivers Level 2 charge their vehicles through charg-
ing stations often located in public places, such as at the commercial centers, restaurant, city
park, or even workplaces. Level 2 charging is sometimes referred to as ”opportunity charging”
because drivers usually use this type of charging whenever they have the chance, for example,
when they are at work or on-the-go in public. Some people choose to purchase a Level 2 home
charging station, also called Electric Vehicle Supply Equipment (EVSE), which cost about 1,500
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AC - 2,000 AC. Most drivers would not need the extra equipment if their daily commutes are short
and they are able to adequately Level 1 charge their vehicles overnight. Level 2 charging speeds
are variable and depend upon the maximum power rating of the charging station as well as
the maximum power rating of the vehicle’s on-board charging electronics. Generally speaking,
Level 2 charging takes around 3-5 hours for a full charge.

1.2.4.3 Level 3 charging

Level 3 charging is the fastest and most powerful type of charging available. Also called DC
charging, it bypasses EV on-board chargers to charge the battery directly. As a result, DC
charging can provide a vehicle with a full charge in minutes instead of hours. The Blink DC
Fast Charger boasts a full charge in less than 30 minutes. DC charging stations are used for
EVs as well as large vehicles like electric buses, and are found in public and commercial areas,
airports, and transportation corridors [ELE 12].

1.2.4.4 Electric vehicle Supply Equipment (EVSE)

EVSE is a protocol to help keep the driver and electric vehicle safe while charging. Using
two-way communication between the charger and vehicle, the correct charging current is set
based on the maximum current the charger can provide as well as the maximum current the car
can receive. As part of the protocol, a safety lock-out exists, preventing current from flowing
when the charger is not connected to the vehicle. It ensures that if a cable is not correctly
inserted, power will not flow through it. EVSE can also detect hardware faults, disconnecting
the power and preventing battery damage, electrical shorts or worse still, fire [GRE 13]. From
the physical point of view, the conductors, including the ungrounded, grounded, and equipment
grounding conductors, the electric vehicle connectors, attachment plugs, and all other fittings,
devices, power outlets or apparatuses installed specifically for the purpose of delivering energy
from the premises wiring to the electric vehicle, are included in the EVSE system [Rawson 99].
The EVSE based on type of charging station has different components.

1.2.4.5 EVSE for On-board charging

For level 1 and 2 charging, there is a dedicated (on-board) charger inside the vehicle. Therefore,
the EVSE for these levels, contains only the protection unit in order to ensure a safe charging
system both for driver and the vehicle as well. Figure 1.6 show an EVSE along with on-board
charger system. The output of EVSE is a protected AC voltage appropriate for level 1 and 2
charging systems of EV’s on-board chargers. On-board charger contains an Electromagnetic
Interference (EMI) filter, a rectifier along with Power Factor Correction (PFC) unit and a
DC/DC converter in order to provide suitable DC voltage for charging the battery. Battery
Management System (BMS) unit is also responsible of controlling the charging status based on
State of Charge (SOC) of the battery by controlling the current and voltage of the battery.

1.2.4.6 EVSE for Off-board charging

Fast charging systems, particularly DC fast charging systems has an off-board charging system
embedded in EVSE station. The input to the car is directly a DC current and is usually based
on standard SAE J1772. In this case EMI filter, rectifier and DC/DC converter are embedded
in EVSE. Figure 1.7 shows an example of DC fast charging stations for charging Nissan cars
manufactured by DBT-CEV®.
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Figure 1.6: Charging configuration and EVSE for AC level 1 and 2 [Mwasilu 14, MDE 15].
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1.3 Vehicle-to-Grid (V2G) technology

1.3.1 Definition

The ability of delivering power from vehicle to the grid, for the first time has been coined
“Vehicle-to-grid” (V2G) by AC propulsion Inc. [Emadi 05]. This ability opened new research
horizons to take advantage of EVs increment on the grid. In fact in this technology, the plug-in
electric or hybrid electric vehicle communicates with electrical grid to sell energy and capacity
by managing its charging rate which is achievable by accelerating or decelerating the charging
rate or delivering power to the grid.

By this way the vehicles can propose services to the electrical grid, such as providing peak
power, regulation and spinning reserves. The studies show that the electric vehicles are not
used over than 90 % of the daily time. The usual daily trips in France [CGD 10], Germany
[CMS 11] or New York city [White 11] is a mean value between 30 and 50 km. Let consider
an EV with 24 kWh battery capacity and 150 km autonomy. Therefore, for a case of normal
charging (3 kW) a single EV needs 1 and half hour to 4 hour average charging time. This
makes it fully charged and uselessly plugged, in most of the plugged-in time. For this reason,
the EVs fleets have high potential for grid service support in these periods. This point could
not be taken into account without consideration of EV owner priority and technical limitations
concerning to the extra battery degradation due to V2G service concentration.

1.3.2 Types (V2H-V2V-V2B-V2S)

1.3.2.1 Vehicle-to-Home

Vehicle-to-Home (V2H) is a system that allows the driver to supply the home with the energy
stored in the battery of the electric vehicle. The EV will be charged during the low demand
interval (mostly during night) and will supply back the home when electricity is expensive
or in case of any power outage. The system helps alleviate consumption of power in peak
periods when demand is highest. Further, it can also be leveraged as backup power supply for
emergencies. The challenges under development are related to protection units and standards
of providing power control systems. Both on-board and off-board charge are considered for V2H
application which guarantees the bidirectional power flow between the home and the vehicle.
Figure 1.8 shows a concept of V2H. Some main features of V2H are listed as follow [Liu 13]:

� V2H involves a single EV in a single house.

� V2H has a very simple configuration, hence it is easy to accomplish in reality.

� V2H is able to smooth the household Daily Load Profile (DLP)) with active power ex-
change.

� V2H is able to provide the reactive power to the home grid or even to the community
grid.

� The reactive power support can be implemented without involving, or independent of, the
GEV battery, because each charger can solely offer its capacitor for the grid operation.

� V2H can further interact with V2V and V2G operations.

� V2H has a very high efficiency during the operation.

� V2H is easy to be installed without largely changing the existing home grid.

� V2H can improve the effectiveness of home renewable energies by using GEV storage.

� Smart home becomes more attractive with the V2H operation.
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� V2H can greatly improve the development of the smart grid.

Figure 1.8: Vehicle-to-Home concept from Nissan motor corporation.

1.3.2.2 Vehicle-to-Vehicle

When a number of vehicles are parked at the same parking or connected to the same grid, can
exchange power in order to keep balance of demand and supply. By using this operation power
reserve can be kept within the community of the vehicles. This can greatly reduce power loss
and trading loss between the local community and also the power grid. The Vehicle-to-Vehicle
(V2V) can be performed in existing grid. A framework of DC common grid for V2V concept is
illustrated in Figure 1.9 where it shows different vehicles connected to the same DC grid. Using
this framework, losses casued by electrical energy conversion in the charger will be decreased.
V2V framework has distinct features [Liu 13, Wang 14]:

� Generally, V2V involves multiple EVs.

� V2V uses smart homes and parking lots for power exchange.

� V2H is incorporated into the V2V system. V2H mainly focuses on a domestic house
with only one EV interaction, whereas V2V aims to interact with a group of EVs and
coordinate them with the power grid. This kind of dividing the frameworks of V2H and
V2V can improve the EV coordination with the power grid based on the number of EVs
available.

� The EV aggregator is employed for coordinated control of the V2V and grid operation.

� Power exchanges among EVs, and then is requested if necessary from the power grid.

� The framework of V2V is comparatively less simple and less flexible.

� V2V has uncomplicated infrastructure requirements and small transmission losses.

� V2V can be further cooperated with small-scale renewable energies for the community
grid operation.

� V2V can further improve the development of the smart grid.
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Figure 1.9: Vehicle-to-Vehicle concept by using common DC grid [Yong 15].

1.3.2.3 Vehicle-to-Building

The Vehicle-to-Building (V2B) technology can be considered as combination of V2H and V2V
where numerous vehicles are connecting to the same grid inside a parking of a building. This
building can be a residential or commercial one. The vehicles in this concept can supply the
grid consumption during the peak hours and to be charged at off-peak hours. A more enhanced
version considering another sources of energy (renewable energy) connected to the grid of the
building can generate a microgrid concept. Figure 1.10 shows a project in Japan where 6 Nissan
LEAFs supply an office building to test the V2B technology [NLV ].

1.3.2.4 Vehicle-to-Station

The proposed concept of current thesis, is the ability of EVs to supply a railway station internal
consumption. This is why the Vehicle-to-Station (V2S) acronym is chosen for this concept. In
this concept, it is supposed to have numerous EVs plugged-in inside the railway station parking.
These are the vehicles coming in the morning to the station until the afternoon. The availability
period of these vehicles are during the day, so they can be used to feed the station. There are
challenges related to the availability of the vehicles and the willingness of the owners, where
each issue has been sufficiently analyzed in this thesis. Figure 1.11 shows an illustration of this
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Figure 1.10: Vehicle-to-Building project. 6 Nissan LEAFs feeding an office building in Japan.
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Figure 1.11: Energy hub at railway station, V2S concept proposed in this thesis.

1.3.3 V2G Aggregator

For the purpose of grid support, e.g. frequency regulation, power system operators can commu-
nicate with PEVs or PHEVs through a dedicated communication link. Rather than the power
utilities having to communicate with each PEV individually, an aggregator can be formed that
would act and communicate as a commercial retailer between the power utilities and the mul-
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tiple PEVs for selling and buying powers. In addition, as each PHEV has a very small capacity
from a grid perspective, it is necessary to implement an aggregating control system, managing
a large number of vehicles. Based on the real time grid situations, the aggregators will make
real time decisions of charging or discharging of PEVs [Datta 14]. In the context of smart grid,
further aggregators can be added for better coordination and reliability. V2G based aggrega-
tor system is shown in Figure 1.12. The key elements in an indirect V2G system architecture
are aggregators. They act as an interface between the grid and a group of PEV and PHEV.
[Quinn 10] shows that presence of an aggregation entity increase the reliability and meeting
the minimum contractible power requirements of the V2G ancillary service compared to direct
deterministic architecture.

Power system operator Power system operator

Aggregator 1 Aggregator 2

Aggregator 3 Aggregator 4
Direct V2G communication architecture

Aggregator based V2G communication architecture

Figure 1.12: Two possible communication architecture for V2G technology ancillary services.

1.3.4 Aggregator strategies

Different strategies for V2G aggregator are proposing everyday by reserchers all around the
world [Sandels 10, Khalid 13, Xu 14, Momber 15]. The aim of each aggregator depends on the
objective of each type. Optimal aggregator strategies are proposing to reduce the cost functions,
related to energy cost for grid utilities or even charging price for the PEV and PHEV owners.
These strategies are also considering different ancillary services markets such as regulation, peak
power and cost minimization. The structure of an aggregator for a regulation service is depicted
in Figure 1.13 [Wang 13]. This shows the flow of necessary information between PEV fleet, the
aggregator and power system operator. The aggregator based on the recieved information
will make decision for PEV charging/discharging command. These decisions are also based on
price of electricity and regulation reference announced by the grid operator. In this model,
there is only one aggregation entity managing all the PEVs. In another structure a distrbuted
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Regulation capacity
Electricity price
Regulation price

Regulation capacity
Electricity price
Regulation price

Aggregator

Figure 1.13: Aggregator strategy for regulation service, aggregator acting as an interface between PEV
fleet and grid operator.

structure is proposed by [Xu 14] (Figure 1.14). Multiple aggregators at distribution grid level
communicate with DSO in order to manage their under control PEV fleet. By aggregating the
charging load demand within each independent aggregator before the centralized coordination
at the DSO, the computational burden is effectively alleviated, and the reduced volume of
data exchanged between the DSO and aggregators enables less investments on communication
infrastructure. The detailed customer charging requirement privacies could also be properly
protected. In addition, in cases of communication lost between the DSO and aggregator or DSO
failure, each aggregator could still easily operate individually to respond the available service.
Another strategy for V2G aggegator is proposed by [Sandels 10]. In this strategy, depicted in
Figure 1.16, the PEV and PHEVs are devided into different group based on their available SOC
and each group provide different service in order to respond to regulation service. Regulation
signals are mainly two types; regulation up when the production is less than consumption and
regulation down when production is more than consumption. The PEVs can do different act
in order to respond the different regulation signals (Figure 1.15).

1.3.5 V2G communication

The vehicle manufacturers and charging station manufacturers have provided consumers op-
tions for charging preferences, while there are no existing communications between consumers
and the utilities to manage the charging demand. There is also wide variation between manu-
facturers in their approach to support vehicle charging. There are in-vehicle networks, charging
station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary
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Figure 1.14: Distributed aggregation strategy at distribution grid level, DSO as grid operator and
each MV/LV substation as an aggregator entity.

Figure 1.15: Different functionality of aggregator decision based on regulation signals.

communication technology with no standards currently available for interoperability. SAE, the
International Standards Organization / International Electrotechnical Commission (ISO/IEC),
ANSI, National Institute of Standards and Technology (NIST) and several industrial organi-
zations are working towards the development of interoperability standards. Pacific Northwest
National Laboratory (PNNL) has participated in the development and testing of these standards
in an effort to accelerate the adoption and development of communication modules [Gowri 11].
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Figure 1.16: Groupping process strategy for aggregator of regulation service.

1.3.5.1 ISO/IEC 15118: Vehicle to grid communication interface

ISO 15118 specifies the communication between Electric Vehicles (EV), including Battery Elec-
tric Vehicles and Plug-In Hybrid Electric Vehicles, and the Electric Vehicle Supply Equipment
(EVSE). As the communication parts of this generic equipment are the Electric Vehicle Com-
munication Controller (EVCC) and the Supply Equipment Communication Controller (SECC),
ISO 15118 describes the communication between these components [IEC 13]. IEC 15118 con-
tains eight parts where three parts of it is already developed:

� Part 1 (2013): General information and use-case definition

� Part 2 (2014): Network and application protocol requirements ISO 15118-2:2014 specifies
the communication between Battery Electric Vehicle (BEV) or plug-in hybrid electric ve-
hicles (PHEV) and the Electric Vehicle Supply Equipment. The application layer message
set defined in ISO 15118-2:2014 is designed to support the energy transfer from an EVSE
to an EV [IEC 14].

� Part 3 (2015): Physical and data link layer requirements ISO 15118-3:2015 specifies the
requirements of the physical and data link layer for a high-level communication, directly
between BEV or PHEV, termed as EV (electric vehicle) [ISO-1], based on a wired commu-
nication technology and the fixed electrical charging installation [Electric Vehicle Supply
Equipment (EVSE)] used in addition to the basic signalling, as defined in IEC-1 [IEC 15].

1.3.5.2 Open Charge Point Protocol (OCCP)

OCCP is a communication protocol between charging stations and a central management sys-
tem. Currently, most of public charging stations are using the protocol version 1.5. In new
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version 2.0, uses Hyper Text Transfer protocol (HTTP) for data transferring [Wellisch 15]. Its
aim was to create an open application protocol which allows EV charging stations and central
management systems from different vendors to communicate with each other. It is in use by
a large number of vendors of EV charging stations and central management systems all over
the world. Figure 1.17 shows a basic schematic of V2G and smart charging communication
protocols.

Central system:

Aggregator

DSO

Charging
Station

(EVSE)

OCCP

ISO 15118

IEC 61851

Figure 1.17: Smart charging communication protocol containing V2G communication.

1.3.6 Actual constraints of V2G implementation

Based on the actual progress of the technologies and current standards of the ancillary services,
the implementation of V2G ancillary services is not possible. In other word, there are some
constraints that limit the participation of actual electric vehicles into the V2G ancillary services.
These constraints are composed of two parts; first the technological limitation of bi-directional
power flow for the actual electric vehicles and secondly, the requirements of ancillary services
at the distribution grid level. These two limitations are explained afterwards.

The actual electric vehicle’s battery chargers are only designed for unidirectional power flow
which permits only the charging actions for EV batteries. While for V2G action, a bidirectional
converter needs to be designed and implemented in vehicles for n-board charging systems or at
charging stations for off-board charging modes.

Based on the actual French grid code, the contribution of any controllable load connected
to the distribution grid into the frequency regulation service is restricted. This is due the
standards that limit the connection of MV feeders (départ Haute Tension A (HTA)) in the lack
of balanced frequency. In the case of frequency drop the MV feeders will be disconnected by
the disjuncture connected to the head of each feeder. Therefore, the actual grid code need to be
modified in order to make possible the contribution of V2G-enabled EVs into the grid ancillary
services.

In the continue of the following chapter, the possible ancillary services that can be provided
by EVs are introduced. These services are the possible contribution of EVs in the frame of
V2G technology.

1.4 V2G Ancillary Services

For the sake of maintaining grid reliability and balance of production and consumption, the
existence of ancillary services are necessary. These services support the reliable transmission
of power from producers to the customers [Yilmaz 13]. In this section analyses about the
competitive V2G ancillary services, by inspiration from Distributed Energy Storage Systems
(DESS) ancillary services for distribution MV and LV grid provided in [Delille 09], will be
conducted. Therefore, the competitive services, considering the DESS services requirement
(Table 1.2), will be assessed.
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Table 1.2: DESS Ancillary service requirement

Ancillary
Services

DESS services requirement
Minimum
required
power

Required
interval

Benefitted
stake-
holder

Appropriate
V2G

scenario
AS1 1 MW 30 sec - 15

min
TSO S7-S8

AS2 2-3 MW 30 sec -
ALAR*

TSO S7-S8

AS3 10 MW 30 min -
6h

TSO Several S8

AS4 500 kW
(MV) 100
KW (LV)

2 -10h TSO -
DSO -

Costumer

S3-S4

AS5 100 kvar ALAR DSO S3-S4
AS6 100 kW - 2

MW
20min
-1h30

Distributed
generators

S3 to S8

*As Long As Required

1.4.1 Regulation

Regulation consists of the processes which lead to balance the production and consumption in
the whole electricity grid to achieve fine-tune of frequency of the grid. In France the RTE, which
is part of the European Network of Transmission System Operators for Electricity (ENTSO-
E), is acting as a TSO, responsible for regulation services. This service consists of primary,
secondary and tertiary control. an example of power plant outage leading the activation of the
services are illustrated in the Figure 1.18.

1.4.1.0.1 Primary control (AS1) Primary control is acting automatically within 15 to
30 seconds to stabilize the frequency at a reference value of 50 Hz. However, the dynamic time
response should be more faster something around 1 to 10 seconds. This regulation is common
(i.e. similar to PJM4 frequency response) for all the ENTSO-E members with a 3000 MW
capacity [Petit 13]. All generating units with a capacity higher than 40 MW have to contribute
to primary control. This represent 600 MW for the French system.

In France, the primary reserve receives a fixed capacity payment, i.e. 8 AC/MW within 30
minutes [Petit 13]. The ability of an aggregated EV fleet providing primary control has been
assessed in [Petit 13] where the results showed contribution to funding energy cost and battery
investment cost reduction. For this service, the requirements is met by minimum V2G power of
2.7 and 2.4 MW (atleast 5000 EVs fleet), respectively. controlling these amount of EVs needs
aggregation strategies at TSO level.

1.4.1.0.2 Secondary control (AS2) The secondary reserve will be activated automati-
cally after primary within 100 to 200 seconds. All producers in France with more than 120 MW
capacities are required to allocate a portion to the secondary reserve to provide total capacity

4PJM Interconnection LLC (PJM) is a regional transmission organization (RTO) in the United States. It
is part of the Eastern Interconnection grid operating an electric transmission system serving all or parts of
Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania,
Tennessee, Virginia, West Virginia, and the District of Columbia.
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Tertiary controlSecondary controlPrimary controlPower plant outage

Figure 1.18: Example of a power plant outage in France with three level of regulation [Beck 10].

between 500 to 1000 MW for secondary reserve. Secondary reserve makes possible the restor-
ing for primary control, where tertiary makes it for secondary. Secondary reserve is paid for
capacity, the same as primary, and for energy delivered, (i.e. 9.3 AC/MWh [Petit 13]). For the
EV owners secondary reserve is more interesting since they will be paid for both energy and
capacity.

1.4.1.0.3 Tertiary control (Balancing mechanism)(AS3) The French producers and
customers, subject to the availability of 10 MW, are encouraged to participate in adjustment
mechanism (balancing mechanism). This bid will be additional to the contracted reserves.
Balancing mechanism is a part of tertiary control of the regulation services which is called as
30 minutes complementary tertiary reserve [Rebours 05]. In this service, Controlling the EV
fleet is much more difficult as the bidding capacity is quite larger. Although, the interests for
capacity payment increase the EV owners participation.

1.4.2 Peak power shaving (AS4)

For the DESS application, peak shaving and valley filling is when a storage unit is used to
shift the load from peak to off-peak hours. Thanks to a supervision system, by controlling
the charging periods of EVs fleet and shifting as often as possible the charging time to the
off-peak hours, the number of Subscribed Power Exceeding (SPE) will be reduced. Therefore,
the interests are:

� The investment for grid infrastructure reinforcement will be postponed (e.g. investment
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reduction up to 35% for distribution networks [P. Fernandez 11]).

� The energy transmission cost minimization; In France, distribution system operator (DSO)
pays to TSO for its energy transmission cost which highly depends on SPE and extracted
energy.

� As a point of view of an energy supplier, for the sake of energy purchase price opti-
mization, the customers should be encouraged to participate in peak shaving service by
consuming more during low-cost periods and less during high-cost hours. This could be
an opportunity for V2G enabled EVs to contribute to the grid ancillary services.

� The customers (e.g. EV owner) by participating in this service can minimize the energetic
part of their invoice (i.e. maintain at the level it was before purchasing an EV) as well as
gain from V2G services. This participation in case of predictable peaks and short period
can be profitable (e.g. up to 100 AC/kW [Delille 09]).

For this service, 540 kW power for MV level can be considered. A supervision system, in DSO
level, can properly manage a fleet of 500 to 1000 EVs to participate in peak shaving service.

1.4.3 Reactive power compensation (AS5)

As a part of power quality services, thanks to the power electronics converters, the reactive
power correction can be tackled by V2G by controlling the angle between voltage and current
without any major effect on the charging process. This can be achieved in both charging and
discharging periods. For this service 500 EVs fleet can be sufficient.

1.4.4 Renewable energy support (AS6)

The variable behavior of renewable energy sources (e.g. wind and solar) reduces their contri-
bution to the grid service as there is no high reliability to their availability. Thanks to the
storage systems, their contribution to the ancillary services, such as primary control will be
increased. In this case the Distributed Generation (DG) producers are able to provide reliable
control power to the grid. V2G fleet can act as a DESS to support the storage need of the DG
centers by coordination of its charging time with the production of DG center. The only thing
that may reduce the interests for EV owners is the stochastic behavior of such sources, when
the proposed charging periods may not be necessarily at the availability periods of the EVs.

1.4.5 Base load (AS7)

Base load power is provided continuously by large generation unit which has low cost per kWh.
V2G has been analyzed for this service [Kempton 05a], [Kempton 05b] showing that there is
no competitive price as the EVs have limited storage capacity, high energy cost per kWh and
less charging access at transmission level.

1.5 Conclusion

Integration of electric vehicle to the electrical networks along with literature review on electrical
networks in France and V2G technology were introduced in this chapter. The integration of
EVs has two main aspects, which should be accurately studied: market contribution and tech-
nical contribution. This integration from many points can have negative impacts, if there is no
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coordination and central control system. These impacts are mainly discussed in second chapter
of the thesis and some possible solutions are examined, where their benefits are also investi-
gated. In addition, thanks to the technologies, such as Vehicle-to-Grid and its different types
(V2H-V2V-V2B-V2S), the contribution of EVs can have numerous possibilities that should be
carefully studied; The contribution from technical point of view but also financial point for
both grid and EV owners. The exact and clear benefits for the EV owners and grid is a difficult
task to respond, where in this thesis the aim is to clarify the possibilities to provide possible
technical and financial services incorporated with benefits for both side. The concentration will
be more on services for DSO and parking facilities in railway stations.
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1.6 Résumé

Dans ce chapitre, un état de l’art sur les réseaux électriques, les véhicules électriques et la
technologie Vehicle-to-Grid a été mené. Dans le contexte des réseaux électriques, les différents
types de réseau ont été présentés avec une vision globale sur les marchés d’énergies et les
services systèmes potentiels pour les véhicules électriques. Ensuite, une étude sur les différentes
technologies de propulsion des véhicules électriques a été faite. Les normes actuelles de recharges
des VE dans le monde et en France ont été présentées. A la fin de ce chapitre, la technologie
V2G a été introduite avec l’ensemble des types et les structures des agrégateurs et les normes
de télécommunication. En dernier, les services système potentiels pour la technologie V2G ont
été présentés.

1.6.1 Réseaux électriques

Pour être acheminée depuis les centres de production vers les consommateurs, l’électricité em-
prunte :

� le réseau public de transport d’électricité, destiné à transporter des quantités importantes
d’énergie sur de longues distances ;

� le réseau public de distribution, destiné à acheminer l’électricité en moins grande quantité
et sur de courtes distances.

Le réseau de transport a vocation à acheminer des quantités importantes d’électricité sur de
grandes distances, entre les régions et vers les pays voisins. RTE est le gestionnaire du réseau
public de transport d’électricité français. Ce réseau est constitué de toutes les lignes exploitées
à une tension supérieure à 50 kV sur le territoire métropolitain continental.

Le réseau achemine l’électricité entre les producteurs d’électricité et les consommateurs
industriels directement raccordés au réseau ou les distributeurs d’électricité. L’énergie électrique
produite est portée à un niveau de tension de 400 kV, ce qui permet de la transporter sur de
longues distances en minimisant les pertes. La tension est ensuite abaissée en 225 kV, puis 90
ou 63 kV pour l’alimentation régionale et locale en électricité.

La France s’est fixée l’objectif de porter à 32% en 2030 la part des énergies renouvelables
dans la consommation finale d’énergie. L’insertion des énergies renouvelables dans les réseaux
de transport et de distribution est donc un enjeu majeur de la transition énergétique.

Les réseaux de distribution acheminent l’électricité sur de plus courtes distances, pour une
alimentation de la consommation locale, mais aussi le raccordement de certains producteurs
d’électricité de petite et moyenne puissance. Ils sont constitués d’ouvrages de moyenne tension
(entre 1 000 V et 50 kV) et d’ouvrages de basse tension (inférieure à 1 000 V).

Dans ce chapitre les services systèmes potentiels au niveau des réseaux de distribution et
du transport ont été présentés.

RTE dispose de réserves de puissance mobilisables pour contribuer à maintenir l’équilibre
entre la production et la consommation d’électricité : notamment les services système (réserves
primaire et secondaire) et le mécanisme d’ajustement (réserve tertiaire), auxquels participent
la plupart des grandes installations de production, et, de plus en plus, certaines installations
de consommation.

Les réserves primaire et secondaire sont activées automatiquement avec un délai qui va de
quelques secondes à quelques minutes. L’activation de la réserve tertiaire se fait manuellement
par appel aux producteurs et aux consommateurs connectés au réseau pour qu’ils modifient
très rapidement leur programme de fonctionnement prévu.
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1.6.2 Intégration des véhicules électriques sur les réseaux électriques

Actuellement, le concept de réseau intelligent (smart grid) et ses définitions, les applications, les
impacts et la contribution au réseau électrique classique sont largement discutés dans les sociétés
académiques et industrielles. Le problème des limitations des ressources d’énergie fossile, leurs
impacts environnementaux conduisent à l’introduction de nouveau concept de réseau qui inclue
la contribution bidirectionnelle entre la production et la consommation. Dans cette idée, la
présence des sources d’énergie renouvelables telles que le solaire photovoltäıque, l’éolien et les
véhicules électriques (VE) avec la technologie vehicle-to-grid (V2G) est mise en avant. Ces
sources de productions décentralisées peuvent être stockées pendant les heures de pointe et
réutilisées pendant les heures creuses. Au contraire, il est également important de prendre
en considération les impacts indésirables de la croissance du transport électrifiée sur le réseau
électrique, en raison de la cöıncidence du pic de la charge quotidienne (consommation classique)
et les charges des véhicules électriques.

Dans ce chapitre, les normes actuelles de recharge des VEs en France sont présentées ainsi
que leurs impacts sur les réseaux de distribution ont été étudiés. Ensuite, la technologie V2G
a été introduite. Cette technologie, pourrait offrir une solution aux opérateurs d’énergie et
une rémunération aux propriétaires de voitures électriques. En fonction du type de dimension
de réseau électrique auquel le véhicule est connecté, plusieurs types de cette technologie sont
possibles. Par exemple, l’énergie stockée dans les batteries pourrait suppléer directement aux
exigences électriques de l’habitation durant les pointes de consommation ou une panne du réseau
électrique, auquel cas on parle du concept Vehicle-to-Home (V2H) [Dargahi U. 14].

Ensuite, une étude sur les stratégies de gestion du V2G a été effectuée. Dans ce contexte un
organisme d’agrégation a été introduit. L’agrégateur se situe entre les producteurs d’électricité
et les consommateurs. D’un côté, il garantit aux premiers une capacité virtuelle d’allégement
de la demande électrique lors des pics de consommation et de l’autre il propose des services de
gestion de l’énergie aux consommateurs, leur permettant une réduction des factures d’énergie
électrique. Les différentes technologies de télécommunications, les normes et les architectures
sont aussi présentées. La norme de communication pour la technologie V2G a été introduite
sous le nom d’ISO 15118. Cette norme précise la communication entre le véhicule, la batterie
et les équipements d’alimentation (EVSE). Cette norme contient 8 parties à laquelle 3 parties
sont actuellement développées.

1.6.3 Les contraintes actuelles pour l’intégration du V2G

Par rapport à l’état d’avancement des technologies et des normes actuelles de services système,
la mise en œuvre de services système du V2G n’est pas une tache simple à faire. En d’autres
mots, il existe certaines contraintes qui limitent la participation des véhicules électriques actuels
dans les services système du V2G.

Ces contraintes sont composées de deux parties; premièrement, les limites technologiques
de flux de puissance bidirectionnels pour les véhicules électriques actuels et deuxièmement, les
exigences de services système aux niveaux des réseaux de distribution. Ces deux limites sont
expliquées par la suite.

Les chargeurs de batterie du véhicule électrique sont uniquement conçus pour le recharge-
ment qui n’autorise que les actions de charge pour les batteries des VEs. Alors que pour l’action
V2G, un convertisseur bidirectionnel doit être conçu et mis en œuvre dans les véhicules pour
les systèmes de recharge à bord ou dans les bornes de recharge pour les systèmes de recharges
hors-bord.

En France, avec le grid code actuel, la contribution de toute les charges contrôlables con-
nectées aux réseaux de distribution pour le réglage de fréquence est restreinte. Cela est dû plan
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de sureté qui impose un délestage fréquence métrique des départs HTA dans le cas d’une forte
chute de fréquence. Dans le cas de la baisse de fréquence, le départ concerné sera déconnecté par
le disjoncteur connecté à la tête de chaque départ. Par conséquent, le grid code actuel nécessite
d’être modifié afin de rendre possible la contribution du V2G dans les services système.

1.6.4 Les services système pour le V2G

Dans la dernière section de ce chapitre, un état de l’art sur les services système possibles pour
la technologie V2G est présenté. De plus, une étude a été réalisée au troisième chapitre de
ce mémoire qui est dédié aux services système possibles pour le V2G en tenant compte des
incertitudes et des contraintes aux niveaux de la disponibilité des véhicules électriques.

Dans ce chapitre en considérant les flottes des VEs comme une unité d’stockage d’énergie,
les services possibles pour l’unité de stockages sont étudiés pour les véhicules électriques.

1.6.4.1 Réglage primaire de la fréquence

La constitution de la réserve primaire est assurée par l’ensemble des producteurs européens
interconnectés aux réseaux de transport de la plaque continentale européenne synchrone. Pour
dimensionner cette réserve, on considère qu’elle doit pouvoir répondre à la perte simultanée
des deux plus gros groupes de production présents sur cette plaque, soit une puissance de 3000
MW.

En France, la réserve primaire reçoit un paiement de capacité fixe, c’est-à-dire 8 ¿/MW
dans les 30 minutes. La capacité d’une flotte de VE, fournissant le réserve primaire a été évaluée
en [Petit 13] où les résultats ont montré la contribution au financement du coût de l’énergie
et à la réduction des coûts d’investissement de la batterie. Pour ce service, les exigences sont
remplies par la puissance minimum du V2G de 2,7 et 2,4 MW (au moins 5000 VEs). Le contrôle
de ces nombres de VEs a besoin de stratégies proposées par un agrégateur au niveau de GRT.

1.6.4.2 Réglage secondaire de la fréquence

Tous les producteurs de la zone France possédant des groupes de production de plus de 120 MW
ont l’obligation d’affecter une partie de leur puissance à la réserve secondaire. Cette dernière est
comprise entre 500 MW et 1000 MW, selon la plage horaire et la période de l’année. Le réserve
secondaire est payée pour la capacité, la même prime que celle de la réserve primaire, et de
l’énergie livrée, (c’est-à-dire 9.3 ¿/MWh). Pour les propriétaires de VEs la réserve secondaire
est plus intéressante car elles sont versées pour l’énergie et la capacité.

1.6.4.3 Réglage tertiaire de la fréquence ou mécanisme d’ajustement

Tous les producteurs et consommateurs français, ainsi que certains acteurs étrangers peuvent,
à condition de disposer de 10 MW, participer au mécanisme d’ajustement. Dans ce service, la
gestion de la flotte des VEs est beaucoup plus difficile car la capacité d’appel d’offres est assez
grande. Bien que les intérêts pour le paiement de capacité augmenteront la participation des
propriétaires des VEs dans ce service.

1.6.4.4 Lissage des points

L’écrêtement des pointes est lorsqu’une unité de stockage est utilisée pour décaler la charge de
pic en dehors des heures de pointe. Grâce au système de supervision, en contrôlant les périodes
de rechargement des VEs et décaler le temps de charge aux heures creuses, le dépassement de
puissance souscrite sera réduit.
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Pour ce service, 540 kW de puissance pour le niveau HTA peut être considérée. Un système
de supervision d’un GRD peut gérer une flotte de 500 à 1000 VEs, afin de participer au service
d’écrêtement de pointe (lissage des pointes).

1.6.5 Conclusion

L’intégration des véhicules électriques dans les réseaux électriques avec une étude bibliographique
sur les réseaux électriques en France et la technologie de V2G ont été présentées dans ce chapitre.
L’intégration des VEs a deux aspects principaux qui devraient être étudiés avec précision; La
contribution du marché et la contribution technique. Cette intégration en de nombreux points,
peut avoir des impacts négatifs s’il n’y a pas de coordination et un système de contrôle central-
isé. Ces impacts sont principalement discutés en deuxième chapitre de la thèse et de quelques
solutions possibles sont examinées, où leurs prestations sont également étudiés. En outre, grâce
aux technologies, tels que V2G et ses différents types (V2H-V2V-V2B-V2S), la contribution
des VEs peut avoir de nombreuses possibilités qui devraient être étudiées attentivement; La
contribution du point de vue technique mais aussi financier pour les propriétaires des VEs et le
réseau. Les avantages exacts et clairs pour les VEs et le réseau est un tâche difficile à traiter,
où dans cette thèse l’objectif est de clarifier les possibilités d’offrir des services techniques et
financières possibles accompagnement des avantages pour les deux côtés.
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Chapter 2

Impacts and contribution of electric
vehicles and V2G on distribution grid

“ Nothing ever develops on its own,
isolated from the past. There’s always a
foundation for our knowledge that others
have laid and that we build upon. ”

Ali Javan
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CHAPTER 2. IMPACTS AND CONTRIBUTION OF ELECTRIC VEHICLES AND V2G
ON DISTRIBUTION GRID

2.1 Introduction

In this chapter, firstly a state of the art of different impacts of increased number of EVs on the
electrical grid will be reviewed. Afterwards, the modeling of EV fleet charging profile based on
probability distribution functions will be conducted. Example of two different case studies, one
for a regional distribution network and other one the typical railway station parking lots and
the impacts of EV charging profile on each case will be assessed.

2.2 Impact of EVs on grid: a review

The presence of plug-in electric vehicles is becoming more common as a low or even zero emission
mode of transportation which will be dramatically increased in near future especially at distri-
bution network level. Future smart grid provides the opportunities to bring not only the energy
storage options as a positive outcome but also address negative power quality effects presented
by highly nonlinear charging systems for PEV and PHEVs [Masoum 10]. The other specific
challenges to the grid consist of voltage deviation, power losses in charging periods, transformer
and feeder overloads [Clement-Nyns 10]. Generally the main impacts of uncontrolled charging
of EVs contain as follow [Raghavan 12];

� Distribution transformer losses increment

� Increment of thermal loading on distribution transformer which lead to reducing the
transformer life

� Voltage deviation and voltage unbalance increment

� Harmonic distortion increment due to nonlinear loads

� Peak power augmentation which leads to extra investment on distribution system rein-
forcement

A background of major impacts of uncoordinated electric vehicles charging is presented there-
after.

2.2.1 Transformer losses and loss of life

Transformers are among the most costly network equipment in the medium and low voltage
distribution networks. Therefore, transformer aging influenced by more losses and hotspot
temperature is a key factor when evaluating the impacts of EV charging and decide whether
or not to employ charging coordination [Hilshey 13, Turker 12a]. Transformer aging is highly
depends on health state of Internal solid insulation material. This will be impacted by in-
ternal transformer temperature and particularly hottest point temperature so-called hotspot
temperature.

A time series model of transformer aging method is discussed in [Roe 09] and claim that EV
uncontrolled charging could decrease transformer life by 93%. Another study [Shao 09] con-
cludes that even 10% penetration of EV charging could induce additional transformer overload-
ing beyond predicted overloading. Moreover, the investigation results in [Grahn 11] indicates
that arbitrary charging of the electric vehicles could lead to increased peak power, effecting the
transformer loss of life negatively, when exponential aging behavior occur (Fig. 2.1).

In figure below, two peaks power induced by EVs charging (around T = 600min and
T = 1000min) are effecting the hotspot temperature and transformer loss of life. These results
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underline the impact of uncoordinated charging of the electric vehicle on the major distribution
network devices where should be prevented by proposing supervision systems with charging
coordination purposes.
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Figure 2.1: Impact of EV charging on hotspot temperature and loss of life of the distribution trans-
former [Grahn 11].

