
HAL Id: tel-01526771
https://pastel.hal.science/tel-01526771

Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quelques Algorithmes pour des problèmes de plus court
chemin et d’opérations aériennes

Axel Parmentier

To cite this version:
Axel Parmentier. Quelques Algorithmes pour des problèmes de plus court chemin et d’opérations
aériennes. Mathématiques générales [math.GM]. Université Paris-Est, 2016. Français. �NNT :
2016PESC1060�. �tel-01526771�

https://pastel.hal.science/tel-01526771
https://hal.archives-ouvertes.fr

École doctorale MATHÉMATIQUES ET SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

THÈSE DE DOCTORAT

Spécialité : Mathématiques

Présentée par

Axel PARMENTIER

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS-EST

ALGORITHMS FOR SHORTEST PATH AND

AIRLINE PROBLEMS

QUELQUES ALGORITHMES POUR DES PROBLÈMES DE PLUS COURT CHEMIN ET

D’OPÉRATIONS AÉRIENNES

Soutenance le 10 novembre 2016 devant le jury composé de :

M. Frédéric MEUNIER École des Ponts ParisTech Directeur de thèse
M. Stéphane GAUBERT INRIA Rapporteur
M. Patrick JAILLET MIT Rapporteur
Mme Marie-Christine COSTA ENSTA Examinatrice
M. Dominique FEILLET École des Mines de Saint-Etienne Examinateur
M. Frédéric GARDI Innovation 24 Examinateur
M. Vincent LECLÈRE École des Ponts ParisTech Examinateur

À Marie,

Remerciements

Je tiens à remercier en premier lieu Frédéric Meunier, mon directeur de thèse, pour ces trois
années passionnantes et pour son investissement quotidien en tant que directeur de thèse.
Merci de m’avoir donné la passion de la recherche. Travailler avec toi est un vrai plaisir. Merci
pour ton inaltérable enthousiasme, pour ton amitié et pour tous ces déjeuners ou la discussion
court de Ravel à Miles Davis, en passant par l’Homme sans qualités, John von Neumann et
Anthony Hopkins.

J’adresse mes sincères remerciements à Stéphane Gaubert et Patrick Jaillet pour avoir accepté
d’être les rapporteurs de ma thèse. Je souhaite également remercier chaleureusement les
examinateurs qui ont accepté de siéger dans mon jury malgré les emplois du temps chargés et
la distance géographique : Marie-Christine Costa, Dominique Feillet, Frédéric Gardi et Vincent
Leclère.

Je tiens à remercier les membres du département de Recherche Opérationnelle d’Air France,
avec qui j’ai eu le plaisir de travailler tout au long de ma thèse. En particulier, je souhaite
remercier Alexandre Boissy de m’avoir donné cette opportunité et Christophe Ressel pour avoir
suivi ce projet. Je tiens aussi à remercier Mathieu Sanchez pour nos nombreuses discussions
de modélisation, et Mohand Ait Alamara pour nos échanges autour de l’implémentation
des algorithmes. Je souhaite aussi remercier Isabel Gomez, Thierry Vanhaverbeke, Pierre de
Frémainville et Rémi Pacqueau pour tous les échanges que nous avons pu avoir sur la fin de
la thèse. Enfin je souhaite aussi remercier tous ceux avec qui j’ai eu le plaisir de manger des
chouquettes, et en particulier Solène, Blaise, Marine, Yousra, Alexandre, Waïl, Sybille, Ferran,
Elsa, Magdalena, Stanislas, Anne Laure et tous ceux que j’oublie !

Un grand merci à tous les chercheurs du Cermics et de l’ENPC avec qui j’ai pu échanger
pendant ces années. Je souhaite en particulier remercier Jean François Delmas pour ses
conseils sur l’après thèse, Michel De Lara pour les références sur les ordres stochastiques, Jean-
Philippe Chancelier sans qui les solveurs n’auraient jamais fonctionné, Guillaume Obozinski
pour ses conseils sur tous les sujets liés à l’apprentissage automatique, Vincent Leclère, Julien
Reygner et Aurélien Alfonsi pour leur aide sur les copules et la distance de Wasserstein. Je
souhaite aussi remercier Laurent Monasse pour tous les footings passés discuter de maths
et d’athlétisme. Un merci tout particulier à Isabelle Simunic, grâce à qui tous les projets
aboutissent ! I want also to thank Marco Lübbecke and all his team for these exciting months
in Aachen. Thank-you to Markus : working with you has been very pleasant. Je souhaite aussi
à remercier les doctorants du Cermics, et en particulier Thomas, Pauline, Laurent, Étienne,
Yannick et François.

Je tiens aussi à remercier Alexandre Bayen de m’avoir convaincu de faire une thèse, et Domi-

i

Remerciements

nique Bazy de m’avoir aidé dans mon orientation professionnelle.
Je souhaite remercier ma famille pour son indéfectible soutien. Merci Manet, pour ces années
à Saint-Maur, ces dix ans de déjeuner du dimanche, et ces vingt cinq ans de petites attentions.
Mes parents pour tout ce qu’ils m’ont transmis, et en particulier l’indépendance d’esprit, la
curiosité, l’exigence envers soi-même et le goût du challenge. Maman, pour une vie à s’assurer
de notre bonheur et de notre réussite. Papa, car on n’a jamais fini d’apprendre de son père.
Merci Bonne-Maman. Merci Tanguy, c’est confortable d’être le second ! Merci Solène, Astrid et
Servane, mes plus fidèles clientes en maths ! Merci Laure-Hélène et Vianney. Merci oncle Guy
pour ces soirées derrière l’ordinateur de Castres à m’apprendre les rudiments du web. Merci
Diane, tu es une marraine hors pair. Merci Arnauld, Isabelle, oncle Gérard et tante Anne-Marie
pour vos tables ouvertes aux étudiants perdus en région parisienne. Merci Loïc, vous qui
comprenez ce qu’est une passion pour la recherche, et merci Sylvie pour votre inépuisable
bibliothèque. Merci Jacques et Paul, de prendre un matheux à bord, François, Delphine, Yann,
Marie, oncle Jérôme et tante Isabelle. Merci Robert de m’avoir transmis les fondamentaux du
guidon et de la fourchette, à défaut de l’art du tournevis. Merci à Jean-Léopold, Vianney, Pierre
B., Jonathan, Thomas, Pascal et Cédric pour toutes ces heures passées à discuter de maths
et d’avenir. Et merci à Zacharie, Cyprien, François-Xavier, Alexis, Bruno, Matthieu, Pierre G.,
Simon, Luc et Gaëtan.
Et enfin merci à Marie, ma femme, à qui je dédie ce manuscrit. Car, pour reprendre les mots
d’Aragon,

« Que serais-je sans toi qui vins à ma rencontre,
Que serais-je sans toi qu’un cœur au bois dormant,
Que cette heure arrêtée au cadran de la montre,
Que serais-je sans toi que ce balbutiement »

Champs sur Marne, le 3 janvier 2017 A. P.

ii

Abstract
This thesis develops algorithms for resource constrained shortest path problems, and uses
them to solve the pricing subproblems of column generation approaches to some airline
operations problems.

Resource constrained shortest path problems are usually solved using a smart enumeration
of the non-dominated paths. Recent improvements of these enumeration algorithms rely on
the use of bounds on path resources to discard partial solutions. The quality of the bounds
determines the performance of the algorithm. Our main contribution to the topic is to
introduce a procedure to generate bounds on paths resources in a general setting which
covers most resource constrained shortest path problems, among which stochastic versions.
In that purpose, we introduce a generalization of the resource constrained shortest path
problem where the resources are taken in a lattice ordered monoid. The resource of a path
is the monoid sum of the resources of its arcs. The problem consists in finding a path whose
resource minimizes a non-decreasing cost function of the path resource among the paths that
satisfy a given constraint. Enumeration algorithms are generalized to this framework. We use
lattice theory to provide polynomial procedures to find good quality bounds. The efficiency of
the approach is proved through an extensive numerical study on deterministic and stochastic
path problems. Interestingly, the bounding procedures can be seen as generalizations to
lattice ordered monoids of some algebraic path problem algorithms of the literature which
work with path resources in a semiring.

These path algorithms have been successfully applied to the crew pairing problem. Given
a set of flight legs operated by an airline, the aircraft routing and the crew pairing problem
build respectively the sequences of flight legs operated by airplanes and crews that enable to
cover all legs at minimum cost. As some sequences of flight legs can be operated by crews
only if they stay in the same aircraft, the two problems are linked. The current practice in the
industry is to solve first the aircraft routing, and then the crew pairing problem, leading to a
non-optimal solution. During the last decade, solution schemes for the integrated problem
have been developed. We propose a solution scheme for the integrated problem based on two
new ingredients: a compact integer program approach to the aircraft routing problem, and a
new algorithm for the pricing subproblem of the usual column generation approach to the
crew pairing problem. This pricing algorithms is based on our resource constrained shortest
path framework. We then generalize the algorithm to take into account delay propagation
through probabilistic constraints. The algorithms enable to solve to near optimality Air France
industrial instances.

Keywords: constrained shortest path problems, aircraft routing, crew pairing, optimization

iii

Abstract

under uncertainty, lattice ordered monoid, column generation.

iv

Résumé
Cette thèse développe des algorithmes pour les problèmes de plus court chemin sous cont-
raintes de ressources, et les applique à l’optimisation des rotations des avions et des équipages
d’une compagnie aérienne dans le cadre d’approches par génération de colonnes.

Les problèmes de plus court chemin sous contraintes de ressources sont généralement résolus
grâce à une énumération intelligente de tous les chemins non dominés. Les approches récentes
utilisent des bornes sur les ressources des chemins pour éliminer des solutions partielles.
L’efficacité de la méthode est conditionnée par la qualité des bornes utilisées. Notre principale
contribution au domaine est l’introduction d’une procédure générique pour calculer des
bornes qui s’applique à la plupart des problèmes de chemins sous contraintes, et en particulier
les problèmes stochastiques. A cette fin, nous introduisons une généralisation du problème de
plus court chemin sous contraintes dans laquelle les ressources des chemins appartiennent à
un monoïde ordonné comme un treillis. La ressource d’un chemin est la somme des ressources
de ses arcs, le terme somme désignant l’opérateur du monoïde. Le problème consiste à trouver
parmi les chemins qui satisfont une contrainte donnée celui dont la ressource minimise une
fonction de coût croissante de la ressource des chemins. Nous généralisons les algorithmes
d’énumération à ce nouveau problème. La théorie des treillis nous permet de construire
une procédure polynomiale pour trouver des bornes de qualité. L’efficacité pratique de la
méthode est évaluée au travers d’une étude numérique détaillée sur des problèmes de chemins
déterministes et stochastiques. Les procédures de calcul des bornes peuvent être interprétées
comme des généralisations aux monoïdes ordonnés comme des treillis d’algorithmes de
la littérature définis pour résoudre un problème de chemin pour lequel les ressources des
chemins prennent leur valeur dans un semi-anneau.

Nos algorithmes de chemins ont été appliqués avec succès au problème de crew pairing. Étant
donné un ensemble de vols opérés par une compagnie aérienne, les problèmes d’aircraft
routing et de crew pairing construisent respectivement les séquences de vols opérées par les
avions et par les équipages de manière à couvrir tous les vols à moindre coût. Comme certaines
séquences de vols ne peuvent être réalisées par un équipage que s’il reste dans le même avion,
les deux problèmes sont liés. La pratique actuelle dans l’industrie aéronautique est de résoudre
tout d’abord le problème d’aircraft routing, puis le problème de crew pairing, ce qui aboutit
à une solution non-optimale. Des méthodes de résolution pour le problème intégré ont été
développées ces dix dernières années. Nous proposons une méthode de résolution pour
le problème intégré reposant sur deux nouveaux ingrédients : un programme linéaire en
nombre entier compact pour le problème d’aircraft routing, ainsi que de nouveaux pour le
problème esclave de l’approche usuelle par génération de colonnes du problème de crew
pairing. Ces algorithmes pour le problème esclave sont une application de nos algorithmes

v

Abstract

pour le problème de plus court chemin sous contraintes. Nous généralisons ensuite cette
approche de manière à prendre en compte des contraintes de probabilités sur la propagation
du retard. Ces algorithmes permettent de résoudre quasiment à l’optimum les instances
industrielles d’Air France.

Mots clefs : plus court chemin sous contraintes, aircraft routing, crew pairing, optimisation
dans l’incertitude, monoïdes ordonnés comme des treillis, génération de colonnes.

vi

Contents
Remerciements i

Abstract (English/Français) iii

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Mathematics for Air France operations . 2

1.2 Resource constrained and stochastic path problems 3

1.3 Column generation . 7

1.4 Stochasticity . 8

Introduction (Français) 11

1.1 Mathématiques pour les opérations aériennes . 12

1.2 Problèmes de plus court chemin sous contraintes 13

1.3 Génération de colonnes . 17

1.4 Prise en compte de l’aléa . 19

2 Probabilistic tools for stochastic optimization 23

2.1 Risk measures . 23

2.1.1 Version independent and risk-averse probability functional 23

2.1.2 Risk measures definition . 24

2.1.3 Conditional Value at Risk . 24

2.1.4 Distortion Functional . 25

2.1.5 Monotonicity with respect to stochastic orders 25

2.2 Convergence of the Monte-Carlo approximation of a stochastic problem 26

2.2.1 Wasserstein distances . 27

2.2.2 Robustness of solutions with respect to Wasserstein distance 28

2.2.3 Probabilistic constraints . 29

I Shortest path problems 31
Introduction to Part I . 33

vii

Contents

3 Algebraic structure of the resource set in path problems 37
3.1 Generalities on graphs and ordered monoids . 38

3.1.1 Digraphs . 38
3.1.2 Ordered monoid and lattices . 38

3.2 Monoid Resource Constrained Shortest Path Problem 39
3.2.1 First examples . 40
3.2.2 Main properties . 40

3.3 Links with the algebraic path problem . 41
3.3.1 Problem statement . 42
3.3.2 Link with our lattice ordered monoid framework 43

3.4 Modeling with lattice ordered monoid . 44
3.4.1 Bibliographical remarks and path problems classification 44
3.4.2 Example: a continent wide truck delivery 45
3.4.3 Modeling techniques . 47

4 Algorithms for path problems with resources in an ordered monoid 49
4.1 Enumeration algorithms . 50

4.1.1 Generic algorithm . 50
4.1.2 Convergence of the algorithms . 52
4.1.3 Dealing with non positive cycles, non commutativity or absence of the

Archimedean property . 56
4.2 Extended dynamic programming in lattice ordered monoids 57

4.2.1 Extended Ford-Bellman algorithm . 58
4.2.2 Generalized Dijkstra algorithm for faster bound computations 60

4.3 Numerical results on a resource constrained shortest path problem 62
4.3.1 Graph instances used . 63
4.3.2 Resources and constraints . 65
4.3.3 Experimental setting . 65
4.3.4 Diameter, difficulty of instances, and algorithms performances 67
4.3.5 Influence of constraint strength . 69
4.3.6 Influence of dimension . 69

4.4 Bibliographical remarks . 73
4.4.1 Bounding algorithms and algebraic path problem 73
4.4.2 Enumeration algorithm for resource constrained path problems 74

5 Applications to stochastic path problems 77
5.1 Independent distribution . 79

5.1.1 Discrete distributions lattice ordered monoid 80
5.1.2 Parametrized families of distribution . 82
5.1.3 Link with the online on time arrival problem 83

5.2 Numerical results for independent distributions with discrete support 84
5.2.1 Instances, resources, and constraints used 84
5.2.2 Results on the STOCHASTIC SHORTEST PATH PROBLEM 85
5.2.3 Results on the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM . 88

viii

Contents

5.3 Scenario based distributions . 90
5.3.1 Scenario lattice ordered monoid . 91
5.3.2 Complexity of the problem with finite number of scenarios 91
5.3.3 Bounds and online problem . 93
5.3.4 Convergence to the optimal solution of the initial problem 94

5.4 Numerical results for scenario based distributions 95
5.4.1 Instances and problem considered . 95
5.4.2 Main results . 96
5.4.3 Influence of the number of samples . 100

5.5 Bibliographical remarks . 100
5.5.1 Offline stochastic shortest path . 102
5.5.2 Online stochastic path problems . 102
5.5.3 Shortest path under probability constraint 102
5.5.4 Stochastic traveling salesman and vehicle routing problems 103

6 State graphs to improve algorithm convergence 105
6.1 Notion of state graph . 108
6.2 Clustering state graphs . 109

6.2.1 Clustering state graph for acyclic graphs 109
6.2.2 Dealing with cycles . 110
6.2.3 Choice of similarity measure for clustering 112
6.2.4 Clustering algorithm . 113

6.3 Conditional state graphs . 114
6.3.1 Conditional state graph . 114

6.4 Conditional versus clustered lower bounds . 117
6.5 Numerical results . 117

6.5.1 Resource constrained shortest path with ten constraints 118
6.5.2 Clustering state graph and STOCHASTIC SHORTEST PATH PROBLEM 121

II Airline operations problems 123
Introduction to Part II . 125

7 Integrated aircraft routing and crew pairing problem statement 129
7.1 Solution scheme . 129

7.1.1 Feedback AIRCRAFT ROUTING PROBLEM loop 130
7.1.2 From exact algorithm to matheuristic . 131

7.2 Instances . 131
7.3 Bibliographical remarks . 133

8 Compact integer program for aircraft routing 135
8.1 Aircraft routing problem definition . 136
8.2 Maintenance state graph and compact integer program 137

8.2.1 Maintenance state graph and integer program 138
8.2.2 Costs . 140

ix

Contents

8.2.3 Numerical results . 141

8.3 Aircraft routing problem complexity . 143

8.3.1 N P -completeness . 143

8.3.2 Fixed parameter tractability . 146

8.4 Bibliographical remarks . 147

9 Column generation for crew pairing problem 149
9.1 Column generation approach to CREW PAIRING PROBLEM 150

9.1.1 Master problem . 150

9.1.2 Pricing subproblem . 151

9.1.3 Column generation algorithm for the linear relaxation 151

9.1.4 Integer solutions . 153

9.2 Resource constrained shortest path subproblem 154

9.2.1 Air France working rules . 155

9.2.2 Pairing connection graph . 156

9.2.3 Working rules lattice ordered monoid . 157

9.2.4 Algorithm . 159

9.3 Numerical results on CREW PAIRING PROBLEM . 159

9.3.1 Results on the main instance . 159

9.3.2 Convergence, branching scheme and stabilization 160

9.3.3 Pricing subproblem algorithms . 162

9.4 Bibliographical remarks . 164

10 Numerical experiments on integrated problem 167

11 Managing delay in airline operations 171
11.1 Solution approach to robust integrated problem 173

11.1.1 Intrinsic delay distribution and difficulty of the inference problem 173

11.1.2 Exact solution scheme . 174

11.1.3 Delay minimization as objective of the Aircraft Routing Problem 176

11.1.4 Probabilistic constraints in STOCHASTIC CREW PAIRING PROBLEM column
generation . 177

11.2 Column generation approach to stochastic Crew Pairing 178

11.2.1 From deterministic to stochastic subproblem reduction 178

11.2.2 Delay lattice ordered monoid . 179

11.2.3 Algorithms . 184

11.2.4 Numerical results . 184

11.3 Compact integer program for Stochastic Aircraft Routing 186

11.3.1 Deterministic problem compact integer program 186

11.3.2 Scenario approach compact integer program 186

11.3.3 Numerical experiments . 187

11.4 Numerical results on STOCHASTIC INTEGRATED PROBLEM 188

11.5 Sampling approach . 188

11.6 Bibliographical remarks . 191

11.6.1 Delay models . 191

x

Contents

11.6.2 Optimization approaches . 192

12 Conclusion 195
12.1 Main contributions . 195
12.2 Research directions . 198

Appendix 201

A Wasserstein distance and stochastic optimization 203
A.1 Robustness of probability functionals with respect to Wasserstein distance . . . 203

A.1.1 Risk measures . 203
A.1.2 Distributions with bounded density . 203

A.2 Stochastic objective functions . 204
A.3 Probabilistic constraints . 206

B AIRCRAFT ROUTING PROBLEM N P -completeness 209
B.1 AIRCRAFT ROUTING PROBLEM definition . 209

B.1.1 Problem definition . 209
B.1.2 Equivalence with the Airport-Time graph routing problem 211

B.2 Polynomial algorithm . 217
B.2.1 Maintenance state graph . 217
B.2.2 Polynomial algorithm for network paths partition problem 219

B.3 Aircraft routing NP-completeness . 222

C LatticeRCSP library 225

Bibliography 227

Index 241

xi

List of Figures
1.1 A graph and an origin o to destination d path. 1

1.2 Two pairings on an eight flight legs connection graph. 2

1.3 A shortest o-d path of cost 10. 4

1.1 Un graphe et un chemin de l’origine o à la destination d 11

1.2 Deux séquences de vols dans le graphe des connections. 12

1.3 Un o-d chemin de coût 10. 14

3.1 A path P with one night arc is illustrated in blue. 46

4.1 Examples of our families of graphs . 64

4.2 Resource constrained shortest path problem results with k = 1 and α= 0.5. The
dashed lines correspond to algorithms without candidate paths, and the plain
lines to algorithms with candidate paths. 66

4.3 Constraint strength influence . 71

4.4 Resource constrained shortest path problem solved to optimality with k = 10
andα= 0.5. The dashed lines correspond to algorithms without candidate paths,
and the plain lines to algorithms with candidate paths. 72

5.1 Algorithms performances on stochastic shortest path problem 85

5.2 Algorithms performances on stochastic resource constrained shortest path prob-
lem . 90

5.3 Algorithms performances with weak stochastic constraints 91

5.4 Partition problem reduction to a graph problem. 93

5.5 Algorithms performances on scenario stochastic shortest path problem 97

6.1 Dominance and lower bound tests when dimension increases. 105

6.2 Clusters and conditional lower bounds . 106

6.3 A path π is a state graph D on graph D and the corresponding path in D 108

6.4 Cluster state graph building on a graph with cycle κ1 = 2 and κ2 = 1 111

8.1 AIRCRAFT ROUTING PROBLEM solution as a path partition in the routing connec-
tion graph . 138

8.2 Feasible and infeasible paths in a state graph. 139

8.3 AIRCRAFT ROUTING PROBLEM N P -completeness proof 145

9.1 Resource in Rdet. =Rd ×Ri ×Rd containing the information on a partial duty. 157

xiii

List of Figures

9.2 Algorithm defining ⊕det. on Rdet. = D × I ×D . 158
9.3 Column Generation tail effect on instance A320 fam. 161

10.1 Computation time of INTEGRATED PROBLEM scheme on AR12 with γ= 0.9 . . . 169
10.2 Computation time of INTEGRATED PROBLEM scheme on AR12 with γ= 0.6 . . . 170

11.1 Non independence of legs delay . 174
11.2 Chronological direction computation of duty delay 180
11.3 Reverse chronological direction computation of duty delay 181
11.4 A “middle duty” partial pairing. 183
11.5 Multiple duties partial pairing . 183

B.1 a. An aircraft routing instance – b. flight leg strings – c. A feasible routing 210
B.2 Greedy algorithm to find a path partition on an equigraph 212
B.3 A set of nights on an equigraph . 214
B.4 A feasible routing . 214
B.5 Aircraft routing instance and corresponding airport time graph. Rows on the

first figure correspond to airports, and arrows on the first figure correspond to
flight legs. The second figure gives the number of aircrafts in A airport B , and
the last one illustrates the corresponding airport time graph 216

B.6 A network graph and its state graph . 218
B.7 A topological ordering and its ordering cuts collection 220
B.8 Equigraph D as an extension of initial graph H 223

xiv

List of Tables
4.1 MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algorithms. . . . 51

4.2 Summary of the families of graphs used . 63

4.3 Standard resource constrained shortest path with one resource constraint . . . 68

4.4 Standard resource constrained shortest path with ten resource constraints . . . 70

5.1 STOCHASTIC SHORTEST PATH PROBLEM results . 87

5.2 STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM results with
independent and discrete distributions and constraints P

(∑
a∈P ξa > τ)≤ ρ0 . . 89

5.3 STOCHASTIC SHORTEST PATH PROBLEM results with truncated and discretized
lognormal distribution . 98

5.4 STOCHASTIC SHORTEST PATH PROBLEM results with non truncated and non
discretized lognormal distribution . 99

5.5 Number of scenarios influence on stochastic shortest path problem with trun-
cated and discretized lognormal distributions . 101

6.1 Clustering state graph for deterministic problem with ten resources 119

6.2 Conditional state graph for deterministic problem with ten resources 120

6.3 Conditional state graph for deterministic problem with one resources 120

6.4 Clustering state graph approach results on STOCHASTIC SHORTEST PATH PROB-
LEM with samples of non truncated and non discretized lognormal distribution. 121

7.1 Air France industrial instances . 132

7.2 Aircraft Routing and Crew Pairing extracted instances 133

8.1 Aircraft Routing instances . 141

8.2 Feasibility and infeasibility of Aircraft Routing problem 142

8.3 Computation time for Aircraft Routing optimization problem 142

9.1 Crew Pairing Results. 160

9.2 Influence of subproblem on computations time. 163

10.1 Numeric results on INTEGRATED PROBLEM . 168

11.1 Definition of ⊕del. 183

11.2 Definition of 6del. 184

xv

List of Tables

11.3 Numerical results of our column generation approach to the STOCHASTIC CREW

PAIRING PROBLEM. 185
11.4 Numerical results for the compact integer program approach to the STOCHASTIC

AIRCRAFT ROUTING PROBLEM . 189
11.5 Numeric results on STOCHASTIC INTEGRATED PROBLEM 190

xvi

1 Introduction

Two research lines are developed along this dissertation in Operations Research. An industrial
line in partnership with Air France explores the company’s air operations processes, and more
precisely the design of the sequence of flight legs operated by aircraft and crews. We model
mathematically the industrial constraints, and design algorithms to build efficient sequences
of flight legs. By efficient sequences of flight legs, we mean sequences of flight legs of minimum
cost among those which respect all the industrial constraints and working rules. We also give
strategies to enforce the robustness of the sequences of flight legs with respect to delay. All
these algorithms and strategies have been implemented in Air France industrial softwares.

The second line of research that structures this dissertation is theoretical, and focuses on path
problems in graphs. A graph, as illustrated on Figure 1.1, is a collection of vertices linked by
arcs. For instance, a road network can be considered as a graph whose arcs are the roads and
whose vertices are the cross-roads. Given an origin vertex o and a destination vertex d , a path
problem consists in finding a “good quality” path from o to d , which in addition satisfies some
given constraint(s). An example of such problem is to find a minimum cost path between two
cities while ensuring arrival before a given time. In this dissertation, we develop a versatile
framework for path problems, and design standard algorithms to solve these problems.

o d

Figure 1.1 – A graph and an origin o to destination d path.

The link between the industrial part and the theoretical part of this dissertation is column
generation, which is the mathematical technique we use to design the sequences of flight legs
for Air France. Practically speaking, this approach can be divided into two modules. A first
module generates sequences of flight legs that respect industrial constraints, and a second
module assembles theses sequences of flight legs in such a way that each leg is covered by
exactly one airplane and one crew. A sequence of flight legs can be seen as a path in the
graph whose vertices are the flight legs and whose arcs are the connections between flight
legs. As a consequence, the first module which builds feasible sequences of flight legs solves a

1

Chapter 1. Introduction

certain path problem. Therefore, the column generation method we have implemented in Air
France industrial software relies on the framework and algorithms we have developed for path
problems.

We illustrate this process on a graph of eight flight legs between three airports on Figure 1.2.
Vertices of the graph correspond to flight legs and are indexed by v . Flight legs of vertices v1

and v5 (resp. v3 and v7) end in the same airport, and legs v2 and v6 (resp. v4 and v8) depart
from this airport one hour later. We have to decide which connections will be in the sequences
of flight legs. Dummy vertices o and d are added to select where crews can begin and end their
flight legs sequences. The first module of the column generation builds feasible sequences
of flight legs by searching paths from o to d in the graph. The second step selects which
sequences of flight legs are operated so that each flight leg is covered by one sequence. On
our example, the blue and the red sequences of flight legs are built in the first module, and
selected in the second. An alternative choice would have been the sequences (v1, v6, v7, v4)
and (v5, v2, v3, v8).

o d

v1 v2 v3 v4

v5 v6 v7 v8

v A flight leg vertex A connection arc

Figure 1.2 – Two pairings on an eight flight legs connection graph.

Section 1.1 details our industrial contributions on Air France processes. Section 1.2 sums
up our mathematical contributions to path problems. And finally, Section 1.3 gives an intro-
duction to column generation technique and details the link between the two parts of this
dissertation.

As the contributions to path problems are required to design algorithms for Air France pro-
cesses, this dissertation starts by the path problems. After a technical Chapter 2 which in-
troduces probabilistic tools needed in this dissertation, Part I contains our work on path
problems, and Part II our work on Air France industrial processes.

1.1 Mathematics for Air France operations

A sequence of four decisions must be taken to plan the operations of an airline. First, the
flight legs operated by the company must be chosen. Then, given a specific flight leg operated
by the company, the type of the aircraft that will cover it must be taken into account. For
instance, we must decide if a given Paris – New-York will be covered by a Boeing 747 or an
Airbus A380. Once the set of flight legs operated by a given fleet are chosen, it must be decided
which airplane will cover which leg. For instance, we must choose which A380 will cover our
Paris – New-York. Practically, this means building the sequences of flight legs or rotations that
will be covered by each airplane. Finally, we must chose the rotations that will be operated by
crews in such a way that each flight leg is covered by one crew.

2

1.2. Resource constrained and stochastic path problems

In this dissertation, we focus on the two last decisions: the construction of the rotations
operated by airplane and crews. Rotations must satisfy several industrial constraints. For
instance, the time between two flight legs operated by the same aircraft must be sufficient
to discharge and charge the luggages, board the passengers, and fill the kerosene tanks.
Maintenance checks must be performed on each aircraft in specific airports every four days.
For security reasons, a large number of working rules must be satisfied by crew sequences of
flight legs. For instance, the number of flight legs operated by a crew in a day is limited, and
there is a minimum rest time between the last flight leg of a day and the first of the following
day. All these constraints must be satisfied by the rotations built.

Besides, the rotations that crews can operate depend on the rotations operated by airplanes.
For instance, suppose that a leg `2 departs from CDG airport 45 minutes after the arrival of
a leg `1. If `1 and `2 are operated by the same airplane, they can be operated by the same
crew. Indeed, the crew can stay in the aircraft during the connection. On the contrary, if `1

and `2 are operated by different airplanes, a crew operating `1 and `2 would have to cross
CDG airport to go from the first plane to the second, which is impossible in 45 minutes.

Presently, airplane rotations are built first, and then crews sequences of flight legs. As a
consequence, crew rotations are constrained by the airplane rotations chosen. Building
simultaneously airplane and crew rotations enables to reduces these constraints, and thus to
build rotations with a better global quality. The main industrial part of my thesis consists in
the design of algorithms to build simultaneously airplanes and crews rotations. The problem
of constructing aircraft rotations is called the AIRCRAFT ROUTING PROBLEM, and the one of
constructing crew rotations the CREW PAIRING PROBLEM. The problem of constructing both
simultaneously is referred as the INTEGRATED PROBLEM.

Finally, if legs `1 and `2 are operated in a sequence by an airplane or by a crew, then if leg `1 is
delayed, then this delay will propagate to leg `2. As a consequence, delay propagates along
aircraft and crew rotations. We therefore develop a probabilistic model on delay to ensure that
the risk of propagation of delay remains small.

1.2 Resource constrained and stochastic path problems

We start our discussion of path problems by introducing the STANDARD SHORTEST PATH

PROBLEM. We suppose to have a cost ca on each arc a of the digraph D . The cost of a path P is
the sum of the cost of its arcs

cP = ∑
a∈P

ca .

Given an origin vertex o and a destination vertex d , we call a path from o to d and o-d path.
The objective of the STANDARD SHORTEST PATH PROBLEM is to find an o-d path P of minimum
cost cP . For instance, if the digraph D is a road network and ca is the time needed to travel
along arc a, then the solution P of the STANDARD SHORTEST PATH PROBLEM is the itinerary
that enables to join d from o in minimum time cP . Figure 1.3 illustrates a shortest o-d path of
cost 1+3+2+2 = 10.

The are two main classes of algorithms for the STANDARD SHORTEST PATH PROBLEM prob-
lem. The first ones are polynomial algorithms, such as Ford-Bellman dynamic programming

3

Chapter 1. Introduction

o d
1 11 2

3 3 3 3
3

5 2 1

622

22

Figure 1.3 – A shortest o-d path of cost 10.

algorithm, or Dijkstra algorithm. The second one are enumeration algorithms, such as A∗,
which use bounds bvd on v-d paths costs to discard paths in an enumeration of all the o-v
paths. Computing the bounds bvd can be long, but once this operation has been done, A∗ like
algorithms are extremely efficient. As a consequence, if only one STANDARD SHORTEST PATH

PROBLEM instance has to be solved, polynomial algorithms are generally faster, while if many
instances have to be solved, enumeration algorithms become more interesting.

The path problem we have to solve to build crew rotations for Air France is to complicated to
be modeled as a STANDARD SHORTEST PATH PROBLEM1. Indeed, to be feasible, a rotation must
satisfy constraints such as

the number of flight legs in a day is non greater than 4,

and the cost of a rotation is a non-linear function of its properties. The number of legs in
a rotation can thus be considered as a resource which is consumed along a path P . This
resource is available in limited quantity and when it has been exhausted, the rotation becomes
infeasible. Air France rotation building problem thus enters in the field of resource constrained
shortest path problems.

In this dissertation, we define an algebraic framework for resource constrained shortest path
problems, and we generalize both dynamic programming algorithms and A∗ like algorithms
to this framework. This framework is light in the sense that we only require the algebraic
properties that are necessary to generalize A∗ or dynamic programming algorithms. This
lightness makes the framework extremely versatile, and enabled to use it on Air France compli-
cated problems as well as on some stochastic resource constrained shortest path problem. As
our framework’s problem contains the N P -complete STANDARD RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM, it cannot be solved in polynomial time2. Therefore, as dynamic
programming algorithms are polynomial, they cannot solve our problem. But they provide
a standard procedure to build “good quality” bounds that can be then used in an A∗ like
algorithm. This standard procedure to compute bounds that can be then used in enumeration
algorithm makes the strength of our framework. Indeed, if the idea of using bounds in resource
constrained shortest path problems is not new, the previous resource constrained shortest
path frameworks do not provide standard procedures to compute bounds. Practically, our

1To be more precise, using a dynamic programming principle, it could be modeled as a STANDARD SHORTEST

PATH PROBLEM problem, but due to the curse of dimensionality, the size of this digraph would not be tractable.
2Unless the widely believed conjecture in computer science P 6=N P turns out to be false.

4

1.2. Resource constrained and stochastic path problems

bounds lead to order of magnitudes speed-up on the different types of stochastic problems we
considered. Besides, our framework behaves especially well in the stochastic setting. To the
best of our knowledge, our algorithms are the first that can deal with probabilistic constraints
such as

a flight leg must be on time with at least 95% of the days.

which can give problems such as

find a path to the airport of minimum cost such that the probability of arriving on time is
greater than 90%,

We now define our resource constrained shortest path framework. To make this definition
more concrete, we illustrate it on the following toy problem on truck itineraries on continent
wide truck deliveries. A full treatment of this toy problem is given in Section 3.4.2. Suppose
that for a delivery, a truck must do a Paris-Beijing itinerary. The distance between the two
cities being large, it is impossible to do it on a single day. Due to working rules, a driver cannot
drive more than M hours a day. Besides, if a driver stops for a night in a city, he sleeps in a
hotel, which has a given cost. Due to fuel consumption and tolls, driving between two cities
also has a given cost. The objective of the problem is to find a Paris-Beijing path of minimum
total cost and such that the daily driving time is non greater than M .

The first ingredients of our resource constrained shortest path framework are a digraph
D = (V , A), an origin vertex v and a destination vertex d .

In the case of our toy problem, the road network is modeled by the digraph D whose vertices
v ∈V are the continent cities, and whose arcs a are the roads between these cities. Besides,
for each city vertex v , there is a loop arc starting and ending in v corresponding to a night in v .
Paris vertex is the origin vertex o and Beijing vertex is the destination d .

The second ingredient of our framework is a resource set R, and a resource qa ∈R for each arc
a ∈ A.

The resource qa contains the information required on arc a. We therefore define our toy
problem resource qa to be the pair (ca ,da), where ca is the cost of using arc a, and da > 0 is
the driving duration of a. If a is a night arc, ca is the cost of the hotel, and da = 0. Arcs a whose
driving time is too long have resource qa =∞. Our resource set is therefore R =R2+∪ {∞}.

We now need to be able to define the resource of a path P as the sum of its arcs resources. The
third ingredient of our framework is thus a sum operator ⊕ on R. To be able to consider the
empty path, we suppose that ⊕ admits a neutral element 0. The resource of a path P is defined
as the sum of its arc resource

qP = ⊕
a∈P

qa .

Our algorithms require to be able to compute the sum from the origin to the destination
or from the destination to the origin. For the resource of a path to be uniquely defined, we
therefore suppose that ⊕ is associative. We therefore suppose that (R,⊕) is a monoid. Note
that we do not suppose that ⊕ is commutative.

5

Chapter 1. Introduction

Our toy problem illustrates how having a non standard sum operator is useful. Indeed, suppose
that we sum the resource qP = (cp ,dp) with the resource qa = (ca ,da) of a daily arc a. It then
suffices to use the component by component usual sum: qP ⊕qa = (cP + ca ,dP +da). On the
contrary, if arc a is a night arc, i.e. da = 0, then P reaches the end of a day, and there are two
possibilities. Either dP ≤ M , which means that the driving time constraint is satisfied, and the
time resource goes back to zero qP ⊕qa = (cP +ca ,0), or dP > M , and qP ⊕qa =+∞. We have
thus defined

(c,d)⊕ (c̃, d̃) =


(c + c̃,d + d̃) if d̃ > 0,
(c + c̃,0) if d̃ = 0 and d ≤ M ,
∞ if d̃ = 0 and d > M .

The definition of an associative operator ⊕ is actually a little bit more involved, and is dealt
with in full details in Section 3.4.2.

Our algorithms rely on lower bounds on resources and on comparisons between resources.
The next ingredient of our framework is therefore an order 6 on R. We require this order to be
compatible with the sum ⊕, which means that the left and right translations are monotone.
This way, bounds on subpaths resources give bounds on paths resources. Besides, we suppose
that each pair of resource q and q̃ admits a greatest lower bound denoted q ∧ q̃ and a least
upper bound q ∨ q̃ . From an algebraic point of view, this means that (R,6) is a lattice, and
that (R,⊕,6) is a lattice ordered monoid.

For our toy problem, we use the product order: q = (c,d) 6 q̃ = (c̃, d̃) if c ≤ c̃ and d ≤ d̃ .
Besides, the greatest lower bound of q and q̃ is q ∧ q̃ = (

min(c, c̃),min(d , d̃)
)
.

Finally, the last ingredients of our framework are a cost function c : R →R and an infeasibility
function ρ : R → {0,1}. The cost of a path P is c(qP), and the path is feasible if and only if
ρ(qP) = 0. Finally, for 6 to bring information, we suppose that ρ and c are monotone with
respect to 6.

On our toy problem, given qP = (cp ,dP), we naturally define c(qP) = cP and ρ(qP) = 1 if
dP > M . On our toy problem, we check that some constraints are satisfied in the sum operator
by defining the result to be equal to +∞. This is a modeling technique that is convenient on
some very specific problems, but we generally do not need it.

We can now define our framework as the following MONOID RESOURCE CONSTRAINED SHORT-
EST PATH PROBLEM.

MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

Let (R,⊕,6) be a lattice ordered monoid.
Input. A digraph D = (V , A), two vertices o,d ∈ V , a collection (qa) ∈ RA , and two oracles
c : R →R and ρ : R → {0,1}.
Output. An o-d path P such that ρ

(⊕
a∈P qa

)= 0 and with minimum c
(⊕

a∈P qa
)
.

Part I is devoted to the study of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROB-
LEM. It explains how to model a practical problem within this framework, and how to design
algorithms for this problem. It also proves numerically the practical efficiency of these algo-
rithms on some deterministic and stochastic path problems.

6

1.3. Column generation

1.3 Column generation

Column generation is a mathematical programming technique that enables to solve efficiently
a wide class of large integer problems. It is easily explained in the context of Air France CREW

PAIRING PROBLEM. Let L be the set of flight legs operated by the company, and P be the set
of feasible pairings. The CREW PAIRING PROBLEM can be expressed by the following integer
program

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L ,

yp ∈ {0,1}, ∀p ∈P ,

(1.1)

where cp is the cost of operating pairing, and yp is a binary variable equal to 1 if pairing p
is selected in the solution. The size of P grows exponentially with the number of legs of the
instance considered. Column generation is a technique to solve the linear relaxation of (1.1)
on instances whose set of feasible pairings P is too large to be considered entirely. Column
generation replaces the linear relaxation (1.2) of (1.1) by a restricted version (1.3), where only
a restricted subset of pairing P̃ (P of tractable size |P̃ |¿ |P | is considered.

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L

yp ≥ 0, ∀p ∈P

(1.2)

min
∑

p∈P̃

cp yp

s.t .

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L

yp ≥ 0, ∀p ∈ P̃

(1.3)

Problem (1.2) is called the master problem. Column generation algorithm iteratively solves
(1.3) on a reduced set of columns P̃ (P and updates P̃ with “interesting” columns in P \P̃ .
To explain which columns are interesting, we need to introduce the duals (1.4) and (1.5) of
problems (1.2) and (1.3).

max
∑
`∈L

z`

s.t .

∣∣∣∣∣∣
∑
`∈p

z` ≤ cp , ∀p ∈P

zp ≥ 0, ∀` ∈L

(1.4)

max
∑
`∈L

z`

s.t .

∣∣∣∣∣∣
∑
`∈p

z` ≤ cp , ∀p ∈ P̃

zp ≥ 0, ∀` ∈L

(1.5)

Columns or variables yp in the primal problem (1.3) correspond to rows or constraints in the
dual (1.5). With the dual point of view, the “interesting” columns p ∈P \P̃ that must be added
appear naturally: those for which the constraint∑

`∈p
z` ≤ cp

is violated by the current solution z` of the current restricted dual (1.5). Given the current
solution z` of the dual, we solve the following pricing subproblem to identify if the most
violated constraint or prove that there are no violated constraints.

min
p∈P

cp − ∑
`∈p

z`. (1.6)

7

Chapter 1. Introduction

The column generation procedure can be expressed as follows.

1. Initialize P̃ as a subset of P of tractable size.
2. Solve the reduced master problem (1.3).
3. Solve the pricing subproblem. If there exists a column p such that cp − ∑

`∈p
z` < 0, then

add it to P̃ , and return to Step 2.

The following well-know theorem ensures the rightness of the method.

Theorem 1.1. The algorithm ends after a finite number of a iterations, and at the end of the
algorithm, yp is an optimal solution of the relaxed master problem (1.2).

The efficiency of the column generation approach relies on the ability to solve the pricing
subproblem (1.6) efficiently. We now explain why the subproblem (1.6) is naturally modeled
as a STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. Let D be the digraph
whose vertices are the legs ` ∈L and whose arcs are the feasible connections between two
legs. As a pairing p is a sequence of flight legs, it can be considered as a path in D . Besides, the
reduced costs z` are summed on the vertices along the path. As a pairing must respect crew
working rules, a path P in D must respect several constraints to be a feasible pairing. Finding
a pairing of minimum cost can thus be considered as solving a resource constrained shortest
path problem in D.

Thanks to their use of new bounds, the MONOID RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM algorithms we develop in Part I enable to solve the subproblem (1.6) more efficiently
than previous algorithms, which enables to solve faster the CREW PAIRING PROBLEM by column
generation, and thus to develop algorithm for the INTEGRATED PROBLEM.

1.4 Stochasticity

Due to the development of information systems, the amount of data available on the industrial
processes has dramatically increased in the last decades. This amount of data opens the door
to new opportunities in modeling risk and uncertainties in operations research. Specific
attention has been paid to the modeling of risk and uncertainties in this dissertation. In the
context of airline operations, risk is associated to the propagation of delay along sequences
of flight legs. When a flight leg is late and connects to another flight leg, part of the delay is
absorbed by the extra-time or slack between the arrival of the first flight leg and the departure
of the second, and the other part is propagated. The objective is to allocate slack time between
flight legs in a way to minimize the propagation of delay along sequences of flight legs.

There are two main approaches in the field of optimization under uncertainty. The robust
approach considers a set of possible realizations of uncertainty but does not define a prob-
ability distribution on these realizations. The model is then optimized against the worst
realization. On the contrary, the stochastic approach defines a probability distribution on
the different realizations of uncertainty, and the optimization models typically deal with risk
through probability functionals. In this dissertation, we focus on stochastic models. A key
step in stochastic modeling is the choice of probability distributions. We need to be able to

8

1.4. Stochasticity

compute probability functionals on these distributions. We have therefore two possibilities in
the choice of these distributions: either we adopt simplifying assumptions such as random
variables independence, and we can compute exactly probability functionals, or we keep
a precise stochastic model, and we have to approximate probability functionals through a
sampling approach.

Remark 1.1. The distinction between robust and stochastic optimization tends to become
artificial, as some recent approaches to robust optimization consider a family of stochastic
models, and optimize against the model in the family predicting the worst realizations. Such
approaches are not considered in this dissertation.

There are also two ways of modeling the attitude toward risk in stochastic optimization. The
first one is to define a cost functional that penalizes risky solutions. The second is to add to the
problem probability constraints that forbid risk-prone solutions. For instance, in the context
of airline operations problems, the probabilistic constraints correspond to the application of a
marketing strategy where the airline guarantees to its customers that 90% of the flight legs are
on-time. The second approach consists in minimizing the extra-costs due to delay.

In this dissertation, we develop algorithms for stochastic versions of the AIRCRAFT ROUTING

PROBLEM, the CREW PAIRING PROBLEM, and the INTEGRATED PROBLEM, where delay is con-
trolled through probabilistic constraints. To solve the stochastic version of the CREW PAIRING

PROBLEM, we adapt the column generation scheme developed for the deterministic version.
As delay propagates along sequences of flights, the delay of a flight is determined by the
pairing which covers it. As a consequence, delay can be dealt with within the subproblem of
the column generation. The solution scheme for the stochastic version of the CREW PAIRING

PROBLEM is obtained from the deterministic one only by adapting the pricing subproblem.
This new pricing subproblem is a stochastic path problem.

As we already mentioned, many stochastic path problems can be reduced to MONOID RE-
SOURCE CONSTRAINED SHORTEST PATH PROBLEM instances, and are well solved by our MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algorithms. The key observation behind
these reductions is that several families of random variables distributions are lattices when en-
dowed with the suitable order. For instance, the set of independent distributions with discrete
and finite support is a lattice when endowed with the usual stochastic order ≤st defined by

ξ≤st ξ̃ if P(ξ≤ t) ≥P(ξ̃≤ t) for all t .

