S. Shcherbanev, N. Popov, and S. Starikovskaia, High-voltage nanosecond surface dielectric barrier discharges at high pressures: physics and applications Plasma assisted ignition of hydrogen/air mixtures at high pressures with nanosecond SDBD discharge, Moscow WSMPA Conference 2016, 2016.

S. A. Shcherbanev and S. M. , Development and energy distribution of nanosecond surface dielectric barrier discharge Starikovskaia Fundamentals of Aerodynamic Flow and Combustion Control by Plasmas ATW 2015 Les Houches. 6. Energy balance in surface nanosecond dielectric barrier discharge. Plasmaassisted ignition of heavy hydrocarbons at high pressures, M. Starikovskaia 53rd AIAA Aerospace Science Meeting and Exhibit, pp.5-10, 2015.

N. Shcherbanev, A. V. Lepikhin, S. A. Klochko, N. A. Stepanyan, S. M. Popov et al., Starikovskaia 53rd AIAA Aerospace Science Meeting and Exhibit AIAA-2015-0412. 8. Two modes of optical emission in partial discharges Development and energy distribution of nanosecond surface dielectric barrier discharge. Initiation of combustion, International Symposium on Plasma Chemistry 2015 9 July. International Symposium on Plasma Chemistry 2015 10. Development of the nanosecond surface dielectric barrier discharge in air for different electrode system configurations S. A. Shcherbanev, S. M. Starikovskaia Plasma?Assisted Cool Flames in a Rapid Compression Machine, M.A, pp.5-10, 2015.

S. Boumehdi, S. Shcherbanev, P. Stepanyan, S. M. Desgroux, G. Starikovskaia et al., Europeen combustion meeting 2015 1.16 (a) Schematic of the plasma assisted transition from the classical ignition and extinction S?curve (solid blue line) to the monotonic stretched S?curve (red dashed line) [91]; (b) Schematic of timescale and key kinetic pathways at different stages of plasma assisted ignition and combustion [93, p.32

N. Td and E. , Numbers near the curves correspond to the longitudinal electric field estimated as described in the text. The solid red curve corresponds to calculations with E Red points correspond to experiments in [46], blue point is experimental result obtained in the present work, Maximal, p.65

V. Soloviev and .. , The time dependence of calculated electrical current in the circuit and the energy deposited into a discharge region. U = ?14 kV. Calculations of Dr, p.84

=. ?50-kv...., 21 ICCD images and time-resolved 2D spectra of the filamentary discharge of negative polarity. Air, P = 6 bar, p.126

=. +50-kv...., 22 ICCD images and time-resolved 2D spectra of the filamentary discharge of positive polarity. Air, P = 6 bar, p.127

O. Normalized and =. , 10 and (b) 25 ns time instances obtained for different distances from the edge of HV electrode, p.135

T. Fwhms-vs, (a) H ? superimposed with the voltage coming to the electrode and current through the discharge; (b) 777 nm of atomic oxygen superimposed with the voltage waveform, the area under the line and cw emission near 777 nm, p.135

E. Moreau, Airflow control by non-thermal plasma actuators, Journal of Physics D: Applied Physics, vol.40, issue.3, p.605, 2007.
DOI : 10.1088/0022-3727/40/3/S01

URL : https://hal.archives-ouvertes.fr/hal-00180434

T. C. Corke, M. Post, and D. Orlov, Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications, Experiments in Fluids, vol.23, issue.1, pp.1-26, 2009.
DOI : 10.1007/s00348-008-0582-5

N. Benard and E. Moreau, Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control Experiments in Fluids, p.1846, 2014.

I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, P. N. Sagulenko, N. A. Popov et al., 2012 A nanosecond surface dielectric barrier discharge at elevated pressures: time-resolved electric field and efficiency of initiation of combustion Plasma Sources Science and Technology, p.45012

M. A. Boumehdi, S. A. Stepanyan, P. Desgroux, G. Vanhove, and S. Starikovskaia, Ignition of methane-and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge Combustion and Flame, pp.1336-1349, 2015.

E. M. Anokhin, D. N. Kuzmenko, S. V. Kindysheva, V. R. Soloviev, and N. Aleksandrov, Ignition of hydrocarbon:air mixtures by a nanosecond surface dielectric barrier discharge Plasma Sources Science and Technology, p.45014, 2015.