2.2.2 Voltage deviation

The root mean square (rms) voltage in power system frequency (50 Hz) is usually used to assess
voltage status. EN501601 allows voltage deviation of ±10% of nominal voltage [Gray 14].
The charging of electric vehicles is also influencing the voltage of the grid node where the
vehicle is connected and charging [Geth 12]. This deviation should be prevented in case of high
penetration of electric vehicles. An illustrative example of different charging penetration of
electric vehicles on IEEE 13 node test feeder is depicted in Fig. 2.2.

2.2.3 Harmonic distortion due to EV charging

Harmonic for a wave is the frequency component of the wave which is integer multiple of
the fundamental wave’s frequency. For instance for case of 50Hz fundamental frequency the
harmonics contain 100Hz, 150Hz, 200Hz, . . . etc. EV interface devices (e.g. chargers and
filters) use the power electronics convertors where they are highly non-linear load devices due
to their switching cell functionalities. Therefore, the current drawn by convertors from the
grid includes harmonics (i.e. in switching cells frequency of PWM controllers and filtering)
(Fig. 2.3). Despite the claim of EV manufacturers that they limit the negative effect of power
quality problems, current and voltage distortion can be occurred due to malfunctioning of
interface devices [Putrus 09].

Also based on a harmonic power flow analysis for integrated EVs in the grid in [Zhang 13],
due to the existence of power electronic elements a large quantity of harmonics are generated by
EVs charging process. The power quality problem deduced by this fact is serious if there is no
harmonic elimination or decreasing system. Passive filter banks placement and optimal dispatch
of LTC and shunt capacitors are introduced as some solution for power quality improvement of
the grid in presence of nonlinear loads [Masoum 10].

1EN 50160 gives the main voltage parameters and their permissible deviation ranges at the customer’s point
of common coupling in public low voltage (LV) and medium voltage (MV) electricity distribution systems, under
normal operating conditions.
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Figure 2.2: Voltage drop due to high penetration of electric vehicle charging for IEEE 13 node test
feeder [Sarabi 13]
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Figure 2.3: An example of waveform of injected current for a EV charger in charging period
[Masoum 10].

2.2.4 Peak Power Increment

Depending on daily load profile of the electrical network, EV charging profile could impose
peak power augmentation. Considering the arrival time of the vehicles’ fleet, if a network
with daily afternoon and night peak power is affected by EV charging, the extra increment
of instantaneous power demand will be happened. This is the case for winter DLP in France
where the penetration of 2 million electric vehicles up to to 2020 will impose near to 4GW peak
power demand depicted in Fig. 2.4. However, the proposition of supervision for managing the
charging time of the EVs and considering bidirectional power flow (V2G) mode control has
been studied in [Sarabi 13] where the valley filling of the DLP instead of peak increment has
been proposed as a solution.

PhD Thesis, S. Sarabi 43



CHAPTER 2. IMPACTS AND CONTRIBUTION OF ELECTRIC VEHICLES AND V2G
ON DISTRIBUTION GRID

Time-(Hour)

P
o

w
e
r-

(M
W

)

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6.5

7

7.5

8

8.5

9
x 10

4

Uncoordinated charging

Coordinated charging (V2G)

Load Profile without EVs

 

Figure 2.4: The effect of peak power increment due to EV charging profile in France on a typical
winter day [Sarabi 13].

2.2.5 Conclusion

The main impacts of electric vehicle charging demand on the electrical grid have been discussed.
Each impact could be considered as one assessment criteria for analyzing the strategies, con-
troller designs and supervision systems of EV fleet charging/discharging coordination. Based on
the objective functions for each controller system, one, two or many of such technical impacts
can be taken into account to prevent, reduce or optimize their performance criteria. In the next
section after modeling of EV charging profile the impacts of EV penetration will be assessed
more from the economic point of view.
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2.3 Introduction of case studies

In this thesis, the contribution and impact of electric vehicles and V2G technology are studied
for two different case studies. The energy management strategies for possible ancillary services
are also assessed for these cases. The first case is the regional distribution grid of Deux-Sèvres
department which contains 14 HV/MV substations at the border of Transmission network and
distribution network. For some services the whole grid containing renewable energy production
(wind farm and solar distributed generation) are considered. While, for some other services the
focus is on one single HV/MV substation.

In the second step a concept of railway station containing electric vehicle charging stations
is studied and possible services with energy management strategies are proposed and their
applicability are analyzed using economic and technical indicators. In the continue these two
case studies are introduced.

2.3.1 Regional distribution grid (Department of Deux-Sèvres)

GEREDIS Deux-Sèvres is the distribution system operator of Deux-Sèvres department’s dis-
tribution grid. It serves more than 150,000 subscription points. The key characteristics of
this entity is depicted in Fig. 2.5. Based on the electric vehicle evolution scenarios in France,
Deux-Sèvres department will accommodate a considerable number of EVs within next years.
Therefore, the strategic planning needs to be active in term of future grid planning and energy
management of the future smart grid actors. In this thesis based on the proposition of project
supervisors and engineers of GEREDIS, three important anillary services are analyzed from EV
charging coordination and V2G technology. Energy Transmission Cost Minimization (ETCM),
Energy Cost Minimization (ECM) and Balancing Mechanism (BM) are studied in this project.

Figure 2.5: GEREDIS territory and grid key values
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2.3.2 Railway station parking lot

SNCF, is France’s national railway company and accomplishes the rail circulation in France.
SNCF operates the country’s national rail services, including the Train à Grande Vitesse (TGV)
(high-speed train). Its functions include operation of railway services for passengers and freight,
maintenance and signaling of rail infrastructure.

In this thesis a concept is proposed in order to study the flexibility of SNCF railway stations
to be as a part of future smart grid actors. For this reason the integration of electric vehicles
and V2G technology contribution on the railway stations parking lots are studied in this thesis.
Three categories of railway stations in France are existed which are considered as case study.
These categories are brought in Table 2.1.

Table 2.1: Different categories of SNCF railways stations and case studies subscription informations.

Category A B C
No. trips/year >= 250, 000 100, 000− 250, 000 <= 100, 000

Subscribed power (kW) 200 - 400 400 100
Subscription contract Green Tariff Green Tariff Yellow Tariff
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Figure 2.6: Typical daily load profile of three railway stations under study.

2.4 Electric vehicle’s uncontrolled charging modeling

In order to be able to understand the problematic of EVs charging from the grid point of
view, and even proposing the solutions for reduction of the negative impacts, charging demand
behavior of the EVs fleet should be studied precisely. As today the fleets of electric vehicles
are not available in huge quantity, therefore, the modeling of load profile of them is not an
easy task. In this thesis, possible modeling approaches for EV charging profiling modeling are
proposed and discussed in detail. These modeling approaches are mainly based on probabilistic
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methods by using the traffic flow information. Different fleets of vehicles are analyzed but
more specifically, vehicles doing daily home-work commuting are the main concentration of this
study. For Deux-Sèvres department, the vehicles’ charging profile for two charging scenarios,
one at home and the other at office, are assessed. Moreover, for railway station parking lots, the
vehicles which are parked during the day are studied. It supposed that these vehicles belongs
the peoples who doing daily trips with TGV and trains. In this chapter the EV charging profile
from probabilistic view and traffic based view are modeled.

2.4.1 Probabilistic modeling

Electric vehicle charging demand are modeled through different methodologies. Reference
[Han 11] calculates achievable power capacity by binomial distribution of clustered PEVs with
similar plug-in probability and power capacity. Reference [Fluhr 10] uses the survey data to
identify the location of PEVs during the day using a stochastic modeling framework to esti-
mate available stored energy into the PEV battery. In [Soares 11] Monte Carlo simulation is
used in order to estimate the probability of transition between different states, e.g. parked or
movement for different parking location for evaluation of PEVs charging impact on the grid.
A non-homogeneous semi-Markov process is used in [Rolink 13] for PEV availability and iden-
tifying the charging load, while in [Gonzalez Vaya 14] a continuous time non-Markov chain is
chosen as the mobility patterns do not fulfill the Markov property (memorylessness). Reference
[Agarwal 14] uses the trip chains for mobility modeling of PEV fleet in order to estimate the
aggregated power capacity of available PEVs and concluded that the home and office car parks
have maximum availability among other place parkings. Among all of these researches back-
grounds and our case study mobility survey, we concluded that the PEVs are parked in home
and office parkings mostly a day and their service providing potential at these time intervals
is relatively higher than other places, such as parking lots of shopping centers or the streets,
which are highly stochastic and periodically short.

In this thesis, the daily home-work commuting are modeled based on probabilistic approach
for stochastic variables, such as , arrival time, departure time and driving distance.

For the DSO, managing the load is a major issue specially when there is local RES production
at their network. The presence of EV load is also important as their simultaneous charging load
can cause major problem for the grid. In this study the focus is on a distribution substation
in the range of 90/20-15 kV with 3 transformers 36 MVA. The diagram is depicted in Fig. 2.7.
This grid has also distributed wind productions, which motivates to use its production locally.
With rate of EV production in France, it is supposed for this grid to serve near 1300 EVs for
the year 2020. The uncontrolled charging profile of this fleet will be analysed where all the EVs
have been considered as Normal charging mode arrived around 8:00 at office parking and ask
for charging instantaneously. Their departure time is also around 17:00.

2.4.1.1 Probabilistic algorithm

In this research, the focus is on the French electric vehicle market and the EV production
between the years 2010 to 2015. The proposed algorithm with inspiration from [19] generates a
fleet of EVs based on information (e.g., battery capacity, daily driving distance and commuting
times). This algorithm consists of 5 steps explained precisely thereafter.

1. EV type and capacity: In the first step, the algorithm chooses the type of each EV
in the fleet based on the market contribution portion available in [20]. The selection is
random but with the probability of market contribution for each type. By choosing the
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Figure 2.7: Diagram of HV/MV substation under study in Deux-Sèvres department.

EV type the other characteristics such as, battery capacity, battery type and NEDC2

autonomy will be provided.

2. Driving distance (Dd): The information related to the daily driving distance has been
considered based on 30 km average daily home/work distance in France [21]. The al-
gorithm based on uniform distribution dedicates randomly driving distance, since the
battery was fully charged, Dd [10 km, 50km], to the every single vehicles.

3. Commuting times: Based on the traffic habits of Deux-Sèvres department in France,
the departure time from home to office in the morning is around 8h00 and the return time
is around 17h00. To generate the set of arrival and departure time for the vehicles,the
parameters are considered as in Table 2.2.

Table 2.2: Parameters for normal distribution of arrival and departure time to home/office.

Distribution Home departure Home arrival Office arrival office departure
µ(hh : mm) 07:45 17:15 08:15 16:45
σ(hh : mm) 00:30 00:30 00:30 00:30

4. Arrival SOC: The assumption in this study is that the all EVs are used by commuting
purpose and every EV will be charged and discharged once in a day, where the V2G
application is also included. The available SOC at the moment of arrival (SOCarrival),
by assuming linearly drop with the distance of travel, can be calculated as in (2.1):

SOCi
arrival =

(
1− Di

d

Ai

)
× 100% (2.1)

2New European Driving Cycle
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Figure 2.8: Probabilistic algorithm for load profile calculation of electric vehicles.
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Figure 2.9: Arrival SOC histogram for 10,000 EVs, output of the algorithm.
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Figure 2.10: Output of algorithm for office arrival fleet.

2.4.2 Traffic based modeling

To study the impact of increased number of EVs on the electrical grid, a specific driving
pattern, hypothesis or an exact periodical time interval has often been chosen. Problem of such
modeling methods is that there is no dynamic between real traffic behavior of the roads and
chosen pattern. In this study, we have considered the daily traffic behavior of the transportation
fleet (Fig. 2.12) as an inspiring pattern to estimate the arrival and departure time of the vehicles
used for working and daily short trip motives [SYT 13]. For this reason, the real-time traffic
load data have been considered as pattern. Thanks to that, it would be possible to identify
the differences between working days, and weekends. This will be valuable for annual impact
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Figure 2.11: Output of algorithm for home arrival fleet.

analysis of the EVs. In this case, we have concentrated on annual average value of traffic data
available for one complete week (Monday to Sunday) (Fig. 2.13). After that, for each single
day the best-fitted probability distribution functions to data is identified, where the proper
parameters for each distribution is calculated through a linear optimization problem.
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Figure 2.12: An example of daily traffic evolution on Monday in Paris (dashed line is the annual
average for Monday)
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Figure 2.13: Weekly Annual Average variation of traffic load in Île-de-France
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2.4.2.1 Working Days Modeling

The aim of this part is to find the best-fitted representative Probability Distribution Function
(PDF) for working days of the week. From the obtained distribution function, the departure
time of the vehicles could be estimated. However as the arriving time to the charging stations
are addressed, a proper delay is considered (e.g. 1 hour). Looking at the working day traffic
information, there are two major peaks one around 8:00 AM and another at 18:00. The first
peak could be estimated as departure time from home to work and the second one from work to
home. Since there is a nonsymmetrical shape around the peaks, normal distribution could not
be chosen while a PDF with shape parameter could be more adaptable. Gamma distribution
as a two-parameter family of continuous probability functions and Generalized Extreme Value
(GEV) distribution as a three-parameter PDF are adaptable for the peaks fitting estimation.
Gamma distribution is used for modeling the first peak at morning where GEV with a fixed
negative shape parameter (ξ = −1/2) is used to model the second peak at evening. There-
fore, the other parameters should be estimated in order to generate the best-fitted PDF to the
peaks. Equation (2.2) represents the shape-scale parameterization PDF of gamma distribution
with gamma function (Γ(k)). Equation (2.3) represents the GEV PDF with negative shape
parameter (ξ = −1/2).

f(t; k; θ) = tk−1e−x/θ

θkΓ(k) (2.2)

g(t;µ, σ, ξ) = 1
σ
r(t)ξ+1e−r(t) (2.3)

r(t) =

(1 + ( t−µ
σ

)ξ)−1/ξ , if ξ 6= 0
e−(t−µ)/σ , if ξ = 0

(2.4)

In order to estimate the optimum parameters (k, θ, µ, σ) for the best-fitted PDF to the real
traffic data, y(t), the estimation errors, e1(k, θ) and e2(µ, σ) should be minimized.

fnorm(t; k; θ) = f(t; k; θ)−minf(t; k; θ)
maxf(t; k; θ)−minf(t; k; θ) (2.5)

ynorm(t) = y(t)−min(y(t))
max(y(t))−min(y(t)) (2.6)

e1(k, θ) = min
k,θ

24∑
t=0
|ynorm(t)− fnorm(t; k; θ)| (2.7)

s.t. 0 < t < 24, (time step = 10min)
2 < k < 12 ∈ R,
0 < θ < 4 ∈ R,

gnorm(t;µ, σ, ξ) = g(t;µ, σ, ξ)−min(g(t;µ, σ, ξ))
max(g(t;µ, σ, ξ))−min(g(t;µ, σ, ξ)) (2.8)

e2(µ, σ) = min
µ,σ

24∑
t=0
|ynorm(t)− gnorm(t;µ, σ, ξ)| (2.9)

s.t. 0 < µ < 10 ∈ R,
0 < σ < 2 ∈ R,

The best-fitted PDF for two peaks from gamma and GEV distribution with optimized
parameters (µ = 6, σ = 0.9, k = 5.25, θ = 4) are depicted in Fig. 2.14. This process has been
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Figure 2.14: Normalized Optimum gamma and GEV PDF fitted to traffic data for working days (e.g.
Monday)
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Figure 2.15: Stationing time histogram for working days (e.g. Monday)

repeated for 5 days of the working days to obtain the optimum parameters for each single day
of the week. After that, the stationing time Ts of the vehicles (i.e. arrival at office parking’s
in the morning and arrival at home parking in the evening) will be generated from optimum
gamma and GEV distribution (Fig. 2.15).

2.4.2.2 Weekend Modeling

In order to model the weekend days (Saturday and Sunday), as there is no major departure from
home to work during the morning, there is no peak in traffic data around 8:00 AM. However,
arriving at home could make a peak with less amplitude (i.e. compared to working days)
around 20:00 PM. An optimum GEV distribution is needed to cover the proper distribution of
stationing time for weekend (Fig. 2.16 and 2.17).

2.4.2.3 Charging profile

Based on the probabilistic algorithm proposed in [Sarabi 14], the required amount of energy
for each EV battery to be full-charged at its departure time will be calculated (2.11). Each
vehicle by choosing its arbitrary charging mode will be charged for Tc interval starting from its
stationing time Ts. Required parematers are defined in Table 2.3.

SOCi
arrival =

(
1− Di

d

Ai

)
× 100% (2.10)

Ei
G2V = (1− SOCi

arrival)× Ei
EV × µc (2.11)
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Figure 2.16: Normalized Optimum GEV PDF fitted to traffic data for weekend (e.g. Saturday)
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Figure 2.17: Stationing time histogram for weekend (e.g. Saturday)

Table 2.3: Charging profile parameters’ definition

Parameter Definition and value

A EV’s autonomy in the range of 80 < A < 250km.

Dd Daily Driving distance in the range of 10 < Dd < 50km.

EEV battery capacity in the range of 8 < EEV < 30kWh.

µc Charging efficiency µc = 0.97 for 3kW charging rate [Turker 12b].

Cr Charging rate, NC = 3kW,RC = 43 and 23kW .

T ic = Ei
G2V
Ci
r

(2.12)

CPi(t) =

Ci
r , T is < t < T is + T ic

0 , elsewhere
(2.13)

Pfleet(t) =
n∑
i=1

CPi(t), 0 < t < 24 (2.14)

In (2.10), the State of charge (SOC) of the ith EV at its arrival time to the parking will be
calculated based on its driving distance. Afterwards, its required amount of energy, EG2V ,
will be defined. In (2.13), the charging profile of the EV will be determined, where at the
end the total charging profile of the fleet will be addressed in (2.14). The charging profile of
the morning and evening are considered separately, therefore the summation of both will give
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the final daily load profile of the EVs fleet that should be considered for impact analysis on
distribution network (Fig. 2.18).

Figure 2.18: Charging profile of 10,000 EV for impact analysis of distribution network

2.5 Impact and contribution of EV/V2G on regional dis-

tribution grid

The impact of EV and their contributions using V2G technology are analyzed for energy trans-
mission cost minimization based on the demand of project supervisors. Using probabilistic
modeling approach explained in previous section, the load profile of EVs for home and office
scenario is modeled. After that, two charging scenarios are considered and the impact of both
scenarios is analyzed. The first one is uncontrolled charging scenario which is obtained from
the algorithm. The second one is the supervised charging scenario which needs an optimization
problem in function of minimizing the energy transmission cost. In fact, the energy transmission
cost is considered as objective function of optimization problem and by using an optimization
technic the charging demand associated to energy transmission cost minimization are calcu-
lated. In the next step the optimization problem will be defined and the proper method for
solving the problem will be presented. Finally, the results of optimization are brought and the
discussion will complete the section. This step will identify the impact of EV/V2G coordination
contribution into the distribution grids’ transmission costs.

2.5.1 Scenarios and assumptions

For this analysis, the energy transmission cost is considered as objective while the constraints
are mainly limited to the electric vehicles’ availability. Two charging scenarios are considered
for the vehicles doing daily commuting between office and home. The first one is charging
scenario at office and the second one is the charging scenario at home. The assumption of this
study are mainly based on the scenarios and assumption generated by previous works on the
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same case studies [Bouallaga 15] in order to be able to compare the obtained results to show
the advantages of V2G technologies compared to simple charging coordination strategies. In
fact, the inputs for this part of study are generated using the probabilistic algorithm explained
completely in section 2.4.1.1. The following values are considered as the assumption of the
study:

PEV fleet number for 2030 2700

Office departure time 17:00

Home departure time 06:00

Subscribed power 54980 kW

2.5.2 Optimization problem

The distribution grid system operators have to pay the transmission system operators (TSO) a
yearly bill related to energy transmission which is called energy transmission cost (ETC). This
invoice has several different components, where two of them are more interesting in term of
energy management objective [Bouallaga 13]. These components are energy absorption (EA)
and subscribed power exceeding (SPE) with a fix part. In order to minimize ETC Invoice, the
electric vehicle fleet can have interesting contribution through following means of actions:

� Charging during the low cost energy price.

� Charging during the surplus of RES production.

� Discharging during the high cost energy price.

� Discharging during the surplus of consumption compared to RES in high cost intervals.

ETC is calculated based on tariffs defined by TSO which is called Tarifs d’Utilisation des
Réseaux Publics d’Electricité (TURPE) [TURPE 15]. To have it minimized, the problematic
defined in form of equation (2.15) is considered with constraints of EVs availability, battery
SOC limitation, RES intermittency, energy tariff and subscribed power limit. This optimization
problem is solved using interior point method for its nonlinear objective function. EA represents
Energy Absorbed the part of the bill related to consumed energy. SPE represents Subscribed
Power Exceeding. In the following equation, ∆P shows the subscribed power exceeding and
Ei represents the energy consumed in the ith hourly tariffs. In this example five different
hourly tariffs are considered: Peak hours (HP), winter peak hours (HPH), winter off-peak
hours (HCH), summer peak hours (HPE) and summer off-peak hours (HCE). The objective for
our optimization is to minimize the energy transmission cost which is obtaining from equation
2.15 with subscribed power exceeding components calculated by equation 2.16.

EA = a2Psubscribed +
n∑
i=1

diE(t)i +
∑

12months
SPE(t) (2.15)

SPE(t) =
n∑
i=1

(α.
√∑

(∆P (t)2)) (2.16)

For the calculation of ∆P the equation 2.17 is used.

∆P (t) = PPS(t)− Psubscribed(t) (2.17)

where PPS(t) is the injected or absorbed power in the level of HV/MV substation. The core of
the optimization poblem is in this variable when the sum of all consumption and productions are
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considered. In fact the electric vehicles’ charging demand is contributing in the energy trans-
mission cost minimization by applying the impacts on the PPS(t) parameter. This parameter
is obtained by equation 2.18.

PPS(t) = Pcon(t)± PEV (t)− Pwind(t)− PPV (t) (2.18)

Where, Pcon(t) is the consumption of classical consumers of the grid, PEV (t) is the power
demand from the electric vehicle fleet, which could be positive when the vehicles are charged
and negative when discharged and is equivalent of Pfleet(t) in equation 2.14, Pwind(t) is the
wind active power production and PPV (t) is the photovoltaic active power production.

Nonlinear programming solvers needs the optimization problem in the following form:

min
x
f(x)

s. t.

c(x) 6 0
ceq(x) = 0
A.x 6 0

Aeq.x = beq
lb 6 x 6 ub

(2.19)

where x is optimization variable, c is the nonlinear inequality constraint function, ceq is the
nonlinear equality constraint function, A is the parameters of non-equality constraint, Aeq is
the parameters of equality constraints and lb and ub define the lower and upper limit variation
of variable x, respectively. Considering the energy transmission cost minimization problem, the
equation 2.15 is equivalent of f(x) function as the objective function. The constraints for this
optimization problem as discussed previously, are the availability of the EVs and EV batteries
SOC limitation. These constraints are representing an area of acceptance for the optimization
problem which is presented in Fig. 2.19. Lower bound and upper bound are limiting the actions
of charging and discharging which can generate the power of boundary values corresponds to the
lower and upper bound lines in the figure. This boundaries are calculated based on maximum
achievable power of the fleet and availability of the electric vehicles.

Figure 2.19: Lower bound, upper bound and availability of EVs as the constraints for optimization
problem.

As the objective function is nonlinear an algorithm of nonlinear optimization technic for
convex problem is welcomed. Inter point method is chosen as solver algorithm for this opti-
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mization problem. fmincon function in Matlab© is used for this optimization problem. The
results of the aforementioned problem are brought in next section.

2.5.3 Results

This optimization algorithm is applied for the scenario of charging at office and charging at
home as explained in section 2.5.1. Different types of the outputs for both charging scenarios are
brought to show the functionality of the optimization algorithm. Fig. 2.21 shows an example
of day 39 (winter working day). In this example the V2G functionality is activated in order to
reduce the subscribed power exceeding of normal load profile without EV charging (PPS) while
the charging demand (G2V energy) are distrbuted optimaly in order to limit the exceeding of
subscribed power. In addition the V2G action is occured in the period of high price energy and
the charging action is at middle price period which brings benefits of difference between the
price for the EV owners and also the DSO.

In Fig. 2.22 an example of optimum load profile in function of energy price is depicted. The
V2G energy is occured during high price period and charging demands are concentrated to the
middle price periods. The full charging of the vehicles are limited to 17h00 for office scenario
and this is the reason that the charging demands are oriented to middle price periods.

In Fig. 2.23 an example of one winter day when there is more production than consumption
is presented. It is evident that the charging of electric vehicles are concentrated on these periods
in order to consume the local production of renewable energies. As it is shown even if the price
is high the EVs are to be charged in order to use the surplus produced energy of the renewable
sources.

In Fig. 2.24, an example of charging scenario at home is presented. The optimization
algorithm correctly minimized the subscribed power exceeding and by using V2G discharged
the energy of the batteries during high price periods in order to benefit from low price period
for recharging the batteries.

In Fig. 2.25 one home charging scenario for summer is represented. In this example, during
18 to 20 PM even with the high price of the energy the charging of the EVs are activated in
order to use the surplus energy of the renewable energies as it is shown in this figure at part (d).
The charging of the EVs are terminated until 6 AM as it is already considered as constraints
for EVs charging scenario at home.
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(b) Comparison of EV charging power
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Figure 2.20: Comparing the optimization result for one winter day and home/office charging scenario,
case of subscribed power exceeding limitation using V2G.
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Figure 2.21: Comparing the optimization result for one winter day and office charging scenario, case
of subscribed power exceeding limitation using V2G.
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Figure 2.22: Comparing the optimization result for one winter day and office charging scenario, case
of energy price orientation using V2G.
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(d) Comparison of renewable energy production and consumption
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(b) Comparison of EV charging power
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Figure 2.23: Comparing the optimization result for one winter day and office charging scenario, case
of local production of renewable energy surplus compared to the consumption.
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Figure 2.24: Comparing the optimization result for one winter day and home charging scenario, case
of subscribed power exceeding limitation and off-peak hours orientation of EV charging using V2G.
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(b) Comparison of EV charging power
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Figure 2.25: Comparing the optimization result for one summer day and home charging scenario, case
of local production of renewable energy surplus compared to the consumption.
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2.6 Impact and contribution of EV/V2G on railway sta-

tion parking lots

Railway station for its local consumption should pay to energy supplier companies an annual bill
corresponding to its consumption. The presence of EV charging stations may lead the energy
consumption of the railway station to fluctuate. Here a charging/discharging management
strategy is developed by optimizing the energy bill and controlling the load variation. At first,
an optimization problem will find the proper energy distribution to minimize the invoice. Then
second optimization problem will determine the charging/discharging time of the EVs to achieve
the previously explained objective.

2.6.1 Railway station charging profile modeling and scenarios

The railway stations in France are the subject of smart grid developments with possible energy
interactions between the grid and the users. Their connection to the distribution grid is through
a MV/LV substation with range of 20-15/0.4 kV. These stations are supposed to act as an energy
hub with different components such as local Renewable Energy Sources (RES) and electric
vehicle charging stations. To analyse the impact of daily arrived EV to the parking, different
scenarios have been considered. In this study the possibility and contribution of coordinated
charging/discharging is also taken into account. These scenarios are based on arrival time and
departure time of the EVs to the parking. The arrival time of the vehicles are distributed
normally between 7:00 to 9:00 whereas the departure time is distributed normally between
16:00 to 20:00. The average availability interval is around 10 hours during which EV can be
used for charging coordination. The total number of 10 charging station has been considered as
base case. The capacity of the railway station is also evaluated from 1 to 50 charging stations.
Charging stations are divided into several types of charging process, different cases have been
studied and are described as follow;

Normal Charging (NC)
Normal charging case is the principle charging option for majority of EVs with 3 to 3.7kW

charging rate. For an EV with 20 kWh battery capacity, it takes 6 to 8 hours to be fully
charged. In this scenario all the vehicles arriving to the parking will choose NC charging mode.

Accelerated Charging (A.C)
Accelerated charging case is the charging mode with three phase circuit and 23 kW charging

rate power. For an EV with 20 kWh battery, 1 hour is enough to be fully charged. In this
scenario all the EVs are considered as choosing AC charging mode.

Rapid Charging (RC)
Rapid charging is the case for charging station in highways and freeways where the users

need to have their battery fully charged very short. Charging rate of 43 kW lead to charging a
20 kWh battery in less than half an hour. This scenario is also considered that all EV in the
parking can be charged at this rate.

Mixed Charging (MC)
In this option 40% of the station are RC charging mode, 20% of them are AC charging mode

and 40% of the rest are NC charging mode.

2.6.2 Optimization problem

An algorithm based on two layer optimization is discussed here. Annual Energy Invoice Min-
imization (AIEM) algorithm at first minimizes the subscribed power of the station based on
future energy consumption provision. Afterwards, using a convex optimization method the daily
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Figure 2.26: Arrival and departure time histogram for railway station charging scenarios.
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Figure 2.27: Charging profile of 20 EVs for impact analysis of Railway stationing.

load profile of the station will be recalculated for the aim of minimizing the Annual Energy
Invoice (AEI). This DLP will be called as reference load profile and will be used as reference
for second layer optimization. The second layer uses a Binary Linear Programming (BLP)
algorithm in order to reschedule the charging procedure of PEVs in the station. The algorithm
will take just zeros and ones as its possible values for the optimization variables which lead to
calculation time reduction comparing to the continuous linear programming algorithms. The
flowchart of the proposed algorithm is brought in Fig. 2.28, where it shows the flow of data
and process simultaneously. The different parts of this algorithm will be explained thoroughly
afterwards.

2.6.2.1 Optimizing subscribed power (Psub)

The subscribed power is contracted one time per year and should be carefully chosen. Compar-
ing to the annual consumption, choosing high value of subscribed power leads to extra payment
on subscription component while, low value causes increment on subscribed power exceeding
component. Hence choosing appropriate subscribed power leading to optimum invoice needs to
have a priori knowledge on amount and manner of consumption. Having a typical annual load
profile, optimum subscribed power can be found via a convex optimization problem.
The yearly energy invoice is calculated using following formula [Sarabi 15].

Cost =
5∑
j=1

(djEj) +
5∑
j=1

(K.Tj
√∑

(∆Pj)2) + α.Psub (2.20)
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Ej =
∫ tbj

taj

LP (t)d(t) (2.21)

Where the first component is for consumed energy Ej, with its price dj, in AC/kWh during
5 different periodical tariffs j. The second components is for penalty of subscribed power
exceeding with T , the reduction coefficient for each tarif and K the price of subscribed power
(Psub) exceeding in AC/kW. ∆P is the amplitude of Psub exceeding averaged during 10 minutes
intervals. Finally, the third components which is the subscription part with base rate value of
α in AC/kW/year. LP is representing the load profile of the station where its variation should
be controlled in order to minimize the invoice. The optimum subscribed power of the under
studying station is obtained using a convex optimization as 69 kW. Note that this subscription
is considering the annual consumption without PEVs load demand.

2.6.2.2 Energy invoice optimization

In this part optimizing the invoice using optimized subscribed power and actual load profile is
addressed. In fact the load profile leading to minimum invoice will be found. This load profile
will be considered as reference for charging/discharging scheduling problem in next section.
This part is considered as the first layer of optimization.

min
RLP (t)

Cost (2.22)

Subject to: ∫ tbj

taj

DLP (t)d(t) =
∫ tbj

taj

LP (t)d(t) (2.23)

NowRLP (t) is the Reference Load Profile (RLP) which can minimize the invoice. This reference
is considered in scheduling problem.

2.6.2.3 Mixed integer linear programming (MILP)

Mixed integer programming is an optimization method that combines continuous and discrete
variables. MIP can model complex planning and control problems involving both discrete and
continuous variables. In this part this method is used for coordination of PEV charging time. In
order to decrease the calculation time, considering the number of variables, a modified version
of MILP is used which is explained in next section.

2.6.2.4 Binary Linear programming (BILP)

Binary linear programming is a modifed version of MILP when the variables are binary values.
It means that the acceptable values for all the variables could be either 0 or 1. In Figure 2.29,
it is shown that how choosing BILP instead of MILP can decrease the problem complexity and
consequently decrease the calculation time. There is one way to consider three possibilities for
three actions, -1, 0 and 1 for discharging, no charging and charging, respectively. In other hand
only two possibilities can be chosen. 0 for no charging and 1 for charging/discharging, where
the choose between charging and discharging can be done by a reference parameters.

2.6.2.5 Formulation of PEV scheduling problem

Charging scheduling problem of N PEVs are formulated as a vector in time with elements
equal to the 10 minutes time step over a day, which is equivalent to a row vector with size 1
by 144. This is called day sample times as k. The question to be answered is how coordinate
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Figure 1.  Flowchart of AEIM algorithm. 
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Figure 2.28: Flowchart of AEIM algorithm

the charging, no charging and discharging commands between plug-in time steps to achieve the
objective of the coordination. For this reason EV i

cp(t) is defined as charging profile of PEVs
with sample time coefficients of ak as BLP variables and charging rate of CRi. This charging
rate is positive for charging and negative for discharging and the value is defined by the charging
scenarios.

{
EV i

cp(k) = [a1, a2, ..., ak]× CRi

i = [1, N ] ∈ N. (2.24)
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Figure 2.29: Comparison of number of possibilities for case of charging/discharging control with mixed
integer variables and binary variables.

In equation (2.25), Capi(k) represents the distance between RLP and actual LP . In fact, the
purpose is to minimize this distance in order to minimize the energy invoice which is already
minimized by RLP.

Capi(k) = LP (k)−RLP (k) (2.25)

γi(k) = −
∣∣∣Capi(k)

∣∣∣ (2.26)

Ci(k) =
(
γi(k) + CRi(k)

)
× ak (2.27)

k = [1, 144] ∈ N (2.28)

ak = [0, 1] (2.29)

In order to prevent trivial answer of 0 for binary linear programming minimization problem,
the coefficient γi(k) is defined. Finally for optimization problem, Ci(k) is defined as objective
function.

Minimize
a1,..,ak

T∑
k=1

Ci(k)

Subject to:

(2.30)

T∑
k=1

Aeq(k).ak = SOCi
need (2.31)

T∑
k=1

A(k).ak ≤ SOCi
max (2.32)

T∑
k=1
−A(k).ak ≤ −SOCi

min (2.33)

Constraint (2.31), ensure the energy need of each single PEV during its plug-in interval. Con-
straints (2.32) and (2.33) guarantee the charging scheduling within possible range of SOC
variation. Where SOCi

min is considered as 20% to minimize the battery depth of discharge and
SOCi

max is equal to 100%, the constraint for departure of all PEVs.

Aeq = Capi(k)
|Capi(k)| (2.34)

Aeq = [−1, 1] ∈ Z (2.35)
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For principle formulation of linear programming the Aeq is the coefficient of linear equality
constraints where for this problematic, its values are -1 for discharging, 0 for idle mode and 1
for charging mode. Finally, the matrix A for non-equality constraints is defined as follow:

A =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

×

Aeq(1) 0 · · · 0

0 Aeq(2) · · · 0
...

...
. . .

...
0 0 · · · Aeq(k)



2.6.2.6 Optimum schedule for ith PEV

After each iteration of the optimization algorithm in order to calculate the charging schedule
of ith PEV a factor of SOC progress as SOCi

sign(k) is defined.

SOCi
sign(k) = [ak]×


Aeq(1) 0 · · · 0

0 Aeq(2) · · · 0
...

...
. . .

...
0 0 · · · Aeq(k)


Where the final optimized charging profile of concerned PEV considering its charging rate CRi,
will be as follow:

EV i
cp(k) =

[
SOCi

sign(1), · · · , SOCi
sign(k)

]
×
[
CRi

]
(2.36)

2.6.2.7 Updated functions for next PEVs

In order to calculate the charging profile of next PEVs (based on their arrival time) the functions
LP (k) and Capi(k) should be updated considering the optimized charging profile of previous
PEVs.

LP i+1(k) = LP i(k) + EV i
cp(k) (2.37)

Capi+1(k) = LP i+1(k)−RLP (k) (2.38)

2.6.2.8 Constraints for PEV’s Energy need

The PEVs which will arrive with low SOC rate have extra constraints that are introduced
in form of two algorithms. If the number of admissible charging samples Nb.+, is less than
required charging sample time of a PEV (T ic), the Aeq will be updated until respecting the
PEVs charging need constraint. This is considered in form of following algorithm.{

Nb.+ Aeq > 0
Nb.+ Aeq < 0 (2.39)

Algorithm 1 Charging need check in Aeq vector

1: if T ic > Nb.+ then
2: Put 1 in vector Aeq where
3: Aeq × Capi(k) has smallest value.
4: else
5: end if
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In addition, when a PEV arrives with SOC less than minimum SOC of the scheduling
algorithm constraint, the constraint (2.32) will be updated by following algorithm in order to
enforce the scheduling algorithm to start by charging the concerned PEV instead of discharging
its battery.

Algorithm 2 Updating Minimum SOC constraint

if SOCi
arrival < SOCi

min then
2:

∑T
k=1−A(k).ak ≤ 0

else
4: end if
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Figure 2.30: SOC evolution comparison for a case of 10 PEVs.
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2.6.3 Results

For a case study of 10 PEVs in Scenario 1, the variation of state of charging due to charging
by the proposed approach is compared with non-controlled case in Fig. 2.30. The arrival time
and departure time of each PEV is indicated to show the respecting of users satisfaction having
fully-charged battery at departure time for all PEVs. Due to the peak of consumption during
the morning the PEVs arriving sooner have been asked to provide V2G for peak power reduction
of the station. For the other PEVs charging coordination is applied in order to minimize the
impact of charging on peak to average ratio of the DLP and consequently reducing AEI.
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Figure 2.31: Comparison of optimum subscribed power evolution in function of number of vehicles for
non-cordinated and coordinated scenarios.