Besides, this order is compatible with the convolution product, and we thus obtain a lattice or-
dered monoid. Several other families of independent distributions are considered in Chapter 5.
For each of these families, we provide a lattice order that it compatible with the convolution
product and therefore lead to a lattice ordered monoid structure. Another important example
is the one of scenario based random variables, where random variables ξ on a finite probability
spaceΩ are considered. The relevant order is then

ξ6 ξ̃ if ξ(ω) ≤ ξ̃(ω) for all scenarios ω inΩ.

Scenario based distributions are important because, using a sampling approach, any distribu-

9

Chapter 1. Introduction

tion can be approximated by a sampled scenario distribution.

For each stochastic problem considered in this dissertation, we provide algorithms that, first,
can deal with stochasticity in the objective and with probabilistic constraints, and second,
can deal with independent random variables and with scenario based random variables.
Besides, we give upper bounds on the error committed when sampled distributions are used
instead of the original ones. These upper bounds rely on modern probabilistic tools, such as
concentrations inequalities that bound the Wasserstein distance between the original and the
sampled versions of a random vector.

Chapter 2 introduces the probabilistic tools that are used in the remaining of this dissertation
to model stochastic problems and to derive bounds on the error committed when using
sampled distributions. Chapter 5 considers stochastic path problems. Finally Chapter 11
develops stochastic models on the propagation of delay in airline operations problems, and
solution algorithms for the resulting stochastic versions of the AIRCRAFT ROUTING PROBLEM,
the CREW PAIRING PROBLEM, and the INTEGRATED PROBLEM.

10

Introduction (Français)
Deux thématiques de recherche sont développées dans cette thèse. La première est industrielle
et réalisée en partenariat avec Air France. Elle considère l’optimisation des séquences de vols
réalisées par les avions et les équipages de la compagnie. Nous modélisons les contraintes in-
dustrielles s’exerçant sur ces séquences de vols et développons des algorithmes pour construire
des séquences de vols de bonne qualité, c’est à dire des séquences de vols respectant toutes
les contraintes industrielles et de coût minimal. Nous proposons aussi des méthodes mathé-
matiques pour assurer la résilience des ces séquences vis -à-vis de la propagation du retard.
Tous ces algorithmes et méthodes ont été implémentés au sein des logiciels d’Air France.

La seconde thématique de recherche qui structure cette thèse est plus théorique et considère
des problèmes de chemin dans les graphes. Comme nous pouvons le voir sur la figure 1.1, un
graphe est une collection de sommets reliés par des arcs. Les réseaux routiers peuvent par
exemple être considérés comme des graphes dont les sommets correspondent aux carrefours
et les arcs aux routes. Étant donné un sommet origine o et un sommet destination d ,un
problème de chemin consiste à trouver un chemin de « bonne qualité » entre o et d satisfaisant
de plus certaines contraintes. Un exemple de tel problème consiste à trouver un itinéraire
entre deux villes de coût minimal parmi les itinéraires permettant d’arriver avant une certaine
heure. Dans cette thèse, nous développons un formalisme flexible pour traiter des problèmes
de chemin, ainsi que des algorithmes génériques pour résoudre ces problèmes.

o d

FIGURE 1.1 – Un graphe et un chemin de l’origine o à la destination d .

Le lien entre les deux thématiques de la thèse est la technique que nous utilisons pour
construire les séquences de vols pour les équipages : la génération de colonnes. D’un point de
vue pratique, cette technique peut être divisée en deux modules. Le premier module génère
des séquences de vols respectant les contraintes industrielles, et le second assemble ces sé-
quences de manière à ce que chaque vol soit couvert par exactement un avion et un équipage.
Une séquence de vols peut être vue comme un chemin dans le graphe dont les sommets
sont les vols et les arcs les correspondances ou connections entre deux vols. Le module qui
construit des séquences de vols résout donc un problème de chemin. La génération de co-
lonnes que nous avons implémentée dans les logiciels d’Air France s’appuie sur le formalisme

11

Chapitre 1. Introduction (Français)

et les algorithmes que nous avons développés pour les problèmes de chemin.

Nous illustrons maintenant la construction des séquences de vols sur le graphe de la figure 1.2.
Ce graphe contient huit vols entre trois aéroports. Les sommets du graphe correspondent à
des vols et sont indexés par v . Les vols des sommets v1 et v5 (resp. v3 et v7) atterrissent dans
le même aéroport, et les vols v2 et v6 (resp. v4 et v8) décollent de cet aéroport une heure plus
tard. Nous devons choisir quelles connections seront dans les séquences de vols. Les sommets
o et d permettent de choisir où les séquences de vols doivent commencer et finir. Le premier
module de la génération de colonnes construit des séquences de vols réalisables en cherchant
des chemins de o à d dans le graphe. Le deuxième module sélectionne les chemins qui seront
réalisés de manière à ce que chaque vol soit couvert par exactement une séquence de vol.
Dans notre exemple, les séquences bleues et rouges sont construites par le premier module
et sélectionnées par le second. Un choix alternatif aurait été les séquences (v1, v6, v7, v4) et
(v5, v2, v3, v8).

o d

v1 v2 v3 v4

v5 v6 v7 v8

v vol / sommet connections / arc

FIGURE 1.2 – Deux séquences de vols dans le graphe des connections.

Le paragraphe 1.1 détaille nos contributions à l’optimisation des processus d’Air France, et
le paragraphe 1.2 celles sur les problèmes de chemin. Enfin, le paragraphe 1.3 présente la
génération de colonnes.

Comme nos méthodes d’optimisation pour les problèmes d’opérations aériennes reposent
sur nos algorithmes de chemin, la thèse commence par ces derniers. Suite au chapitre 2 qui
introduit des outils probabilistes utilisés dans le reste de la thèse, la partie I présente nos
travaux sur les problèmes de chemin et la partie II ceux sur les opérations aériennes.

1.1 Mathématiques pour les opérations aériennes

Quatre décisions successives doivent êtres prises pour planifier les opérations d’une compa-
gnie aérienne. Tout d’abord, il faut choisir les vols qui seront réalisés par la compagnie. Puis
il faut choisir le type d’avion qui réalisera chaque vol en fonction de la demande attendue :
par exemple il faudra choisir si un Paris – New-York sera réalisé par un Boeing 747 ou un
Airbus A380. Ces deux étapes passées, pour chaque sous-flotte d’avions identiques, il faut
choisir quel avion réalisera quel vol. Par exemple, il faut choisir quel A380 réalisera notre
Paris – New-York. En pratique, cela demande de construire les séquences de vols ou rotations
réalisées par chaque avion. Enfin, nous devons construire les rotations réalisées par chaque
équipage, de manière à ce que chaque vol soit réalisé par un équipage.

Dans cette thèse, nous nous concentrons sur les deux dernières étapes : la construction des
rotations opérées par les avions et les équipages. Les rotations doivent satisfaire un certain

12

1.2. Problèmes de plus court chemin sous contraintes

nombre de contraintes industrielles pour être réalisables. Par exemple, la durée entre deux vols
réalisés successivement par un même avion doit être suffisante pour permettre de décharger
et recharger les bagages, débarquer et rembarquer les passagers, et remplir les réservoirs de
kérosène. Des opérations de maintenance doivent être réalisées au minimum tous les quatre
jours sur chaque avion, et ces opérations ne peuvent être réalisées que dans certains aéroports
possédant l’équipement adéquat. Pour des raisons de sécurité, un nombre important de
règles sur les conditions de travail doivent être satisfaites par les rotations des équipages.
Par exemple, le nombre de vol que peut réaliser un équipage sur une journée est limité, et
une durée minimum de repos doit être assurée entre deux journées de travail. Toutes ces
contraintes doivent être satisfaites par les rotations construites.

Par ailleurs, les rotations que les équipages peuvent effectuer dépendent des rotations réalisées
par les avions. Par exemple, supposons qu’un vol `2 décolle de l’aéroport CDG 45 minutes
après un vol `1. Alors `1 et `2 ne peuvent être réalisés par le même équipage que s’ils sont
réalisés par le même avion. En effet, dans ce cas là, l’équipage peut rester dans l’avion. Si au
contraire ils sont opérés par des avions différents, alors l’équipage devrait traverser l’aéroport
CDG, ce qui est impossible en 45 minutes.

À l’heure actuelle, les rotations avions sont construites avant les rotations équipages. Les
rotations que peuvent réaliser les équipages sont donc contraintes par les rotations avions
choisies. Construire simultanément les rotations avions et équipages permet de réduire ces
contraintes, et donc de construire des rotations de meilleure qualité. La contribution indus-
trielle principale de cette thèse est un algorithme pour construire simultanément les rotations
avions et équipages. Le problème de construction des rotations avions est appelé PROBLÈME

D’AIRCRAFT ROUTING, et celui de construction des rotations équipages est appelé PROBLÈME

DE CREW PAIRING. Le problème de construction simultanée est appelé PROBLÈME INTÉGRÉ.

Enfin, si deux vols `1 et `2 sont opérés successivement par le même avion ou le même équi-
page, alors si `1 est en retard, ce retard se propage à `2. Le retard se propage donc le long des
rotations avions et équipages. Nous développons un modèle probabiliste du retard de manière
à pouvoir garantir que le risque de propagation du retard reste faible.

1.2 Problèmes de plus court chemin sous contraintes

Pour commencer notre discussion des problèmes de chemin, nous introduisons le PROBLÈME

DE PLUS COURT CHEMIN USUEL. Nous supposons avoir un coût ca pour chaque arc a d’un
graphe orienté D . Le coût d’un chemin P est la somme des coûts des ses arcs

cP = ∑
a∈P

ca .

Étant donné un sommet origine o et un sommet destination d , nous appelons o-d chemin
un chemin de o à d . L’objectif du PROBLÈME DE PLUS COURT CHEMIN USUEL est de trouver
un o-d chemin P de coût minimum cP . Par exemple, si le graphe D correspond à un réseau
routier et ca est le temps nécessaire pour parcourir l’arc a, alors la solution P du PROBLÈME DE

PLUS COURT CHEMIN USUEL est l’itinéraire permettant de rejoindre d depuis o en un temps

13

Chapitre 1. Introduction (Français)

minimum cP . La figure 1.3 illustre un o-d chemin de coût 1+3+2+2 = 10.

o d
1 11 2

3 3 3 3
3

5 2 1

622

22

FIGURE 1.3 – Un o-d chemin de coût 10.

Les algorithmes les plus utilisés pour résoudre le PROBLÈME DE PLUS COURT CHEMIN USUEL

peuvent être répartis en deux familles. Les premiers sont des algorithmes polynomiaux,
comme l’algorithme de programmation dynamique de Ford-Bellman, ou l’algorithme de
Dijkstra. Les seconds sont des algorithmes d’énumération, comme l’algorithme A∗, et s’ap-
puient sur des bornes bvd sur le coût des v-d chemins pour éliminer des chemins dans une
énumération de tous les o-v chemins. Le calcul des bornes bvd peut être long, mais une fois
cette étape réalisée, les algorithmes de type A∗ sont extrêmement efficaces. Par conséquent,
si une seule instance du PROBLÈME DE PLUS COURT CHEMIN USUEL doit être résolue, les
algorithmes polynomiaux sont généralement plus rapides, tandis que les algorithmes d’énu-
mération deviennent intéressants lorsque de nombreuses instances doivent être résolues.

Le problème de chemin que nous résolvons pour construire les rotations équipages pour le
problème d’Air France est trop complexe pour pouvoir être modélisé comme un PROBLÈME

DE PLUS COURT CHEMIN USUEL3. En effet, pour être réalisables, une rotation doit respecter
des contraintes du type

le nombre de vols réalisés dans une journée ne doit pas dépasser 4,

et le coût d’une rotation est une fonction non-linéaire de ses caractéristiques. Le nombre de
vols dans une rotation peut donc être considéré comme une ressource qui est consommée le
long d’un chemin P . Cette ressource est disponible en quantité limitée, et lorsqu’elle a été
épuisée, le rotation devient non réalisable. La construction des rotations équipage peut donc
être modélisée comme un problème de plus court chemin sous contraintes de ressources.

Dans cette thèse, nous introduisons un formalisme algébrique pour le problème de plus court
chemin sous contraintes, et nous généralisons à la fois les algorithmes polynomiaux et les
algorithmes d’énumération dans ce cadre. Ce formalisme est économique dans le sens où
nous imposons uniquement les propriétés algébriques nécessaires à la généralisation des
algorithmes mentionnés précédemment. Cette économie dans les hypothèses rend notre
formalisme particulièrement flexible, ce qui a notamment permis de l’utiliser pour modéliser
le problème d’Air France. Comme le problème que nous définissons dans notre formalisme

3Pour être plus précis, par une approche de type programmation dynamique, il pourrait être modélisé comme
un PROBLÈME DE PLUS COURT CHEMIN USUEL, mais du fait de la « malédiction de la dimension », la taille du
graphe obtenu serait trop grand pour être tractable.

14

1.2. Problèmes de plus court chemin sous contraintes

contient le problème de plus court chemin sous contraintes usuel, et que ce dernier est
N P -complet, nous ne pouvons espérer le résoudre en temps polynomial4. Nous ne pouvons
donc pas utiliser les algorithmes polynomiaux comme les algorithmes de Ford-Bellman et
de Dijkstra pour résoudre ce problème. Mais nous verrons que leur généralisation permet de
construire une procédure générique pour construire des bornes inférieures de bonne qualité,
qui peuvent ensuite être utilisées dans un algorithme d’énumération. Cette procédure géné-
rique pour construire des bornes pour les algorithmes d’énumération fait la force de notre
formalisme. En effet, si l’idée d’utiliser des bornes dans les algorithmes de plus court chemin
sous contraintes n’est pas nouvelle, les formalismes de plus court chemin sous contraintes
de la littérature ne disposent pas d’une telle procédure. En pratique, l’accélération des algo-
rithmes obtenue par l’usage de bornes peut atteindre plusieurs ordres de grandeur selon le
type de problème considéré. Par ailleurs, notre formalisme permet de résoudre efficacement
les problèmes de chemin stochastiques. A notre connaissance, ces algorithmes sont les pre-
miers qui permettent de prendre en compte des contraintes probabilistes dans les problèmes
de chemin. Par exemple, nous pouvons prendre en compte des contraintes comme

un vol doit arriver à l’heure au moins 95% des fois,

ou résoudre des problèmes du type

trouver un chemin de l’hôtel a l’aéroport de coût minimum et qui garantisse d’arriver à l’heure
avec une probabilité d’au moins 90%.

Nous introduisons maintenant notre formalisme de plus court chemin sous contraintes. Pour
rendre cette définition plus concrète, nous l’illustrons sur un problème de livraisons par
camion sur très longue distance. Un traitement détaillé de ce problème est disponible dans la
section 3.4.2. Supposons que pour une livraison, un camion doive se rendre de Paris à Pékin.
La distance entre les deux pays étant longue, il est impossible de la parcourir en une seule
journée. Par ailleurs, pour respecter la réglementation routière, un conducteur ne peut pas
conduire plus de M heures par jour. De plus, si un conducteur s’arrête pour la nuit dans une
ville, il dort à l’hôtel, ce qui entraîne un coût. Enfin, en raison du carburant et des péages,
conduire entre deux villes a aussi un coût. L’objectif du problème est de trouver un itinéraire
de Paris à Pékin de coût complet minimal et tel que la durée quotidienne de conduite n’excède
pas M .

Les premiers ingrédients de notre formalisme de plus court chemin sous contraintes sont un
graphe orienté D = (V , A), un sommet origine o et un sommet destination d .

Dans le cas de notre problème de livraison, le réseau routier est modélisé par un graphe
orienté D dont les sommets v sont les villes du continent et les arcs a les routes entre ces villes.
De plus, pour chaque sommet v , il existe dans A une boucle dont l’origine et la destination
sont v . Paris correspond au sommet origine o et Pékin au sommet destination d .

Les seconds ingrédients de notre formalisme sont un ensemble des ressources R, et une
ressource qa pour chaque arc a dans A.

4À moins que la conjecture P 6=N P ne se révèle fausse.

15

Chapitre 1. Introduction (Français)

La ressource qa contient l’information nécessaire sur l’arc a. Nous définissons donc les res-
sources de notre problème de livraison comme les couples (ca ,da) où ca est le coût encouru
lorsque l’arc a est traversé, et da est le temps de conduite nécessaire pour traverser a. Si a est
une boucle commençant et se terminant en v , alors ca est le coût lié à une nuit d’hôtel en v ,
et da = 0. Les arcs a dont la durée de conduite est strictement supérieure à M ont un coût ca

égal à +∞. Notre ensemble des ressources R est donc R2+∪ {+∞}.

Nous souhaitons maintenant pouvoir définir la ressource d’un chemin P comme la somme
des ressources de ses arcs. Le troisième ingrédient de notre formalisme est donc un opérateur
de somme ⊕ sur R. De manière à pouvoir prendre en compte le chemin vide, nous faisons
l’hypothèse que ⊕ admet un élément neutre 0. La ressource d’un chemin est définie comme la
somme des ressources de ses arcs

qP = ⊕
a∈P

qa .

Par ailleurs, pour que nos algorithmes fonctionnent, nous devons pouvoir sommer les res-
sources d’un chemin de l’origine à la destination et de la destination à l’origine. Pour que
ces quantités correspondent, nous faisons l’hypothèse que l’opérateur ⊕ est associatif . Nous
faisons donc l’hypothèse que (R,⊕) est un monoïde. Nous notons que nous ne supposons pas
que ⊕ est commutatif.

Nous pouvons maintenant illustrer sur notre problème de livraison pourquoi un opérateur de
somme ⊕ non standard est utile. En effet, supposons que nous sommions la ressource qP =
(cP ,dP) d’un chemin P avec la ressource qa = (ca ,da) d’un arc a. Si a est un arc de jour entre
deux sommets, il suffit de sommer les composantes terme à terme : qP ⊕qa = (cP +ca ,dP +da).
Si au contraire a correspond à une boucle de nuit, c’est à dire si da = 0, alors P atteint la fin
d’une journée, et il y a deux possibilités. Soit qP ≤ M , et alors la contrainte sur le temps de
conduite est satisfaite, et la ressource temporelle retourne à zéro qP +qa = (cP + ca ,0), soit
qP +qa =+∞. Nous avons donc défini

(c,d)⊕ (c̃, d̃) =


(c + c̃,d + d̃) si d̃ > 0,
(c + c̃,0) si d̃ = 0 et d ≤ M ,
+∞ si d̃ = 0 et d > M .

Définir ⊕ de manière à ce qu’il soit associatif est en pratique un peu plus technique, et sera
fait de manière détaillée dans la section 3.4.2.

Nos algorithmes s’appuient sur des bornes inférieures et sur des comparaisons entre les
ressources. L’ingrédient suivant de notre formalisme est donc un ordre partiel 6 sur R. Par
ailleurs, nous imposons que cet ordre soit compatible avec l’opérateur ⊕, ce qui veut dire que
les translations à droite et à gauche sont monotones. Ainsi, les bornes sur des sous-chemins
permettent de construire des bornes sur les chemins. Par ailleurs, nous faisons l’hypothèse
que chaque couple (q, q̃) de ressources admet une plus grande borne inférieure notée q ∧ q̃ ,
et une plus petite borne supérieure notée q ∨ q̃ . D’un point de vue algébrique, cela veut dire
que (R,6) est un treillis, et que (R,⊕,6) est un monoïde ordonné comme un treillis.

Pour notre problème de livraison, nous utilisons l’ordre produit : q = (c,d)6 q̃ = (c̃, d̃) si c ≤ c̃
et d ≤ d̃ . La plus grande borne inférieure est alors égale à q ∧ q̃ = (

min(c, c̃),min(d , d̃)
)
.

16

1.3. Génération de colonnes

Enfin, les derniers ingrédients de notre formalisme sont une fonction de coût c : R → R

et une fonction d’infaisabilité ρ : R → {0,1}. Le coût d’un chemin P est c(qP), et P est un
chemin réalisable si et seulement si ρ(qP) = 0. Enfin, pour que l’information fournie par 6
soit exploitable, nous supposons que c et ρ sont monotones par rapport à 6.

Concernant notre problème de livraison, étant donnée qP = (cP ,dP), nous définissons natu-
rellement c(qP) = cP et ρ(qP) = 1 si et seulement si dP > M . Nous remarquons que sur notre
problème de livraison, nous vérifions si certaines contraintes sont satisfaites au niveau de
l’opérateur somme, en définissant le résultat de la somme comme +∞ lorsqu’elles ne le sont
pas. Cette technique de modélisation est pratique sur certains problèmes particuliers, mais
n’est en général pas nécessaire.

Nous pouvons maintenant définir notre formalisme comme le PROBLÈME DE PLUS COURT

CHEMIN AVEC RESSOURCES DANS UN MONOÏDE suivant.

PROBLÈME DE PLUS COURT CHEMIN AVEC RESSOURCES DANS UN MONOÏDE

Entrée. Un graphe orienté D = (V , A), deux sommets o,d ∈ V , une collection (qa) ∈ RA , et
deux oracles c : R →R et ρ : R → {0,1}.
Sortie. Un o-d chemin P tel que ρ

(⊕
a∈P qa

)= 0 et minimisant c
(⊕

a∈P qa
)
.

La partie I se concentre sur l’étude du PROBLÈME DE PLUS COURT CHEMIN AVEC RESSOURCES

DANS UN MONOÏDE. Nous expliquons notamment comment modéliser une problème pra-
tique dans ce formalisme, et fournissons des algorithmes de résolution. Nous testons aussi
l’efficacité de ces algorithmes sur des problèmes de chemin déterministes et stochastiques.

1.3 Génération de colonnes

La génération de colonnes est une technique de programmation mathématique qui permet
de résoudre une large classe de problèmes en nombres entiers de grande taille. Nous pouvons
l’expliquer facilement sur l’exemple du problème des rotations équipages. Soit L l’ensemble
des vols opérés par une compagnie aérienne, et P l’ensemble des rotations réalisables. Le pro-
blème des rotations équipages peut être exprimé comme le programme linéaire en nombres
entiers suivant :

min
∑

p∈P

cp yp

s.c.

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L ,

yp ∈ {0,1}, ∀p ∈P ,

(1.7)

où cP est le coût lié à la réalisation de la rotation p et yP est une variable binaire égale à 1 si la
rotation p est sélectionnée dans la solution. La taille de P croit de manière exponentielle avec
le nombre de vols dans l’instance considérée. La génération de colonnes est une méthode pour
résoudre le relâché linéaire de (1.7) sur les instances pour lesquelles l’ensemble P est trop
grand pour pouvoir être considéré dans son intégralité. La génération de colonnes remplace
le relaché linéaire (1.8) de (1.7) par sa version restreinte (1.9) où seules les rotations p dans un
sous ensemble P̃ (P de taille tractable |P̃ |¿ |P | sont considérées.

17

Chapitre 1. Introduction (Français)

min
∑

p∈P

cp yp

s.c.

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L

yp ≥ 0, ∀p ∈P

(1.8)

min
∑

p∈P̃

cp yp

s.c.

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L

yp ≥ 0, ∀p ∈ P̃

(1.9)

Le problème (1.8) est appelé problème maître. La génération de colonnes résout de manière ré-
cursive (1.9) sur une ensemble réduit de colonnes P̃ (P , et met à jour P̃ à chaque étape avec
des colonnes « intéressantes » dans P \P̃ . Pour expliquer quelles colonnes sont intéressantes,
nous devons introduire les duaux (1.10) et (1.11) de (1.8) et (1.9).

max
∑
`∈L

z`

s.c.

∣∣∣∣∣∣
∑
`∈p

z` ≤ cp , ∀p ∈P

z` ≥ 0, ∀` ∈L

(1.10)

max
∑
`∈L

z`

s.c.

∣∣∣∣∣∣
∑
`∈p

z` ≤ cp , ∀p ∈ P̃

z` ≥ 0, ∀` ∈L

(1.11)

Les variables yp dans le problème primal (1.8) correspondent aux contraintes dans (1.10).
Dans le dual, les rotations p intéressantes de P \P̃ qui doivent être ajoutées apparaissent
naturellement : ce sont celles pour lesquelles la contrainte∑

`∈p
z` ≤ cp

n’est pas satisfaite par la solution optimale z` du problème restreint courant (1.11). Étant
donné la solution courante du dual z`, le problème esclave de la génération de colonnes
consiste à trouver la contrainte la plus violée ou à prouver que toutes les contraintes sont satis-
faites par la solution courante. Le problème esclave peut donc être écrit comme le problème
d’optimisation

min
p∈P

cp − ∑
`∈p

z`. (1.12)

La procédure de la génération de colonnes peut donc s’exprimer de la manière suivante.

1. Initialiser P̃ comme un sous ensemble de P de taille raisonnable.
2. Résoudre le problème maître restreint (1.9).
3. Résoudre le problème esclave. S’il existe une colonne p telle que cP −∑

`∈p z` < 0, alors
ajouter cette colonne à P̃ , et retourner à l’étape 2.

Le théorème bien connu que nous introduisons maintenant assure la validité de la méthode.

Théorème 1.1. L’algorithme se termine après un nombre fini d’opérations, et à la fin de celui-ci,
yp est une solution optimale du problème maître (1.8).

L’efficacité de l’approche par génération de colonnes dépend de notre capacité à résoudre
efficacement le problème esclave. Nous expliquons maintenant pourquoi le problème esclave
(1.12) se modélise naturellement comme un PROBLÈME DE PLUS COURT CHEMIN AVEC RES-
SOURCES DANS UN MONOÏDE. Soit D le graphe orienté dont les sommets sont les vols ` ∈L

et les arcs sont les connections réalisables entre deux vols. Comme une rotation p est une

18

1.4. Prise en compte de l’aléa

séquence de vols, elle peut-être considérée comme un chemin P dans D. De plus, les coûts
réduits z` sont sommés sur les sommets le long du chemin. Comme une rotation équipage
doit satisfaire certaines règles sur le travail, un chemin P dans D doit satisfaire plusieurs
contraintes pour être une rotation réalisable. Trouver une rotation de coût minimum revient
donc à résoudre un problème de plus court chemin sous contraintes dans D .

Grâce à leur capacité à générer et utiliser des bornes, les algorithmes pour le PROBLÈME DE

PLUS COURT CHEMIN AVEC RESSOURCES DANS UN MONOÏDE que nous développons dans la
partie I permettent de résoudre plus efficacement le problème esclave (1.12), ce qui permet
de résoudre plus rapidement le problème de construction des rotations équipages, et donc
de proposer des algorithmes pour le problème joint de construction des rotations avions et
équipages.

1.4 Prise en compte de l’aléa

Le développement des systèmes d’information dans les dernières décennies a démultiplié la
quantité de données accessibles sur les processus industriels. Ces données ouvrent la porte à
de nouvelles opportunités en terme de prise en compte du risque et de l’aléa en recherche
opérationnelle. Une attention particulière a été accordée aux modélisations du risque et de
l’aléa dans cette thèse. Dans le contexte des opérations aériennes, le risque est associé à la
propagation du retard le long des rotations avions et équipages. Lorsqu’un vol est en retard,
une partie de ce retard est absorbée par la période tampon entre ce vol et le vol suivant, et une
partie est propagée au vol suivant. L’objectif est d’allouer les périodes tampons entre les vols
de manière à minimiser la propagation du retard.

Deux approches principales se partagent le domaine de l’optimisation avec prise en compte
de l’aléa. L’approche robuste considère un ensemble de réalisations possibles de l’aléa, mais
ne définit pas de distribution de probabilité sur ces réalisations. Le modèle est ensuite opti-
misé contre la pire réalisation. L’approche stochastique définit au contraire une distribution
de probabilité sur les différentes réalisations de l’incertitude. Les modèles d’optimisation
prennent alors en compte le risque par le biais de fonctionnelles de probabilité. Une étape
clef dans la modélisation stochastique est le choix des distributions de probabilité. En effet,
celles-ci doivent être compatibles avec le calcul des fonctionnelles. Deux options s’offrent
alors à nous : soit nous adoptons des hypothèses simplificatrices, comme l’indépendance
des variables aléatoires, et nous pouvons calculer ces fonctionnelles de manière exacte, soit
nous travaillons avec un modèle stochastique précis, auquel cas nous devons approximer les
fonctionnelles de probabilité par échantillonnage. Nous utilisons les deux types d’approches
dans cette thèse. Pour chaque approche par échantillonnage, nous fournissons des bornes sur
l’erreur que celui-ci entraîne.

Remarque 1.1. La distinction entre approche robuste et approche stochastique tend à devenir
artificielle. En effet, certaines approches récentes en optimisation robuste considèrent une
famille de modèles stochastiques, et optimise contre le modèle de cette famille qui prédit les
pires réalisations. Nous n’utilisons pas de telles approches dans cette thèse.

Il existe aussi deux manières de prendre en compte le risque dans les problèmes d’optimisation.
La première utilise comme objectif du problème une fonctionnelle de probabilité qui pénalise

19

Chapitre 1. Introduction (Français)

les solutions risquées, quand la seconde ajoute des contraintes de probabilité pour interdire
les solutions risquées. Par exemple, dans le contexte des opérations aériennes, l’approche par
contraintes de probabilité correspondrait à une stratégie marketing qui garantit au client que
90% des vols sont à l’heure. La seconde approche consiste à minimiser les coûts additionnels
dus au retard.

Dans cette thèse, nous introduisons des algorithmes pour des versions stochastiques du
PROBLÈME D’AIRCRAFT ROUTING, du PROBLÈME DE CREW PAIRING et du PROBLÈME INTÉGRÉ.
Dans ces problèmes stochastiques, le retard est pris en compte par le biais de contraintes
de probabilité. Pour résoudre la version stochastique du PROBLÈME DE CREW PAIRING, nous
adaptons l’algorithme de génération de colonnes qui traite le cas déterministe. Comme le
retard se propage le long des séquences de vols, le retard d’un vol est déterminé par le pairing
qui le couvre. Le retard peut donc être considéré au sein du problème esclave de la génération
de colonnes. Pour passer du PROBLÈME DE CREW PAIRING déterministe au stochastique, il
suffit donc d’adapter le problème esclave. Le nouveau problème esclave est un problème de
chemin stochastique.

Nous avons déjà mentionné que de nombreux problèmes de chemin stochastiques peuvent
être réduit en des instances du PROBLÈME DE PLUS COURT CHEMIN AVEC RESSOURCES DANS

UN MONOÏDE, et sont bien résolus par les algorithmes développés pour le PROBLÈME DE PLUS

COURT CHEMIN AVEC RESSOURCES DANS UN MONOÏDE. L’idée clef derrière cette réduction est
que de nombreuses familles de lois de variables aléatoires sont des treillis lorsqu’elles sont
munies de l’ordre adéquat. Par exemple, l’ensemble des lois de variables aléatoires discrètes à
support fini est un treillis lorsqu’il est muni de l’ordre stochastique usuel ≤st défini par

ξ≤st ξ̃ si P(ξ≤ t) ≥P(ξ̃≤ t) pour tout t .

Cet ordre partiel est par ailleurs compatible avec le produit de convolution, et nous obtenons
donc un monoïde ordonné comme un treillis. Plusieurs autres familles de variables sont
considérées dans le Chapitre 5. Un autre exemple important est celui des variables aléatoires
à scénarios, c’est à dire des variables aléatoires sur un espace de probabilité Ω fini. L’ordre
pertinent est alors

ξ6 ξ̃ si ξ(ω) ≤st ξ̃(ω) pour tout scénario ω dansΩ.

Les mesures à scénarios sont importantes car toute mesure peut-être approximée par une
mesure à scénario en utilisant une technique d’échantillonnage.

Pour chaque problème d’optimisation stochastique considéré dans cette thèse, nous dévelop-
pons des algorithmes qui peuvent considérer des fonctionnelles de probabilité à la fois dans les
contraintes et dans l’objectif, et peuvent être utilisés à la fois dans le cas de variables aléatoires
indépendantes et dans le cas de variables aléatoires à scénarios. De plus, nous fournissons
des bornes supérieures sur l’erreur commise lorsqu’une approximation par échantillonnage
est utilisée. Ces bornes reposent sur des outils probabilistes récents comme par exemple des
inégalités de concentration qui bornent la distance de Wasserstein entre la mesure originale
et la mesure échantillonnée.

20

1.4. Prise en compte de l’aléa

Le chapitre 2 introduit quelques outils probabilistes que nous utiliserons ensuite pour modéli-
ser des problèmes stochastiques et pour obtenir des bornes sur les erreurs commises lorsque
nous utilisons des distributions échantillonnées. La chapitre 5 considère des problèmes de
chemin stochastiques, et le chapitre 11 développe des modèles stochastiques pour prendre
en compte la propagation du retard lors de la construction des rotations avions et équipages
d’une compagnie aérienne.

21

2 Probabilistic tools for stochastic opti-
mization

The purpose of this chapter is to introduce the tools of stochastic optimization required for
the analysis of stochastic shortest path problems in Chapter 5, and for the analysis of delay
propagation in airline operations in Chapter 11.

The chapter is organized as follows.

• Section 2.1 introduces risk measures, which are probability functionals designed to
handle risk.

• Section 2.2 introduces non-asymptotic exponential bounds on the quality of approxi-
mation of a stochastic optimization problem by Monte-Carlo methods. The proofs of
the theorems of this section are available in Appendix A.

2.1 Risk measures

2.1.1 Version independent and risk-averse probability functional

Let ξ be a random variable on a probability space (Ω,F ,µ). A probability functional ρ is
risk-averse if ρ(ξ) > ρ(E(ξ)) for non-constant random variables ξ, risk-prone if ρ(ξ) < ρ(E(ξ)),
and risk-neutral if ρ(ξ) = ρ(E(ξ)).

A probability functional ρ is version independent if ρ(ξ) only depends on the distribution of
ξ: if ρ is version independent, then we can write ρ(ξ) = ρ (

µξ
)

where µξ is the image measure
of µ under ξ. In this dissertation, we restrict ourselves to version independent probability
functionals.

On some practical problems, computing ρ(µξ) happens to be non-tractable due to the com-
plexity of µ. A usual technique in these cases is to replace the initial measure µ by a measure µ̃
such that computing ρ(µ̃ξ) is tractable. A wide part of the results in this section gives bounds
on the error made on ρ(µξ) when µ is replaced by µ̃. In this context, it is convenient to con-
sider that a version independent probability functional ρ has two arguments: the measure
µ on the probability space, and the random variable ξ. We therefore introduce the notation
ρµ(ξ) = ρ(µξ).

23

Chapter 2. Probabilistic tools for stochastic optimization

2.1.2 Risk measures definition

Given a vector space of F -measurable random variables on a probability space (Ω,F ,µ),
a coherent risk measure ρ is a probability functional if each pair (ξ, ξ̃) of random variables
satisfies the four following properties:

• Monotonicity: ρ(ξ) ≤ ρ(ξ̃) if ξ≤ ξ̃ almost surely,
• Convexity: ρ

(
λξ+ (1−λ)ξ̃

)≤λρ(ξ)+ (1−λ)ρ(ξ̃), for all ξ, ξ̃, and 0 ≤λ≤ 1,
• Translation invariance: ρ(ξ+ c) = ρ(ξ)+ c for all c ∈R,
• Positive homogeneity: ρ (λξ) =λρ(ξ) for all λ ∈R+.

As we consider only coherent risk measures, we call them simply risk measures. Artzner et al.
[15] introduced the notion of risk measures in financial mathematics. Many of these axioms
have been considered previously in the context of insurance [49, 50, 169]. The first example of
risk measure is the expectation. Expectation is risk-neutral. On the contrary, the variance is
not a risk measure, and the probability functional Ec(·) of utility theory is not a risk measure
either for most cost functions c(·).

The monotonicity property plays a key role in the design of solution algorithm for stochas-
tic path problems in Chapter 5. A consequence of this property in the context of version
independent risk measures is given in Section 2.1.5.

2.1.3 Conditional Value at Risk

The Condition Value-at-Risk [149] of level β ∈ [0,1) is

CVaRβ(ξ) = 1

1−β
∫ 1

β
VaRα(ξ)dα where VaRβ(ξ) = inf

{
t |P(ξ≤ t) ≥β}

. (2.1)

Intuitively, the Conditional Value at Risk of level β can be interpreted as the expectation in
the β worst case. Parameter β enables to choose a level of risk awareness. Indeed, if β = 0,
then CVaRβ = E and the Conditional Value at Risk is risk-neutral. On the contrary, when β→ 1,
CVaRβ converges to the worst case value of ξ.

The Conditional Value at Risk is version independent. Furthermore, the following theorem,
known as Kusuoka’s representation theorem [111], states that any version independent risk
measure can be represented as a sum of CVaRβ.

Theorem 2.1. If ρ is a version independent risk measure on a probability space without atoms,
then there exists a set M of probability measures on [0,1] such that

ρ(·) = sup
ν∈M

∫ 1

0
CVaRβ(·)ν(dβ).

We do not use Kusuoka’s theorem directly in this dissertation, but we use instead its corollary
introduced in the next section.

24

2.1. Risk measures

2.1.4 Distortion Functional

In this section, we introduce a parametrization of version independent risk measures. Given a
real random variable ξ and a real number u ∈ [0,1], let

F−1
ξ (u) = min{x ∈R|P(ξ≤ x) ≥ u}

denote the Value-at-Risk of ξ at level u. A distortion function σ : [0,1) → [0,∞) is a nondecreas-
ing and nonnegative function satisfying

∫ 1
0 σ(u)du = 1. The distortion functional associated

to σ is the function

ρσ(ξ) =
∫ 1

0
σ(u)F−1

ξ (u)du.

Distortion functionals have been introduced by Denneberg [49] and studied by Acerbi [3],
Acerbi and Simonetti [4]. They are easily shown to be version independent risk measures.
Besides, a risk measure is generated by a set of distortion functions S if

ρ(ξ) = sup
σ∈S

ρσ(ξ). (2.2)

The following corollary [143] of Kusuoka’s representation theorem replaces Conditional Value-
at-Risk by distortion functionals in Theorem 2.1.

Corollary 2.2. If ρ is a version independent risk measure on a probability space without atoms,
then ρ is generated by a set of distortion functions S .

Corollary 2.2 is used in the statement of Theorems 2.5 and 2.7 and in Appendix A.

2.1.5 Monotonicity with respect to stochastic orders

Monotonicity assumption in the definition of a risk measure ρ states that if ξ≤ ξ̃ almost surely,
then ρ(ξ) 6 ρ(ξ̃). For version independent risk measures, this property can be extended to
other stochastic orders. Detailed studies of stochastic orders are available in the books by
Müller and Stoyan [131] and Shaked and Shanthikumar [160].

A random variable ξ is smaller than a random variable ξ̃ for the usual stochastic order, denoted
ξ≤st ξ̃ if

P(ξ≤ t) ≥P(ξ̃≤ t) for all t . (2.3)

A probability functional ρ is monotone with respect to the usual stochastic order

ξ≤st ξ̃ implies ρ(ξ) ≤ ρ(ξ̃).

If ξ ≤ ξ̃ almost surely implies ξ ≤st ξ̃, the converse is false. As a consequence, a probability
functional monotone with respect to the usual stochastic order is monotone with respect to
almost sure order, but the converse is false. Nonetheless, the following proposition shows that
the converse is true for version independent probability functionals.

25

Chapter 2. Probabilistic tools for stochastic optimization

Proposition 2.3. A version independent probability functional ρ monotone with respect to the
almost sure order is monotone with respect to the usual stochastic order. This is notably the case
of version independent risk measures.

Proposition 2.3 is the cornerstone of the algorithms for stochastic path problems developed in
Chapter 5. Bäuerle and Müller [22] provides analogue of Proposition 2.3 in the general case of
risk measures that are not version-independent on finite probability spaces and non-atomic
probability spaces. To the best of our knowledge, the version-independent case, which is
much simpler, has not been studied.

Proof of Proposition 2.3. Let ξ and ξ̃ be such that ξ ≤st ξ̃. Let F and G be their respective
cumulative distribution functions, and F−1 and G−1 be their right continuous inverses. Equa-
tion (2.3) implies F−1(t) ≤G−1(t) for all t in [0,1]. Let U be a uniform [0,1] random variable,
ξ̂= F−1(U), and ̂̃ξ=G−1(U). For any atom ω, we have ξ̂(ω) = F−1(U (ω)) ≤G−1(U (ω)) = ̂̃ξ(ω)
By monotonicity of probability functional ρ, this implies ρ(ξ̂) ≤ ρ(̂̃ξ).

As ξ and ξ̂ (resp. ξ̃ and ̂̃ξ) have the same cumulative distribution, the hypothesis that ρ is
version independent implies that ρ(ξ) = ρ(ξ̂) (resp. ρ(ξ̃) = ρ(̂̃ξ)). The inequality ρ(ξ̂) ≤ ρ(̂̃ξ)
then gives the proposition.

2.2 Convergence of the Monte-Carlo approximation of a stochastic
problem

Let (Ω,F ,µ) be a probability space, and ξ be a Rd random variable on (Ω,F ,µ). Let f be
a Lipschitz function on Rd , ρµ be a version independent probability functional, and Xµ be
a set-valued version independent probability functional. Consider the following stochastic
optimization problem

min
x∈Xµ(ξ)

ρµ
(

f (x,ξ)
)

, (2.4)

where x is deterministic, Xµ(ξ) is the set of feasible solutions given ξ, and f is the objective
function. A difficulty which often arises in stochastic optimization is that the computation
of ρµ

(
f (x,ξ)

)
may be intractable for a fixed x. In those case, a standard methodology is to

replace µ by another probability distribution µ̃ such that the computation of ρµ̃
(

f (x,ξ)
)

is
simpler. Given an N -sample ξ1, . . . ,ξN of ξ, the principle of Monte-Carlo methods is to replace
Problem (2.4) by the following Monte-Carlo approximation problem,

min
x∈Xµ̂N (ξ)

ρµ̂N

(
f (x,ξ)

)
where µ̂N = 1

N

N∑
i=1

δξi , (2.5)

where δx is the Dirac distribution in x. The objective of this section is to introduce bounds on
the error made when replacing Problem (2.4) by its Monte-Carlo approximation (2.5).

When X does not depend on ξ, we provide non-asymptotic exponential bounds on the differ-
ence between ρµ

(
f (x∗,ξ)

)
and ρµ

(
f
(
x̂N ,ξ

))
, where x∗ is an optimal solution of Problem (2.4)

26

2.2. Convergence of the Monte-Carlo approximation of a stochastic problem

and x̂N is an optimal solution of Problem (2.5). The bounds are typically of the form

P
[
ρµ

(
f (x̂N ,ξ)

)−ρµ (
f (x∗,ξ)

)> ε]≤C ′
(
exp

(
−c ′Nεd

)
1ε≤1 +exp

(−c ′Nεα
)

1ε>1

)
, (2.6)

where C ′,c ′ and α are constants. The non-deterministic term inside the probability on the
left hand side is x̂N , which depends on the sampling of µ̂N from µ. As a consequence, the
probability P is with respect to the sampling of µ̂N from µ. The analysis, which follows the
one of Pflug and Pichler [143], is in two steps. First, Theorem 2.4 by Fournier and Guillin
[80] ensures that under the assumption that µ admits an exponential moment of degree α,
there exists constants C and c such that the Wasserstein distance W1(µ̂N ,µ) between µ and
µ̂N satisfies

P
[
W1

(
µ̂N ,µ

)> ε]≤C
(
exp

(
−cNεd

)
1ε≤1 +exp

(−cNεα
)

1ε>1

)
. (2.7)

Second, Theorems 2.5 and 2.6 show the robustness of optimization with respect to Wasserstein
distance through bounds of the type

ρµ
(

f (x̂N ,ξ)
)−ρµ (

f (x∗,ξ)
)≤ γW1

(
µ̂N ,µ

)
, (2.8)

where γ is a constant depending on the probability functional ρ. Different bounds are provided
depending on the assumptions on ρ and µ.

When X depends on ξ and is of the form,

Xεµ(ξ) = {
x ∈X|Pµ

[
g (x,ξ) > 0

]≤ ε} where the map ξ 7→ g (x,ξ) is Lipschitz,

we provide results of the type Xα
µ̂N ⊆ Xεµ ⊆ Xβ

µ̂N , where α and β only depend on ε,W1(µ, µ̂N)
and some regularity assumptions on µ.

2.2.1 Wasserstein distances

Let Ω and Ω̃ be two probability spaces with probability measures µ and µ̃, and ξ :Ω→ RM

and ξ̃ : Ω̃→RM be two random variables on RM . Then the inherited distance d(ω,ω̃) between
elements ofΩ and Ω̃ is defined as

d(ω,ω̃) = ∥∥ξ(ω)− ξ̃(ω̃)
∥∥ .

Given p ∈ [1,+∞), the Wasserstein distance of order 1 between µ and µ̃ inherited from ξ and ξ̃
is

W1(µ, µ̃) =W1(µξ, µ̃ξ̃) = inf
π∈Π(µ,µ̃)

(Ï
d(ω,ω̃)dπ(ω,ω̃)

)
, (2.9)

where π runs overΠ
(
µ, µ̃

)
, the set of all joint probability measures on the product spaceΩ× Ω̃

with marginals µ and µ̃.

The following concentration inequality is a special case of Theorem 2 in [80]. It is used in

27

Chapter 2. Probabilistic tools for stochastic optimization

Section 5.3.4 and Section 11.5.

Theorem 2.4. Let µ be a probability measure on Rd with d > 2. Suppose that there exist α> 1
and γ> 0 such that

εα,γ(µ) =
∫
Rd

eγ|x|
α

µ(d x) <∞,

then there exist c and C such that for all N ≥ 1 and all x > 0,

P
[
W1

(
µ̂N ,µ

)> x
]≤C

(
exp

(
−cN xd

)
1x≤1 +exp

(−cN xα
)

1x>1

)
,

where constants c and C only depend on d ,α,γ, and εα,γ(µ).

Fournier and Guillin [80] provide alternative results when the hypothesis only stands for some
α ∈ (0,1).

2.2.2 Robustness of solutions with respect to Wasserstein distance

Theorem 2.5. Suppose that X is compact, ξ 7→ f (x,ξ) is κ-Lipschitz for all x, and that ρ is a
version independent risk measure, and S be a set of distortion function that generates it. The
existence of such an S is ensured by Corollary 2.2. Let µ and µ̃ be two probability distributions,
and let x∗ and x̃ denote optimal solutions of min

x∈X
ρµ

(
f (x,ξ)

)
and min

x∈X
ρµ̃

(
f (x,ξ)

)
respectively.

Then,
ρµ

(
f (x̃,ξ)

)−ρµ (
f (x∗,ξ)

)≤ 2κ sup
σ∈S

‖σ‖∞W1
(
µ, µ̃

)
.

Note that the existence of optimal solutions x∗ and x̃ is a consequence of the compactness of
X and the fact that f is Lipschitz.

In this dissertation, we consider three types of probability functionals ρ. Risk measures,
expectation of cost functions, and probability P(· > τ) of being greater than given a threshold τ.
Theorem 2.5 enables to deal with risk measures and expectation of Lipschitz cost functions.
The next theorem enables to deal with P(· > τ), and with expectation of non-decreasing
piecewise Lipschitz functions when combined with Theorem 2.5.

Theorem 2.6. Suppose that X is compact, ξ 7→ f (x,ξ) is κ-Lipschitz for all x, and that τ is a
given threshold, and let x∗ and x̃ be defined as in Theorem 2.5.