S. A. Shcherbanev, S. A. Stepanyan, N. A. Popov, and S. Starikovskaia, Dielectric barrier discharge for multi-point plasma-assisted ignition at high pressures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.373, issue.2048, 2015.
DOI : 10.1029/RG009i002p00305

A. Vincent-randonnier, S. Larigaldie, P. Magre, and V. Sabel-'nikov, Plasma assisted combustion: effect of a coaxial DBD on a methane diffusion flame Plasma Sources Science and Technology, p.149, 2007.

N. Benard, N. Zouzou, A. Claverie, J. Sotton, and E. Moreau, Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications, Journal of Applied Physics, vol.4, issue.3, p.33303, 2012.
DOI : 10.1088/0741-3335/52/12/124019

K. Takashima and Z. Yin, and Adamovich I V 2013 Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges Plasma Sources Science and Technology, p.15013

M. M. Nudnova, N. L. Aleksandrov, and A. Starikovskiy, Influence of polarity on the properties of surface nanosecond barrier discharge in atmospheric air Plasma Physics Reports, pp.94-103, 2010.

V. R. Soloviev, A. M. Konchakov, V. M. Krivtsov, and N. Aleksandrov, Numerical simulation of a surface barrier discharge in air Plasma Physics Reports, pp.594-608, 2008.

V. R. Soloviev and V. Krivtsov, Surface barrier discharge modelling for aerodynamic applications, Journal of Physics D: Applied Physics, vol.42, issue.12, p.125208, 2009.
DOI : 10.1088/0022-3727/42/12/125208

V. I. Gibalov and G. J. Pietsch, The development of dielectric barrier discharges in gas gaps and on surfaces, Journal of Physics D: Applied Physics, vol.33, issue.20, p.2618, 2000.
DOI : 10.1088/0022-3727/33/20/315

V. I. Gibalov and G. J. Pietsch, Dynamics of dielectric barrier discharges in different arrangements Plasma Sources Science and Technology, p.24010, 2012.

S. B. Leonov, V. Petrishchev, and I. Adamovich, s to ms time scales, Journal of Physics D: Applied Physics, vol.47, issue.46, p.465201, 2014.
DOI : 10.1088/0022-3727/47/46/465201

Y. Zhu, T. Takada, K. Sakai, and D. Tu, The dynamic measurement of surface charge distribution deposited from partial discharge in air by Pockels effect technique, Journal of Physics D: Applied Physics, vol.29, issue.11, p.2892, 1996.
DOI : 10.1088/0022-3727/29/11/024

L. Stollenwerk, Interaction of current filaments in dielectric barrier discharges with relation to surface charge distributions, New Journal of Physics, vol.11, issue.10, p.103034, 2009.
DOI : 10.1088/1367-2630/11/10/103034

L. Stollenwerk, J. G. Laven, and H. Purwins, Spatially Resolved Surface- Charge Measurement in a Planar Dielectric-Barrier Discharge System Phys, Rev. Lett, issue.25, pp.98-255001, 2007.
DOI : 10.1103/physrevlett.98.255001

T. Hoder, R. Brandenburg, R. Basner, K. D. Weltmann, K. Kozlov et al., A comparative study of three different types of barrier discharges in air at atmospheric pressure by cross-correlation spectroscopy, Journal of Physics D: Applied Physics, vol.43, issue.12, p.124009, 2010.
DOI : 10.1088/0022-3727/43/12/124009

M. B. Sokolova, K. V. Kozlov, S. A. Krivov, V. G. Samoylovich, and P. A. Tatarenko, Study of surface discharge emission in the dry air, JETP Letters, vol.35, 2008.

P. Paris, M. Aints, M. Laan, and . Valk, Measurement of intensity ratio of nitrogen bands as a function of field strength, Journal of Physics D: Applied Physics, vol.37, issue.8, p.1179, 2004.
DOI : 10.1088/0022-3727/37/8/005

P. Paris, M. Aints, F. Valk, T. Plank, A. Haljaste et al., Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas, Journal of Physics D: Applied Physics, vol.38, issue.21, p.3894, 2005.
DOI : 10.1088/0022-3727/38/21/010

S. A. Stepanyan, V. R. Soloviev, and S. Starikovskaia, An electric field in nanosecond surface dielectric barrier discharge at different polarities of the high voltage pulse: spectroscopy measurements and numerical modeling, Journal of Physics D: Applied Physics, vol.47, issue.48, p.485201, 2014.
DOI : 10.1088/0022-3727/47/48/485201

