]. H. Bibliographie1, N. S. Abdel-gawad, M. Elazab, and . Osman, Exact Solutions of Space Dependent Korteweg?de Vries Equation by The Extended Unified Method, Journal of the Physical Society of Japan, vol.82, p.44004, 2013.

A. Aw and M. Rascle, Resurrection of "Second Order" Models of Traffic Flow, SIAM Journal on Applied Mathematics, vol.60, issue.3, pp.916-938, 2000.
DOI : 10.1137/S0036139997332099

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, vol.51, issue.2, pp.1035-1042, 1995.
DOI : 10.1103/PhysRevE.51.1035

C. Berthon, Sch??ma nonlin??aire pour l'approximation num??rique d'un syst??me hyperbolique non conservatif, Comptes Rendus Mathematique, vol.335, issue.12, pp.1069-1072, 2002.
DOI : 10.1016/S1631-073X(02)02615-8

C. Berthon, F. Coquel, and P. G. Lefloch, Why many theories of shock waves are necessary : Kinetic relations for nonconservative systems, Proc. Royal Soc. Edinburgh, pp.142-143, 2012.

C. M. Bishop, Pattern recognition and machine learning, 2006.

R. M. Colombo, A 2 ?? 2 hyperbolic traffic flow model, Mathematical and Computer Modelling, vol.35, issue.5-6, pp.683-688, 2002.
DOI : 10.1016/S0895-7177(02)80029-2

URL : http://dx.doi.org/10.1016/s0895-7177(02)80029-2

G. Costeseque, Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d, p.2014

C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, vol.29, issue.4, pp.277-286, 1995.
DOI : 10.1016/0191-2615(95)00007-Z

T. Fahlaoui, Optmisation des conditions aux limites et conditions initiales sur un modèle de transport, stage de Master Paris6, préparé et soutenu au Grettia/Cosys/IFSTTAR. Coencadré par X. Louis et R. Sainct, 2015.

A. Favre, Turbulence: Space-time statistical properties and behavior in supersonic flows, Physics of Fluids, vol.26, issue.10, pp.2851-2863, 1983.
DOI : 10.1063/1.864049

W. Fickett and W. C. Davis, Detonation, 1979.

D. Gazis and C. Knapp, On-Line Estimation of Traffic Densities from Time-Series of Flow and Speed Data, Transportation Science, vol.5, issue.3, pp.283-301, 1971.
DOI : 10.1287/trsc.5.3.283

B. D. Greenshields, A study of traffic capacity, Proceedings of the Highway Research Record, pp.448-477, 1935.

F. L. Hall and . Agyemang-duah, Freeway capacity drop and the definition of capacity, Transportation Research Record, TRB, pp.91-98, 1320.

A. Hedar and M. Fukushima, Minimising multimodal functions by simplex coding genetic, 2003.

S. E. Jabari and H. X. Liu, A stochastic model of traffic flow: Theoretical foundations, Transportation Research Part B: Methodological, vol.46, issue.1, pp.156-174, 2012.
DOI : 10.1016/j.trb.2011.09.006

B. S. Kerner and H. Rehborn, Experimental features and characteristics of traffic jams, Physical Review E, vol.53, issue.2, pp.1297-1300, 1996.
DOI : 10.1103/PhysRevE.53.R1297

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, 1972.

B. E. Launder, G. J. Reece, and W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, Journal of Fluid Mechanics, vol.61, issue.03, pp.537-66, 1975.
DOI : 10.1063/1.1694422

B. E. Launder and N. D. Sandham, Closure Strategies for Turbulent and Transitional Flows, 2002.
DOI : 10.1017/CBO9780511755385

D. Peter and . Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves

J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, Proceedings of the 13th International Symposium on Transportation and Traffic Theory, pp.647-678, 1996.
DOI : 10.1016/b978-008044680-6/50021-0

J. P. Lebacque, S. Mammar, and H. Haj-salem, The Aw???Rascle and Zhang???s model: Vacuum problems, existence and regularity of the solutions of the Riemann problem, Transportation Research Part B: Methodological, vol.41, issue.7, pp.41-710, 2007.
DOI : 10.1016/j.trb.2006.11.005

J. P. Lebacque, S. Mammar, and H. Haj-salem, Generic second order traffic flow modeling, Transportation and Traffic Flow Theory, 2007.