1. If the support of f (x,ξ) under µ and µ̃ is in Z for all x, then

Pµ
(

f (x̃,ξ) > τ)−Pµ (
f (x∗,ξ) > τ)≤ 2κW1

(
µ, µ̃

)
.

2. If there exists a B such that, for each x ∈X, the distribution of f (x,ξ) is non-atomic and
with density bounded by B, then

Pµ
(

f (x̃,ξ) > τ)−Pµ (
f (x∗,ξ) > τ)≤ 4

√
BκW1(µ, µ̃).

Theorems 2.5 and 2.6 are proved in Appendix A. They are used in Section 5.3.4.

Remark 2.1. The fact that µ admits a bounded density on Rm does not imply that the induced
measure µ f (x,ξ) has a bounded density.

28

2.2. Convergence of the Monte-Carlo approximation of a stochastic problem

Remark 2.2. The assumption that X is compact in Theorems 2.5 and 2.6 is required to ensure
the existence of x∗ and x̃. Without this assumption, analogue results can be obtained on the
value of the problems. See for instance Theorem 6.1 in [143].

2.2.3 Probabilistic constraints

In this section, we consider the case of stochastic optimization with non-deterministic feasible
set

min
x∈Xεµ(ξ)

ρµ
[

f (x,ξ)
]

, (2.10)

where ξ 7→ f (x,ξ) is κ f -Lipschitz for all x, and the set of feasible solutions satisfies probabilistic
constraints of the form

Xεµ(ξ) = {
x ∈X|Pµ

[
g (x,ξ) > 0

]≤ ε} where the mapping ξ 7→ g (x,ξ) is Lipschitz,

withX compact, which implies thatXεµ(ξ) is compact. Note that taking one constraint g (x,ξ) ≤
0 is non-restrictive in practice. Indeed, suppose that we have m constraints g i (x,ξ) ≤ 0, if we
define g (x,ξ) = maxi g i (x,ξ), we have P

[∃i : g i (x,ξ) > 0
]=P[

g (x,ξ) > 0
]
.

Given a probability distributions µ̃, we approximate Problem (2.10) through the resolution of
the two following problems

min
x∈Xαµ̃ (ξ)

ρµ̃
[

f (x,ξ)
]

and min
x∈Xβµ̃(ξ)

ρµ̃
[

f (x,ξ)
]

with 0 <α< ε<β.

The following theorem shows that withα andβ carefully chosen as functions of the Wasserstein
distance between µ and µ̃, then minx∈Xαµ̃ (ξ)ρµ̃

[
f (x,ξ)

]
provides a feasible solution of the initial

problem (2.10) and an upper bound on its value, and min
x∈Xβµ̃(ξ)

ρµ̃
[

f (x,ξ)
]

provides a lower

bound on the value of (2.10).

Theorem 2.7. Suppose that one of the following assumptions is satisfied.

1. For all x and ξ in the union of the supports of µ and µ̃, g (x,ξ) ∈Z .
2. There exists a B such that, for each x ∈X, the distribution of f (x,ξ) is non-atomic and

with density bounded by B.

Then,

Xαµ̃ ⊆ X ε
µ ⊆ X β

µ̃ , where



α= ε−κGW1(µ, µ̃),
β= ε+κGW1(µ, µ̃),

under Assumption 1,

α= ε−2
√

BκGW1(µ, µ̃),
β= ε+2

√
BκGW1(µ, µ̃),

under Assumption 2,

κG is the Lipschitz constant of g , and Xα
µ̃ =; if α< 0. If in addition ρµ is a version independent

29

Chapter 2. Probabilistic tools for stochastic optimization

risk measure generated by a set of functionals S and σ∞ = supσ∈S ‖σ‖∞, we have

min
x∈Xβµ̃(ξ)

ρµ̃
[

f (x,ξ)
]−2κ f σ∞W1(µ, µ̃) ≤ min

x∈Xεµ(ξ)
ρµ

[
f (x,ξ)

]≤ min
x∈Xαµ̃ (ξ)

ρµ̃
[

f (x,ξ)
]+2κ f σ∞W1(µ, µ̃).

Theorem 2.7 is used in Section 5.3.4 and Section 11.5, and proved in Appendix A.

30

Part IShortest path problems

31

Introduction to Part I
This part focuses on resource constrained shortest path problems. We recall that a monoid
(R,⊕) is a set R endowed with an associative law ⊕ which admits a neutral element. Given a
partial order 6 on R, the monoid (R,⊕,6) is a lattice ordered monoid if ⊕ induces a lattice
structure on R and if translations · 7→ ·⊕ q and · 7→ q ⊕ · are non decreasing for each q in
R. Lattice ordered monoids and graph notions are introduced in Section 3.1.1. A general
framework for resource constrained shortest path problems is the following.

MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

Let (R,⊕,6) be a lattice ordered monoid.
Input. A digraph D = (V , A), two vertices o,d ∈ V , a collection (qa) ∈ RA , and two non-
decreasing mappings c : R →R and ρ : R → {0,1}.
Output. An o-d path P such that ρ

(⊕
a∈P qa

)= 0 and with minimum c
(⊕

a∈P qa
)
.

R is the set of resources. The resource of a path P is
⊕

a∈P qa , and the cost of P is c
(⊕

a∈P qa
)
.

P is feasible if ρ
(⊕

a∈P qa
)

is a equal to 0. ρ is latter referred as the infeasibility function. We
denote qP the resource

⊕
a∈P qa of a path P . Both mappings are considered as oracles: apart

from their monotonicity and the fact that we can compute their result, we do not make or
use assumptions on their properties. The lattice order 6 enables to compare the resources.
It is a crucial element in the design of algorithms for the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM. The MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

contains the standard shortest path and resource constrained shortest path problems with
one or several resources or constraints. The MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM is therefore N P -complete as the standard resource constrained shortest path
problem is N P -complete.

The main messages of this part are the following ones.

• Practically efficient algorithms can be derived for the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM.
• The lattice ordered monoid algebraic structure is light, and therefore a wide range of

non-constrained and resource constrained shortest path problems can be modeled
within the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework.

The practical advantage of this approach is that all the algorithms mentioned above depend
only on the functions ρ and c and on the operators ⊕ and 6 of the ordered monoid (R,⊕,6).
We have therefore implemented them once and for all in a C++ library, and we have then
used this library to solve a wide range of path problems. The main features of this library

33

are described in Appendix C. Solving practical instances then only requires to implement the
specific resource set (R,⊕,6) and functions ρ and c considered. We fully detail this procedure
on three types of problems:

• In Chapter 3, we consider the toy problem of finding a continent-wide minimum cost
path for a truck driver, taking into account hotel costs and the fact that a driver should
not drive more than a given number of hours per day. This toy problem enables to
introduce the key techniques to model within the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM framework.
• In Chapter 5, we show how stochastic counterparts of problems that can be treated in

the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework can also
be treated in this framework. We detail the cases of the generic shortest path problem
and of the generic resource constrained shortest path problem.

• Finally, we use the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM al-
gorithms to solve the subproblems of the column generation approaches we use to
optimize Air France operations in Part II. More precisely we solve the problem of build-
ing sequences of flights for Air France crews in Chapter 9, and its stochastic counterpart
taking into account flight legs delay in Chapter 11.

The specificity of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM lies in
the lattice ordered structure of the resource set. The other resource constrained shortest
path frameworks in the literature [96, 97] endow the resource set R with an order 6, but
they do not assume that it implies a lattice structure on R. Besides, they do not define an
associative operator sum operator ⊕. Instead, they define a resource extension function ζa on
each arc a of the network. Given the resource qP of a path P , the resource of path P followed
by arc a is ζa(qP). The main advantage of an associative operator ⊕ over resource extension
functions is that the associativity of ⊕ enables to compute paths resources in both directions,
i.e. from the beginning to the end or from the end to the beginning of the path. Joined with
the lattice structure, this enables to define standardized algorithms that compute bounds on
paths resources. It is well known that using bounds in an A∗ like way enables to dramatically
increase the performance of the resource constrained shortest path algorithms [147]. There
exists some problem-specific technique to build such bounds when the resource extension
function is simple, or based on Lagrangean relaxation when the problem can be written as an
integer program. But, to the best of our knowledge, there are no standard procedure to build
such bounds for generic resource extension functions, and no standard procedure to build
bounds for non-linear and stochastic resource constrained shortest path problems. The main
advantage of lattice ordered monoid structure is that it enables to standardize the construction
and the use of these bounds.

Indeed, the algebraic path problem literature has shown that the usual polynomial algorithms
for the standard shortest path problem can be generalized to idempotent semiring. We show in
Chapter 4 that the solution of these generalized algorithms can be interpreted as a lower bound
on the resource of all the paths between given origin and destination vertices. Unfortunately,
the semiring structure is too strong and does not enable to model many practical applications
of the resource constrained shortest path problem. Nonetheless, idempotent semirings are
special cases of lattice ordered monoids, and we show in this dissertation that these polynomial

34

algorithms can be generalized to lattice ordered monoids, and can therefore be used as
standard procedures to build lower bounds on paths resources. Besides, the lattice ordered
monoid structure is versatile enough to model almost all problems that can be handled
within the resource extension function framework. The price we have to pay for this algebraic
structure is that modeling can be made more technical, especially to obtain the associativity.
But the increase in algorithms performance it enables justifies the use of the lattice ordered
monoid framework on difficult problems.

Part I is organized as follows:

• Chapter 3 details the graph notions used and introduces the main notions on lattices
and ordered monoid that are used in the remaining of the part. It then shows that many
resource constrained shortest path problems studied in the literature can be modeled as
instances of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. Finally,
it outlines the links with other frameworks in the literature.

• Chapter 4 is the main chapter of this part. It generalizes Ford-Bellman, Dijkstra, and
A∗ algorithms to the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

framework. These new algorithms are tested numerically on stochastic path problems
in Chapters 5 and 6, and are used as subroutine in the column generation algorithm of
Chapter 9.

• Chapter 5 focuses on stochastic path problems as specific cases of the MONOID RE-
SOURCE CONSTRAINED SHORTEST PATH PROBLEM. It also contains a probabilistic analy-
sis of these problems.

• Chapter 6 introduces the notion of state graph to enhance the algorithms of Chapter 4
and to make them able to better solve the difficult MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM instances outlined in Chapter 4 and Chapter 5. Chapter 6 is
technical and independent from the remaining of this dissertation. It can be skipped in
a first read.

35

3 Algebraic structure of the resource set
in path problems

The goals of this chapter are to introduce the algebraic and graph notions used in this part,
to compare the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework to
other path problems frameworks in the literature, and to show the modeling power of the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework.

Chapter 3 is organized as follows:

• Section 3.1 introduces the mathematical notions on graphs, lattices and monoids used
along Part I.

• Section 3.2 re-states the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.
It shows that the standard path problems are instances of the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM. The main properties enjoyed by the solutions
of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM are then highlighted.
These properties are the building blocks of the generalization of A∗ algorithm and of
dynamic programming in the next chapter.

• Section 3.3 introduces the algebraic path problem semiring framework, and shows its
links with our lattice ordered monoid framework.

• Section 3.4 shows the modeling power of the MONOID RESOURCE CONSTRAINED SHORT-
EST PATH PROBLEM framework. As we said in the introduction, the most common
resource constrained shortest path framework is based on resource extension functions.
After a review of the different classes of resource constrained shortest path problems
considered in resource extension function literature, we show that, through the use
of some modeling techniques, most of them can be dealt with within the MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework. To illustrate these
modeling techniques, we detail how the continent wide truck delivery toy problem
of Chapter 1 can be modeled as a MONOID RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM.

Bibliographical remarks on non-constrained and resource constrained shortest path problems
are provided in Sections 3.3 and 3.4.

37

Chapter 3. Algebraic structure of the resource set in path problems

3.1 Generalities on graphs and ordered monoids

3.1.1 Digraphs

A digraph D is a pair (V , A) where V is the set of vertices and A is the set of arcs of D. The set
of arcs A is a multiset of elements of V 2. An arc a links a tail vertex to a head vertex. An arc
a is incoming to (resp. outgoing from) v if v is the head (resp. the tail) of v . The set of arcs
incoming to (resp. outgoing from) v is denoted δ−(v) (resp. δ+(v)). A path is a sequence of
arcs a1, . . . , ak such that for each i ∈ {1, . . . ,k −1}, the head vertex of ai is the tail vertex of ai+1.
Note that with this definition, paths can contain multiple copies of an arc or of a vertex. A
path P is elementary if it contains at most one copy of each vertex. It is simple if it contains at
most one copy of each arc. The origin of a path is the tail of its first arc and its destination is
the head of its last arc. Given two vertices o and d in V , an o-d path P is a path with origin
o and destination d . A cycle is a path whose origin is identical to its destination. Given two
paths P1 and P2 such that the destination of P1 is equal to the origin of P2, we denote P1 +P2

the path whose sequence of arcs is composed of the arcs of P1 followed by the arcs of P2

3.1.2 Ordered monoid and lattices

Let (R,6) and (S ,≤) be two partially ordered sets. A map ρ : R →S is isotone if q 6 q̃ implies
ρ(q) ≤ ρ(q̃). It is antitone if q 6 q̃ implies ρ(q) ≥ ρ(q̃). A mapping is monotone if it is either
isotone or antitone. Given two partial orders 6 and ¹ on a set R, 6 is coarser than ¹ if q ¹ q̃
implies q 6 q̃

Let (R,⊕) be a set endowed with a law of composition. (R,⊕) is a monoid if ⊕ is associative
and admits a neutral element in R. A partial order 6 is a compatible order on (R,⊕) if all
translations q 7→ q ⊕ q̃ and q 7→ q̃ ⊕q are isotone. An ordered monoid (R,⊕,6) is a monoid
endowed with a compatible order. An element q of an ordered monoid (R,⊕,6) is positive if
q > 0 where 0 denotes the neutral element of ⊕.

A partially ordered set (R,6) is a lattice if each pair (q, q̃) of elements of R admits a greatest
lower bound or meet and a least upper bound or join. The join of two elements q and q̃ is
denoted q ∨ q̃ , and their meet is denoted q ∧ q̃ . It is a lower semi-lattice if each pair (q, q̃) of
elements of R admits a meet. An ordered monoid (R,⊕,6) is a lattice ordered monoid if 6
induces a lattice structure on R. It is a lower semi-lattice ordered monoid if 6 induces a lower
semi-lattice structure. The notions of meet and join can be extended to subsets of a lattice.
When they exist, the least upper bound of a subset S is the join of S and is denoted

∨
S or∨

q∈S
q , and the greatest lower bound is the meet of S and is denoted

∧
S or

∧
q∈S

q . A lattice R

is complete if each subset S ⊆R admits a meet and a join. Any lattice R can be completed,
i.e. transformed into a complete lattice R′ by adding some elements.

A mapping between partially ordered sets f : S1 → S2 is an embedding if it is injective and
x ≤ y if and only if f (x) ≤ f (y). Two partially ordered set R and R′ are isomorph if there exists
a mapping φ from R to R′ that admits an inverse φ−1 and such that φ and φ−1 are isotone. A
partially ordered set of R′ is a completion of a partially ordered set R if R′ is a complete lattice
and there exists an embedding φ of R into R′. Any lattice can be embedded in a complete

38

3.2. Monoid Resource Constrained Shortest Path Problem

lattice. However, this completion can be much larger than the initial lattice. For instance, the
smallest completion ofQ is R∪ {−∞,+∞}. To explain why it is not the case for the lattices that
we consider, we introduce the notion of conditional completeness.

A partially ordered set R is conditionally complete if any subset S ⊆R that has an upper bound
and is not empty has a join. The following lemma is a well known result on conditionally
complete lattices [159].

Lemma 3.1. Let R be a conditionally complete lattice. Then

1. R∪ {−∞,+∞} is a completion of R,
2. if the join

∨
R (resp. the meet

∧
R) exists, then R∪{−∞} (resp. R∪{+∞}) is a completion

of R,
3. if the join

∨
R and the meet

∧
R exist, then R is a complete lattice,

where −∞ and +∞ are respectively the meet and the join of the resulting lattice.

All the practical examples of lattices we consider in this dissertation are conditionally complete.
The definition of several quantities considered in this dissertation require a complete lattice.
Whenever such a quantity is defined, we mention that it may belong to the completion of R.
As running algorithms on R∪ {−∞,+∞} is not more difficult that on R, such quantities do
not affect the practical performance of the algorithms.

A (lattice) ordered monoid (R,⊕,6) is a (lattice) ordered group if (R,⊕) is a group. A lower
semi-lattice ordered group is a lattice ordered group. Indeed, given two elements a and b,
their a ∨b exists and is equal to a ⊕ (a ∧b)−1 ⊕b.

For an introduction to lattices, see e.g. [47, 85, 159]. For an introduction to lattice ordered
algebraic structures, see [28].

3.2 Monoid Resource Constrained Shortest Path Problem

We now recall the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

Let (R,⊕,6) be a lattice ordered monoid.
Input. A digraph D = (V , A), two vertices o,d ∈ V , a collection (qa) ∈ RA , and two isotone
mappings c : R →R and ρ : R → {0,1}.
Output. An o-d path P such that ρ

(⊕
a∈P qa

)= 0 and with minimum c
(⊕

a∈P qa
)
.

R is the set of resources. The resource of a path P is
⊕

a∈P qa , and the cost of P is c
(⊕

a∈P qa
)
.

P is feasible if ρ
(⊕

a∈P qa
)

is a equal to 0. Mappings c and ρ are respectively called the cost
and the infeasibility functions. Section 3.2.1 gives first examples of MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM, and Section 3.2.2 highlights its main properties.

Remark 3.1. Our algorithms for the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROB-
LEM only need the ⊕, 6 and ∧ operators. As a consequence, we only need (R,⊕,6) to be a
lower semi-lattice ordered monoid, and all the results given in this dissertation remain true
in that case. Nonetheless, in all practical applications, a join can be defined and (R,⊕,6) is
lattice ordered monoid. We stick to the lattice ordered monoid case to simplify terminology.

39

Chapter 3. Algebraic structure of the resource set in path problems

3.2.1 First examples

A first application of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM is the
STANDARD SHORTEST PATH PROBLEM.

STANDARD SHORTEST PATH PROBLEM

Input. A digraph D = (V , A), two vertices o,d ∈V , and a collection (ca) ∈RA .
Output. An o-d path P with minimum

∑
a∈P

ca

The set of real numbers R endowed with its usual sum and order is a lattice ordered monoid.
It then suffices to define qp = cp , ρ = 0, and c(q) = q to obtain the reduction to a MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

A second natural application is the STANDARD RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM.

STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

Input. A digraph D = (V , A), two vertices o,d ∈ V , collections (ca) and (wa) in RA , and a
threshold τ ∈R.
Output. An o-d path P such that

∑
a∈P

wa ≤ τ and with minimum
∑

a∈P
ca .

The set R2 endowed with its usual sum and its component-wise order is a lattice ordered
monoid, and (q1, q2)∧ (q̃1, q̃2) = (

min(q1, q̃1),min(q2, q̃2))
)
. Arc resource qa are defined as

(ca , wa), and isotone oracles ρ and c as c : (q1, q2) → q1 and ρ : (q1, q2) 7→
{

0 if q2 ≤ τ,
1 otherwise.

The N P -completeness of the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROB-
LEM implies that the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM is N P -
complete. More generally, Rn endowed with its usual sum and component-wise order is
a lattice ordered monoid. We use it several times in this dissertation, and notably in the
sample-based stochastic approaches to the shortest path problem considered in Chapter 5.

3.2.2 Main properties

There are two types of algorithms for the STANDARD SHORTEST PATH PROBLEM. The enu-
meration algorithms, such as A∗, which rely on bounds to discard paths, and the polynomial
algorithm, such as Ford-Bellman or Dijkstra algorithm. In the next chapter, we generalize
them to the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. In this section, we
outline the properties on which rely both STANDARD SHORTEST PATH PROBLEM algorithms
type, and show how they generalize to the lattice ordered monoïd framework.

We start by the enumeration algorithms. Consider an instance of the STANDARD SHORTEST

PATH PROBLEM. Let cP denote the cost
∑

a∈P ca of a path P in the STANDARD SHORTEST PATH

PROBLEM setting. The enumeration algorithms rely on the following property to cut paths.

Property 3.2. Weak subpath property
Consider an instance of the STANDARD SHORTEST PATH PROBLEM. Let P1 and P2 be o-v paths,
and P be a v-d path. Then cP1 ≤ cP2 implies cP1+P ≤ cP2+P , where Pi +P denotes the path

40

3.3. Links with the algebraic path problem

composed of Pi followed by P .

The following lemma is a generalization of Property 3.2, enables to generalize enumeration
algorithms to the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

Property 3.3. Let P1 and P2 be o-v paths, and P be a v-d path. If qP1 6 qP2 , then

qP1+P 6 qP2+P , ρ(qP1+P) ≤ ρ(qP2+P), and c(qP1+P) ≤ c(qP2+P).

The polynomial algorithms for the STANDARD SHORTEST PATH PROBLEM rely on the following
dynamic programming property.

Property 3.4. Dynamic programming property
Let bv be cost of a shortest v-d path.

bv = min
(v,u)∈δ+(v)

c(v,u) +bu

where δ+(v) is the set of arcs outgoing from v .

The dynamic programming equation of Property 3.4 cannot be directly generalized to the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. Indeed, the lattice order is not
a total ordering, and therefore there is no notion of minimum for this order. Nonetheless,
as (R,⊕,6) is a lattice ordered monoid, we can define the following generalization of the
dynamic equation, where the min operator is replaced by the meet operator

bv = ∧
(v,u)∈δ+(v)

q(v,u) ⊕bu . (3.1)

As we will see in Chapter 4, Equation (3.1) always admits a solution, and this solution can be
computed in polynomial time using generalization of Dijkstra and Ford-Bellman algorithms.
Besides, if (bv) is a solution of Equation (3.1), then it is a lower bound on the resource of any
v-d path. This lower-bound can then be used by the A∗ algorithm.

3.3 Links with the algebraic path problem

Another algebraic framework, the algebraic path problem, has been developed to generalize
the STANDARD SHORTEST PATH PROBLEM. There is no cost or feasibility functions in that
framework. The objective of the algebraic path problem is to solve Equation (3.1) under
slightly different hypotheses on the structure resource set. Therefore, the algebraic path
problem does not apply to the resource constrained and stochastic shortest path problems for
which the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM has been designed.
Nonetheless, as we are interested in solving Equation (3.1) to obtain bounds, the algebraic
path problem theory provides insightful results for some specific lattice ordered monoid on
the convergence of the algorithms we use. We therefore now introduce the algebraic path
problem.

The algebraic path problem is a generalization of the STANDARD SHORTEST PATH PROBLEM

where arc resources belong to a semiring. It has been introduced as a common framework

41

Chapter 3. Algebraic structure of the resource set in path problems

to study algorithms developed for several paths, flows, and algebraic problems [25, 59, 76–
78, 170, 175]. Numerous authors studied the algebraic path problem with semiring frameworks
of varying generality [8, 17, 34, 74, 86, 115, 130, 152, 178]. Fink [74] surveys the contributions
on the algebraic path problem. We introduce the algebraic path problem as is has been defined
by Mohri [130]. The algebraic results we use to make the link between the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM and the algebraic path problem frameworks are
available in e.g. [86, 178]. Bibliographical remarks on the algorithms for the algebraic path
problems are available in Chapter 4.

3.3.1 Problem statement

We use the notations + and × for generic binary operators on a set only in this section,
in order to distinguish semiring and lattice ordered monoid notations. Elsewhere in this
dissertation, operator + refers to the standard sum on R. Given two binary operators + and
× on a set R, operator × is distributive with respect to + if (a +b)× c = (a × c)+ (b × c) and
c × (a +b) = (c ×a)+ (c ×b) for all a, b, and c in R. An element e is an absorbing element for
a binary operator × if q ×e = e ×q = e for all q in R. Let (R,+,×) be a set endowed with two
binary operators. Then (R,+,×) is a semiring if, first, (R,+) is a commutative monoid whose
neutral element for + is denoted e, second, (R,×) is a monoid whose neutral element for ×
is denoted ε, third, operator × is distributive with respect to +, and fourth, e is an absorbing
element for ×. An element q of a semiring (R,+,×) is idempotent if q +q = q . An idempotent
semiring, or diod, is a semiring whose elements are all idempotent1. A semiring is bounded if
ε is an absorbing element for +. A bounded semiring is idempotent, and therefore it is a dioid.

Given a digraph D = (V , A), resources qa in a bounded dioid (R,+,×), and two vertices (o,d)
the shortest distance δ(o,d) between o and d is defined to be δ(o,d) = ε if o = d

δ(o,d) = ∑
P∈Pod

qP otherwise, where qP = ∏
a∈P

qa (3.2)

and Pod denotes the set of o-d paths. The algebraic shortest path problem consists in comput-
ing δ(o,d).

Remark 3.2. The shortest distance can be defined in the case of k-closed semirings [130],
which is a little more general than the one of bounded dioids. But for our needs, bounded
dioids are sufficient, and later in the section, we give an interpretation of Equation (3.2) in the
case on non-bounded dioids.

Given a destination vertex d , the shortest distances bv = δ(v,d) for each vertex v are well
known to be the solutions of the dynamic programming equation

 bd = ε if o = d,
bv = bv +

∑
(v,u)∈δ+(v)

q(v,u) ×bu otherwise. (3.3)

1Several distinct algebraic structures have been called dioid. See Remark 3.4 for more details

42

3.3. Links with the algebraic path problem

3.3.2 Link with our lattice ordered monoid framework

On a dioid (R,+,×), the relation ≤+ defined by

q ≤+ q̃ if q + q̃ = q

is a partial order called the canonical order on (R,+,×). Besides, ≤+ is compatible with × [86],
and 6+ induces a lower semi-lattice structure on R. Indeed, suppose that q 6+ a and q 6+ b.
Then q +a +b = (q +a)+b = q +b = q , and thus q ≤ a +b. We therefore have that operator +
is the meet operator for 6+. This canonical order enables to make the link between lattice
ordered monoid and dioids.

Let (R,+,×) be a dioid. Then (R,×,≤+) is a lower semi-lattice ordered monoid whose meet
operator is +, and e is the join of R for ≤+. Indeed, ≤+ is compatible with ×, and (R,≤+) is
a lower semi-lattice. We mentioned in Remark 3.1, the lower semi-lattice ordered monoid
structure is sufficient for our framework. Besides, if (R,+,×) is bounded, all the elements of
R\{ε} are positive.

Conversely, let (R,⊕,6) be an upper bounded lattice ordered monoid, and ∧ be its meet
operator. If ⊕ is distributive with respect to ∧, then (R,∧,⊕) is a dioid. Indeed, the neutral
element of ∧ is the join +∞ of R, and (R,∧) is a commutative monoid, and ∧ is idempotent.
The result then follows from the definition of a dioid. Later in this dissertation, we say that
a lattice ordered monoid is a dioid when ⊕ is distributive with respect to ∧. Indeed, the
compatibility of the order implies that given the resources q , q̃ and b,

(q ∧ q̃)⊕b 6 (q ⊕b)∧ (q̃ ⊕b) and b ⊕ (q ∧ q̃)6 (b ⊕q)∧ (b ⊕ q̃), (3.4)

but the converse inequality is not satisfied in the general case. Chapter 5 introduces the
practically important lattice ordered monoid of independent discrete distributions, which is
not a dioid.

Note that our generalized dynamic programming equation (3.1) corresponds to the dynamic
programming equation for dioid (3.3) written for (R,∧,⊕). As a consequence, when (R,⊕,6)
is a dioid, a solution of our generalized dynamic programming equation (3.1) is also a solution
of the algebraic shortest path problem (3.2). In that case, the shortest distance bv = δ(v,d) is
the meet of the resources qP of all the v-d paths. The algebraic path problem theory enables
to obtain stronger convergence results for the algorithms of the next chapter when (R,⊕,6) is
a dioid. We also underline the fact that, when the lattice ordered monoid is not a dioid, then
the solutions bv of the generalized dynamic equation (3.1) are not necessarily the meet of all
the v-d paths.

Furthermore, the lattice ordered monoid point of view enables to give a meaning to the dioid
shortest distance (3.2) and to the dioid dynamic programming equation (3.3) when the dioid
(R,+,×) is not bounded. Indeed, it suffices to complete the lower semi-lattice (R,≤+) with a
lower bound −∞, and the Knaster-Tarski fixed point theorem in lattices ensures the existence
of a solution to Equation (3.3), as we will see in Chapter 4.

Remark 3.3. A lattice ordered group (R,⊕,6) is a dioid as the commutativity of ⊕ implies
that it is distributive with respect to the meet operator ∧ of the lattice. Indeed it suffices to

43

Chapter 3. Algebraic structure of the resource set in path problems

apply (3.4) with q ⊕b, q̃ ⊕b and b−1, and to right add b on both sides to obtain the reversed
inequality. The vector space Rn endowed with its product sum is a lattice ordered group, and
thus a dioid.

Remark 3.4. Kuntzmann [110] first introduced the term dioid, for double monoid, to design
what is now called a semiring. Baccelli et al. [16] introduced its use to mean idempotent
semiring. For Gondran and Minoux [86], a dioid is a semiring such that the preorder q ¹ q̃ if
there exists b in R such that q = q̃ +b is an order. According to their definition, operator + is
not necessarily idempotent. Nonetheless, if + is idempotent, ¹ and ≤+ coincide. Idempotent
semiring are therefore idempotent dioid according to the terminology of [86]. As only idempo-
tent semiring induces a lattice ordered monoid structure, in this dissertation, we stick to the
terminolgy of Baccelli et al. [16] and call a dioid an idempotent semiring.

3.4 Modeling with lattice ordered monoid

3.4.1 Bibliographical remarks and path problems classification

Desrochers [53] first defined the terminology resource constrained shortest path problem in
his Ph.D. dissertation in order to model the subproblem of a column generation approach to a
bus driver scheduling problem. Some resource constraint shortest path problems had been
considered before under another terminology [56, 57, 92]. The importance of the resource con-
strained shortest path problem comes from the fact that it naturally arises as the subproblem
of many column generation approaches. It is specifically true in the context vehicle routing
problems and crew scheduling problems. Irnich and Desaulniers [97] review the different
types of resource constrained shortest path problems and the solution approaches in the
literature. In their classification of the different types of problems, they outline five elements
that enter in the definition of resource constrained shortest path problems.

The first element is the type of constraints on the resources. A constraint is an interval constraint
if one component of the resource q is a real number and must belong to a given interval I .
If we allow us to use intervals of the types (−∞,b], [b,+∞), or [b, b̃], most constraints on the
resource considered in the literature are interval constraints. An important case of interval
constraints are the time-windows constraints [57], where a vertex must be visited within a time
interval I . Time-windows constraints are frequent in the context of vehicle routing problems.

The second element in the definition of a path problem is the presence or the absence of path
structural constraints. This type of constraints state that a path must be elementary [23] or
simple to be feasible.

The third element is the presence or the absence of time dependent quantities. The subproblem
of the column generation approach to the CREW PAIRING PROBLEM of Air France we deal with
in Chapter 9 belongs to that family of problems. We therefore postpone the discussion on how
to handle this type of constraints within the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM framework to Chapter 9.

The fourth element is the presence or the absence of cycles in digraph D. In the definition
of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM, we considered cyclic
digraphs, which enables to cover all cases. We always mention when faster versions of the

44

3.4. Modeling with lattice ordered monoid

algorithm exposed can be obtained for acyclic digraphs.

Finally, the last element is the non-linearity or the stochasticity of the resource extension
functions. As no assumption is made on the monoid sum, we can use sum operators ⊕ that are
highly non linear. Such cases are better explained on a practical example. We therefore refer
the reader to the toy problem of the next section, and to Chapter 9, where highly non linear
constraints are dealt with in the context of Air France CREW PAIRING PROBLEM. Chapter 5 is
dedicated to the study of stochastic path problems.

In Section 3.4.3, we show that all these types of problems can be handled within the MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework. As a consequence, the al-
gorithms of the next chapters are valid for most resource constraint shortest path problems
considered in the literature. Practically, we expect them to perform well in the absence of
negative resource cycles.

Before giving the modeling techniques for the different types of constraints mentioned above,
we start by showing how a toy problem can be modeled in the MONOID RESOURCE CON-
STRAINED SHORTEST PATH PROBLEM framework.

3.4.2 Example: a continent wide truck delivery

We now illustrate the modeling power of the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM on the example of a continent wide truck delivery defined in Chapter 1. Let
o and d be two distant vertices on the digraph of the roads of a continent. Suppose that a
truck driver must transport a good from o to d . For safety reasons, the driver has to respect a
driving time constraint: he should not drive more than a certain amount of time T every day.
The objective is to find an itinerary from o to d of minimum cost among those satisfying the
driving time constraint.

We therefore model the problem using a digraph D whose vertices are the cities and with two
types of arcs. Day arcs a = (u, v), whose origin is different from their destination, correspond
to the road of the network. Night arcs av that are loops at vertices v corresponding to places
where the driver can spend a night. A night arc av has a night resource qn

av
= cav , where cav is

the cost of spending a night in the vertex v of av , modeling for instance hotel fares. A day arc
has a day resource qd

a = (ca ,da), where ca corresponds to the cost of driving along a, modeling
for instance fuel costs and tolls, and da is the time needed to drive along a. Finally, consider
the path in blue on Figure 3.1. This path spans several days. We therefore introduce multiple
day resources qm = (d f,c,d l), where d f corresponds to the duration of the first day, d l to the
one of the last day, and c to the total cost. The set of resources R is the union of the set of day
resources, the set of night resources, and the set of multiple day resources.

In order to define the sum operator on this set of resources, it suffices to consider if the
resulting path spans multiple day or not, and to test if the driving duration constraint is
violated. Therefore, we introduce the penalty function f defined as follows.

f (d) =
{

0 if d ≤ T,
∞ otherwise.

45

Chapter 3. Algebraic structure of the resource set in path problems

o v1 v2 v3 v3 d

cn
v1

av1

cn
v2

av2

cn
v4

av4

a1

(ca1 ,da1)

a2

(ca2 ,da2)

a3

(ca3 ,da3)

a4

(ca4 ,da4)

a5

(ca5 ,da5)

A day arc A night arc

Figure 3.1 – A path P with one night arc is illustrated in blue.

We know that a subpath corresponds to a complete day when it is preceded and followed by a
night arc. The following equations define ⊕ by disjunction of cases, using f only when a day is
complete. Note that a sum of day resources gives a day resource. Any other combination of
resource gives a multiple day resource.

(c) ⊕ c̃ = (0,c + c̃,0)
(c) ⊕ (c̃, d̃) = (0,c + c̃, d̃)
(c) ⊕ (d̃ f, c̃, d̃ l) = (0,c + f (d̃ f)+ c̃, d̃ l)

(c,d) ⊕ c̃ = (d ,c + c̃,0)
(c,d) ⊕ (c̃, d̃) = (c + c̃,d + d̃)
(c,d) ⊕ (d̃ f, c̃, d̃ l) = (d + d̃ f,c + c̃, d̃ l)

(d f,c,d l) ⊕ c̃ = (d f,c + f (d̃ l)+ c̃,0)
(d f,c,d l) ⊕ (c̃, d̃) = (d f,c + c̃,d l + d̃)
(d f,c,d l) ⊕ (d̃ f, c̃, d̃ l) = (d f,c + f (d l + d̃ f)+ c̃, d̃ l)

(3.5)

As defined in (3.5), operator ⊕ is associative but not commutative. We define 6 as an extension
of the component by component order.

(c) 6 (c̃) if c ≤ c̃
(c) 6 (c̃, d̃) if c ≤ c̃
(c) 6 (d̃ f, c̃, d̃ l) if c ≤ c̃

(c,d) 6 (c̃) if c ≤ c̃ and d = 0
(c,d) 6 (c̃, d̃) if c ≤ c̃ and d ≤ d̃
(c,d) 6 (d̃ f, c̃, d̃ l) if c ≤ c̃ and d ≤ min(d̃ f, d̃ l)

(d f,c,d l) 6 (c̃) if c ≤ c̃ and max(d f,d l) = 0
(d f,c,d l) 6 (c̃, d̃) if c ≤ c̃ and max(d f,d l) ≤ d̃
(d f,c,d l) 6 (c̃) if c ≤ c̃ and d f ≤ d̃ f and d l ≤ d̃ l

(3.6)

With this definition of 6, the monoid (R,⊕,6) is a lattice ordered monoid. Finally, we define
the cost function cR and feasibility function ρR as follows.

46

3.4. Modeling with lattice ordered monoid

cR ((c)) = c
cR ((c,d)) = c + f (d)

cR

(
(d f,c,d l)

) = f (d f)+ c + f (d l)
and

ρR ((c)) = 1 if c =∞
ρR ((c,d)) = 1 if c + f (d) =∞

ρR

(
(d f,c,d l)

) = 1 if f (d f)+ c + f (d l) =∞

We index the cost and the feasibility function by .R to avoid the confusion with the real
number c appearing inside resources of R. An optimal solution of the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM on D with cost cR , objective ρR , and resources in
(R,⊕,6) defined as above is an optimal solution of the continent wide delivery problem.

Modeling the continent wide delivery problem in the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM framework is made technical by the associativity property required
on ⊕. Indeed, in the absence of such a property, the problem can be modeled using only (c,d),
as we have shown in Chapter 1. But associativity is a key element in our framework, as it is
required to generalize A∗ and the dynamic programming algorithms to resource constrained
shortest path problems.

3.4.3 Modeling techniques

We now give techniques that enable to model the different resource constrained shortest path
problems mentioned in Section 3.4.1

Additional constraint and lattice ordered monoid product

The product of two lattices ordered monoid is the product set endowed with the product
sum and the product order. The product of two lattices order monoids is a lattice order
monoid. This property enables to model easily new constraints. Suppose for instance that
in our continent wide delivery problem, the itinerary must in addition not be longer than
a given distance L. This new constraint is easily modeled with a positive real resource ` in
(R+,+,≤), and with the infeasibility function ρ`(`) = 1 if ` > L. The constrained continent
wide delivery problem can then be modeled using the product (R,⊕,6)×(R,+,≤) of the lattice
ordered monoid defined in the previous section with (R+,+,≤), the cost function cR , and the
infeasibility functions (q,`) 7→ max

(
ρR(q),ρ`(`)

)
.

This example also shows how to deal with interval constraints of the type ` ∈ (−∞,b]. The
other types of interval constraints are considered in the next section.

Antitone cost function and interval constraints

Suppose that for any given reason, the itinerary should be non-smaller than a given number
of kilometers. Such a constraint can be dealt with using a resource `′ in (R+,+,6′), where 6′ is
the reversed order `′ 6′ ˜̀′ if `′ ≥ ˜̀′, and we again obtain a structure of lattice ordered monoid.
Indeed, an antitone cost function is isotone for the reversed order. This shows how to deal
with interval constraints of the type ` ∈ [b,+∞).

The same idea enables to deal with interval constraints of the type ` ∈ [b, b̃]. Such an interval

47

Chapter 3. Algebraic structure of the resource set in path problems

constraint can be dealt with by “splitting” the resource into two components ` and ˜̀. We can
use the lattice ordered monoid R2 endowed with the usual sum and the order

(`, ˜̀)6 (`′, ˜̀′) if `≤ `′ and ˜̀≥ ˜̀′.

The infeasibility function ρ
(
(`, ˜̀)

)={
0 if `≤ b and ˜̀≥ b̃,
1 otherwise,

is isotone and models the de-

sired interval constraint.

Subset lattices and elementary paths

The solution of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM can be
enforced to be elementary by using the powerset of the set of vertices V as resource set. The
sum of two resources is the union of the two set if the are disjoint, and ∞ otherwise, and q 6 q̃
if q ⊆ q̃ . Similarly, it can be enforced to be simple by using the powerset of A.

48

4 Algorithms for path problems with
resources in an ordered monoid

This chapter extends the STANDARD SHORTEST PATH PROBLEM algorithms to the MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM with resources in an ordered monoid,
whose definition has been given in the introduction of Part I. There are two main branches of
algorithms for the STANDARD SHORTEST PATH PROBLEM.

First, the enumeration algorithms, such as A∗, which enumerate all candidate paths using
bounds to discard partial paths. The use of bounds to discard partial paths is enabled by
Property 3.2. Property 3.3, which extends Property 3.2 to resources in an ordered monoid,
enables to generalize A∗ to the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

The second branch is composed of polynomial algorithms, such as Ford-Bellman dynamic
programming algorithm, or Dijkstra algorithm. As the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM is N P -complete, we cannot expect to solve it using a generalization
of Dijkstra or Ford-Bellman algorithm. But in the lattice ordered monoid framework, the
dynamic programming equation can be generalized to (3.1). In this chapter, we show that
this generalized equation gives lower bounds on paths resources, and that it can be solved by
generalizations of Dijkstra and Ford-Bellman algorithms.

From a practical point of view, this chapter can be summed-up as follows: the MONOID

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM with resources in a lattice ordered monoid
can be solved efficiently in two steps. First, a polynomial algorithm enables to compute bound
on paths resources by solving the generalized dynamic programming equation. Second, these
bounds can be used in an enumeration algorithm to find an optimal path.

This solution strategy is tested numerically on standard resource constrained shortest path
problems in this chapter, on stochastic path problems in Chapters 5 and 6, and in the context
of column generation for an airline operation problem in Chapter 9.

The chapter is organized as follows:

• Section 4.1 introduces the enumeration algorithms of type A∗ for the MONOID RE-
SOURCE CONSTRAINED SHORTEST PATH PROBLEM. In resource constrained shortest path
literature, these algorithms are called label algorithms.

• Section 4.2 introduces the generalization of the dynamic programming equation to the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM, and generalizations of

49

Chapter 4. Algorithms for path problems with resources in an ordered monoid

Ford-Bellman and Dijkstra algorithms to solve it in polynomial time.
• Section 4.3 provides numerical results on resource constrained shortest path problems.

It also contains technical tips to accelerate the algorithms introduced in the previous
sections.

• Finally, Section 4.4 contains bibliographical remarks.

4.1 Enumeration algorithms

In this section, we detail the enumeration algorithms for the MONOID RESOURCE CON-
STRAINED SHORTEST PATH PROBLEM. In the STANDARD SHORTEST PATH PROBLEM terminology,
these algorithms are called A∗ algorithms [93]. In the STANDARD RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM terminology, these algorithms are called label algorithms.

4.1.1 Generic algorithm

In this section, we give three algorithms for the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM: the generalized A∗, the label dominance, and the label correcting algorithms.
These three algorithms share the same structure. They enumerate all the paths in the graph
using tests to discard partial paths. They differ only by the tests used and the processing order
of the paths. We therefore give a generic algorithm, and define the algorithms used in practice
as specializations of this generic algorithm. Later in this section, we sometimes call optimal
path an optimal solution of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

We now describe the generic algorithm. A list L of partial paths P , and an upper bound cU B
od

on the cost of an optimal solution are maintained. Initially, L contains the empty path at the
origin o and cU B

od =+∞. While L is not empty, the following operations are repeated.

1. Extract a path P of minimum key from L. Let v be the destination of P .
2. If v = d and P is feasible and better than the current solution, i.e. ρ(qP) = 0, and c(qP) <

cU B
od , then update cU B

od to c(qP).
3. Else test if P must be extended, and if yes, extend P : for each arc a outgoing from v , add

P +a to L.

We prove later in the section that, under mild assumptions, at the end of the algorithm, cU B
od is

the cost of an optimal path. The algorithms differ by the choice of the minimum key in Step 1,
and by the choice of the test before extension in Step 3.

The usual A∗ algorithm uses bounds on path resources to discard paths. Besides, as we
show in the next section, the lattice ordered monoid structure in the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM framework enables to design polynomial algorithms
to build bounds on paths resources. Therefore, for each vertex v , we suppose to have a lower
bound bv on the resource qP of any v-d path. The lower-bound test relies on the following
lemma.

Lemma 4.1. If an o-v path P is a subpath of an optimal path, then ρ(qP ⊕bv) = 0 and c(qP ⊕
bv)6 cU B

od .

50

4.1. Enumeration algorithms

Algorithm Test Key Pre-processing Maintained
structures structures

Generalized A∗ (Low) c(qP ⊕bv) bv L, cU B
od

Label dominance (Dom) c(qP) — L, cU B
od , Mv

Label correcting (Dom), (Low) c(qP ⊕bv) bv L, cU B
od , Mv

Table 4.1 – MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algorithms.

Proof. For any v-d path P̃ starting by P , we have qP ⊕bv 6 qP̃ . The result then follows from
the monotonicity of ρ and c.

Given an o-v path P , the lower bound test can be expressed as follows.

(Low) If ρ(qP ⊕bv) = 0 and c(qP ⊕bv)6 cU B
od , then extend P .

The generalized A∗ is obtained from the generic algorithm by using the lower bound c(qP ⊕bv)
as key in Step 1, and extending a path P in Step 3 only if it satisfies the lower bound test (Low).

The usual label algorithms for resource constrained shortest path problem relies on the notion
of dominance. An o-v path P dominates an o-v path P̃ if qP 6 qP̃ . The dominance test relies
on the following lemma.

Lemma 4.2. There exists an optimal solution of the MONOID RESOURCE CONSTRAINED SHORT-
EST PATH PROBLEM whose subpaths are all non-dominated.

As a consequence, a list Mv of non-dominated o-v paths is maintained for each vertex v , and
the dominance test can be expressed as follows.

(Dom) If no path in Mv dominates P , then if P is feasible, remove from Mv all paths dominated
by P , add P to Mv , and extend P .

The label dominance algorithm is obtained from the generic algorithm by using the partial
path cost ρ(cP) as key in Step 1, and extending an o-v path P in Step 3 only if it satisfies the
dominance test (Dom). The label correcting algorithm is obtained from the generic algorithm
by using the lower bounds c(qP ⊕bv) as key in Step 1, and extending an o-v path P in Step 3
only if it satisfies both the lower bound test (Low) and the dominance test (Dom). We note
that the label dominance and the label correcting algorithm require to define the lists Mv of
non dominated paths, and to maintain them using the operations mentioned in dominance
test (Dom). Table 4.1 sums up the properties and the structures maintained by the different
algorithms.

Both our label dominance and our label correcting algorithms are referred as label correcting
algorithms in the literature. When bounds are available, the label correcting algorithm out-
performs the label dominance algorithm. Nonetheless, to the best of our knowledge, there
is no standard procedure to build bounds bv for non-linear or stochastic problems in the
literature. The main contribution of the lattice ordered monoid framework is that it enables
to design a standard procedure to build lower bounds. Therefore, when we want to bench-
mark our approach with existing ones on our instances of non-linear or stochastic problems,

51

Chapter 4. Algorithms for path problems with resources in an ordered monoid

we compare our generalized A∗ and our label correcting algorithm to the label dominance
algorithms. When we consider the linear resource constrained shortest path problem, i.e. the
resource set (R,⊕,6) is Rn endowed with the product sum and order, the bounding procedure
of the next section leads to the same bounds as those used in the literature [61]. Nonetheless,
when considering difficult instances, we can improve the quality of theses bounds using the
techniques exposed in Chapter 6.

4.1.2 Convergence of the algorithms

We now prove the convergence of the enumeration algorithms of the previous section under
mild assumptions.