The performance of proposed approach is evaluated using three indicators. Maximum power
of yearly load profile is considered as the first indicator in order to represents the effectiveness
of the scheduling scheme compare to non-controlled scenarios (Fig. 2.32a). As it is illustrated,
the maximum power is linearly increasing by PEV number increment for all non-controlled
scenarios. S2 shows a stochastic variation as it has stochastic number of PEVs shared between
3 charging modes. S3 and S4 have reletively the same ∆Pmax as the 10 minutes averaged power
are considered in AEI calculation. However, for most of optimum scenarios the value of ∆Pmax
remained relatively constant and it shows the effective performance of AEIM algorithm for
peak-to-average reduction of station’s consumption.

∆Pmax = PwithPEV
max − PwithoutPEV

max (2.40)

Optimum subscribed power is the second indicator where the impact of scheduling scheme leads
to subscribed power reduction (Fig. 2.32b). A sharp increment is occurred after 5 PEVs for
most of non-controlled scenarios, while for optimum scenarios the optimum Psub can remain
as 69 or 70 kW up to hosting 20 PEVs (the actual horizon), the subscribed power of actual
contract without PEVs.

Finally, the AEI of the station is presented for all the scenarios in Fig. 2.32c. A slight
increment of AEI for optimum scenarios is representing the energy part of the AEI, while
the considerable differences betwwen non-controlled and optimum scenarios is evident. This
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IV. RESULTS 
In this part the results will be brought. 
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Figure 2.32: Comparison of different indicator for optimum and non-optimum scenarios

difference is comming from the impact of AEIM on peak power reduction and subscribed power
optimization. Comparing the worst case, S4, the contribution of AIEM leads to approximately
20% reduction of AEI for 20 PEVs scenario.

In term of the subscribed power evolution in function of EV increment, three selected
scenarios have been chosen to compare the optimum subscribed powers of coordinated and
non-coordinated cases. The results for 10, 20 and 30 EVs fleet are depicted in Fig. 2.31 where
the slight increment of optimum SP is evident compared to the case of non-coordinated. This is
valuable from financial point of view for the stakeholders of the charging infrastructures inside
the railway stations.

2.6.4 Conclusion

In this study, contribution of AEIM algorithm to peak power reduction and AEI minimization
of a railway station, hosting up to 20 PEVs, were presented. The proposed algorithm is able to
minimize the peak power using V2G ability of PEVs parked during the day inside the railway
station parking lots. In addition, charging scheduling is applied in order to minimize the annual
energy invoice of the station. The minimization of the invoice is conducted using subscribed
power minimization, subscribed power exceeding minimization, and PEVs charging during low
cost hours. As in this case study the electricity price during the most of the plug-in intervals
was constant, the impact of later factor was not evident. However, peak power reduction and
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exceeding minimization leads to minimizing up to 20% of AEI of the station. As the future
works this algorithm would be updated for real-time applications and share of the same amount
of V2G between all PEVs and priority based V2G service participation.
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2.7 Résumé

Ce chapitre consiste en une étude des impacts des véhicules électriques sur les réseaux de distri-
bution. Deux cas d’études principaux de la thèse ont été présentés et les études d’analyses des
impacts de la demande des charges des véhicules électriques ont été évaluées. Ces impacts ont
été évalués au point de vue économique pour les services minimisation des facteurs énergétiques
et minimisation du facteur d’acheminement d’électricité.

Le déploiement massif des Véhicules Électriques et des Véhicules Hybrides Rechargeables va
augmenter la consommation électrique, notamment dans le secteur résidentiel, les pertes dans
les lignes et la chute de tension dans les réseaux de distribution. Cet effet va diminuer aussi
la fiabilité et la qualité de la puissance électrique fournie aux consommateurs éventuels. Les
deux moyens d’aider au déploiement des VE sont soit renforcer le réseau électrique national
et la production d’énergie, soit limiter les impacts négatifs et/ou saisir les opportunités des
VE grâce aux technologies V2G et la coordination des charges des véhicules électriques. Ces
derniers sont les sujets principaux de cette thèse qui sont développés au cours des prochains
chapitres.

Dans cette thèse, la contribution et l’impact des véhicules électriques et de la technologie
V2G sont étudiés pour deux cas d’études différents. Les stratégies de gestion énergétique pour
les services système possibles sont également évaluées pour ces cas. Le premier cas est un
réseau de distribution régional du département des Deux-Sèvres qui contient 14 postes source
(HTB/HTA) à la frontière du réseau de transport et du réseau de distribution. Pour certains
services, le réseau entier, contenant la production d’énergie renouvelable (éolien et solaire), est
considéré. Alors que, pour certains autres services, l’accent est mis sur un seul poste source.

Dans le deuxième cas, un concept de gare, contenant les bornes de recharges des VEs, est
étudié et les services possibles avec les stratégies de gestion de l’énergie sont proposés pour les
véhicules électriques. Ensuite, leur applicabilité est analysée à l’aide d’indicateurs économiques
et techniques.

2.7.1 Modèle probabiliste de la charge des véhicules électriques

Pour pouvoir comprendre la problématique du rechargement des VEs du point de vue de réseau
et de proposer des solutions pour la réduction des impacts négatifs, l’imputation du comporte-
ment de demande de la flotte EVS devrait être étudiée précisément. Comme aujourd’hui les
flottes de véhicules électriques ne sont pas disponibles en quantité suffisante, la modélisation du
profil de charge n’est pas une tâche facile. Dans cette thèse, des approches de modélisation pos-
sibles pour les VEs comme l’imputation de la modélisation de profilage sont utilisée et discutée.
Ces approches de modélisation sont principalement basées sur des méthodes probabilistes en
utilisant les informations du flux de trafic.

Les différentes flottes de véhicules sont analysées, mais plus spécifiquement, les véhicules
faisant le trajet quotidien ”travail-domicile” est le point principal de cette étude. Pour le
département des Deux-Sèvres, la courbe de charge des véhicules pour deux scénarios de recharge,
un à la maison et l’autre au travail est évaluée. De plus, pour des parkings de gare, les véhicules
qui sont garés pendant la journée sont étudiés. Il a supposé que ces véhicules appartiennent à
des personnes qui font des voyages quotidiens avec le TGV et des trains régionaux.

Dans ce chapitre, la courbe de charge des véhicules est modélisée au point de vue probabiliste
et du flux de trafic.
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2.7.2 Impact des véhicules électriques sur les réseaux de distribution

L’impact des VEs et de leurs contributions en utilisant la technologie V2G sont analysés pour
la minimisation de coût d’acheminement d’électricité basée sur les conseils des encadrants du
projet. En utilisant l’approche probabiliste, expliquée dans la section précédente, les courbes de
charge des VEs pour les scénarios de recharges à domicile et à travail ont été modélisées. Après
cela, deux scénarios de recharges sont considérés et l’impact des deux scénarios est analysé.
Le premier est le scénario de recharge sans supervision, qui est obtenu de l’algorithme. Le
deuxième est le scénario de recharge supervisé, qui a besoin d’un problème d’optimisation basé
sur une fonction d’objective de minimisation du cout d’acheminement d’électricité.

En effet, le coût d’acheminement d’électricité est considéré comme la fonction objective d’un
problème d’optimisation et en utilisant une méthode d’optimisation, la demande de recharge
optimisée associée à la minimisation de coût d’acheminement d’électricité est calculée. Dans
ce chapitre le problème d’optimisation est défini et la méthode convenable pour résoudre le
problème est présentée. Finalement, les résultats d’optimisation sont présentés et la discussion
terminera la section. Cette section identifiera la contribution de coordination VE/V2G au
service de minimisation du coût d’acheminement d’électricité.

Le résultat de cette partie a été utilisé pour le superviseur temps réel développé dans le
quatrième chapitre. Pour un scenario de 2700 véhicules électriques (provision de l’année 2030
de poste source étudié) la potentiel de V2G a été estimé autour de 200 k¿ minimisation du
facteur d’acheminement d’électricité. Toutefois, cet apport devra être réétudier en prenant en
compte les impacts sur les batteries des VE au point de vue économique afin de pouvoir estimer
les bénéficies associés à chaque utilisateur de VE.

2.7.3 Impact des véhicules électriques sur la consommation des gares

La gare pour sa consommation locale devrait verser à des fournisseurs d’énergies, une facture
annuelle correspond à sa consommation. La présence des bornes de recharge des VEs peut
mener à l’augmentation de la consommation d’énergie de la gare. Dans cette section une
stratégie de gestion des recharges/décharges des VEs est développée en optimisant la facture
d’énergétique en pilotant la variation de la charge. Au début, un problème d’optimisation
déterminera la distribution appropriée d’énergie pour minimiser la facture. Puis, le deuxième
problème d’optimisation déterminera l’heure de recharge/décharge des VEs afin d’atteindre
l’objectif précédemment expliqué.

Afin d’analyser l’impact des VEs quotidiennement arrivés au stationnement dans les gares,
différents scénarios ont été considérés. Dans cette étude la possibilité et la contribution de la
recharge/décharge coordonnée est également prise en considération. Ces scénarios sont basés
sur l’heure d’arrivée et l’heure de départ des VEs au stationnement. Les heures d’arrivée des
véhicules sont distribuées sous la forme d’une répartition normale (Gaussien) entre 7h00 et
9h00, tandis que l’heure de départ est distribuée entre le 16h00 et 20h00. L’intervalle moyen de
disponibilité est environ 10 heures. Le où les VEs peuvent être employés pour le rechargement
supervisé. Le nombre total des stations de la charge a été considéré à 10 comme situation de
base. La capacité de la gare est également évaluée de 1 à 50 stations de charge. Des stations
de charge sont divisées en plusieurs types de recharge et différents cas ont été étudiés.

Dans cette étude, la contribution de l’algorithme d’optimisation développé pour la réduction
de pic de puissance et la minimisation du facteur d’énergétique d’une gare, accueillant jusqu’à
20 VEs, ont été présentées. L’algorithme proposé peut minimiser le pic de puissance en utilisant
la capacité de V2G des VEs, garés pendant la journée dans les parkings de la gare. En outre,
l’établissement du programme de remplissage est appliqué afin de minimiser la facture annuelle
d’énergie de la gare. La minimisation de la facture est possible en utilisant la minimisation de
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puissance souscrite, la minimisation de dépassement de puissance souscrite, et la recharge des
VEs pendant des heures creuses (prix bas). Comme dans ce cas d’étude, le prix de l’électricité,
pendant la plupart des intervalles des disponibilités des VEs, était constant, la contribution du
dernier élément n’était pas aussi importante. Cependant, la minimisation de pic de puissance
et la minimisation de dépassement mènent à minimiser jusqu’à 20% de la facture annuelle
d’énergétique.

2.7.4 Conclusion

Dans ce chapitre une étude des impacts des véhicules électriques sur les réseaux de distribution
a été menée. Ces impacts sont étudiés particulièrement pour deux cas d’étude ; le réseau de
distribution du département Deux-Sèvres et les trois gares types de SNCF. Pour le cas d’étude
du réseau de distribution, les véhicules sont considérés comme une flotte qui font le trajet
quotidien ”domicile–travail” et pour le cas d’étude des gares, comme une flotte qui font le même
trajet mais leur disponibilité est considérée que pendant le temps qu’ils sont garés dans les
parkings de la gare. Ces impacts sont étudiés autour des indicateurs économiques comme le
coût d’acheminement d’électricité pour le gestionnaire de réseau de distribution et le facture
énergétique annuelle de la gare pour SNCF. En deuxième étape, la possibilité de diminuer
les impacts négatifs grâce au superviseur ont été étudié. Cette partie a été faite grâce aux
méthodologies d’optimisation comme la programmation linéaire. Alors que dans les prochains
chapitres, un système de supervision en temps réel sera développé pour ce but.
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des énergies renouvelables. PhD thesis, Université Lille 1 Sciences et Tech-
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3.1 Introduction

V2G enabled PEVs, which have the ability to inject power to the grid, have been presented
as grid supporters [Tomić 07] and potential ancillary service (A/S) providers, where eventually
make the transportation electrification beneficial for the grids [Kempton 05].
In the literature, the economic [Luo 12], [De Los Rios 12], [Han 12], [Gao 13] and technical
[Ehsani 12], [Han 11] feasibilities of PEV fleet as the energy storage and service providers
are discussed. They are considered in different services markets such as, regulation, spinning
reserve [Pavić 15], peak power support [Jian 15] and power quality [Falahi 13] and more from
economic point of view. While, technical analyses are mainly limited to capacity estimation,
optimal coordination, aggregator communication architectures and battery degradation impacts
[Han 11, Jian 15, Quinn 10, Bishop 13]. The points related to aggregator volume requirements,
grid/services localization limitations and PEVs availability uncertainty impacts on bidding
capacities are not discussed or less explored. In addition, the aggregator volume in terms of
the required number of vehicles for providing each ancillary service is not analyzed up to now.

In term of the energy management systems for plug-in electric vehicles and V2G technologies,
different scheduling and management schemes are developed. An adaptive intelligent system
using fuzzy logic controller and Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed
in [Khayyam 14]. In [Khayyam 13] an intelligent energy management using cloud computing
network is proposed. These technics reduce operation of electric vehicle, grid and parking lot
as well as the load demand prediction. A large scale fuzzy logic based intelligent control for
V2G is also proposed in [Khayyam 12] which provides different services such as, peak power,
balancing control, load levelling and voltage regulation. For specific services, different control
strategies are developed. For instance, a preventive control strategy for controlling static voltage
stability is proposed in [WANG 15, Wang 14] which maintains the static voltage stability of
power system under the V2G concept and evaluates the V2G response capability with different
charging strategies during a whole day.

The innovative aspects of the presenting work in this chapter compared to the aforemen-
tioned researches is considering the uncertainty impact on the V2G capacity, and scalability of
the flexible V2G power capacity for different level of distribution grid by considering localiza-
tion limitation of different services. Hence the service assessment can be applicable up to the
low voltage (LV) distribution grid services such as voltage regulation and load levelling at LV
grid. Interdependency of stochastic variables such as arrival time, departure time and driving
distance are also modelled and their impacts on the contracted power are analyzed.

The novelty of the presenting work is that it has provided a multi-level methodological ap-
proach in order to assess the V2G potential, suitable for regional distribution system operators.
In this approach, the PEVs’ availability uncertainty and localization/limitation are considered
as the main factors affecting the potential of V2G for grid ancillary service participation. A
probabilistic model is developed in order to estimate the availability uncertainty using only
daily trips probability data. The interdependency of the stochastic variables are also modeled
using a copula function. This modeling approach, takes into account the impact of uncertainty
on the bidding capacities and improve the reliability of the contracted bidding. In addition, in
order to be realistic, the distribution of electric vehicles in the distribution grid is estimated
using real customers’ distribution data to estimate the real potential of PEV fleet for different
ancillary services.

A/S providers at the distribution grid level are faced with the localization limitation for
each type of service. Such limitations make difficult to achieve the services’ requirements for
PEV aggregators, as the aggregated number of PEVs at the different level of the grid is not
always sufficient. Moreover, the aggregators need to have sufficient information for offering a
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reliable bidding capacity, which depend upon the type of services for which they would be the
candidate. However, the general requirements are the amount of energy in form of power and
time interval. These are predefined by grid actors based on the grid characteristics in different
countries1. The constraints related to PEVs aggregation such as, available aggregated power
and PEVs availability uncertainty should be taken into account in order to be competitive in
the markets. These constraints are the main concerns of this chapter, where the effort is to
propose an approach for potential assessment of a candidate PEV fleet under an aggregation
contract, particularly at the level of distribution grid by considering;

1. Available V2G power of the fleet.

2. Availability uncertainty of the fleet and its impacts on the bidding capacities’ reliability.

3. The flexibility of the available power interval under bidding capacity contracts.

4. Distribution grid services/localization limitations.

In this chapter, at first the general approach for ancillary service assessment of V2G enabled
PEVs at the distribution grid level is introduced. Afterwards, all necessary input data for the
assessment are identified. The methodology is applied on Niort, a city in west of France, con-
sidering its mobility statistics and distribution grid topology. The methodologies for available
V2G power modeling, availability uncertainty modeling, the flexibility of the bidding capacities’
calculation and the service assessment system will be explained thoroughly in the next sections.
A general research background is presented to show actual solutions and the main contribution
of this thesis for V2G ancillary service assessment.

3.2 Literature review

Different methods have been proposed for capacity estimation of PEV fleet, but none of them
consider the localization limitation of the services. Reference [Han 11] calculates achievable
power capacity by binomial distribution of clustered PEVs. Reference [Fluhr 10] uses the survey
data to identify the location of PEVs during the day. In [Soares 11] Monte Carlo simulation is
used to estimate the probability of transition between different states, e.g. parked or movement
for different parking location. A non-homogeneous semi-Markov process is used in [Rolink 13]
for PEV availability and identifying the charging load, while in [Gonzalez Vaya 14] a continuous
time non-Markov chain is chosen as the mobility patterns do not fulfill the Markov property
(memorylessness). Reference [Agarwal 14] uses the trip chains for mobility modeling of PEV
fleet and concluded that the home and office car parks have maximum availability among other
place parkings. Among all of these researches backgrounds and our case study mobility survey,
it is concluded that the PEVs are parked in home and office parkings mostly a day and their
service providing potential at these time intervals is relatively higher than other places, such
as parking lots of shopping centers or the streets, which are highly stochastic and periodically
short.

The second limitation is the uncertainties associated with availability of the PEVs for ser-
vice providing. Reference [Mathieu 13] defines the uncertainty sources as the model based
uncertainties and forecasting based uncertainties. The model-based uncertainties come from
the aggregated battery model instead of the individual battery model 2. The second source is

1From August 2014, RTE, the French transmission system operator (TSO), announced that industrial con-
sumers henceforth could be reserve service providers with a minimum power of 2 MW [RTEPress 14]. This is
also estimated for the distributed energy storage systems at the distribution grid level with a minimum of 1 to
2 MW power [Delille 09].

2In modeling large number of PEVs it would be impractical to model all batteries’ dynamics in detail.

PhD Thesis, S. Sarabi 83



CHAPTER 3. V2G ANCILLARY SERVICES FOR DISTRIBUTION GRIDS: POTENTIAL
ASSESSMENTS

related to forecasting data such as arrival, departure time, driving behavior and arrival state of
charge (SOC) of PEVs. In [Vayá 14], the driving behavior uncertainty is modeled with individ-
ual driving behavior with the non-Markov chain process by the states’ transition probabilities
defined based on mobility survey data. In [Momber 15], a two-state single node Monte Carlo
simulation is used to represent the uncertainty in driving behavior by concentrating on stochas-
tic variables with the independent sampling process. While in this chapter, interdependency of
stochastic variables are modeled in a multivariate manner using copula function.

The predictable sources of uncertainties are normally following a particular probability dis-
tribution. These are known as arrival time, departure time and driving distance distribution.
In addition, in the future smart grid, the communication infrastructures will facilitate acces-
sibility and predictability of such information. Therefore, considering highly enough accurate
prediction system, the uncertainties associated with prediction errors can be negligible. In the
other side, there are some sources of uncertainty, which are not predictable at all, like the
unforeseen departure of PEVs during their stationing time (plug-in time). Considering that, a
probabilistic approach is proposed for this study, that can provide the probability distribution
function (pdf) of availability uncertainty. The advantage with this approach is the ability to
quantify the availability uncertainty impact on the bidding capacities by only knowing the daily
trips percentage, arrival and departure time probability of the fleet.

3.3 General Approach

The general approach consists of 6 sub-blocks, each doing a particular task for the final objective
(Fig. 3.1):

1. Available Vehicle-to-Grid Power Modeling (AVPM)

2. Fundamental Parameters Estimation (FPE)

3. Multivariate Modeling of Stochastic Variables (MMSV)

4. Probabilistic Availability Uncertainty Modeling (PAUM)

5. Bidding Flexibility Calculation (BFC)

6. Fuzzy Inference System Service Assessment (FISSA)

AVPM: In this study, the focus is on PEVs doing daily home-work commuting for ancillary
service assessment as they have the most reliable behavior among the other motives trips. For
this reason, the available V2G power of the fleet has been modeled for two potential intervals,
one in the morning, after PEV arrival to the offices and second one in the evening, when the
vehicles come back to the home parkings. The outputs of FPE, MMSV and PAUM blocks
will be used in AVPM block in order to calculate the AVP for each potential intervals. The
assumption made for home V2G scenario and office V2G scenario are brought in the next
sections.

FPE: Fundamental parameters for modeling the available V2G power are calculated in
FPE block, which contain arrival SOC, V2G energy, G2V energy and plug-in interval. These
parameters which are the indirect parameters will be calculated using the output parameters of
MMSV block and averaged PEV characteristic parameters such as, driving efficiency, charging,
discharging efficiency, NEDC autonomy and averaged battery capacity of the fleet.

MMSV: The main inputs, defining the available V2G power of the fleets, consist of arrival
time, departure time and daily driving distance for each individual vehicle. This information
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Figure 3.1: General framework of V2G ancillary service assessment approach.

comes from the probability distribution of each variable from mobility survey results of the
case study (middle city), while the interdependency of these variables are not always available.
In fact, utilizing multivariate modeling approach the correlation between two variables can be
identified considering the type of under studying fleet and the vehicle’s driving behavior. In
this work, correlation between arrival time, departure time and driving distance is explored for
PEVs doing daily home-work commuting using copula function. This issue is considered as one
of the possible uncertainty on the contracted V2G power.

PAUM: A novel approach is proposed in PAUM block, which uses only the daily trips
percentage data in order to associate a probability density function to the availability uncer-
tainty phenomena, by filtering the known components of the Gaussian mixture model of trips
percentage. These known components are the arrival and departure trips pdf. It means that
the trips which may happen stochastically during the plug-in interval of the parked PEVs are
certainly existed on the daily trips percentage data. However, the part of density which is
related to their previous trips for home/office arriving/departing should be removed from the
global density function fitted to the daily trips percentage.

BFC: After defining the AVP and its potential bidding capacities for both scenarios, the
flexibility of each bidding capacity will be calculated in BFC block using a global stochastic
optimization method so-called ”Free Pattern Search” which is chosen for its robustness and
convergence quality for high dimension stochastic problems.

FISSA: Finally, in FISSA block a fuzzy inference system (FIS) is designed for service
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assessment of each PEV fleet based on the PEVs population provision of under studying city.
This system uses the AVP of each bidding and its flexibility as FIS inputs and will generate a
potential factor of 0 to 1 in order to evaluate the fleet potential for each service. The membership
functions of the inputs are designed based on the A/S power and time requirements, while
the frequency of each service utilization is considered by hourly probability values of each
service’s activation signal. In addition, a grid service/localization limit factor is considered to
evaluate the aggregated number of PEVs at the appropriate location of the grid. At the end,
an illustrative indicator is made in order to facilitate the evaluation of fleet/services under PEV
provision scenarios.

3.4 Case study and Input data

This study is proposed in order to analyze the potential of PEV fleet for ancillary service
providing, particularly for distribution grid level. It is assumed for the current assessment,
the minimum statistical information about the under studying place is available, where the
approach will be applicable to the future case studies when the communicable data can be
available via the smart grid communication infrastructures. This approach is practical for local
distribution system operators (DSO) managing the middle cities’ distribution grid operations.
Niort, a city in west of France, is considered as the case study in this chapter where the
statistical data are available for this city from the municipality online data sources and INSEE,
the French national institute of statistics and economics studies [ins 10]. Based on the previous
scenario of electric vehicle evolution of France conducted by sustainable development ministry,
2 million electric vehicles are supposed to be registered up to 2020 [Sarabi 13] (High Scenario).
However, based on the actual evolution rate a new scenario is proposed by ENEDIS, a major
French DSO, which has estimated maximum of 800,000 electric vehicles up to 2020 [Sarabi 15]
(Low Scenario). The two evolution scenarios up to 2030 are considered in this study as the
PEV evolution scenarios illustrated in Fig. 3.2. Having the vehicle fleet statistics of Niort city
department and its municipality population, the PEV evolution can be calculated for this city.
As proposed by [Salah 15], the cars-per-capita quota is used in order to transfer the unit from
population to the car number. The PEV provision scenarios of the year 2020, 2025 and 2030
are considered as the case study (Table. 3.1).

Table 3.1: PEV evolution scenarios for Niort city.

Evolution horizon
Low Scenario
(PEV numbers)

High Scenario
(PEV numbers)

2020 851 2127
2025 1808 5849
2030 2659 9572

The input data for this study are divided into two main natures; averaged data and stochastic
data. Averaged data are related to the information correspond with the vehicle characteristics,
which help to estimate the available and consumed energy of the vehicle’s battery. For this
study, based on the actual French electric vehicles market, the values are considered as in Table.
3.2. The stochastic variables which are mainly four variables come from statistical survey and
databases for Niort city:

1. Arrival time distribution

2. Departure time distribution
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Figure 3.2: Electric vehicles’ Evolution Scenarios in France.

3. Daily Driving distance distribution

4. Daily trips percentage

Table 3.2: Averaged PEV characteristics in French market.

Parameter Symbol Value
Battery Capacity Eev 22 kWh

Charging/Discharging efficiency ηcd 97.5%
Charging/Discharging power Pch 3.7 kW

NEDC autonomy A 210 km
Driving efficiency ηev 97%

Admissible depth of discharge DoD 80%

The arrival and departure time’s distribution of both home and office scenario are following
approximately a Gaussian distribution by the parameters presented in the Table. 3.3. The
daily driving distance distribution of home scenario takes into account a daily round trip and
for office scenario, a single way trip to the office and both are approximated to follow the same
distribution (Fig. 3.3).

Daily trips percentage data show the hourly percentage of the trips for a working day
done by personal vehicles for the Niort city. This distribution is used in order to model the
availability uncertainty of the PEVs (Fig. 3.4). The available number of PEVs for home
scenario is correlated with PEV fleet in Niort, while for office scenario as the estimation of the
available number of PEVs in the office parking during the day is difficult, their possible number
is calculated based on grid capacity of each professional customer contract. In the next section,
the AVP modeling approach is explained along with problem formulation and flowchart.
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Figure 3.3: Daily driving distance for home-work commuting in Niort [ins 10].
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Figure 3.4: Daily trips percentage in Niort city [ins 03].

Table 3.3: Home-work PEV fleet normal distribution function parameters.

Distribution µ (hh:mm) σ (minutes)
Home departure 07:45 30

Home arrival 17:15 30
Office arrival 08:15 30

Office departure 16:45 30
Home-work trips 08:00 30
Work-home trips 17:00 30
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3.5 Available V2G power modeling (AVPM)

In this part, Available V2G power (AVP) of PEVs doing home-work daily commuting based
on real statistics data are estimated where their possible interdependency is modeled by the
copula function. Secondly, three bidding capacities of high-potential intervals are introduced,
and further analysis will be concentrated on these three bidding capacities. Different scenarios
in terms of aggregator volume (number of PEVs in the fleet) will be studied in which their
bidding capacities will be assessed for different ancillary services. In this study, AVP of home-
work commuting PEV fleet has been evaluated in two potential intervals. First V2G at work
only and second V2G at home only. The main assumptions behind the work are as follows:

� Charging/discharging rate at normal level (16A, 230 V, 3.7 kW).

� The PEV will provide V2G service once in a day and will be full charged once in a day.

� 2 scenarios for V2G service assessment have been considered:

– V2G at home (the PEV will make a round trip and then provide V2G at home only).

– V2G at work (the PEV after arrival to the office will provide V2G at work, consid-
ering energy need for its return and minimum energy of 20% as constraint to reduce
degradation impact of V2G, i.e. 80% Depth of Discharge (DoD)).

For home scenario, PEVs will be fully charged at departure time, while at the office scenario,
PEVs have sufficient energy for the return trip plus 20% energy in battery (the charging pro-
cess will be done at off-peak hours and during the home parking period). These assumptions
were made to evaluate the maximum possible potential for aggregated V2G power during each
interval. The fact is that, if we consider that PEVs will provide V2G services both at home
and office, leading to portioned aggregated V2G power between home and office intervals.

3.5.1 Fundamental parameter estimation (FPE)

AVP modeling flowchart is provided in Fig. 3.5. In order to model the available V2G power,
there is some information that should be acquired. Availability of each PEV in the V2G
enabled parking, and its stored battery energy at arrival time is the key information in defining
the AVP. Availability of PEVs will be identified by their arrival time to home/work parking
and departure time from home/work for home/work V2G scenarios. Assuming N PEVs with
full-charged battery at home departure moment, the arrival state of charge (SOCi

arrival) of the
ith PEV battery can be estimated as follows:

SOCi
arrival = (1− Di

d

Ai
)× 100% (3.1)

This is under the assumption of linear SOC drop with travel distance [Zhou 11]. Di
d denotes

the driving distance of ith PEV from home to work for work scenario and round trip for home
scenario. The probability densities of arrival time (Tarrival), departure time (Tdeparture) and
driving distance (Dd) have been presented in previous section . In this section, the steps to
model AVP are presented. The interdependency of these stochastic variables and their impacts
on AVP will be analyzed afterwards. In current calculation, the averaged correlation coefficients
are considered, where their calculations will be explained in MMSV block section. After SOC
estimation, Available V2G energy should be estimated for each V2G scenario.

Ei
v2g = (DoD × Eev −

Di
d

ηev
)ηcd (3.2)
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Figure 3.5: The flowchart of AVPM.

For estimated V2G energy following constraint should be satisfied:

2Ei
v2g + Dd

i

ηev
≤ T iplug−in × Pch (3.3)

Where Tplug−in, is the plug-in interval of the PEV. If (3.3) did not satisfy, the V2G energy
should be recalculated as follows:

Ei
v2g =

(T iplug−in × Pch)
2 − Ei

g2v (3.4)

For office scenario, the consideration is vehicle needs to have the same amount of energy as
it has already consumed for arrival to the work, plus 20% SOC to limit DOD at 80%.

Ei
v2g−work = (DoD × Eev −

2Di
d−work
ηev

)ηcd (3.5)

The duration of V2G and G2V action can be easily calculated by dividing the energy by
charging/discharging rate:

T iv2g =
Ei
v2g

Pch
(3.6)
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T ig2v =
Ei
g2v

Pch
(3.7)

After identifying the V2G and G2V energy, the planning should be applied. The charging
and discharging planning should be done in a way to have maximum difference and minimum
overlap between V2G and G2V power curves. The reason behind this choice is to be able to
estimate the maximum achievable V2G power capacity of the fleet. This leads to analyze the
potential services with respect to the maximum achievable V2G power of each bidding capacity,
which will be presented afterwards. Overlapping of V2G and G2V power or mixed planning, i.e.
charging/discharging at the same time horizon, leads to reduce the V2G capacity of the fleet
from aggregator capacity point of view. For home V2G planning the plug-in interval (PIi(t))
and V2G interval (V 2Gi(t)) are defined as follows:

PIi(t) =
{

1, T iarrival < t < T ideparture
0, elsewhere

(3.8)

V 2Gi(t) =
{

1, T iarrival < t < T iarrival + T iv2g
0, elsewhere

(3.9)

It means that, the PEVs are asked to be discharged upon their arrival, to have time to
be fully charged up to departure time. In fact, after discharging period the PEV has time to
recharge its battery and being full-charged for departure.

We define here the uncertain V2G time vector to complete formulation, where the complete
approach to the uncertainty modeling is explained in the next section. Uncertain V2G time
vector is:

UV 2Gi(t) = UAi(t)× PIi(t)× V 2Gi(t) (3.10)

Where UAi(t), is the unavailability vector and the output of PAUM block. We define γ as
the uncertainty coefficient, the portion of PEVs fleet, which have uncertain behavior potential.

K = γ ×N,∀K ∈ Q (3.11)

M = N −K, ∀M ∈ E (3.12)

Where Q is the integer set of uncertain PEVs numbers, and E is the integer set of certain
PEVs, where the following low is consistent:

E ∪Q = N (3.13)

Finally, the V2G power called AVP for home scenario is as follows:

Pv2g(t) =
K∑
i=1

(UV 2Gi(t)× Pch) +
M∑
i=1

(V 2Gi(t)× Pch) (3.14)

The G2V interval for calculation of G2V power should be defined as follows:

G2Vi(t) =
{

1, T ideparture − (T ig2v + T iv2g) < t < T ideparture
0, elsewhere

(3.15)

Uncertain G2V time vector is necessary for uncertain PEV and is obtained using:

UG2Vi(t) = UAi(t)× PIi(t)×G2Vi(t) (3.16)

Using uncertain G2V vector and G2V vector, the G2V power of the fleet is estimated by
using equation (3.17):
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Table 3.4: Bidding capacities’ characteristics for home and office scenarios.

Scenario
BC1 BC2 BC3

pi (h) Power (kW) pi (h) Power (kW) pi (h) Power (kW)
Home Scenario 5.5 550 4.2 1750 3 3050
Office Scenario 5.2 550 4 1750 2.9 3050

Pg2v(t) =
K∑
i=1

(UG2Vi(t)× Pch) +
M∑
i=1

(G2Vi(t)× Pch) (3.17)

The final output of this block for a case of 1000 PEV fleet is depicted in Fig. 3.6 and 3.7.
The potential bidding capacities from AVP at home and office are explained afterwards.

3.5.2 Bidding capacities (BC)

In this part, the bidding capacities are introduced. Based on the distribution function of arrival
time, we have proposed three indicative intervals, so-called ”potential interval (pi)”, where
there are a considerable cumulated number of PEVs and the V2G capacity of the fleet can
be contracted. These three capacities, proportional with the number of available PEVs, are
called bidding capacity for service market participation. We define the bidding capacity z,
(1 ≤ z ≤ 3 ∈ N) and its function, BCz(t), with its capacity value, Capz during its interval from
t1 to t2.

BCz(t) =
{
Capz, t1 < t < t2

0, elsewhere
(3.18)

The three indicative times have been chosen in order to propose biding start times BSz for
each bid as follows:

BSz =


µ− σ, z = 1
µ, z = 2

µ+ σ, z = 3
(3.19)

The potential interval for each bid will be started from bidding start time until the power
capacity equals to BCz(BSz) as it is shown in the figures for both scenarios. In the Fig. 3.6,
the V2G power called AVP, is starting right after the availability of the fleet shown in form of
the arrival time histogram. It increases up to its maximum value correspond to the whole fleet
available PEVs, which is 3.7 MW active power. Due to the constraints of the PEVs such as,
maximum battery DoD and their availability interval, the AVP decreases to zero until around
22:00 PM. The G2V power corresponds to PEVs charging is completely separated from V2G
power starting from 2:00 AM ending by the departure of the whole fleet around 9:00 AM. From
the modeled AVP, three candidates bidding capacities are extracted with the characteristics
represented in Table. 3.4. In Fig. 3.7, the AVP is modeled with same strategy while the
constraints are minimum required energy for return trip and minimum battery DoD. These two
modeled AVPs will be analyzed for V2G A/S potential assessment in the next sections. Prior to
that, the impact of interdependency of stochastic variables and PEVs’ availability uncertainty
on the proposed bidding of each AVP will be analyzed.
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Figure 3.6: The output of AVPM algorithm for home scenario, a fleet of 1000 PEV.
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Figure 3.7: The output of AVPM algorithm for office scenario, a fleet of 1000 PEV.

3.6 Multivariate Modeling of stochastic variables

In the probabilistic analysis with stochastic variables, the correlation between the variables
should be taken into account even by knowing the marginal distribution of each single variable
to avoid inconsistent and unreliable estimation [Haghi 10, Gill 12, Papaefthymiou 09]. For the
PEV fleet of daily home-work commuting, dependency of their departure times, arrival times
and driving distances should be taken into consideration as they have key roles in modeling
AVP and V2G energy capacity. However, the correlation between these stochastic variables
can be estimated through statistical data as in [Lojowska 12, Pashajavid 14, Tan 14] but their
dependency impact on AVP and V2G energy should also be considered to provide a reliable
marginal power capacity for aggregators. The latter is the case of this section. These dependen-
cies can be analyzed with copula function. Copulas are functions that quantify the dependency
of stochastic variables knowing the marginal distribution of each variable and construct a cor-
related multivariate surface between each two univariate stochastic variables. The approach
of generating correlated samples using t copula sampling process is used in this chapter where
the notion and copula-based sample generation are explained thoroughly in [Pashajavid 14]. t
copula is used as it has tailed dependence modeling ability and is more suitable for real data
modeling [Tan 14].
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3.6.1 The t copula

A d-dimensional copula C is a d-dimensional distribution function on [0, 1]d with standard
uniform marginal distributions [Demarta 05]. For each random variable x, copula functions
are used to correlate univariate marginal cumulative distribution functions (CDF), F1(x1),
F2(x2), ..., Fd(xd), to their joint CDF, F (x1, x2, . . . , xd) [Pashajavid 14, Cherubini 04]:

C(F1(x1), F2(x2), ..., Fd(xd)) = F (x1, x2, ..., xd) (3.20)

Conversely, any copula C can be used to join any type of marginal distribution and construct
a multivariate distribution function with the same marginal. The unique t copula for any
uniform random variable u = (u1, u2, ..., ud) ∈ [0, 1]d is given by:

Ct
ν,P (u) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
· · ·

∫ t−1
ν (ud)

−∞

Γ(ν+d
2 )

Γ(ν2 )
√

(πν)d |P |
(1 + x́P−1x

ν
)−

ν+d
2 dx (3.21)

Where t−1
ν denotes the inverse CDF function of a standard univariate tν distribution with

degree of freedom ν and symmetric positive definite correlation matrix P with unity diagonal
elements.

3.6.2 AVP variation calculation

Generally, using the historical data or datasets gathered from statistical surveys, the correla-
tion between stochastic variables can be easily estimated by fitting the multivariate distribution
function to the datasets employing the maximum likelihood estimation (MLE). This approach
leads to extraction of correlation matrix elements, which are representative of correlation de-
gree between each two single marginal distribution [Lojowska 12, Pashajavid 14]. However, in
this study there is no such available datasets. Instead, an approach is proposed to quantify
the impact of stochastic variable’s dependencies on AVP. Afterwards, the correlation matrix
elements associated with average AVP variation are considered as the case study. In order to
analyze the correlation between departure time, arrival time and driving distance for home-work
commuting fleet, we assume that the working hours are fixed for whole fleet. In this case the
dependency of these variables rationally should be either blue or red transition lines between
possible linguistic correlations’ states defined in Fig. 3.8. While, the other transitions will not
provide reliable samples to take into account for daily home-work driving pattern estimation.
It means that, for a PEV departing soon from home and arriving late to home, the driving
distance should have been long and vice versa.