V. R. Soloviev and V. Krivtsov, Mechanism of streamer stopping in a surface dielectric barrier discharge, Plasma Physics Reports, vol.40, issue.1, pp.65-77, 2014.
DOI : 10.1134/S1063780X1312009X

Y. Zhu, Y. Wu, W. Cui, Y. Li, and M. Jia, Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge, Journal of Physics D: Applied Physics, vol.46, issue.35, p.355205, 2013.
DOI : 10.1088/0022-3727/46/35/355205

N. Y. Babaeva, D. Tereshonok, and G. Naidis, 2016 Fluid and hybrid modeling of nanosecond surface discharges: effect of polarity and secondary electrons emission Plasma Sources Science and Technology, p.44008

S. Starikovskaia, K. Allegraud, O. Guaitella, I. Kosarev, E. Mintusov et al., Surface Discharges: Possible Applications for Plasma-Assisted Ignition and Electric Field Measurements 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Aerospace Sciences Meetings, pp.2010-1587, 2010.

R. Minetti, M. Ribaucour, M. Carlier, C. Fittschen, and L. Sochet, Experimental and modeling study of oxidation and autoignition of butane at high pressure Combustion and Flame, pp.201-211, 1994.

S. A. Stepanyan, A. Y. Starikovskiy, N. A. Popov, and S. Starikovskaia, 2014 A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: transition to filamentary mode Plasma Sources Science and Technology, p.45003

Y. Akishev, G. Aponin, A. Balakirev, M. Grushin, and V. Karalnik, Petryakov A and Trushkin N 2013 Spatial?temporal development of a plasma sheet in a surface dielectric barrier discharge powered by a step voltage of moderate duration Plasma Sources Science and Technology, p.15004

A. W. Houpt and S. Leonov, Charge Transfer in Constricted Form of Surface Barrier Discharge at, Atmospheric Pressure Journal of Thermophysics and Heat Transfer, vol.1, issue.9, 2016.

L. Kof and A. Starikovskii, Oxygen?hydrogen mixtures ignition under the high-voltage ionization wave conditions at high temperatures 26th Int, Symp. on Combustion, 1996.

S. Starikovskaia, Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms, Journal of Physics D: Applied Physics, vol.47, issue.35, p.353001, 2014.
DOI : 10.1088/0022-3727/47/35/353001

Z. Yin, A. Montello, C. D. Carter, W. R. Lempert, and I. Adamovich, Measurements of temperature and hydroxyl radical generation/decay in lean fuel?air mixtures excited by a repetitively pulsed nanosecond discharge Combustion and Flame, pp.1594-1608, 2013.

T. Li, I. Adamovich, and J. Sutton, Burner Platform for Examining the Effects of Non-Equilibrium Plasmas on Oxidation and Combustion Chemistry Combustion Science and Technology, pp.990-998, 2013.

Z. Yin, A. Pulcini, I. Adamovich, and W. Lempert, Time-Resolved Measurements of Temperature and Species Concentrations Distributions in Ar-Based Mixtures Excited by a Nanosecond Pulse Discharge 52nd, Aerospace Sciences Meeting AIAA SciTech, pp.2014-1361, 2014.

S. Stepanyan and G. Vanhove, Desgroux P and Starikovskaia S 2013 Time-resolved electric field measurements in nanosecond surface dielectric discharge Comparison of different polarities. Ignition of combustible mixtures by surface discharge in a rapid compression machine, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Aerospace Sciences Meetings, pp.2013-1053

S. A. Shcherbanev, S. A. Stepanyan, M. A. Boumehdi, G. Vanhove, P. Desgroux et al., Energy balance in surface nanosecond dielectric barrier discharge. Plasma-assisted ignition of heavy hydrocarbons at high pressures, 53rd AIAA Aerospace Sciences Meeting, pp.2015-2587
DOI : 10.2514/6.2015-0668

S. M. Starikovskaya, N. L. Aleksandrov, I. N. Kosarev, S. Kindysheva, and A. Starikovskii, Ignition with low-temperature plasma: Kinetic mechanism and experimental verification High Energy Chemistry, pp.213-218, 2009.
DOI : 10.1134/s0018143909030096

N. B. Anikin, S. M. Starikovskaia, and A. Starikovskii, Oxidation of saturated hydrocarbons under the effect of nanosecond pulsed space discharge, Journal of Physics D: Applied Physics, vol.39, issue.15, p.3244, 2006.
DOI : 10.1088/0022-3727/39/15/006

S. M. Starikovskaia, A. Y. Starikovskii, and D. Zatsepin, Hydrogen oxidation in a stoichiometric hydrogen-air mixture in the fast ionization wave Combustion Theory and Modelling, pp.97-129, 2001.