Generalized A∗ algorithm

The following assumptions will be used to define some settings under which ones the general-
ized A∗ algorithm converges:

For all a, b <∨
R and q > 0 in R, there exists an n ∈Z+ such that nq ⊕a
 b. (4.1)

The set ρ−1(0) is upper-bounded by a qM <∨
R. (4.2)

There exists a feasible o-d path P such that c−1 ((−∞,c(qP)
])∩ρ−1(0) is upper-

bounded by a qM <∨
R.

(4.3)

In Assumptions (4.1) to (4.3),
∨

R may be in the completion of R.

Remark 4.1. An ordered monoid R is Archimedean if, for each resource b and q > 0 in R,
there exists an integer n such that nq > b. Assumption (4.1) is related but much weaker than
the Archimedean property. It is satisfied by all the lattice ordered monoids considered in this
dissertation. R2 endowed with its product sum and order is an example of lattice ordered
monoid that is not Archimedean which satisfies assumption (4.1).

Theorem 4.3. Suppose that at least one of the following conditions is satisfied.

(a) D is acyclic.
(b) Assumption (4.1) is satisfied, at least one of the assumptions (4.2) and (4.3) is satisfied,

qa is positive for each arc a, and bv > 0 for each vertex v.
(c) Assumption (4.1) is satisfied, at least one of the assumptions (4.2) and (4.3) is satisfied, ⊕

is commutative, and
⊕

a∈C qa is positive for any cycle C in D.

Then the generalized A∗ algorithm converges after a finite number of iterations, and at the end,
if cU B

od is finite, then it is the cost of an optimal solution of the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM. Otherwise, the problem admits no feasible solutions.

Note that ρ−1(0) is the set of feasible resources. Case (c) is notably satisfied when (R,⊕,6) is an
Archimedean lattice ordered group and cycle resources are positive. Indeed, Theorem 10.19 in
[28] ensures that any Archimedean lattice ordered group is commutative, and Assumption
(4.1) is a consequence of the Archimedean property in lattice ordered groups. Besides, the
generalized A∗ algorithm can still be used even if none of the conditions (a), (b), and (c) are

52

4.1. Enumeration algorithms

satisfied: see Section 4.1.3. We also note that in case (b), the hypothesis that bv > 0 is not
restrictive, as qa > 0 implies that qP > 0 for all paths P .

Given two paths P and Q such that P ends in the origin of Q, we denote P +Q the union of
paths P and Q, and qP+Q its resource. Theorem 4.3 relies on the following lemmas.

Lemma 4.4. Let P be an o-d path satisfying ρ(qP) = 0. Then at a given step of the generalized
A∗ algorithm, at least one of the following statements is satisfied:

• there is a subpath P ′ of P in L,
• cU B

od ≤ c(qP).

Note that P ′ can be equal to P .

Proof. We start with preliminary results. Paths are added to L only due to extension of paths
in Step 3. A path Q can therefore be in L only if its subpaths have been considered, removed
from L, and extended by the algorithm. Thus, at a given step of the generalized A∗ algorithm,
for each path Q with origin o, exactly one of the following statements is satisfied:

• Q has been considered by the generalized A∗ algorithm,
• a subpath Q ′ of Q is in L,
• a strict subpath Q ′ of Q has not been extended by the algorithm when considered.

Besides, if a feasible o-d path Q has already been considered, Step 2 of the algorithm implies
cU B

od ≤ c(qQ).

We now prove Lemma 4.4. Suppose that none of the statements of Lemma 4.4 are satisfied.
As P is a feasible o-d path, the two results above implies that a subpath P ′ of P has not been
extended by the algorithm when considered. Let P ′ be this subpath, and v ′ be its destination.
As cU B

od decreases along the algorithm, the hypothesis implies that cU B
od > c(qP) when P ′ is

considered. As b′
v is a lower bound on the resource of all v ′-d path, we have qP ′ ⊕b′

v 6 qP .
By monotonicity of ρ and feasibility of P , we have ρ(qP ′ ⊕bv ′) = 0. By monotonicity of c, we
have c(qP ′ ⊕bv ′)6 c(qP) < cU B

od when P ′ is considered. The two last inequalities imply that P ′

satisfies the lower bound test, which contradicts the fact that P ′ has not been extended, and
we obtain the lemma.

Lemma 4.5. Under Assumption (4.2) or under Assumption (4.3), if an o-v path Q such that
qQ ⊕bv
 qM is considered by the algorithm, it does not satisfy the lower bound test (Low).

Proof. Under Assumption (4.2), we have ρ(qQ ⊕bv) = 1 by definition of qM , and Q does not
satisfy the lower bound test.

Suppose now that Assumption (4.3) is satisfied, and that Q is considered by the algorithm. If
ρ(qQ⊕bv) = 1, path Q does not satisfy the lower bound test and we obtain the result. Otherwise,
Q is such that c(qQ ⊕bv) > c(qP). We now prove that, under this second hypothesis, we have
cU B

od < c(qQ ⊕bv) when Q is considered by the algorithm, which then implies that Q does
not satisfy the lower bound test when it is considered. Suppose that it is not the case. We
place ourselves at the step when Q is considered. As a consequence, Q minimizes c(qQ ⊕bv)

53

Chapter 4. Algorithms for path problems with resources in an ordered monoid

among the paths in L. Let P and qM be as in Assumption (4.3). By definition of P and qM , the
hypothesis qQ ⊕bv
 qM implies c(qP) < c(qQ ⊕bv) ≤ cU B

od when Q is considered. Lemma 4.4
implies that there is a subpath P ′ of P in L when Q is considered. By monotonicity of c we
have c(qP ′ ⊕bv ′) 6 c(qP) < c(qQ ⊕bv). This contradicts the fact that Q minimizes c(qQ ⊕bv)
among the paths in L, and gives the lemma.

Lemma 4.6. Suppose that (a), (b), or (c) is satisfied, then there is a finite number of paths in D
that satisfy the lower-bound test.

Proof. In case (a), graph D is acyclic and there is a finite number of paths. We now suppose that
we are in case (b) or (c): let qM be as in one of the assumptions satisfied among Assumptions
(4.2) and (4.3). Lemma 4.5 ensures that only o-v paths P such that qP ⊕bv 6 qM can satisfy
the lower bound test. We show the lemma by proving that there is a finite number of such
paths.

As we are in case (b) or (c), any elementary cycle C in D satisfies qC > 0. Thus, given an
elementary cycle C , an elementary path Q, and a vertex v in P , as the resource of C is positive,
Assumption (4.1) implies that there exists an integer nC ,Q,v such that (nC ,Q,v qC)⊕qQ⊕bv
 qM .
As there is a finite number of elementary paths and a finite number of elementary cycles in D ,
we can define n to be an integer such that

(nqC)⊕qQ ⊕bv
 qM (4.4)

for any elementary cycle C , elementary path Q, and bounds bv . Let nc be the number of
elementary cycles in D .

The proof of case (b) relies on the following well-known result.

Any path in a directed graph can be decomposed in a sequence of elementary paths and elemen-
tary cycles.

Suppose that we are in case (b), let P be a path with at least 2nnc |V | arcs and consider such a
decomposition. As an elementary path or an elementary cycle contains at most |V | arcs, this
decomposition contains at least nnc cycles, and thus at least n copies of a given cycle C0. As
the resource of all arcs are positive by hypothesis of case (b), we have qP > nqC0 . We therefore
have qP ⊕bv > nqC0 ⊕bv , and by applying Equation (4.4) with the empty path as Q, we obtain
qP ⊕bv
 qM . As a consequence, only o-v paths P with fewer than 2nnc |V | arcs can satisfy
qP ⊕bv 6 qm , and Lemma 4.5 ensures that there is a finite number of paths that satisfy the
lower bound test in case (b).

We now consider case (c). As the monoid is supposed to be commutative, the resource of a
path does not depend on the order of the sequence of its arcs, but only on its multiset of arcs.
The proof of case (c) relies on the following well-known result.

The multiset of arcs of any path in a directed graph can be decomposed in the union of the sets
of arcs of an elementary path and of several elementary cycles.

Suppose that we are in case (c), let P be a path with at least n|V |(nc +1) arcs and consider
such a decomposition where Q denotes the elementary path. As by hypothesis of case (c), the

54

4.1. Enumeration algorithms

operator ⊕ is commutative, the resource of P is entirely defined by the resource of its arcs,
independently of their order. As an elementary path or an elementary cycle contains at most
|V | arcs, this decomposition contains at least nnc cycles, and thus at least n copies of a given
cycle C0. As, by hypothesis of case (c), all cycles are positive, we have qP ⊕bv > nqC0 ⊕qQ ⊕bv .
Equation (4.4) ensures that only paths with less than n|V |(nc +1) arcs can satisfy qP ⊕bv 6 qm ,
and Lemma 4.5 ensures that there is a finite number of paths that satisfy the lower bound test
in case (c).

Proof of Theorem 4.3. As any path inserted in L is the extension of a previously considered
path, a given path is considered at most once by the algorithm. Thus, Lemma 4.6 implies the
convergence after a finite number of iterations as only paths satisfying the lower bound test
can be extended by the algorithm.

At the end of the algorithm, list L is empty and Lemma 4.4 ensures that cU B
od is a lower bound

on the cost of any o-d path satisfying ρ(qP) = 0. Besides, Step 2 of the algorithm ensures that
if cU B

od is different from +∞, then there is a path P such that c(qP) = cU B
od and ρ(qP) = 0. This

concludes the proof.

Label correcting and label dominance algorithms

Theorem 4.7. Suppose that all cycles in D are positive, then the label correcting algorithm
converges after a finite number of iterations, and at the end, if cU B

od is finite, then cU B
od is the

cost of a non-dominated optimal solution of the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM. Otherwise, the problem admits no feasible solutions.

Theorem 4.8. Suppose that all cycles in D are positive, then the label dominance algorithm
converges after a finite number of iterations, and at the end, if cU B

od is finite, then cU B
od is the

cost of a non-dominated optimal solution of the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM. Otherwise, the problem admits no feasible solutions.

Remark that the label correcting and the label dominance algorithms converge under weaker
conditions than those required for the convergence of the generalized A∗ algorithm in Theorem
4.3.

Lemma 4.9. If all cycles in D are positive, then if a path P containing a cycle is considered by
the label dominance or the label correcting algorithms, then it does not satisfy the dominance
test (dom).

Proof. As paths in L are added by extension of paths previously in L, we only need to prove
the result for paths ending by a cycle. Let P be such a path, let Q +C be its decomposition in a
path and a cycle, and let v be the common destination vertex of P and Q. By hypothesis, we
have qC > 0. As a consequence, qP = qQ ⊕qC > qQ . As P is processed, all its subpaths have
been extended by the algorithm, and thus path Q has necessarily been extended. This implies
that either Q or a path Q ′ such that qQ ′ < qQ ≤ qP is in Mv , and thus P is dominated by a path
in Mv and is therefore not extended.

55

Chapter 4. Algorithms for path problems with resources in an ordered monoid

Proof of Theorem 4.7. As any path inserted in L is the extension of a previously considered
path, a given path is considered at most once by the algorithm. Thus, as there is only a finite
number of acyclic paths in a graph, Lemma 4.9 ensures that the algorithm converges after a
finite number of iterations.

Step (b) of the algorithm ensures that cU B
od is greater or equal to the cost of an optimal solution

of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. We now prove that at the
end of the algorithm, cU B

od is equal to the cost of an optimal solution. Indeed, suppose that
it is not the case. Let P be an optimal solution. Let L be the set of all paths that have been
contained in L along the algorithm, and for each vertex v in P , let Pov be the subpath of P
starting v . Let v be the last vertex of P such that there is an o-v path Q in L with qQ 6 qPov

and is therefore in L . It exists because the empty path Poo is added to L at the beginning of the
algorithm. Besides, it is not equal to d , as otherwise we would have cU B

od ≤ c(qP). Among the o-
v paths dominating Pov in L, let Q be the first one generated by the algorithm. By definition of
Q and as any path that has been in Mv along the algorithm is in L , there is no path dominating
Q in Mv when Q is processed. As cU B

od decreases along the algorithm and by hypothesis, when
Q is processed we have ρ(qQ +bv) ≤ ρ(qPov +bv) ≤ ρ(qP) = 0 and c(qQ +bv) ≤ c(qPov +bv) ≤
c(qP) < cU B

od . As a consequence, Q has been extended, and Q + (v, w) is in L , where w be
the vertex after v in P . Besides, we have qQ+(v,w) = qQ ⊕q(v,w) 6 qPov ⊕q(v,w) = qPow , which
contradicts the definition of v .

Proof of Theorem 4.8. As for Theorem 4.7, Lemma 4.9 ensures that the algorithm converges af-
ter a finite number of iterations. The fact that the set of paths extended by the label dominance
algorithm contains the set of path extended by the label correcting algorithm ensures that
if cU B

od is finite at the end of the algorithm, then cU B
od is the cost of a non-dominated optimal

solution.

4.1.3 Dealing with non positive cycles, non commutativity or absence of the Ar-
chimedean property

In this section, we show that, even if the assumptions of Theorems 4.3 and 4.7 are not satisfied,
both the generalized A∗ and the label correcting algorithms converge after a finite number of
iterations on an extended resource monoid. It provides a way to deal with situations where
the hypotheses of Theorems 4.3 and 4.7 are not satisfied. Let Bn be the set {0,1}n ∪ {∞} where
∞ is an “infeasibility” element. The law ⊕ on Bn is the addition operator on Zn+ such that
if q1 + q2 ∉ {0,1}n , then q1 ⊕ q2 =∞. Consider the extended resource set R̃ = R ×B|V |. We
associate to each arc a = (v1, v2) an extended resource q̃a = (qa ,ev2) where ev is the vector
composed of 0 in all positions except the index of v . The new resource q̃P ∈ R̃ of path P is an
element on R×B|V |: q̃P = (qP , qB

P). We define the extended infeasibility function ρ̃ on R̃ as the
mapping (qP , qB

P) 7→ max(ρ(qP),1∞(qB
P)) where 1∞ is the indicator function of {∞}. Finally, we

extend the cost function to the mapping c̃ : (qP , qB
P) 7→ c(qP). The following theorem proves the

convergence of the enumeration algorithms with resources in R̃ under the general condition
that R is an ordered monoid.

Proposition 4.10. The generalized A∗, label dominance, and label correcting algorithms on R̃

56

4.2. Extended dynamic programming in lattice ordered monoids

with infeasibility function ρ̃ and cost function c̃ converge after a finite number of iterations on
R∗, and at the end, if cU B

od is finite, then it is the cost of a feasible elementary path of minimum
cost. Otherwise the problem admits no feasible solutions.

Proof. The definition of q̃a for each arc A ensures that, given a path P , we have qB
P = i if and

only if P contains a cycle. As a consequence, we have

ρ̃(q̃P) =
{
ρ(qP) if P is elementary,
1 otherwise.

As a consequence, any non elementary path is infeasible. The fact that there is a finite number
of elementary paths gives the convergence after a finite number of iterations. The infeasibility
of non-elementary paths and the equality c̃(q̃P) = c(qP) ensure that at the end, cU B

od is the
resource of an optimal elementary path.

4.2 Extended dynamic programming in lattice ordered monoids

The aim of this section is to provide a standard method to compute good bounds bv on the re-
source qP of any v-d path P when (R,⊕,6) is a lattice ordered monoid. These bounds happen
to be tight when (R,⊕,6) is a dioid. This method is an extension of the dynamic programming
algorithms for the standard shortest path problem. Combined with the algorithms of Section
4.1, it provides a standard methods to solve the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM problem.

In all the convergence theorems of the enumeration algorithms in Section 4.1.2, we suppose
that qC > 0 for all cycles C . Under this hypothesis, a lower-bound bv on the resources of all
the elementary v-d paths is a lower-bound on the resources of all the paths. And without this
hypothesis, we have to use the technique of Section 4.1.3 and restrict ourselves to elementary
paths. In all these cases, we can restrict ourselves to lower bounds bv on the resources of
elementary v-d paths.

Given a vertex v ∈V , let bopt
v be defined as bopt

v = ∧
P∈Pvd

qP , where Pvd is the set of all the ele-

mentary v-d paths. The resource bopt
v is well defined as there is a finite number of elementary

paths. Resource bopt
v is the best lower bound on all the elementary v-d paths: indeed, b 6 qP

for all elementary v-d paths P implies b 6 bopt
v . However, the following proposition shows

that computing bopt
v is difficult even on fairly simple lattice ordered monoids.

Proposition 4.11. Unless P =N P , there is no polynomial algorithm independent of R that
enables to compute bopt

v even when restricted to a commutative monoid with positive resources.

Proof. Consider the set R = [0,1]2 ∪ {+∞}. We endow it with the partial order

q 6+∞, ∀q and (q1, q2)6 (q̃1, q̃2) if q i ≤ q̃ i , for i = 1,2, (4.5)

57

Chapter 4. Algorithms for path problems with resources in an ordered monoid

and the sum operator∣∣∣∣∣∣∣
q ⊕+∞=+∞⊕q =+∞, ∀q and

(q1, q2)⊕ (q̃1, q̃2) =
{

(q1 + q̃1, q2 + q̃2), if q i + q̃ i ≤ 1, ∀i ,
+∞ otherwise.

(4.6)

Operator ⊕ is associative and commutative because

qa ⊕qb ⊕qc =
{

(q i
a +q i

b +q i
c)i if q i

a +q i
b +q i

c ≤ 1, for i ∈ {1,2}
+∞ otherwise.

The order 6 is compatible with ⊕ because, if qa ≤ qb and qa ⊕ q = +∞, then qb ⊕ q = +∞.
Hence, (R,⊕,6) is a lattice ordered monoid.

We now prove that we can reduce the N P -complete STANDARD RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM stated in Section 3.2.1 to the problem of computing bopt
v on a

digraph with resources in (R,⊕,6). Let D, o, d , w i
a and R i be an instance of the STANDARD

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. Let qa = (
w i

a

R i)i=1,2 if
w i

a

R i ≤ 1 for i = 1,2 and
+∞ otherwise. The qP =∑

a∈P qa 6= +∞ if and only if
∑

a∈P q i
a ≤ Ri for all i . As a consequence,∧

P∈Pod
qP <+∞ if and only if there exists and o-d path P such that

∑
a∈P q i

a ≤ Ri for all i . The
value of

∧
P∈Pod

qP gives the solution of the STANDARD RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM.

Nonetheless, computing bopt
v is polynomial when (R,⊕,6) is a dioid, which is the case of many

applications. Indeed, using the algebraic path problem terminology introduced in Section 3.3,
bound bopt

v is the shortest distance between v and d . As a consequence, when (R,⊕,6) is a
dioid, the bounds bopt

v can be computed by solving the dynamic programming equation (3.3).
The solution method we introduce in the remaining of the section is a polynomial algorithm
to solve the generalized dynamic programming equation in the lattice ordered monoid case. It
therefore enables to compute bopt

v in polynomial time when (R,⊕,6) is a dioid.

For general lattice ordered monoids, the solution bv of the dynamic programming equation
is only a lower bound on bopt

v . The set of discrete distributions with finite support endowed
with the usual stochastic order and the convolution product introduced in Section 5.1.1 is an
example of lattice ordered monoid in which one the bounds bv are not tight.

4.2.1 Extended Ford-Bellman algorithm

The remaining of the section introduces a polynomial method to compute a good lower bound
on bopt

v . This lower bound turns out to be equal to bopt
v when R is a dioid. Let

(
bn

v

)
n be the

sequence of collection of resources defined recursively as follows.
bn

d = 0,

b0
v =∞ and bn+1

v = ∧
(v,u)∈δ+(v)

(q(v,u) ⊕bn
u) for v ∈V \{d}.

(4.7)

58

4.2. Extended dynamic programming in lattice ordered monoids

As R is a complete lattice, we can define b∞
v = ∧

n∈Z+
bn

v for each vertex v . Let zn denotes the

vector (bn
v)v∈V , and define b† = (b†

v)v∈V to be the greatest solution of the following equation.


bd = 0,

bv = ∧
(v,u)∈δ+(v)

(q(v,u) ⊕bu) for all v ∈V \{d}.
(4.8)

The existence of a greatest solution of Equation (4.8) is a direct consequence of the Knaster-
Tarski fixed point theorem applied in the complete product lattice RV . This theorem states
that the set of fixed points of a monotone mapping in a complete lattice is a non-empty
complete lattice. Details on the Knaster-Tarski fixed point theorem can be found in [47]. We
underline that both b†

v and b∞
v may be defined only in the completion of R.

Theorem 4.12. Let `∗ be the length of the longest elementary v-d path. For each vertex and
elementary v-d path P, we have

b†
v 6 b∞

v 6 b`
∗

v 6 bopt
v 6 qP (4.9)

The three first inequalities are equalities when both R is a dioid and qc ≥ 0 for each cycle c in D.

These bounds b`
∗

v are good candidates to be used as a bound bv on the resource qP of all
v-d paths P in the enumeration algorithms of Section 4.1. Indeed, they can be computed
in O(|A|`∗) operations ⊕ and ∧ by computing the `∗ first terms of sequence (zn)n using its
definition in Equation (4.7). Besides, the sequence (zn)n can be interpreted as a generalization
of the Ford-Bellman algorithm. Indeed, when (R,⊕,6) = (R,+,≤), or more generally when
(R,⊕,6) is a totally ordered group, the meet q1∧q2 of two resources q1 and q2 is the minimum
of q1 and q2. In that case, the sequence of Equation (4.7) corresponds to the successive steps
of the Ford-Bellman shortest path algorithm, and for each integer k, the bound bk

v is the value
of a shortest o-v path with at most k arcs.

The proof of Theorem 4.12 relies on two lemmas. The mapping F defined as follows is useful
in the proof.

F : RV −→ RV

b 7−→ b′ such that


b′

d = 0,

b′
v = ∧

(v,u)∈δ+(v)
(q(v,u) ⊕bu) for all v ∈V \{d},

(4.10)

where RV denotes the Cartesian product. Note that bn+1 = F (bn) and that F is isotone by
monotonicity of the operators ⊕ and ∧.

Lemma 4.13. For each vertex v and integer n, we have b†
v 6 b∞

v 6 bn
v .

Proof. A straightforward induction on n based on the isotony of mapping F defined in Equa-
tion (4.10) gives b†

v 6 bn
v for all n, which implies that b†

v 6 b∞
v .

59

Chapter 4. Algorithms for path problems with resources in an ordered monoid

Lemma 4.14. The resource bk
v is a lower bound on the resource qP of the v-d paths P of length

at most k. When R is a dioid, bk
v is the meet of the resources of the v-d paths of length at most k.

Proof. The result is proved by induction on k. The result for k = 0, i.e. b0
v is equal to 0 if v = d

and ∞ otherwise, follows from the fact that the only path of length 0 is the trivial path. Let
k > 0 be an integer and suppose the result is true up to k −1, let v be a vertex, and let P be
a v-d path with `(P) ≤ k. If `(P) = 0 then v = d and qP > bk

d = 0. Otherwise let (v,u) be the
first arc of P and Q be the subpath of P obtained by removing (v,u) from P . Then `(Q) ≤ k −1,
thus bk−1

u 6 qQ which implies q(v,u) ⊕bk−1
u 6 q(v,u) ⊕qQ and finally bk

v 6 qP , which gives that
bk

v is a lower bound on the resource qP of the v-d paths P of length at most k.

In the dioid case, we have q1 ⊕ (q2 ∧q3) = (q1 ⊕q2)∧ (q1 ⊕q3). Suppose that bk−1
u is the meet

of the resource of all the v-d paths of length at most k for each vertex u. Then q(v,u) ⊕bk−1
u is

the meet of the resources qP of all the v-d paths P starting by (v,u) such that `(P) ≤ k. Thus

bk−1
v ∧ ∧

(v,u)∈δ+(v)

(
q(v,u) ⊕bk−1

u

)
is the meet of all the v-d paths of length at most k.

Proof of Theorem 4.12. As the length of any elementary v-d path is non greater than `∗,
Lemma 4.14 implies that b`

∗
v 6 qP for all elementary v-d paths P , and thus b`

∗
v ≤ bopt

v . Lemma
4.13 then gives Equation (4.9).

Suppose now that all cycles c in D satisfy qc ≥ 0 and that R is a dioid. A non-elementary v-d
path is dominated by any of its elementary v-d subpaths. As the length of an elementary path
is non greater than `∗, the resource b`

∗
v is a lower bound on the resources of all v-d paths.

Thus, it is the meet of the resources of all the v-d paths. This implies that F (b`
∗

) = b`
∗

and b`
∗

v

is a solution of Equation (4.8). Thus, b`
∗

v = b†
v , which gives the result.

Remark 4.2. Note that if the resource of all cycles in D are non smaller than 0, then b`
∗

v is a
lower bound on the resources of all the v-d paths. On the contrary, if there exists an o-d path
containing a negative cycle, then Lemma 4.14 implies that b†

v = b∞
v =−∞.

Remark 4.3. The sequence (bn)n is the sequence used in the constructive proof by [45] of the
Knaster-Tarski fixed point theorem for mapping F defined in Equation (4.10). Given a topology
and some weak assumptions on R, it can be proved that bn

v converges to b∞
v and b∞

v = b†
v . The

inequality
∧

(v,u)∈δ+(v)(q(v,u)⊕b∞
u)6 b∞

v is easy to prove: indeed, as q(v,u)⊕b∞
u 6 q(v,u)⊕bn

u for
each arc (v,u) inδ+(v) and for all n inZ+, we have

∧
(v,u)∈δ+(v)(q(v,u)⊕b∞

u)6
∧

(v,u)∈δ+(v)(q(v,u)⊕
bn

u) = bn+1
v for all n ∈Z+, which gives the result. The inequality

∧
(v,u)∈δ+(v)(q(v,u) ⊕b∞

u)> b∞
v

requires a transfinite induction.

4.2.2 Generalized Dijkstra algorithm for faster bound computations

In this section, we give a new algorithm to compute
(
b`

∗
v

)
defined in Section 4.2. It exploits the

fact that bk+1
v = bk

v for most integers k to perform fewer operations.

A resource b̃v and an integer ñv are attached to each vertex v and updated during the algorithm.
Initially, b̃v =∨

R, which may be defined only in the completion of R, and ñv =+∞ for each
vertex v 6= d , and b̃d = 0. During the algorithm, a queue L of vertices “to be extended” is
maintained. Initially, the queue L contains only d . The algorithm ends when L is empty. While

60

4.2. Extended dynamic programming in lattice ordered monoids

L is not empty and the minimum ñv over all vertices v is non greater than `∗, where `∗ is the
maximum length of an elementary path ending in d , the following operations are repeated:

• Extract from L a vertex v with minimum ñv .
• For each arc (u, v) in δ−(v), extend v along (u, v): if b̃u
 q(u,v) ⊕ b̃v , then

– Update ñu = min(ñu ,1+ ñv).
– Update b̃u to b̃u ∧ (q(u,v) ⊕ b̃v).
– Add u to L (if it is not already present).

• Set ñv =+∞.

Proposition 4.15. This algorithm terminates in less than `∗|V | iterations, where `∗ is the
maximum length of an elementary path ending in d. The value bv of b̃v at the end of the
algorithm is equal to b`

∗
v for each v ∈V . If L is empty at the end of the algorithm, then bv = b†

v

for all vertices v.

When R is a dioid, at the end of the algorithm, we have L =; and bv = b†
v for all vertices v.

Remark 4.4. Mohri [130] proposes a generic algorithm for the algebraic path problem, whose
only difference with our algorithm when both are restricted to dioid is the absence of ñv . The
vertex picked-up in L at each iteration is arbitrarily chosen. The algorithms thus terminates
when L is empty. He shows that the algorithm terminates after a finite but possibly exponential
number of iterations.

Remark 4.5. Instead of ñv , we can use any key function φ(bv). The only difference is that the
algorithm ends only when L is empty, and convergence after a finite number of iterations
cannot be proved in the general case. Remark 4.4 shows that we have convergence after a
finite number of iterations if (R,⊕,6) is a dioid. In practice, the list L is always empty after
γ|V | iterations for a relatively small γ, and we obtain b†

v . With carefully chosen φ, the worst γ
encountered in the numerical experiments is 5.5 in a graph with 194675 vertices and 342735
arcs. Using the default ñv , the ratio γ can be ten times larger on the same graph.

Remark 4.6. When (R,⊕,6) = (R+,+,≤), the algorithm computing the iterates of F corre-
sponds to the Ford-Bellman algorithm, whereas this algorithm corresponds to Dijkstra algo-
rithm when using φ(x) = x as key function.

The proof of Proposition 4.15 relies on the following technical lemma.

Lemma 4.16. The quantity minv ñv does not decrease along the algorithm.

Proof. Let n̂v be the value of ñv right before being extended if v has been extended, and n̂v = 0
otherwise. Note (u, v) is arbitrarily chosen and not required to be an arc in A. We prove the
lemma by showing that, at any time during the algorithm, for each pair of vertices (u, v), we
have n̂u < ñu and n̂u ≤ ñv .

The proof is by iteration on the steps of the algorithm. The result is true at the beginning of the
algorithm. Let v be the vertex currently extended, and suppose that the result is true before
the extension of v . For each vertex u, let nα

u be the value of ñu before the extension of v and
nβ

u the value of ñu after the extension. After the extension of v , we have n̂v = nα
v <∞= nβ

v . Let
u be a vertex distinct from v . The index n̂u is not modified during the extension of v . If (u, v) is

61

Chapter 4. Algorithms for path problems with resources in an ordered monoid

not an arc, or if b̃v 6 q(u,v)⊕b̃u before the extension, then ñu is not updated, and nβ
u = nα

u > n̂u

and n̂u ≤ nα
v ≤ nα

u = nβ
u . If on the contrary u is updated, nβ

u = min(nα
u ,nα

v +1). As nα
v ≤ nα

u ,
there are two possibilities. In the first case, nα

u = nα
v , which implies nβ

u = nα
u , and by induction

hypothesis n̂u < nα
u = nα

v ≤ nβ
u . In the second case nα

u > nα
v , and we have nβ

u = nα
v +1 > nα

v ≥ n̂u .
Finally, in both cases n̂u ≤ nα

v . We have thus proved that n̂u < nβ
u and n̂u ≤ nα

v ≤ nβ
u for each

vertex u, which gives the result and the lemma.

The proof of Proposition 4.15 is now relatively straightforward, as Lemma 4.16 enables to link
the values taken by b′

v along the algorithm to the sequence (bi
v) defined in Equation 4.7.

Proof of Proposition 4.15. Lemma 4.16 ensures that minv ñv does not decrease. Based on
this results, the update rule ensures that for each vertex u in L, if ñu 6= +∞, we have either
ñu = minv ñv or ñu = 1 + minv ñv . As a consequence, minv ñv increases by at most one
between two iterations. For each vertex u and index i , define bi

u and ni
v to be equal to the

values of b̃u and ñu when minv ñv = i for the first time. Due to the update rule, we obtain
by induction on i that bi

u = bi−1
u

∧
(u,v)∈δ+(u)

(
q(u,v) ⊕bi−1

v

)
. Indeed, suppose that the result

is true up to i −1, and consider a vertex u, and an arc (u, v) ∈ δ+(u). The update rule then
implies bi

u = bi−1
u

∧
v∈U i

u

(
q(u,v) ⊕bi−1

v

)
and ni−1

v = +∞, where U i
u is the set of all v such that

(u, v) ∈ δ+(u) and ni−1
v = i − 1. Besides, if ni−1

v 6= i − 1, the bi−1
v = bi−2

v and the induction
hypothesis gives the result. As a consequence, the bi

v correspond to those defined by Equation
(4.7), and we obtain the first part of the proposition and the dioid case. Besides the update
rule ensures that if there is no vertex u in L such that (v,u) ∈ δ+(v), then b̃v =∧

(v,u)∈δ+(v) bv .
Thus, if L is empty at the end of the algorithm, then (bv)v defines a solution of Equation (4.8),
which gives the second part of the proposition.

4.3 Numerical results on a resource constrained shortest path prob-
lem

In this section, we test the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

algorithms on instance of the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

with one or ten constraints. Given a digraph D, an origin vertex o and a destination vertex
d , a cost ca and weights w i

a for i in [k], and thresholds τi for i in [k], this problem can be
expressed as follows

min
P∈Pod

∑
a∈P

ca ,

s.t.
∑

a∈P
w i

a ≤ τi for i in [k],
(4.11)

where Pod is the set of o-d paths.

The lattice ordered monoid used to solve this problem is Rk+1 endowed with its product
sum and order. Our algorithms have been primarily designed for non-linear and stochastic
resource constrained shortest path problem. The objective of this section is to give general
ideas on the relative performances of our different algorithms. We have therefore not exploited
the specific structure of Rk+1 to accelerate them. Remark 4.7 gives an example of how to
accelerate them. If the arc resources are specific to this chapter numerical experiments, the

62

4.3. Numerical results on a resource constrained shortest path problem

Name Generator Brief description
road extraction Road networks with a given number of vertices.
square grid Square grid of size m ×m
long grid Long grid of size 16m ×m
wide grid Wide grid of size m ×16m
acyc acyclic Acyclic graph with n vertices v1, . . . , vn and m arcs (vi , v j) with i < j

m = hn for h between 2 and 50
rand random Hamiltonian cycle with n vertices and m −n chords.

m = hn for h between 2 and 50

Table 4.2 – Summary of the families of graphs used

graphs of the instances will be used in the next chapter with different resources to test our
algorithms on stochastic path problems.

We solve each instance in two steps. First, we run the generalized Dijkstra algorithm to
compute the lower bounds bv , and second we use an enumeration algorithm to solve the
problem. As we use positive resources, Theorems 4.7 and 4.8 ensure respectively that the
label correcting and the label dominance algorithm converge. Case (b) of Theorem 4.3 with
assumption (4.3) ensures the convergence of the generalized A∗ algorithm.

Remark 4.7. We use our generalized Dijkstra algorithm to compute the lower bounds. As
Rk+1 is a dioid, Theorem 4.12 ensures that the bounds computed are the component-wise
shortest paths. If each component of the resources is non-negative, a speed-up of order γ
of the preprocessing can be obtained by using Dijkstra algorithm or any other shortest path
algorithm to compute each component shortest path, where γ has been defined in Remark 4.5.

4.3.1 Graph instances used

We now introduce the graphs instances that are used in this chapter. These instances are also
used in Chapter 5 and Chapter 6. We use four families of graphs: road networks, acyclic graphs,
grids, and random graphs. The three last families of graphs are used by Cherkassky et al. [38]
in their experimental study of algorithms for the STANDARD SHORTEST PATH PROBLEM. We
have used adapted versions of their generators spgrid, sprand, spacyc to produce instances
of these families. The adaptation consists in the insertion of a destination vertex. Among
others, these four family of graphs have been used by Dumitrescu and Boland [61] to test the
different STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algorithms available
in the literature. The remaining of the section provides the definition of the different families
of instances, Table 4.2 provides a summary of the main characteristics of these families of
graph, and Figure 4.1 gives examples of graphs from these families

The road network graphs have been extracted from the Rome and the San Francisco Bay
Area instances of the Dimacs challenge [2] as follows. We suppose to have a road network
digraph D = (V , A), and we want to extract from it a subgraph with n < |V | vertices. We choose
randomly an initial vertex and compute the subgraph of the n nearest vertices to v . We then
repeat this operations ten times and keep the subgraph with the maximum number of vertices.

63

Chapter 4. Algorithms for path problems with resources in an ordered monoid

o

d

o

d

o

d

Figure 4.1 – Examples of our families of graphs. From left to right, a grid graph of width 4 and
depth 6, a random graph with 6 vertices and 10 arcs, and an acyclic graph with 6 vertices and
10 arcs.

The subgraph being extracted, we use a graph traversal approach [46] to find an origin and
a destination vertex far from each other. We choose randomly an origin o and compute a
furthest vertex d in terms of number of arcs. The vertex d found is then chosen as the new
origin o, and a new vertex d is computed as the furthest vertex from the previous one in terms
of number of arcs. This operation is repeated five times. We finally obtain an origin o and
a destination d such that paths between o and d have a large number of arcs. In the newly
generated subgraph, we keep the length of the arcs of the original graph. In The Dimacs
instances used, these lengths correspond to road distances.

We now give the definition of the families of graphs used in [38]. A grid graph of length `

and width m is composed of ` layers of m vertices, as illustrated on the left part of Figure 4.1.
Each layer i can be seen as a Hamiltonian cycle vi ,1, . . . , vi ,m with arcs in both direction. Each
vertex vi , j of layer i ∈ [`−1] is connected to the same vertex vi+1, j in the next layer. An origin
vertex o and a destination vertex d are added. There is an arc between the origin o and each
vertex of the first layer, and an arc between each vertex of the last layer and the destination.
A random graph with n vertices and m ≥ n arcs is composed of n vertices on a Hamiltonian
cycle and randomly generated chords on that cycle. A random graph is illustrated in the
middle of Figure 4.1. Finally acyclic graphs with n vertices an m > n arcs are generated as
follows. A path with n vertices v1, . . . , vn is generated. The origin and the destination are
respectively the first and the last vertex of the path. Additional arcs between vi and v j , with i
and j randomly generated and satisfying i < j . Such and acyclic graph is illustrated on the
right part of Figure 4.1. We consider random and acyclic graphs with n vertices and hn arcs
with h between 2 and 50. In each of these graphs, the length of each arc is chosen randomly

64

4.3. Numerical results on a resource constrained shortest path problem

between 1 and 100.

4.3.2 Resources and constraints

The resource of the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. The
cost of an arc is its length. The weights w i

a of an arc is randomly chosen between 1 and 100.
We consider the case with 1 weight and the case with 10 weights. We choose the thresholds in
the same way as Dumitrescu and Boland [61]. A o-d path Pc of minimum cost, and an o-d
path Pw minimizing

∑
a∈Pw

∑
i∈k

w i
a are computed. We then choose the constraint strength α

τi = (1−α)w i
Pw

+αmax(w i
P , w i

Pw
) (4.12)

with α ∈ {0.1,0.5,0.9} corresponding respectively to strong, medium and light constraints.
This choice of thresholds ensures the existence of a solution, as Pw is feasible, but that the
optimal solution of the non-constrained problem is not feasible.

4.3.3 Experimental setting

The numerical experiments are performed on a Macbook Pro of 2012 with four 2.5 Ghz
processors and 4 Gb of ram. We use our latticeRCSP library described in Appendix C to solve
the instances. The algorithms are not parallelized. The limiting parameter for the algorithms
is the memory available. Therefore, we stop the algorithms if the list L of candidate paths
contains more that 1e+05 elements. We also stop the label correcting and the label dominance
algorithms if the number of paths in the union of the sets of non dominated paths Mv is larger
than 1e+05. The minimum c(qP +bv) on the paths P in L when the algorithm is stopped
provides a lower bound on the cost of an optimal solution, and cU B

od provides an upper bound.

Figure 4.2 provides the CPU times as a function of the number of vertices in the graph for the
instances solved to optimality on each family of instances for constraints of medium strength
α = 0.5 for the resource constrained shortest path problem with k = 1 constraint. For the
random and the acyclic instances, we have h = 5. We have plotted curves for each family of
graph and algorithms because, once the parameter h is fixed and the grid family has been
split into long, wide, and square grids, there is only one degree of freedom in the definition
of instances of each family of graphs, and thus giving the number of vertices of the graph
identifies the instance considered.

Candidate paths

A standard technique to accelerate resource constrained shortest path algorithms [61] is to
compute candidate v-d paths Qv for each vertex v during a preprocessing. If a candidate o-v
path is not discarded, before extending it, we test if P +Qv is a feasible solution of cost smaller
than cU B

od , and update cU B
od if it is. The idea behind these candidate paths is that candidate paths

enable to find faster feasible o-d of small cost, and thus to get faster a small cU B
od , which enable

to reduce the number of paths considered by the algorithm. We compute these candidate
paths in a preprocessing by taking those that minimize

∑
a∈P ca +∑

i w i
a .

65

Chapter 4. Algorithms for path problems with resources in an ordered monoid

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

acyc 5

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

rand 5

A∗
cor.

dom.

Figure 4.2 – Resource constrained shortest path problem results with k = 1 and α = 0.5.
The dashed lines correspond to algorithms without candidate paths, and the plain lines to
algorithms with candidate paths.

66

4.3. Numerical results on a resource constrained shortest path problem

On Figure 4.2, we therefore provide two versions of the labeling algorithms: one with candidate
paths, and one without. Plain lines correspond to algorithms with candidate paths, and dashed
lines to algorithms without.

4.3.4 Diameter, difficulty of instances, and algorithms performances

For each family of instances considered, Table 4.3 provides the results of the algorithms
on the largest instance solve to optimality and the smallest non-solved to optimality. The
results on the two largest instances are provided for the family where all the instances have
been solved to optimality. The first column of Table 4.3 indicated the name of the instance
considered. Instances are named after their family and the parameter that identify them in
their family. The next columns provide the number of vertices and the number of arcs in the
instances. The column Alg. provides the algorithm used to solve the algorithm. The name
cor. and dom. corresponds to the label correcting and the label dominances algorithm. When
the suffix no is added to the name of an algorithm, it means that no candidate paths have
been computed in a preprocessing, while when the suffix no is not present, candidate paths
have been computed. The next column corresponds to the quantity γ defined in Remark 4.5:
being defined as the ratio of the number of vertices extensions divided by the total number of
vertices, it indicates the performance of the generalized Dijkstra algorithm of Section 4.2.2.
The column Preproc. provides the percentage of the total CPU time spent in the preprocessing
phase computing the bounds. There is no such phase for the label dominance algorithm.
The two next columns provide the number of paths extended and the number of of paths
cut. The column Dom. provide the percentage of paths cut by the dominance test in the
label correcting algorithm, the remaining of the paths being cut by the lower bound test. The
column ` corresponds to the number of arcs in the solution returned, and the last column
provides the total CPU time of the algorithm, including the preprocessing.

We now analyze the results of Table 4.3 and Figure 4.2. The acyclic and the random instances
are the easiest to solve. The road network instances are of medium difficulty. The wide grid
instances are rather easy to solve, while the square grids are difficult and the long grids are
very difficult to solve. Even if the difficulty highly depend on the topology of the instances, we
can observe that the difficulty of an instance tend to be correlated with the number of arcs in
an optimal solution. The wide grid instances are therefore easier to solve than the square and
the long grid instances. As the acyclic and the random instances are easy to solve, we do not
consider them in the remaining of the dissertation.

The limit on the label map size leads to small computing times. A natural idea is to increase it,
in order to get better results on the instances not solved to optimality. Nonetheless, increasing
the maximum label map size leads to the use of a too large amount of memory and makes the
program crash.

The parameter γ of our generalized Dijkstra algorithm remains much smaller than its upper
bound `. It is therefore more interesting to use this algorithm than the extended Ford-Bellman
algorithm. The preprocessing can take a substantial proportion of the total computation times,
but when it is the case, it means that the instance can be well solved.

On the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM with one constraint, the

67

Chapter 4. Algorithms for path problems with resources in an ordered monoid

Instance |V | |A| α Alg. γ Preproc. Ext. Cut. Dom. ` Gap CPU (s)
road20 20000 55180 0.5 A∗ 1.6 9% 55762 17579 – 252 2.5% 4.91e-01

cor. 1.6 36% 7852 8228 44% 243 opt 1.30e-01
dom. – – 1505043 995349 – 243 21.0% 1.20e+01
A∗ no 1.6 15% 54131 14121 – 0 inf% 3.08e-01

cor. no 1.6 64% 7899 8306 44% 243 opt 7.32e-02
dom. no – – 1505043 995349 – 0 inf% 1.06e+01

road50 50000 138112 0.5 A∗ 2.7 25% 44613 3710 – 494 13.6% 7.21e-01
cor. 2.7 12% 153221 80488 96% 478 5.5% 1.60e+00

dom. – – 1557409 1029848 – 462 431.2% 1.44e+01
A∗ no 2.7 43% 44613 3710 – 0 inf% 4.42e-01

cor. no 2.7 17% 153191 80428 96% 0 inf% 1.12e+00
dom. no – – 1557409 1029848 – 0 inf% 1.21e+01

square50 2502 7550 0.5 A∗ 1.7 2% 70109 40264 – 64 28.1% 4.01e-01
cor. 1.7 6% 25466 25428 50% 62 opt 1.09e-01

dom. – – 196904 126563 – 61 opt 8.87e-01
A∗ no 1.7 2% 70109 40264 – 0 inf% 2.78e-01

cor. no 1.7 9% 25553 25489 50% 61 opt 8.50e-02
dom. no – – 197010 126645 – 61 opt 7.45e-01

square100 10002 30100 0.5 A∗ 1.6 7% 58533 17162 – 131 30.4% 4.36e-01
cor. 1.6 2% 168016 155396 58% 118 opt 1.01e+00

dom. – – 1493529 973040 – 131 25.1% 1.21e+01
A∗ no 1.6 9% 58533 17162 – 0 inf% 2.69e-01

cor. no 1.6 3% 168036 155429 58% 118 opt 7.84e-01
dom. no – – 1493529 973040 – 0 inf% 1.05e+01

long10 2562 7696 0.5 A∗ 1.6 2% 52564 5139 – 211 43.9% 3.39e-01
cor. 1.6 0% 392260 291164 85% 193 opt 2.49e+00

dom. – – 1492274 983655 – 193 opt 2.40e+01
A∗ no 1.6 2% 52564 5139 – 0 inf% 2.24e-01

cor. no 1.6 0% 392301 291221 85% 193 opt 2.13e+00
dom. no – – 1492535 983841 – 193 opt 2.24e+01

long20 5122 15376 0.5 A∗ 1.6 3% 51961 3933 – 438 58.6% 4.17e-01
cor. 1.6 1% 186590 93798 96% 419 33.9% 1.45e+00

dom. – – 1558884 1024684 – 437 202.3% 2.62e+01
A∗ no 1.6 5% 51961 3933 – 0 inf% 2.66e-01

cor. no 1.6 1% 186590 93798 96% 0 inf% 1.12e+00
dom. no – – 1558884 1024684 – 0 inf% 2.36e+01

wide50 12802 39200 0.5 A∗ 1.5 52% 118 1034 – 19 opt 6.71e-02
cor. 1.5 51% 102 986 1% 19 opt 6.48e-02

dom. – – 93248 53879 – 19 opt 3.95e-01
A∗ no 1.5 96% 124 1043 – 19 opt 3.42e-02

cor. no 1.5 96% 108 995 1% 19 opt 3.63e-02
dom. no – – 93511 54052 – 19 opt 2.74e-01

wide100 25602 78400 0.5 A∗ 1.5 51% 104 1806 – 21 opt 1.42e-01
cor. 1.5 50% 95 1782 0% 21 opt 1.40e-01

dom. – – 148564 83772 – 21 opt 6.79e-01
A∗ no 1.5 97% 107 1809 – 21 opt 7.23e-02

cor. no 1.5 97% 98 1785 0% 21 opt 7.36e-02
dom. no – – 148903 83968 – 21 opt 4.62e-01

Table 4.3 – Standard resource constrained shortest path with one resource constraint

68

4.3. Numerical results on a resource constrained shortest path problem

label correcting algorithm performs better than the generalized A∗ and the label dominance
algorithms. The generalized A∗ algorithm performs better than the label dominance algorithm
on the road network and on the wide grid instances, but worse on the other instances. This
can be explained by the fact that most paths cut by the label correcting algorithm are cut by
the dominance test on these instances. Using lower bounds is nonetheless a good idea, as
label correcting algorithm always performs better than the label dominance algorithm.