 

Departure 

soon

Departure 

late

Arrival 

late

Arrival 

soon

Driving 

short

Driving 

long

Figure 3.8: Possible correlation states’ transitions.

These correlations frame, present a linear direct correlation between driving distance and
arrival time and a linear indirect correlation between departure and arrival time. Using a t
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copula function, the univariate marginal distribution of departure, arrival and driving distance
can be related to their joint distribution as follows:

C(F1(Tdeparture), F2(Tarrival), Fd(Dd)) = F (Tdeparture, Tarrival, Dd) (3.22)

Considering the possible mentioned transitions, the elements of correlation matrix P will
vary as follows:

P3×3 =

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1

 (3.23)

where,

ρ12 = ρ21 ∈ [−1, 0]
ρ13 = ρ31 ∈ [−1, 0]
ρ23 = ρ32 ∈ [0, 1]

(3.24)

Where ρ12 indicates the correlation between departure time and arrival time, ρ23 indicates
the correlation between arrival time and driving distance and ρ13 denotes the correlation be-
tween departure time and driving distance. In order to measure the sensitivity of AVP to the
different possible correlation an optimization approach is proposed where the variables will be
the correlation matrix elements associated with maximum variation of AVP;

min
ρ12,ρ23,ρ32
ρ′12,ρ

′
23,ρ
′
32

(
∑∣∣∣Pw

v2g(t)− P v
v2g(t)

∣∣∣)−1 (3.25)

Subject to:

{ρ12, ρ13, ρ
′
12, ρ

′
13} ∈ [−1, 0]

{ρ23, ρ
′
23} ∈ [0, 1]
xTPx ≥ 0

(3.26)

Where w and v are the two extreme cases of AVP affected by possible correlation between
variables. The last constraint checks if the correlation matrix is positive definite or not for
any possible x. This approach is tested on home V2G scenario as the case study where it is
applicable on work V2G scenario as well. The results of optimization are brought in Table. 3.5.

Table 3.5: Results of optimization for effect of correlation coefficients

Parameter Optimum value
ρ12 -0.3960
ρ13 -0.4950
ρ23 0.99
ρ′12 -0.5940
ρ′13 -0.6930
ρ′23 0

Using the obtained results, the AVP of the two extreme cases is calculated where these
two cases will never happen (Fig. 3.9). Under considering the realistic case, there is always a
correlation between three variables. The average value considered as the case study while in
real case, the statistic’s data or smart metering communication data can help to estimate the
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Figure 3.9: Effect of various possible correlation between stochastic variables on the AVP.

best correlation coefficients. The results show that the peak of AVP during its pi is the same
for all three cases and there is only a negligible variation in power descending period.

In this chapter, the parameters for average variation of AVP are considered as the case study,
where the impacts of correlation between variables are illustrated in Fig. 3.10. As it is shown,
the marginal distributions for both non-correlated and correlated variables are approximately
the same, while the orientation patterns in 2D copula surface between each pair of stochastic
variables are different. The orientation differences are justifiable considering the correlation
states transitions shown in Fig. 3.8. In other word, the vehicles departing soon in the morning
have potential to arrival late as they have had longer driving distance and vice versa. This
effect is considered in AVP modeling procedure. The other effect, comming from unpredictable
availability uncertainties, which is modeled using a probabilistic model, is explained in next
section.

6 7 8 9 10
15

16

17

18

19

Departure time (hour)

ρ12 = 0

A
rr
iv
a
l
ti
m
e
(h

o
u
r)

15 16 17 18 19
0

20

40

60

80

Arrival time (hour)

D
ri
v
in
g
d
is
ta
n
ce

(k
m
)

ρ23 = 0

6 7 8 9 10
0

20

40

60

80

Departure time (hour)

D
ri
v
in
g
d
is
ta
n
ce

(k
m
)

ρ13 = 0

5 6 7 8 9 10

15

16

17

18

19

Departure time (hour)

A
rr
iv
a
l
ti
m
e
(h

o
u
r)

ρ12 = −0.495

15 16 17 18 19
0

20

40

60

80

Arrival time (hour)

D
ri
v
in
g
d
is
ta
n
ce

(k
m
)

ρ23 = 0.5445

6 7 8 9 10
0

20

40

60

80

Departure time (hour)

D
ri
v
in
g
d
is
ta
n
ce

(k
m
)

ρ13 = −0.594

Figure 3.10: Upper subplots: non-correlated stochastic variables, Lower subplots: correlated stochastic
variables with averaged coefficients (Considered as the case study for AVP calculation).
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(a) With Correlation. (b) With no Correlation ρxx = 0.

Figure 3.11: Comparison of correlation surface between arrival and departure time for case of without
correlation and with correlation.

3.6.3 Variance-based sensitivity analysis for V2G power

Using Variance based sensitivity analysis the impact of different correlation parameters on V2G
power is analyzed. To reduce the computation an average variation function (equation 3.27)
is defined while the simulation has been already done by LHS (Latin Hypercube Sampling)
(leading to more reliable result compare to MCS with lower iteration number).

f(ρ12, ρ23, ρ13) = 1
N

∑
i

∣∣∣Pw
v2g(ρ12, ρ23, ρ13)− P 0

v2g(0, 0, 0)
∣∣∣ (3.27)

The variation bounds for the parameters are introduced in the form of equation 3.28:

{ρ12, ρ13} ∈ [−1, 0]
{ρ23} ∈ [0, 1]

(3.28)

This function is calculated for all possible variation of copula parameters and a sensitivity
analysis has been done over the mentioned function. Variance expression decomposed to the
terms as number of parameters. In the following equations 3.29 and 3.30, i and j indicates
the parameters for sensitivity analysis. here these are correlation coeficients, ρ12, ρ23 and ρ13.
Sensitivy analysis is considered for all of the possible decomposition between these parameters.
The X∼i notation indicates the set of all variables except Xi.

Vi = V arXi(EX∼i(Y | Xi)) (3.29)

Vij = V arXij(EX∼ij(Y | Xij))− Vi − Vj (3.30)

The first order and second order sensitivity indices are calculated for this analysis where
the results are brought in the Fig 3.12a.

The function 3.27 will measure the averaged variation of AVP compare to non-correlated
case with zero correlation parameters. For our case with 3 parameters, sensitivity is measured
in term of decomposed sensitivity indices including first order sensitivity indices Sρ12,Sρ13,Sρ23
and second order indices Sρ12ρ23,Sρ13ρ23,Sρ12ρ23 [14]. The results are brought in Fig. 3.12 where
it shows the highest sensitivity to Sρ23 index. This index indicates the sensitivity of AVP to
the Sρ23 parameter which is the correlation between arrival time and driving distance. It is
concluded that the available V2G power is highly sensitive to the correlation between arrival
time and driving distance variables while it has no major sensitivity to the two other parameters
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Figure 3.12: Charging profile of 20 EVs for impact analysis of Railway station.

3.7 Probabilistic availability uncertainty modeling (PAUM)

In this study, the idea of modeling the availability uncertainty is to have a quantitative vision
over the reliability of V2G bidding capacity. In fact, by this approach the impact of uncertainty
on AVP can be analyzed. Availability uncertainty can have different reasons; Later arrival or
sooner departure compared to the estimated or declared arrival and departure time, sudden
departure in case of an urgent during the plug-in interval or any partial unavailability due to
the leisure motives. Whatever the case, the PEV’s unavailability from the aggregator point
of view will be considered as V2G power unavailability and will impose negative impacts on
contracted bidding capacity. Therefore, it is necessary to take into account the availability
uncertainty factor prior to the capacity announcement.

The PEVs unavailability during their plug-in interval is highly stochastic and difficult to
model. However, its stochastic nature follows a particular probability distribution which can
be detected in daily trips percentage data. In this chapter, an approach is proposed to model
availability uncertainty knowing only the daily trips percentage and the fact that the trips
leading to unavailability are included in trips probability distribution. Two parameters have
been considered for each PEV in order to model its unavailability:

1. Departure moment as Tdepstart

2. Unavailability period as DURUN

In addition, an uncertainty coefficient has been introduced as, γ = [0, 1] ∈ R, the portion of
PEVs fleet, which have potential of availability uncertainty. In another word, γ = 1, means
that all of the PEVs inside the fleet will experience at least a short departure during the plug-in
time. Monte-Carlo simulation (MCS) is used to generate samples with given trips percentage
and prepare inputs for Gaussian mixture model (GMM) with a given number of components.
Two major Gaussian components will be considered as trips related to departure from home
to work in the morning and departure from work to home in the afternoon. By filtering these
two components probability of the other motives’ trips leading to availability uncertainty can
be detected. In the second step, using a uniform distribution by lower bound as home arrival
time and upper bound as V2G interval the sampling process of Tdepstart will be bounded over
V2G interval and conducted by filtered GMM probability distribution. For DURUN , sampling
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a uniform distribution between 30 minutes to 3 hours is used. This is the maximum time
length a PEV will be unavailable based on the mobility survey information. In this approach,
we assume that the amount of PEV battery energy used during the unavailability interval is
the same as the energy amount that would be provided as V2G, if PEV was available in the
parking. In the following, the formulation of different steps of the approach is provided along
with the modeling framework in Fig. 3.13.

GMM 
with MLE 
method

Arrival time

V2G interval

DURUN_min

DURUN_max

Availability 
uncertainty 
modelingg (%)

Uniform distribution

product 
distribution

Components number
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unavailability vector 
ua(i)

MCS

Tdepstart

Figure 3.13: The PAUM framework.

3.7.1 Gaussian mixture model

The idea of using the mixture model in this study is to find the sub-populations inside the overall
population of daily trips percentage in order to associate an availability uncertainty probability
distribution to those sub-populations which are not known. These sub-populations are modeled
as Gaussian components in GMM. For this reason, MCS is used to provide samples based
on daily trips percentage and their probability distribution is estimated using kernel density
estimation. The estimated probability density is used in maximum likelihood estimation (MLE)
in order to estimates the parameters of GMM components with maximum likelihood percentage
(Fig. 3.14).

One dimensional GMM density function for a set of C components and their parameter sets
as Θ = (α1, α2, ..., αc, σ1, σ2, ..., σc, µ1, µ2, ..., µc) is represented as follows [McLachlan 04];

f(xs|Θ) =
c∑
j=1

αj
1√

2πσ2
j

exp(−(xs − µj)2

2σ2
j

) (3.31)

We assume that αj ≥ 0, for j ∈ [1, ..., c] and
∑C
j=1 αj = 1. xs represents the samples. The

best likelihood is obtained with 6 components with parameters in Table. 3.6.
The last two components can be considered as trips related to departure from home to work

in the morning and departure from work to home in the afternoon as their parameters are near
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Figure 3.14: Kernel density fitted to trips percentage along with best GMM fit with 6 components.

Table 3.6: parameters of GMM components.

Component j µj(hh : mm) σj(minutes)
C1 14:27 217
C2 14:13 202
C3 02:55 63
C4 12:25 92
C5 17:08 45
C6 08:00 36

to the ones which have been considered in previous section. Filtering these two components
from GMM the density function of other motives trips can be found (Fig. 3.15).

3.7.2 Uniform distribution

Using a uniform distribution the sampling process for parameter Tdepstart can be bounded on
the V2G time interval in order to emphasize uncertainty over AVP. In flexibility study in next
section, the interval will be adapted by a flexibility interval. The filled interval in Fig. 3.15
shows the products of uniform distribution and filtered GMM density function, which will be
considered as uncertainty density function for uncertainty sampling process. In other words,
the sampling process will be done randomly considering the obtained uncertainty density as
the probability of selection. This density function can be represented as follows:

gun(xs|Θ) =


∑4
j=1 αj

1√
2πσ2

j

exp(− (xs−µj)2

2σ2
j

) Tarrival < xs < Tarrival + Tv2g

0 elsewhere
(3.32)

Where Tarrival will be arrival time of first PEV at work for work V2G scenario and at home
for home V2G scenario. For the unavailability period, a uniform distribution is considered with
cumulative distribution function as follows:

F (DURUN ; a(i), b(i)) = DURUN(i)− a(i) + 1
b(i)− a(i) + 1 (3.33)

Where a(i) = 30min , b(i) = 3hours and DURUN(i) ∈ [a(i), b(i)]. The outputs of the model
for two scenarios are depicted in Fig. 3.15. This density function will be used as inputs for
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uncertainty sampling process, and it will affect the V2G vector as in (3.10). The impact of
modeled uncertainty on each bidding capacity during its pi is studied using a reliability factor
(RF) which is the ratio of available V2G energy with uncertainty divided by V2G energy without
uncertainty. The results depicted in Fig. 3.16, show intensive impacts on BC3, particularly
for home scenario. The BC1 remains mostly reliable even with highest γ value. This analysis
helps to choose the most reliable BCs where the procedure will be completed by assessing the
flexibility of each BC in next section.
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Figure 3.15: Uncertainty probability density function for two V2G scenarios at work starting from
7h15 and at home starting at 16h00.
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Figure 3.16: Impact of uncertainty on reliability factor for, (a) home scenario, (b) work scenario.

3.8 Bidding flexibility calculation (BFC)

Up to now, the available V2G power for different PEV fleet in two possible time intervals has
been modeled. In modeling process the dependency between stochastic variables and availability
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uncertainty of PEV have been also considered. In this part, prior to ancillary service assessment,
the flexibility of each bidding capacity will be studied. Moreover, the flexibility will be analyzed
in terms of different uncertainty penetrations. As we modeled the AVP upon the arrival of
the PEVs, it would be also possible to coordinate the discharging time in order to prolong
the bidding capacity interval. This so-called ”bidding capacity flexibility” is analyzed in this
section under a stochastic global optimization problem approach. Considering the BCs defined
in previous sections by (3.18) and (3.19), the only way to maximize these capacities is to
maximize the potential interval and for this goal, the only degree of freedom is to coordinate
the V2G time of PEVs.

3.8.1 Flexibility problem formulation

The purpose of this optimization is to maximize the BC time interval, starting from its avail-
ability. For instance, for bidding 1 starting at 16h45, the objective is to maximize the capacity
interval using V2G start time coordination of PEVs. This maximization is under constraints of
respecting the G2V capacity of the fleet (for home scenario) and possible flexible range of V2G
start time. As previously mentioned, mixed planning leads to reduce the V2G capacity of the
fleet from aggregator capacity point of view. In addition, however, using a mixed order (charge,
discharge and not to charge at the same time horizon) can provide more optimized results, but
the increased calculation complexity compared to the better obtained optimum is not worthy
of the bidding capacity assessment problem. While, the proposed optimization algorithm in
this chapter is efficient and scalable to the dimension increment and can be used for charg-
ing/discharging coordination problems. In order to simplify the calculation one parameter per
PEV is considered, and it is the V2G start time which varies between arrival time and G2V
start time minus V2G time interval. We define the k(t) function as the counter of sample times
having a capacity more than each BC.

Kz(t) =
{

1 Pv2g(t) ≥ BCz(t)
0 elsewhere

(3.34)

Objective function:

max
TV S(i,i+1,...,N)

t2∑
t1

Kz(t) (3.35)

Subject to:

Pv2g(t) ≥ BCz(t),∀t ∈ [t1, t2]
Tarrival(i) ≤ TV S(i) ≤ Tdeparture(i)− Tg2v(i)− 2× Tv2g(i)

(3.36)

Where TV S(i) is the V2G start time of PEVs arriving after BSz that should be coordinated
in order to maximize the available interval of BCz(t). Considering the normal distribution
empirical rule (three sigma) and number of PEVs per fleet, the number of parameters have to
be optimized can be calculated as follows for a fleet with N PEV, P1 = 0.6827 and P2 = 0.997:

Paramnum =


P1+P2

2 ×N z = 1
0.5×N z = 2
P2−P1

2 ×N z = 3
(3.37)

For instance, for a fleet with 1000 PEV, in order to calculate flexibility of bidding z =
1, 838 parameters correspond to the PEVs arriving after BS1 should be optimized. This
expression shows that we face with a relatively large optimization problem which needs a
powerful algorithm.
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3.8.2 Methodology

The major challenge for this optimization problem is finding the best feasible solutions (global
optimum), knowing the potential of high dimension problem and stochastic nature of the prob-
lem, which makes difficult to use deterministic and gradient based optimization algorithms.
The latter using derivative free algorithms seem effective. In [Wen 13], it is shown that Free
Pattern Search (FPS) algorithm is scalable to the dimension increasing and performs better
results compared to the other evolutionary algorithms. FPS is a new algorithm inspired by
Hooke and Jeeves Pattern Search (HJPS) and Free Search (FS) algorithm. This algorithm em-
ploys the HJPS method as a local search algorithm and two operators from FS to guarantee the
diversity of search in order to inherit the global search. Long et al. showed that FPS has very
fast convergence speed, better solution accuracy, swarm management ability and robustness to
the dimension compared to the similar evolutionary algorithms.

In this chapter, a FPS algorithm is implemented on bidding flexibility problem, and its
functionality is assessed in both quality of result and dimension increment.

3.8.3 Free Pattern search

FPS is a population-based global optimization algorithm with three main parts; initializa-
tion, exploration and termination. In exploration part, there are three operators; search op-
erator for local search based on HJPS, acceleration operator to avoid trapping in local opti-
mums and a throw operator, which ensures the diversity of population. A single individual,
Xj, {1 ≤ j ≤ m ∈ N}, will do the search based on HJPS algorithm in all of its dimensions,
1 ≤ i ≤ n ∈ N, bounded between lower and upper limits, Lowi and Upi. The flowchart of the
FPS algorithm is illustrated in Fig. 3.17 and the different operators are explained afterwards.

3.8.3.1 Initialization

Random initialization strategy is used in order to initialize the individuals inside their bound-
aries. The initial search step size is calculated using a size factor α as in equation 3.38.

∆i,init = (Upi − Lowi)× α (3.38)

3.8.3.2 Search operator

The search operator uses the HJPS algorithm in order to find local optimum for each individual.
HJPS is a single-point search method which uses a pattern to search around the base point.
There are three types of points in HJPS; the current point Ψ, the base point φ, and previous
point θ. Current point is the actual solution of algorithm. Base point is for finding the better
solution, and previous point is the last current point. Fig. 3.18 shows a 3D HJPS pattern.
The blue points are the trials of base point in black. The best trial will be the result of each
iteration. The HJPS contains two parts; exploration move (EMove) and pattern move (PMove).
EMove will search in all dimensions of the base point to find the best trial. If the best trial is
better than current point, the PMove will be implemented.

3.8.3.3 Acceleration operator

The acceleration operator separates the population in two groups. First group are the indi-
viduals trapped in local optimum and need to be accelerated. Using a sensibility factor S,
the individuals will be polarized into two groups and the first group individuals X1

j will be
accelerated thanks to the randomly selected second group individuals X2

r .

PhD Thesis, S. Sarabi 103



CHAPTER 3. V2G ANCILLARY SERVICES FOR DISTRIBUTION GRIDS: POTENTIAL
ASSESSMENTS

Figure 3.17: FPS algorithm flowchart.

3.8.3.4 Throw operator

Throw operator detects the individuals would gather and search in the same small space. It
scatters them by adding or subtracting a ∆i,init length to every dimension of the start position
Xistart of gathered individuals. Throw operator keeps the population diversity in the search
space. After finishing all operations the algorithm will be terminated facing with maximum
step or maximum function call and accuracy of the solution.

3.8.3.5 Results

The method is implemented on the different PEV fleet numbers. Fig. 3.19 shows the function
evaluation per all individuals for the fleet of 50, 200 and 500 PEVs. The result shows a
complete convergence of all individuals for all cases. This shows the robustness of the algorithm
to the dimension increment. The convergence and exploration intervals are indicated on the
function evaluation windows. By increasing the dimension the exploration is also prolonged.
The optimization is stopped when all the individuals in each evaluation are converged to a single
value and there is no further improve in term of optimum result. The best value is obtained as
10.5 hours. In fact as the problem is stochastic, the optimization is repeated to have all cases
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Figure 3.18: Illustration of pattern in 3D.

with the same optimum values while the final results for bidding capacity 1 is almost around
10 hours for all the PEV fleet cases. This optimization is done in presence of different values of
uncertainty coefficient, and the results are presented in Fig. 3.20. The impact of uncertainty
shows a linearly drop on the flexibility interval and more important on home scenario biddings.
The BC3 for both scenarios has flexibility less than 3 hours after 20% uncertainty (γ = 0.2).
It shows that BC3 compared to BC1 and BC2 has less reliability in terms of interval flexibility
even by having a power more than them. Since the minimum time requirements for ancillary
services discussed in this chapter are 3 hours, the BC3 will not be considered in the further
analysis. In order to present an example of flexibility results over the BCs, Fig. 3.21 shows the
flexibility of BC1 and BC2 with the uncertainty coefficient of γ = 0. In BC1, the flexibility
algorithm reaches to prolong the potential interval of BC1 from 5 hours up to 10.5 hours. In
BC2, the flexibility reaches to 8 hours.

The flexible interval (fi) of each BC will be used for service assessment in next section.
The availability uncertainty is considered with γ = 0.1 in the further analysis. This value is
estimated for the PEV fleet in Niort.
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Figure 3.19: Function evaluation (Individuals’ boxplot per evaluation) for, (a) 50 PEVs fleet, (b) 200
PEVs fleet and (c) 500 PEVs fleet.
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Figure 3.20: Bidding flexibility vs. uncertainty for both scenarios.
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3.9 Ancillary service assessment

3.9.1 Ancillary services

In [Delille 09] a possible list of ancillary services for storage systems at the distribution grid
level under the confirmation of main French DSOs is proposed. These services’ feasibilities
are analyzed also for PEVs in previous work of the authors [Sarabi 14]. In this chapter, these
services are evaluated for PEVs under an aggregation contract considering each service con-
straints. The active power based services presented in Table. 3.7 are chosen for this study. The
first constraint for each service is the minimum amount of power, and minimum required time
interval. These limits are used in order to design the fuzzy inference system for each service.
Thanks to a service/localization matrix available in [Delille 09], the localization limitation of
each service is also taken into account as another constraint. The utilization frequencies of the
services, which depends on the nature of the service and the activation signals, are considered
as the last constraint. In this study, three activation signals in form of a probability function are
considered (Fig. 3.22). Annual averaged daily load profile (DLP) is considered as probability
function for services sensitive to DLP variations. Annual averaged daily frequency regulation
up signal is used for regulation services and finally, annual averaged daily balancing mechanism
(BM) demand is chosen for BM service assessment. In the following, the analyzed services in
this study are introduced.
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Figure 3.22: Probability of activation signals for, (a) Daily load profile (DLP), (b) Frequency regulation
up (RU), (c) Balancing mechanism up (BM).

3.9.1.1 Peak power shaving (PPS)

Peak power shaving (PPS) is evaluated at both MV and LV level of distribution grid (PPSMV
and PPSLV). For peak power shaving, the PEVs can be used to be charged during off-peak
hours and discharged via V2G services during peak hours. This functionality, provide economic
interests for PEV owners and aggregators in a variable price electricity market. In addition, for

108 PhD Thesis, S. Sarabi



CHAPTER 3. V2G ANCILLARY SERVICES FOR DISTRIBUTION GRIDS: POTENTIAL
ASSESSMENTS

Table 3.7: Ancillary services requirements for distribution grid [Delille 09, Robyns 15].

Service Loc. limit Min. P (kW) Max. P (kW) Min. T (h) Act. signal
PPSMV A 500 2000 3 DLP
PPSLV C 100 500 3 DLP
VRMV B,D 500 2000 3 DLP
VRLV C 50 500 3 DLP

LM A 100 2000 3 DLP
ETCM A 2000 5000 3 DLP

FR A 1000 5000 3 RU
BM A 10000 15000 3 BM

grid operators it provides a reduction in investment for grid infrastructure reinforcement. The
rated power of the storage unit must at least match the predictable growth for a given planning
time, which is typically between 500 kW to 2 MW for MV grid level and 10 to 500 kW for LV
grid level.

3.9.1.2 Voltage regulation (VR)

PEVs can be used to maintain the voltage profile inside acceptable contractual/regulatory
boundaries [Azzouz 15]. In distribution grid, voltage regulation can be done by both active and
reactive power. At HV/MV substation, Voltage regulation is done using on-load tap changer
(OLTC) of the HV/MV transformer, while at MV feeder a few % of regulations needs at least
500 kW to 2 MW [Robyns 15]. This is calculated considering a typical value of MV feeder
impedance in the French distribution grid, while at the LV grid level, a minimum of 50 kW is
required. This study is focused only on the active power contribution on voltage regulation.

3.9.1.3 Losses minimization (LM)

Losses in the distribution grid are proportional to the square of transited current in the grid. In
order to minimize the losses, the peak loads should be avoided and a charging strategy, like the
peak power shaving, is necessary. For distribution grid levels, the needed power of the storage
units depends on different factors such as the line length and resistance and active/ reactive
power of the connected consumers to the feeder. The minimum amount of power for proposing
this service is considered as 100 kW to 2MW.

3.9.1.4 Energy transmission cost minimization (ETCM)

The DSO has to pay to TSO an annual bill related to energy transmission from the trans-
mission system to the distribution system. This bill can be minimized by using local re-
newable energy production and load coordination due to a variable price market. Based on
the application of storage units and PEV charging coordination in French distribution grid
[Sarabi 15, Bouallaga 13], a minimum of 2 MW to 5 MW is required for this service.

3.9.1.5 Frequency regulation (FR)

In order to provide a stable frequency the production and consumption should be always bal-
anced. There are mainly three control actions for frequency regulation. The primary frequency
regulation for French grid is a reserve of 600 MW active power. This value can be considered
a minimum of 1 MW for the service providers at the distribution grid level. An example of
primary regulation service thanks to PEV fleet for French grid is available in [Codani 15].
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Figure 3.23: Daily averaged absolute frequency variation for 9 months in France.

3.9.1.6 Balancing Mechanism

BM is a part of tertiary control of frequency so-called ”the 30 minutes complementary tertiary
reserve”. The French producers and consumers subject to the availability of 10 MW have the
minimum requirement for BM participation [HARMAND 05].

3.9.2 Distribution grid service/localization limitation

At the distribution grid level, effective potential place for each type of ancillary service is
different. Reference [Delille 09] under the consultation of major French DSOs, proposes the
different candidate locations for installing energy storage systems. These places are considered
as the limit for the aggregated number of PEVs in order to assess the service potential. In this
study based on the chosen services, 4 candidate points are considered as the limits for each
type of service (Fig. 3.24).

� Point A is at the topmost level of distribution grid in border of distribution and trans-
mission grid. This point is considered as a HV/MV substation for the range of 63 to 225
kV for HV side and 15 to 20 kV for MV side.

� Point B is considered as the MV feeder level for feeders with 15 or 20 kV voltage level.

� Point C is considered as the LV bus bar inside the MV/LV substation for the range of
400 V in LV side.

� Finally, for industrial/professional customers possessing a private MV/LV substation,
Point D is considered, which will be the case for office charging scenarios.
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Figure 3.24: Distribution grid schematic with location limitation for ancillary services.

In fact, for each service, based on its localization limitation mentioned in the Table. 3.7 the
aggregated number of PEVs fleet will be evaluated at that limit.

For our case study in Niort, a statistical analysis is done in order to discover the distribution
of residential customers inside the distribution grid and for the 4 candidate locations. In
point A, the possible number of PEVs for home scenarios are brought in Table. 3.8. For
office scenario, 2841 PEVs can be aggregated up to the point A. The possible number of
PEVs in Niort for each provision scenario are distributed between all MV/LV substations
based on the residential consumers’ distribution, inside the MV/LV substation (Fig. 3.25a).
Distributions of PEVs at the level of MV feeder for home scenario are brought in Fig. 3.25b. The
residential consumers are considered as the charging locations at home and for office scenario,
the professional consumers are taken into account. For both scenarios, the maximum number
of PEVs at each level of the grid are calculated considering the actual subscribed power for
each consumer. It means that the capacities of the grid for hosting the PEVs are taken into
consideration as constraints. For both evolution scenarios at home scenario, there is no case
exceeding the subscription limitation. For office scenario, the maximum possible number of
PEV before limitation violation are considered for study, as there is no evidence to justify the
exact number of PEVs for office scenarios. It is due to the combination of traffic flow between
Niort and its neighbor cities during the day. Their distribution at point B, C and D are brought
in Fig. 3.25c along with mean values considered in potential calculation.
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Table 3.8: Aggregated number of PEVs up to HV/MV substation (point A) for home scenario.

Evolution horizon
Low Scenario
(PEV numbers)

High Scenario
(PEV numbers)

2020 681 1702
2025 1446 4680
2030 2127 7657
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(b) Distribution of PEVs at point B for home
scenario.
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(c) Distribution of PEVs at point B and C/D for
office scenario.

3.9.3 Fuzzy inference system service assessment

In order to assess the potential of PEV fleets for V2G ancillary services a methodology is pro-
posed. This method considers the bidding capacities characteristics of each fleet and compares
it with potential probability of each service. A fuzzy inference reasoning system is designed
to quantify the potential of each fleet and each bidding capacity for each particular ancillary
service. As the services’ requirements are defined by power and time in form of an interval, the
assessment procedure seems to be in a fuzzy form as the exact evaluation needs also accurate
requirement. For each service, minimum and maximum power need and time are identified
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in Table. 3.7. Two inputs are considered for this system. The first one is dedicated to time
interval of each service that can be provided by that particular bidding capacity of the fleet.
By considering the probability of the service as ST (t) and probability of bidding capacity as
FT (t) the first input is defined as:

DUR =
24∑
t=1

FT (t)× ST (t) (3.39)

Probability of bidding is a vector with value 1 during the flexible interval (fi) of each bidding
and 0 for other intervals of the day.

FT (t) =
{

1, BSz ≤ t ≤ BSz + fiz
0, elswhere

(3.40)

This input is normalized using g factor as, g = 1/∑24
t=1 ST (t). The second input is the power

that should be provided for each service. The membership function of this input will be made
based on minimum and maximum required power for each service provided in the Table. 3.7.
The example of inputs and output for service PPSMV is brought in Fig. 3.26.
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Figure 3.26: FISSA algorithm, inputs and output example for service PPSMV.
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Figure 3.27: Potential evaluation for home scenario under all evolution scenarios.

3.10 Results and discussion

A graphical indicator is designed for potential comparison of different services and bidding
capacities represented in Fig. 3.27 for home and Fig. 3.28 for office scenarios. For each BC a
minimum potential factor called BC limit is calculated using minimum power of the services
and flexible interval of the BC. This factor is considered as minimum requirement for each BC
of the services and is represented in form of a dotted-dashed line with filled upward area. Based

114 PhD Thesis, S. Sarabi



CHAPTER 3. V2G ANCILLARY SERVICES FOR DISTRIBUTION GRIDS: POTENTIAL
ASSESSMENTS

on this indicator, every fleet evolution scenario should be inside the BC filled area in order to be
competitive for that service. Afterwards, the potential of the different fleets’ evolution scenarios
is assessed using their provided power associated with their aggregated number of PEVs at each
service’s candidate point.

For home scenario, the services PPSLV and BM are not competitive up to 2030 horizon
unless for high scenario of BC2. However, the services PPSMV, LM and FR are mostly well
adapted with the provisions. In FR service, the low scenario BC1 can be possible from 2030.
For PPSMV, low scenario BC1 is also possible from 2025. In ETCM service, low scenario BC1
is not at all competitive up to 2030. This is the same case for low scenarios BC1 and BC2 in
VRLV and VRMV services.

For office scenario in Fig. 3.28, the services PPSLV, VRMV and BM are impossible. The
services FR, LM and PPSMV are inside the area, so they can be competitive for the office fleet.
The actual study shows that for BC1 the services VRLV and ETCM cannot be competitive.
This should be taken into account that in this study, the numbers of PEVs at work are estimated
based on actual grid capacity, and the studied volume availability is not at all guarantees.

The results for the both scenarios show that the services in the low voltage grid have not
enough potential due to the non-sufficient number of aggregated PEVs at LV grid, i.e. mostly
less than 30 PEVs in all provision scenarios. In addition, for service BM due to its huge
power capacity requirement, the fleets’ provisions are not mostly competitive as the available
aggregated number of PEVs at point A cannot cover the BM service power capacity requirement.
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Figure 3.28: Potential evaluation for office scenario with PEV number estimated upto the grid capacity
(subscribed power limit).
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3.11 Conclusion

V2G ancillary services potential assessment was discussed in this chapter. The available V2G
power of the PEV fleets doing daily home-work commuting was modeled. This modeling is
based on stochastic data such as arrival/departure time and driving distance and averaged
data, containing vehicle’s characteristics. The interdependency of stochastic variables was an-
alyzed using copula function. Two rarely discussed important factors affecting the AVP were
also modeled and their impacts on AVP were identified. Availability uncertainty of the PEVs
during their plug-in interval was modeled using only daily trips percentage and its decomposi-
tion thanks to the Gaussian mixture model. Secondly, the service localization limitation was
considered in the procedure of V2G service assessment of the PEVs fleet.

The impacts of availability uncertainty were studied on three potential bidding capacities for
both home and work scenario. The results indicated that the biddings in work places are more
reliable that biddings at home as the probability of uncertainty has less concentration during
the work plug-in time compared to the one for home. Flexibility of each bidding capacity
was calculated using a robust global optimization technic. The impacts of uncertainty also
showed linearly drops on flexibility intervals and generally fewer negative impacts on work
biddings’ flexibility intervals compared to home scenario. Using the obtained flexible interval
for each bidding capacity and V2G power of each PEV fleet, the potential of ancillary service
participation of the fleets was studied thanks to a fuzzy inference system. The fuzzy system
lets to quantify the potential of each fleet considering the requirement of the services such as
minimum power and time and localization limitation of the services inside the different point
of distribution grid. This methodology, using the statistical mobility data of Niort, a city in
west of France, was applied and possible services for this city were identified.

This study showed that based on the actual provision of PEV evolution in France, the
services peak power shaving in MV grid, frequency regulation, losses minimization and energy
transmission cost minimization are more competitive compared to balancing mechanism, voltage
regulation and peak power shaving in LV grid. It should be taken into account that, the impact
of V2G infrastructure development and availability of V2G per each individual vehicle is also
another important factor that may affect the presented results. The general approach presented
in this chapter is sufficiently discussed, and it has potential to be applied on the other similar
case studies.
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3.12 Résumé

Dans ce chapitre le potentiel des flottes des véhicules électriques pour participer aux services sys-
tèmes sont considérés. Cette étude a considéré les incertitudes concernant la durée de disponi-
bilité des VEs et éventuellement de la flotte, qui garantit la puissance disponible pour chaque
service. La Deuxième contrainte considérée est la limite de localisation au niveau des différents
nœuds du réseau de distribution pour laquelle la disponibilité des VEs a été évaluée.

D’abord, une étude bibliographique sur les travaux effectués sur ce sujet a été faite au
début du chapitre. Ensuite, l’approche générale proposée dans la thèse a été présentée. Après
l’introduction du cas d’étude et des entrées attribuées, chaque étape de cette approche est
présentée en détail. Finalement, grâce à la méthodologie développée, les différents services
systèmes ont été étudiés pour les scenarios bien définis en fonction des années et de l’évolution
du nombre de véhicules électriques dans le département des Deux-Sèvres. Enfin, les résultats
obtenus ont été évalués pour ce cas d’étude.

3.12.1 Etude bibliographique

Dans une étude bibliographique menée, différentes méthodes ont été proposées pour l’estimation
de la capacité de puissance de la flotte de VEs, mais aucun d’entre eux ne considère la limita-
tion de la localisation des services. [Han 11] a calculé la capacité de puissance réalisable par
une distribution binomiale des VEs. [Fluhr 10] utilise les données de l’enquête pour identifier
l’emplacement des VEs durant la journée. Dans [Soares 11] la méthode de simulation de Monte
Carlo est utilisée pour estimer la probabilité de transition entre différents états, comme par ex-
emple, le stationnement ou la circulation. Un processus non-homogène semi-Markov est utilisé
dans [Rolink 13] pour identifier la disponibilité des VEs et la charge demandée par la flotte,
alors que dans [Gonzalez Vaya 14] une châıne de Markov non homogène est choisi car les flux
de mobilité ne s’acquittent pas de la propriété de Markov.

La référence [Agarwal 14] utilise une modélisation de la mobilité pour les châınes de dé-
placement de la flotte des VEs et a conclu que les périodes de stationnements au domicile et
au travail sont majoritaires. Aux vues de toutes ces recherches et de notre cas d’étude basé sur
l’enquête de mobilité, il est conclu que les VEs sont garés au domicile et au travail la plupart
du temps et leur capacité à fournir des services quotidiens est relativement plus élevé que dans
d’autres endroits, tels que les parkings des centres commerciaux ou les voiries, qui sont très
stochastique et généralement de courte durée.

La deuxième limite concerne les incertitudes associées à la disponibilité des VEs pour fournir
les services. Par rapport à la référence [Mathieu 13], les sources d’incertitude sont basées soit
sur des modèles ou sur de la prévision. Les incertitudes des modèles proviennent d’une part
d’une simplification du modèle des batteries et d’autre part de la prévision de données telles
que l’heure de départ et d’arrivée, le comportement de conduite et l’état de charge à l’arrivée
des VEs.

Dans [Vayá 14], l’incertitude de comportement de la conduite, est modélisée par le com-
portement de conduite individuelle avec le processus de châıne non Markovien ainsi que par
les probabilités de transition d’état basées sur les données de l’enquête de mobilité. Dans
[Momber 15], une simulation de Monte Carlo est utilisée pour représenter l’incertitude dans le
comportement de conduite, en se concentrant sur les variables stochastiques, avec un proces-
sus d’échantillonnage indépendant. Alors que dans ce chapitre, l’interdépendance des variables
stochastiques est modélisé par une méthode multi variable utilisant la fonction de Copule.

La nouveauté des travaux présents consiste à fournir une méthodologie à plusieurs niveaux
afin d’évaluer le potentiel des V2G, qui pourrait être utilisée par les gestionnaires de réseau de
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distribution (GRD). Dans cette approche, l’incertitude, la disponibilité des VEs et la limitation
de localisation sont considérées comme les principaux facteurs affectant le potentiel de V2G
pour la participation aux services systèmes.