N. Anikin, S. Starikovskaia, and A. Starikovskii, of the oxidation of alkanes in their mixtures with oxygen and air under the action of a pulsed volume nanosecond discharge Plasma Physics Reports, pp.1028-1042, 2004.

V. Belaia and A. Starikovskiy, Nanbosecond discharge ignition of lean C 2 H 6 -containing mixtures at elevated temperatures 52nd Aerospace Sciences Meeting AIAA SciTech, pp.2014-1181, 2014.

T. Ombrello, S. H. Won, Y. Ju, and S. Williams, Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O 3 Combustion and Flame, pp.1906-1915, 2010.

T. Ombrello, S. H. Won, Y. Ju, and S. Williams, Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O 2 (a 1 ? g ) Combustion and Flame, pp.1916-1928, 2010.
DOI : 10.1016/j.combustflame.2010.02.005

W. Sun, S. H. Won, and Y. Ju, situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture Combustion and Flame, pp.2054-2063, 2014.

M. S. Bak, H. Do, M. G. Mungal, and M. A. Cappelli, Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit Combustion and Flame, pp.3128-3137, 2012.

M. S. Bak, S. Kyun-im, M. G. Mungal, and M. A. Cappelli, Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas, Combustion and Flame, vol.160, issue.11, pp.2396-2403, 2013.
DOI : 10.1016/j.combustflame.2013.05.023

L. Wu, J. Lane, N. Cernansky, and D. Miller, Fridman A and Starikovskiy A 2011 Plasma-assisted ignition below self-ignition threshold in methane, ethane, propane and butane-air mixtures Proceedings of the Combustion Institute, pp.3219-3224

A. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara et al., Ignition of hydrocarbon-air mixtures with non-equilibrium plasma at elevated pressures 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Aerospace Sciences Meetings, pp.2012-828, 2012.

D. Singleton, S. J. Pendleton, and M. Gundersen, ???air, Journal of Physics D: Applied Physics, vol.44, issue.2, p.22001, 2011.
DOI : 10.1088/0022-3727/44/2/022001

S. J. Pendleton, S. Bowman, C. Carter, M. A. Gundersen, and W. Lempert, The production and evolution of atomic oxygen in the afterglow of streamer discharge in atmospheric pressure fuel/air mixtures, Journal of Physics D: Applied Physics, vol.46, issue.30, p.305202, 2013.
DOI : 10.1088/0022-3727/46/30/305202

M. Gundersen, D. Singleton, A. Kuthi, Y. Lin, and S. , Transient plasma for marine diesel GHG abatement China Maritime Week, 2012.

S. J. Pendleton, A. Montello, C. Carter, W. Lempert, and M. Gundersen, Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures, Journal of Physics D: Applied Physics, vol.45, issue.49, p.495401, 2012.
DOI : 10.1088/0022-3727/45/49/495401

P. Tardiveau, S. Bentaleb, and P. Jeanney, Jorand F and Pasquiers S 2012 Comparative Study of Air-Propane and Air-Heptane Mixtures Ignition by Nanosecond Pulsed Discharges, International Journal of Plasma Environmental Science & Technology, vol.6, pp.130-134

N. A. Popov, The effect of nonequilibrium excitation on the ignition of hydrogen-oxygen mixtures, High Temperature, vol.45, issue.2, pp.261-279, 2007.
DOI : 10.1134/S0018151X07020174

N. A. Popov, Kinetics of plasma-assisted combustion: effect of nonequilibrium excitation on the ignition and oxidation of combustible mixtures Plasma Sources Science and Technology, p.43002, 2016.