The algorithms without candidate paths perform better on the instances they can solve, but
when it is not the case, the candidate paths enable to obtain a better solution and a smaller
gap at the end of the algorithm. Besides, on the instances solved to optimality, the additional
CPU time due to candidate paths is not large. Therefore, when the objective is to solve the
problem, using candidate paths is a good idea.

4.3.5 Influence of constraint strength

Figure 4.3 provides A∗ and label correcting algorithm performances on identical instances but
with constraint strength α in {0.1,0.5, 0.9}. We expect instances with strong constraints, i.e.
with small α, to be more difficult to solve. This is in practice the case for long grids, but on the
other family of instances, the results are less stringent. Random and acyclic instances seem to
be easier to solve when more constrained. Road and square grid instances seem to be more
difficult to solve for constraints of medium strength.

4.3.6 Influence of dimension

Figure 4.4 and Table 4.4 are respectively the analogues of Figure 4.2 and Table 4.3 for the
problem with k = 10 resources. Only instances solved to optimality are plotted on Figure 4.4.
In Table 4.4, we only provide the algorithms with candidate paths, as the behavior with or
without candidate paths is analogue to the one constraint case. Instances with ten resource
constraints are more difficult than instances with only one. Besides, difficulty of the family of
instances are similar: acyclic and random instances are easy while grids are difficult. We now
focus on the difficult instances, i.e. the road and the grid instances.

Concerning the performance of the algorithms, the main difference with the one constraint
case is the poor performance of the label dominance algorithm – except on the easy acyclic
and random instances. We can explain this phenomenon by observing that, when there are
ten constraints, dominance is rare, because it suffices of one component q i > q̃ j for q not
to dominate q̃ . This can be observed by the fact that the proportion of resources cut by the
dominance test in Table 4.4 is much smaller than the proportion of paths cut by the dominance
test for analogue instances in Table 4.3. This phenomenon also explain why the proportion
of paths cut by the dominance test in the label correcting algorithm tends to be smaller than
in the one constraint case, which itself explains why the generalized A∗ algorithm performs
almost as well as the label correcting algorithm.

69

Chapter 4. Algorithms for path problems with resources in an ordered monoid

Instance |V | |A| α Alg. γ Preproc. Ext. Cut. Dom. ` Gap CPU (s)
road20 20000 55180 0.5 A∗ 2.1 6% 253214 323551 – 221 55.3% 1.23e+00

cor. 2.1 18% 45034 66317 21% 221 opt 3.82e-01
dom. – – 1103713 603707 – 221 373.3% 3.91e+01

road50 50000 138112 0.5 A∗ 2.5 30% 56159 9481 – 400 18.1% 7.12e-01
cor. 2.5 10% 64093 17783 53% 400 18.0% 2.10e+00

dom. – – 477467 307503 – 400 1321.4% 2.76e+01
square20 402 1220 0.5 A∗ 2.2 7% 6140 12298 – 21 opt 2.31e-02

cor. 2.2 9% 3476 5540 13% 21 opt 1.45e-02
dom. – – 642456 325326 – 21 opt 3.00e+01

square50 2502 7550 0.5 A∗ 2.2 2% 81247 62539 – 52 57.5% 4.73e-01
cor. 2.2 0% 141815 103501 39% 52 49.3% 2.64e+00

dom. – – 168274 78864 – 52 376.1% 1.84e+00
long2 514 1552 0.5 A∗ 2.3 0% 225825 451664 – 33 opt 9.38e-01

cor. 2.3 1% 34149 49036 20% 33 opt 2.51e-01
dom. – – 196469 97437 – 33 113.9% 3.06e+00

long5 1282 3856 0.5 A∗ 2.2 1% 64642 29295 – 81 67.9% 4.02e-01
cor. 2.2 0% 101197 52388 48% 81 62.9% 1.90e+00

dom. – – 195012 96678 – 81 599.7% 3.03e+00
wide50 12802 39200 0.5 A∗ 2.1 63% 2749 6296 – 17 opt 8.73e-02

cor. 2.1 59% 2706 6000 2% 17 opt 8.54e-02
dom. – – 125699 48327 – 17 117.1% 8.27e-01

wide100 25602 78400 0.5 A∗ 2.1 59% 6698 14994 – 17 opt 1.81e-01
cor. 2.1 60% 6409 13726 3% 17 opt 1.74e-01

dom. – – 108128 38179 – 17 314.6% 6.69e-01

Table 4.4 – Standard resource constrained shortest path with ten resource constraints

70

4.3. Numerical results on a resource constrained shortest path problem

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

road

A∗
cor.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

acyc 5

A∗
cor.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

rand 5

A∗
cor.

Figure 4.3 – Resource constrained shortest path problem solved to optimality with k = 1. Plain
lines correspond to constraint strength α= 0.1, dotted lines to α= 0.5, and dashed lines to
α= 0.9

71

Chapter 4. Algorithms for path problems with resources in an ordered monoid

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

acyc 5

A∗
cor.

dom.

102 103 104 105

10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

rand 5

A∗
cor.

dom.

Figure 4.4 – Resource constrained shortest path problem solved to optimality with k = 10 and
α= 0.5. The dashed lines correspond to algorithms without candidate paths, and the plain
lines to algorithms with candidate paths.

72

4.4. Bibliographical remarks

4.4 Bibliographical remarks

Variants of the STANDARD SHORTEST PATH PROBLEM has been thoroughly studied during the
last six decades. As we already mentioned, there are two main types of algorithms for the
STANDARD SHORTEST PATH PROBLEM: the polynomial algorithms, such as Dijkstra’s algorithm
or Ford-Bellman algorithm, and the enumeration algorithms, such as A∗.

Dijkstra’s algorithm [59] is the standard algorithm to solve it when arcs costs are non-negative,
and Ford-Bellman [25, 77] algorithm is the standard way to solve it when arc costs can be
negative. Both algorithms computes the shortest path between one vertex and all the other
ones. In that sense they can be seen as solution algorithms for the dynamic programming
equation. Ahuja et al. [9] call these algorithms label algorithms, in the sense that they assign
a label bv , i.e. the solution of the dynamic programming equation, to each vertices. They
distinguish two classes of label algorithms. The label setting algorithm are such that when a
label bv has been set, it is never updated. On the contrary, in label correcting update several
times the label bv before convergence. Label setting algorithms, such as Dijkstra’s algorithm,
mostly apply to problems with non-negative arc costs, while label correcting algorithm, such
as Ford-Bellman algorithm, apply to all problems. We note that our generalized Dijkstra
algorithm is a label correcting algorithm according to Ahuja et al. [9]’s definition. We named
one of our enumeration algorithms a label correcting algorithm in order to stick to resource
constrained shortest path problem terminology, which defines label algorithms are enumera-
tion algorithms. In label correcting algorithms for resource constrained shortest path problem,
labels correspond to paths and not to vertices, and there can therefore be several labels on the
same vertex. They are therefore not label algorithms according to Ahuja et al. [9]’s definition.

Enumeration algorithms use bounds to discard paths in an enumeration of all the paths. The
typical example of enumeration is A∗ [93]. These algorithms are called goal directed algorithms
as they compute the shortest path only between a given pair of origin and destination vertices.
When good bounds are used, enumeration algorithms are faster than polynomial algorithm.
These algorithms have been thoroughly studied during the last decades as they are the core of
online journey planning systems. The difference between enumeration algorithms are the
bounds used, and the trade-off they achieve between the memory needed to store the bounds
and the computation needed to answer a given request. Cherkassky et al. [38] benchmark the
usual shortest path algorithms and Bast et al. [21] survey the recent contributions to this field.

The generalizations of Dijkstra and Ford-Bellman algorithms aim at finding a solution to
generalized versions of the dynamic programming equation. They are therefore studied in the
algebraic path problem community. Generalizations of the enumeration algorithms are often
used to solve resource constrained shortest path problems.

4.4.1 Bounding algorithms and algebraic path problem

The aim of the algebraic path problem, which we introduced in Section 3.3, is to solve the
dynamic programming equation (3.3) when resources belong to a semiring. It has been
studied by many authors on semiring frameworks of various generality [8, 17, 34, 74, 86, 115,
130, 152, 178]. Their algorithms which are valid on bounded semirings can therefore be used

73

Chapter 4. Algorithms for path problems with resources in an ordered monoid

to solve our generalized dynamic programming equation (4.8) when (R,⊕,6) is a bounded
dioid. Fink [74] surveys the sequential and parallel algorithms for the algebraic path problem.

Zimmermann [178] and Gondran and Minoux [86] sum up the literature which considers the
algebraic shortest path problem in terms of linear equation systems in dioids. Many algebraic
path problem algorithms can therefore be interpreted as dioid versions of the usual algorithms
used to solve linear equations. Our generalized Ford-Bellman algorithm is identical to their
one when restricted to dioids. They show that it is a generalization of Jacobi algorithm for
linear equations systems. Unfortunately, their generalized Gauss-Seidel and Gauss-Jordan
algorithms do not extend to lattice ordered monoids as they require ⊕ to be distributive with
respect to ∧.

As we already mentioned in Remark 4.4, Mohri [130] gives a generic algorithm for the algebraic
shortest path problem that is very close to our generalized Dijkstra algorithm. The main
difference is that, as they are working on semirings, convergence after a finite number of
iterations is obtained even if the only stopping criterion used is the emptiness of L. Besides,
the generalized dynamic equation is a fixed-point equation in a lattice. Our generalized Ford-
Bellman algorithm can therefore be interpreted as a specific case of the fixed-point algorithms
in lattices [44, 45]. Several approaches have been developed to accellerate the convergence
of such algorithms. See e.g. [11, 13] for recent contributions. As our generalized Dijkstra
algorithm converges quickly in practice, as mentioned in Remark 4.5, we haven’t considered
these accelerating techniques.

4.4.2 Enumeration algorithm for resource constrained path problems

In this dissertation, we focus on exact approaches to the resource constrained shortest path
problem. A review of heuristics for this problem is available in the survey of Irnich and De-
saulniers [97]. There are three main types of exact approaches to resource constrained shortest
path problems: constraint programming, branch and bound, and enumeration algorithms.
Constraint programming algorithms [48, 70, 90, 104, 151] for resource constrained shortest
path problem follow the usual principles of constraint programming [14], and combine specif-
ically designed search, domain reduction, and propagation algorithms. Junker et al. [104]
and Gualandi and Malucelli [90] provide constraint programming frameworks for resource
constrained shortest path problems. Specific branching patterns have been developed by
branch and bound algorithms for resource constrained shortest path problems. They branch
on cycles, on arcs, and on resources [96, 148]. The bounds for these branch and bounds
approaches are obtained either using heuristic enumeration algorithms [148], or using La-
grangean relaxation on an integer programming formulation of the problem [23, 30]. Finally,
enumeration algorithms are variants of our enumeration algorithm. They also follow a branch
and bound principle when only bounds are used to discard paths in these algorithms. As they
only extend paths, enumeration algorithms are nonetheless completely different from the
branch and bound algorithms mentioned above, which branch on arcs, cycles, and resources.

We now make a detailed review of enumeration algorithms, and start by some remarks on
terminology. Enumeration algorithms are generally referred as dynamic programming al-
gorithms in the resource constrained shortest path community [97, 147], because the first

74

4.4. Bibliographical remarks

versions [54] can be seen as generalization of the Ford Bellman algorithm [25, 77]. As these
algorithms do not solve the dynamic programing equation, we have chosen not to call them
dynamic programming but enumeration algorithms in order to avoid confusion with our
bounding algorithms. They are also called labeling algorithm. Using the terminology of Ahuja
et al. [9] introduced at the beginning of the section, most approaches to the resource con-
strained shortest path problem are label correcting algorithms, even if label setting algorithms
have been developed under restrictive assumptions on the monotonicity of the resource
extension function [55]. Desrosiers et al. [58] provide a review of those approaches. We now
focus on label correcting enumeration algorithms. As we already noted, in the context of
label correcting enumeration algorithms, label refer to paths, and they are therefore not label
algorithms in the sense of Ahuja et al. [9].

In their survey on resource constrained shortest path problems, Irnich and Desaulniers [97]
provide a generic enumeration algorithm, and describe the various contributions in the
literature as special cases of this generic algorithm. For the reasons mentioned in the previous
paragraph, they call it the generic dynamic programming resource constrained shortest path
algorithm. This algorithm is the analogue of our generic enumeration algorithm in the resource
extension function framework. The differences between the algorithms available in the
literature lie in the choice of the key, of the bounds, and of the dominance rule. The key
defines the order in which paths are processed. The bounds and the dominance rules are
what enable to discard paths. The dominance rule is the order on the set of resources and the
algorithm to check if a resource dominates another one. Desrochers and Soumis [55] and [146]
provide specific keys for routing problems with time windows, but these strategy apply to most
resource constrained shortest path problem. Irnich [96] provide general techniques to define
resource extension functions leading to good dominance rules, and techniques to handle path
with identical resources [98]. The remaining of the techniques are problem-specific. Finally,
we note that variants of the enumeration algorithm based on the k-shortest path problem [68]
have been proposed [23, 92, 157].

Several bounding techniques have been proposed when (R,⊕,6) is Rn endowed with its
product order and sum. Some contributions computed them in a preprocessing algorithm
using component by component shortest path algorithms [55, 61, 102, 120]. Another branch
of the literature uses Lagrangian relaxation on an integer formulation of the problem to obtain
lower bounds [32, 61, 92, 157]. These methods require the absence of negative cost cycles, in
order to be able to solve the Langrangean relaxation using a shortest path problem. The case
with negative cost cycles was considered by Feillet et al. [72]. The difference between these
algorithms and the branch and bound algorithms mentioned at the beginning of the section is
the branching procedure: here, an enumeration algorithm is used, which only extends paths.
We now come to dominance rules on specific problems. Several specific dominance rules
have been developed for the elementary path constraint [23, 72]. Kohl et al. [107] and Larsen
[113] provide dominance rules for the 2-cycle constraint, and Irnich and Villeneuve [98] for
the k-cycle. Finally, Ioachim et al. [95] provide ad-hoc dominance rules for time windows
constraints.

75

5 Applications to stochastic path prob-
lems

This chapter is devoted to the study of offline stochastic versions of the STANDARD SHORTEST

PATH PROBLEM and of the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

within the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework. The
notions of probability theory used in this chapter are introduced in Chapter 2.

In many applications of the STANDARD SHORTEST PATH PROBLEM, the resource qa of an arc is
uncertain. Congestion on road networks is a natural example. Mathematically, arc resources
become random variables ξa on a probability space (Ω,F ,µ). In this context, the length of
a path ξP = ∑

a∈P ξa is also a random variable. One way to quickly evaluate the quality of a
path is to use a version independent probability functional ρ, which maps random variables
to reals. We recall from Chapter 2 that a probability functional ρ is version independent if ρ(ξ)
only depends on the image measure µξ induced by ξ, and that it is monotone if it is isotone
with respect to the almost sure order: ρ(ξ) ≤ ρ(ξ̃) if ξ≤ ξ̃. The following problem is an analogue
of the STANDARD SHORTEST PATH PROBLEM where the arc resources are random variables, and
the cost function c is a probability functional.

STOCHASTIC SHORTEST PATH PROBLEM

Input. A digraph D = (V , A), two vertices o,d ∈V , a collection (ξa) of real random variables on
(Ω,F ,µ), and a version independent monotone probability functional c.
Output. An o-d path P with minimum c

(∑
a∈P ξa

)
.

On other problems of practical interest, uncertainty lies in the constraints of a STANDARD

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. For instance, probabilistic constraints
enable to model the quality of service in public transportation systems. The following problem
is a stochastic analogue of the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

Input. A digraph D = (V , A), two vertices o,d ∈ V , a collection (ξa) of real random variables
on (Ω,F ,µ), a collection of real costs ca , and a version independent monotone probability
functional ρ.
Output. An elementary o-d path P such that ρ

(∑
a∈P ξa

)≤ 0 with minimum
∑

a∈P ca .

We underline the fact that both problems are offline, i.e. their solution path is computed

77

Chapter 5. Applications to stochastic path problems

once and for all before the observation of the random variables, and not adapted once some
random variables are observed. We also note that ρ is in this chapter a mapping to R, and
not a mapping to {0,1} as the infeasibility function of the previous chapter. An infeasibility
function can be obtained by taking the indicator function of ρ(·) being greater than 0.

The literature on stochastic path problems focuses mainly on three types of probability func-
tionals. The first type is composed of probability functionals P(· > τ) for a given threshold
τ. It has been widely studied because it corresponds to the probability of arriving on time.
The second type is composed of expectations of given cost functions E

(
f (·)). In this chapter,

we restrict ourselves to non-decreasing cost functions f . Finally, the last type of probability
functional is composed of the risk measures, which have been defined in Chapter 2, as they
are standard tools to deal with uncertainty.

We develop the following strategy to tackle with the STOCHASTIC SHORTEST PATH PROBLEM:
first, we endow the set of ξa with a lattice ordered monoid structure such that the probability
functionals c and ρ are isotone with respect to the lattice order, and second we apply the
algorithms of Chapter 4 to solve it. This chapter therefore considers lattice ordered structure
on sets of random variables ξa and probability functionals isotone with respect to these
orders. Note that this method naturally extends to the STOCHASTIC RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM. Indeed, suppose that (R,⊕,6) is a lattice ordered monoid encoding
the set of ξa , then a pair (ca ,ξa) is an element of the product (R,+,≤)× (R,⊕,6), which is also
a lattice ordered monoid. See Section 3.4 for more details on lattice ordered monoid products.

The next lemma shows that the set of random variables is naturally endowed with a lattice
ordered monoid structure.

Lemma 5.1. The space of random variables endowed with its usual sum and with the almost-
sure order is a lattice ordered monoid.

Proof. We only have to prove that the almost sure order ≤ is compatible with random variables
sum, and that it induces a lattice structure. Let ξ, ξ1 and ξ2 be three random variables such
that ξ1 ≤ ξ2. We have ξ1(ω) ≤ ξ2(ω) for each element ω ∈Ω except on a negligible set, which
induces ξ1(ω)+ξ(ω) ≤ ξ2(ω)+ξ(ω), and thus ξ1 +ξ≤ ξ2 +ξ, which gives the compatibility of
the almost sure order with the sum. The lattice structure follows from the fact that the meet of
two random variables ξ and ξ̃ is their minimum (ξ∧ ξ̃)(ω) = min(ξ(ω), ξ̃(ω)).

Nonetheless, the elementary operations performed by the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM algorithms of Chapter 4 are the sum and the meet of ξa , whose
complexities depend on the definition of (Ω,F ,µ).

WhenΩ is finite and of reasonable size, the computation of sums and meets of random vari-
ables for the almost sure order is tractable. Section 5.3 shows that in this case, the algorithms of
Chapter 4 enable to solve the STOCHASTIC SHORTEST PATH PROBLEM on instances of medium
size, and Chapter 6 introduces enhanced versions of these algorithms which enable to solve
the STOCHASTIC SHORTEST PATH PROBLEM with finiteΩ on large instances. The importance
of this results comes from the fact that, using the Monte-Carlo method, any random variable ξ
can be approximated by a sampled version ξ̂ on a finite event probability space. To the best of

78

5.1. Independent distribution

our knowledge, this is the first practical solution scheme for the STOCHASTIC SHORTEST PATH

PROBLEM when arc random variables ξa are not independent.

WhenΩ is infinite, computing sums and meets of random variables for the almost sure order
is challenging. Nonetheless, as ρ is assumed to be version independent, we only need the law
of the random variable ξP to evaluate ρ(ξP). Besides, if the ξa are assumed to be independent
and belong to a family of distribution F stable by convolution product ∗, then the ξP =∑

a∈P ξa

belongs to F for all paths P . As a consequence, all the computations of the STOCHASTIC

SHORTEST PATH PROBLEM can be done in the set F. If we turn (F,∗) into a lattice ordered
monoid thanks to a properly defined order, we can use the algorithms of Chapter 4 to solve
the problem.

The chapter is organized as follows:

• Section 5.1 focuses on the case of independent ξa . Lattice ordered monoids are intro-
duced for several families of distributions stable by convolution product, including
discrete distributions with finite support, normal distributions, Gamma distributions
and Poisson distributions. The normal and discrete distributions case are dealt with
in details. Their complexity is analyzed. A link is established between the bounds of
Section 4.2 and an online stochastic path problem in the discrete distributions case.
Finally, the efficiency of the algorithms of Chapter 4 in the STOCHASTIC SHORTEST PATH

PROBLEM context is proved through extensive numerical experiments.
• Section 5.3 focuses on non-independent scenario based distributions. We prove that

for most probability functionals c of interest, there is no polynomial algorithm for the
STOCHASTIC SHORTEST PATH PROBLEM when |Ω| is finite. The convergence of the Monte-
Carlo approximation of any STOCHASTIC SHORTEST PATH PROBLEM problem is studied.
Finally, numerical experiments are carried out.

• Section 5.5 contains bibliographical remarks.

The three types of probability functionals mentioned above are shown to be isotone with
respect to the order of the lattice ordered monoids introduced.

5.1 Independent distribution

This section focuses on the independent ξa case. As explained in the introduction, the hypoth-
esis that probability function c is version independent enables us to work on random variables
laws when ξa are independents. For several families of distributions F stable by convolution
product ∗, we define an order 6 such that (F,∗,6) is a lattice ordered monoid. Most of the sec-
tion is devoted to the family of discrete distributions endowed with the usual stochastic order,
which is introduced in Section 2.1.5. Several parametric families of continuous distributions
are considered in Section 5.1.2.

In this dissertation, we denote Fξ the cumulative distribution of a random variable ξ.

79

Chapter 5. Applications to stochastic path problems

5.1.1 Discrete distributions lattice ordered monoid

Recall from Section 2.1.5 that a random variable ξ is non greater than a random variable ξ̃ for
the usual stochastic order, denoted ξ≤st ξ̃ if

P(ξ≤ t) ≥P(ξ̃≤ t) for all t . (5.1)

The proof of the following lemmas can be found in [131, 160].

Lemma 5.2. The usual stochastic order ≤st is compatible with the convolution product. Given
three random variables ξ, ξ̃ and ξ′, with ξ′ independent from ξ and ξ̃, we have

ξ≤st ξ̃=⇒ ξ+ξ′ ≤st ξ+ ξ̃.

Lemma 5.3. The set of laws of real random variables endowed with the convolution product
and the usual stochastic order is a lattice ordered monoid.

With a slight abuse of notation, we denote ξ∧st ξ̃ (resp. ξ∨st ξ̃) a random variable whose
distribution is the meet (resp. the join) of the distributions of ξ and ξ̃. Given two variables ξ
and ξ̃, we have

Fξ∧stξ̃
= max

(
Fξ,Fξ̃

)
and Fξ∨stξ̃

= min
(
Fξ,Fξ̃

)
.

Proposition 2.3 ensures that any version independent monotone risk measure is isotone
with respect to the usual stochastic order. The isotony of P(· > τ) and the isotony E(f (·)) for
non-decreasing f follow directly from the definition of ≤st.

From a practical point of view, the maximum of two cumulative distributions can be computed
efficiently only when these distributions have finite support in Z. Besides, the convolution
products can also be computed efficiently on the set of distributions with finite support in Z.

LetM denote the set of distributions with finite support in Z. When the random variables ξa

are independent with finite support in Z, the lattice ordered monoid (M,∗,≤st) can be used in
practice to solve the STOCHASTIC SHORTEST PATH PROBLEM with the algorithms of Chapter 4.
The numerical experiments in Section 5.2 show that they solve it very efficiently.

The relative easiness of this problem asks the question of its complexity. The following theorem
shows that there is no polynomial algorithm for the STOCHASTIC SHORTEST PATH PROBLEM.

Theorem 5.4. Even if the random variables ξa are independent with finite support inZ, there is
no polynomial algorithm with a complexity function independent of c solving the STOCHASTIC

SHORTEST PATH PROBLEM, unless P =N P .

In the proof, we use the terminology STOCHASTIC c-SHORTEST PATH PROBLEM instead of
STOCHASTIC SHORTEST PATH PROBLEM to underline the choice of a specific probabilistic
functional c as the cost function of the STOCHASTIC SHORTEST PATH PROBLEM instance built.

The proof of Theorem 5.4 is a reduction of the N P -complete STANDARD RESOURCE CON-
STRAINED SHORTEST PATH PROBLEM to a STOCHASTIC SHORTEST PATH PROBLEM. See Chapter 3
for the definition of the STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

80

5.1. Independent distribution

Proof. Let digraph D = (V , A), origin vertex o, destination vertex d , costs ca for a in A, weights
wa for a in A, and the threshold τ be an instance of the STANDARD RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM. We define two risk measures cmin and cmax.

cmin(ξ) = min{t ∈Z+ : Fξ(t) > 0)}

cmax(ξ) =
{

0 if max{t ∈Z+ : P(ξ= t) > 0} ≤ M
1 otherwise,

where M =Q(1+maxa∈A ca). We define

c = cmin +
(∑

a∈A
ca

)
cmax.

cmin is isotone with respect to the usual stochastic order because Fξ(t) ≥ Fξ̃(t) for all t implies
min{t ∈ Z+ : Fξ(t) > 0)} ≤ min{t ∈ Z+ : Fξ̃(t) > 0)}. Besides, cmax is also isotone with respect
to the usual stochastic order because max{t ∈Z+ : P(ξ= t) > 0} = min{t ∈Z+ : Fξ(t) = 1} and
Fξ(t) ≥ Fξ̃(t) for all t implies min{t ∈Z+ : Fξ(t) = 1)} ≤ min{t ∈Z+ : Fξ̃(t) = 1)}. Thus c is also
isotone with respect to the usual stochastic order.

We describe now the reduction to the STOCHASTIC c-SHORTEST PATH PROBLEM. Given an arc
a, we define ξa as follows:

P(ξa = ca) = 1

2
and P

(
ξa = qa

(
1+max

b∈A
cb

))
= 1

2
.

ξa can only take two values.

The deterministic resource constrained shortest path problem has a feasible solution if and
only if the STOCHASTIC c-SHORTEST PATH PROBLEM has a solution of cost less than

∑
a∈A ca .

In this case, the optimal solutions of both problems coincide.

We assume that the deterministic resource constrained shortest path problem has a feasible
solution. Let P be an optimal solution of the STOCHASTIC c-SHORTEST PATH PROBLEM. We
have then c(

∑
a∈P Xa) = ∑

a∈P ca and
∑

a∈P qa ≤ Q, which implies that the deterministic re-
source constraint shortest path problem has a feasible solution of cost

∑
a∈P ca . Conversely, an

optimal solution P ′ of the deterministic resource constrained shortest path problem provides
a feasible solution of the STOCHASTIC c-SHORTEST PATH PROBLEM of cost

∑
a∈P ′ ca .

The lattice ordered monoid (M,∗,≤st) is an interesting example from the point of view of the
complexity of the algebraic path problem. In the case of lattice ordered monoids that are not
dioids, Theorem 4.12 and Proposition 4.15 ensure that we can compute the lower bound b`

∗
v

in polynomial time but not the solution b†
v of the generalized dynamic programming equation

Equation (4.8). The set (M,∗,≤st) is an example of lattice ordered monoid that is not a dioid
and for which we can compute b†

v in polynomial time. Indeed, we prove in [142] that a variant
of the algorithm of Proposition 4.15 where a key φ(bv) is used instead of ñv converges to b†

v

after a number of iterations that is polynomial in |V | and in the size of the support of ξa .

81

Chapter 5. Applications to stochastic path problems

5.1.2 Parametrized families of distribution

We now explore STOCHASTIC SHORTEST PATH PROBLEM where ξa are independent with distri-
bution in parametrized families F of continuous distributions. To be used in the context of
STOCHASTIC SHORTEST PATH PROBLEM, a family Fmust be stable by convolution product.

Normal distributions

The convolution of two normal distributions N
(
µ,σ2

)
and N

(
µ̃, σ̃2

)
is a normal distribution

N
(
µ+ µ̃,σ2 + σ̃2

)
. As a consequence, the case of normal distributions can be dealt with using

the monoid (R2,+) endowed with properly defined orders.

The two following orders are compatible with + and endow R2 with a lattice ordered structure.

(µ,σ)61 (µ̃, σ̃) if

{
µ≤ µ̃,
σ≤ σ̃,

and (µ,σ)62 (µ̃, σ̃) if

{
µ≤ µ̃,
σ≥ σ̃.

(5.2)

When evaluating them on random variables N
(
µ,σ

)
, risk-averse probability functionals c

such as the expectation of convex cost functions, or the value at risk VaRβ for β ∈ [0.5,1], are
isotone with respect to 61. On the contrary risk-prone probability functionals such as the
expectation of concave cost function and the value at risk VaRβ with β ∈ [0,0.5] are isotone
with respect to order 62.

An important probability functional that is not isotone with respect to 61 or 62 is P(· > τ) for
a given threshold τ. This probability functional can be dealt with by using (µ,σ,σ) ∈ R3 as
parameter. We then define the order and functional

(µ,σ,σ)63 (µ̃, σ̃, σ̃) if


µ≤ µ̃,
σ≤ σ̃,

σ≥ σ̃,

and c(µ,σ,σ) = P
(
N (µ,σ) > τ) if τ≤µ,

P
(
N (µ,σ) > τ) otherwise.

The order 63 is compatible with +, and the function c is isotone with respect to 63. If for
each arc a, ξa has normal distribution N

(
µa ,σa

)
, we define qa = (µ,σa ,σa), then we have

c(qP) =P(ξP > τ), and we have expressed the STOCHASTIC SHORTEST PATH PROBLEM in the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework.

Given a distortion functional ρσ associated with a distortion function σ, we define ρ̃σ on
(R3,+,63) as follows

ρ̃σ(µ,σ,σ) =
∫ 1

2

0
σ(u)F−1

µ,σ(u)du +
∫ 1

1
2

σ(u)F−1
µ,σ(u)du.

Thus defined, ρ̃σ is compatible with ≤3, and we have ρ̃σ(µ,σ∗,σ∗) = ρσ
(
N (µ,σ∗)

)
. Corol-

lary 2.2 then ensures that that we can define a generalization ρ̃ of any risk measure ρ on R3

that is isotone with respect to ≤3 and such that ρ̃(µ,σ∗,σ∗) = ρ (
N (µ,σ∗)

)
.

Remark 5.1. The proof of Theorem 5.4 can be adapted to the normal distributions framework,
the cost of a path being encoded in the mean and the weight in the variance multiplied by the
sum of the cost of arcs. The only technical point is the definition of the analogue of cmax as 1 if

82

5.1. Independent distribution

and only if the probability of being greater than a threshold is larger than a given value, the
choice of the threshold and the value being such that the resource constraint is enforced and
the space required by encoding them is polynomial.

Distributions with one parameter

Among other distributions stable by convolution, we have the binomial distribution B(n, p),
the negative binomial distribution N (n, p) and the Pascal distribution P (n, p), all of them at
fixed p, the Poisson distribution, the Gamma distribution, the Cauchy distribution, and the
Lévy distribution, all of them with fixed scale parameter.

With the parameter restriction mentioned above, all of these distributions have only one
parameter. Most probability functionals are monotone with respect to this parameter. As a
consequence, the resolution of the STOCHASTIC SHORTEST PATH PROBLEM with independent
ξa with distributions in these families is equivalent to the resolution of a STANDARD SHORTEST

PATH PROBLEM where the cost of an arc is the parameter of its distribution.

Among these single parameter families of distributions, positive distributions such as the
Poisson distribution and the Gamma distribution can be used to model “delay”. We can indeed
suppose that ξa = αa + ξ̃a , where αa is a constant modeling arc length, and ξ̃a a random
variable representing delay. Supposing that ξ̃a follows a Poisson or a Gamma distribution, we
obtain a two parameter family stable by convolution. The techniques shown above to deal
with normal distributions in the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

framework apply to these two parametrized families of continuous distributions.

5.1.3 Link with the online on time arrival problem

When the lattice ordered monoid (M,∗,≤st) of discrete distributions endowed with the usual
stochastic order is used, the bound b† defined in Equation (4.8) admits a nice interpretation
as the optimal solution of an online problem.

In the offline STOCHASTIC SHORTEST PATH PROBLEM, a traveler chooses his entire path a priori,
when the realizations of ξa are unknown. Suppose that instead of choosing a priori the path
he will use, a traveler can update his choice given the time and his position. A solution of this
new problem is a policy π : V ×T → A, where π(v, t) is the arc that a traveler takes when he is
in v at t . Given a graph D , and origin o, a destination vertex d , positive independent random
variables ξa with discrete support, and a threshold τ, the STOCHASTIC ON TIME ARRIVAL

PROBLEM consists in finding a policy maximizing the probability of arrival at d before τ.

Note that if t > τ, then the probability of arriving before τ is equal to 0. As a consequence, an
optimal policy must be defined only for t ≤ τ [156].

Proposition 5.5. Let (b†
v) be the greatest solution of Equation (4.8). Then the policy which

assigns to (v, t) an arc (v,u) in δ+(v) maximizing
∑τ−t

k=0P(bu ≤ τ− t − k)P(ξ(v,u) = k) is an
optimal policy of the STOCHASTIC ON TIME ARRIVAL PROBLEM.

Proof. Following the dynamic programming principle, if we denote Fv (t) the probability of

83

Chapter 5. Applications to stochastic path problems

arriving before τ in d starting from v at t under an optimal policy, we have

Fv (t) = max
(v,u)∈δ+(v)

τ−t∑
k=0

P(ξ(v,u) = k)Fu(t +k),

If we denotes bv a random variable with cumulative distribution Fξv (t) = Fv (τ− t), we have{
bd = 0,
bv =∧

st
ξv,u +bu ,

which is exactly Equation (4.8), and gives the proposition. To be perfectly rigorous, the
equation above is satisfied only in term of distributions and for t ≤ τ, but this does not affect
the policy defined in the proposition.

5.2 Numerical results for independent distributions with discrete
support

5.2.1 Instances, resources, and constraints used

In this section, we test the performance of the algorithms of Chapter 4 as solution methods
for the STOCHASTIC SHORTEST PATH PROBLEM and the STOCHASTIC RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM when random variables distributions belong to (M,∗,≤st). We build
instances by generating resources on the road, square grid, long grid, and wide grid digraphs
introduced in Section 4.3.1.

On each digraph, two instances have been generated for the STOCHASTIC SHORTEST PATH

PROBLEM: on with generic discrete distributions with finite support, and one with truncated
lognormal distributions. The generic distributions are generated as follows. First, the length of
the arcs are rescaled to be non greater than 200. Second, their support size is chosen as 10
plus a random integer between 0 and the scaled length of the arc. Then P(ξ= t) is randomly
chosen using a uniform distribution on [0,1] for each t in the support, and then normalized
to obtain the support. The measure is then normalized to obtain a probability distribution.
The truncated and discretized lognormal distributions have been generated as follows. The
expectation of an arc is chosen as 10 plus a random integer between 0 and the scaled length of
the arc. The probability functionals P(· > τ) and CVaRβ have been tested for different values
of τ and β. We have chosen τ as follows: a first parameter τ−1 is chosen between 0 and 1,
then τ is chosen as the smallest t such that P(bo > τ) ≤ τ−1 where bo is the bound provided by
the bounding algorithm for the origin vertex o. It enables to obtain a threshold τ such that
P(ξP > τ) ∼ τ−1 where ξP is the resource of an optimal path.

For the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM, the deterministic
cost has been randomly chosen between 1 and 100, and the constraint probability distributions
and probability functionals have been generated in the same way as the distributions of the
STOCHASTIC SHORTEST PATH PROBLEM.

The A∗, the label correcting, and the label dominance are tested. In each of these algorithms,
we use the candidate paths mentioned in Section 4.3.3. We use our latticeRCSP library

84

5.2. Numerical results for independent distributions with discrete support

described in Appendix C to solve the instances. The algorithms are not parallelized, and the
numerical experiments are performed on a Macbook Pro of 2012 with four 2.5 Ghz processors
and 4 Gb of ram.

5.2.2 Results on the STOCHASTIC SHORTEST PATH PROBLEM

We now give the numerical results for the STOCHASTIC SHORTEST PATH PROBLEM

min
P∈Pod

CVaRβ(
∑

a∈P
ξa), (5.3)

where Pod is the set of o-d paths. Figure 5.1 provides the algorithms CPU time for the
STOCHASTIC SHORTEST PATH PROBLEM using CVaRβ with β= 0.01 as probability functional
c. The plain lines correspond to generic distributions and the dashed lines to lognormal
distributions. Only instances solved to optimality are plotted on the graph.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

Figure 5.1 – Algorithms performances on stochastic shortest path problem using CVaRβ with
β= 0.01 as probability functional. Plain lines correspond to generic distributions and dashed
lines to truncated lognormal distributions

85

Chapter 5. Applications to stochastic path problems

Table 5.1 provides numerical results on rather large road, square grid, long grid, and wide
grid instances for each algorithm tested and for parameters β in {0.01,0.1}. The first column
provides the instance name. The four next columns provide the number of vertices and the
number of arcs of the instance, the parameter β of the CVaRβ, the probability distribution
of the instance, and the algorithm used. The name of the algorithms are identical to those
of Table 4.3. Prefix gen corresponds to the generic distributions, and log to the truncated
lognormal distributions. The next two column provide the ratio γ of Remark 4.5 and the
percentage of time spent computing bounds in the preprocessing. The three next columns
provide the number of paths extended, the number of paths cut, and the proportion of paths
cut by the dominance test for the label correcting algorithm. The next columns provide the
number of arcs in the solution returned and the optimality gap. We use the prefix opt instead of
the optimality gap when the instance is solved to optimality. Finally, the last column provides
the total CPU time of the algorithm.

We first remark that the distribution has little impact on the performance of the algorithms.
We have also tested them on the same instances with truncated gamma distributions and
obtained similar results.

The STOCHASTIC SHORTEST PATH PROBLEM is rather easy to solve even for instances with
more than 104 vertices. The fastest algorithm are the extended A∗ and the label correcting
algorithms. The limit on the size of the instance we are able to solve using these algorithms is
the memory needed to store these instances. Both of these algorithms are between 2 and 10
times faster than the usual label dominance algorithm. Besides, they enable to solve larger
instances. There are two reasons for that. First, the bound test cuts path much better than
the dominance test on these instances. Indeed all paths are cut by the bound test for the
label correcting algorithm. This explains why the label correcting and the A∗ algorithms
have the same performance. As the bound test cuts paths very well, the number of paths
extended by the A∗ and the label correcting algorithms is several order of magnitude smaller
than the number of paths extended by the label dominance algorithm. Another consequence
of that fact is that most of the CPU time of the A∗ and the label correcting algorithms is
spent computing bounds in the preprocessing. The second reason for the algorithms good
performance is that the generalized Dijkstra algorithm computes the bounds very efficiently.
Indeed, the ratio γ of the number of extension divided by the number of vertices introduced in
Remark 4.5 is close to its minimal value 1. We note that we use the expectation of the current
resource of the vertex in the Dijkstra algorithm instead of the path length. Using the path
length leads to γ between 10 and 50 on the instances of Table 5.1, which strongly affects the
overall performance of the A∗ and the label correcting algorithms.

Considered the instance not solved to optimality in Table 5.1, we note that the smaller β, the
harder the problem is. This result is not surprising, because large values of β correspond to
conditional value at risk close to the expectation, while small β correspond to more risk averse
measures. Similar results are obtained when using the probability functional P(· > τ) instead
of the conditional value at risk. This probability function is considered in the next section on
the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

86

5.2. Numerical results for independent distributions with discrete support

Instance |V | |A| β Dis. Alg. γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
road50 50000 138112 0.01 gen A∗ 1.003 64% 281 593 – 468 opt 3.30e+01

cor. 1.003 63% 281 593 0% 468 opt 3.57e+01
dom. – – 147223 97217 – 469 139.9% 7.84e+01

0.1 A∗ 1.003 65% 281 614 – 468 opt 3.28e+01
cor. 1.003 64% 281 614 0% 468 opt 3.48e+01

dom. – – 147202 97201 – 469 140.5% 7.93e+01
0.01 log A∗ 1.001 65% 320 712 – 504 opt 2.10e+01

cor. 1.001 65% 320 712 0% 504 opt 2.11e+01
dom. – – 148462 98283 – 509 120.7% 4.38e+01

0.1 A∗ 1.001 65% 311 699 – 509 opt 2.11e+01
cor. 1.001 65% 311 699 0% 509 opt 2.11e+01

dom. – – 147995 97987 – 509 121.0% 4.38e+01
square200 40002 120200 0.01 gen A∗ 1.003 60% 149 481 – 261 opt 1.52e+01

cor. 1.003 60% 149 481 0% 261 opt 1.52e+01
dom. – – 420653 278478 – 261 opt 1.18e+02

0.1 A∗ 1.003 60% 194 578 – 261 opt 1.53e+01
cor. 1.003 60% 194 578 0% 261 opt 1.53e+01

dom. – – 423298 280217 – 261 opt 1.19e+02
0.01 log A∗ 1.002 60% 155 500 – 262 opt 1.21e+01

cor. 1.002 60% 155 500 0% 262 opt 1.22e+01
dom. – – 228833 152005 – 262 opt 4.25e+01

0.1 A∗ 1.002 60% 266 723 – 265 opt 1.23e+01
cor. 1.002 60% 266 723 0% 265 opt 1.23e+01

dom. – – 229133 152199 – 265 opt 4.26e+01
long50 12802 38416 0.01 gen A∗ 1.002 51% 695 1291 – 1008 opt 1.32e+01

cor. 1.002 52% 612 1123 0% 1008 opt 1.29e+01
dom. – – 148528 98519 – 1010 112.1% 1.21e+02

0.1 A∗ 1.002 52% 602 1199 – 1014 opt 1.28e+01
cor. 1.002 52% 602 1199 0% 1014 opt 1.29e+01

dom. – – 148495 98494 – 1018 112.7% 1.21e+02
0.01 log A∗ 1.001 54% 542 1067 – 1030 opt 7.81e+00

cor. 1.001 54% 542 1067 0% 1030 opt 7.83e+00
dom. – – 45989 30633 – 1030 opt 2.50e+01

0.1 A∗ 1.001 53% 625 1256 – 1030 opt 7.95e+00
cor. 1.001 53% 625 1256 0% 1030 opt 7.97e+00

dom. – – 46470 30947 – 1030 opt 2.52e+01
wide100 25602 78400 0.01 gen A∗ 1.004 61% 21 1631 – 21 opt 3.64e+00

cor. 1.004 60% 21 1631 0% 21 opt 3.62e+00
dom. – – 46326 28082 – 21 32.5% 5.22e+00

0.1 A∗ 1.004 61% 1 1591 – 20 opt 3.59e+00
cor. 1.004 61% 1 1591 0% 20 opt 3.60e+00

dom. – – 45829 27752 – 20 33.7% 5.20e+00
0.01 log A∗ 1.003 61% 1 1589 – 20 opt 3.37e+00

cor. 1.003 61% 1 1589 0% 20 opt 3.36e+00
dom. – – 64916 40386 – 20 opt 5.94e+00

0.1 A∗ 1.003 60% 1 1590 – 20 opt 3.36e+00
cor. 1.003 60% 1 1590 0% 20 opt 3.38e+00

dom. – – 64454 40078 – 20 opt 5.90e+00

Table 5.1 – STOCHASTIC SHORTEST PATH PROBLEM results

87

Chapter 5. Applications to stochastic path problems

5.2.3 Results on the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROB-
LEM

We now provide result for the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.
The problem solved is

min
P∈Pod

∑
a∈P

ca

s.t. P

(∑
a∈P

ξa > τ
)
≤ ρo

where ca are deterministic and ξa are independent random variables with discrete and finite
support, and Pod is the set of o-d paths. Resources (ca ,ξa) are generated as mentioned in
Section 5.2.1. Parameter τ is chosen in a way that the minimal value of P(

∑
a∈P ξa > τ) on the

o-d paths is not too far from 0.5 using the technique mentioned in Section 5.2.1. The threshold
parameter ρo is chosen as

ρ0 = (1−α)P(
∑

a∈Pρ

ξa > τ)+αP(
∑

a∈Pc

ξa > τ) (5.4)

where Pc is the o-d path minimizing
∑

a∈P ca and Pρ the path minimizing P
(∑

a∈Pρ
ξa > τ

)
.

Figure 5.2 provides the CPU times for road network and grid instances for α= 0.5 and α= 0.9.

Table 5.2 is the analogue of Table 5.1 for the STOCHASTIC RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM studied in this section. The columns of Table 5.2 are identical to those of Ta-
ble 5.1, except the column β, which is replaced by the constraint strengthα of the probabilistic
constraint (5.4).

Comparing Figure 5.2 and Figure 5.3 with Figure 5.1, we can see that the STOCHASTIC RE-
SOURCE CONSTRAINED SHORTEST PATH PROBLEM is harder than the STOCHASTIC SHORTEST

PATH PROBLEM. This is not surprising, as the deterministic resource constrained shortest
path problem is much harder than the deterministic shortest path problem. Depending on
the instances type, the standard label dominance algorithm enables to solve to optimality
instances with hundreds or thousands of vertices. The use of lower bounds in the generalized
A∗ and label correcting algorithms enable to solve to optimality instances with dozens of
thousands of vertices. Besides, on the instances the label dominance algorithm, the A∗ and
label correcting algorithms are between five and ten times faster than the label dominance
algorithm. We mentioned in Section 4.3.6 that dominance becomes rare when “dimension” of
the resource increases. Here, we can see that when the resource is the product of a real with a
finite support distribution, dominance is rare, and the label dominance algorithm becomes
inefficient. This “dimension effect” also affect the lower bound test, but less strongly. We
also note that, on most family of instances, the label correcting algorithm is faster than the
generalized A∗ and enables to solve larger instances. Finally, we remark that medium strength
constraint with α= 0.5 on Figure 5.2 are easier to solve than weak constraints with α= 0.9 on
Figure 5.3.