Un modèle probabiliste est développé afin d’estimer l’incertitude de la disponibilité en util-
isant uniquement des données probabilistes concernant les déplacements quotidiens [ins 03].
L’interdépendance des variables stochastiques est également modélisée à l’aide d’une fonction
de Copule. Cette méthode de modélisation, tient compte de l’impact de l’incertitude sur la
capacité d’offre et de l’amélioration de la fiabilité de l’offre. En outre, par soucis de réalisme,
la distribution de véhicules électriques dans le réseau de distribution.

3.12.2 L’approche générale

L’approche générale est constituée de six parties, chacune faisant référence à une tâche partic-
ulière. D’abord la puissance disponible du V2G est calculée dans la première partie (AVPM).
Cette puissance est calculée pour la flotte des VEs qui font des déplacements quotidiens du
domicile-travail. Dans la deuxième partie (FPE), l’estimation des paramètres fondamentaux,
comme le SOC à l’arrivée, l’intervalle de stationnement et l’énergie G2V et V2G, a été effec-
tuée. En troisième partie (MMSV) toutes les variables stochastiques comme le temps d’arrivée
et de départ ainsi que les parcours quotidiens de chaque véhicule ont été calculés grâce à une
méthodologie probabiliste utilisant la fonction Copule qui prend en compte l’interdépendance
des variables stochastiques.

Dans la quatrième partie (PAUM), l’incertitude sur la disponibilité des VEs a été modélisée
grâce à une méthode probabiliste. La fonction de probabilité des incertitudes a été identifiée
grâce à la méthode de mélange des gaussiennes. Après avoir étudié la capacité et les incertitudes
sur chaque flotte de VEs la flexibilité des offres de puissance et/ou d’énergie de chaque flotte a
été identifiée dans la cinquième partie (BFC). Finalement, l’évaluation des services système a
été étudiée pour chaque flotte en prenant en compte sa capacité, son incertitude et sa flexibilité.

3.12.3 Cas d’étude

Cette étude est proposée afin d’analyser le potentiel d’une flotte de VEs pour fournir des ser-
vices systèmes, en particulier pour la gestionnaire des réseaux de distribution. Il est supposé
pour l’évaluation actuelle, qu’un minimum d’informations statistiques est disponible pour le
cas d’étude, afin que l’approche soit applicable à d’autres cas d’études. Ces types de données
peuvent être aussi disponibles via les infrastructures de télécommunication des réseaux intel-
ligents (Smart Grid). Cette approche est pratique pour les gestionnaires régionaux de réseau
de distribution (GRD). Niort, une ville dans l’ouest de la France, est considérée comme le cas
d’étude dans ce chapitre où les données statistiques sont disponibles sur le site INSEE (Institut
national de la statistique et des études économiques).

3.12.4 Modélisation de la puissance disponible V2G

Afin de définir un modèle particulaire pour le calcul de la puissance disponible V2G, il est tout
d’abord nécessaire d’étudier les entrées du modèle. Le modèle proposé dans cette thèse est basé
sur des entrées comme le temps d’arrivée et de départ des VEs, le SOC à l’arrivée et les entrées
associées aux caractéristiques des véhicules comme la capacité de la batterie, l’autonomie et
le rendement du convertisseur. En prenant en comptes toutes ces entrées le modèle sera ainsi
capable de calculer la puissance disponible pour le V2G.
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3.12.5 Modélisation des variables stochastiques multi variables

Les variables stochastiques sont le temps d’arrivée, le temps de départ et le distance parcourue.
Les fonctions de probabilité de chacune de ces entrées sont définies en fonction de leurs données
statistiques. Dans cette étude les fonctions de probabilité pour le temps d’arrivée et de départ
sont considérées comme des gaussiennes. Pour la distance parcourue, une fonction particulaire
a été créé grâce à la méthode de mélange des gaussiennes.

En outre, l’interdépendance des variables stochastiques est un aspect important qui pourrait
imposer des impacts non négligeables sur les résultats finaux dans le processus de calcul de la
puissance disponible pour le V2G. Cette interdépendance a été identifiée pour ces variables
grâce à la fonction Copule.

3.12.6 Modélisation probabiliste de l’incertitude dans la disponibil-
ité des VEs

Afin de pouvoir étudier l’impact de l’incertitude des disponibilités des VEs, un modèle prob-
abiliste a été développé dans ce chapitre. Grâce à la méthode de mélange des gaussiennes,
les composantes inconnues de la densité de probabilité des déplacements quotidien ont été
identifiés. Ces composantes sont considérées comme les densités de probabilité des sources de
l’incertitude. Différents paramètres de réglage ont été considérés afin de mesurer l’impact de
l’incertitude sur la fiabilité des offres fournies pour chaque flotte de VEs.

3.12.7 Calcul de la flexibilité des offres

Après avoir étudié les capacités V2G disponible pour chaque flotte, 3 offres ont été considérées
comme les offres principales de chaque flotte pour participer dans les marchés de chaque service
systèmes. Ces trois offres ont été considérées comme des offres à haut potentiel par rapport à
la disponibilité des véhicules, la puissance fournie et la durée de disponibilité.

Dans cette partie, grâce à la méthode d’optimisation, les flexibilités de ces offres ont été
étudiées. Le problème a été d’abord transféré sous forme d’équations puis, une méthode
d’optimisation méta-heuristique (Free Pattern Search) a été employée. Ainsi, la flexibilité de
chaque offre a été calculée en fonction de la présence d’incertitude sur chaque offre.

3.12.8 Evaluation des services systèmes

Différents services systèmes ont été étudiés dans cette partie du point de vue de la capacité de
puissance, de la durée de participation dans chaque service ainsi que de la fréquence d’utilisation
des offres. Afin d’évaluer chacun des services, un système d’évaluation basé sur la logique floue
a été créé afin de calculer un facteur de potentiel compris entre 0 et 1 pour chaque scenario
défini. Les scenarios sont définis par la capacité de puissance, la durée des offres et un coefficient
d’incertitude.

3.12.9 Conclusion

L’évaluation du potentiel des services systèmes V2G a été discutée dans ce chapitre. La puis-
sance disponible du V2G des flottes de VEs, qui font un déplacement quotidien domicile-travail,
a été modélisée. Cette modélisation est basée sur des données stochastiques telles que les temps
d’arrivée/départ et la distance parcourue et des données moyennes, contenant des caractéris-
tiques des véhicules. L’interdépendance des variables stochastiques a été analysée à l’aide de la
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fonction de Copule. Deux facteurs importants rarement discutés qui affectent l’AVP ont égale-
ment été modélisés et leurs impacts sur l’AVP ont été identifiés. L’incertitude de la disponibilité
des VEs durant leur durée de plug-in a été modélisée uniquement à l’aide des données reçues
à partir des trajets quotidiens et la décomposition de ces trajets grâce au modèle de mélange
gaussien. Deuxièmement, la limitation de la localisation du service était considérée dans la
procédure d’évaluation des services systèmes du V2G.

Les impacts de l’incertitude de la disponibilité ont été étudiés sur trois capacités d’offres
potentielles à domicile et au travail. Les résultats ont indiqué que les offres du scenario au
travail sont plus fiables que les offres à domicile car la probabilité de l’incertitude a moins de
concentration pendant le moment de stationnement au travail par rapport à celui au domicile.
La flexibilité de chaque capacité d’offres a été calculée en utilisant une technique d’optimisation
globale et robuste. Les impacts de l’incertitude ont également montré une diminution de façon
linéaire de l’intervalle de flexibilité et généralement moins d’impacts négatifs sur la flexibilité
des offres au travail par rapport au scénario à domicile.

En utilisant l’intervalle flexible obtenu de chaque capacité et de la puissance V2G de chaque
flotte de VEs, le potentiel de services systèmes des flottes a été étudié grâce à un système
d’Inférence Floue. Le système flou permet de quantifier le potentiel de chaque flotte, compte
tenu des exigences des services, tels que le minimum d’énergie et du temps de connexion ainsi que
la limitation de la localisation des services dans les différents points des réseaux de distribution.
Cette méthodologie, en utilisant les données statistiques de mobilité de Niort, une ville dans
l’ouest de la France, a été appliquée et les services possibles pour cette ville ont été identifiés.

Cette étude a montré qu’en fonction de l’évolution réelle des VEs en France, les services de
lissage des pointes en réseau HTA, du réglage de fréquence, la minimisation des pertes et la
minimisation de coût d’acheminement d’électricité sont plus compétitifs par rapport aux réglage
de tension et de lissage des pointes en réseau BT. Il faut tenir compte du fait que, l’impact
de développement de l’infrastructure de V2G et la disponibilité de V2G pour chaque véhicule
sont également d’autres facteurs importants qui peuvent avoir un effet non-négligeable sur les
résultats présentés. L’approche présentée dans ce chapitre est suffisamment discutée, et a un
potentiel d’application sur des cas d’études similaires.
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4.1 Introduction to Energy management

Energy management includes planning and operations of energy production and consumption
units for the aims of resource conservation, climate protection and cost saving. In this thesis,
the energy management systems for a fleet of plug-in electric vehicles are studying for the
different possible ancillary services. Based on the previous studies in the previous chapter, the
main part of the thesis dedicated to a real-time supervision system is presented in this chapter.
In this introduction a brief literature review will be presented on the actual energy management
for plug-in electric vehicle integration into the distribution grid. After that, the different steps
of the designing of real-time supervision will be presented which is applied for two different case
studies.

Recently, there are many studies investigating on plug-in electric vehicle (PEV) integration
to the electrical grid containing their non controlled charging impacts, coordination charging
strategies and vehicle-to-grid (V2G) systems [Clement-Nyns 11a, Green II 11, Chukwu 14a,
Putrus 09, Shafiee 13, Clement-Nyns 10b, Yilmaz 13a, Sarabi 15b, Latimier 15]. Among them
those who have proposed coordination strategies are mainly devided to two categories: Optimal
scheduling and/or coordination and real-time coordination [Deilami 11, Shi 11, Chukwu 14b,
Singh 13, Ma 13, Sun 14, Harrabi 14, Tan 14]. We call here the first group as offline or planning
studies and second group as on line or real-time supervision.

4.2 Methodologies for energy management of electric ve-

hicle fleet

Plug-in electric vehicles are becoming more and more dominant on the future transportation
market. Their contribution to the transportation sector bring challenges of energy need respond
which should be taken into account seriously. The charging coordination and V2G technology
are introduced as possible solution to cope with energy need increase of the PEV fleet. The
methodologies for supervision and coordination of PEV charging demand are analyzed there-
after. The aim of this part is to investigate on current researches on the concept of energy
management methodologies for PEVs.

4.2.1 PEV-Grid Energy Management aspects

There are two main aspects of energy management for PEV charging and V2G technology.
Both of these aspects are discussed and a predictive real-time supervision is designed in this
thesis. Theses aspects are as follows:
• Offline Optimization for planning of the grid operating points based on:

1. Prediction

2. Forecasting

3. Estimation

4. Optimization

• Real-time energy management because of uncertainties in the grid such as

1. Intermittent in renewable generation such as solar and wind

2. randomness of arrival and departure of PEVs

3. unpredictable variation of load profile
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4.2.2 List of already implemented EMS for PEV charging problem

A list of already implemented Energy Management System (EMS) for PEV charging/dishcarging
problem are brought:

• Linear programming

• Sliding Mode Control

• Model Predictive Control

• Fuzzy Logic Controller

• Multi Agent Systems

• Markov Decision Process (with Q-learning)

• Game Theory

This methodologies are validated for different case studies. Depending on the direction of
energy flow, existing work on EV charging scheduling can be classified into two classes: 1)
scheduling for charging only, and 2) scheduling for both charging and discharging. In charging-
only scheduling, the scheduler tries to optimize the energy flow from the grid to the battery of
the EV. [Shafiee 13] optimized the EV battery charging during the low-cost off-peak period to
minimize the charging cost in the context of Singapore. The paper in [Deilami 11] examined the
problem of optimizing the charge trajectory of a PHEV, defined as the time and the rate with
which the PHEV obtains electricity from the power grid. In [Clement-Nyns 11b], a decentralized
charging control algorithm was proposed to schedule charging for large populations of EVs.

The paper in [Shi 11] optimized EV battery charging behavior to minimize charging costs,
achieving satisfactory state-of-energy levels, and optimal power balancing. [Clement-Nyns 10a]
presented smart energy control strategies for charging residential PHEVs, aiming to minimize
the peak load and flatten the overall load profile. The impact of different battery charging rates
of EVs on the power quality of smart grid distribution systems was studied in [Chukwu 14b]. In
[Singh 13] proposed coordinated charging with stochastic programming, which was introduced
to represent the error in the load forecasting. In charging and discharging scheduling, the
scheduler tries to optimize the bidirectional energy flows: from the grid to the EV battery and
from the EV battery to the grid.

Binary particle swarm methods were employed to optimize the V2G scheduling in a park-
ing lot to maximize the profit [Yilmaz 13b, Sarabi 15a, Ma 13]. Sortomme et al. proposed an
unidirectional regulation at the aggregator, in which several smart charging algorithms were
examined to set the point about which the rate of charge varies while performing regulation
[Sun 14]. The paper in [Tan 14] developed an aggregator for V2G frequency regulation with
the optimal control strategy, which aims to maximize the revenue. Janget al. proposed a
method for an analytic estimation of the probability distribution of the Procured Power Ca-
pacity (PPC), based on which the optimal contract size was decided [Song 14]. The paper
in [Neffati 13] presented a real-time model of afleet of plug-in vehicles performing V2G power
transactions. In [Salmasi 07], Singhet al. demonstrated that the coordinated charging and dis-
charging of EVs can improve the voltage profile and reduce the power transmission loss. The
paper in [Harrabi 14] discussed the vehicle to grid integration and described the vehicle-to-grid
communication interface [He 12].
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4.3 Predictive real-time energy management strategy for

“Energy transmission cost minimization”: case study

of distribution grid

Based on the previous explanation of the selected ancillary services for this thesis, for the case
study of regional distribution grid, the service of energy transmission cost minimization has
been chosen. The proposition of this thesis for designing a real-time supervision system for a
fleet of V2G-enabled PEV are presented in this section. Different steps of the proposition are
illustrated in Figure 4.1.

In fact, three main part are controlling the charging/discharging of the vehicles. “Forecasting
algorithm” and “Predictive supervision” are working in the level of mid-term supervision. The
main advantage of using this level is to have a global estimative vision over the entire time of
the real-time supervision. This period is considered as 24 hours in this supervision systems.
The mid-term supervision will provide a reference signal for real-time supervision which finally
drive it through more optimal solution. In the second level, the real-time supervision will decide
the value of reference signal in periods of 10 minutes. Finally, the SOC estimator algorithm will
distribute the reference power to all of the vehicles, considering the constraints of each single
vehicle connected to the grid.

Each of these levels are explained completely thereafter and their methodological approaches
are discussed.

Predictive Supervision
P̂EV (t)
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Figure 4.1: Predictive-real-time supervision system for V2G energy management: ETCM service.

4.3.1 Forecasting algorithms

The purpose of using forecasting algorithm in this thesis is to provide a short term vision over
the entire period of real-time supervision in order to optimize the decision making strategies
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for PEV charging/discharging. In fact, the author believes that with a predictive vision over a
short term horizon the quality of the real-time decision making will be increased. This claim
has been proved by comparing predictive real-time supervision with only real-time supervision
system. The propose of the author is the forecasting algorithms for real-time measurable inputs
of the system. These inputs are illustrated in Figure 4.2, contain electric vehicle Power demand
P̂EV (t), Consumption P̂conso(t), solar power production, P̂PV (t) and wind power production
P̂wind(t), as they are estimated (predicted) values are presented with “ˆ” sign. In fact for each
of the mentioned estimated values a forecasting model independent of the other parameters are
considered. The development of the forecasting algorithm for P̂conso(t) has been studied in this
thesis while the other parameters forecasting are considered as perspective of the thesis. This
perspective is on the base of recent researches for solar and wind production and electric vehicle
charging load estimation.

PEV (t)

P̂Conso(t)

P̂PV (t)

P̂wind(t)

Forecasting

ANN

Algorithm

Temperature

Humidity

Wind speed

Day type (1-7)

Consumption history

Day counter (1-365)

Wind power history

Solar irradiance

Solar power history
.
.
.

Historical
Data

Figure 4.2: Demonstration of forecasting algorithm for consumption, wind and solar production fore-
casting.

4.3.1.1 Literature review on the forecasting algorithms

Different load forecasting algorithms for different forecasting horizons are discussed in literature
[Feinberg 05, Khatoon 14]. Various regression models, time series, neural networks, expert
systems, fuzzy logic, and statistical learning algorithms, are used for short-term forecasting.
The development, improvements, and investigation of the appropriate mathematical tools will
lead to the development of more accurate load forecasting techniques.

Similar day approach, is based on searching the historical data for days within one, two,
or three years with similar characteristics to the forecast day. Similar characteristics include
weather, day of the week, and the date. The load of a similar day is considered as a forecast.
Instead of a single similar day load, the forecast can be a linear combination or regression
procedure that can include several similar days.

Regression methods is the one of most widely used statistical techniques. For electric load
forecasting regression methods are usually used to model the relationship of load consumption
and other factors such as weather, day type, and customer class.

Time series are based on the assumption that the data have an internal structure, such
as autocorrelation, trend, or seasonal variation. Time series forecasting methods detect and
explore such a structure. Time series have been used for decades in such fields as economics,
digital signal processing, as well as electric load forecasting [Paparoditis 13, Barakat 90]. In
particular, ARMA (autoregressive moving average), ARIMA (autoregressive integrated moving
average), ARMAX (autoregressive moving average with exogenous variables), and ARIMAX
(autoregressive integrated moving average with exogenous variables) are the most often used
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classical time series methods. ARMA models are usually used for stationary processes while
ARIMA is an extension of ARMA to non-stationary processes. ARMA and ARIMA use the
time and load as the only input parameters [Cho 95]. Since load generally depends on the
weather and time of the day, ARIMAX is the most natural tool for load forecasting among the
classical time series models.

Neural network are essentially non-linear circuits that have the demonstrated capability
to do non-linear curve fitting. The outputs of an artificial neural network are some linear or
nonlinear mathematical function of its inputs. The inputs may be the outputs of other network
elements as well as actual network inputs. In practice network elements are arranged in a
relatively small number of connected layers of elements between network inputs and outputs.
Feedback paths are sometimes used. The most popular artificial neural network architecture
for electric load forecasting is back propagation. Back propagation neural networks use con-
tinuously valued functions and supervised learning. In this thesis, Artificial Neural Networks
are used as short term load forecasting algorithm. The reason is that it has been proved that
provided robust and accurate result for load forecasting algorithm [Ding 16].

4.3.1.2 Artificial Neural Networks

Artificial neural Networks (ANN) are one of the main tools for load forecasting purposes
[Shahidehpour 02]. In the family of machine learning methods ANN is a method inspired
by biological neural networks for the objective of estimation or approximation of the functions
when a large number of inputs are provided, in order to estimate the unknown behavior of the
system [Wang 03].

Figure 4.3: Central nervous system of human. Flow of axonal signal through the neurons [Emmy 11].

The principle of ANN is based on activation of a neuron under a certain circumstances
which would be the inputs that are defined by designer. In fact, Natural neurons receive signals
through synapses located on the dendrites or membrane of neurons. When the received signal
are strong enough, the neuron is activated and emits a signal though axon. This signal might
be sent to another synapses or activate another neuron. The inputs of the artificial neural
network can be considered as synapses which are normally multiplied by a weight factor. The
activation of signal is computed by a mathematical expression presented in equation 4.1.
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Oj = fj
K∑
k=1

wjkxk (4.1)

Where fj is the activation function of the neuron in jth layer and xk is the kth input of the
network. Oj represents the output of the jth layer for neuron. The illustrative concept of a
neuron is depicted in Figure 4.4. The complete explanation of different steps of the algorithm
can be found in [Chen 01, Abraham 05]. The algorithm for learning used in this thesis is based
on backpropagation algorithm. Basically, there are three activation functions applied into back
propagation, namely, Log-Sigmoid, Tan-Sigmoin and Linear Transfer Function. In this study
the back propagation algorithm is used for training part with Tan-sigmoid and Linear function
for first and second hidden layer, respectively.

fj Oj

x1

x2

xk

xn

wj1

wj2

wjk

wjn

Figure 4.4: Mathematical model of an ANN neuron.

4.3.1.3 Short-term Load forecasting: modeling

In this thesis, for the purpose of short-term load forecasting (STLF) a model is developed
which uses the historical data of load consumption and temperature forecast in order to apply
a forecasting algorithm for next 24 hours. Different methodologies are applied for STLF in
the literature [Lee 92, Gross 87, Huang 03]. In this thesis based on a bibliographical research
on the actual models for STLF an algorithm is proposed using Neural network toolbox of
Matlab�. Different steps of the model are presented in the Figure 4.5. At first, the historical
data for forecasting purpose are collected. After that a pre-processing level is applied in order
to format the data for the training algorithm. In order to avoid saturation problems with
activation functions the data will be normalized in normalization level. Then, the training step
will be applied by testing level. These two levels will be done iterativelly in order to reduce
the error of forecasting. Finally, the results will be re-scaled to their original unit at post-
processing level. At the end, the performance of the training algorithm will be examined in
error analysis step. The overall configuration of ANN using NN toolbox is depicted in Figure
4.6. The general configuration shows the 8 inputs, two hidden layer with Tan-Sigmoid and
Linear transfer function, respectively and one single output. The weight and bias factor for
each neuron at each hidden layer is also presented. the learning algorithm will search for the
best parameters for weight and bias in order to minimize the estimation error.
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Data
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Data
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Figure 4.5: ANN-based load forecasting algorithm procedure.

Figure 4.6: ANN model for STLF using Matlab� NN toolbox.

4.3.1.3.1 Data collection (historical data)

The required training data can be divided in tow main data; the input variables and output
target. The input vectors are normally the data that have influence on the consumption. These
inputs normally are the weather information, the type of the day (week-end or week day or
holiday) or fault occurring in the grid. The output target is also considered as the objective
of forecasting algorithm which is the real load consumption associated to the provided inputs
for STLF application. In this thesis, as the forecasting algorithm is applied on the network of
GÉRÉDIS Deux-Sèvres, the input variables are chosen based on available data in possession of
GÉRÉDIS. These data are as follows:

1. Hour of day (1-24)

2. Day counter (1-365), one year

3. Day type (0-1), weekend, holiday or working day

4. Day type (1-7), 7 days of the week

5. D Temperature (today)

6. D+1 Temperature (tomorrow)

7. D Load profile

8. D-7 Load profile
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There are different types of input variables that can be added to the input vectors in order to
increase the accuracy of forecasting algorithm such as humidity, visibility(cloud cover %) or even
wind speed. An analysis on the data of electricity consumption is done to show the relevance
of consumption to temperature variation. This leads to consider the temperature as the main
inputs for forecasting purpose in France. Figure 4.7 shows the relationship between temperature
and load consumption in one region of Deux-Sèvres. This shows that the temperature and load
consumption are varying approximately inverse. Increment of temperature leads to reduction of
load consumption and vice versa. However, there are other factors that affect the consumption
such as visibility (cloud cover) which leads to using the lighting systems.
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Figure 4.7: The variation of load consumption vs temperature.This shows the approximately inverse
relationship between load and temperature.

A second analysis is done based on conversion of load profile signal to frequency signal,
using fast Fourier transform (FFT) algorithm, in order to identify the periodic behavior of the
signal. This analysis helps to choose the best length of signal and also identify the period
of the signal. Figure 4.8 shows the frequency analysis of the same load consumption signal
illustrated in Figure 4.7a. This result shows that there are two main frequency components
which indicates the periods of 7 days (1 week) and 3.5 days (half a week). It means that the
current load consumption is periodical mainly on the base of a week and half a week.

4.3.1.3.2 Data pre-processing
This step is necessary in order to provide proper set of inputs and output target. Since the set
of input and output target will guide the learning algorithm to learn from their relationship.
Hence, if there is any error or bad registration of data, the learning will be deviated. Therefore,
in this step the data will be analyzed to avoid any mistake on the data. As in this thesis,
the load consumption and temperature are the main inputs with shifting in the time, so their
modification for preparation of learning set should be done in this step.

Two matrices should be constructed. One for inputs and one for outputs . These matrices
have the characteristics as follow:

Inmat = [X]Nbin×Hl (4.2)

Outmat = [Y ]Nbout×Hl (4.3)
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Figure 4.8: Frequency analysis of load consumption signal for 2012.

Where Inmat and Outmat are input and output matrices, respectively. Nbin and Nbout are
input and output numbers which are 8 and 1 in our case, respectively. Hl is History length
or the length of our historical data vector. The input matrix for our case can be rewritten as
follow:

Inmat = [Hourday, Dayctr, Day0,1
type, Day

1,7
type, T empD, T empD+1, LoadD, LoadD−7]8×Hl (4.4)

Outmat = [LoadD+1]1×Hl (4.5)

The inputs are already introduced in previous section. In preparation of data the important
point is related to the shift for some inputs. All the inputs with D-1 index should have a 24
hours of shift to be correspond to the output target. For the case of D-7 the data should be
shifted by 168 hours in order to present the load profile of the same day as prediction of previous
week. Hl in this thesis is considered a historical data of 3 years from 2011 to 2013. The final
test in the day of algorithm preparation is done on December 11, 2014. Hence the historical
data are approximately 4 years for short term load forecasting of next 24 hours.

4.3.1.3.3 Normalization
This step is applied in order to avoid the saturation problem for activation functions. This is
already discussed in some references [Zhang 10, Kiartzis 95]. In fact all collected data will be
divided by their absolute maximum value to be in the range of -1 to 1. Besides, Day0,1

type is
represented as 0 or 1.

4.3.1.3.4 Training and test step
In ANN normally a percentage of historical data are considered for training purpose and the
rest of the data will be used for test step. In this thesis training percentage is considered as 70%
and test of 30%. Training step is also should have a particular algorithm. There are already
defined training algorithms available in Matlab� NN toolbox. Generally, Trainbr (bayesian
regularization) and Trainlm (Levenberg-Marquardt backpropagation) are the best choices for
STLF problem among other available algorithm [Zhang 10]. In this work, Trainbr is chosen
as training algorithm as it has faster convergence speed. In Figure 4.9, the generated neural
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network for STLF application and used in this thesis is presented. A multi-layer approach is
chosen with 2 hidden layer. The first layer has 24 neurons and second layer has 12 neurons.
The number of neurons have been chosen based on different tests where the best results in a
reasonable time scale was obtained by this configuration. For each neuron the parameter linj
indicates the layer i and neuron j of that layer. wn depicts the weight value considered for the
nth input (n = 8). These weights are also exist between each two consecutive layers.
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Figure 4.9: Multi-layer feed-forward backpropagation ANN for STLF application.

4.3.1.3.5 Data post-propagation
This level is necessary in order to bring back the output from value of the algorithm range to
its original unit. The results should be normally multiplied by the same reference of per unit
process in normalization step.

4.3.1.3.6 Error Analysis
In this step the different type of error for forecasting can be applied in order to evaluate the
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accuracy of forecasting algorithm, mean absolute percentage error (MAPE) is chosen in order
to evaluate the accuracy of forecasting. It usually reresent the accuracy as percentage while
there would be some disadvantage using MAPE when there are zero values in the actual values.
MAPE is expressed as follow in equation 4.6:

MAPE = 1
n

n∑
t=1

∣∣∣∣∣Yt − ŶtYt

∣∣∣∣∣ (4.6)

Where Ŷt is the estimated output of the forecasting algorithm and Yt is the real output value
applied to the system for learning purpose.

4.3.1.4 Results and discussion

The results of generated STLF algorithm are presented in this section. In the history of the
algorithm all data from 2011 to December 10 2014 have been used for learning purpose. After the
learning, the algorithm is used to check its performance by doing load forecasting for December
11 2014. In the following at first, Figure 4.10 shows the training states of the algorithm with
a MAPE = 3.73%. It would be possible to enhance the obtained result by increasing the
number of neurons, layers or even activation function, but as the calculation time for real-time
application is important we suffice this precision which obtained in approximately 15 minutes.
Figure 4.11 shows the regression analysis for three sets of data. 70% of the data are used for
training which are showing a regression of R = 0.9888. 30% of the data are used for testing the
trained algorithm with regression of R = 0.9729 and the overall set of the data have converged
to R = 0.9861. This precision for the case of real-time energy management system is acceptable
as the algorithm was successful to estimate properly the periodical behavior of the actual signal
with approximately the same minimum and maximum values.
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Figure 4.10: Example of training output of ANN algorithm for STLF applied for estimation of 11
December 2014.

The final result of the STLF algorithm for prediction of 11 December 2014 is presented in
Figure 4.12. The error of estimation is approximately 3% . The algorithm was successful to
predict the peak of consumption but there would be more error in minimum of consumption.
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Figure 4.11: Regression analysis of training, test and all of the historical data applied for STLF
application.

This algorithm can be used for consumption prediction in order to provide the P̂conso(t). This
would be possible to increase the accuracy of the algorithm but the calculation time should
be considered. The acceptable marginal variation of forecasted parameters and their impact
on the real-time supervision performance is analyzed in the next sections. The compromise of
the accuracy, calculation time and their impact on the real-time performance is an important
study that would be considered for perspective of this thesis. The proposition of the author is
to find the marginal error and use a two level real-time supervision system. This idea will be
discussed in next sections.

For the other estimation parameters such as P̂PV (t) and P̂wind(t), the same approach can
be applied were these field of study are already developed in literature. In this thesis, their
development are considered as perspective of the research as the timing of the project and
concentration on main objective of the thesis did not let to spend more time on forecasting
algorithm. For P̂EV , as the modeling of charging profile is already discussed in chapter 2 and
for today application, there is no real available data of EV charging demand, the author suffice
to consider the output of the model as the estimated profile. Knowing that, the algorithm is
an stochastic based modeling approach there would be always slight variation in the output so
it can be considered as difference between real measured values and estimated values for PEV
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Figure 4.12: Output of the STLF algorithm for prediction of 11 December 2014 consumption(at the
level of HV/MV substation).

4.3.2 Predictive supervision (Off-line optimization)

In the second level of the proposed supervision system (cf. Figure 4.1) a predictive supervision
or off-line optimization layer is introduced. The aim of this level is to provide a priori optimal
solution for real-time supervision thanks to an optimization algorithm using the provided inputs
from forecasting algorithm. This optimization algorithm should be robust enough in order to
handle the stochastic behavior of the problem and also the high dimension nature of the system
(number of optimal variables). The output of optimization algorithm would be the reference for
real-time supervision which leads the real-time decisions to be nearer to the global optimum.
This is certainly depends on the precision and accuracy of at first forecasting algorithm and
then optimization algorithm. A literature review on the current available optimization methods
and particularly the methods applied on the same problematic are conducted in next section.
After that the proposition of the author for the defined problem will be presented.

4.3.2.1 Problem formulation and specification

The optimization problem has the same nature and specification of proposed algorithm in
Chapter 2. The problem is the minimization of energy transmission cost (ETC), the bill paid
to TSO by DSO corresponds to transmission of energy from power plants to the distribution
grid through the transmission grid. In parallel, some other objectives are aimed. For the
environmental issues the reduction of produced CO2 is another objective. This corresponds to
the energy transmission inside the power plants leading to CO2 production. The third objective
is to increase the local consumption of renewable energy production in order to avoid active
power injection to the transmission grid. This service is applied upto a HV/MV (90/15 kV)
substation. This substation is at the border of transmission and distribution grid (Figure 4.13).
The under study grid has local wind farm and solar farm.
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Table 4.1: Specification of Predictive supervision system for ETCM service for V2G-enabled PEV
fleet.

Objective Sub-objective
Associated

inputs
Constraints Means of actions Indicators

Energy Tranmission
Cost Minimization

Subscribed power
exceeding limitation

Delta P
Subscribed power

(Optimized) Charging,
Discharging and

No charging
of PEVs

Transmission
cost in euro

Maximize energy
consumption during

low cost
Price Consumption

variation

Environmental and
lower CO2
efficiency

Maximize renewable
energy consumption

Pps
Auto-consumption

of RES (%)

Maximize PEV
owner satisfaction SOC

PEV energy need
(full-battery
at departure)

Battery charging
rate

Optimize subscribed
power

Battery
degradation

CO2 emission
rate

The objective function is already defined in equation 2.15. This is to minimize the energy
transmission cost. Here the table of specification of the problem are presented in order to
provide better understanding of the problem (Table 4.1).

Transmission Network

Distribution Network

HV/MV Substation

MV Feeder
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MV (15 kV)

HV

MV

HV

MV

MV/LV Substation
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Pwind(t)
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PPV(t)

PPV(t)

Pwind(t) Pwind(t)

PV-to-Grid
Wind-to-Grid
Grid-to-Vehicle
Vehicle-to-Grid

Figure 4.13: Representation of case study, a HV/MV substation at border of transmission and distri-
bution grid containing local wind and solar farms and distributed PEVs.

The dimension of the problem is in range of thousands. As the sampling time of the
meters for calculation of energy transmission cost is fixed on 10 minutes, the demand should be
controlled every 10 minutes. In other words, for every day 144 variables corresponds to number
of 10 minutes in 24 hours should be calculated. In fact, these variables are defining the amount
of power that can be delivered/absorbed to/from the PEVs. As the ETC is calculated in a
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yearly base the demand control should be applied over the whole year. In fact, for a year of 365
days, 52560 variables should be optimized in order to be able to minimize the ETC using the
PEVs battery storage capability. To choose the proper algorithm this feature should be taken
into account. The proposition of this project is to try the optimization with hybrid technics.
Local search algorithms are able to search in a limited surface based on gradient and providing
exact optimum solution. While the global search algorithm and basically stochastic algorithms
are able to search a vast search space. While their convergence to the best optimum is not
always guaranteed. In this thesis, the author provided a hybrid optimization algorithm which
is able to converge to the best optimum. In fact there is two possible aspect of solving the
problem.

The first one is to consider the problem day per day. In this case in each optimization
problem 144 variables should be optimized. This part is done by local search algorithm.

The second one is to do the optimization for the whole year. In this case there are 52560
variables for optimization. A global search algorithm is introduced for this approach.

The challenge is the value of subscribed power. In fact, since the subscribed power is signed
yearly and there is no change during the contract, hence the result of optimization for one day
with optimization of whole year would be the same. In other words. if we do the optimization
by first approach we will obtain the same result as second approach. The main difference
between these to approach is the time of calculation. In next line the problem formulation
is presented. After that the hybrid optimization algorithm will be presented. This algorithm
is combination of Constrained Particle Swarm optimization (CPSO) and Interior point (IP)
method. This hybrid algorithm afterwards is called CPSO-IP.

As presented in Figure 4.13, the power transition of the substation can be expressed as in
equation 4.7.

PPS(t) = Pcon(t)± PEV (t)− Pwind(t)− PPV (t) (4.7)

These parameters are already defined in chapter 2. The power of electric vehicles can be
either positive (charging case) or negative (discharging case). This is expressed as some of all
PEVs power in equation 4.8.

PEV (t) =
NPEV∑
i=1

P i
EV (t) (4.8)

A single PEV power is expressed as :
P i
EV (t) = [ai(1), ai(2), ..., ai(t)]× CRi

i = [1, NPEV ] ∈ N
a(t) = [−1, 1] ∈ Z.

(4.9)

Where a(1) to a(t) express the parameters of charging/discharging demand correspond to
each sample time t (each 10 minutes) and CRi is a diagonal matrix with diagonal elements
equal to charging rate of 3.7 kW. By putting 4.9 to 4.8, the equation 4.8 can be rewritten as:

PEV (t) =
NPEV∑
i=1

[ai(1), ai(2), ..., ai(t)]× CRi (4.10)

By distributing the sum to the parameters of the vector PEV (t) can be expressed as :

PEV (t) = CRi ×
[
NPEV∑
i=1

ai(1),
NPEV∑
i=1

ai(2), ...,
NPEV∑
i=1

ai(t)
]

(4.11)

Each parameter can be rewritten as follows:
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A(1) =
NPEV∑
i=1

ai(1), (4.12)

A(2) =
NPEV∑
i=1

ai(2), (4.13)

A(3) =
NPEV∑
i=1

ai(3), (4.14)

...

A(t) =
NPEV∑
i=1

ai(t). (4.15)

By putting the new parameters, so-called global parameters, the PEV (t) will be re-expressed as
:

PEV (t) = [A(1), A(2), ..., A(t)]× CRi (4.16)

By using the equation 2.15 for ETC, and considering the obtained expression of PEV fleet
power,PEV (t), the main objective can be expressed as in follow:

min
A(1),A(2),...,A(t)

a2Psubscribed +
n∑
j=1

(
dj

∫ tbj

taj

(Pcon(t)± PEV (t)− Pwind(t)− PPV (t))
)

+

12∑
m=1

n∑
j=1

α
√√√√52560∑

t=1
(Pcon(t)± PEV (t)− Pwind(t)− PPV (t)− Psubscribed(t))2

 (4.17)

Equation 4.17 shows the ETC function by integration of PEV charging power equation.
This equation can be rewritten using the parameters of ETC function. The parameters are
defined thereafter.

∆P (t) = PPS(t)− Psubscribed(t) (4.18)

Exceeding of subscribed power is represented by ∆P in equation 4.18. Subscribed power
exceeding (SPE) parameter of the ETC is expressed by equation 4.19.