N. A. Popov, Fast gas heating in a nitrogen???oxygen discharge plasma: I. Kinetic mechanism, Journal of Physics D: Applied Physics, vol.44, issue.28, p.285201, 2011.
DOI : 10.1088/0022-3727/44/28/285201

N. A. Popov, Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production Plasma Sources Science and Technology, p.44003, 2016.
DOI : 10.1088/0963-0252/25/4/044003

N. L. Aleksandrov, S. V. Kindysheva, M. M. Nudnova, and A. Starikovskiy, Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields, Journal of Physics D: Applied Physics, vol.43, issue.25, p.255201, 2010.
DOI : 10.1088/0022-3727/43/25/255201

D. L. Rusterholtz, D. A. Lacoste, G. D. Stancu, D. Z. Pai, and C. Laux, Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges, Journal of Physics D: Applied Physics, vol.46, issue.46, p.464010, 2013.
DOI : 10.1088/0022-3727/46/46/464010

E. I. Mintoussov, S. J. Pendleton, F. G. Gerbault, N. A. Popov, and S. Starikovskaia, Fast gas heating in nitrogen???oxygen discharge plasma: II. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures, Journal of Physics D: Applied Physics, vol.44, issue.28, p.285202, 2011.
DOI : 10.1088/0022-3727/44/28/285202

M. Lavid and J. Stevens, Photochemical ignition of premixed hydrogenoxidizer mixtures with excimer lasers Combustion and Flame, pp.195-202, 1985.
DOI : 10.1016/0010-2180(85)90007-0

S. Bozhenkov, S. Starikovskaia, and A. Starikovskii, Nanosecond gas discharge ignition of H 2 -and CH 4 -containing mixtures Combustion and Flame, pp.133-146, 2003.

N. L. Aleksandrov, S. Kindysheva, and I. Kochetov, Kinetics of low-temperature plasmas for plasma-assisted combustion and aerodynamics Plasma Sources Science and Technology, p.15017, 2014.

I. V. Adamovich, T. Li, and W. Lempert, Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.373, issue.2048, 2015.
DOI : 10.1016/S0010-2180(97)00275-7

A. A. Konnov, On the role of excited species in hydrogen combustion Combustion and Flame, pp.3755-3772, 2015.

W. Sun, M. Uddi, S. H. Won, T. Ombrello, C. Carter et al., Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits Combustion and Flame, pp.221-229, 2012.

W. Sun, S. H. Won, T. Ombrello, C. Carter, and J. , Direct ignition and S-curve transition by in situ nano-second pulsed discharge in methane, helium counterflow flame Proceedings of the Combustion Institute, pp.847-855, 2013.
DOI : 10.2514/6.2012-381

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1079&context=usafresearch

Y. Ju and W. Sun, Plasma assisted combustion: Dynamics and chemistry Progress in Energy and Combustion Science, pp.21-83, 2015.
DOI : 10.1016/j.pecs.2014.12.002

E. A. Filimonova, -air mixture, Journal of Physics D: Applied Physics, vol.48, issue.1, p.15201, 2015.
DOI : 10.1088/0022-3727/48/1/015201

URL : https://hal.archives-ouvertes.fr/tel-01252411

M. Bellenoue, S. Labuda, B. Ruttun, and J. Sotton, SPARK PLUG AND CORONA ABILITIES TO IGNITE STOICHIOMETRIC AND LEAN METHANE/AIR MIXTURES, Combustion Science and Technology, vol.179, issue.3, pp.477-496, 2007.
DOI : 10.1016/S1540-7489(02)80095-5

M. Castela, S. Stepanyan, B. Fiorina, A. Coussement, O. Gicquel et al., A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture, air mixture Proceedings of the Combustion Institute
DOI : 10.1016/j.proci.2016.06.174

D. Xu, D. Lacoste, and C. Laux, Ignition of Quiescent Lean Propane?:Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges Plasma Chemistry and Plasma Processing, pp.1-19, 2015.

V. H. Rapp, A. Defilippo, S. Saxena, J. Y. Chen, R. W. Dibble et al., Extending Lean Operating Limit and Reducing Emissions of Methane Spark-Ignited Engines Using a Microwave-Assisted Spark Plug, Journal of Combustion, vol.67, issue.6, 2012.
DOI : 10.1016/j.combustflame.2009.02.006

B. Wolk, A. Defilippo, J. Y. Chen, R. Dibble, A. Nishiyama et al., Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combustion and Flame, vol.160, issue.7, pp.1225-1234, 2013.
DOI : 10.1016/j.combustflame.2013.02.004

D. Healy, N. Donato, C. Aul, E. Petersen, C. Zinner et al., n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations, Combustion and Flame, vol.157, issue.8, pp.1526-1539, 2010.
DOI : 10.1016/j.combustflame.2010.01.016