In Table 5.2, we note that γ of Remark 4.5 is larger than in the non-constrained case, even
if it remains smaller than 1.6 on all instances studied. As in the deterministic case, the

88

5.2. Numerical results for independent distributions with discrete support

Instance |V | |A| τ α Dis. Alg. γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
road20 20000 55180 20095 0.5 gen A∗ 1.4 9% 79207 166575 – 240 opt 85.4

cor. 1.4 66% 1502 2576 9% 240 opt 11.5
dom. – – 113537 63535 – 0 inf% 32.8

0.9 A∗ 1.4 15% 49262 72656 – 244 17.3% 51.1
cor. 1.4 50% 7359 9176 31% 237 opt 15.1

dom. – – 113537 63535 – 0 inf% 33.1
0.5 log A∗ 1.5 7% 98184 213563 – 245 opt 93.8

cor. 1.5 66% 1618 2859 9% 245 opt 9.6
dom. – – 115757 65756 – 0 inf% 23.6

0.9 A∗ 1.5 11% 62959 111126 – 244 13.2% 58.2
cor. 1.5 61% 3714 4323 35% 244 opt 10.4

dom. – – 115757 65756 – 0 inf% 23.7
square200 40002 120200 8963 0.5 gen A∗ 1.5 15% 87822 165841 – 255 51.3% 89.1

cor. 1.5 31% 30301 50234 11% 255 opt 43.1
dom. – – 37691 21859 – 0 inf% 6.2

0.9 A∗ 1.5 27% 41607 73411 – 248 63.8% 51.4
cor. 1.5 21% 74965 97489 26% 244 29.6% 66.5

dom. – – 37691 21859 – 0 inf% 6.3
0.5 log A∗ 1.5 12% 162320 314837 – 257 34.9% 95.1

cor. 1.5 37% 29704 51436 8% 259 opt 31.0
dom. – – 42443 25028 – 0 inf% 5.0

0.9 A∗ 1.6 26% 60014 110224 – 257 61.2% 44.1
cor. 1.6 26% 71873 98473 22% 255 19.8% 44.8

dom. – – 42443 25028 – 0 inf% 5.0
long20 5122 15376 14701 0.5 gen A∗ 1.5 2% 115855 221722 – 395 67.0% 103.8

cor. 1.5 2% 62412 99413 12% 395 7.4% 90.0
dom. – – 140783 90781 – 0 inf% 17.9

0.9 A∗ 1.5 11% 19386 28782 – 388 76.2% 20.1
cor. 1.5 2% 97634 97996 49% 389 32.8% 88.8

dom. – – 140783 90781 – 0 inf% 17.9
0.5 log A∗ 1.5 2% 136045 262102 – 419 76.8% 103.0

cor. 1.5 3% 62843 99434 13% 419 13.1% 48.5
dom. – – 141587 91585 – 0 inf% 12.6

0.9 A∗ 1.5 8% 25125 40262 – 419 90.6% 21.8
cor. 1.5 3% 90920 98293 42% 413 47.0% 52.1

dom. – – 141587 91585 – 0 inf% 12.6
wide100 25602 78400 574 0.5 gen A∗ 1 65% 47 1692 – 21 opt 2.8

cor. 1 66% 37 1670 0% 21 opt 2.8
dom. – – 8631 2939 – 0 inf% 1.2

0.9 A∗ 1 65% 59 1715 – 19 opt 3.1
cor. 1 66% 50 1689 0% 19 opt 3.1

dom. – – 8538 2884 – 0 inf% 1.3
0.5 log A∗ 1 66% 67 1732 – 21 opt 2.7

cor. 1 66% 67 1732 0% 21 opt 2.7
dom. – – 8611 2886 – 0 inf% 1.1

0.9 A∗ 1 66% 87 1772 – 19 opt 2.8
cor. 1 66% 87 1772 0% 19 opt 2.8

dom. – – 8582 2872 – 0 inf% 1.2

Table 5.2 – STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM results with
independent and discrete distributions and constraints P

(∑
a∈P ξa > τ)≤ ρ0

89

Chapter 5. Applications to stochastic path problems

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

Figure 5.2 – Algorithms performances on the STOCHASTIC RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM problem using resource constraints P(· > τ) ≤ ρ0 and α = 0.5. Plain lines
correspond to generic distributions and dashed lines to truncated lognormal distributions

preprocessing time can be divide by a factor γ if we compute the lower bound separately for
the constraint and the cost. See Section 4.3.4 for more details. The number of paths extended
by the algorithm is much larger than in the deterministic case. Therefore, the preprocessing
takes a smaller proportion of the total time than in the non constrained case. Nonetheless, the
dominance test still enables to cut paths, as we can see in the proportion of paths cut by the
dominance test in the label correcting algorithm. This is the reason why the label correcting
algorithm performs better than the generalized A∗ algorithm: it solves faster the instances
solved to optimality, and lead to smaller gaps on instances that are not solved to optimality.

5.3 Scenario based distributions

In this section, we study the STOCHASTIC SHORTEST PATH PROBLEM under the additional
assumption that the random variables ξa belong to a probability space (Ω,F ,µ) with finiteΩ.

90

5.3. Scenario based distributions

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

dom.

102 103 104 105
10−2

10−1

100

101

102

103

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

Figure 5.3 – Algorithms performances on the STOCHASTIC RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM problem using probability constraints P(· > τ) ≤ ρ0 with α= 0.9. Plain lines
correspond to generic distributions and dashed lines to truncated lognormal distributions

5.3.1 Scenario lattice ordered monoid

As mentioned in the introduction of the chapter, when the set Ω of scenarios has finite
cardinal N , the set of real random variables onΩ endowed with the usual sum and scenario
by scenario order is a lattice ordered monoid whose operations + and ∧ can be computed
efficiently. Besides, all the probability functionals of interest we mentioned in the introduction
are isotone with respect to the almost sure order. Practically, each random variable ξ on this
space can be considered as a vector of RN whose i th coordinate is ξ(i) the value of under
scenario i .

5.3.2 Complexity of the problem with finite number of scenarios

In this section, we study the complexity of the STOCHASTIC SHORTEST PATH PROBLEM with
finiteΩwhen the probability functional ρ is fixed. We say that a random variable has 2-sample

91

Chapter 5. Applications to stochastic path problems

distributions ifΩ has two elements ω1 and ω2 and P(ω1) =P(ω2) = 1/2.

Theorem 5.6. Suppose that c is such that, for any realµ, there exists constantsα andβ such that
any random variable with 2-sample distribution and with expectation c0 satisfies c(αξ+β) >
c(αc0 +β) if ξ 6= c0. Then, unless P = N P , there is no polynomial algorithm that solves the
STOCHASTIC SHORTEST PATH PROBLEM with finiteΩ and cost function c.

The hypothesis on ρ is Theorem 5.6 is satisfied by most probability functionals of interest
different from the expectation of an affine function. For, instance, it is satisfied by c(·) =P(· > τ),
or by the expectation of any function strictly convex or concave on an interval. The next lemma
shows that it is satisfied for any risk measure different from the expectation.

Lemma 5.7. The hypothesis of Theorem 5.6 is satisfied by any risk measure different from the
expectation.

Proof. We start by proving the result for distortion functionals. Let ρ be a distortion functional
associated to distortion function σ. Let ξ be a non constant random variable with 2-sample
distributions. There exists c− and x+ such that x− < x+ and ξ= x− (resp. x+) with probability
1/2. We therefore have

ρ(X) = x−
(∫ 1/2

0
σ

)
+x+

(∫ 1

1/2
σ

)
.

By definition of distortion functionals,σ is non-decreasing and
∫ 1

0 σ= 1. The hypothesis that ρ
is not the expectation implies that σ is non-constant on]0,1[. As a consequence,

∫ 1/2
0 σ< 1/2,

which gives the result with α= 1 and β= 0.

We now extend the result to risk measures generated by a set of distortion functions S . Indeed,
the hypothesis that ρ is not the expectation implies that supσ∈S

∫ 1/2
0 σ< 1/2. Indeed, suppose

that supσ∈S

∫ 1/2
0 σ= 1/2, and consider a sequence of σn such that

∫ 1/2
0 σn →n 1/2. Then given

a random variable ξ such that |ξ| ≤ M , we obtain that |ρσn (ξ)−E(ξ)| ≤
(

1
2 −

∫ 1/2
0 σn

)
M , and

thus ρ(ξ) = E(ξ) for bounded random variables ξ. Using a converging sequence of bounded
distributions and the dominated convergence theorem, this enables to conclude that ρ is the
expectation for any integrable random variable. Theorem 2.1 then enables to conclude.

Our proof of Theorem 5.6 is an extension of the proof of N P -hardness of the robust shortest
path problem by [176].

Proof of Theorem 5.6. We reduce the STOCHASTIC SHORTEST PATH PROBLEM with finiteΩ to
the N P -complete 2-PARTITION PROBLEM [84]. The 2-PARTITION PROBLEM can be stated as
follows: given m integers ci indexed by i ∈ [m], is there a subset I of [m] such that

∑
i∈I ci =∑

i∈[m]\I ci ?

In the remaining of the proof, we reduce the 2-PARTITION PROBLEM to a STOCHASTIC SHORTEST

PATH PROBLEM instance with random variables on a probability spaceΩ= {ω1,ω2} with two
events. We use the notation (ξ1,ξ2) to define the random variable ξ such that ξ(ωi) = ξi for i
in {1,2}.

92

5.3. Scenario based distributions

Let α and β be the constants of the hypothesis for ρ and µ= 1
2

∑
i∈I ci . We build a digraph D

with a source vertex o, a sink vertex v , and for each i in I , two vertices vi ,1 and vi ,2. Digraph
D is illustrated on Figure 5.4. We build two arcs (o, v1,1) and (o, v1,2) with resource random
variable (β,β). For each i < m, we build two arcs (vi ,1, vi+1,1) and (vi ,1, vi+1,2) with random
variables α(ci ,0), and two arcs (vi ,2, vi+1,1) and (vi ,2, vi+1,2) with sample α(0,ci). Finally, we
build two arcs (vm,1,d) and (vm,2,d) with respective random variables α(cm ,0) and α(0,cm).

(β, β)

(β, β) (0, c1)

(cm, 0)

(0, cm)

o d

(0, c1)

(c1, 0)
(c1, 0)

Figure 5.4 – Partition problem reduction to a graph problem.

There is a bijection between subsets I ′ of I and o-d paths P , the o-d path corresponding to
a subset I ′ being the unique path PI ′ such that vi ,1 ∈ PI ′ if and only if i ∈ I ′, and vi ,2 ∈ PI ′

if and only if i ∈ I \I ′. Besides, the sample corresponding to path PI ′ is ξPI ′ = (α
∑

i∈I ′ ci +
β,α

∑
i∈I \I ′ ci +β). Using the hypothesis on ρ, we have ρ

(
ξPI ′

)≥ ρ
(
α
2

∑
i∈I ci +β

)
with equality

if and only if
∑

i∈I ′ ci =∑
i∈I \I ′ ci . Finally, there exists a solution to the 2-partition of I if and only

if the optimal solution of the OFFLINE SAMPLED SHORTEST PATH PROBLEM is ρ(α2
∑

i∈I ci +β),
which concludes the reduction and gives the theorem.

Remark 5.2. Note that Theorem 5.6 remains true even when there are only two scenarios,
the treewidth of D is non-greater than 2, and xa ≥ 0 for each arc a. Indeed, the STOCHASTIC

SHORTEST PATH PROBLEM instance built in the proof of Theorem 5.6 satisfies these assump-
tions.

Remark 5.3. Note that an analogue of Theorem 5.6 is true for the sampled minimum spanning
tree problem defined as follows: the input is identical to the one of the OFFLINE SAMPLED

SHORTEST PATH PROBLEM without an origin and a destination, and the output is a spanning
tree T with minimum ρN (

∑
a∈T ξ

N
a). The proof can be easily adapted to this new problem.

Indeed if arcs (vi ,1, vi ,2) with sample (0,0) are added to the graph for each i , then the set of
arcs composed of the arcs of an optimal path plus (vi ,1, vi ,2) for each i is a minimum spanning
tree.

5.3.3 Bounds and online problem

The bounds b†
v of Equation (4.8) also admit a natural interpretation in the scenario based

distributions: b†
v (ω) is the length of the shortest v-d path under scenario ω. As a consequence,

these bounds can be computed using a STANDARD SHORTEST PATH PROBLEM algorithm
scenario by scenario instead of the algorithms of Chapter 4.

Note that bounds bv can no more be interpreted as solution of the STOCHASTIC ON TIME

ARRIVAL PROBLEM, as it was the case for independent distributions in Proposition 5.5. Be-
sides, in the case of non-independent random variables on a finite |Ω|, the STOCHASTIC ON

TIME ARRIVAL PROBLEM is difficult to solve, as it belongs to the field of multistage stochastic

93

Chapter 5. Applications to stochastic path problems

programming [33, 143].

5.3.4 Convergence to the optimal solution of the initial problem

Consider the general STOCHASTIC SHORTEST PATH PROBLEM where ξa are random variables ξa

on a probability space (Ω,F ,P). Given N independent samples ξ1, . . . ,ξN of ξ, the Monte-Carlo
approximation of this problems consists in replacing µ by µ̂N , where

µ̂N =

N∑
i=1

δξi

N
, and δξi is the Dirac distribution in ξi .

As µ̂N lives on a probability space with N events, the resulting problem can be solved using
the lattice ordered monoid of Section 5.3 and the algorithms of Chapter 4. The remaining of
the section provides bounds on the error made when replacing µ by µ̂N . Such bounds enable
to choose by which factor we should increase N if we want to obtain a desired accuracy. In the
remaining of the section, we denote by P∗ an optimal solution of the STOCHASTIC SHORTEST

PATH PROBLEM with ξ having the initial distribution µ, and P̂ N an optimal solution with ξ

having distribution µ̂N . Given a path P , let ξP denote the sum
∑

a∈P ξa .

Under the assumption that µ admits a finite exponential moment, the following corollary
bounds the probability of large deviations of a solution of the Monte-Carlo approximation from
the optimal solution of the initial problem when the cost function is a version independent
risk measure or a probability.

Corollary 5.8. Suppose that there exists α> 1 and γ such that

εα,γ(µ) =
∫
Rd

eγ|x|
α

µ(d x) <∞,

then there exists C and C̃ in R+ depending only on |A|,α,γ, and εα,γ(µ) such that for all N ≥ 1
and all x > 0, we have

1. if c is a version independent risk measure generated by a set of distortion functions S ,
then

P
[

cµ
(
ξ

P̂ N

)
− cµ(ξP∗) > x

]
≤C exp

−C̃ N

 x

2
p|A| sup

σ∈S
‖σ‖∞


β
 ,

2. if c =P(· > τ) and µ has a support in ZA , then

P
[

cµ
(
ξ

P̂ N

)
− cµ(ξP∗) > x

]
≤C exp

(
−C̃ N

(
x

2
p|A|

)β)
,

3. and if c =P(· > τ) and ξP admits a density bounded by B for each path P, then

P
[

cµ
(
ξ

P̂ N

)
− cµ(ξP∗) > x

]
≤C exp

(
−C̃ N

(
x2

2B
p|A|

)β)
,

94

5.4. Numerical results for scenario based distributions

where β= |A| if x < 1 and α otherwise, and probability P is with respect to the sampling of µ̂N .

Proof. Given a path P with ` arcs, the application ξ 7→ ∑
a∈P ξa is

p
`-Lipschitz and thusp|A|-Lipschitz. Corollary 5.8 is then a direct application of Theorems 2.5 and 2.6 given

Theorem 2.4.

We now consider the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

Corollary 5.9. Let P̂ N be a solution of the STOCHASTIC RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM where ρµ(xP) ≤ 0 has been replaced by ρ
µ̂N (xP) ≤−t . Suppose that there exists

α> 1 and γ such that

εα,γ(µ) =
∫
Rd

eγ|x|
α

µ(d x) <∞,

then there exists C and C̃ in R+ depending only on |A|,α,γ, and εα,γ(µ) such that for all N ≥ 1
and all x > 0, we have

1. if c is a version independent risk measure generated by a set of distortion functions S ,
then

P
(
ρ(ξP N) > t

)≤C
(
exp

(−C̃ N (t/K)|A|
)

1t≤1 +exp
(−C̃ N (t/K)α

)
1t>1

)
,

where K =p|A| sup
σ∈S

‖σ‖∞
2. if c =P(· > τ) and µ has a support in ZA , then

P
(
ρ(ξP N) > t

)≤C

(
exp

(
−C̃ N

(
t/

√
|A|

)|A|)
1t≤1 +exp

(
−C̃ N

(
t/

√
|A|

)α)
1t>1

)
,

3. and if c =P(· > τ) and ξP admits a density bounded by B for each path P, then

P
(
ρ(ξP N) > t

)≤C
(
exp

(
−C̃ N

(
t 2/K

)|A|)
1t≤1 +exp

(
−C̃ N

(
t 2/K

)α)
1t>1

)
,

where K = 4
p|A|B.

Proof. Given a path P with ` arcs, the application ξ 7→∑
a∈P ξa is

p
`-Lipschitz and thus

p|A|-
Lipschitz. Corollary 5.8 is then a direct application of Theorem 2.7 given Theorem 2.4.

5.4 Numerical results for scenario based distributions

5.4.1 Instances and problem considered

This section tests the performance of the algorithms of Chapter 4 on the resolution of STOCHAS-
TIC SHORTEST PATH PROBLEM problems with scenario based distributions. We use again the
road, square grid, long grid, and wide grid digraphs of Section 4.3.1.

We want the scenario distributions on the different arcs to be samples of non-independent
random variables. We therefore suppose that the set of arc A is partitioned in a set cl(a)|a ∈ A
of clusters, each arc a belonging to a cluster cl(a). For each cluster cl (a), we suppose to have a
random variable ξcl

v , and for each arc a, we suppose to have an intrinsic random variable ξint
a .

95

Chapter 5. Applications to stochastic path problems

The random variables ξint
a and ξcl

v are supposed to be independent. We define the random
variable ξa of each arc a to be the sum

ξa = ξcl
cl(a) +ξint

a .

To build the clusters of arc, we start by building clusters of vertices as follows: we randomly
choose |V |/20 vertices in V to build a set Vo of vertices. We then affect each vertex v to the
nearest vertex clV(v) in Vo , nearest being with respect to the distance in the initial deterministic
graph. We build an additional cluster with all the vertices that are not reachable from any of the
vertices in Vo . Finally, we build clusters of arc by affecting each arc a = (u, v) to cl(a) = clV (v).
We obtain a partition of A into clusters {a|cl(a) = v} for each v in Vo .

We define each cluster random variable ξcl
v distribution to be a uniform distributions over

{0,1, . . . , tv }, where tv is randomly chosen between 3 and 10. For the random variable ξint
a , we

use the lognormal distributions of Section 5.2.1, both in their truncated and discretized version
and in their non-discretized and non-truncated versions. We build instances by sampling
N realizations of the cluster and instrinsic random variables. We have tested the algorithm
on instances with N in {10,100,1000}. We first provide detailed results for N = 100, and then
study the influence of N on algorithms performance is studied.

The stochastic path problems with scenario based distributions happen to be much more dif-
ficult that the one with independent distributions with finite support. We therefore focus only
on the STOCHASTIC SHORTEST PATH PROBLEM, as the STOCHASTIC RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM is not so well solved. For the STOCHASTIC SHORTEST PATH PROBLEM,
we use the conditional value at risk CVaRβ as cost function c, with β in {0.01,0.1}.

The generalized A∗, the label correcting, and the label dominance algorithms have been tested.
As in Chapter 4 numerical experiments, Theorems 4.7 and 4.8 ensure respectively that the
label correcting and the label dominance algorithm converge. Case (b) of Theorem 4.3 with
assumption (4.3) ensures the convergence of the generalized A∗ algorithm. In each of these
algorithms, we use the candidate paths mentioned in Section 4.3.3. We use our latticeRCSP
library described in Appendix C to solve the instances. The algorithms are not parallelized,
and the numerical experiments are performed on a Macbook Pro of 2012 with four 2.5 Ghz
processors and 4 Gb of ram. The maximum size of the candidate paths list L used is 5e+04
for the label correcting and the label dominance algorithms and 1e+05 for the generalized A∗

algorithm. Indeed, as label correcting and label dominance algorithms require to store non
dominated paths resources, less memory is available for L. Bounds are computed using the
generalized Dijkstra algorithm of Section 4.2.

5.4.2 Main results

Figure 5.5 provides the CPU time for instances solved to optimality on the different family of
instances for N = 100. Plain lines correspond to instances with truncated and discretized log-
normal distributions ξint

a , while dashed lines correspond to non-truncated and non-discretized
ξint

a . Table 5.3 provides detailed numerical results on some truncated and discretized instances,
while Table 5.4 provides results on some non-truncated lognormal distributions. The first

96

5.4. Numerical results for scenario based distributions

102 103 104 105
10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

road

A∗
cor.

dom.

102 103 104 105
10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid square

A∗
cor.

dom.

102 103 104 105
10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid long

A∗
cor.

102 103 104 105
10−3

10−2

10−1

100

101

102

Vertices

C
P

U
ti

m
e

grid wide

A∗
cor.

dom.

Figure 5.5 – Algorithms performances on stochastic shortest path problem using CVaRβ with
β= 0.01 as probability functional. Plain lines corresponds to discretized truncated lognormal
distributions, and dashed lines to non truncated and non discretized lognormal distributions.
None of the long grind instances could be solved by the label dominance algorithm.

column provides the instance name, the two next ones the number of vertices and the number
of arcs of the instance, the two next columns the parameter β of the probability function
CVaRβ used, and the next column the algorithm used. For this column, A∗ corresponds to
the generalized A∗ algorithm, cor. to the label correcting algorithm and dom. to the label
dominance algorithm. The two next columns provide the ratio γ of Remark 4.5 between the
number of extension by the generalized Dijkstra algorithm and the number of vertices, and the
proportion of time spent in the preprocessing. The three next columns provide the number of
paths extended by the enumeration algorithm, the number of paths cut, and the proportion
of paths cut by the dominance test when the label correcting algorithm is used. The column
` provides the number of arcs in the solution returned. The next column provide the gap
between the lower bound proved by the enumeration algorithm and the solution returned.
It has the mention opt when the instances is solved to optimality. Finally, the last column

97

Chapter 5. Applications to stochastic path problems

Instance |V | |A| β Alg. γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
road100 100000 258486 0.01 A∗ 1.082 59% 367 605 – 611 opt 2.06e+00

cor. 1.082 53% 367 605 0% 611 opt 2.17e+00
dom. – – 64766 40316 – 611 1729.7% 1.97e+00

0.1 A∗ 1.082 15% 310176 442115 – 611 opt 7.47e+00
cor. 1.082 43% 16453 29458 2% 611 opt 2.66e+00

dom. – – 65089 40560 – 611 1746.0% 1.97e+00
square100 10002 30100 0.01 A∗ 1.256 44% 4095 7813 – 131 opt 3.12e-01

cor. 1.256 44% 2934 5432 1% 131 opt 3.18e-01
dom. – – 33217 18844 – 122 497.4% 6.55e-01

0.1 A∗ 1.256 37% 7600 15255 – 132 opt 3.86e-01
cor. 1.256 36% 4912 9591 2% 132 opt 3.80e-01

dom. – – 32545 18396 – 134 509.0% 6.55e-01
long10 2562 7696 0.01 A∗ 1.189 0% 418031 836049 – 198 opt 8.86e+00

cor. 1.189 0% 50383 94494 0% 198 0.3% 7.34e+00
dom. – – 32710 18477 – 200 537.0% 7.52e-01

0.1 A∗ 1.189 5% 23942 37866 – 198 0.6% 5.96e-01
cor. 1.189 1% 35549 60327 1% 198 0.5% 3.98e+00

dom. – – 32656 18442 – 200 553.5% 7.62e-01
wide100 25602 78400 0.01 A∗ 1.125 60% 26 1641 – 21 opt 6.30e-01

cor. 1.125 59% 26 1641 0% 21 opt 6.08e-01
dom. – – 8157 2636 – 21 282.8% 4.27e-01

0.1 A∗ 1.125 60% 24 1635 – 19 opt 6.23e-01
cor. 1.125 59% 24 1635 0% 19 opt 6.17e-01

dom. – – 7957 2503 – 19 306.8% 4.37e-01

Table 5.3 – STOCHASTIC SHORTEST PATH PROBLEM results with truncated and discretized
lognormal distribution

provides the total CPU time.

We start the analysis with instances difficulty. By comparing Figure 5.5 with Figure 5.1, we can
see that the STOCHASTIC SHORTEST PATH PROBLEM with scenario based distributions is much
harder to solve than with independent discretized distributions. Besides, instances sampled
from truncated and discretized distributions are much easier to solve than those sampled
from non-truncated and non-discretized distributions. This increased difficulty comes from
the upper tail of the non-truncated lognormal distributions. The tail of a distributions has a
strong influence on the value of the CVaRβ. Concerning the performance of the algorithms,
when we compute the meet q ∧ q̃ of two scenario resources q and q̃ , the largest scenarios of
each resource disappear as it is larger than the one of the other resource. As a consequence,
the lower bounds provided by the approach of Section 4.2 are not tight on the largest scenarios,
and CVaRβ(q ∧ q̃) is not a tight lower bounds on CVaRβ(q) and CVaRβ(q̃).

We now come to the performance of the algorithms on the truncated and discretized distribu-
tions. We can see on Figure 5.5 that the label correcting and the generalized A∗ algorithm can
solve instances between one and two order of magnitude larger in term of number of vertices
than the label dominance algorithm. This performance can be understood by the fact that, as
we can see in Table 5.3, most paths are cut by the bound test and not by the label dominance

98

5.4. Numerical results for scenario based distributions

Instance |V | |A| β Alg. γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
road5 5000 15508 0.01 A∗ 1.618 71% 100 80 – 111 opt 1.28e-01

cor. 1.618 70% 100 80 0% 111 opt 1.35e-01
dom. – – 12553 5506 – 105 891.8% 3.93e-01

0.1 A∗ 1.618 35% 4217 412 – 105 13.3% 2.66e-01
cor. 1.618 24% 5613 1721 82% 107 7.2% 3.72e-01

dom. – – 12057 5378 – 95 399.9% 3.67e-01
square20 402 1220 0.01 A∗ 1.709 3% 8309 6281 – 26 21.7% 2.23e-01

cor. 1.709 13% 2164 2331 22% 25 opt 5.69e-02
dom. – – 22130 8936 – 25 19.8% 9.73e-01

0.1 A∗ 1.709 4% 6128 2131 – 26 16.0% 1.85e-01
cor. 1.709 5% 6700 10385 13% 26 opt 1.98e-01

dom. – – 12213 4446 – 26 77.2% 4.36e-01
long5 1282 3856 0.01 A∗ 1.784 14% 5806 1623 – 100 45.3% 2.05e-01

cor. 1.784 7% 8592 3017 69% 100 40.2% 3.74e-01
dom. – – 11833 4327 – 100 407.7% 4.41e-01

0.1 A∗ 1.784 14% 5209 428 – 102 33.9% 1.92e-01
cor. 1.784 9% 7195 1562 91% 102 30.7% 3.00e-01

dom. – – 10488 3651 – 102 526.3% 3.70e-01
wide100 25602 78400 0.01 A∗ 1.605 66% 644 2217 – 20 opt 7.62e-01

cor. 1.605 67% 583 2033 2% 20 opt 7.77e-01
dom. – – 13991 3934 – 20 91.7% 5.38e-01

0.1 A∗ 1.605 66% 370 1663 – 20 opt 7.76e-01
cor. 1.605 66% 357 1621 0% 20 opt 7.58e-01

dom. – – 7386 1668 – 20 216.4% 4.16e-01

Table 5.4 – STOCHASTIC SHORTEST PATH PROBLEM results with non truncated and non dis-
cretized lognormal distribution

99

Chapter 5. Applications to stochastic path problems

test. This phenomenon is the same as the one observed in Table 4.4: dominance becomes rare
when the dimension increases. As most discarded paths are discarded by the bound test, the
label correcting algorithm has almost the same performance as the generalized A∗ algorithm.

The same general observations on the relative performance of the algorithms can be done on
the non truncated and non discretized lognormal instances of Table 5.4: the label correcting
and the generalized A∗ algorithms are still much more efficient than the label dominance
algorithm. On hard instances, the bounds are less tight and the label correcting algorithms
exhibits better performance that the generalized A∗ algorithm.

5.4.3 Influence of the number of samples

We now study the influence of the number of scenarios on algorithms performance. We
therefore sample from the truncated and discretized lognormal distributions instances with
10, 100, and 1000 scenarios. Table 5.5 provide the results: it is the analogue of Table 5.3 with
an additional column N that indicates the number of scenarios of the instance. The instances
considered are slightly smaller than those considered in Table 5.3 as more scenarios require
more memory. Concering the bounding algorithms, we can see that the ratio γ or Remark 4.5
increases slowly with the number of scenarios: its performance remains good even on large
instances. We can evaluate the relative performance of the enumeration algorithms on the
same graphs with different number of scenarios by comparing the gap, the number of paths
extend, and the CPU time when the instances are solved to optimality. Concerning the number
of paths enumerated and the gap, we can see that the instances with 10 scenarios are easier
to solve, but that the instances with 100 and 1000 scenarios have almost the same difficulty.
As the complexity of the operators ⊕, ∧, and 6 is linear in the number of scenarios, if the
algorithm keeps the same performance, we expect the CPU time to scale linearly with the
number of scenarios. This is almost the case on the instance solved to optimality.

5.5 Bibliographical remarks

We provide here a literature review on the approaches to the different stochastic path problems
mentioned in this chapter. As the techniques presented in this chapter are versatile, more
complex resource constrained shortest path problems can be solved. If there are relatively few
approaches to the STOCHASTIC RESOURCE CONSTRAINED SHORTEST PATH PROBLEM consid-
ered in this chapter, many complex stochastic resource constrained shortest path problem
have been solved as subproblem of column generation approaches to stochastic problems.
For instance, the subproblem of the column generation approach to the STOCHASTIC CREW

PAIRING PROBLEM considered in Chapter 11 is an highly non-linear stochastic resource con-
strained shortest path problem. Approaches to airline operations taking into account delay
are indeed a source of stochastic resource constrained shortest path problems. We review
them in Chapter 11. But the field that probably gives rise to the widest range of stochastic
resource constrained shortest path problems is the one of stochastic traveling salesman and
vehicle routing problems. We therefore give a quick review on these problems at the end of
the section.

100

5.5. Bibliographical remarks

Instance |V | |A| β N Alg. γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
road20 20000 55180 0.01 10 A∗ 1.031 45% 470 892 – 247 opt 1.12e-01

cor. 1.031 48% 343 641 1% 247 opt 1.16e-01
dom. – – 74719 44215 – 247 67.5% 4.64e-01

100 A∗ 1.1 58% 1347 2657 – 244 opt 4.03e-01
cor. 1.1 61% 535 1087 1% 244 opt 3.76e-01

dom. – – 107536 57532 – 247 86.3% 1.75e+00
1000 A∗ 1.195 66% 1176 2288 – 240 opt 5.86e+00

cor. 1.195 70% 651 1282 1% 240 opt 5.62e+00
dom. – – 109724 59722 – 240 148.3% 1.99e+01

square50 2502 7550 0.01 10 A∗ 1.065 44% 29 96 – 73 opt 1.44e-02
cor. 1.065 43% 29 96 0% 73 opt 1.45e-02

dom. – – 80593 50410 – 73 36.6% 4.34e-01
100 A∗ 1.2 53% 455 944 – 62 opt 6.73e-02

cor. 1.2 53% 454 940 0% 62 opt 6.78e-02
dom. – – 39418 22961 – 62 143.2% 7.87e-01

1000 A∗ 1.376 55% 470 971 – 62 opt 8.64e-01
cor. 1.376 55% 451 931 0% 62 opt 8.54e-01

dom. – – 23587 12406 – 62 238.2% 5.25e+00
long10 2562 7696 0.01 10 A∗ 1.065 22% 2484 4928 – 198 opt 2.64e-02

cor. 1.065 30% 1271 2478 0% 198 opt 2.56e-02
dom. – – 79687 49795 – 196 185.1% 5.99e-01

100 A∗ 1.189 0% 418031 836049 – 198 opt 8.86e+00
cor. 1.189 0% 50383 94494 0% 198 0.3% 7.34e+00

dom. – – 32710 18477 – 200 537.0% 7.52e-01
1000 A∗ 1.364 7% 18603 27204 – 200 0.7% 7.01e+00

cor. 1.364 3% 20575 30890 0% 200 0.7% 1.48e+01
dom. – – 20455 10308 – 200 783.1% 5.90e+00

wide50 12802 39200 0.01 10 A∗ 1.041 46% 2 788 – 19 opt 9.70e-02
cor. 1.041 43% 2 788 0% 19 opt 9.39e-02

dom. – – 28610 16005 – 19 42.2% 2.13e-01
100 A∗ 1.131 61% 14 811 – 19 opt 2.94e-01

cor. 1.131 60% 14 811 0% 19 opt 3.00e-01
dom. – – 14395 6528 – 19 130.3% 3.94e-01

1000 A∗ 1.235 63% 14 807 – 19 opt 3.12e+00
cor. 1.235 64% 14 807 0% 19 opt 3.06e+00

dom. – – 11030 4285 – 19 159.8% 3.42e+00

Table 5.5 – Number of scenarios influence on stochastic shortest path problem with truncated
and discretized lognormal distributions

101

Chapter 5. Applications to stochastic path problems

5.5.1 Offline stochastic shortest path

Stochastic shortest path problems have been extensively studied since the seminal work of
Frank [81]. Models differ by the probability distributions used to model delay on arcs, and by
the probability functional optimized.

A first line of papers considers the probability of on time arrival. The objective is to find a path
maximizing the probability of on time arrival, or analogously, a path with minimum quantile
of given order. Approaches have been developed for both continuous [36, 81, 138, 139] and
discrete [129] distributions. Chen et al. [37] describe an efficient labeling algorithm to deal
with normal distributions on the arcs. This algorithm is not so far from our label correcting
algorithm applied with the lattice ordered monoid presented in Section 5.1.2 when restricted
to ρ(·) =P(· > τ).

A second line of papers defines a shortest path as a path minimizing the expectation of a
cost function [119]. Dynamic programming can be used when cost functions are affine or
exponential [65]. Murthy and Sarkar [132, 133] present an efficient labeling algorithm when
arc distributions are normal and cost functions are piecewise-linear and concave. Instead
of considering the expectation of a cost functions, other approaches search the path that
minimizes a positive linear combination of mean and variance [138, 139, 163].

Finally, Miller-Hooks and Mahmassani [126] suggest to use stochastic dominance to compare
paths. Algorithms to generate all non-dominated paths have also been proposed [126–128,
136, 137].

5.5.2 Online stochastic path problems

The online STOCHASTIC ON TIME ARRIVAL PROBLEM searches a policy which maximizes the
probability of arrival before a given thresholds [82, 83, 91]. As defined in Section 5.1.3, a
policy is an application which, given a vertex reached and the time it took to get to this
vertex, indicates the next arc to choose to maximize the probability on on time arrival at
destination. Fan and Nie [71] provide an algorithm for continuous distributions, and Nie and
Fan [135] provide a pseudo-polynomial algorithm for discrete distributions. Samaranayake
et al. [156] develop a faster algorithm for discrete distributions, and Sabran et al. [154] provide
pre-processing techniques to improve algorithm speed. Finally, Flajolet et al. [75] provide a
distributionally robust approach: a set of possible distributions is provided in input, and the
objective is to find an adaptive path thats minimizes the worst expectation of the cost function
over the set of possible distributions. They solve it using a dynamic programming approach.

5.5.3 Shortest path under probability constraint

Finally, the problem of finding a minimum cost path for deterministic arc costs under stochas-
tic resource constraints have been introduced in [109], and a solution algorithm based on
linear programming is derived.

102

5.5. Bibliographical remarks

5.5.4 Stochastic traveling salesman and vehicle routing problems

A wide range of stochastic versions of the traveling salesman and the vehicle routing problem
have been studied in the last decades. When such problems are solved by column gener-
ation, the pricing subproblem is a stochastic resource constrained shortest path problem.
Uncertainty in customer presence [99, 100], in demand [26, 27, 89, 164], and in travel time
[5, 35, 101, 103, 117, 123, 153, 166].

Most probability functionals considered in this chapter can be dealt with using the lattice
ordered monoid and the probability functionals presented in this chapter. Jaillet et al. [101]
propose a specific probability functional in the context of vehicle routing with uncertainty on
travel times, namely the Requirements Violation Index. This probability functional enables
to model “soft” time windows. Using the modeling technique provided for time windows in
Section 3.4.3 for interval constraints and the lattice ordered monoid provided in this section,
we can define a lattice ordered monoid such that the Requirements Violation Index is isotone
with respect to the lattice order. Nonetheless, the time needed to evaluate it on the resource of
one path is probably too large for our enumeration algorithms to be practically efficient in
solving resource constrained shortest path problem where the the Requirements Violation
Index intervenes in the definition of the feasibility function.

Finally, we underline that, in the context of vehicle routing problems, the graph is often com-
plete. In that case, the bounds provided by the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM algorithms are likely to be of poor quality. Thus, if we can model these prob-
lems within the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework, the
solution approach of Chapter 4 may not suit to the specific structure of these problems on
complete graphs.

103

6 State graphs to improve algorithm
convergence

The enumeration algorithms of Chapter 4 rely on two tests to cut paths: the dominance test,
and the lower-bound test, which we now restate. The dominance test uses a collection Mv of
resources of non-dominated v-d paths.

(Dom) If no path in Mv dominates P , then if P is feasible, remove from Mv all paths dominated
by P , add P to Mv , and extend P .

(Low) If ρ(qP ⊕bv) = 0 and c(qP ⊕bv)6 cU B
od , then extend P .

We mentioned in Chapters 4 and 5 that both tests become less efficient when the dimension
or the number of scenarios increases. Indeed, if resources belong to Rn endowed with its usual
order, a path qP dominates a resource qP̃ only if each each component of qP is smaller than
the corresponding component in qP̃ . As illustrated on Figure 6.1.(a) in the case of resources in
R2, only one component of qP greater than the corresponding component in qP̃ is sufficient
for P not to dominate P̃ . As a consequence, dominance becomes rare when the number of
components increases.

q2

q1

×qP

×qP̃

(a)
q2

q1

•∧
qP

×
×

×
×

×

(b)

Figure 6.1 – Dominance and lower bound tests when dimension increases. On Figure (b), each
symbol × corresponds to the resource of a v-d path.

Figure 6.1.(b) illustrates the problem with lower bounds when dimension increases. Indeed,
bound bv must be non greater than the resource of all the v-d paths P . As a consequence, we
have

bv 6
∧

P∈Pvd

qP where Pvd is the set of v-d paths.

105

Chapter 6. State graphs to improve algorithm convergence

If there are paths with very different resources in Pvd , bv can be much smaller than the
resource qP of each path P in Pvd .

The main message of this chapter is that this drawback of the lower bound test in large
dimension can be overcome by using several bounds instead of one. Indeed, Figure 6.2.(a)
shows that if paths in Pvd are partitioned into clusters of paths with similar resources, then
the meet of the resources of paths in the same cluster is a much tighter lower bound than the
meet of all the paths in Pvd illustrated on Figure 6.1.(b).

q2

q1

•

•

•

×
×

×
×

×

(a)
q2

q1

•b1

×
×

ω1 ω2

×•b2

×
×•b3

ω3

(b)

Figure 6.2 – Lower bounds on clusters of paths (a) and conditional lower bounds (b).

We can turn this idea into a test for the enumeration algorithms. Suppose that for each vertex
v , we have a set Bv of resources in R such that, for each v-d path P , there exists a resource
b ∈ Bv satisfying b 6 qP . We can formulate the following clustered lower bounds test.

(Clu) If there exists b in bv such that ρ(qP ⊕bv) = 0 and c(qP ⊕bv) ≤ cU B
od , then extend P .

Let bv be a lower bound that can be used in the single bounds test (Low). Then if the bound
set Bv is well chosen, then we have b > bv for each b ∈ Bv , and the number of paths extended
by the enumeration algorithms when using the clustered lower bounds test (Clu) is smaller
than the number of paths extended when using the single lower bound test (Low).

Proposition 6.1. Suppose that for each vertex, we have a set Bv of resources in R such that,
for each v-d path P, there exists a resource b ∈ Bv satisfying b 6 qP . Then Theorem 4.3 and
Theorem 4.7 on enumeration algorithms convergence remain true if the clustered lower bounds
test (Clu) is used instead of the single lower bound test (Low).

Proof. We only have to prove that a path P that does not satisfy the test is not the subpath
of an optimal o-d path. Let Q be a v-d path. There exists b ∈ Bv such that b 6 qQ , and thus
qP ⊕b 6 qP+Q . The fact that P does not satisfy the new test and the fact that ρ and c are
isotone imply that ρ(qP+Q) = 0 and c(qP+Q) ≤ copt.

od cannot be both satisfied, where copt.
od is the

cost of an optimal solution. P can therefore not be the subpath of an optimal path.

Figure 6.2.(b) shows another technique to compute lower bounds on the resources of paths
in subsets of Pvd . Here, we consider a STANDARD RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM such that the first component q1 of a resource q corresponds to its cost and the
second component is used to test feasibility. We suppose to have in input three costs ω1,ω2,

106

and ω3, and we consider lower bounds b1, b2, and b3 such that bi is a lower bound on the
resource of all v-d paths P whose cost q1

P is non greater thanωi . Then given an o-v path P and
its cost q1

P , then it is the subpath of an optimal path if and only if there exists a v-d path Q such
that q1

P +q1
Q < cU B

od and ρ(qP +qQ) = 0. As a consequence, given i such that ωi−1 < cU B
od ≤ωi ,

path P can be the subpath of an optimal path only if ρ(qP ⊕bi) = 0. This test is conditional to
the cost.

We now formalize this idea. We assume to have a weight morphismω from (R,⊕,6) to (R,+,≤)
such that there is no cycle C of negative weight

∑
a∈C ω(qa). As ω is a morphism, we have

ω(qP) =∑
a∈P ω(qa). Moreover, we assume to have a scalarωU B such thatω(qP) >ωU B implies

that P is not an optimal feasible path. Note that such a scalar always exists if the set of optimal
paths is finite, which is always the case if we consider only elementary paths. For each vertex v
in V , let nv be an integer, and ω1

v <ω2
v < . . . <ωnv

v <ωU B 6ω
nv+1
v =+∞ be a sequence of real

numbers such that ω1
v is the minimum weight of a v-d path, which is well defined because

there is no cycle of negative weight. Finally, for each vertex v , we suppose to have a set of
bounds b1

v , . . . ,bnv
v such that bi

v is a lower bound on the resource of any v-d path P such that
ω(qP) <ωi+1

v . We can now define the conditional lower bounds test.

(Con) If ρ(qP ⊕bi
v) = 0 and c(qP ⊕bk

v) ≤ cU B
od , where i is the minimum index such that ωi+1

v ≥
ωU B −ω(qP), then extend P .

If the ωi
v and the bi

v are well chosen, the conditional lower bounds test, the number of paths
extended by the conditional lower bounds test is smaller (Con) than the number of paths
extended by the single lower bound test (Low). Clustering and conditional lower bounds
have both their advantages. On the one hand, as illustrated on Figure 6.2, the clustered
lower bounds tend to be tighter than the conditional lower bounds when using the same
number of bounds. Besides, as it requires no morphism ω, the clustering approach applies to
a wider range of problems. On the other hand, during one clustered lower bounds test (Clu),
operator ⊕, and functions c and ρ are called |Bv | times, while they are called only once during
a conditional test (Con). Another advantage of the conditional lower bounds is that they can
be computed faster in a preprocessing, as we will see in this chapter.

Proposition 6.2. Let ωi
v and bi

v be defined as above. Then Theorem 4.3 and Theorem 4.7 on
enumeration algorithms convergence remain true if the conditional lower bounds test (Con) is
used instead of the single lower bound test (Low).

Proof. If path P is optimal, then ω(qP) ≤ωU B . As a consequence, if a path P is the subpath of
an optimal o-d path P +Q, then ω(Q) ≤ωU B −ω(qP). Therefore, if b′ is a lower bound on the
resources of the v-d paths Q such that ω(Q) ≤ωU B −ω(qP), then path P needs to be extended
only if ρ(qP ⊕b′) ≤ 0 and c(qP ⊕b′) ≤ cU B

od .

The objective of this chapter is to introduce standard procedures to compute the sets of bounds
used by the clustered lower bounds and conditional lower bounds tests. These procedures
use the bounding algorithms of Chapter 4 in a blown up version of the initial graph that we
call a state graph. Numerical experiments on the instances of Chapter 4 and Chapter 5 show
the increased performance of the enumeration algorithms of Chapter 4 using these new tests.

107

Chapter 6. State graphs to improve algorithm convergence

Chapter 9 shows that the clustered lower bounds test enables to solve faster the subproblem
of our column generation approach to the CREW PAIRING PROBLEM.

Chapter 6 is organized as follows.

• Section 6.1 introduces the notion of state graph, and shows that clustered sets of bound
can be obtained using the algorithms of Section 4.2 in a state graph.

• Section 6.2 provides a generic method to build state graphs relying on a clustering
subroutine.

• Section 6.3 gives a method to build a specific type of state graphs that enable to obtain
conditional lower bounds.

• Section 6.4 briefly compares the advantages of using clustered or conditional bound
tests.

• Section 6.5 shows the performances of the clustered and conditional lower bound tests
on the instances considered in the previous chapters.

6.1 Notion of state graph

A graph D = (V ,A) is a state graph on a graph D = (V , A) if there exists a surjective mapping
θ : V →V such that, first, given an arc (ϑ1,ϑ2), either (θ(ϑ1),θ(ϑ(2)) is an arc in A or θ(ϑ1) =
θ(ϑ2), and second, for each v-d path P in D, there exists at least one path π in D such that
θ(π) = P , where θ(π) is the path obtained by taking the images of the successive vertices ϑ in π
by θ, and removing two successive copies of the same vertex in the path. Vertices ϑ ∈ V and
arcs α ∈A of a state graph are respectively called state vertices and state arcs. For each vertex
v ∈V , we denote Vv the set θ−1(v) of state vertices of v . An example of state graph is plotted
on Figure 6.3.

State arc in π

o

v1

v2

v3

v4

d

D

o

v1

v2

v3

v4

d

D

Arc

Vertex

State arc

State vertex

Arc in θ(π)

Figure 6.3 – A path π is a state graph D on graph D and the corresponding path in D .

Note that there are two types of arcs (ϑ1,ϑ2) in a state graph: those such that (θ(ϑ1),θ(ϑ2))
is an arc in A, and those such that θ(ϑ1) = θ(ϑ2). We define the resource q(ϑ1,ϑ2) of an arc
(ϑ1,ϑ2) in the state graph D to be equal to the resource q(θ(ϑ1),θ(ϑ2)) of the corresponding arc
(θ(ϑ1),θ(ϑ2)) in the initial graph if θ(ϑ1) 6= θ(ϑ2), and to the neutral element 0 otherwise. With

108

6.2. Clustering state graphs

this definition, the resource of a path π in D is equal to the resource of the corresponding path
θ(π) in G .

The definitions of Section 4.2 can be used in D. We define
(
b`

∗
ϑ

)
by applying Equation (4.7) in

D, where d is replaced by the state vertex ϑ such that θ(ϑ) = d .

Lemma 6.3. Let D be a state graph on a graph D. Then for each v-d path P in D, we have

b`
∗

v 6 b`
∗
ϑ 6 qP

where ϑ ∈ Vv is the origin of a path π such that θ(π) = P.

Lemma 6.3 shows that the set of bounds Bv = {bϑ|ϑ ∈ Vv } satisfies the hypotheses of Proposi-
tion 6.1, and can thus be used in the the clustered lower bound test (Clu).

Proof. Let (bϑ)ϑ∈V be a solution of Equation (4.8) on D. Let P be a v-d path in D and π be a
path in D such that θ(π) = P . The origin ϑ of π satisfies θ(ϑ) = v . By Theorem 4.12, we have
bϑ6 qπ = qP , which gives the result.

6.2 Clustering state graphs

This section provides a standard procedure to build a state graph on a graph D, and thus to
obtain lower bounds for the clustered lower bound test through Lemma 6.3. For clarity, we
give a state graph building procedure that applies to acyclic digraphs D , and then extend it to
graph with cycles.