SPE(t) =
n∑
j=1

(α.
√∑

(∆P (t)2)) (4.19)

Ej =
∫ tbj

taj

(Pcon(t)± PEV (t)− Pwind(t)− PPV (t)) (4.20)

In these equations, j represents the number of periodical tariffs (here j = 5). tja and tja
represent the start and end time of jth periodical tariff. In equation 4.20, Ej represents the
energy consumption during jth periodical tariff. Therefore, putting 4.19 and 4.20 inside 4.17,
the ETC objective function for minimization can be rewritten as :

min
A(1),A(2),...,A(t)

a2Psubscribed +
n∑
j=1

(djEj) +
12∑
m=1

SPE(m)
 (4.21)
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Knowing the objective function, now the constraint should be defined. Since the only
control-ability of the optimization is on the PEV battery power chargers, the main constraints
will be focused on the PEVs available stored energy and their required energy at departure
time. In order to formulate the constraints, some new parameters should be defined. The first
constraints is the availability of the PEVs which are expressed as the availability of the fleet.
A diagonal matrix so-called availability matrix (Amat), is defined to express the availability as
in equation 4.22:

Amat =



0 0 0 0 0 0 0 0 0
0 . . . 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 A′ab 0 0 0 0 0
0 0 0 0 . . . 0 0 0 0
0 0 0 0 0 A′cd 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 0 0



(4.22)

Where the parameters in this equation are defined as :

tarrival = min
i

(T iarrival) (4.23)

tdeparture = max
i

(T ideparture) (4.24)

a = b = tarrival (4.25)

c = d = tdeparture (4.26)

A′ab = A′cd = 1 (4.27)

A′ef = 1, ∀ e = [a, c] ∈ N, ∀ f = [b, d] ∈ N (4.28)

tarrival is the arrival time of the first PEV in the fleet and tdeparture is the departure time of
the last PEV in the fleet. T iarrival and T ideparture represent the arrival and departure time of ith

PEV in the fleet. In matrix 4.22, all the arrays in red are equal to one as expressed in 4.27 and
4.28. These represent the availability of the fleet for optimization problem.

Now for defining the availability constraint, the parameter vector of PEV (t) defined in 4.16
should be reformulated using Amat.

A′′ = [A(1), A(2), ..., A(t)][1×t] × Amat[t×t] (4.29)

A′′ is a vector of dimension [1× t]. Now with this formulation, the constraint related to the
availability is respected so the PEV (t) can be expressed as :

PEV (t) = [A′′(1), A′′(2), ..., A′′(t)]× CRi (4.30)

The second constraint is related to required energy of the fleet. At the moment of arrival to
the parkings the PEVs have an arrival SOC representing the available energy in their batteries.
These PEVs have a desired departure SOC which should be declared as the plug-in moment.
Hence the energy need of the fleet can be calculated from provided information (Ei

arrival and
Ei
departure provided by the driver of ith PEV in form of kWh energy or SOC percentage).

Efleet
need =

NPEV∑
i=1

(Ei
departure − Ei

arrival) (4.31)
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This energy should be provide to the fleet and is considered as the hard constraint of the
problem. ∫ T

t=1
PEV (t) = Efleet

need (4.32)

As the problem is discretized in sample time so the integral can be expressed as summation:

T∑
t=1

PEV (t) = Efleet
need (4.33)

Using the new formula of PEV (t) obtained in 4.30 and the discretized constraint in 4.33, the
new version of energy need constraint can be reformulated as follows:

[A′′(1) + A′′(2) + . . .+ A′′(t)]× CRi = Efleet
need (4.34)

After definition of availability constraint and energy need constraint, the boundary con-
straints are related to the amount of power that can be delivered or absorbed in each sample
time. These constraints are presented in equations 4.37 to 4.40. In these constraints NPEV

available(t)
represents the number of PEVs available in tth time slot. This should be considered that the
actual formulation is concentrated on charging problem at office and the same formulation
should be considered for home charging problem. The final application of these formulation on
the optimization problem are by summing all formula of office and home in order to apply the
formula for one day time slot. This is repeated for each day and the final size of the vector is
equal to T = 52560 for a year of 365 days. In the current formulation T = 144 corresponds to
number of 10 minutes sample time for one single day. Now the final set of problem formulated
for optimization problem of ETC minimization using V2G-enabled PEV fleet is obtained and
presented thereafter:

min
A′′(1),A′′(2),...,A′′(t)

a2Psubscribed +
n∑
j=1

(djEj) +
12∑
m=1

SPE(m)
 (4.35)

Subject to

[A′′(1) + A′′(2) + . . .+ A′′(t)]× CRi = Efleet
need (4.36)

−NPEV
available(1) 6 A′′(1) 6 NPEV

available(1) (4.37)

−NPEV
available(2) 6 A′′(2) 6 NPEV

available(2) (4.38)

−NPEV
available(3) 6 A′′(3) 6 NPEV

available(3) (4.39)

...

−NPEV
available(t) 6 A′′(t) 6 NPEV

available(t) (4.40)

Up to now, the problem formulation and specification is presented. Knowing the nature of the
problem (Nan-linear problem), different possible methods are exist. In this thesis based on the
literature review presented before, and knowing the features of this problem (high dimension
and stochastic behavior), a hybrid optimization technique is applied using Particle Swarm
Optimization (PSO) as global stochastic search algorithm and Interior point method as a local
search algorithm. These two methods are presented in next sections including the obtained
results.
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4.3.2.2 Hybrid optimization algorithm: Constrained Particle Swarm Optimization
Interior-Point (CPSO-IP)

The idea of hybridization of optimization algorithm has been deeply analyzed in different pre-
vious researches. The reasons behind hybridization are different and depend on the application
of the optimization problem. In order to guarantee the global optimal solution, a hybrid op-
timization technique is used to firstly, search the whole possible search space using a global
stochastic algorithm and secondly using the optimum parameters of stochastic algorithm as
initial point, the second gradient based algorithm ensure the optimality of final solution. For
a single gradient based optimization technique, e.g. Interior-point, the optimality of final so-
lution is not guaranteed as the problem has stochastic nature, i.e. stochastic function is used
in modeling of PEV charging power. In addition, the gradient based optimization techniques,
are sensitive to the initial conditions and their robustness to the variation of initial condition
is a major challenge. For this reason, starting the searching process using a global stochas-
tic methods, such as genetic algorithm, particle swarm optimization, simulated annealing or
imperialist competitive algorithm, would be a candidate solution to reduce the dependency of
gradient based algorithm to the initial condition and avoid local optimum trapping.

An overall view of the hybrid algorithm proposed in this thesis is presented in Figure 4.14.
This hybridization starts with PSO algorithm with constrained condition (feasible initial con-
dition), then the final result of PSO algorithm is injected to Interior-Point algorithm as initial
condition (initial point) in order to complete the searching process. This completion is necessary
since the stochastic based optimization techniques can converge through the global optimum
region and their final optimum are stochastic and different in each evolution of algorithm.

Constraint Definition

Particle Initialization

Update Pbest and Gbest

Update Velocity and Position

Stopping Criteria ?
No

Yes

Gbest = Initial point

Interior Point method

Stopping Criteria ?
No

Yes

Optimum achieved

Figure 4.14: Flowchart of hybrid optimization algorithm CPSO-IP.

4.3.2.3 Particle Swarm optimization (PSO)

Particle Swarm Optimization is a population-based meta-heuristic global stochastic optimiza-
tion algorithm. It is a population based and self-adaptive search optimization technique with
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versatility and robustness in seeking the global optimal solution [Cheng 09]. The PSO algorithm
includes some tuning parameters that greatly influence the algorithm performance.

This algorithm is developed from swarm intelligent and it is based on the research of birds
and fish flock movement behavior. A certain number of particles, e.g., 100, randomly will
be generated. After that iteratively, each particle tries to improve its position based on the
optimum position. Finally, the particles try to make a swarm around the optimal point or
region, where the stopping criteria could be considered as number of iteration or tolerance.
Each particle’s movement depends on its previous local best solution (Pbest) and current known
positions in the search space by other particles (Gbest). The mathematical formulation proposed
by [Kennedy 11, Poli 07] is presented in 4.41 and 4.42.

vk+1
id = w.vkid + c1r

k
1(pbestkid − xkid) + c2r

k
2(gbestkid − xkid) (4.41)

xk+1
id = xkid + vk+1

id (4.42)

Where xkid, is the position of particle i in its d dimension at time k, vkid is the velocity of the
same particle and w is the inertia weight. r1 and r2 are random fiction numbers between 0 and 1.
c1 and c2 are speeding factor for local best solution and global best solution, respectively. The
results of optimization is highly depends on speeding factor that should be chosen empirically.
If the speeding factors are too small, the results will be far away from the optimum. If they are
too big the particles will fly suddenly to the target or beyond the target. The proper choice for
c1 and c2 leads to good control of flying speed and the final result will not be partial optimism.
The parameters of PSO algorithm implemented in this thesis are brought thereafter:

c1 = 0.8; % acceleration coefficients, the cognitive behavior
c2 = 0.1; % social behavior factor
w = 0.8; % inertia weight
Nb_particle = 100;
Nb_dimension = 52560; 10 minutes sample time for 365 days
Nb_iteration = 50;

4.3.2.3.1 Constrained Particle Swarm Optimization
A constrained Nan-linear problem can be solved using PSO algorithm if the feasible set of of
particles would be defined for the algorithm. The key point in the constrained optimization
process is to deal with the constraints [Hu 02]. Some methods are proposed for handling the
constraints. Reference [Koziel 99] grouped them into four categories: methods based on pre-
serving feasibility, methods based on penalty functions, methods with clear distinction between
feasible and infeasible solutions and other types of hybrid methods. The most straightforward
one is the method based on preserving the feasibility of solutions. In order to find the optimum
in feasible space, each particle searches the whole space but only keeps tracking feasible solu-
tions. For acceleration of this process, all the particles are initialized as feasible solutions. The
flowchart of CPSO is illustrated in Figure 4.15.

The algorithm for Constrained programming is brought thereafter:

for kk=1:Nb_particle;
for jj=1:366;

for ii = 1:sample_per_day;
Ct = Constrained_daily_energy - sum(Matrix_base(1,1:ii-1));
if ii == sample_per_day;

Matrix_base(1,ii) = Constrained_daily_energy - sum(Matrix_base...
(1,1:ii-1));

if Matrix_base(1,ii) > UB(ii)
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Constraint Definition

Particle Initialization

Update Pbest and Gbest

Update Velocity and Position

Stopping Criteria ?
No

Yes

Optimum achieved

Figure 4.15: Flowchart of CPSO algorithm.

Matrix_base(1,ii) = (rand(1,1) * (UB(ii) - LB(ii))) + ...
LB(ii);

extra_energy = Constrained_daily_energy - sum(Matrix_base...
(1,1:ii));

contributors = Matrix_base > gar_fac ;
% -2000 is chosen to gaurantee the search
% within big
% negative values
indice_contributor = find(contributors);
contribution_percentage = (UB(indice_contributor) - ...

Matrix_base(indice_contributor)...
)./ sum(UB(indice_contributor) - Matrix_base...
(indice_contributor));

Matrix_base(indice_contributor) = Matrix_base...
(indice_contributor) + ...
(extra_energy.* contribution_percentage);

end
elseif UB(ii) <= Ct

Matrix_base(1,ii) = (rand(1,1) * (UB(ii) - LB(ii))) + LB(ii);
else

Matrix_base(1,ii) = (rand(1,1) * (Ct - LB(ii))) + LB(ii);
end

end

Matrix_base_year(1,d(jj):u(jj)) = Matrix_base;
end
Particles_mat(kk,:) = Matrix_base_year;

end

The output of this algorithm named Particles_mat contains all the feasible initial solutions
so-called initial particles for PSO algorithm. Particles_mat is a matrix of n×m with n equal
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to the number of particles and m equal to the dimension (here m = 52560). In this algorithm
Constrained_daily_energy is the value of energy need of PEV fleet in one day. In fact, using
this value the equality constraint of 4.36 will be implemented. sample_per_day represents the
number of samples per day which is 144 for one day. Matrix_base is the temporary memory
for particles. In this algorithm, two main constraints are controlled. The first one is the
boundary constraints which are checked with UB and LB as upper bound and lower bound limit.
The second constraint is the equality constraint which is checked using extra_energy. This
parameter handles the difference of the actual energy and the constraint energy. After that,
it will distribute this difference between all dimensions. gar_fac is introduced in order to
guarantee the search through large negative values. Since, if this parameter is not considered,
the search space near to big negative will not be explored. This is because of error propagation
in form of summation function. This parameter is considered as -2000 MW for the case of year
2030 with 2700 PEVs.This value can be adjusted in function of number of PEVs in the fleet
and their maximum available power.

CPSO fitness evaluation for the case study of year 2030 with 2700 PEVs are brought in
Figure 4.16. After 50 iterations all the particles are converged through the best solution and
there is no further progress. Best fitness is obtained as 1.05 p.u. This is the case that using IP
in the next section the final optimum reaches to 1.00 p.u. Gbest will be provided to IP algorithm
as initial condition. In Figure 4.17, a particle in first iteration with randomly generated values
and the same particle after 50 iterations is illustrated. This shows the evolution of particle
through the optimum region. A similar case but for all the particles containing the boundary
condition are presented in Figure 4.18 and 4.19. In Figure 4.18, all 100 particles randomly
generated in feasible area are illustrated. As it is shown the whole feasible search space is
covered by initial random particles while in Figure 4.19, the same particles converged through
the global optimum region and form the final solution. This final solution so-called Gbest will
be provided to IP algorithm for further search. this is explained thoroughly in next section.

Figure 4.16: Fitness evaluation for CPSO, scenario of 2030 (2700 PEVs).
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Figure 4.17: Comparison of a particle in first iteration and last iteration for 5 days window.
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Figure 4.18: Initial random particle generated in feasible search space limited by lower and upper
bound limit.

4.3.2.4 Interior-Point (Local search algorithm)

Interior points are a certain class of solvers for linear and non-linear convex optimization prob-
lem. As these types of algorithms are based on Hessian calculation and Gradient calculation,
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Figure 4.19: Final particles converged through global optimum region in feasible search space limited
by lower and upper bound limit.

there would be the drawbacks of local trapping. It is the reason that in this thesis at first the
whole search space is searched using a global stochastic algorithm (PSO), then using an Interior
point algorithm the optimality of the solution is guaranteed. The flowchart of IP is illustrated
in Figure 4.20.

CP (t) = Initial point

Interior Point method

Stopping Criteria ?
No

Yes

Optimum achieved

Figure 4.20: Flowchart of Interior point (IP) algorithm.

In the method used in this thesis, Hessian is calculated by a dense quasi-Newton approxi-
mation. The original problem is formulated as follow (Barrier function):

min
x
f(x) (4.43)
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subject to:

h(x) = 0 (4.44)

g(x) 6 0 (4.45)

The formulation of V2G-enabled PEV charging coordination is replaced by original formu-
lation for IP algorithm. This algorithm is calculated by fmincon function of Matlab� with
following characteristics.

MaxFunEvals: 600000
MaxIter: 4000
TolFun: 1.0000e-16
TolX: 1.0000e-16

ActiveConstrTol: []
Algorithm: ’interior-point’

4.3.2.5 Results and discussion

The results of optimization problem with different forms are presented in this section. Three
cases are compared; The CPSO algorithm, the IP algorithm and hybrid CPSO-IP. The main
advantages and drawbacks are discussed in term of final function evaluation (optimum), and
calculation time. In Figure 4.21, the function evaluations for 3 example days of the year are
presented. These plots shows the function evaluation of IP algorithm. In the first example
illustrated in Figure 4.21a for IP algorithm with normal charging profile CP (t) as initial point
and with the output of CPSO algorithm as initial point, the differences can be interpreted in
term of calculation time and final function evaluation. The case with CPSO output as initial
particle the convergence is happened with 52 iteration while for the first case it goes until
iteration 104. The function evaluation at final step is also slightly better than the case of
normal charging as initial point. It shows that using only IP with any arbitrary initial point
takes longer time for convergence and it can be trapped in a local optimum. Second case
for day 39 in February, shows the same approach. In Figure 4.21b, the convergence takes 98
iteration while with CPSO output as initial parameter it is divided approximately by 2. A
better optimal compared to arbitrary initial point is also evident. In third example, the final
function evaluation for both cases are the same but the calculation time or convergence speed
is much more better with CPSO output compared to arbitrary initial point.

The output of each optimization algorithm are presented in Figures 4.22, 4.23 and 4.24. The
first two cases are related to winter period and the third one is the case of summer. Normal
charging case in red shows the charging scenario without optimization. It has been considered
as reference to compare with other cases. In Figure 4.22, If only the IP algorithm is applied,
the proposed power solution consists of coordination of PEVs charging. While using CPSO
shows a period of V2G between 12:00 to 14:00. The solution of CPSO-IP is enhanced slightly
compared to CPSO only. In Figure 4.23, the three case are approximately proposing the same
profile with the advantage of less fluctuation for IP algorithm. In Figure 4.24, using only IP
produces a peak power during 9:00 to 10:00 while the CPSO and CPSO-IP smooth the power
during PEVs charging period.

4.3.3 Real-time and Predictive Real-time supervisions (On-line op-
timization)

In this section, real-time supervision algorithm based on Fuzzy logic controller is explained.
This supervision system is applied on the same problematic previously explained for predictive
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Figure 4.21: Comparison of function evaluation for Interior-Point with different initial point, CP (t)
and CPSO Gbest as Initial.

supervision. This part is the third part of predictive real-time supervision designing presented in
Figure 4.1. In Figure 4.25, a real-time supervision system without predictive input is presented.
the main focus of this chapter is on the comparison of a real-time supervision with a predictive
real-time supervision in order to present the advantages of predictive input for real-time system.

4.3.3.1 Fuzzy logic and its methodological approach

Fuzzy logic an extension of Boolean logic introduced by Lotfi Zadeh in 1965 is based on the
theory of fuzzy sets that is a generalization of the classical set theory.

The notion of degree for a condition verification leads to consider a condition in a state other
than true or false. In fact, the degree of being true or being false could be other than absolute
1 or 0. Fuzzy logic provides a very valuable flexibility for reasoning, which makes it possible
to take into account inaccuracies and uncertainties. The rules in fuzzy logic are classified in
natural human language.

Based on the years of research in electrical grid team of L2EP laboratory, an 8 steps of
methodological designing procedure for real-time energy management applications are con-

152 PhD Thesis, S. Sarabi



CHAPTER 4. ENERGY MANAGEMENT STRATEGIES FOR V2G ANCILLARY
SERVICES

7 8 9 10 11 12 13 14 15 16 17
-4000

-2000

0

2000

4000

6000

8000

10000

 Time (hour)

Po
w

er
 (k

W
)

 

 
CPSO-IP output
IP output
CPSO output
Without optimization

Figure 4.22: Comparison of output power PEV ref (t) for office charging scenario for different optimiza-
tion algorithm , Day 25, January (Winter).
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Figure 4.23: Comparison of output power PEV ref (t) for office charging scenario for different optimiza-
tion algorithm , Day 39, February (Winter).

ducted [Robyns 15b, Robyns 13, Courtecuisse 08, Davigny 08]. This methodology is based on
the general knowledge of the system and defining the advancement steps for designing procedure
of supervision or energy management system. The application of this methodology has been
tested and validated for different case studies. For embedded electrical systems this methodol-
ogy has been validated in [Breban 13]. For hybrid renewable energy systems the methodology
test with good performance in [Courtecuisse 10]. This methodology is used also in case of elec-
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Figure 4.24: Comparison of output power PEV ref (t) for office charging scenario for different optimiza-
tion algorithm , Day 200, July, Summer.
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Figure 4.25: A real-time supervision system proposed for ETCM service without predictive input.

tric vehicle charging coordination for the same services of energy transmission cost minimization
[Bouallaga 15].

The 8 steps of this methodology is presented in Figure 4.26. The first steps asks for general
knowledge of under study systems before starting to designing the supervision. This step has
been emphasized by the developers of the methodology as the main and non negligible steps
of supervision designing. Work specification contains the main objectives of the supervision
system, their constraints and the means of actions or control inputs of the supervision systems.
These parameters should be presented in a table format in order to facilitate the understanding
of system. The second step which is the main part, is the level of designing the supervision
system. In this step all the inputs, outputs and their relationship should be defined. This step
should provide the main structure of the supervision system. It contains the feed-backs for
closed loop system, filters, gains, extra block of control and main fuzzy logic controller (FLC).
Concerning the number of inputs, it is important to take into account the objectives, since for
each objective at least one input should be defined [Robyns 15a].
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Figure 4.26: Methodology for fuzzy logic supervisor design [Robyns 15a].

4.3.3.2 Problem specification

As discussed previously, ETCM service is considered as the main service for this part. The
specification of this problem are mainly discussed in the previous section. The main difference
between predictive supervision specification and real-time supervision specification is the inputs.
Since, in predictive system the inputs are estimative while in the real-time systems the inputs
are measurable and can be communicate to the central supervision system. This study is
done for the case study of years 2020 and 2030 over a particular HV/MV substation. The
problem details containing the schematic of the grid are presented in section 4.3.2.1. The
work specification for this real-time supervision system are presented in Table 4.2. In this
table, the first step of Fuzzy logic methodology presented previously is applied for ETCM
service for V2G-enabled PEVs. The two main objectives are considered as ETC minimization
and environmental efficiency and CO2 emission reduction. The main difference between this
problematic and predictive supervision presented in Table 4.1, is that the subscribed power
here is considered as a constraint, while in predictive case the subscribed power is considered
as a variable of optimization and a sub-objective. The availability of RES is also a constraint
while in predictive supervision, RES is a priori available knowledge of the system.
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Table 4.2: Specification of real-time supervision system for ETCM service for V2G-enabled PEV fleet.

Objective Sub-objective
Associated

inputs
Constraints Means of actions Indicators

Energy Tranmission
Cost Minimization

Subscribed power
exceeding limitation

∆P
Subscribed power

(technical constraint) Charging,
Discharging and

No charging
of PEVs

Transmission
cost in euro

Maximize energy
consumption during

low cost
Price

Consumption
variation

Environmental and
lower CO2
efficiency

Maximize renewable
energy consumption

PPS RES availability
Auto-consumption

of RES (%)

Maximize PEV
owner satisfaction

SOC

PEV energy need
(full-battery
at departure)

Battery charging
rate

Battery
degradation

CO2 emission
rate

4.3.3.3 Designing of the supervision using fuzzy logic

The first step of introduced methodology for our case study is developed in previous section. The
second step is to design the supervision system knowing all the measurable inputs and requested
output of real-time supervision system. Defining the inputs is an important task of supervision
system. Normally for each objective at least one input should be associated [Robyns 15b]. For
the ETCM service as mentioned in Table 4.2, 4 inputs are necessary in order to cover the
requirement of the supervision system. In order to check the exceeding of subscribed power
∆P is introduced which is equal to ∆P = PPS(t)−Psub(t). A price signal is chosen as input in
order to check the electricity price for V2G action. PPS is considered as power consumption at
HV/MV substation level. Finally SOC is considered in order to supervise the state of charge
of PEVs’ batteries in order to respect the PEVs’ energetic constraints. A general view of
designed supervision system is illustrated in Figure 4.25. On the other hand, the predictive
real-time supervision system provides an estimated input to the real-time supervision which is
based on forecasting and off-line optimization layer. This input enhances the optimality of real-
time reference power (PEV−ref ). Based on the methodology, the next step of the supervision
system designing is concentrated on functional graph for both Predictive real-time and Real-
time supervisions.

4.3.3.3.1 Functional graph

Functional graph is a way to represent the different functional mode of supervision system in
graphic form. This way of representation was presented for the first time in [Courtecuisse 08].
Using the functional graph, some advantages will be provided to the designer for defining
the rules of fuzzy logic control system [Robyns 15b]. The principle theory is presented in
[Robyns 15b], while the advantages of using functional graph are summarized thereafter:

� A linguistic expression of objectives and sub-objective, the constraints and the means of
actions, will provide:

– to establish directly the fuzzy rules to each mode of function.

– to facilitate exchange with others in different disciplines such as economy.

� A better transition between determined modes based on certain state of the system.

� In case of using boolean logic with fuzzy logic, it provides to find the classical approaches
such as Petri nets or Grafcet [David 92].

156 PhD Thesis, S. Sarabi



CHAPTER 4. ENERGY MANAGEMENT STRATEGIES FOR V2G ANCILLARY
SERVICES

In this section, different functional mode of both Real-time and Predictive real-time supervision
are explained along with their functional graph for each mode. The principle functional graph
for both supervisions are presented in Figure 4.27. Different functional mode are presented by
L as Level. The first Level is L1 is for ensuring the energy need of PEVs.

2

Ensure the PEVs’ 
energy need

Promote local 
consumption of 

RES

Pps < 0Pps > 0

Subscribed power 
exceeding limitation

Promote low 
cost 

consumption

ퟏ − 푺푶푪(풕) × 푬푬푽
푪푹 ≥ (풕 − 풕풅풆풑풂풓풕풖풓풆)

ᶚ − ṽṹṭ(ẘ) ×ṯṯẀ 
푪푹 < (ẘ − ẘ풅풆풑풂풓풕풖풓)

Pps > Psub

Pps < Psub

L2

L1

L2.2

L2.1

L2.1.1 L2.1.2

Les graphes fonctionnelles (principale) superviseur temps réels

Ensured by SOC estimator 
algorithm

Figure 4.27: Overall Functional graph for both real-time and Predictive real-time supervisions.

If this step is passed the supervision system can be activated for other level of supervision.
In L2, the supervision system will be activated. The condition of each level are represented in
form of arrow for activation of each mode of function. The sub-functional graph which are the
sub-levels of different modes are represeneted in Figure 4.28 for real-time supervision and in
Figures 4.29, 4.30 and 4.31 for Predictive real-time. The sub-functional graph for L2.1.2.3 is
similar to the L2.1.1 with the input condition of Price is Very High.

The main difference between Predictive Real-time supervision system and Real-time su-
pervision system is that, the final actions for charging/discharging level is controlled by SOC
at real-time supervision, while at Predictive one, the estimated reference power, P̂EV−ref (t),
will define the membership of reference power, PEV−ref (t). This provides optimality of final
proposed reference power, as it has been already controlled based on a priori knowledge of the
system (i.e. Knowledge coming from predictive inputs). Using Functional graph the represen-
tation of the supervision systems are easily understandable and can help the process of rules
definition; In next section the membership functions will be introduced for each inputs.

4.3.3.3.2 Membership functions

The membership functions are the functions which are defining the degree of membership
to a fuzzy value. For this supervision system the number of membership functions have been
chosen based on the characteristics and constraints of each inputs. For each input different
number of membership functions are considered. Figure 4.32, shows all membership functions
of 4 inputs and one output of Real-time supervision system. For the SOC as first input, 3
membership functions of type trapezoidal are considered. The parameters for each membership
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Figure 4.28: Sub-functional graphs for real-time supervision.
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Figure 4.29: Sub-functional graphs for Predictive real-time supervision (Group 1).

function are chosen empirically based on the knowledge on the system. For instance for SOC,
three membership functions of Small, Mean and Big are considered. For Small it fixes on
20% in order to avoid discharging of PEVs less than 20% of SOC. For PPS, 2 functions for
distinguishing of Positive and Negative are considered. This is the same case for ∆P . The
price signal has been considered in three levels of Low, High and Very High Price. The
input price signal is normalized in order to be considered at these ranges. Finally, for output
PEV−ref , 7 levels are considered in order to make it powerful for control purpose. These levels
are Big Negative, Mean Negative, Small Negative, Zero, Small Positive, Mean Positive and
Big Positive. In Figure 4.33, the membership functions of 5 inputs and 1 output of Predictive
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Figure 4.30: Sub-functional graphs for Predictive real-time supervision (Group 2).
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Figure 4.31: Sub-functional graphs for Predictive real-time supervision (Group 3).

real-time supervision system are preseneted. Compared to real-time supervision, it has one
more input which is the estimated reference power (P̂EV−ref ). This input has the same number
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Figure 4.32: Membership functions for 4 inputs and 1 output of Real-time supervision system.

of membership functions as output power explained for real-time supervision system. As
explained previously, the choice of membership function parameters are done empirically while
the final result are not necessarily optimized based on these choices. Hence an optimization
process is done in next sections in order to guarantee the optimality of the choices. In order
to be able to write the rules the transformation of functional graph to operational graph are
necessary. This transformation is explained in next section which is called operational graph.
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Figure 4.33: Membership functions for 5 inputs and 1 output of Predictive real-time supervision
system.

4.3.3.3.3 Operational graph

Operational graphs are the translation of functional graphs using the membership functions
which are defined previously. The operational graph is composed of different states presented in
rounded rectangles and transitions, represented in form of bent arrows. A general operational
graph of Real-time supervision system using the membership functions defined in previous steps
are presented in Figure 4.34. For Predictive real-time supervision the same graph is valid. The
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only difference would be the activation condition for Predictive real-time which is the P̂EV−ref
instead of SOC in Real-time supervision.
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Figure 4.34: Overall Operational graph for real-time supervision.

The advantage of using functional and operational graph will be explained in next section
which is minimizing the number of associated rules to the all inputs and membership functions.

4.3.3.3.4 Rules definition

The advantages of using Functional graph is evident in this section where the rules should
be defined. In fact, functional and operational graph simplify the steps of rules definition. For
a particular case of fuzzy system with n inputs and m membership functions for every input,
a total possible number of nm rules should be associated. For Real-time supervision system
this number would be (3 × 2 × 2 × 3) equal to 36 rules. For Predictive real-time it would be
(3× 2× 2× 3× 7) equal to 252 rules. While, using the tool of functional and operation graph,
the number of rules for Real-time supervision system is reduced to 15 rules (Table 4.3) and for
Predictive real-time supervision system is reduced to 29 rules (Table 4.4). The rules are defined
using And operator in form of If ... Then statements. The association of output membership
functions to each rule is done empirically in this study, while the choice can be also optimized
using optimization techniques.

4.3.3.3.5 Indicator calculation
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Table 4.3: Table of rules associated to functional graphs for real-time supervision (15 rules).
L

1 Charge PEVs as needed based on their SOC

L
2

L
2.

1

L
2.

1.
1 If PPS is P and ∆P is P and SOC is B then PEV−ref is BN

If PPS is P and ∆P is P and SOC is M then PEV−ref is MN
If PPS is P and ∆P is P and SOC is S then PEV−ref is SN

L
2.

1.
2

L
2.

1.
2.

1 If PPS is P and ∆P is N and Price is L and SOC is S then PEV−ref is BP
If PPS is P and ∆P is N and Price is L and SOC is M then PEV−ref is MP
If PPS is P and ∆P is N and Price is L and SOC is B then PEV−ref is MP

L
2.

1.
2.

2 If PPS is P and ∆P is N and Price is H and SOC is S then PEV−ref is Z
If PPS is P and ∆P is N and Price is H and SOC is M then PEV−ref is SP
If PPS is P and ∆P is N and Price is H and SOC is B then PEV−ref is SP

L
2.

1.
2.

3 If PPS is P and ∆P is N and Price is VH and SOC is S then PEV−ref is SN
If PPS is P and ∆P is N and Price is VH and SOC is M then PEV−ref is MN
If PPS is P and ∆P is N and Price is VH and SOC is B then PEV−ref is BN

L
2.

2

If PPS is N and SOC is S then PEV−ref is BP
If PPS is N and SOC is M then PEV−ref is MP
If PPS is N and SOC is B then PEV−ref is SP

The performance indicators are defined in Table 4.2 for ETCM service. These indicators
are calculated for each type of supervision system and the results are brought in next sections.
Three main indicators for these supervisions are considered.

� Annual energy transmission cost using equation 4.17.

� PEV and renewable energies coordination (in %).

� Generated CO2.

For Annual energy transmission cost, the value is calculated for each supervision scenario.
The profile is in 10 minutes sample time for one year. For calculation of PEV and renewable
energy coordination, the negative part of PPS profile are compared for each scenario. The differ-
ence between negative part of scenario without PEV and scenario with PEV, either supervised
or non-supervized cases, are defining the percentage of coordination. This can be expressed in
form of following equation.

Coordination(%) =

∣∣∣∫ (Pw/o
PS < 0)dt

∣∣∣− |∫ (Pw
PS < 0)dt|∣∣∣∫ (Pw/o

PS < 0)dt
∣∣∣ × 100% (4.46)

Where P
w/o
PS < 0, is the injected power at HV/MV substation to the transmission grid (i.e.

surplus of local renewable energy production) for the scenario without PEVs. Pw
PS < 0 is the

same power for the scenario with PEVs. The latter is calculated for each scenario with PEVs
presence. The Coordination parameter shows the percentage of PEV-RES coordination i.e.
local consumption of RES using plug-in electric vehicles.

For CO2 emission calculation, a yearly profile of CO2 production per kWh of electricity
production is used. The data are available on RTE website (The French TSO) [RTE ]. Another
indicator is considered as battery degradation due to extra charging/discharging cycles of V2G
operation. This degradation is modeled using linear and non-linear degradtion function of
lithium-ion battery and explained thoroughly in next sections.
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Table 4.4: Table of rules associated to functional graphs for Predictive real-time supervision (29 rules).

L1 Charge PEVs as needed based on their SOC

L2

L2.1

L2.1.1

If PPS is P and ∆P is P and SOC is B and P̂EV −ref is SN then PEV−ref is SN
If PPS is P and ∆P is P and SOC is B and P̂EV −ref is MN then PEV−ref is MN
If PPS is P and ∆P is P and SOC is B and P̂EV −ref is BN then PEV−ref is BN
If PPS is P and ∆P is P and SOC is M and P̂EV −ref is Z then PEV−ref is Z
If PPS is P and ∆P is P and SOC is S and P̂EV −ref is Z then PEV−ref is Z

L2.1.2

L2.1.2.1
If PPS is P and ∆P is N and Price is L and P̂EV −ref is SP then PEV−ref is SP
If PPS is P and ∆P is N and Price is L and P̂EV −ref is MP then PEV−ref is MP
If PPS is P and ∆P is N and Price is L and P̂EV −ref is BP then PEV−ref is BP

L2.1.2.2

L2.1.2.2.1
If PPS is P and ∆P is N and Price is H and SOC is S and P̂EV −ref is SP then PEV−ref is SP
If PPS is P and ∆P is N and Price is H and SOC is S and P̂EV −ref is MP then PEV−ref is MP
If PPS is P and ∆P is N and Price is H and SOC is S and P̂EV −ref is BP then PEV−ref is BP

L2.1.2.2.2

If PPS is P and ∆P is N and Price is H and SOC is M and P̂EV −ref is SN then PEV−ref is SN
If PPS is P and ∆P is N and Price is H and SOC is M and P̂EV −ref is MN then PEV−ref is MN
If PPS is P and ∆P is N and Price is H and SOC is M and P̂EV −ref is SP then PEV−ref is SP
If PPS is P and ∆P is N and Price is H and SOC is M and P̂EV −ref is MP then PEV−ref is MP
If PPS is P and ∆P is N and Price is H and SOC is M and P̂EV −ref is BP then PEV−ref is BP

L2.1.2.2.3

If PPS is P and ∆P is N and Price is H and SOC is B and P̂EV −ref is BN then PEV−ref is BN
If PPS is P and ∆P is N and Price is H and SOC is B and P̂EV −ref is SP then PEV−ref is SP
If PPS is P and ∆P is N and Price is H and SOC is B and P̂EV −ref is MP then PEV−ref is MP
If PPS is P and ∆P is N and Price is H and SOC is B and P̂EV −ref is BP then PEV−ref is BP

L2.1.2.3

L2.1.2.3.1
If PPS is P and ∆P is N and Price is VH and SOC is M and P̂EV −ref is SN then PEV−ref is SN
If PPS is P and ∆P is N and Price is VH and SOC is M and P̂EV −ref is MN then PEV−ref is MN
If PPS is P and ∆P is N and Price is VH and SOC is M and P̂EV −ref is BN then PEV−ref is BN

L2.1.2.3.2
If PPS is P and ∆P is N and Price is VH and SOC is B and P̂EV −ref is SN then PEV−ref is SN
If PPS is P and ∆P is N and Price is VH and SOC is B and P̂EV −ref is MN then PEV−ref is MN
If PPS is P and ∆P is N and Price is VH and SOC is B and P̂EV −ref is BN then PEV−ref is BN

L2.2
If PPS is N and P̂EV −ref is SP then PEV−ref is SP
If PPS is N and P̂EV −ref is MP then PEV−ref is MP
If PPS is N and P̂EV −ref is BP then PEV−ref is BP
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4.3.3.3.6 Membership function parameter optimization

The choice of membership function parameters and fuzzification gains are mainly based on
the designer expertise. While, the optimality of the chosen parameters are not guaranteed. The
possibility of using evolutionary optimization algorithms for membership function parameter
optimization problem has been studied widely [Breban 13, Cazarez-Castro 10, Evsukoff 02].
This optimization can be applied on the choice of parameters, such as the ones illustrated in
Figure 4.35, for two types of membership functions (Trapezoidal and Triangular), or for gain
values presented in Figure 4.25 (e.g. K1, K2, K3 and K4) or even for output membership
function association to the rules.

Figure 4.35: Example of two membership function with their parameters for optimization problem.

In this thesis, the optimization is concentrated on membership function parameters while
the other elements are considered as perspective work. For this optimization problem, at first,
the problem formulation is presented which contains the objective function, the constraints and
boundaries for parameters.

The objective function is considered as ETCM function expressed in equation 4.17. The
only difference is the optimization variables which are the parameters of membership functions.
These parameters for Real-time supervision system are presented in Table 4.5. There are some
constraints that should be respected in optimization problem. In order to avoid the overlapping
of membership functions, some inequality constraints should be met. The definition of these
constraints are brought in form of a first order multi-variable function (equation 4.47).

a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 + a9x9

+ a10x10 + a11x11 + a12x12 + a13x13 + a14x14 6 0 (4.47)

Where the parameters are embedded in a 14× 11 matrix.
The parameters a1 to a14 are either 1 or -1 as are defined in each row of A matrix. In

total, there would be 11 inequality constraints that should be considered. In order to simplify
the constraints formulation, the same parameters have been considered for the membership
functions with common points (e.g. forth parameter of Small membership function of SOC
with second parameter of Mean membership function of SOC, which is x1).