J. P. Lebacque and M. M. Khoshyaran, A variational formulation for higher order macroscopic traffic flow models of the GSOM family, Transportation Research Part B: Methodological, vol.57, pp.245-265, 2013.
DOI : 10.1016/j.trb.2013.07.005

URL : https://hal.archives-ouvertes.fr/hal-01215014

M. J. Lighthill and G. B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.229, issue.1178, pp.317-345, 1178.
DOI : 10.1098/rspa.1955.0089

R. Mahnke, J. Kaupu?-zs, and I. Lubashevsky, Probabilistic description of traffic flow, Physics Reports, vol.408, issue.1-2, pp.1-130, 2005.
DOI : 10.1016/j.physrep.2004.12.001

S. Mammar, Modélisation macroscopique et hybride du trafic, thèse, 2006.

R. Monneau, Homogenization of some traffic vehicular models". private lectures

J. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.
DOI : 10.1093/comjnl/7.4.308

P. Nelson, Synchronized traffic flow from a modified Lighthill-Whitman model, Physical Review E, vol.61, issue.6, 2000.
DOI : 10.1103/PhysRevE.61.R6052

G. F. Newell, Nonlinear Effects in the Dynamics of Car Following, Operations Research, vol.9, issue.2, pp.209-229, 1969.
DOI : 10.1287/opre.9.2.209

D. Ngoduy, Macroscopic Discontinuity Modeling for Multiclass Multilane Traffic Flow Operations The Netherlands, 2006.

D. Ngoduy, A multilane model for highway traffic, Delft, 2006.

M. Papageorgiou, J. Blosseville, and H. Hadj-salem, Macroscopic modelling of traffic flow on the Boulevard P??riph??rique in Paris, Transportation Research Part B: Methodological, vol.23, issue.1, pp.29-47, 1989.
DOI : 10.1016/0191-2615(89)90021-0

H. J. Payne, Models of freeway traffic and control, Simulation Council Proceedings, pp.51-61, 1971.

B. Persaud, S. Yagar, and R. Brownlee, Exploration of the Breakdown Phenomenon in Freeway Traffic, Transportation Research Record: Journal of the Transportation Research Board, vol.1634, pp.64-69, 1634.
DOI : 10.3141/1634-08

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.42-51, 1956.
DOI : 10.1287/opre.4.1.42

P. Sagaut, Large Eddy Simulation for Incompressible Flows, 2006.

R. Sainct, X. Louis, and A. Forestier, Application of averaging techniques to traffic flow theory, Mathematical Methods in the Applied Sciences, vol.142, issue.1, 2016.
DOI : 10.1002/mma.3997

R. Sainct, Trajctory estimation and wave dampening with multi-anticipation in microscopic traffic models, Transportmetrica A : Transport Science, 2016.

B. Schnetzler and X. Louis, Anisotropic second-order models and associated fundamental diagrams, Transportation Research Part C: Emerging Technologies, vol.27, pp.131-139
DOI : 10.1016/j.trc.2011.09.003

B. Seibold, M. R. Flynn, A. R. Kasimov, and R. R. Rosales, Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, p.12045510

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

R. Stern, D. Work, S. Cui, H. Pohlmann, B. Seibold et al., WiP Abstract: Stabilizing Traffic with a Single Autonomous Vehicle, 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), p.2016
DOI : 10.1109/ICCPS.2016.7479130

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama et al., Traffic jams without bottlenecks???experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, vol.10, issue.3, p.33001, 2008.
DOI : 10.1088/1367-2630/10/3/033001

B. Temple, Systems of Conservation Laws with Coinciding Shock and Rarefaction Curves, Contemp. Math, vol.17, pp.143-151, 1983.
DOI : 10.1090/conm/017/16

M. Treiber, A. Henneke, and D. Helbing, Derivation properties and Simulation of a Gas-Kinetic- Based, Non-Local Traffic Model, Phys. Rev. E, vol.59, issue.239 1, 1999.

F. D. Vuyst, V. Ricci, and F. Salvarani, Nonlocal second order vehicular traffic flow models and Lagrange-remap finite volumes". Finite Volumes for Complex Applications VI Problems & Perspectives, pp.781-789, 2011.
DOI : 10.1007/978-3-642-20671-9_82

Y. Wang and M. Papageorgiou, Real-time freeway traffic state estimation based on extended Kalman filter: a general approach, Transportation Research Part B: Methodological, vol.39, issue.2, pp.141-167, 2005.
DOI : 10.1016/j.trb.2004.03.003

G. B. Whitham, Some comments on wave propagation and shock wave structure with application to magnetohydrodynamics, Communications on Pure and Applied Mathematics, vol.2, issue.1, pp.113-158, 1959.
DOI : 10.1002/cpa.3160120107

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, vol.36, issue.3, pp.275-290, 2002.
DOI : 10.1016/S0191-2615(00)00050-3