6.2.1 Clustering state graph for acyclic graphs

The quality of the bounds provided by a state graph are conditioned by the similarity of the
resources of the ϑ-ϑd paths. In this section we assume to have a clustering procedure cl which,
given a set S of m resources q1, . . . , qm and an integer κ < m returns a partition of S into κ

clusters S1, . . . ,Sκ such that two resources qi and q j in the same cluster are “similar”. Notions
of similarity leading to efficient clustering procedures and tight bounds in state graphs are
introduced in Section 6.2.3, and clustering algorithms are discussed in Section 6.2.4.

Let D be an acyclic digraph. We start by choosing a topological order v1, v2, . . . , vn on the
vertices V . In order to control the state graph size, we fix a maximum number κ of state
vertices on a given vertex. We inductively build a state graph D = (V ,A) on D as follows.
Initially, Vv is empty for each vertex v except the destination d = vn , and Vd is the singleton
{ϑd } with bϑd = 0. For k decreasing from n −1 to 1, repeat the following operations:

• Build a resource set S containing q(vk ,v) ⊕bϑ for each (vk , v) in δ+(vk) and ϑ ∈ Vv .
• Extract from S a set S′ by removing all resources q dominated by another resource q ′ in

S.
• If S′ has less than κ elements, add a state vertex ϑ(q) to Vvk with resource bϑ = q for each

element q in S′. Otherwise :

– Partition S′ into κ clusters (S1, . . . ,Sκ) using cl.

109

Chapter 6. State graphs to improve algorithm convergence

– Add a state vertex ϑ to Vvk for each cluster S j with resource bϑ =∧
q∈S j

q . Denote
ϑ(q) the state vertex of the cluster S j such that q ∈ S j

• For each (vk , v) in δ+(vk) and ϑ′ ∈ Vv such that q = q(vk ,v) ⊕bϑ′ ∈ S′, add to A a state arc
between ϑ(q) and ϑ′. For each (vk , v) in δ+(vk) and ϑ ∈ Vv such that q ∈ S′\S, add a state
arcs between ϑ(q ′) and ϑ′ where q ′ ∈ S′ dominates q .

Proposition 6.4. At the end of the algorithm, D is a state graph of D.

Proof. A straightforward induction shows that at the end of step k, the graph composed of the
already built vertices and arcs is a state graph on the subgraph of D induced by v1, . . . , vk .

6.2.2 Dealing with cycles

In this section, we now extend the algorithm of the previous section to graph with cycles but
no loop. The idea of the algorithm is to split the digraph into two acyclic digraphs, and to
apply the algorithm of the previous section in each acyclic digraph several times.

We therefore define three procedures: the extended clustering procedure which takes in input a
set S̃ of fixed resources q̃1, . . . , q̃k1 , a set of generic resources S and a number k2 of new clusters,
with |S| ≥ k2, and returns a partition of S̃ ∪S in k1 +k2 clusters Si such that for each i in [k1],
the fixed resource q̃i is in Si . The directed state building procedure, which is a generalization of
the algorithm of Section 6.2.1 that takes in input an acyclic partial graph (V , A′), a topological
ordering v1, . . . , vn of V , a maximum number of new state vertices per vertex κ, and a partially
built state graph (V ,A), and returns new state vertices and state arcs for the state graph taken
in input. This procedure calls the extended clustering procedure. Finally, the cyclic state graph
building procedure calls several times the directed state building procedure to build the state
graph. It takes in input a digraph D = (V , A), two positive integers κ1 and κ2, and a numbering
(iv)v of the vertices of V by distinct integers iv such that d = v|V |, and returns a state graph
with at most κ1 +κ2 state vertices per vertex of the initial graph.

The similarity measures and algorithms in Section 6.2.3 and Section 6.2.4 enable to build the
extended clustering procedure cl′. We start with the cyclic state graph building procedure, and
then detail the directed state building procedure.

We now suppose to have the directed state building procedure and expose the cyclic state
graph building procedure. The successive phases of this procedure are illustrated in different
colors on Figure 6.4. Let D = (V , A), κ1, κ2, (iv)v be the input of the procedure. Let A1 to be the
set of arcs (u, v) such that iu < iv and A2 the set of arcs (u, v) such that iv < iu . Sets A1 and A2

form a partition of A such that both (V , A1) and (V , A2) are acyclic graphs, and the numbering
(iv)v induces a topological ordering on (V , A1) and a reverse topological ordering on (V , A2).
We can now expose the procedure.

• Initialize Aa to ; for each arc a in A. Initialize Vd to the singleton {ϑ} with bϑ = 0, and
Vv to the empty set for v 6= d .

• First phase: run the directed state building procedure on (V , A1) with the ordering
induced by (iv)v , κ= κ1, Vv and Aa as input. Update (V ,A) with the newly built state
vertices and arcs.

110

6.2. Clustering state graphs

o

v1

v2

v3

v4

d

D

o

v1

v2

v3

v4

d

D

Vertex

A2

A1 State arc State vertexFirst phase

State arc State vertexSecond phase

State arcThird phase

Figure 6.4 – Cluster state graph building on a graph with cycle κ1 = 2 and κ2 = 1

• Second phase: run the directed state building procedure on (V , A2) with the reversed
ordering induced by (iv)v , κ = κ2, Vv and Aa as input. Update (V ,A) with the newly
built state vertices and arcs.

• Third phase: run the directed state building procedure on (V , A1) with the reversed
ordering induced by (iv)v , κ= 0, Vv and Aa as input. Update (V ,A) with the newly built
state arcs.

We can now focus on the directed state building procedure. This is an analogue of the procedure
of Section 6.2.1 where some state vertices already exist at the beginning of the procedure. We
also monitor which state vertex has been extended along which arc. Let (V , A′), the ordering
v1, . . . , vn , maximum size κ, and partialbuilt state graph (V ,A) be the input of the procedure.
For k decreasing from n to 1, repeat the following operations.

• Build a resource set S containing qa ⊕bϑ for each a = (vk , v) in δ+(vk) and ϑ ∈ Vv such
that there is no arc ending in ϑ in Aa .

• Extract from S a set S′ by removing all resources q dominated by another resource q ′ in
S or by a resource in Vv .

• If S′ has less than κ elements, add a state vertex ϑ(q) to Vvk with resource bϑ = q for each
element q in S′. Otherwise :

– Call cl′ with {bϑ|ϑ ∈ Vv } as set of fixed resources, S′ as set of generic resources, and
κ as maximum number of new vertices. Let (S1, . . . ,Sκ) be the new clusters built.

– For each ϑ in Vv , update bϑ to the meet of the resources in their cluster.
– Add a state vertex ϑ to Vvk for each cluster S j with resource bϑ =∧

q∈S j
q . Denote

ϑ(q) the state vertex of the cluster S j such that q ∈ S j

• For each A = (vk , v) in δ+(vk) and ϑ′ ∈ Vv such that q = q(vk ,v) ⊕bϑ′ ∈ S′, add to Aa a
state arc between ϑ(q) and ϑ′. For each (vk , v) in δ+(vk) and ϑ ∈ Vv such that q ∈ S′\S,
add a state arc between ϑ(q ′) and ϑ′ where qϑ′ dominates q . Such a ϑ′ always exist by
definition of S′.

111

Chapter 6. State graphs to improve algorithm convergence

When Vv and Aa are initially empty, the directed state building procedure coincides with the
algorithm of Section 6.2.1.

Proposition 6.5. At the end of the cyclic state graph building procedure, D = (V ,A) is a state
graph on D.

The quality of the bounds obtained depends on the numbering (iv)v chosen. On the examples
dealt with in this dissertation, we obtained good lower bounds by choosing a numbering as
follows: we define a mapping f from R to R∗+ that “averages the different components of
the resource” and run a depth first search starting from d and with arc weights f (qa). The
processing order of the vertices gives the numbering. Using this technique, arcs in A1 are more
susceptible to be on an optimal path, as they “are in the direction of d”. We therefore suggest
to use a κ1 larger than κ2. In this dissertation, given a maximum number of state per vertices
κ, we use κ1 = 3κ/5 and κ2 = 2κ/5.

Proof of Proposition 6.5. Using a straightforward induction on the length of paths P , the exis-
tence of a path π such that θ(π) = P follows directly from the fact that, for any state vertex ϑ in
Vv and arc a in δ−(v), there is a state arc α in Aa ending in ϑ.

Remark 6.1. Note that in contrast with the acyclic case, and due to the third phase where no
additional states are added, the (bv)v obtained do not necessarily satisfy Equation (4.8) at the
end. Thus, Equation (4.8) needs to be solved on the state graph to obtain the lower bounds.

6.2.3 Choice of similarity measure for clustering

We use in Section 6.2 a clustering procedure to build a clustering state graph. The clustering
procedure takes in input a set S of m resources, returns a partition of S in κ clusters S1, . . . ,Sκ
such that two resources qi and q j in the same cluster are “similar”. There is some latitude
in the choice of this clustering procedure, because the validity of the state graph built does
not depend on the partition returned. Nonetheless, a good clustering choice leads to better
bounds. The design of such a clustering procedure is in two steps: first, we explain how to
choose a similarity measure for partitions that leads to good partitions when minimized, and
second we explain how to choose an algorithm to minimize such a measure.

Remark 6.2. Note that in the case of graph with cycles, some resources are already assigned
to some clusters. Nonetheless, the procedures presented in the remaining of the section are
straightforwardly generalized to that case.

Measures based on similarity

A first option is to build clusters of “similar resources”. We suppose to have a non negative
function d(q, q̃) that measures the similarity between two resources. The smaller d(q, q̃), the
more similar are q and q̃ . Function d is defined specifically for the lattice ordered monoid.
When R =Rn , taking the L1 or L2 distances are standard choices for d . One first choice is to

112

6.2. Clustering state graphs

minimize the sum of the distances of resources to their clusters meet.

κ∑
k=1

∑
q∈Sk

d

(
q,

∧
q̃∈SK

q̃

)
(6.1)

An alternative is to minimize the maximum distance of a resource to its cluster meet.

κ
max
k=1

max
q∈Sk

d

(
q,

∧
q̃∈SK

q̃

)
(6.2)

The measure of Equation (6.1) gives the same weight to each input resources while the measure
of Equation (6.2) produces clusters of similar diameter. Both measures give bounds of similar
quality in practice. On the contrary, the following measure must be avoided.

κ∑
k=1

max
q∈Sk

d

(
q,

∧
q̃∈SK

q̃

)

This measure is easier to minimize – it can be minimized in polynomial time for resource in a
totally ordered set. But it leads to a partition of bad quality. Indeed, it tends to produce one
large cluster and k −1 very small clusters.

Measures based on bounds size

As good lower bounds are “as large as possible”, an alternative option is maximize the lower
bounds resources size. Let µ be an isotone mapping from R to R. Maximizing the following
measures produces good results when resources are random variables.

κ∑
k=1

µ

(∧
ρ∈Sk

ρ

)
(6.3)

6.2.4 Clustering algorithm

We now consider heuristic algorithms to find a partition of S that minimizes one of the
measures of Equations (6.1) and (6.2), or to maximize the one of Equation (6.3). We tested
a local search metaheuristic, and an adapted version of the k-means clustering algorithm
[118, 121], which is popular in the Machine Learning community.

Our local search relies on two neighborhoods, explored with equal probability. Two partitions
are neighbors in the swap neighborhood if the second partition can be obtained from the first
partition by exchanging the clusters of two elements. They are neighbors in the add-remove
neighborhood if the second partition can be obtained from the first by moving one element
from one cluster to another. Neighborhoods are searched randomly, and we use a simulated
annealing criterion to decide if a move is accepted. The temperature is initially set to one and
updated geometrically.

113

Chapter 6. State graphs to improve algorithm convergence

The adapted k-means clustering algorithm starts with an arbitrary partition and repeats the
two following steps while the partition is modified during the second step.

• Compute the meet mk of each cluster Sk .
• Affect each resource q in S to the cluster Sk with minimum d(q,mk .

This difference between this algorithm and the usual k-means clustering algorithm are that
resources are elements of a lattice instead of being vectors, and that the barycenter operator is
replaced here by the meet operator.

On the different problems on which we used state graphs, we obtained faster convergence
and better solutions using the simulated annealing.

Remark 6.3. The cluster of some resources can be fixed in these algorithms, and they can
therefore be used as the clustering procedure cl′ of Section 6.2.2.

6.3 Conditional state graphs

In this section, we explain how to build the bounds used by the conditional lower bounds test.
We therefore assume that we have a weight morphism ω from (R,⊕,6) to (R,+,≤) such that
there is no cycle C of negative weight

∑
a∈C ω(qa). In Section 6.3.1, we first suppose to have the

thresholds ω1
v <ω2

v < . . . <ω
nv
v <ωU B 6ω

nv+1
v =+∞ and show how, using these thresholds,

we can build a state graphs leading to bounds bi
v satisfying the desired properties. We then

explain in Section 6.3.1 how to choose these thresholds. We denote ωa the resource ω(qa) of
an arc a, and ωP the resource ω(qP) of a path P .

6.3.1 Conditional state graph

For each vertex v in V , let nv be an integer, and ω1
v <ω2

v < . . . <ωnv
v <ωU B 6ω

nv+1
v =+∞ be a

sequence of real numbers such that ω1
v is the minimum weight of a v-d path, which is well

defined because there is no cycle of negative weight. We build a state graph D associated to ω
and

(
ωk

v

)
as follows.

• For each vertex v and weight ωk
v , we build a state vertex denoted ϑk

v . Thus Vv = {ϑk
v : k =

1, . . . ,nv }
• For each vertex v and index k ∈ {1, . . . ,nv−1}, we build arcs (ϑk+1

v ,ϑk
v)

• For each arc (u, v) ∈ A and index j ≤ nv , we build a state arc (ϑi
u ,ϑ j

v) where i is such that
ωi

u ≤ω(u,v) +ω j
v <ωi+1

u .

The definitions ofω1
u andωnu+1

u =+∞ ensure the existence of such a j . Indeed, asω1
v (resp. ω1

u)
is the minimum weight of a v-d path (resp. a u-d path), we necessarily haveω1

u ≤ω(u,v)+ω1
v ≤

ω(u,v) +ω j
v for all j .

Proposition 6.6. The digraph D = (V ,A) built as above is a state graph on D.

Proof. The mapping θ is defined through sets Vv for each vertex v . A straightforward induction
on the length of paths shows that for each path P in D , there exists a path π such that θ(π) =
P .

114

6.3. Conditional state graphs

Lemma 6.7. Let D = (V ,A) be built as above. Then D is a state graph on D, and for each v-d
path P such that ω(qP) <ωk+1

v , we have

b`
∗

ϑk
v
6 qP ,

where z`
∗

ϑk
v

and `∗ are defined as in Section 4.2.

Lemma 6.7 implies that the bounds bk
v = b`

∗

ϑk
v

can be used for the conditional lower bound test.

Proof. An induction on the length of the paths enables to prove that for each v-d path P
of weight ωP < ωk+1

v , there exists a path π in D from ϑk
v to ϑ1

d . Theorem 4.12 enables to
conclude.

Remark 6.4. Note that as D is a state graph, Lemma 6.3 ensures that the b`
∗

ϑk
v

can also be used

in the clustered lower bound test. Nonetheless, using them for the conditional lower bound
test enables to reduce the number operations ⊕, c, and ρ performed, and thus to reduce the
computation time.

Two heuristic choices of (ωk
v)

It remains to explain how the thresholds ωk
v can be judiciously chosen. Recall that ω1

v denotes
the minimum weight of a v-d path. Let ωLB

v denote the minimum weight of an o-v path. The
weights ω1

v and ωLB
v can be computed for each vertex v using a Dijkstra like algorithm as they

are solution of a deterministic STANDARD SHORTEST PATH PROBLEM. Upper bound ωU B is
then initialized. A default choice is ω(

∑
a∈A qa), but a better choice can be done in practice.

For instance, when ω is the cost function c, the cost of a feasible path found heuristically can
be used. A v-d path Q such that ω(Q) >ωU B −ωLB

v cannot lead to a feasible path of weight
smaller than ωU B . As a consequence, the thresholds must be chosen in [ω1

v ,ωU B −ωLB
v]. We

know present two methods to choose thresholds in this interval.

A first approach consists in arbitrarily choosing nv and setting ωk
v = (nv−k)ωLB

v +(k−1)ωU B
v

nv−1 .

The parameter nk enables to choose a tradeoff between the quality of the bounds on the one
hand, and the memory required to store them and the time required to compute a solution
of Equation (4.8) on D on the other hand. The limit of this method is that in the resulting
conditional state graph, there may be paths π from ϑk

v to the destination such that ω(qπ) is
much greater than ωk

v . In this case, the lower bounds provided by Lemma 6.7 are of poor
quality. The next method consists in controlling the weight of paths from ϑk

v to the destination
via a parameter ∆.

A second approach consists in fixing a gap ∆ and choosing thresholds ωk
v such that for each arc

(u, v) and weightω j
v on vertex v, there exists a weightωi

u on vertex u such thatωi
u ≤ω(u,v)+ω j

v ≤
ωi

u +∆.

115

Chapter 6. State graphs to improve algorithm convergence

Elementary computations enable to show that in this case, if there exists a path π from ϑk
v to

destination, then ω(qP)−ωk
v ≤ `(P)∆where P = θ(π) and `(P) is the length of P .

We now provide an algorithm that enables to build such thresholds. For each vertex v , a set Fv

of final weights, a current bound bv equal to the largest weight in Fv , a set Uv of candidate
weights, and a current weight ωv equal to the smallest weight in Uv are updated during the
algorithm. A queue L of vertices to be updated is maintained. Current weight ωv is initially
set to +∞ and current bound bv to −∞, and sets Fv and Uv are initially empty for each vertex
v 6= d , while ωd = 0, Fd =;, and Ud = {0}. Initially, queue L contains only d . The algorithm
ends when L is empty. While L is not empty, the following operations are repeated:

• Extract from L a vertex v of minimum ωv .
• Add ωv to Fv and set bv =ωv .
• Extend ωv : For each arcs (u, v) ∈ δ−(v), if bv +∆<ω(u,v) +ωv <ωU B −πu , then

– Add ω(u,v) +ωv to Uu .
– If ω(u,v) +ωv <ωu , set ωu =ω(u,v) +ωv .
– Add u to L.

• Remove from Uv all elements non greater than bv +∆.
• Set ωv = minUv if Uv 6= ;. Otherwise, set ωv =+∞.

Proposition 6.8. If ωa ≥ 0 for each arc a, the algorithm terminates after at most |V |
⌈
ωU B

∆

⌉
iterations. At the end of the algorithm, for each arc (u, v) and weight ω j

v in Fv , there exists a
weight ωi

u in Fu such that ωi
u ≤ω(u, v)+ω j

v ≤ωi
u +∆.

Proof. The following invariants remain true along the algorithm: the current weight ωv of
the current vertex increases during the algorithm, and the weights in Uu for each vertex u are
greater than ωv . Besides, the difference between the value of ωv at successive visits of v is
greater than ∆.

It remains to explain how to choose ∆. Indeed, the choice of ∆ determines the accuracy of the
conditional state graph. Therefore, if ∆ is chosen too large, the bounds built are not precise
and the label algorithm will not discard paths efficiently. On the contrary, if ∆ is chosen too
small, the conditional graph will be too large, which increases the length of the bounding
phase and the memory consumed to store the bounds. Paths whose cost diverges by ∆ are
approximated by the same bound. We suggest to use as ∆ the average weight of an arc, as it is
of the order of magnitude of the difference between two paths.

Remark 6.5. A simple idea to choose ∆more accurately is the following: use the minimum
quality bounds among those that enable the generalized A∗ algorithm to ends in a reasonable
time. In the conditional graph approach, bounds quality is selected through parameter ∆.
Besides, the limiting criterion for the generalized A∗ algorithm is memory consumed, which
can be controlled by fixing the label queue L maximum size. ∆ is then chosen by binary search.
This approach is useful when several resource constrained shortest path problems on the
same graph are solved, as it is the case for instance in the context of column generation.

116

6.4. Conditional versus clustered lower bounds

6.4 Conditional versus clustered lower bounds

We now outline the pros and the cons of the clustered and the conditional lower bound tests.

The main advantage of the clustered lower bound test is its flexibility. Indeed, as we have seen
in Section 6.2.3, we only need to define a similarity measure between pairs of resources, which
can easily be done in a wide range of contexts. Besides, when the path problem considered is
the subproblem of a column generation approach, the only differences between the problems
solved at different iterations is the reduced cost. Thus, if we define a similarity measure
between resources that do not take into account this reduced cost, a clustering state graph can
be computed once and for all before the column generation, and accelerate the resolution of
the subproblem at all steps of the column generation. The main disadvantage of a clustering
state graph is that it can be long to compute, as the clustering procedure has to be called
several times along the construction of the state graph.

Conditional state graphs have three main advantages. First, they can be built faster than
clustering state graph as they do not call the time consuming clustering procedure. Second,
the bound produced tend to be of better quality. And third, the conditional lower bounds test
on a path P call only once the operator ⊕ when the clustered lower bound tests, which call
it O(|Vv |) where v is the destination of P . As a consequence, conditional state graphs tend to
lead to smaller computations times than clustering state graphs when both are available. Their
disadvantage are that they are less versatile than a clustering state graph, as a morphism ω is
required. When such a morphism is available and only one instance of a resource constrained
shortest path problem is solved, a conditional state graph is probably a better choice than a
clustering state graph.

6.5 Numerical results

We use our latticeRCSP library described in Appendix C to solve the instances. State graphs
enable to improve algorithm performances in two ways. On instances that can be solved using
the generalized A∗ or the label correcting algorithm but after a large CPU time, if most of the
CPU time is spent in the enumeration algorithm and not in the bounding algorithm, then a
state graph can enable to reduce the number of paths enumerated and thus the CPU time.
On difficult instances that cannot be solved using the generalized A∗ or the label correcting
algorithm, a state graph can enable to reduce the gap between the lower bound and the best
path found or even to break the instances.

Besides, for a state graph to be efficient, it often has to be much larger than the initial graph.
A good order of magnitude is 100 times larger. As a consequence, the initial instance must
not be too large, otherwise the state graph bounds cannot be stored in memory. We therefore
focus on small but difficult instances. Section 6.5.1 benchmarks the relative performance of
the conditional and clustering state graphs on the deterministic resource constrained shortest
path problem with ten constraints of Section 4.3.6. Section 6.5.2 gives the performance of
clustering state graphs on difficult instances of the STOCHASTIC SHORTEST PATH PROBLEM

with scenario distributions considered in Section 5.4.

All instances considered in this section are difficult instances that cannot be solved to optimal-

117

Chapter 6. State graphs to improve algorithm convergence

ity using the standard label correcting or generalized A∗ algorithms. Besides, all the instances
considered in this section have cycles. Due to the “artificial” choice of a topological order
in the construction of clustering state graph on graphs with cycles, clustering state graphs
tend to perform better on acyclic digraphs. In Chapter 9, we use the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM algorithms to solve the subproblem of a column
generation approach to the CREW PAIRING PROBLEM. Section 9.3.3 shows that the use of a
clustering state graph enables to divide by three the total computation time of the column
generation.

6.5.1 Resource constrained shortest path with ten constraints

In this section, we consider instances of the deterministic resource constrained shortest path
problem of Section 4.3. As we already mentioned at the beginning of the section, to use a
state graph, an instances must be not to large, as otherwise the lower bounds cannot be
stored in memory. We can see in Table 4.4 that the long5 and square50 instances satisfy these
requirements: both have fewer than 3000 vertices and cannot be solved to optimality without
state graphs. We use a simulated annealing metaheuristic to minimize objective function (6.1)
with the L1 distance between the vector of resources as d .

Table 6.1 provides the results of a clustering state graph approach to these instances. The first
column provides the name of the instances, the second one the strength α of the constraint
defined in Equation (4.12). The three next columns concern the state graph. Column κ

provides the maximum number of state vertices per vertex provides in the cyclic state graph
building algorithms of Section 6.2.2: we use κ1 = 0.6κ and κ2 = 0.4κ. The columns |V | and |A |
provide the number of vertices and the number of arcs of the state graph. When these three
line have the symbol –, it means that no state graphs is used. The next column provides the
ratio γ of Remark 4.5 which indicates the performance of the generalized Dijkstra algorithm
in the state graph. The column Prep. provides the percentage of the total CPU time spent
building the state graph and running the generalized Dijkstra algorithm. The three next
columns provide the number of paths extended, the number of paths cut, and the percentage
of paths cut by the dominance test in the case of the label correcting algorithms. The next
column provides the number of arcs in the solution returned. The gap column provides the
gap between the lower bound proved and the best solution found, or the mention opt. if
the instance is solved to optimality. The last column provides and the total CPU time. Due
to the storage of paths as string in the implementation, the maximum size of the list L that
can be kept in memory depends on the number of arcs in the paths stored. Besides, label
correcting algorithms require to store non-dominated paths. As a consequence, we use a
different maximum size for the different instances and algorithms. We remark that this is a
pro of the A∗ algorithm when compared to the label correcting algorithm: more paths can be
considered. This maximum size is indicated in the table caption.

We first remark that larger clustering state graphs always lead to better results as they enable
to reduce the gap. Nonetheless, this has a cost in term in of CPU time, as the construction
and the bounding algorithm takes time in large state graphs, and then each path test is longer.
Another less intuitive fact is that, when the instance is not solved to optimality, larger state

118

6.5. Numerical results

Instance α Alg. κ |V | |A | γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
long5 0.5 cor. – – – 2.2 0% 230537 130784 50% 81 60.8% 7.61e+00

20 22070 46467 1.7 17% 190559 88647 52% 81 55.9% 1.17e+01
100 104918 200221 1.8 22% 187568 83110 55% 81 53.3% 2.54e+01
500 482804 835597 1.8 35% 190368 85960 55% 81 49.5% 9.85e+01

A∗ – – – 2.2 0% 1424776 849563 – 81 64.4% 9.49e+00
20 22074 46556 1.8 6% 1276845 553700 – 81 57.9% 3.45e+01

100 104825 199510 1.8 5% 1218043 436097 – 81 54.5% 1.09e+02
500 483331 836135 1.8 7% 1165819 331651 – 81 51.7% 4.35e+02

square50 0.5 cor. – – – 2.2 0% 350553 273819 42% 52 44.9% 1.15e+01
20 41169 86311 1.7 23% 299643 207262 46% 52 36.5% 1.64e+01

100 186078 358864 1.9 30% 285296 203651 41% 52 35.4% 3.32e+01
500 820474 1436213 1.9 47% 307779 231886 40% 52 31.6% 1.22e+02

A∗ – – – 2.2 0% 9954128 11908301 – 52 44.9% 5.93e+01
20 41131 86819 1.7 2% 8425382 8850810 – 52 34.9% 1.61e+02

100 185809 359191 1.8 2% 8146176 8292398 – 52 33.8% 4.73e+02
500 821845 1438573 1.9 3% 9374152 10748349 – 52 27.9% 1.71e+03

Table 6.1 – Results of clustering state graph approach on resource constrained shortest path
with ten constraints and α= 0.5. List L maximum size is 2e+05 for label correcting algorithm
and 2e+06 for A∗ algorithm on instance long5, and 8e+06 for A∗ algorithm on instance square50

graphs can increase the number of paths extended. Indeed, they enable to discard more paths,
and more paths can be extended before the list L reaches its maximum size.

For the conditional state graphs, we use the cost c(q) as the morphism to R. Table 6.2 is the
analogue of Table 6.1 for conditional state graph. The only difference is that the parameter
that control the state graph size is no more κ but ∆, the minimum difference between two
state vertices costs. The smaller ∆, the larger the state graph.

Again, we observe that the larger the conditional state graphs, the better the result in terms
of gap proved. A less intuitive fact is that the ratio of the paths cut divided by the number
of paths extended can decrease for instance not solved to optimality. We can explain this
phenomenon by the fact that larger state graphs mean better keys, which means that fewer
paths that have to be cut are generated at the beginning of the algorithm. When an instance is
solved to optimality, this is of course not true at the end of the algorithm, where paths have to
be cut to empty list L. We also note that for large conditional state graph, γ is equal to 1. This
comes from the fact that is arc costs are positive and ∆ is sufficiently small, the conditional
state graphs are acyclic.

Table 6.1 and Table 6.2 confirm empirically our statement of Section 6.4 that conditional state
graphs give better performance than clustering state graphs when both are available.

Conditional state graphs also enable to improve algorithm performances on instances with
only one constraint. The difference with the ten constraints case is that there are few difficult
instances of size sufficiently small for a state graph to be computed. We can see in Table 4.3
that the long20 is the only small instance that is not solved to optimality. Table 6.3 provides
results with conditional state graphs of different sizes on this instance. The columns of this

119

Chapter 6. State graphs to improve algorithm convergence

Instance α Alg. ∆ |V | |A | γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
long5 0.5 cor. – – – 2.2 0% 230537 130784 50% 81 60.8% 7.61e+00

100 23558 91384 2.2 6% 167283 50956 82% 81 60.0% 4.91e+00
10 213567 838389 2.6 41% 137348 24950 100% 81 32.2% 8.14e+00

1 1172386 4608057 1 73% 133873 22655 100% 81 29.2% 2.05e+01
A∗ – – – 2.2 0% 1424776 849563 – 81 64.4% 9.49e+00

100 23558 91384 2.2 2% 1011810 23631 – 81 62.3% 1.41e+01
10 213567 838389 2.6 16% 1000137 285 – 81 31.0% 2.32e+01

1 1172386 4608057 1 37% 1000309 629 – 81 27.8% 4.07e+01
square50 0.5 cor. – – – 2.2 0% 350553 273819 42% 52 44.9% 1.15e+01

100 24370 92087 2.2 6% 217971 100571 67% 52 41.1% 5.61e+00
10 214156 826929 2.5 41% 158700 57177 53% 52 15.1% 8.85e+00

1 1180357 4568978 1 73% 165658 71086 42% 52 12.3% 2.24e+01
A∗ – – – 2.2 0% 9954128 11908301 – 52 44.9% 5.93e+01

100 24370 92087 2.2 1% 4627965 1255974 – 52 40.2% 5.96e+01
10 214156 826929 2.5 3% 6772542 5545130 – 52 7.5% 1.11e+02

1 1180357 4568978 1 3% 30098520 60197088 – 52 opt 4.73e+02

Table 6.2 – Results of conditional state graph approach on resource constrained shortest
path with ten constraints and α = 0.5. List L maximum size is 2e+05 for label correcting
algorithm and 2e+06 for A∗ algorithm on instance long5, and 8e+06 for A∗ algorithm on
instance square50

table are identical to those of Table 6.2. The label correcting algorithm without state graph
exhibits different performances than those provided in Table 4.3 as we allowed here the list L
to contain up to 2e+06 paths while it was limited to 1e+05 paths in Table 4.3. We can see that
a larger state graph, obtained for a smaller parameter ∆ enables both to solve the instance
to optimality and to reduce the number of paths extended without increasing the CPU time.
Once again, we observe that in small dimension, the label correcting algorithms performs
better than generalized A∗ algorithm. We also observe that when larger state graph are used
on instance not solved by the A∗ algorithm, fewer paths are cut as a larger state graph gives
better bounds, thus better keys, and thus expand more promising paths that cannot be cut.

Instance α Alg. ∆ |V | |A | γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
long20 0.5 A∗ – – – 1.6 0% 1064129 128268 – 435 53.5% 9.72e+00

500 5122 15376 1.6 0% 1072512 145034 – 430 48.2% 1.66e+01
100 184405 726113 1.6 11% 999995 0 – 424 38.8% 2.00e+01

20 878542 3479437 1.5 39% 999995 0 – 391 4.1% 2.88e+01
cor. – – – 1.6 0% 2118701 1363841 98% 399 2.9% 3.14e+01

500 5122 15376 1.6 0% 2355602 1700568 89% 393 opt 4.16e+01
100 184405 726113 1.6 5% 2339942 1690032 88% 393 opt 4.48e+01

20 878542 3479437 1.5 37% 916185 540546 96% 393 opt 3.12e+01

Table 6.3 – Results of conditional state graph approach on resource constrained shortest path
with one constraint and α= 0.5. List L maximum size is 2e+06.

120

6.5. Numerical results

Instance α Alg. κ |V | |A | γ Prep. Ext. Cut. Dom. ` Gap CPU (s)
square50 0.01 A∗ – – – 1.7 3% 59596 19238 – 63 50.2% 2.01e+00

10 21766 44058 3.6 62% 68251 36547 – 60 16.4% 2.22e+01
100 194619 342671 6.1 46% 67595 35234 – 60 15.0% 1.10e+02

cor. – – – 1.7 1% 45783 27704 25% 66 23.2% 4.97e+00
10 21584 42946 3.7 60% 67671 52593 31% 61 8.2% 2.23e+01

100 194675 342735 5.5 52% 67059 53520 29% 70 7.1% 9.42e+01
0.1 A∗ – – – 1.7 3% 55076 10197 – 61 20.5% 1.89e+00

10 21724 44025 3.7 68% 56803 13652 – 61 14.2% 2.07e+01
100 194610 342593 5.2 49% 56324 12692 – 61 13.2% 1.00e+02

cor. – – – 1.7 2% 39202 14463 48% 61 15.9% 3.07e+00
10 21717 43244 3.6 67% 43520 20817 39% 61 9.8% 1.98e+01

100 194329 341602 4.9 60% 44931 22996 37% 61 9.0% 8.04e+01
long5 0.01 A∗ – – – 1.8 2% 55558 11128 – 100 41.0% 1.80e+00

10 11336 23235 3.1 49% 59776 19562 – 100 26.0% 1.45e+01
100 106513 191983 3.3 31% 62406 24822 – 106 24.1% 8.28e+01

cor. – – – 1.8 0% 46209 17876 69% 100 35.8% 6.39e+00
10 11282 22151 2.7 50% 52816 30060 43% 106 24.2% 1.33e+01

100 106078 189078 3.1 42% 53473 32232 38% 100 19.1% 5.89e+01
0.1 A∗ – – – 1.8 2% 51382 2774 – 102 30.0% 1.75e+00

10 11264 22435 2.9 49% 51358 2726 – 106 23.9% 1.37e+01
100 106630 193825 3.6 34% 51652 3314 – 106 23.1% 7.68e+01

cor. – – – 1.8 1% 35409 7426 90% 102 27.7% 4.55e+00
10 11291 22568 2.7 55% 36756 10123 66% 106 20.5% 1.27e+01

100 106239 189167 3.4 45% 37039 10706 63% 106 19.3% 5.66e+01

Table 6.4 – Clustering state graph approach results on STOCHASTIC SHORTEST PATH PROBLEM

with samples of non truncated and non discretized lognormal distribution. List L maximum
size is 5e+04 for label correcting algorithm and 1e+05 for generalized A∗ algorithm.

6.5.2 Clustering state graph and STOCHASTIC SHORTEST PATH PROBLEM

We now consider the STOCHASTIC SHORTEST PATH PROBLEM with scenario distributions
sampled from non-truncated and non discretized lognormal distributions. We can see in
Table 5.4 that instances long5 and square50 are small instances that are not well solved by
the algorithms without state graphs. Table 6.4 provides results using a clustering state graph
approach. Again, for the clustering procedure, we use a simulated annealing metaheuristic
to minimize the L1 distance between scenario vectors as d . The columns of Table 6.4 are
identical to those of Table 6.1, the constraint strength α being replaced by the parameter β of
the minimized probability functional CVaRβ. Again, a larger state graphs enables to reduce
the gap.

121

Part IIAirline operations problems

Schedule planning

s

Fleet assignment

z(s)

Aircraft routing

r(s, z)

Crew pairing

p(s, z, r)

Crew rostering

rost(p)

Ground Services

g(s, z, r)

Delay model

Robust integrated problem

123

Introduction to Part II
Airline operations are usually split into four successive planning problems. The SCHEDULE

PLANNING PROBLEM chooses the set of flight legs operated during a given period based on
demand estimates. Then, the FLEET ASSIGNMENT PROBLEM selects which type of aircraft will
operate which flight leg. Finally, the AIRCRAFT ROUTING PROBLEM and the CREW PAIRING

PROBLEM select the sequences of flight legs operated respectively by airplanes and crews. As
the sequences of flight legs that can be operated by crews depend on the flight legs operated
by airplanes, the sequential resolution of AIRCRAFT ROUTING PROBLEM and CREW PAIRING

PROBLEM is not optimal. The INTEGRATED PROBLEM considered in this dissertation consists in
the simultaneous resolution of these two problems.

Given a set of flight legs L operated by an airline, the AIRCRAFT ROUTING PROBLEM builds
the sequences of flight legs or routes r assigned to the different airplanes. Routes must respect
several constraints to be feasible, the most important being maintenance constraints. These
constraints are modeled through the set of feasible routes R. A route r covers a leg ` if ` is in
r . Each leg ` must be covered by exactly one route. At Air France, the cost of operating one
leg ` is independent from the route containing `. As a consequence, the AIRCRAFT ROUTING

PROBLEM is a feasibility problem, which can be stated by the following system.

∑
r3`

xr = 1, ∀` ∈L

xr ∈ {0,1}, ∀r ∈R
(6.4)

where variable xr is equal to 1 if route r is selected and 0 otherwise.

The CREW PAIRING PROBLEM is the analogue of the AIRCRAFT ROUTING PROBLEM where
airplanes are replaced by crews. Given a set of legs L operated by an airline, the CREW

PAIRING PROBLEM aims at building the sequences of flight legs or pairings p realized by crews.
The crew working rules enable to define the set of feasible pairings P given L . Once again,
each flight leg ` must be covered by exactly one pairing. Besides, each pairing p has a cost cp

which depends on crew wages and hotels costs. The objective of the CREW PAIRING PROBLEM

is thus to find a pairing cover of minimum cost. The CREW PAIRING PROBLEM can be stated as

125

the following integer program.

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣
∑
p3`

yp = 1, ∀` ∈L

yp ∈ {0,1}, ∀p ∈P

(6.5)

where variable yp is equal to 1 if pairing p is selected and 0 otherwise. Some additional
coupling constraints have been omitted for clarity.

When AIRCRAFT ROUTING PROBLEM and CREW PAIRING PROBLEM are solved sequentially, the
set of pairings that can be operated depends on the routes selected in the AIRCRAFT ROUTING

PROBLEM solution. Indeed, a pair of flight legs (`1,`2) must respect several constraints to be
chained in a pairing. A pair (`1,`2) is a feasible connection if the arrival airport of `1 is identical
to the departure airport of flight leg `2, and the interval of time ∆t between the arrival of `1

and the departure of `2 is within a minimum turn time t min and a maximum turn time t max.
Besides, if the interval of time ∆t of a feasible connection satisfies t min ≤ ∆t < t short where
t short is a given constant, then the connection is a short connection. A short connection can be
used by a crew only if it stays in the same aircraft. Let Ashort denote the short connection set.
A pairing p is feasible only if all its short connections are contained in routes selected in the
solution of the AIRCRAFT ROUTING PROBLEM. The following short connection constraint links
aircraft routing and crew pairing solutions:

∑
p3α

yp ≤ ∑
r3α

xr , ∀α ∈ Ashort. (6.6)

The INTEGRATED PROBLEM can now be stated as follows.

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
r3`

xr = 1, ∀` ∈L∑
p3`

yp = 1, ∀` ∈L∑
p3α

yp ≤ ∑
r3α

xr , ∀α ∈ Ashort

xr ∈ {0,1}, ∀r ∈R

yp ∈ {0,1}, ∀p ∈P

(6.7)

The purpose of Part II is to introduce a solution scheme for the INTEGRATED PROBLEM. Part II
is organized as follows.

• Chapter 7 introduces a solution scheme for the INTEGRATED PROBLEM. This solution
scheme uses as black-boxes solution methods for the AIRCRAFT ROUTING PROBLEM and
the CREW PAIRING PROBLEM, which are both introduced in the next chapters.

• Chapter 8 introduces a compact integer program to solve the AIRCRAFT ROUTING PROB-
LEM. Numerical experiments show that this approach, which is simpler than the tradi-

126

tional column generation approach to the AIRCRAFT ROUTING PROBLEM, is sufficiently
efficient to be used in the INTEGRATED PROBLEM solution scheme of Chapter 7 on Air
France industrial instances.

• Chapter 9 details a column generation approach to the CREW PAIRING PROBLEM. This
approach relies on the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

algorithms of Chapter 4. Numerical experiments prove the efficiency of the approach
on Air France instances.

• Chapter 10 tests experimentally the solution method for the INTEGRATED PROBLEM of
Chapter 7 when the AIRCRAFT ROUTING PROBLEM solution scheme of Chapter 8 and the
CREW PAIRING PROBLEM solution scheme of Chapter 9 are used.

• Chapter 11 focuses on the propagation of delay in airline operations, and extends the
methods of the previous chapter to take into account probabilistic constraints on delay
propagation.

Literature reviews on the INTEGRATED PROBLEM, the AIRCRAFT ROUTING PROBLEM, and the
CREW PAIRING PROBLEM are respectively available in Chapters 7, 8, and 9. Chapter 11 gives
a literature review on solution methods for these problems that take into account delay
propagation.

127

7 Integrated aircraft routing and crew
pairing problem statement

This chapter introduces a cutting plane approach to the INTEGRATED PROBLEM (6.7). This
solution scheme uses solution schemes for the AIRCRAFT ROUTING PROBLEM and the CREW

PAIRING PROBLEM as block-boxes. These schemes are introduced respectively in Chapters 7
and 8. The efficiency of the approach is then tested numerically in Chapter 10.

Chapter 7 is organized as follows.

• Section 7.1 introduces the cutting plane approach to the INTEGRATED PROBLEM. This
solution scheme is tested numerically in Chapter 10.

• Section 7.2 details the instances that are used to test the algorithms of the next chapters.
• Section 7.3 gives a literature review on the solution approaches to the INTEGRATED

PROBLEM.

In this dissertation, we use the bold notations for vectors. Solutions (xr) and yp of the AIRCRAFT

ROUTING PROBLEM and the CREW PAIRING PROBLEM are therefore respectively denoted x
and y.

7.1 Solution scheme

As the AIRCRAFT ROUTING PROBLEM is a feasibility problem and not an optimization problem,
the INTEGRATED PROBLEM can be seen as an extended CREW PAIRING PROBLEM with additional
constraints modeling the AIRCRAFT ROUTING PROBLEM feasibility. Indeed, let y† be a solution
of the CREW PAIRING PROBLEM (6.5): there is a solution to the INTEGRATED PROBLEM with
y† as crew pairing solution only if the following problem modeling aircraft routing admits a
solution.

∑
r3`

xr = 1, ∀` ∈L

xr ∈ {0,1}, ∀r ∈R∑
p3α

y†
p ≤ ∑

r3α
xr , ∀α ∈ Ashort

(7.1)

If Problem (7.1) admits a solution x†, then (x†,y†) is an optimal solution of the INTEGRATED

PROBLEM. Indeed, if (x,y) is a solution of Problem (6.7), then (y) is a solution of Problem

129

Chapter 7. Integrated aircraft routing and crew pairing problem statement

(6.5) with identical cost, and
∑

p∈P cp yp ≥ ∑
p∈P cp y†

p by definition of y†. The reason why
the INTEGRATED PROBLEM is hard to solve is that the AIRCRAFT ROUTING PROBLEM actually
constrains the CREW PAIRING PROBLEM on industrial instances, in the sense that Problem
(7.1) is not feasible for most industrial instances [42]. The main idea behind INTEGRATED

PROBLEM solution scheme presented in this section is to add progressively constraints to the
CREW PAIRING PROBLEM (6.5) in order to obtain a solution y† such that the AIRCRAFT ROUTING

PROBLEM (7.1) becomes feasible. The algorithm uses as subroutines solutions schemes for the
AIRCRAFT ROUTING PROBLEM and the CREW PAIRING PROBLEM that are respectively introduced
in Sections 8.2, 9.1 and 9.2.

7.1.1 Feedback AIRCRAFT ROUTING PROBLEM loop

In order to tackle with infeasibility in the AIRCRAFT ROUTING PROBLEM when the CREW

PAIRING PROBLEM is solved first, we use the solution y† that leads to infeasibility in the
AIRCRAFT ROUTING PROBLEM (7.1) to constrain CREW PAIRING PROBLEM. Therefore, we
introduce short connections constraints. A short connections constraint is defined by a set
of incompatible short connections S and forbids the simultaneous selection of all the short
connections in S.

We can now state the constrained CREW PAIRING PROBLEM.

min
∑

p∈P

cp yp (7.2a)

s.t .
∑
p3`

yp = 1, ∀` ∈L (7.2b)∑
p∈P

|p ∩S|yp ≤ |S|−1, ∀S ∈I SC (7.2c)

yp ∈ {0,1}, ∀p ∈P (7.2d)

The INTEGRATED PROBLEM algorithm can now be presented. The set of short connections
constraints is initially empty. The following steps are then executed.

1. Solve the constrained CREW PAIRING PROBLEM (7.2) to obtain y.
2. Solve the constrained AIRCRAFT ROUTING PROBLEM (7.1):

• if Problem (7.1) is not feasible, then add S to I SC , where S is the set of short
connections α ∈ Ashort contained in a pairing p such that yp = 1. Return to Step
(1).

• else store the solution of the Problem (7.1) in x.

Theorem 7.1. The above algorithm converges after a finite number of steps, and at the end of
the algorithm (x,y) is an optimal solution of the INTEGRATED PROBLEM (6.7).

Proof. Thanks to short connections set S, a pairing solution y cannot be generated twice by
the algorithm. As there is a finite number of solutions of the crew pairing problem, only a finite

130

7.2. Instances

number of short connections constraints set can be generated and the algorithm converges
after a finite number of iterations.

Let (x,y) be a feasible solution of the INTEGRATED PROBLEM. We prove iteratively on the
iterations of the algorithm that y is a solution of Problem (7.2) at all steps of the algorithm.
Indeed, suppose it is not the case and let S be the first constraint added by the algorithm
among the short connections constraints not-satisfied by y. Note that if y does not satisfy short
connections constraint S, then the solution encoded by y contains all the short connections
in S. As (x,y) is a feasible solution of the integrated problem, this is in contradiction with the
addition of short connections constraint S by the algorithm. As a consequence, any feasible
solution of the integrated problem (x,y) is such that y is a feasible solution of Problem (7.2)
at the end of the algorithm, which implies that the solution returned by the algorithm has a
cost smaller to the one of any solution of the INTEGRATED PROBLEM, and thus is an optimal
solution of the INTEGRATED PROBLEM.

Remark 7.1. This algorithm can be interpreted as a Branch-and-Check [167] algorithm where
the CREW PAIRING PROBLEM is the basic problem and the AIRCRAFT ROUTING PROBLEM is the
delayed problem. It is well known [167] that the performance of a Branch-and-Check algorithm
is improved when a linear relaxation of the delayed problem is added to the basic problem in
addition to the constraints of Equation (7.2c). We introduce in Chapter 8 a compact integer
program for the AIRCRAFT ROUTING PROBLEM which has a tight relaxation. A natural Branch-
and-Check implementation in our setting is therefore to add this relaxation to the constraints
of Equation (7.2). We do not implement it for industrial reasons: as the maintenance and
working rules evolve, a modular solution scheme where the AIRCRAFT ROUTING PROBLEM

and the CREW PAIRING PROBLEM solvers are totally separated is easier to maintain. From an
industrial point of view, this modularity is one of the main strengths of our solution scheme.