In second step, Genetic Algorithm (GA) is considered as optimization algorithm for this
problem as it has robust performance on this problematic [Breban 13, Cazarez-Castro 10].
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Table 4.5: Parameters definition for membership function parameter optimization problem

Variable Membership Function Type Parameter vector

SOC
Small Trapezoidal [0 0 0.2 x1]
Mean Triangular [0.2 x1 x2]
Big Trapezoidal [x1 x2 1 1]

PPS
Negative Trapezoidal [-1 -1 -0.01 0.01]
Positive Trapezoidal [-0.01 0.01 1 1]

∆P
Negative Trapezoidal [-1 -1 -0.01 0.01]
Positive Trapezoidal [-0.01 0.01 1 1]

Price
Low Trapezoidal [0 0 0.1 x3]
High Trapezoidal [0.1 x3 x4 0.9]
Very High Trapezoidal [x4 0.9 1 1]

PEV−ref

Big Negative Trapezoidal [-1 -1 x5 x6]
Mean Negative Trapezoidal [x5 x6 x7 x8]
Small Negative Trapezoidal [x7 x8 x9 0]
Zero Trapezoidal [x11 x12 x13 x14]
Small Positive Trapezoidal [0 x10 x11 x12]
Mean Positive Trapezoidal [x13 x14 1 1]
Big Positive Triangular [x9 0 x10]

� Genetic Algorithm (GA)
Genetic algorithm, invented by John Holland in the 1970s from theory of Darwin. A living
organism consists of cells which are composed of identical chromosomes. Chromosomes
are strings of DNA and serves as a model for the whole organism. A chromosome consist
of genes that are blocks of DNA and encodes a specific protein. Recombination (or
crossover) is the first stage of reproduction. Genes from parents generate the whole new
chromosome (offspring) that can be mutated. During mutation, one or more elements,
also known are individuals of the DNA strand or chromosome is changed. This changes
are mainly caused by errors in copying genes from parents. The success of the organism
in its life measures its fitness. In computer science, Genetic Algorithms are a way of
solving problems by mimicking nature. They use the same combination of selection,
recombination and mutation to evolve a set of candidates for resolving a given problem.
Each of the genetic operators (selection, cross-over and mutation) relies on a parameter
[Nicolas 15, Patrick 13].

– Selection rate is the random threshold value to reduce the current population of
chromosomes according to their fitness

– Crossover rate is used to compute the index beyond with the elements or bits of
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two parents’ chromosomes are exchange.

– Mutation Rate is used to compute the index of the element(s) or bit(s) in a chro-
mosome that is/are mutated (or flipped).

The function evaluation for 25 generations of GA algorithm with population size of 20 are
presented in Figure 4.36. The fitness function of the objective function value is presented in
per unit. The empirical parameter leads to objective function value of 1.0065. It has been
shown that already from the first generation, the algorithm has been successful to optimize
the objective function. After generation 25 no progress was found. This optimization has been
done with the same procedure on predictive real-time supervision. The optimized parameters
of membership functions are plotted in Figures 4.37 and 4.38. As it is shown, in most cases, the
optimized parameters are obtained in a way to have the most fuzziness interval. This procedure
shows also that the empirical parameters in some cases are well-chosen. For instance, for SOC
input, the Small membership function is remained unchanged while Mean and Big membership
functions are modified. In term of calculation time, as the whole procedure of supervision is
considered for 1 year (yearly ETCM function), the calculation time is quite long. For instance,
in this thesis a Core i7 CPU at 2.4 GHz, 8 Gb of RAM is used and each iteration of calculation
took approximately 3 minutes. It would be consider that each generation of GA algorithm with
20 population size, takes approximately 1 hours. In order to reduce the calculation time, it is
possible to reduce the number of parameters by defining the symmetrical membership function.
This is consider as one of the possible perspective scheme of the work.

The comparison of supervision systems with optimized membership function parameters
and empirical parameters are discussed in next section along with other supervision scenarios.
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Figure 4.36: Genetic Algorithm function evaluation for membership function optimization problem.

4.3.3.4 Results and discussion

In this section, the results of different supervision scenarios are compared. The comparison
purpose is focused on two principles: The methodological comparison and the technological
comparison. In methodological comparison the interest of using predictive input for real-time
supervision is analyzed. This comparison is done by evaluation of performance indicators of
Predictive real-time supervision and Real-time supervision system. In technological comparison
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Figure 4.37: Membership functions of Real-time supervision with optimized parameters.

the benefit of using V2G is analyzed using the performance indicator of G2V supervision done
in another PhD thesis in L2EP laboratory [Bouallaga 15]. In continue, different scenarios are
introduced, then the comparison will be discussed precisely.

Following abbreviations are chosen for different scenarios:

� W/O-PEV: Without PEV scenario

� W-PEV: With PEV scenario

� W-PEV-Optim: With PEV and Off-line optimization (Predictive) scenario

� W-PEV-RT-Empiric: With PEV and Empirical Real-Time supervision scenario

� W-PEV-RT-Optim: With PEV and Optimized Real-Time supervision scenario (Opti-
mized membership functions)

� W-PEV-PRT-Empiric: With PEV and Predictive Real-Time supervision with Empiric
membership functions scenario
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Figure 4.38: Membership functions of Predictive real-time supervision with optimized parameters.

� W-PEV-PRT-Optim: With PEV and Predictive Real-Time supervision with Opti-
mized membership functions scenario

Some example of supervision outputs are compared in Figures 4.39 to 4.41. Table 4.6 also shows
the results of indicators for different defined scenarios. In Figure 4.39, Real-time supervision
with empiric membership function is not able to control the exceeding of subscribed power.
In Figure 4.40, optimization of membership function leads to better control of V2G energy in
function of price signal. Finally, the predictive real-time supervision is able to minimize the
subscribed power exceeding in order to minimize the ETC factor.
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Table 4.6: Performance indicators for defined scenarios

Scenarios ETC (p.u.) Coordination (%) CO2 emission (Tonne)
W/O-PEV 1 - 777
W-PEV 1.10 3.5 851
W-PEV-Optim 1.00038 13.6 830
W-PEV-RT-Empiric 1.038 5.85 846
W-PEV-RT-Optim 1.029 7.71 836
W-PEV-PRT-Empiric 1.007 10.73 835
W-PEV-PRT-Optim 1.005 11.01 834
W-PEV-RT-Empiric-G2V 1.048 6.4 −
W-PEV-RT-Optim-G2V 1.033 9.4 −

The results of indicators for each scenario are brought in Table 4.6. Concerning the energy
transmission cost (ETC), it is shown that the presence of 2700 PEVs at distribution grid
causes 10% increment in ETC bill (i.e. 237 kAC). The interesting point is that the usage
of off-line optimization leads to reduction of this increment in such a way that there is no
charging demand of 2700 PEV fleet (i.e. maximum power of 10 MW). After that, each level of
supervision contributes more efficient to the service. For instance, it starts from 1.038 p.u. for
W-PEV-RT-Empiric to 1.005 p.u. for W-PEV-PRT-Optim.

The advantage of using predictive layer is proved based on the progress in indicators’ op-
timization. The other indicators such as coordination are also interesting. The Increment
of coordination between PEVs and RES are evident in presence of supervision system and it
reaches upto 11% for W-PEV-PRT-Optim (i.e. 3693 MWh). The results of off-line opti-
mization (W-PEV-Optim) shows its perfect coordination upto 13%. In term of CO2 emission
minimization the contribution of predictive real-time supervision is also evident.

The results of this thesis is compared with another PhD project developed in the same
laboratory on coordination of PEVs problem (G2V). The indicators calculated in this thesis
are also compared with the results of V2G supervision system in this thesis in order to be able
to investigate the added values of V2G technology and also technological progress aspects.

The best contribution of coordination scenario has been reached to 1.033 p.u. while for
V2G supervision in scenario W-PEV-PRT-Optim is going to 1.005 p.u.. This shows the
added contribution of approximately 33% compared to G2V scenario. For coordination between
PEVs and RES this indicator shows 2 % extra contribution for W-PEV-PRT-Optim scenario
compared to W-PEV-RT-Optim-G2V which is equivalent to 671 MWh. This extra usage of
local RES leads to reduction of CO2 emission and increase the contribution of V2G technology
to environmental protections. In fact, this extra coordination is possible thanks to the V2G
technology.

The economic intensives for PEV owners can not be defined in this step since the impact of
V2G operation on the battery degradation should be analyzed. Even with the impact, as there
is no business model available for V2G contribution in the ancillary services, the pure benefit
of PEV from V2G participation can not be defined in this level.

In the continue of this chapter, the impact of V2G operation for ETCM service is analyzed
on a single PEV inside the fleet of ETCM service participants. This impact is studied from
technical point of view and the economic impact has been considered as perspective of the
thesis. The technical indicator is taken into account as the battery degradation due to extra
charging/discharging actions in V2G operation. Before that the robustness study has been
conducted to ensure the validity bound of predictive input for real-time supervision.
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Figure 4.39: 2 days example of supervision for W-PEV-RT-Empiric scenario.
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Figure 4.41: 2 days example of supervision for W-PEV-PRT-Optim scenario.

4.3.4 Robustness study of predictive real time supervision

In order to analyse the validity of prediction, a robustness study is done to confirm, the ac-
ceptable variation bound of predictive supervision system. In fact, in this part, the possible
errors in prediction which impose delay or shifting to the reference power are analyzed and their
impact on the objective function are studied. In order to show that the predictive input can be
useful for the real-time supervision application, the real-time supervision system is considered
as reference and the variation of objective function in term of each type of error is compared
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with this reference.
The acceptable area of variation is found by focusing on the objective function value for

real-time supervision system. In other words, the presence of predictive input is useful while
the minimization of objective function is better that the case of only real-time supervision.
Therefore, the variation are applied up to the boundary of less objective function value compared
to only real-time supervision system. In the following different strategies applied for the error
are explained and the results of sensitivity to these variation are brought.

4.3.4.1 Delay in time (shift in x axis)

In order to validate the benefit of predictive input for the real-time supervision, a strategy
of applying delay in time axis is proposed. In this strategy, negative and positive time shift
are applied and the objective function for each case is compared with real-time optimized
supervision (RT-Optim). Figure 4.42a shows the objective function values for different scenarios
of delay. The acceptable range of variation based on the value of real-time supervision can be
considered as -30 minutes to 20 minutes of delay applied to the reference power. It means that
any type of errors in the inputs of predictive part of the supervision which finally imposes a
delay of -30 to 20 minutes is acceptable and the supervision can still acquire benefits from the
presence of predictive input. This acceptable area of variation is illustrated in Figure 4.43.

4.3.4.2 Delay in Power (shift in y axis)

The second strategy is focused on the amplitude of the reference power from the predictive part.
Different variation percentage are applied in the per unit of the reference power and the values
of objective function for each case is compared with real-time supervision. Figure 4.42b shows
the objective function values for different scenarios of error. The acceptable range of variation
based on the value of real-time supervision can be considered as -20 % to 20 % of error applied
to the reference power. This acceptable area of variation is illustrated in Figure 4.44.

4.3.5 State of Charge estimator and reference power distribution

The last part of the Predictive real-time is the SOC estimation algorithm. As previously
explained the necessity of knowing the SOC evolution for V2G application is evident. Since,
the SOC should be controlled to avoid over charging and discharging of the battery. This should
be also consider that the SOC estimation is also in closed-loop procedure of supervision system.
It means that the real-time supervisor needs the updated information of SOC estimator at the
first moment of each sample time.

In this thesis, based on the constraints defined for the project, different limitations and
requirements are defined in order to control the charging/discharging procedure of the PEVs.
Based on the information provided to the charging station, the estimator algorithm will dis-
tribute the charging/discharging commands to the vehicles’ batteries. At first the input neces-
sary data are introduced.

The real case of tomorrow, it will be possible to have the precise information about, ar-
rival/departure time of the vehicles, arrival SOC, desired departure time and SOC and etc. In
this study, it has been considered that all of these information are accessible and communicable
through charging stations at home and office parking. In this thesis, arrival and departure time
are considered as input information and the constraints are as follows:

1. Departure SOC = 100 %

2. Minimum SOC limit = 20%
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Figure 4.42: Comparison of objective function for error propagation in reference power.

In addition, in order to avoid extra depth charging/discharging cycles, the following procedures
are taken in to account.

1. For charging demand the PEVs are sorted increasing

2. For discharging demand the PEVs are sorted descending

The implemented algorithm for SOC estimator is illustrated in Algorithm 3. In this algorithm,
NPEV (t) indicates the total number of PEVs available at time slot t, NPEV >20%(t) memorizes
the number of PEVs with SOC more than 20% available at time t, NPEV <20%(t) the number
of PEVs available at time t with SOC less than 20%, NPEV <20%(t) contains the index of
PEVs with SOC more than 20% and finally, SOCmatrix is the matrix of SOC with the size of
NPEV × 144, 144 indicates number of 10 minutes sample times in one day. The rest time of
each PEV is calculated using following equation;

RT i(t) =
(100−SOCi(t)

100 )× Ei
EV

CRi
− (T ideparture − T i(t)) (4.48)
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Figure 4.43: Acceptable area of variation for shift in x axis for reference power.
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Figure 4.44: Acceptable area of variation for shift in y axis for reference power.

Where, T i(t) indicates actual sample time of the algorithm. If this RT is zero, it means that
the PEV has no time to participate in coordination program and should be necessarily charged.

This algorithm ensures the charging of all PEVs upto their departures and respect the limit
of SOC = 20%. A single vehicle SOC profile for one year calculated by this algorithm is
depicted in Figure 4.46. It shows that the minimum discharging of the PEV is limited to 20%.
Maximum charging state is also limited to 1 p.u.. In Figure 4.45, one day SOC of a fleet of
2700 PEVs for scenario 2030 is shown. This indicates that roughly all of the PEVs have been
reached to 100% of SOC at departure time. This indicator can be used for each day in order to
analyze the performance of the algorithm. As it is shown the algorithm avoids to imply a lot
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Algorithm 3 SOC estimator and power distribution algorithm

1: for t = 1 : 144 do
2: Update NPEV (t)
3: Update NPEV >20%(t)
4: Update NPEV <20%(t)
5: Calculate Rest time (RT ) for each PEV
6: Charge all PEVs with RT = 0
7: if PEV−ref (t) < 0 then
8: Put PEVs in Group>20% in descending order
9: if CR×NPEV >20%(t) 6 |PEV−ref (t)| then

10: Discharge all PEVs of Group>20%

11: else
12: Discharge from the top of descending list
13: end if
14: else if PEV−ref (t) > 0 then
15: Put PEVs in Group>20% in increasing order
16: if CR×NPEV >20%(t) 6 |PEV−ref (t)| then
17: Charge all PEVs of Group>20%

18: else
19: Charge from the top of Increasing list
20: end if
21: else
22: Do not charge PEVs
23: end if
24: Update SOCmatrix(:, t)
25: end for
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of fluctuation in SOC variation. The charging and discharging commands are well-managed.
A single PEV SOC profile for only 2 days (zoom of previous figure) is provided in Figure

4.47. It shows also the arrival, departure time for home and office. In this model, the SOC
variation between each arrival and departure is modeled. While, the SOC variation during
driving cycle is not taken into account. Hence a simple constant SOC drop is considered.

This algorithm is used in closed-loop control of supervision system. Moreover, for the
degradation study of the batteries used in this service, the algorithm is used to generate the
SOC profile for degradation algorithm. This is explained completely in next sections.
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Figure 4.45: Example of SOC variation of 2700 PEVs, Scenario 2030, Service: Energy Transmission
Cost Minimization (ETCM).
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Figure 4.46: One year SOC profile of a PEV from SOC estimator algorithm.
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Figure 4.47: Two days example of SOC profile for a single PEV with arrival and departure times to
the office and home.

4.4 Battery degradation modeling and analysis of V2G

services

Consideration of PEV’s battery as a storage unit for grid services, leads to extra degradation of
the battery’s lifespan. This is one of the challenges of V2G technology. In parallel of this thesis,
a master of science project (Internship) has been defined by author, concerning the impact of
different charging/discharging actions of V2G technology on the battery degradation. In this
project a degradation model for lithium-ion battery has been developed, which is able to cal-
culate the battery lifespan degradation using Rainflow cycle counting algorithm [Downing 82].
In the continue a summary of developed model is presented. After that, different scenarios of
Normal and V2G charging have been tested using degradation model in order to identify the
impact of each scenario on the battery degradation. An example of two days SOC variation
for two scenarios, one for Normal charging and the other one for V2G charging, are depicted
in Figure 4.49. The following flowchart summarizes the methodology for the interdisciplinary
work, where three developmental stages are clearly mentioned (Figure 4.48).

Rainflow Algorithm
SOC

Degredation Model
Cycles

Lifespan calculation

Degradation (%)

Figure 4.48: Procedure of degradation calculation.
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4.4.1 Rainflow algorithm

One of the efficient cycle counting algorithms is rain flow algorithm [Amzallag 94]. This algo-
rithm is able to count the cycles with their magnitude. This algorithm is widely used for fatigue
analysis and fulfill task whether its regular cycle profile or irregular cycle profile. The algorithm
used in this thesis is available in Mathwork1 website. This algorithm provides following outputs
from a given state of charge.

1. Cycle amplitude

2. Cycle mean value

3. Cycle type (0.5 or 1)

4. Cycle start time

5. Cycle duration

These data are used in battery degradation model for different stress models of the degradation.
The summary of model is presented in next section.
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Figure 4.49: Two days example of SOC profile for a single PEV with arrival and departure times to
the office and home, comparison of V2G charging and Normal charging scenarios.
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Figure 4.50: Rainflow algorithm cycles extracted from SOC signal.

1Rainflow counting algorithm http://www.mathworks.com/matlabcentral/fileexchange/

3026-rainflow-counting-algorithm
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4.4.2 Battery degradation model

Battery degradation includes decrease in maximum charge capacity, power and voltage fade.
There are many internal and external factors that affect the performance and lifespan of a
lithium-ion battery. Several studies have been conducted on the influence of ambient tempera-
ture, breakdown of the electrolyte’s organic solvents and active material in the electrodes. Such
factors are the reason of degradation. The process of capacity decrease is usually affected not by
one, but several factors and occurs at similar time scales. These factors can be independent of
each other, such as SOC, Depth Of Discharge (DOD), Number of cycles and charging rate. This
makes battery degradation highly complicated and multi-dimension problem, and it is impossi-
ble to describe it by a single theory. Hence, there are plenty of modeling approaches including
chemistry theory, empirical model and semi-empirical model. The main focus of the model
presented in this thesis is on the development of Semi-empirical model [Xu 13, Millner 10].

Degradation model starts with two exponential functions (two term exponential), describing
capacity loss due to Solid Electrolyte Interphase (SEI) film formation and normal operation,
respectively [Zhurkov 84]. Degradation model consists of non-linear degradation function and
linearized degradation function. Non-linear part is shown as in equation 4.49

L = 1− (pSEI .e−rSEI .fd + (1− pSEI).e−fd) (4.49)

Where L is battery aging life indicator with 0 value (0%) corresponds to a new battery and 1
(100%) corresponds to end of life of the battery. pSEI is SEI formation portion coefficient, rSEI
is SEI formation rate ratio coefficient and fd is linearized degradation function.

The linearized degradation function is developed as the summation of cycling aging and
calendar aging factors as represented in equation 4.50:

fd(DOD,SOC,C, T, n,N, t) =
fcyc(DOD,SOC,C, T, n,N) + fcal(t, SOCavg, Tavg),

DOD = (DOD1, DOD2, . . . , DODN),
SOC = (SOC1, SOC2, . . . , SOCN),
C = (C1, C2, . . . , CN),
T = (T1, T2, . . . , TN),
n = (n1, n2, . . . , nN),

SOCavg =
∑N
i=1 SOCi
N

,

Tavg =
∑N
i=1 Ti
N

(4.50)

Where cycling aging is calculated from stress factors, containing DOD, SOC, C-rate (charging
rate) and temperature of each cycle (equation 4.51).

fcyc(DOD,SOC,C, T, n,N) =
N∑
i=1

fDOD(DODi).fSOC(SOCi).fC(Ci).fT (Ti).ni
(4.51)

Calendar aging is calculated from time duration of the operation (simulation), and the profile-
average of SOC and temperature (equation 4.52).

fcal(t, SOCavg, Tavg) = kt.t.fSOC(SOCavg).fT (Tavg) (4.52)
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Where kt is the time stress coefficient and the stress model of each factor is represented as in
equations 4.53 to 4.56.

fDOD(DOD) = (kDOD1DOD
kDOD2 + kDOD3)−1 (4.53)

fSOC(SOC) = ekSOC(SOC−SOCref )2
(4.54)

fC(C) = ekC(C−Cref ) (4.55)

fT (T ) = ekT (T−Tref ).
Tref
T (4.56)

According to the capacity fading test of Lithium Manganese Oxide (LMO) battery the model
coefficients are calculated (see Appendix) [Xu 13].

This model is used for battery degradation calculation, using the cycle statistics provided by
rainflow algorithm. In order to be able to study the impact of V2G on the battery degradation
different scenarios have been defined and tested. These scenarios and the results are brought
in next section in detail.

4.4.3 Scenario definition and degradation results

In order to compare to extra impact of V2G functionality on the battery degradation with
normal functionality of the PEVs, three different scenarios are defined.

1. V2G charging, where the PEV is used for both driving purpose and V2G service (e.g.
ETCM service)

2. Normal charging at home and office, where the PEV is used only for driving purpose
and is charged two times per day, once at office and once at home.

3. Normal charging at home, where PEV is used just for driving purpose and is charged
once a day and only at home.

The charging power at home is considered as Normal charging standard (see Table 1.1).
Figure 4.51, shows a two days example of SOC variation for these three scenarios. In first
subplot, the SOC decrease due to driving cycles are indicated by the arrival and departure
times to home and office. Between each arrival and departure, the PEV is used to provide V2G
service to the grid.

In second subplot, the normal charging at home and office is applied. The PEV is charged
right after its arrival to office or home. In third subplot, the PEV is just charged once a day
and only after arrival at home.

Figure 4.52, shows one year SOC variation for the three scenarios. It is visible that the
DOD is bigger in case of Normal charging at home. While, in normal charging at home and
office the DOD is limited. The DOD due to V2G scenario is fixed to 80% as the constraint of
supervision system.

The rainflow algorithm is implemented on the three scenarios and the results are depicted
in Figure 4.53.
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Figure 4.51: Comparison of different scenarios of PEV charging for degradation study.
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Figure 4.52: one year Comparison of different scenarios of a single PEV charging for degradation
study.
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Figure 4.53: Comparison of rainflow results for three scenarios.

Table 4.7: The results of degradation study for three scenarios

Scenarios Nb. cycles
Mean of amplitude

(DOD %)
Degradation

per year
Lifespan

V2G charging 841 20.31 % 8.85 % 9 years
Normal charging at home/office 732 16.8 % 8.04 % 10 years
Normal charging at home 366 33.6 % 7.66 % 10.5 years

In three upper subplots, the frequency of the cycles and their amplitude are presented in
function of number of cycles. It is visible that the number of cycles are generally bigger for V2G
charging scenario. The frequency of the cycles is much more bigger than two other scenarios. It
is due to the fact that the mini charging/discharging cycles are available in V2G scenario which
causes extra degradation. The histograms of cycles versus amplitude (DOD) are presented in
lower subplots.

In Table 4.7, number of cycles and mean amplitude for each scenario are given. Using the
degradation model, the degradation factor and lifespan can be calculated. Lifespan is calculated
based on the fact that battery end of life is considered at 80% of degradation and the simulation
period of one year. These results indicate that using a PEV for ETCM service can decrease
the lifespan of the battery for approximately 1.5 year. This result is quite interesting in term
of the magnitude of impact. It should be also considered that the degradation can be affected
in other type of services. These results show that the number of cycles are more important
than depth of discharge of the cycles (amplitude). Normal charging at home scenario shows
less degradation even with bigger amplitude compared to normal charging at home and office.
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4.5 Predictive Real-time energy management strategy

for “Energy bill minimization”: case study of railway

station

The second case study in this thesis, as presented in chapter 2, is the energy hub concept of
railway stations. These stations contain limited number of PEVs charging stations with possible
scenarios of Normal, Accelerated and Rapid charging.

SNCF has provided measured data of 3 typical railway stations in France containing the real
power consumption of station in 10 minutes sample time. These data are used for testing the
supervision system of V2G-enabled PEVs inside the railway stations. Based on the scenarios
defined in chapter 2, arrival of PEVs to the stations has been considered around 8 AM and their
departure around 6 PM. During this period, the batteries of PEVs are used for load balancing
of the railway station. The objective of the energy management system is considered as Annual
Energy Bill Minimization (AEBM).

There are two scenarios of energy bill contract which are considered in this study.

� Regulatory Tariff Sales (RTS)

� Spot Market Tariff (SMT)

The first type of contract was the previous version of contract for industrial consumers in
France (Tarif Vert), which is not applicable after January 1st 2016 [CRE 16]. The second type
of contract is applicable after this date. The advantages of participation in each type of market
using V2G technology are analyzed in this section.

In this section, three categories of railway stations are considered as case study with as-
sumption provided in the Table 4.8.

Table 4.8: Scenarios of energy hub for V2G supervision system

Categories A B C
PEV number 30 20 10
Optimum subscribed
power for RTS

270 kW 220 kW 69 kW

Two Predictive real-time supervisions are designed for each scenarios of energy bill contract.
The results of energy bill minimization are presented for each category and each scenario.
Finally, the benefits of using V2G supervision system are concluded.

4.5.1 Predictive real-time supervision for Regulatory Tariff Sales

Based on the RTS market, there are different types of contracts for consumers in function of the
level of their consumption. The railway stations are the case of consumers with more than 36
kVA consumption. Category C is the case of consumption between 36 kVA to 250 kVA which is
called yellow tariff (Tarif jaune). Categories A and B are the stations with consumption more
than 250 kVA. This type of tariff is called Green tariff (Tarif vert). The annual energy bill is
calculated using the equation 2.20 presented in chapter 2, which is also recalled thereafter:

Cost =
5∑
j=1

(djEj) +
5∑
j=1

(K.Tj
√∑

(∆Pj)2) + α.Psub (4.57)
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Three components exist in this function; Exceeding component,Energy component and Sub-
scription component. A the subscribed power is signed one time per year, the subscription
component can not be affected in optimization problem. Hence, the optimization of energy bill
is done by minimizing exceeding and energy components. The effect of V2G can be interesting
to discover on both components. Different inputs are considered for the supervision system. In
this study for energy hub concept, because of lack of data, the only energy provider is the PEV
fleet. The perspective is to consider solar panels as another source of energy in railway station
microgrid. The model of case study is depicted in Figure 4.54. This energy hub contains the
PEVs connected to the microgrid of the station and classical loads of the railway stations.

Figure 4.54: Representation of case study, MV/LV substation inside the railway station, containing
PEVs in station parking and classical loads.

For real-time control of load consumption using storage ability of PEVs, the following inputs
have been considered:

� SOC (State of charge of ensemble of PEVs)

� ∆P (Difference between consumption and subscribed power)

� Price

� P̂EV−ref The reference power from predictive input

The only output of supervision system will be the real-time reference power. This supervision is
designed using fuzzy logic with 32 rules, 3 membership function for SOC, 4 for ∆P , 3 for Price
and 7 for P̂EV−ref . The same SOC estimation algorithm presented in section 4.3.5 is used for
reference power distribution and closed-loop SOC estimation. The Predictive part is handled
by Binary linear programming algorithm presented in chapter 2 section 2.6.2. The subscribed
power is also optimized for each category based on their real consumption without PEVs using
the optimization procedure explained in section 2.6.2.1.
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4.5.1.1 Results and discussion

The Predictive real-time supervision is applied on three railway station categories. The results
for RTS market are brought thereafter. Figure 4.55 shows the annual load profile of the station
for different scenarios. The green curve shows the case of PEV charging without supervision.
The increment of peak is evident and wide range of subscribed power exceeding is happened.
While, the curve in red, representing the supervised consumption, is controlled majorly against
the subscribed power exceeding. These exceeding are due to the coincidence of PEV charge
demand at arrival and railway station consumption.

In Figure 4.56, the same result for category B is presented. The exceeding is controlled using
predictive supervision system. However, the captured data during summer are not reliable,
Hence the real interest of supervision can not be analyzed.

In Figure 4.57, annual load profile for different scenarios are depicted for category C. In
this case study, the exceeding of subscribed power limitation using the supervision system is
evident.
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Figure 4.55: Annual load profile comparison for supervised scenario, non-supervized and without PEV
scenarios (Category A).
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Figure 4.57: Annual load profile comparison for supervised scenario, non-supervized and without PEV
scenarios (Category C).
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Figure 4.56: Annual load profile comparison for supervised scenario, non-supervized and without PEV
scenarios (Category B).

In fact, as the predictive input has already provided a vision over next 24 hours, the real-
time supervision is able to minimize the subscribed power exceeding. However, in RTS market,
as the energy price during the availability of PEVs in the station is constant there would not
be a major interest for consumed energy component of annual bill.

The performance indicators for these three cases are calculated and presented in Figures
4.58 to 4.60. The abbreviations are chosen to facilitate illustration 2.
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Figure 4.58: Predictive real-time supervision indicator result (Category A).

2 Peak-to-Average Ratio (PAR), Electric Vehicle Supervised (EVS), Electric Vehicle Non-supervised (EVN),
Consumption without Plug-in Electric Vehicle (CON)
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4 parameters are analyzed for each case study. In category A, it is shown that the presence
of predictive real-time supervision leads to minimization of Annual bill upto 10 % (10.81 kAC).
The major contribution is related to SPE limitation upto 80 % (9.72 kAC). The contribution to
the consumed energy component is not so much (1.3 %).

CON EVS EVN
0

20

40

60

80

100

62.29 63.09 64.57

Annual Bill (k€)

CON EVS EVN
0

1

2

3

4

1.98
1.69

3.17

Annual SPE (k€)

CON EVS EVN
0

20

40

60

80

100

48.31 49.38 49.38

Annual Consumed Energy (k€)

CON EVS EVN
0

1

2

3

2.33 2.27
2.70

PAR

Figure 4.59: Predictive real-time supervision indicator result (Category B).
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Figure 4.60: Predictive real-time supervision indicator result (Category C).
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The forth indicator is considered as Peak-to-Average Ratio (PAR) of each profile. The
reason to choose this indicator is to show the advantage of using V2G for peak shaving of
railway station load profile. In fact, the more PAR is nearer to 1, the less losses and voltage
drop may be occurred. In category A, the PAR value for supervised scenario is even less that
the case of only consumption profile. The PAR value in Category A is reduced upto 30%. A
slight reduction of PAR after supervision compared to consumption profile without PEV is also
evident.

The same results for category B is depicted in Figure 4.59. It is shown that the contribution
of supervision for this category is less than the category A. Only 2.2% reduction of annual
bill is obtained. However, the major contribution is again focused on SPE component. For
Par value, a minimization of 16% is founded. However, as previously mentioned. The results
for this category are not reliable as the captured data from the measurement devices are not
reliable.

For Category C, a minimization of 6.4% (1.56 kAC) is obtained. These benefits considering
the number of PEVs inside the vehicle are not really interesting. Considering the infrastructure
and capital costs for smart charging equipment, and availability of vehicles, the feasibility of
supervision implementation should be analyzed seriously.

4.5.2 Predictive real-time supervision for Spot Market Tariff

In this part, the provision of railway stations in electricity market using V2G technology is
analyzed. This is based on the spot market3 data in France. The economic interest is analyzed
if the V2G-enabled PEVs participate in the service considering market spot price as reference.

The associated input for this supervision will be less than previous case, as there is no
exceeding component. In this market, the consumers have freedom to choose their own energy
provider. They would also pay based on spot market price. The inputs for supervision system
are as follow:

� SOC (State of charge of ensemble of PEVs)

� Price

� P̂EV−ref The reference power from predictive input

In this case, the supervision will try to provide charging reference when the spot price is low,
and discharging reference when the spot price is high. The supervision has been tested on three
categories and the results are brought thereafter. The general conclusion is that there is not
an interesting economical benefit for spot market participation due to the price of electricity
during the PEVs availability. Figure 4.61 is illustrating the performance indicators , which are
PAR and annual bill in this market (i.e. there is no exceeding and subscription component) for
three categories. The results shows a little minimization of annual bill due to the fact that the
difference of electricity price during availability of PEVs is not so important. It is important
to take into account, that in SMT scenario, the annual bill should be compared with consumed
energy component in RTS scenario. This comparison shows the interest over consumed energy
component minimization in SMT compared to RTS, however the minimization is negligible.

3The spot is a market for financial instruments such as commodities and securities which are traded imme-
diately or on the spot. In spot markets, spot trades are made with spot prices. Unlike the futures market,
orders made in the spot market are settled instantly. Spot markets can be organized markets or exchanges or
over-the-counter (OTC) markets.
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Figure 4.61: Predictive real-time supervision indicator for SMT contract.

The second indicator calculated for each category is PAR value. For categories A and C,
the PAR is reduced while in category B the PAR value is increased after supervision. This is
normal from the fact that the main order of the supervision is price input which causes the
peak increment in some particular cases.

Some examples of load profiles after and before supervision are brought for three categories
in Figures 4.62 to 4.64. In Figure 4.62 the result of supervised and non-supervized scenarios
are brought for category C. As the availability of PEVs is between 8 AM upto 6 PM, the
supervision is concentrated in this period. In red dashed-line, the case of non-supervized is
depicted where a peak of consumption at the moment of arrival of PEVs is happened. While
in green dashed-line, the supervised scenario using predictive real-time supervision shows the
smart charging and discharging of PEVs in function of spot market reference. In first and third
day the PEVs upon their arrivals are asked to be discharged since the price is higher than
afternoon. Instead, the vehicles are charged during afternoon as the price is lower.

In Figure 4.63, the same result is presented for category B. In this type of market, as there
is no subscribed power, the peak of consumption can be regenerated even after supervision.
This is evident for the first day case in category B. A new peak is generated during 16:00
with approximately the same value of non-supervized case at 8:00. The discharging period are
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normally between 8 AM to 12 AM when the electricity price is high. The PEVs are again
charged near to the departure time.

In Figure 4.62, the same result is depicted for category A. Another three days example are
depicted and it is shown that the discharging command is not so visible in these three days.
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Figure 4.62: Comparison of supervised (EVS), and unsupervised (EVN) scenarios in spot market
(Category C).
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Figure 4.63: Comparison of supervised (EVS), and unsupervised (EVN) scenarios in spot market
(Category B).
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Figure 4.64: Comparison of supervised (EVS), and unsupervised (EVN) scenarios in spot market
(Category A).

This is due to the fact that the spot price is not so interesting in term of V2G point of view.
As mentioned previously, the interest of V2G participation in annual bill minimization for SMT
is less competitive compared to RTS scenario. This is due to the slight price difference during
PEVs availability and also the fact that in SMT there is no subscription limitation. Hence, the
major advantage of exceeding component in RTS is not achievable in SMT scenario.

The possible suggestion for further studies is that, the increment of benefit in spot market
participation depends highly on the spot market and energy provider. Hence, other type of
markets can be analyzed in order to be able to find the best market among available provider
markets. The second aspect is related to the availability of the vehicles considering the spot
market price. The possibility of providing services during nights can be analyzed in order to
consider the advantages related to the spot market participation.

4.6 Conclusion

In this chapter the main contribution of the thesis has been developed. A predictive real-time
supervision system for a V2G-enabled fleet of PEVs has been developed. This supervision sys-
tem has been applied on two different case studies where different economic ancillary services
were tested as scenarios. The results indicated that the presence of a real-time energy manage-
ment system is necessary in order to reduce the negative impact of charging demand of PEVs
on the distribution grid. The main development of the thesis is concentrated on a predictive in-
put generation, using artificial neural network as learning algorithm and a hybrid optimization
technic using particle swarm optimization and interior point algorithm as an off-line optimizer.

In addition, a real-time supervision system based on fuzzy logic, using the methodology
developed in L2EP laboratory, is designed, where the two layers are connected. Finally a
repartition algorithm which is able to estimate the state of charge of the PEVs is developed in
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order to provide closed-loop control for real-time supervision system. A battery degradation
modeling is also developed in order to estimate the impact of V2G technology on the electric
vehicle battery’s lifespan. All of these development are applicable on the other case studies and
have ability to be considered as a methodological approach for future studies on the smart grid
technologies.

The obtained results indicated that the participation of PEVs to the ancillary services in
two different level of distribution system operator and industrial consumers could be efficient in
term of economic interests. However further studies are needed to guarantee the pure benefit
of each part near of the V2G contract which is subject to availability of a proposer business
model between different actors of the contract.
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4.7 Résumé

Dans ce chapitre le principal développement de la thèse a été expliqué. La gestion énergétique
pour les véhicules électriques avec la technologie V2G pour les différents services systèmes et
cas d’études a été évaluée. D’abord, une étude bibliographique sur les méthodologies déjà
appliquées sur la problématique de la gestion énergétique des flottes des VEs a été faite.

Ensuite, la proposition de la gestion énergétique pour les deux cas d’études définies au-
paravant a été introduite. Le service minimisation de coût d’acheminement d’électricité pour
une flotte de VEs raccordée aux réseaux de distribution du département de Deux-Sèvres, et le
service minimisation du facteur énergétique de la gare pour les véhicules électriques connectés
aux bornes de recharges qui sont installées dans le parking de la gare ont été considérés comme
cas d’études principales de la thèse, où les différentes méthodologies de la gestion ont été mises
en examen.

En outre, pour la simple raison qu’un surplus de dégradation de la batterie des véhicules
électriques a été introduit dans la procédure de gestion des services du réseau, un modèle de
calcul de la dégradation des batteries , grâce à l’algorithme Rainflow, a été établi dans la
dernière partie de ce chapitre.

4.7.1 La stratégie de la gestion énergétique temps réel prédictive,
cas d’étude: Le réseau de distribution des Deux-Sèvres

Afin de contrôler la demande de charge des VEs, il faudrait mettre en place un système de ges-
tion énergétique qui sera capable de minimiser les impacts négatifs de cöıncidence des demandes
de rechargement des VEs sur le réseau électrique. Les incertitudes en termes des disponibilités
des VEs et de production d’énergie de source renouvelables type PV et éolien apportent des dif-
ficultés dans la gestion en temps réel. Pour cette raison, l’idée d’ajouter une étape de prévision
qui sera capable de fournir une vision à court terme (j+1) sur la consommation, production et
disponibilité des véhicules électriques a été proposée pour la première fois dans cette thèse.

Dans le cadre du développement de superviseur, deux systèmes de supervision différents ont
été comparés : le superviseur temps réel et le superviseur temps réel prédictif. La possibilité de
construire d’un système de prévision de la consommation a été étudiée. Celle-ci pourrait être
basée sur les méthodes d’intelligence artificielle comme les réseaux des neurones artificielles.
Dans ce chapitre, le système de prévision de la consommation a été présenté et le résultat
sur un cas d’étude réel a été évalué. Ce système pourrait être intégré pour la prévision des
productions des énergies renouvelables ainsi que la prévision de la disponibilité des véhicules
électriques. La performance de l’algorithme de prévision développé a été évaluée sur un réseau
de distribution, au niveau d’un poste source (90/15kV). La performance de cet algorithme a
été évaluée avec 3.19% de moyenne de pourcentage d’erreur absolue.