G. Vanhove, M. A. Boumehdi, S. Shcherbanev, and Y. Fenard, Desgroux P and Starikovskaia S 2016 A comparative experimental kinetic study of spontaneous and plasma-assisted cool flames in a rapid compression machine Proceedings of the Combustion Institute

C. O. Laux and D. Fletcher, Rhode-Saint-Genese, Belgium: Von Karman Institute) 2002 Radiation and nonequilibrium collisional-radiative models Physico-Chemical Modeling of High Enthalpy and Plasma Flows

T. Briels, J. Kos, G. J. Winands, E. M. Van-veldhuizen, and U. Ebert, Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy, Journal of Physics D: Applied Physics, vol.41, issue.23, p.234004, 2008.
DOI : 10.1088/0022-3727/41/23/234004

O. Guaitella, I. Marinov, and A. Rousseau, Role of charge photodesorption in self-synchronized breakdown of surface streamers in air at atmospheric pressure, Applied Physics Letters, vol.98, issue.7, p.71502, 2011.
DOI : 10.1088/0022-3727/43/8/082001

N. Y. Babaeva and G. Naidis, Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air, Journal of Physics D: Applied Physics, vol.29, issue.9, p.2423, 1996.
DOI : 10.1088/0022-3727/29/9/029

G. Naidis, On photoionization produced by discharges in air Plasma Sources Science and Technology, p.253, 2006.
DOI : 10.1088/0963-0252/15/2/010

A. Flitti and S. Pancheshnyi, Gas heating in fast pulsed discharges in N 2 -O 2 mixtures Eur. Phys, J. Appl. Phys, vol.45, p.21001, 2009.

D. A. Xu, M. N. Shneider, D. A. Lacoste, and C. Laux, Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, Journal of Physics D: Applied Physics, vol.47, issue.23, p.235202, 2014.
DOI : 10.1088/0022-3727/47/23/235202

S. A. Stepanyan, Nanosecond surface dielectric barrier discharge at high pressures for plasma assisted combustion Ph, 2014.

Y. Akishev, V. Karalnik, and I. Kochetov, Napartovich A and Trushkin N 2014 Highcurrent cathode and anode spots in gas discharges at moderate and elevated pressures Plasma Sources Science and Technology, p.54013

S. A. Shcherbanev, A. Y. Khomenko, S. A. Stepanyan, N. A. Popov, and S. Starikovskaia, Features of optical emission spectrum of high pressure filamentary nanosecond surface dielectric barrier discharge PSST Letters, 2016.

L. P. Babich, T. Loiko, and V. A. Tsukerman, High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons Soviet Physics Uspekhi, pp.521-540, 1990.

C. D. Pintassilgo, V. Guerra, O. Guaitella, and A. Rousseau, Study of gas heating mechanisms in millisecond pulsed discharges and afterglows in air at low pressures Plasma Sources Science and Technology, p.25006, 2014.

C. Vivien, J. Hermann, and A. Perrone, A study of molecule formation during laser ablation of graphite in low-pressure nitrogen, Journal of Physics D: Applied Physics, vol.31, issue.10, p.1263
DOI : 10.1088/0022-3727/31/10/019

L. St-onge, R. Sing, S. Béchard, and M. Sabsabi, Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air Applied Physics A, pp.69-913, 1999.

Q. Ma and P. J. Dagdigian, Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds, Analytical and Bioanalytical Chemistry, vol.35, issue.3, pp.3193-3205, 2011.
DOI : 10.1007/s00216-011-4687-y

A. Fernandez-bravo, T. Delgado, P. Lucena, and J. J. Laserna, Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.89, pp.77-83, 2013.
DOI : 10.1016/j.sab.2013.08.004

A. V. Klochko, J. Lemainque, J. Booth, and S. Starikovskaia, TALIF measurements of oxygen atom density in the afterglow of a capillary nanosecond discharge Plasma Sources Science and Technology, p.25010, 2015.

S. A. Shcherbanev, N. A. Popov, and S. Starikovskaia, Ignition of high pressure lean H2:air mixtures along the multiple channels of nanosecond surface discharge, Combustion and Flame, 2016.

A. Marco, A. Manuel, and V. Gonzalez, Computer simulated Balmeralpha , -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.58, pp.1489-1504, 2003.