4.7.2 Le superviseur prédictif (optimisation hors-ligne)

Après avoir réalisé la prévision j+1 qui sert de référence pour le superviseur temps réel,
l’établissement d’une étape d’optimisation sera indispensable. L’algorithme d’optimisation sera
capable de fournir une référence assez précise (sachant que la prévision a été faite avec une
grande précision) grâce à la sortie de l’algorithme de prévision. Cette référence va être utilisée
pour le pilotage du système en temps réel.

Avant d’aller en détail dans la méthodologie des algorithmes de supervision, la formulation
du problème a été faite en considérant toutes les conditions et les contraintes du système. La
fonction d’objectif du problème d’optimisation a été considérée en fonction du service choisi. Par
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exemple, pour le cas d’étude de minimisation de coût d’acheminement, la fonction d’objectif
a été définie comme la somme des composants de la facture d’acheminement qui sont bien
détaillés dans le TURPE 4 établi par ENEDIS.

La proposition de l’algorithme d’optimisation a été faite après une étude bibliographique
sur les méthodes d’optimisation actuelles en prenant en compte les caractéristiques du problème
d’optimisation. L’une de ces caractéristiques est de hautes dimensions du variable d’optimisation.
Cette fonctionnalité nous obligera de travailler plutôt avec les méthodes d’optimisation évolu-
tionnaires et méta-heuristiques comme elles disposent d’une capacité de recherche en surfaces
à hautes dimensions dans un temps raisonnable. En revanche, le problème commun entre la
majorité des méthodes évolutionnaires, qui est l’imprécision du résultat final obtenu due aux dé-
parts stochastiques des paramètres initiaux, nous obligera à évaluer la possibilité d’hybridation
de ces types d’algorithmes avec des méthodes déterministes afin d’augmenter la précision du
résultat d’optimum final.

Pour ces raisons, la méthode d’optimisation par essaims particulaires (PSO en anglais) a été
développée pour la recherche globale de la surface de recherche et en fin, le résultat d’obtenu a été
injecté dans un deuxième d’algorithme d’optimisation déterministe afin de garantir l’optimalité
du résultat final. Cet algorithme hybride, qui est nommé CPSO-IP, a été expliqué en détail
dans ce chapitre. Ainsi, les résultats finaux de chacun des algorithmes ont été comparés afin
de valider la performance de l’algorithme développé.

4.7.3 Le superviseur temps réel et le superviseur temps réel prédictif
(optimisation en ligne)

Dans cette partie, l’algorithme de supervision temps réel basé sur la logique floue a été développé.
Ce superviseur a été appliqué sur la même problématique définie dans l’étape précédente.
L’approche méthodologique développée par les experts de l’équipe réseaux du laboratoire L2EP
a été utilisée pour la construction du système de supervision temps réel. Grâce à cette
méthodologie, le nombre de combinaisons utiles des règles floues a été limité sous forme d’une
approche basée sur le graphe fonctionnel et le graphe opérationnel. Les différentes étapes de
cette approche ont été définies en détail dans cette partie.

Les fonctions d’appartenances et leurs paramètres sont choisis selon l’expertise concernant
l’opération du système. De ce fait, les choix ne sont pas forcément optimisés par rapport à la
performance réelle du système. Pour cette raison, la mise en place d’une étude d’optimisation
est indispensable. En fonction des nombres des paramètres à optimiser et du temps de calcul
de chaque itération, l’algorithme génétique a été choisi comme méthode d’optimisation des
paramètres des fonctions d’appartenances. Les performances des systèmes de superviseur pour
les deux cas, superviseur temps réel empirique et le superviseur temps réel optimisé, ont été
comparées et le résultat montre un progrès sur la valeur de la fonction d’objectif.

A la fin de cette partie, les indicateurs de performance des systèmes de superviseurs ont
été comparés afin de valoriser l’exigence de chaque opérateur du système de supervision temps
réel prédictif. L’existence d’une étape de prévision apporte un bénéfice de 2.33% sur le coût
d’acheminement d’électricité.

4.7.4 L’estimateur d’état de charge (SOC) et l’algorithme de répar-
tition des consignes de charge/décharge

Après avoir construit le superviseur temps réel, il est important de savoir que la sortie du
superviseur reste globale et que le système de supervision exigera de répartir cette sortie (nous
l’appelons consigne) entre tous les véhicules électriques raccordés au réseau électrique. La
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deuxième difficulté dans cette étape est le pilotage en temps réel de l’état de charge de tous les
véhicules raccordés au réseau. Un algorithme a été développé dans cette partie afin de répondre
à ces deux problématiques précédemment définies. Les contraintes de tous les véhicules ont été
considérées dans chaque étape de l’algorithme afin de pouvoir répondre au besoin énergétique
de tous les véhicules et les contraintes déjà définies par les conducteurs. La performance de cet
algorithme a été évaluée sous forme de nombre des véhicules rechargés au moment de départ.
Cette indication a été présentée sous forme graphique qui garantit le déchargement des batteries
jusqu’à 80% de profondeur de décharge et le respect du besoin énergétique de tous les véhicules
raccordés au réseau.

4.7.5 Modélisation de la dégradation des batteries des véhicules
électriques

Afin de pouvoir quantifier les impacts négatifs des V2G sur le vieillissement des batteries des
véhicules électriques, un modèle de dégradation des batteries basé sur les comportements élec-
trochimiques des batteries et sur l’algorithme de rainflow a été développé dans cette partie.
Le comptage rainflow est un algorithme développé par les mécaniciens, dans le domaine des
fatigues des matériaux, qui permet de compter le nombre de cycles de recharge/décharge de la
batterie à partir du profil de SOC de la batterie.

Dans l’algorithme développé, tout d’abord, le nombre de cycles et de demi-cycles sur un
temps donné sont comptés par rainflow. Ensuite, grâce au modèle mathématique de dégrada-
tion, la valeur de perte de vie de la batterie est calculée. Après, la durée de vie de la batterie
sera calculée en fonction des caractéristiques de la batterie fournies dans les catalogues par les
constructeurs de la batterie. Finalement, pour évaluer l’impact de V2G sur la dégradation de
la batterie, plusieurs scenarios ont été établis pour pouvoir distinguer le cas avec V2G et le cas
sans V2G. Le résultat montre un impact non-négligeable sur la vie de la batterie en présence du
V2G pour le service de minimisation de coût d’acheminement d’électricité. Un véhicule utilisé
pour fournir ce service pendant un an perdra un an et demi de la vie de sa batterie par rapport
au cas sans V2G.

Ce modèle est bien développé et pourra être utilisé pour les autres services systèmes. Dans
la perspective de travail ce modèle sera appliqué sur les autres services.

4.7.6 La stratégie de la gestion énergétique temps réel prédictive,
cas d’étude: parking d’une gare

Le superviseur développé dans les parties précédentes a été appliqué sur le deuxième cas d’étude
de la thèse. Le cahier des charges du superviseur a été défini et les entrées et leurs fonctions
d’appartenances ont été déterminées par rapport aux caractéristiques des services. La minimi-
sation du facteur énergétique de la gare en utilisant la technologie V2G a été considérée comme
service offert pour ce cas d’étude. Ce service a été étudié en deux formes selon le tarif : tarif
réglementaire de vente (TRV) et tarif sur le marché spot. La minimisation du facteur énergé-
tique a été identifiée pour les deux cas et leurs influences sur les composants de ce facteur ont
été étudiées. Les trois catégories type des gares en France sont considérées et l’impact du V2G
sur les facteurs énergétiques de toutes les catégories a été identifié. Les résultats sont expliqués
en détail dans cette partie. Dans le TRV, le composant le plus influencé est le dépassement de
puissance souscrite alors que sur le marché spot cette influence n’existe pas car il n’y a aucun
composant de dépassement.
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CHAPTER 5. APPLICATION OF V2G ANCILLARY SERVICES ON DISTRIBUTION
GRID: A CO-SIMULATION APPROACH

5.1 Introduction

This chapter is concentrated on a quasi-experimental validation of developed energy man-
agement strategies for V2G-enabled PEV fleet. A co-simulation platform using PowerFac-
tory/DIgSILENT software and Matlab�/Simulink is used in order to test the impact of de-
veloped supervision systems on the technical characteristics of a distribution grid. Previous
researchers of L2EP laboratory have developed this platform using the guidance of a research
in [Andrén 11]. This platform has been tested for only PEV charging coordination previously
[Bouallaga 15]. In this thesis the V2G-enabled PEVs are tested for ETCM service and applied
on a real MV feeder (15 kV) connected to the same HV/MV (90/15 kV) substation presented
in chapter 4. In this chapter at first, the co-simulation platform is introduced. After that,
the previously developed supervision system are tested on the co-simulation platform and their
impacts on, voltage drop, Losses, grid load rate and maximum active power are evaluated. The
service is energy transmission cost minimization and is applied at the level of HV/MV sub-
station. However, the impacts have been analyzed at both HV/MV substation level and MV
feeder level. The impacts analysis are proposing new horizons of research for V2G supervision
system and will study the impact o technical aspects rather than economic aspects.

5.2 Co-simulation platform

DIgSILENT PowerFactory is a power system analysis software for applications in generation,
transmission, distribution and industrial systems. This software nowadays is used frequently by
grid operators and particularly the DSOs. In this thesis a model of distribution grid in Deux-
Sèvres departement of France is used at case study which is modeled in DIgSILENT. Using
Newton-Raphson method the load flow calculation is done in this software. On the other hand,
the supervision system is implemented in Matlab�/Simulink environment. Using an inter-
face so-called OPC1 server, the communication between Matlab�/Simulink and DIgSILENT
software is handled. In Figure 5.1 the procedure of data flow is explained illustratively and the
inputs and outputs of each block are defined. The reference power of global fleet PEV−ref (t),
and the reference power for each single vehicle which is calculated by supervision algorithm are
transferred through OPC server to DIgSILENT for power flow calculation on the MV feeder.
The calculation time depends on the size of the grid and number of necessary iteration of
Newton-Raphson for convergence. For this case study, each sample time takes approximately
1 second for load flow calculation. The sample time in this study is considered as 5 minutes.
Hence, for one day simulation 288 samples are needed. Therefore, the total calculation time
for one day will be approximately 5 minutes. It should be added that the simulation in DIgSI-
LENT takes in to account the phasor value hence the simulation is validate at steady state of
the system and the transient effects are not considered in this study.

The data transfer between Matlab� and OPC contains the reference power and also the
single refrence power for each PEVs. These values are either 0, 1 or -1 for No charging, Charging
and Discharging commands, respectively. These data will be received by DIgSILENT for load
flow calculation and grid real-time state estimation. These states are voltage magnitude and
angle, current magnitude and angle, active and reactive powers. The powers are measured at
each MV/LV substation point. The calculated states will be finally transferred using OPC
server to the Matlab� for supervision system step based on the measured states of the grid.

1OPC is the interoperability standard for the secure and reliable exchange of data in the industrial automation
space and in other industries. It is platform independent and ensures the seamless flow of information among
devices from multiple vendors. The OPC Foundation is responsible for the development and maintenance of
this standard [1].
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This should be considered that, the real-time concept in this simulation is with t+1 delay. It
means that they delay of measured data are one t sample time equivalent to 5 minutes in this
simulation.

Load flow
calculation

Reading
references

Calculate and sending
the results

Transfer
Results

Transfer
references

Reading
results

Supervision

references
Sending

Matricon
OPC server Matlab/SimulinkPowerFactory/DIgSILENT

PEV ref (t)

P 1
EV (t)

P 2
EV (t)

PNPEV
EV (t)

...

...

PPS(t)

PCON(t)

Pwind(t)

PPV (t)

Figure 5.1: Co-simulation flowchart between Matlab�, OPC server and DIgSILENT for V2G super-
vision system.

5.3 Distribution grid characteristics

In this thesis, the same case study presented in the work of [Bouallaga 15] is used in order
to be able to compare the results of supervision for V2G-enabled PEV fleet with charging
coordination supervision. The distribution grid characteristics are brought thereafter. The
same substation presented in previous chapter is considered as case study where its position
and all supplied MV feeders are illustrated in green color in Figure 5.2. In Figure 5.3 a more
detailed image shows under study MV feeder in magenta color. This is a 15 kV Medium Voltage
feeder of the same HV/MV substation modeled in DIgSILENT. This grid contains three wind
farms connected to dedicated MV feeders (Figre 5.4) with global installed power of 62 MW. For
Solar farm based on 2020 scenario total installed power of 8 MW is predicted in this substation
where, 1365 kWc is connected to under study MV feeder E88640 (Figure 5.5). The number
of PEVs are estimated to be 1200 at this substation where 150 PEVs are considered for MV
feeder E88640. As the ETCM service is applied at the level of HV/MV substation, this service
is considered at MV feeder as well. This MV feeder contains 447 nodes, 336 lines, 81 MV/LV
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substation (15/0.4 kV magenta circles in Figure 5.3), 1100 customers and 385 kWp installed
PV distributed in the feeder. Different measurement point of the feeder are also shown in
Figure 5.6. The voltage drop is analyzed in two points, one in beginning of the feeder and the
other one at furthest point. The regular voltage of the feeder is 15 kV. This feeder is connected
to a 36 MVA transformer with OLTC (Over Load Tap Changer) at 23 steps. Each step has
a regulation capacity of 1%. Therefore, the nominal variation range of the feeder voltage is
between 15.6 and 15.75 kV. The acceptable marginal drop voltage is also considered as ±5%.

Figure 5.2: HV/MV (90/15 kV) substation (S2) modeled as case study and illustrated with all its
supplied MV feeder in green color.

Figure 5.3: Differentiated MV feeders and under study MV feeder(E88640) in magenta color.
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Figure 5.4: HV/MV substation model in DIgSILENT containing three dedicated wind farms MV
feeders and 9 consumption feeders. E88640 denotes the modeled MV feeder (15 kV) . S2 indicates the
HV/MV substation (90/15 kV).

Figure 5.5: MV feeder (E88640) modeled in DIgSILENT illustrated in magenta color. The circles
shows MV/LV substations (15/0.4 kV).
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S2

Measurement of Power at
HV/MV substation

Measurement of furthest
point voltage

Measurement of charge 
rate for worst point

Figure 5.6: MV feeder with measurement point for voltage drop and load rate.

5.4 Scenarios and results

In this study, three example day of the year are considered to shows the impact of different
supervision strategy on the technical limitation of the grid. Two winter days from the periods
of February and December which are the 38th and 345th days of the year and one summer day at
low consumption rate which is the 178th days of the year. The results of voltage drop at furthest
point, voltage profile at HV/MV substation, Power at HV/MV substation, Losses profile and
load rate of worst point of the grid are investigated for each three example days. For each
example, 5 possible supervision cases are considered. Without PEV denotes the case of load
profile without any Plug-in Electric vehicle. With PEV no supervision is for the case of PEV
presence where there is no supervision or energy management strategy on the charging process
of the vehicles. The charging profile is considered as plug and charge scenario when the vehicles
are connected and be charged after their arrival. This leads to charging profile of uncontrolled
case. RT-Empirical denotes the scenario of Real-time supervision with Empirical membership
function parameters. RT-Optimized is for the case of Real-time with Optimized membership
functions. Finally, RT-Predictive indicates the scenario of Predictive real-time supervision with
optimized membership function parameters. In fact, these scenarios are chosen for comparison
in co-simulation to investigate the impact of different supervision strategies on the technical
parameters of the grid such as voltage drop and losses in the distribution grid.

5.4.1 Scenario of 38th day (Winter)

Co-simulation over a complete day of 38 has been applied. The simulation took 5 minutes,
approximately. Comparison of supervision cases are considered in 5 possible cases. Figures 5.7
to 5.12 show theresults of simulation for different measurements for day 38.

In Figure 5.7, MV feeder voltage profile at HV/MV substation is shown for all 5 scenarios.
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This measurement point is visible in Figure 5.6 near to S2. As it is shown, the voltage drop is
important for the scenario Without Supervision at two time of 9 AM and 7 PM. These are the
periods of PEVs peak demand at work and home, respectively. This voltage drop is controlled
in different supervision system. It is shown that the Predictive real-time supervision has the
best reaction concerning the voltage drop at this level.
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Figure 5.7: MV feeder voltage profile at HV/MV substation, day 38.

Figure 5.8, shows the total measured power at S2 (HV/MV substation). The peak of con-
sumption is reduced in all of the supervision system with a slight better charging management
of Predictive real-time supervision.
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Figure 5.8: Load profile at HV/MV substation, day 38.

In Figure 5.9, the furthest point voltage at MV feeder shows some different results. For
two cases of RT-Empiric and RT-Optimized there are exceeding the voltage drop at 14.25 kV.
While the Predictive supervision keeps the voltage drop in the margin. Figure 5.12, shows the

PhD Thesis, S. Sarabi 209



CHAPTER 5. APPLICATION OF V2G ANCILLARY SERVICES ON DISTRIBUTION
GRID: A CO-SIMULATION APPROACH

power at beginning of MV feeder. The same phenomenon as the voltage drop at furthest point
is evident. As the supervision system is applied at the HV/MV substation level, the power
inside the MV feeder is not taken into account and it causes the peak generation even by using
supervision system. However, Predictive supervision has minimized this impact compared to
the Real-time supervisions.
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Figure 5.9: MV feeder furthest point voltage profile, day 38.
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Figure 5.10: Power at beginning of MV feeder, day 38.

The losses in MV feeder are depicted in Figure 5.11. It shows correlation to the Power
and voltage curve in previous figures. Losses at 11 AM is minimized with Predictive real-time
supervision.

Finally, the load rate of worst point of the grid shows a correlation with voltage drop at
farthest point in Figure 5.12.
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Figure 5.11: Losses in MV feeder, day 38.
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Figure 5.12: Worst point of feeder load rate, day 38.

The general results tables is presented in Table 5.1. Voltage drop, Losses, Load rate and
Maximum Power are represented. The comparison shows that using the supervision at MV
feeder causes extra voltage drop, losses and load rate. This is due to the fact that the supervision
is applied at HV/MV substation level and there is no vision on the power variation at MV feeder.
However, the Predictive real-time thanks to its predictive input, is able to reduce these negative
impacts compared to the real-time supervision. Voltage drop is out of its acceptable limit (e.g.
±5%) for Scenarios RT-Empirical and RT-Optimized, while Predictive Real-time supervision
limits this exceeding.
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Table 5.1: Comparison of different supervision from technical characteristics, winter day (day 38).

Supervision cases
Voltage drop

(%)
Losses
(MW)

Load rate
(%)

Maximum Power
(MW)

Without PEV -4.26 43.02 65.49 5.29
With PEV no supervision -4.59 45.40 65.70 5.36

RT-Empirical -5.11 45.06 71.46 5.82
RT-Optimized -5.24 44.78 72.46 5.90
RT-Predictive -4.78 44.62 69.47 5.66

5.4.2 Scenario of 345th day (Winter)

In this scenario, the same simulation is applied and results are brought in Figures 5.13 to 5.14.
Figure 5.13 shows the MV feeder voltage profile at HV/MV substation. The regulation bound
for OLTC is 15.6 to 15.75 kV. During 12 AM to 2 PM the Predictive real-time supervision leads
to increase of the voltage therefore the OLTC was activated and it regulated the voltage to 15.6
kV. This happened during 8 PM to 10 PM and 11 PM to 1 AM, for three cases of supervision.
These are mostly the impact of V2G on the voltage profile that should be taken into account
for supervision system designing.
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Figure 5.13: MV feeder voltage profile at HV/MV substation, day 345.

Figure 5.14 is showing the voltage profile at furthest point. In this case again the advantage
of Predictive real-time supervision is visible during 12 AM to 2 PM. However in all cases the
voltage profile is within the acceptable variation bound.
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Figure 5.14: MV feeder furthest point voltage profile, day 345.

Finally, the results of simulation for all the indicators are brought in Table 5.2. The voltage
drop is kept in limit for three supervision scenarios. Moreover, for RT-Predictive, the voltage
drop is improved compared to RT-Empirical and RT-Optimized. This is the same case for
Losses, load rate and Maximum power.

Table 5.2: Comparison of different supervision from technical characteristics, winter day (day 345).

Supervision cases
Voltage drop

(%)
Losses
(MW)

Load rate
(%)

Maximum Power
(MW)

Without PEV -4.11 48.09 68.09 5.34
With PEV no supervision -4.45 50.55 68.89 5.51

RT-Empirical -4.34 50.25 67.36 5.47
RT-Optimized -4.63 50.01 73.31 5.95
RT-Predictive -4.23 49.80 68.51 5.61

5.4.3 Scenario of 178th day (Summer)

The simulation is applied on a summer day with low rate consumption. As it is shown in Figure
5.15, the voltage drop with RT-Optimized scenario is critical during 2 PM. Hence the OLTC
is activated to regulate the voltage in its normal variation rate. It shows the optimization of
membership function can be also negative for technical point of the grid, If the voltage drop is
not considered in real-time simulation. From the farthest point of the grid the voltage drop is
not important and even the Predictive real-time supervision regulates the voltage better than
other scenarios.
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Figure 5.15: MV feeder voltage profile at HV/MV substation, day 178.
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Figure 5.16: MV feeder furthest point voltage profile, day 178.

The results of simulation for day 178 are brought in Table 5.3. Concerning the voltage
drop, the predictive real-time supervision acts better than other scenarios and keeps voltage in
a good range compared to the other scenarios. Losses is controlled compared to RT-Empirical
and RT-Optimized. These results also show that the performance of RT-Predictive is better
than RT-Optimized and Empirical.
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Table 5.3: Comparison of different supervision from technical characteristics, summer day (day 178)

Supervision cases
Voltage drop

(%)
Losses
(MW)

Load rate
(%)

Maximum Power
(MW)

Without PEV -0.28 10.77 37.69 3.08
With PEV no supervision -0.35 11.1 37.98 3.014

RT-Empirical -0.07 10.56 36.09 3.03
RT-Optimized -0.6 10.85 38.67 3.22
RT-Predictive +0.007 10.21 36.10 3.03

5.5 Conclusion

In this chapter, a co-simulation platform was used for technical assessment of V2G-enabled
supervision systems presented in previous chapter. The co-simulation platform was a simulation
between Matlab� and DIgSILENT software. DIgSILENT does the load flow calculation and
Matlab� involves with supervision system.

The simulation is done for three sample days, two from winter and one from summer day
with low rate consumption. The results indicate that the supervision system can have negative
impacts in terms of voltage drop and losses increment, if a reference for voltage is not considered
in the supervision. However, using a predictive input showed that can help to reducing the
negative impact. For instance the voltage drop, having a predictive input over a horizon of 24
hours (1 day), can be minimized compared to real-time supervision without predictive input.

As a perspective, it is recommended to consider voltage profile as one of the inputs of
supervision system. This should be taken into account that, if the objective is at level of
HV/MV substation, the variation profile at MV feeder should be also taken into account in
order to avoid local negative impacts on the voltage profile. As the objective function in this
study was an economic function, the impact of voltage drop and losses can be expressed as
economical function in order to be able to measure the real economic benefits of using V2G for
ancillary services.
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CHAPTER 5. APPLICATION OF V2G ANCILLARY SERVICES ON DISTRIBUTION
GRID: A CO-SIMULATION APPROACH

5.6 Résumé

Dans ce chapitre, en utilisant le superviseur temps réel développé dans le chapitre précèdent,
grâce à l’une plateforme d’essais développée dans le laboratoire L2EP, la performance du su-
perviseur a été évalué. Cette plateforme permet de lancer une Co-simulation entre les logiciels
PowerFactory, qui est un logiciel expert en modélisation et simulation des réseaux de distribu-
tion, et Matlab, qui est utilisé pour le développement de superviseur temps réel prédictif.

Dans ce chapitre, dans un premier temps, la plateforme de Co-simulation est introduite.
Après cela, les systèmes de supervision mis au point antérieurement sont testés sur la plateforme
de Co-simulation, et leurs impacts sur la chute de tension, les pertes en ligne, le taux de charge
de réseau et la puissance active maximale sont évalués. Le service evalué est la minimisation des
coûts d’acheminement de l’électricité et est appliqué au niveau des postes source HTB/HTA.
Cependant, les impacts ont été analysés tant au niveau des postes source et les départs HTA.
L’analyse des impacts permet de proposer de nouveaux horizons de recherche pour le V2G
et des systèmes de supervision et montre l’importance de l’étude des impacts sur des aspects
techniques plutôt que les aspects économiques.

La Co-simulation est effectuée pour trois jours, deux jours d’hiver et une journée d’été avec
des faibles taux de consommation. Les résultats indiquent que le système de supervision peut
avoir des effets négatifs en termes de chute de tension et les pertes, si une tension de référence
n’est pas prise en compte dans la supervision. Toutefois, l’utilisation d’une entrée prédictive a
montré la possibilité de réduire l’impact négatif. Par exemple, la chute de tension, lorsqu’on
dispose d’une entrée prédictive sur un horizon de 24 heures (1 jour), peut être minimisée par
rapport à la supervision en temps réel sans entrée prédictive.

En perspective, il est recommandé d’examiner le profil de tension comme une des entrées du
système de supervision. Celui-ci doit être pris en compte si l’objectif est au niveau des postes
sources HTB/HTA. La variation du profil au départ HTA doit être également considéré afin
d’éviter les impacts négatifs sur le plan de tension. Comme la fonction d’objectif dans cette
étude était une fonction économique, l’impact de la chute de tension et les pertes peuvent être
exprimées comme une fonction économique afin de pouvoir mesurer les avantages économiques
réels de l’utilisation de V2G pour les différents services systèmes.
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gies renouvelables. PhD thesis, Université Lille 1 Sciences et Technologies, 2015.
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General Conclusion and Perspective

General Conclusion

In this thesis, the results of 3 years research on one of the challenging technologies of future
transportation and smart grids has been presented. Vehicle-to-Grid has been analyzed from
both technical and economic aspects and its possible ancillary services were analyzed. As
the main development of the thesis, a real-time centralized supervision system at the level of
HV/MV substation of distribution grid has been developed in order to manage the charging
demand of the electric vehicle fleet. In addition, the ability of delivering the power from EV
batteries to the grid has been embedded in this real-time supervision (so-called V2G). The
main conclusion of the work can be expressed in different parts, each dedicated to the thesis
developments.

Possible ancillary services: By analyzing the features of distributed energy storage systems
(DESS) and their similarities with electric vehicles’ batteries, the ancillary services of DESS
have been analyzed for V2G technology. The main criteria is about the quantity of the power
available for grid and the availability of the vehicles in order to provide the power. If a con-
siderable number of vehicles would be available in the particular time, interesting services can
be offered by the energy stored in their batteries. The question of availability and uncertainty
in the availability has been also discussed and analyzed. This should be taken into account
that when we talk about the ancillary services and vehicle-to-grid, different factors should be
considered before providing a feasibility. These factors are mainly the type of service and its
requirements in term of time and amount of power and vehicles availability taking into account
the transportation nature of vehicles’ fleet. For instance, for the vehicles doing daily home-work
trips, the potential of ancillary service providing at working hours is higher than at home. This
is due to the fact that the concentration of uncertainty probability at working hours is lower
than at home.

In general, the ancillary services such as regulation market and peak power market are among
the most competitive services based on the investigation done in this thesis. The economic
interests of regulation market are also one of the intensive aspects of this service for V2G
technology. This should be considered that a real cost/revenue analysis in order to clarify
efficiency of V2G ancillary services is still needed as it is highly depend on the business model
that would be proposed for V2G technology in future.

Real-time energy management: The task of developing a real-time energy management
algorithm has been done properly in this thesis. The concept of energy management for V2G-
enabled electric vehicles for two possible economic services has been developed. In order to
provide better result in term of optimality, a predictive layer has been added to the real-time
supervision system. This real-time predictive supervision system is able to predict the con-
sumption of the grid, provide a reference power for PEV fleet in real-time and finally distribute
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the charging/discharging command between the PEVs inside the fleet. Based on the objective
function, the supervision system will provide the reference power leading to the optimization
of that specific function. For instance, in this thesis, energy transmission cost minimization for
distribution system operators and annual energy bill for railway station parking facilities have
been considered as objective function. Minimization of yearly transmission cost up to 230 k¿
has been validated in this research. This amount by considering the impact of degradation of
the battery should be restudied in order to provide real benefit for grid operator. However, this
task is limited to knowing a proper economic model between smart grid and V2G aggregators.

Real-time supervision has been compared with predictive real-time supervision. The results
indicated that the presence of predictive input for real-time supervision could be useful if the
uncertainty is low and prediction error is negligible. As the prediction layer has the ability
to provide a perspective on the behavior of the system, let us say 24 hours a head prediction,
the real-time action and decision making would be more optimal compared to the case without
prediction.

The same supervision system has been applied on the case study of railway stations, where
they have considered as future energy hub inside the stations. Different numbers of PEVs
connected to the micro grid of the station have been tested to analyze the impact of V2G services
can be provided. The results indicated that in both regulated and spot markets, the highly
attractive benefit of V2G could be achieved only by combining of different services, in order to
increase the benefits versus the costs of services, infrastructures and battery degradation.

PEV Battery degradation: In order to analyze the impact of V2G technology on the PEV’s
battery, the development of a degradation model is necessary. Thanks to the literature review a
degradation model for lithium-ion battery has been developed. The model was used to analyze
the impact of V2G participation of PEVs on the battery lifespan. The degradation modeling is
done using rainflow counting algorithm by counting the number of cycles, depth of discharges,
state of charges and type of each cycle. Hence the model measures the sensitivity of degradation
to the different factors. This investigation showed that for the services which are discharging
the battery deeply, such as peak power shaving, the impacts of V2G on battery degradation is
considerable. However for the services with smaller depth of discharge the condition would be
different.

Technical constraints of V2G: In this thesis, the main objectives have been considered
as economic functions. However for real implementation of such technology, the infrastructure
for V2G technology, both inside the vehicles and in the charging stations are needed. In
addition, concerning the distribution grid, new grid code has to be established in order to
accept the presence of such programmable loads inside the LV distribution grid. For instance
for participation of PEVs to the frequency regulation market, the grid code should be updated in
a way to keep security of the grid in presence of bidirectional load and also provide opportunity
of participation for downstream customers in distribution grid (PEVs).

A co-simulation process on a distribution grid has been developed in this thesis, where the
participation of V2G-enabled PEVs was investigated. The impacts of charging/discharging
coordination on the voltage drop, losses in the grid, and maximum power of the grid have been
analyzed. The results indicated that considering only an economic objective function without
taking into account the technical states of the grid as an input can causes some negative effects
on the voltage profile of the grid. Following that the losses can be increased. This is due to
the fact that when the supervision is applied at the top level of distribution grid (HV/MV
substations) the variation of voltage profile at MV feeder is not monitored. Hence, it can
provide voltage drop or even increment in case V2G power injection, at the level of MV feeder.
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These aspects should be taken in to account for future development of real-time supervision
system at distribution grid level.

Perspectives

Based on the development done in this thesis, different axis and horizons of researches have
been opened for V2G technology. Each development introduces different perspective for future
of the work. As in this thesis the idea of predictive real-time supervision has been introduced,
this is considerably important to develop prediction algorithm for renewable energy production
and plug-in electric vehicles availability. For renewable energy prediction, there are already
large amount of researches done in the world and it would be not a complicated cases. This
is also due to the fact that the historical data for renewable energies production are available.
While, the prediction of PEV availability is a major challenge as today there would not be such
enough historical data which can provide the learning procedure.

The other possible perspective of the work is related to development of a proper economic
model, describing the economic flow between the grid operators and PEV aggregators. This
will help to identify the pure benefits of both grid operators and PEV owners. A business
model should be designed in a way that can consider all aspects of the complex system of smart
grid. In this system the connection between renewable energy producers, PEV aggregators
and automobile makers, industrial aggregators, energy production operators and grid operators
at both transmission and distribution level should be defined and the benefit/cost for each
participant should be modeled. This horizon of research is so vast and needs deep analysis at
energy market domain.

In the development of supervision system, a predictive layer was proposed to be added
in order to enhance the performance of the supervision system in real-time. One of the major
perspectives of the work in this level is the increment of robustness of predictive layer versus the
real-time layer. In fact the possibility of a marginal control area designing should be studied in
order to guarantee the optimality of taken decision in real-time. In fact, by defining a marginal
area the acceptability of prediction should be tested in real-time. Another possible perspective
for real-time supervision is the possibility of on-line optimization implementation in order to
update the predictive inputs in function of any variation in real-time state of the system. Theses
axis of research are mainly interesting to be considered in future works on V2G technology and
particularly for energy management designing of PEV fleet.

As explained in conclusion, the degradation model for PEV battery lifespan has been de-
veloped in this thesis. In this axis of research the application of developed model on the other
economic and technical services could be important to taken into account. A comparison of
degradation impact between different services could be another interesting horizon of research
where the results would be valuable for both grid operator in order to choose the best services
in term of least impact on the batteries, and for PEV owner in order to choose the services that
have lower impact on the battery lifespan of the vehicle. Another horizon of research could be
the development of a business model for degradation in order to identify the economic impact
of battery degradation. This study should be considered in a way that is able to provide a
benefit/cost analysis for PEV owners. It could be attractive in terms of motivation of PEV
owners’ participation in the V2G services.

The perspective of the research for railway station case study is about two different axis.
First is about the economic intensive offers for the PEV owners in order to motivate them for
participation to the V2G services. This analysis should be done in a way that make an equi-
librium between the provided services and benefits for V2G participation. These are connected
to large investigation on economic aspects of V2G service in railway station parking facilities.
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The second is related to possibility of participation in more attractive services such as
capacity market, where in such services the capacity payment provides high motivation for
PEV owners to let their vehicle in the hands of grid operators. In fact, only the availability of
vehicles can bring economic benefit for the owners and service providers or even the aggregator,
which is responsible of aggregated power.

The final word, the V2G technology is a new and vast domain of research which needs
collaboration of the scientists, engineers, economists and social science experts in order to
make applicable this new type of technology which is one of the main part of future smart grid.
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Contribution du Vehicle-to-Grid (V2G) à la gestion énergétique d'un parc de 
Véhicules Électriques sur le réseau de distribution 

RESUME : 

L'augmentation des densités de puissance et d'énergie des SSE (système de stockage électrique) des 
véhicules électriques/véhicules hybrides rechargeable (VEs/VHRs), tout en conservant des coûts 
raisonnables pour l'utilisateur, et le développement de convertisseurs d'énergie électrique à haute densité 
de puissance volumique, et de plus en plus performant vont favoriser la production en masse de véhicules 
électrifiés. Une partie de ces véhicules électriques (VEs/VHRs) nécessitent une connexion au réseau pour 
la recharge des batteries. L’insertion de ces nouvelles charges dans le réseau présentera alors plusieurs 
enjeux et impacts significatifs pour les réseaux électriques puisqu’ils doivent répondre localement à des 
demandes de puissance non négligeables. Ce projet de thèse vise à étudier et réduire les impacts des 
VEs/VHRs sur les réseaux de distribution grâce à la technologie Vehicle-to-Grid (V2G). Le véhicule 
électrique alimente le réseau en fonction des besoins du système électrique (modèle bidirectionnel) et lui 
offre un service de flexibilité. Ces travaux de recherche ont pour but d'approfondir les concepts dans 
lequel l’alimentation des véhicules électriques (VE) et/ou hybrides de type P-VEH est intégrée à la 
gestion du réseau de distribution et des « hubs énergétiques » du futur. L’objectif de la thèse est d’abord 
étudier les services systèmes possibles à fournir grâce au V2G, ensuite de concevoir un système de 
supervision qui assurera une gestion énergétique de ces nouvelles charges en choisissant le mode de 
recharge et/ou décharge adéquat et en prenant également en considération la demande de consommation 
locale et la présence de production de type renouvelable (photovoltaïque, éolien) dans le réseau de 
distribution. Cette supervision se fera dans un premier temps « en hors ligne » et par la suite « en ligne ». 
On aura recours à l’utilisation de méthodes d’intelligence artificielle comme l’apprentissage automatique 
(Machine Learning) et la logique floue, la commande prédictive ainsi que des méthodes d’optimisation 
hybrides (stochastiques et déterministes). 
 

Mots clés : Véhicule électrique rechargeable, Réseaux de distribution, Gestion énergétique 

Contribution of Vehicle-to-Grid (V2G) to the energy management of Plug-in 
Electric Vehicles’ fleet on the distribution network 

ABSTRACT:  

The power and energy density increment of the electrical storage system (ESS) of electric vehicles/Plug-
in hybrid electric vehicles (EVs/PHEVs), while maintaining reasonable costs for the user, and the 
development of converters of electrical energy to high power density and more and more powerful, will 
encourage the mass production of electrified vehicles. Beyond, electric vehicles (EVs/PHEVs) require a 
connection to the grid for the charging of the batteries. The insertion of these new loads in the grid will 
then present several issues and significant impacts for electrical networks since they must respond locally 
to non-negligible power requests. This PhD thesis aims to study and reduce the impacts of the 
EVs/PHEVs on the distribution grid thanks to the vehicle-to-Grid (V2G) technology. The electric vehicle 
supplies the grid depending on the needs of the electrical system (bi-directional model) and offers a 
flexible service. These works of research have aimed to deepen the concepts in which the supply of 
electric vehicles (EV) and/or hybrids of type PHEV is integrated with the management of the distribution 
network and the future "energy hubs". The objective of the thesis is at first to examine the possible 
ancillary services provided by V2G, then to design a system of supervision which will ensure an energy 
management of these new loads by choosing the adequate mode of charge/discharge and also taking into 
consideration the request of local consumption and the presence of renewable production of type 
photovoltaic and wind in the distribution grid. This supervision will be in a first step "offline" and 
subsequently "online". The methods which are used in this thesis are as follows; artificial intelligence 
such as machine learning and fuzzy logic, the predictive control as well as the methods of hybrids 
optimization (stochastic and deterministic). 

 Keywords: Vehicle-to-Grid, Plug-in Electric Vehicle, Distribution grid, Energy management 
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