R. M. Van-der-horst, T. Verreycken, E. Van-veldhuizen, and P. J. Bruggeman, O mixtures, Journal of Physics D: Applied Physics, vol.45, issue.34, p.345201, 2012.
DOI : 10.1088/0022-3727/45/34/345201

B. Galvao, J. P. Braga, J. C. Belchior, and C. , Quenching in N(2D) + N 2 Collisions: A State-Specific Analysis via Surface Hopping, Dynamics Journal of Chemical Theory and Computation, vol.5, pp.1872-1877, 2014.

B. D. Huang, X. M. Zhu, K. Takashima, and Y. Pu, The spatial???temporal evolution of the electron density and temperature for a nanosecond microdischarge, Journal of Physics D: Applied Physics, vol.46, issue.46, p.464011, 2013.
DOI : 10.1088/0022-3727/46/46/464011

B. D. Huang, K. Takashima, X. M. Zhu, and Y. Pu, The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges, Journal of Physics D: Applied Physics, vol.47, issue.42, p.422003, 2014.
DOI : 10.1088/0022-3727/47/42/422003

S. Yatom, E. Stambulchik, V. Vekselman, and Y. Krasik, Spectroscopic study of plasma evolution in runaway nanosecond atmospheric-pressure He discharges, Physical Review E, vol.316, issue.1, p.13107, 2013.
DOI : 10.1103/PhysRevE.66.046413

S. Yatom and Y. Krasik, Pa pressure, Journal of Physics D: Applied Physics, vol.47, issue.21, p.215202
DOI : 10.1088/0022-3727/47/21/215202

F. R. Gilmore, R. R. Laher, and P. J. Espy, ???Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems, Journal of Physical and Chemical Reference Data, vol.21, issue.5, pp.1005-1107, 1992.
DOI : 10.1063/1.555910

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA246065

R. Sigmond, Evidence of a high-pressure cathode gas sheath in an arc discharge of short duration, Proceedings of the Physical Society, vol.85, issue.6, p.1269, 1965.
DOI : 10.1088/0370-1328/85/6/326

D. A. Sorokin, M. I. Lomaev, T. I. Banokina, and V. Tarasenko, Determination of the electron concentration and temperature, as well as the reduced electric field strength, 2014.

T. Shao, C. Zhang, Z. Niu, P. Yan, V. F. Tarasenko et al., discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes, Diffuse, p.21503, 2011.

S. Chen, L. Heijmans, R. Zeng, S. Nijdam, and U. Ebert, mixtures: inception cloud and streamer emergence, Journal of Physics D: Applied Physics, vol.48, issue.17, p.175201, 2015.
DOI : 10.1088/0022-3727/48/17/175201

P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage, Journal of Physics D: Applied Physics, vol.42, issue.17, p.175202, 2009.
DOI : 10.1088/0022-3727/42/17/175202

S. M. Starikovskaia, K. Allegraud, O. Guaitella, I. Kosarev, E. Mintusov et al., Surface Discharges: Possible Applications for Plasma-Assisted Ignition and Electric Field Measurements, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp.2010-1587, 2010.
DOI : 10.2514/6.2010-1587

Y. Hidaka, H. Takuma, and M. Suga, Shock-tube study of the rate constant for excited hydroxyl (OH*(2.SIGMA.+)) formation in the nitrous oxide-molecular hydrogen reaction, The Journal of Physical Chemistry, vol.89, issue.23, pp.4903-4905, 1985.
DOI : 10.1021/j100269a004

P. W. Fairchild, G. Smith, and D. Crosley, OH at elevated temperatures, The Journal of Chemical Physics, vol.44, issue.4, pp.1795-1807, 1983.
DOI : 10.1016/0010-2180(81)90110-3

B. Lewis, V. Elbe, and G. , Combustion, flames and explosions of gases, 1987.

N. A. Popov, Effect of a pulsed high-current discharge on hydrogen-air mixtures, Plasma Physics Reports, vol.34, issue.5, pp.414-430, 2008.
DOI : 10.1134/S1063780X08050048

B. Wang, H. Olivier, and G. , Ignition of shock-heated H2-air-steam mixtures, Combustion and Flame, vol.133, issue.1-2, pp.93-106, 2003.
DOI : 10.1016/S0010-2180(02)00552-7

G. Hagelaar and L. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models Plasma Sources Science and Technology, p.722, 2005.

B. R. Weatherford, E. Barnat, and J. Foster, Two-dimensional laser collision-induced fluorescence measurements of plasma properties near an RF plasma cathode extraction aperture Plasma Sources Science and Technology, p.55030, 2012.