7.1.2 From exact algorithm to matheuristic

The convergence of the algorithm on industrial instances may be long. A heuristic algorithm
which converges faster is obtained by strengthening short connections constraints. This can
be done by replacing “≤ |S|−1” by “≤ mS” with mS ¿|S|−1 in short connection constraint
(7.2c). Note that this can lead to infeasibility issues if mS is to small. One way to overcome
this problem and to ensure that the solution returned is at least as good as the one computed
by the sequential approach is to compute as a preprocessing a non-constrained solution
x∗ of the AIRCRAFT ROUTING PROBLEM, and to choose mS non smaller than the number of
short connection of S in x∗. Besides, convergence can be accelerated by using heuristic CREW

PAIRING PROBLEM methods, such as those presented in Sections 9.1 and 9.2.

7.2 Instances

Airlines generally split the planning process in two steps: in a first step, the AIRCRAFT ROUTING

PROBLEM and the CREW PAIRING PROBLEM are solved on a one week horizon. Then, the weekly
solutions are combined to build solutions on a whole month. In this dissertation, we focus on
instances on one week. As the schedule on two successive weeks is very similar, solutions on a

131

Chapter 7. Integrated aircraft routing and crew pairing problem statement

Instance Legs Airplane Airplanes Crew Crew
connect. connect. pairings (')

A318 669 39564 18 3742 130
A319 957 45901 41 3738 240
A320 918 49647 45 3813 280
A321 778 29841 25 3918 165
A318-9 1766 – (59) 8070 350
A320-fam 3398 – (129) 21563 690

Table 7.1 – Air France industrial instances

weekly horizon are required to “cycle”: a route or a pairing starting at the end of the horizon
can end at the beginning. Practically, this means that the pairing is split on two weeks. The
cycling horizon technique enables to avoid border conditions at the beginning and at the end
of the horizon. As border conditions are easily taken into account in our AIRCRAFT ROUTING

PROBLEM solution scheme, we use this technique only for the CREW PAIRING PROBLEM.

The algorithms presented in this dissertation have been tested on a set of industrial instances
corresponding to one week of flight legs of the A320 family at Air France. The A320 family is
the largest fleet at Air France, and is composed of the A318, A319, A320, and A321 subfleets.
Table 7.1 gives the main characteristics of the instances considered: the first column provides
the name of the instance, and the second column the number of flight legs in the instance. The
two next column provide the number of connections feasible for airplanes, and the number of
airplanes in a solution. The two last columns provide the number of connections feasible for
crews, and the number of crew pairings in a solution. Instances A318, A319, A320, and A321
correspond to the different subfleets of the A320 family instance. Instance A318-9 is the union
of instances A318 and A319. Finally, instance A320-fam is the union of all theses instances and
of a smaller subfleet.

As the subfleet of the airplane that operates a flight leg is given in input, solving the AIRCRAFT

ROUTING PROBLEM problem on the A320 family instance is done by solving separately the
AIRCRAFT ROUTING PROBLEM problem on the A318, the A319, the A320 and the A321 instances.
This is not true of the CREW PAIRING PROBLEM, as crews can operate, and actually do operate
on airplanes of different subfleets during the same pairing. This is notably the reason why the
number of crew connections in the full A320 family is larger than the sum of the number of
connections inside subfleets. This is also the reason why the number of pairings in a solution
of the A320 family is smaller than the sum of the number of pairings required for the subfleets.
We note that the number of airplane connections is much larger than the number of crew
connections. This is due to the fact that there can be no night in Paris hub in the middle of a
pairing due to crew working rules. On the contrary, an airplane can stay a night in Paris hub.
As the number of possible night connections at the hub is large, this explains the difference
between the number of airplane and the number of crew connections.

The instances in Table 7.1 are large. For instance, considering the INTEGRATED PROBLEM, the
largest instances considered by Mercier and Soumis [124] on the INTEGRATED PROBLEM has

132

7.3. Bibliographical remarks

Instance Legs Airplane Airplanes Crew Crew
connect. connect. pairings (')

AR4 152 2107 4 389 60
AR8 313 8723 8 1112 100
AR12 470 19536 12 2055 125
CP50 290 – – 1006 50
CP70 408 – – 1705 70
CP90 516 – – 2490 90

Table 7.2 – Aircraft Routing and Crew Pairing extracted instances

523 legs, and the largest considered by Shao et al. [161] has 676 legs.

To test the performance of the algorithms on instances of different sizes, smaller instances
are derived from these large ones. Given the complexity of the working rules, designing
instances is not an easy task. Therefore, to build feasible instances, we extract part of the
solution on industrial instances. Aircraft routing and crew pairing are relatively different.
Therefore, instances extracted from AIRCRAFT ROUTING PROBLEM solutions lead to costly
solutions in the CREW PAIRING PROBLEM, and instances extracted from the CREW PAIRING

PROBLEM require too many airplanes in the AIRCRAFT ROUTING PROBLEM and are often
not feasible for the AIRCRAFT ROUTING PROBLEM. As the link between AIRCRAFT ROUTING

PROBLEM and CREW PAIRING PROBLEM in the INTEGRATED PROBLEM lies in the feasibility of
the AIRCRAFT ROUTING PROBLEM, we test the INTEGRATED PROBLEM solution scheme only
on instances in Table 7.1 and on instances extracted from the AIRCRAFT ROUTING PROBLEM

solutions. Table 7.2 provides the characteristics of the extracted instances: its columns are
identical to those of Table 7.1. AIRCRAFT ROUTING PROBLEM instances are prefixed by AR, and
CREW PAIRING PROBLEM instances are prefixed by CP. The CREW PAIRING PROBLEM instances
being mostly not feasible for AIRCRAFT ROUTING PROBLEM, we do not provide the AIRCRAFT

ROUTING PROBLEM statistics for these instances.

7.3 Bibliographical remarks

As the AIRCRAFT ROUTING PROBLEM is a feasibility problem, the natural idea to improve the
joint cost of the AIRCRAFT ROUTING PROBLEM and the CREW PAIRING PROBLEM is to solve
first the CREW PAIRING PROBLEM and the AIRCRAFT ROUTING PROBLEM [105]. Nonetheless,
this reverse sequential leads to non-feasibility issues in the AIRCRAFT ROUTING PROBLEM [43],
which opened the question of integrated optimization.

Two lines of models have been developed for the integrated models. In the first line, AIRCRAFT

ROUTING PROBLEM solutions are generated first and included in an extended CREW PAIRING

PROBLEM. Cohn and Barnhart [42] show that only routing solutions including unique and
maximal short connection sets needed to be generated to obtain optimal solutions. A two-step
solution pattern can therefore be proposed: first, the aircraft routing solutions including
maximal short-connection sets are generated, and then the extended crew pairing is solved

133

Chapter 7. Integrated aircraft routing and crew pairing problem statement

using matheuristics1 relying on branch and price. This method enables to produce quickly
solutions with an optimality gap of 2% on instances containing about 125 flight legs. The time
consuming phase of the algorithm is the generation of unique and maximal connection sets,
and the time necessary to its resolutions increases quickly with the size of the instance. Thus,
if it is competitive on small and medium instances, it quickly becomes intractable on large
instances.

The other line of models uses a double column generation technique: column are generated
for airplanes and for crews. The problem is solved faster if split into two problems thanks to
Benders decomposition [43]. Crew pairing is “hidden” in a subproblem whose result is taken
into account in the aircraft routing master problem. Besides, on large instances, an exact
resolution leads to too large computation time. A three phase matheuristic relying on Benders
decomposition has therefore been developed [43]: integrity constraints initially relaxed are
progressively re-established to produce a good quality feasible solution. The efficiency of the
algorithm is improved by a factor 10 by exchanging the master problem and the subproblem in
the Benders decomposition [125]. The model is then generalized to integrate fleet assignment
and restricted connect concept [124]. Besides, aggregating some of the short connections
linking constraints enables to reduce by a factor 12 the time needed to reach equivalent quality
solution [124]. Finally, this Benders decomposition approach has been adapted to integrate
FLEET ASSIGNMENT PROBLEM [140].

Extended crew pairing solution method is faster on small size instances, but it is less versatile,
and slower on larger instances. The Benders decomposition matheuristic enables to reach
solution with an optimality gap smaller than one percent in less than 12 hours on large
instances [124]. Nonetheless, the double column generation makes it hard to solve.

The contribution of our cutting planes approach is thus three-fold. First, it enables to solve
efficiently large instances. Second, the modularity of the approach makes it very versatile
from an industrial point of view, as it enable to separate the resolution of the AIRCRAFT

ROUTING PROBLEM and the CREW PAIRING PROBLEM in two distinct black-boxes. Third, all
the algorithms used for the INTEGRATED PROBLEM and in the CREW PAIRING PROBLEM can be
turned into efficient heuristics if exact algorithms are too slow on large industrial instances.

1A matheuristic is a heuristic based on mathematical programming

134

8 Compact integer program for aircraft
routing

This chapter studies the complexity and details a solution approach to the AIRCRAFT ROUTING

PROBLEM (6.4). The solution approach applies to the constrained version (7.1) used by the
INTEGRATED PROBLEM solution scheme of Chapter 7. Given a set of flight legs L operated by
a fleet of identical airplanes of an airline, the AIRCRAFT ROUTING PROBLEM (6.4) builds the
sequences of flight legs or routes r assigned to the different airplanes. Routes must respect
several constraints to be feasible. These constraints are modeled through the set of feasible
routes R. A route r covers a leg ` if ` is in r . Each leg ` must be covered by exactly one route.
We can now restate the AIRCRAFT ROUTING PROBLEM (6.4).

∑
r3`

xr = 1, ∀` ∈L

xr ∈ {0,1}, ∀r ∈R
(6.4)

where variable xr is equal to 1 if route r is selected and 0 otherwise. The constrained version
(6.4) has the following additional constraint,∑

p3α
y†

p ≤ ∑
r3α

xr , ∀α ∈ Ashort, (8.1)

where y†
p is a fixed solution of the CREW PAIRING PROBLEM.

In the literature, the AIRCRAFT ROUTING PROBLEM is generally a minimization problem with
costs defined on each routes. It is therefore solved by column generation [20]. The subproblem
which arises in these approach is a STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROB-
LEM which can be solved efficiently in practice. In this dissertation, we introduce a compact
integer program that encodes the AIRCRAFT ROUTING PROBLEM. It is solved in reasonable time
by recent MIP solvers, and we therefore do not have to use a column generation approach. We
also use this compact integer program approach to solve the constrained AIRCRAFT ROUTING

PROBLEM (7.1) used in the INTEGRATED PROBLEM solution scheme of Chapter 7.

Both the study of the AIRCRAFT ROUTING PROBLEM complexity and the definition of the
compact integer program to solve it require a precise definition of the AIRCRAFT ROUTING

PROBLEM. We enter into the details of the definition of the set of feasible routes R. To make it
easier to treat, the set of legs L is usually turned into a digraph D , because it then enables to

135

Chapter 8. Compact integer program for aircraft routing

consider routes as paths in this graph. There are two classical ways to build such a graph. In
an airport-time graph, a vertex corresponds to an airport-time pair, and an arc to a flight leg.
Indeed, a flight leg leads from an airport-time pair to another. In a connection graph, flight legs
are vertices while arcs are feasible connections between legs. Connection graphs are larger
than airport-time graphs, but their modeling power is stronger as they consider connections
individually, which enables to model connection specific properties. As short connections
make the link between the AIRCRAFT ROUTING PROBLEM and the CREW PAIRING PROBLEM,
it is very important to be able to consider them individually. We therefore use connection
graphs in this dissertation. Airport-time graphs suit better to the study of AIRCRAFT ROUTING

PROBLEM complexity. To avoid redundant definitions, in this chapter, we make this study
in the context of connection graphs. The elements that cannot be proved in the context of
connection graphs are postponed to Appendix B.

Chapter 8 is organized as follows:

• Section 8.1 gives a practical definition of the AIRCRAFT ROUTING PROBLEM based on
connection graphs.

• Section 8.2 focuses on the resolution of AIRCRAFT ROUTING PROBLEM. It defines the
notion of maintenance state graph and introduces the compact integer program for the
AIRCRAFT ROUTING PROBLEM problem. Numerical results on Air France instances show
the practical efficiency of the approach.

• Section 8.3 provides a detailed study of the complexity of the AIRCRAFT ROUTING PROB-
LEM. AIRCRAFT ROUTING PROBLEM is proved to be N P -complete in the general case
and polynomial when the number of airplanes is fixed.

• Section 8.4 gives a literature review on the solution method of the AIRCRAFT ROUTING

PROBLEM.

8.1 Aircraft routing problem definition

The AIRCRAFT ROUTING PROBLEM problem takes in input the set of legs L operated by an
airline. Several notions being analogous between the AIRCRAFT ROUTING PROBLEM and the
CREW PAIRING PROBLEM, we use the subscript R to identify the routing notions. A pair of
flight legs (`1,`2) must respect several constraints to be chained in a route r . A pair (`1,`2) is
a feasible routing connection if the arrival airport of `1 is identical to the departure airport of
flight leg `2, and the interval of time ∆T between the arrival of `1 and the departure of `2 is
within a minimum turn time t min,R and a maximum turn time t max,R .

An easy way to model the AIRCRAFT ROUTING PROBLEM is to use a routing connection digraph
DR = (V R , AR), where V R is the set of vertices and AR is the set of arcs. In a connection
graph, there is one vertex v` for each flight leg ` ∈ L , and one arc a ∈ AR for each feasible
connection. Note that due to the role of time in the definition of arcs, a routing connection
graph is necessarily acyclic. Additional source and sink vertices are added to model the desired
location airport of airplanes at the beginning and at the end of the horizon.

A route r is a source to sink path in the connection graph. Not all source to sink paths of the
routing connection graph DR correspond to feasible routes r ∈R. To be feasible, an aircraft

136

8.2. Maintenance state graph and compact integer program

route must satisfy an additional property. Indeed, maintenance operations must be regularly
performed on airplanes. As the equipment required to perform the maintenance operations is
expensive, maintenances can only be performed in a few airports called maintenance bases.
A route r satisfies the maintenance constraint if the number of days between two visits of
an aircraft in a maintenance base is non-greater than a given upper-bound δmaint. An arc
a = (v`1 , v`2) is a night arc if the departure of leg `1 is not on the same day as the arrival of
leg `2, and it is a maintenance night arc if the arrival airport of `1 is a maintenance base, and
the interval of time between the arrival of `1 and the departure of `2 is non-smaller than a
minimum maintenance time t maint,R . Let N ⊆ AR be the set of night arcs, and M ⊆ N be the
set of maintenance night arcs. A route r is feasible if any subpath with δmaint night arcs has at
least one maintenance night arc.

Let k be the number of airplanes in the fleet. Each aircraft of the fleet follows one feasible
route. A routing is a partition of DR into at most k vertex disjoint feasible routes.

AIRCRAFT ROUTING PROBLEM

Input. A graph DR = (V R , AR), a set of night arcs N ⊆ AR , a set of maintenance night arcs
M ⊆ N , and a fleet size k ∈Z+.
Output. A routing

When a solution y of the CREW PAIRING PROBLEM is fixed and constrains the AIRCRAFT ROUT-
ING PROBLEM, the short connection constraint (6.6) can be dealt with in this framework.
Indeed, it suffices to remove from AR any connection (`1,`2) such that there is a connection
in Ashort different from (`1,`2) but having `1 as origin or `2 as the destination. We therefore
omit them in the remaining of the chapter.

To enhance readability, we omitted the border constraints, which give the number of days
since the last visit in the maintenance base of the airplanes at the beginning and at the end of
the horizon.

Note that an AIRCRAFT ROUTING PROBLEM instance is more naturally defined as a list of flight
legs that have to be covered by airplanes. This natural definition is introduced in Appendix B.
Figure 8.1 illustrates the link between a list of flight legs or schedule and a connection graph,
and the fact that a routing is a path partition. The solution scheme detailed in this chapter
enables to solve both problems. But working with the list of flight legs may have an impact on
the theoretical complexity of the problem. This is the reason why the complexity results that
are proved in this chapter in the connection graph setting are done in Appendix B in the list of
flight legs setting.

8.2 Maintenance state graph and compact integer program

Solutions of the AIRCRAFT ROUTING PROBLEM are partitions of the AIRCRAFT ROUTING PROB-
LEM in vertex-disjoint source into sink paths. Paths partition are easily encoded in an integer
program using flow and cover constraints. In this section, we extend this integer program to
the AIRCRAFT ROUTING PROBLEM. This extension relies on the notion of maintenance state
graph, which enables to take into account the maintenance rule.

137

Chapter 8. Compact integer program for aircraft routing

g h i

a b c d

u v w x

Flight Connection not in partition

a b
c

d

u v w x

g

h

i

A

B

C

Airports

Connection in partition

Schedule

Connection graph

Figure 8.1 – AIRCRAFT ROUTING PROBLEM solution as a path partition in the routing connection
graph

8.2.1 Maintenance state graph and integer program

In order to handle the maintenance rule, we want to count the number of days since the
last visit in a maintenance base in our linear program. We therefore build a maintenance
state graph D = (V ,A), where V is the set of state vertices ϑ and A is the set of state arcs.
State vertices are built as follows: for each connection graph vertex v , we build δmaint state
vertices ϑ1

v , . . . ,ϑδmaint
v ∈ Vv . Like in dynamic programming, index i on state vertex ϑi

v carries
information: it means that the last maintenance of a plane which crosses state vertex ϑi

v

happened i nights ago.

We therefore build the state arcs in order to satisfy the following property: the last mainte-
nance of an airplane going through ϑk

v happened k days ago. Let a = (v1, v2) be an arc in
the connection graph. We build its state arc set in order to count the number of days since
the last maintenance check. If v1 and v2 are on the same day: the number of days since the
last maintenance does not change when crossing a. Thus for each day d ∈ {1, . . . ,δmaint}, we
add a state arc α = (ϑd

v1
,ϑd

v2
). If v1 and v2 are not on the same day, then it corresponds to

a night. If this night is a maintenance night, then the number of days since the last main-
tenance night after crossing a is 1. Therefore, for each day d ∈ {1, . . . ,δmaint}, we add a state
arc α= (ϑd

v1
,ϑ1

v2
). Finally, if it is not a maintenance night, the number of days since the last

maintenance increases by one: for each day d ∈ {1, . . . ,δmaint−1}, we add an arcα= (ϑd
v1

,ϑd+1
v2

).

A plane arriving in ϑδmaint
v1

needs to perform a maintenance on the next night: it cannot take an
arc a which is not a maintenance night.

138

8.2. Maintenance state graph and compact integer program

Base

Non-Base

a b

b d

e f g

h i j k

Network arc

Network vertex

State arc

State vertex

a

b

c

d

e f g

h i j k

Figure 8.2 – Feasible and infeasible paths in a state graph.

Let Vv denote the set of state vertices of connection graph vertex v , and Aa denote the set
of state arcs of connection graph arc a. Let V = ⋃

v∈V Vv be the set of state vertices and
A =⋃

a∈A Aa be the set of state arcs. We have thus defined the state graph D = (V ,A).

We recall that a feasible route is a source to sink path in the connection graph that satisfies
the maintenance constraint. Let P be a path in the connection graph. If P is feasible, like the
green path on Figure 8.2, it induces a unique path π(P) in the state graph. On the contrary, if P
is not feasible, it does not induce a feasible path in the state graph, because the first arc a that
does not satisfy the maintenance constraint does not exist in the state graph, as illustrated by
the red path on Figure 8.2.

Claim 8.1. There is a bijection between the feasible paths in the connection graph and the paths
in the state graph.

We can now state the compact integer program. Let xα be a binary variable equal to one if and
only if state arc α is in the partition. A solution of the following equations is a feasible routing.

∑
ϑ ∈ Vv

α ∈ δ−(ϑ)

xα = 1 ∀v ∈V \S

∑
ϑ ∈ Vv

α ∈ δ+(ϑ)

xα = 1 ∀v ∈ S

∑
α∈δ−(ϑ)

xα = ∑
α∈δ+(ϑ)

xα ∀ϑ ∈ V

xα ∈ {0,1} ∀α ∈A

(8.2a)

(8.2b)

(8.2c)

(8.2d)

139

Chapter 8. Compact integer program for aircraft routing

This linear program is in an alternative to the usual column generation formulation (6.4) to
model Air France AIRCRAFT ROUTING PROBLEM. Combined with the cover equations (8.2a)
and (8.2b), the flow equation (8.2c) ensures that the solution is a path partition of the con-
nection graph in source to sink paths of the state graph, and thus a feasible solution to the
AIRCRAFT ROUTING PROBLEM.

State sources and state sinks enable to enforce border conditions, i.e. the number of days since
the last maintenance of each airplane at the beginning of the horizon, and upper bounds
on that number at the end of the horizon. The conditions at the end of the horizon can be
achieved by adding extra state arcs to the sinks state vertices.

Remark 8.1. Note that the maintenance state graphs introduced in this section are similar but
not equivalent to the state graphs defined in Chapter 6. Indeed, the property that for each
path P in DR there is a path π in D such that θ(π) = P is not satisfied in a maintenance state
graph.

Short connection constraints

When used in the context of the INTEGRATED PROBLEM solution scheme of Chapter 7, an
additional constraint must be taken into account. Indeed, each short connection in a pairing
solution must be in a routing solution. Let Ashort be the set of short connections that must be
in the AIRCRAFT ROUTING PROBLEM solution. We therefore add the constraints∑

α∈A

xα = 1, ∀α ∈ Ashort,

to (8.2). With these new constraints, a short connection a ∈ Ashort belongs to any feasible
solution of (8.2).

8.2.2 Costs

Even if the AIRCRAFT ROUTING PROBLEM is considered as a feasibility problem in this disserta-
tion, the solution of AIRCRAFT ROUTING PROBLEM has an impact on the ground operations. In
this section, we briefly explain how to take into account such costs. In Chapter 11, we show
how to extend this program in order to take into account constraints on delay.

Airplanes are not identified in integer program (8.2). As a consequence, only costs that are
independent of the airplane can be handled in this program. Ground operations costs are
aircraft-independent and can therefore be handled, whereas fuel consumption costs are
aircraft-dependent and cannot be handled.

Let ca denote the ground cost of a connection a between two flight legs `1 and `2. It is the sum
of several terms. The first term is the terminal cost c terminal

a . It represents the cost of moving
the aircraft from the arrival terminal of `1 to the departure terminal of `2, and is equal to zero
if these terminals are identical. A second cost cSchengen

a is incurred when a non-Schengen flight
leg is connected with a Schengen flight leg. This cost is a function of the time at which it is
performed. A third source of cost cduration

a is linked to the turn time of the connection. Indeed,
if this turn time is long, the airplane must be moved to a parking, which increases the cost of

140

8.2. Maintenance state graph and compact integer program

Instance Legs Airplanes Airplane
connect.

AR4 152 2107 4
AR8 313 8723 8
AR12 470 19536 12
A318 669 39564 18
A319 957 45901 41
A320 918 49647 45
A321 778 29841 25

Table 8.1 – Aircraft Routing instances

the connection.

As all these costs only depend on the connection, they can easily be added into program
(8.2) using cα = ca = c terminal

a +cSchengen
a +cduration

a where a is the unique connection arc in AR

corresponding to state arc α. This leads to the following linear program.

min
∑
α∈A

cαxα∑
ϑ ∈ Vv

α ∈ δ−(ϑ)

xα = 1 ∀v ∈V R\S

∑
ϑ ∈ Vv

α ∈ δ+(ϑ)

xα = 1 ∀v ∈ S

∑
α∈δ−(ϑ)

xα = ∑
α∈δ+(ϑ)

xα ∀ϑ ∈ V

xα ∈ {0,1} ∀α ∈A

(8.3a)

(8.3b)

(8.3c)

(8.3d)

(8.3e)

Remark 8.2. The strength of this linear program is that it admits the same linear relaxation
as the column generation linear program of Equations (6.4). Indeed, any solution of the
relaxation of one of these problems can be expressed as a convex combination of solutions of
the other one.

8.2.3 Numerical results

In this section, we test the efficiency of the algorithms for the AIRCRAFT ROUTING PROBLEM

on the instances in Table 8.1. These instances have been introduced in the context of the
INTEGRATED PROBLEM in Chapter 7.

The numerical experiments are performed on a server with 128 Gb of ram and 12 cores at 2.4
GHz. CPLEX 12.1.0 is used to solve (8.2). In the INTEGRATED PROBLEM scheme of Chapter 7,
the AIRCRAFT ROUTING PROBLEM is solved several times with different short connection
constraints. The time needed to prove infeasibility on infeasible instances is therefore at least
as important as the time needed to find a feasible solution when the AIRCRAFT ROUTING

141

Chapter 8. Compact integer program for aircraft routing

Instance Feasibility Computation
time (mm:ss)

AR4 True 00:00.34
False 00:00.17

AR8 True 00:03.27
False 00:01.99

AR12 True 00:06.24
False 00:04.03

A318 True 01:35.20
False 00:14.03

A319 True 00:18.85
False 00:21.57

A320 True 13:27.96
False 00:34.76

A321 True 00:18.75
False 00:22.95

Table 8.2 – Feasibility and infeasibility of Aircraft Routing problem

Instance Computation
time (mm:ss)

AR4 00:01.01
AR8 00:05.44
AR12 00:21.59
A318 00:58.01
A319 01:04.84
A320 03:54.55
A321 01:02.82

Table 8.3 – Computation time for Aircraft Routing optimization problem

PROBLEM is feasible. Therefore, in Table 8.2, we consider two version of each instances: one
that is feasible, and one that has short connections constraints that make it infeasible.

These solution times are much smaller than those required to solve the CREW PAIRING PROB-
LEM. This proves that our compact integer programming approach to AIRCRAFT ROUTING

PROBLEM is relevant in the context of the INTEGRATED PROBLEM.

Finally, in Table 8.3, we test the ability of compact integer program (8.3) to solve the optimiza-
tion version of AIRCRAFT ROUTING PROBLEM. The objective here is to minimize the number of
airplanes used. We observe that the solution times needed are not much higher than the ones
needed for feasibility problems.

142

8.3. Aircraft routing problem complexity

8.3 Aircraft routing problem complexity

As the content of this section is not used in the context INTEGRATED PROBLEM, we denote
the AIRCRAFT ROUTING PROBLEM connection graph D = (V , A) instead of DR = (V R , AR) in
this section. The AIRCRAFT ROUTING PROBLEM is often referred to be N P -complete, but its
mathematical formulation is not fixed in the literature, and we are not aware of a paper stating
a precise definition of the problem completed by the proof of its N P -completeness in the
general case. Talluri [165] considers a restricted version of the AIRCRAFT ROUTING PROBLEM,
gives a polynomial algorithm for δmaint ≤ 3, and proves its N P -completeness for δmaint ≥ 4.
In this dissertation, we prove the two following theorems.

Theorem 8.2. The AIRCRAFT ROUTING PROBLEM is N P -complete for δmaint ≥ 3.

Theorem 8.3. The AIRCRAFT ROUTING PROBLEM is polynomial when the number of airplanes
k is fixed. It can be solved in time bounded from above by 2|V |δk

maint, where k is the number of
airplanes and n the number of flight legs.

Both theorems rely on an analogy with vertex-disjoint paths problems, which are special cases
of multicommodity flow problems, and are proved to be N P -complete in the general case
[69] and polynomial [79] when the number of commodity is fixed.

The input of the AIRCRAFT ROUTING PROBLEM defined in Section 8.1 is a connection graph. As
we already noticed, a more natural input for this input would be the list of the legs to be covered
or schedule. Appendix B defines the SCHEDULE AIRCRAFT ROUTING PROBLEM, whose input is
a schedule, and proves Theorems 8.2 and 8.3 in the context of SCHEDULE AIRCRAFT ROUTING

PROBLEM. As the general case approach does not bring additional ideas but requires the
introduction of many technical details, we give in this section a proof of Theorems 8.2 and 8.3
based on the connection-graph version of the AIRCRAFT ROUTING PROBLEM introduced in
Section 8.1.

8.3.1 N P -completeness

We now prove that AIRCRAFT ROUTING PROBLEM as it has been stated in 8.1 is N P -complete.
Nonetheless, if we take a generic graph D as a connection-graph, it is not always possible to
construct a schedule, that is to say a set of flight legs between airports at given time, with D as
connection graph. Indeed, as we will see in Appendix B, a schedule can easily be reconstructed
from an airport-time graph. But as the connection graph shares most of its structure with the
line-graph of the airport-time graph, an airport-time graph and thus a schedule cannot be
easily reconstructed from the connection graph.

The TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH is N P -complete
[69].

TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH

Input. An acyclic digraph D = (V , A), vertices s1, s2, t1, and t2, two non negative integers R1

and R2.

143

Chapter 8. Compact integer program for aircraft routing

Output. Ri arc-disjoint paths from si to ti for i = 1,2.

A source in a digraph is a vertex with no incoming arc, and a sink is a vertex with no outgoing
arc. Adding Ri new sources (resp. sinks) vertices ui (resp. vi), and Ri arcs (ui , si) (resp. (ti , vi)),
and going to the line graph, we reduce the TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM

ON ACYCLIC DIGRAPH to the following N P -complete problem.

TWO-COMMODITIES VERTEX-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH

Input. A directed acyclic graph D = (V , A), sets of sources S1 and S2, sets of sinks T1 and T2

such that |Si | = |Ti | = Ri .
Output. Ri vertex-disjoint paths from Si to Ti .

Proof of Theorem 8.2. The proof is a reduction of the TWO-COMMODITIES VERTEX-DISJOINT

PATHS PROBLEM ON ACYCLIC DIGRAPH. Without loss of generality, we suppose that δmaint = 3.
Larger δmaint can be dealt with analogously by adding (δmaint−3) non-maintenance night arcs
before each source of the instance constructed.

Let D,S,T be an instance of the TWO-COMMODITIES VERTEX-DISJOINT PATHS PROBLEM ON

ACYCLIC DIGRAPH. We start by building from D a digraph D ′ as follows. Let I be the set of
vertices V \(S1 ∪S2 ∪T1 ∪T2). For each vertex v ∈ I , we add two vertices sv and tv and three
arcs (sv , v), (v, tv), and (sv , tv) to obtain D ′ = (V ′, A′). The set S′ of sources of D ′ is equal to
S1 ∪S2 ∪⋃

v∈I {sv }, and the set T ′ of sinks is equal to T1 ∪T2 ∪⋃
v∈I {tv }.

We now show that the existence of R1 + R2 vertex-disjoint paths from S1 ∪S2 to T1 ∪T2 in D
implies the existence of a partition of the vertices of D ′ into source to sink paths. Indeed,
suppose that P contains R1 + R2 vertex-disjoint paths from S1 ∪S2 to T1 ∪T2 in D. For each
vertex v ∈ I , we define path Pv to be equal to (sv , tv) if v belongs to some path P ∈P , and to
(sv , v, tv) otherwise. Then P ∪ [

⋃
v∈I {Pv }] is a partition of the V ′ into source to sink paths. This

construction is illustrated on Figure 8.3.

We now build a connection graph D ′′ = (V ′′, A′′) on D ′, a night set N ⊆ A′′, and a maintenance
night set M ⊆ N as follows. For each vertex s ∈ S′, we build two vertices us , vs and the two
arcs (us , vs) and (vs , s), and we add these arcs to N . If s ∉ S1 ∪S2, then we add both (us , vs)
and (vs , s) to M . If s ∈ S1, then we add only (us , vs) to M , and if s ∈ S2, we do not add (us , vs)
and (vs , s) to M . Symmetrically, for each vertex t ∈ T ′, we build two vertices ut , vt and the
arcs (t ,ut) and (ut , vt) and we add these arcs to N . If t ∈∉ T1 ∪T2, we do not add (t ,ut) and
(ut , vt) to M . If t ∈ T1, then we add (ut , vt) to M , and if t ∈ T2, we add both (t ,ut) and (ut , vt)
to M . The triple (D, N , M) defines an instance of the AIRCRAFT ROUTING PROBLEM with no
boundary conditions. This construction is also illustrated on Figure 8.3.

We now prove that the existence of a solution to the TWO-COMMODITIES VERTEX-DISJOINT

PATHS PROBLEM ON ACYCLIC DIGRAPH instance (D,Si ,Ti) is equivalent to the existence of a
solution to the AIRCRAFT ROUTING PROBLEM problem instance (D ′′, N , M). The implication
directly follows from the fact that any solution to the initial problem can be extended to a path
partition of the vertices of D ′, which is naturally extended to a path partition of D ′′ by adding
to any us , vs , ut , and vt to any s-t path. Besides, by disjunction of case on the S1-T1, the S2-T2,
and the remaining paths, we can check that each path satisfies the maintenance constraint,

144

8.3. Aircraft routing problem complexity

S1

S2

T1

T2

D′

D′′

Arc of D

Arc of D′

D

Maint. arc

Night arc

Figure 8.3 – Reduction of the disjoint path problem instance D to the aircraft routing in-
stance D ′′. Arcs in color on D ′ show a vertex disjoint path partition. Arcs in red show how the
new arcs enable to obtain a path partition from a solution of the initial problem. Arcs in color
on D ′′ indicate the solution of both problems.

and thus is a feasible route, which gives the result.

Conversely, let P be a partition of D ′′ into feasible routes. If there is a vertex of S2 on a path
P ∈ P , then there is necessarily a vertex of T2 on this path, as otherwise there would be
3 = δmaint consecutive night arcs of P that are not maintenance night arcs, which contradicts
the hypothesis of P being a feasible route. The same reasoning and the fact that all vertices
of T2 are on paths going through S2 enable to conclude that any path of P going through a
vertex of S1 goes through a vertex of T1. As a consequence, the restriction of P to paths in D
gives a solution to the TWO-COMMODITIES VERTEX-DISJOINT PATHS PROBLEM ON ACYCLIC

DIGRAPH, which gives the equivalence and the theorem.

145

Chapter 8. Compact integer program for aircraft routing

Remark 8.3. The definition of the connection graph from an airline schedule induces some
structure on the graph. The most important point is that the night set N sets is the union of
several Ni corresponding to each night of the schedule. If S denotes the set of sources and
T the set of sinks of the connection graph, each night is an S-T cut. Note that all the nights
defined the the proof of Theorem 8.2 are S-T cuts. Additional details are given in Appendix B.

Remark 8.4. The reduction of the TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON

ACYCLIC DIGRAPH to the TWO-COMMODITIES VERTEX-DISJOINT PATHS PROBLEM ON ACYCLIC

DIGRAPH is done by going into the line-graph. The proof of N P -completeness in the airport-
time graph given in Appendix B is analogue of the proof given in this section, but the reduction
is directly from the TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH,
which makes sense as the connection graph shares most of its structure with the line graph of
the airport-time graph.

8.3.2 Fixed parameter tractability

We now focus on the proof of Theorem 8.2. As polynomial algorithms for the AIRCRAFT ROUT-
ING PROBLEM only have a theoretical interest, we give in this section a simple polynomial
algorithm in O

(|V |k+1δk
maint

)
. The algorithm giving the bound of Theorem 8.3 has the same

flavor, but as it requires technical developments, we postpone it to Appendix B. Both algo-
rithms are inspired by pebbling game algorithms for integer multi-commodity flows problems
[79]. We underline the fact that, in these algorithms, the k airplaines are not identifiable.

The idea of the algorithm is to move planes on the maintenance state graph D = (V ,A). Let
Vdist be the set of distributions δ of k airplanes on the state vertices ϑ ∈ V such that, for each
vertex of the initial graph v , there is at most one airplane on the state vertices in Vv .

We now consider these distributions as the vertices of a digraph Ddist = (Vdist, Adist), where
Adist is built as follows. Let ¹ be a topological ordering of the vertices of D , let i (v) be the index
of v for ¹, let vi be the vertex with index i , and let i (δ) be the largest index of the vertices v
such that there is a plane on a state vertex of Vv in δ. Let δ1 and δ2 be two distributions such
that i (δ2) = i (δ1)+1. Then there is an arc between δ1 and δ2 only if δ2 can be obtained from
δ1 by moving only one plane along an arc of A . Note that this plane necessarily ends on the
state vertex of Vvi in δ2, where i = i (δ1)+1.

Lemma 8.4. The cardinal of Adist is non greater than |V |k+1δk
maint

Proof. There are

(
V
k

)
ways of choosing the k vertices v such that there is a plane in Vv , and

then for each of these vertices, δmaint ways of choosing the state vertices in Vv on which the
plane is. As a consequence, |Vdist| ≤ |V |kδk

maint. The result is given by the fact that each state
vertex has at most |V | predecessors.

Lemma 8.5. There is a bijection between the solutions of the AIRCRAFT ROUTING PROBLEM and
the paths in Ddist from the origin distributions, where all the planes are on sources vertices, to
the destination distributions, where all the planes are on sinks.

146

8.4. Bibliographical remarks

Proof. Let P be the set of maintenance state graph paths π1, . . . ,πk of a solution of the AIR-
CRAFT ROUTING PROBLEM. As P induces a partition of V , for each vertex v in V , there is a
unique path π in P that intersects Vv . For each j ≥ k in [|V |], let ϑ j denote the unique state
vertex in Vv j that is contained in a path of P . And for j > k, let ϑ′

j be the unique state vertex
such that the arc (ϑ′

j ,ϑ j) is in a path of P . We define δk to be the distribution {ϑ1, . . . ,ϑk }. And
for j from k +1 to |V |, we define δ j to be δ j−1 ∪ {ϑ j }\{ϑ′

j }. Distribution δk is an origin distribu-
tion and δ|V | is a destination distribution. Besides, as i (δ j) = j , by definition of Adist, there is
an arc between δ j and δ j+1 for each j in k, . . . , |V |−1. As a consequence, (δk ,δk+1, . . . ,δ|V |) is
an origin to destination path in the distribution graph.

Conversely, let (δk , . . . ,δ|V |) be an origin to destination path in Ddist. For each j in k +1, . . . , |V |,
we define ϑ j (resp. ϑ′

j) to be the unique state vertex in δ j \δ j−1 (resp. δ j−1\δ j). By definition of
Adist, α j = (ϑ′

j ,ϑ j) is an arc in A , and there exists a unique index h < j such that ϑh =ϑ′
j . As a

consequence, the union of theα j for j in k+1, . . . , |V | is a set of maintenance state graph paths
that induces a partition of V , and thus defines an AIRCRAFT ROUTING PROBLEM solution.

Proof of Theorem 8.3 with the weaker upper bound |V |k+1δk
maint. Lemma 8.5 ensures that a

path algorithm in distribution graph Ddist finds an solution to the AIRCRAFT ROUTING PROB-
LEM if this solution exists. As Ddist is acyclic, the running time of a path finding algorithm in
Ddist is |Adist|, and Lemma 8.4 gives the theorem.

8.4 Bibliographical remarks

Traditional approaches split the AIRCRAFT ROUTING PROBLEM into two subproblems. The
first problem produces routes for one day, and the second problem combines these one day
routes into a week long (or month long) routes which satisfy the maintenance requirement. A
polynomial algorithm for the second subproblem exists for δmaint = 3 [88], but for δmaint ≥ 4,
the problem is N P -complete [165]. Heuristics [73] and a Lagrangian relaxation [41] have
been proposed to solve the global problem.

During the last two decades, AIRCRAFT ROUTING PROBLEM has often been turned into an opti-
mization for two different reasons. The first reason is its integration with the fleet assignment
problem. In low frequency point to point networks, aircraft routing in often infeasible given
the fleet assignment solution. Researchers have therefore integrated fleet assignment and
aircraft routing models [20, 52]. The second reason is delay. Indeed, delay on flight legs is a
significant source of costs for airline companies. A statistical treatment shows that delay is
more likely to arise on some specific flight legs. Thus aircraft routing can be optimized while
minimizing the expected value of total delay [112] – or any other risk measure of delay. A more
details literature review on delay propagation in AIRCRAFT ROUTING PROBLEM is provided in
Chapter 11. In both the fleet assignment and the delay versions, the instances of the AIRCRAFT

ROUTING PROBLEM considered are one day-long, which corresponds to the first subproblem
in the previous paragraph. And in both cases, the solution strategy derived is a column genera-
tion approach, where the subproblem generates routes, and the master problem combines
these routes in an integer program whose constraints are analogue to those of system (6.4).

These column generation approaches can of course be used to solve the ground cost version

147

Chapter 8. Compact integer program for aircraft routing

of the AIRCRAFT ROUTING PROBLEM introduced in Section 8.2.2, but they are more difficult to
implement than our compact integer program. Besides, Chapter 11 shows that this compact
integer program can be generalized to take into account delay propagation.

148

9 Column generation for crew pairing
problem

This chapter focuses on the resolution of the constrained CREW PAIRING PROBLEM (7.2). Given
a set of flight legs L to be operated, the CREW PAIRING PROBLEM builds the sequences of flight
legs or pairings p assigned to the different crews. Pairings must respect several constraints to
be feasible. These constraints are modeled though the set of feasible pairings P . Each leg `
must be covered by exactly one route. Finally, in the integrated scheme, additional constraints
relying on short connections sets S are added to obtain the CREW PAIRING PROBLEM (7.2),
which we restate here.

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣∣∣∣∣

∑
p3`

yp = 1, ∀` ∈L∑
p∈P

|p ∩S|yp ≤ |S|−1 ∀S ∈I SC

yp ∈ {0,1}, ∀p ∈P

(7.2)

When I SC is empty, we obtain the usual CREW PAIRING PROBLEM.

The complexity of the crew working rules make the CREW PAIRING PROBLEM hard to express as
a compact integer program analogue to the one derived for the AIRCRAFT ROUTING PROBLEM

in Chapter 8. We therefore solve the formulation (7.2) of the CREW PAIRING PROBLEM. As the
number of feasible pairings in P is exponential in the number of legs, we cannot consider the
full pairing set P when solving this problem, which we therefore solve by column generation.

Chapter 9 is organized as follows:

• Section 9.1 details the column generation approach to the CREW PAIRING PROBLEM.
Additional linking constraints specific to Air France problem are considered.

• Section 9.2 considers the pricing subproblem of the column generation, which happens
to be a resource constrained shortest path problem. This subproblem is dealt with in
the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework of Part I.

• Section 9.3 gives numerical results which prove the efficiency of the approach on Air
France instances.

• Section 9.4 gives a literature review on the solution method of the CREW PAIRING PROB-

149

Chapter 9. Column generation for crew pairing problem

LEM.

9.1 Column generation approach to CREW PAIRING PROBLEM

9.1.1 Master problem

The CREW PAIRING PROBLEM solved at Air France is slightly more complicated than Prob-
lem (7.2) due to additional linking constraints. A duty contains all the legs operated by a crew
on one day. Air France crew working rules contains the two following rules.

Air France working rule 1. A duty is long if it contains more than three legs. The proportion of
long duties must be non-greater than β.

Air France working rule 2. A pairing is long if it contains more than three duties. The proportion
of long pairings must be non-greater than α.

Let P L ∈P be the set of long pairings, and 1P L be the indicator function of P L on P . Let DS

be the set of long duties that are not long duties, and DL be the set of long duties. As a pairing
p is a sequence of duties, we denote p ∩DL the intersection of pairing p with DL and |p ∩DL |
the number of long duties in DL . We can now state the CREW PAIRING MASTER PROBLEM.

min
∑

p∈P

cp yp

(zv) st
∑
p3v

yp −1 = 0 ∀v ∈V

(ts)
∑

p∈P

|p ∩S|yp − (|S|−1) ≤ 0 ∀S ∈I SC

(λ)
∑

p∈P

(1P L (p)−α)yp ≤ 0

(µ)
∑

p∈P

((1−β)|p ∩DL |−β|p ∩DS |)yp ≤ 0

yp ≥ 0 ∀p ∈P

(9.1)

where variables zv , ts , λ and µ are the dual variables associated respectively to the cover, the
short connections constraints, the long duties, and the long pairings constraints. The dual of
Problem (9.1) is Problem (9.2).

max
∑

s∈I SC

−tsms +
∑

v∈V
−zv

st cp + ∑
v∈p

zv +
∑

s∈I SC

ts |p ∩Ss |+λ
(
1P L (p)−α)

+µ(
(1−β)|p ∩DL |−β|p ∩DS |)≥ 0 ∀p ∈P

zv ∈R, ∀v ∈V
ts ,λ,µ≥ 0, ∀s ∈I SC

(9.2)

Let P ′ be a subset of P . The following lemma is a well-known result of the column generation
theory.

Lemma 9.1. Let y∗ be an optimal solution of the relaxation of (9.1) restricted to P ′, and (z∗,t∗,
λ∗,µ∗) be its dual. Then y∗ is the optimal solution of the relaxation of (9.1) (on the complete

150

9.1. Column generation approach to CREW PAIRING PROBLEM

P) if the constraint of the dual problem (9.2) is satisfied by (z∗,t∗, λ∗,µ∗) for all pairing p ∈P .

9.1.2 Pricing subproblem

Given a solution (z,t, λ,µ) of the dual problem restricted to P ′, the PRICING SUBPROBLEM

aims at finding the pairing p ∈P whose constraint

cp + ∑
v∈p

zv +
∑

s∈I SC

ts |p ∩Ss |+λ
(
1P L (p)−α)+µ(

(1−β)|p ∩DL |−β|p ∩DS |)≥ 0

is most violated. The PRICING SUBPROBLEM can thus be expressed as follows.

min
p∈P

cp + ∑
v∈p

zv +
∑

s∈I SC

ts |p ∩Ss |+λ
(
1P L (p)−α)+µ(

(1−β)|p ∩DL |−β|p ∩DS |) (9.3)

Given a solution (z,t, λ,µ) of the dual problem, the objective of the pricing subproblem is
called the reduced cost of pairing p and denoted c̃p .

c̃p = cp + ∑
v∈p

zv +
∑

s∈I SC

ts |p ∩Ss |+λ
(
1P L (p)−α)+µ(

(1−β)|p ∩DL |−β|p ∩DS |) (9.4)

Section 9.2 develops an algorithm to solve the PRICING SUBPROBLEM. Lemma 9.1 implies
that if the solution of the PRICING SUBPROBLEM has positive reduced cost, then the optimal
solution of the relaxed CREW PAIRING MASTER PROBLEM restricted to P ′ is the solution of the
initial relaxed CREW PAIRING MASTER PROBLEM.

9.1.3 Column generation algorithm for the linear relaxation

The column generation algorithm to solve the relaxation of master problem (9.1) starts with a
set of pairings P ′ such that (9.1) admits a feasible solution. To ensure feasibility, we initialize
P ′ with, for each flight leg `, a pairing p` containing only `. Any other legs needed in p`
to obtain its feasibility are deadhead legs, which means that the members of the crew that
operates p` are only passengers on these legs. The following operations are then executed.

1. Initialize P ′.
2. Solve the relaxed CREW PAIRING MASTER PROBLEM (9.1) restricted to P ′ and store the

solution in (y∗
p) and the dual (z∗

v , t∗s , λ∗,µ∗).
3. Solve the PRICING SUBPROBLEM with reduced cost associated to (z∗

v , t∗s , λ∗,µ∗) and
denote p its solution.

4. If c̃p < 0, then add p to P ′, and go to (2). Otherwise the algorithm is terminated.

Column generation theory ensures that this algorithm converges after a finite number of
iterations, and at the end of the algorithm, (y∗

p) is an optimal solution of the relaxation of
CREW PAIRING MASTER PROBLEM (9.1).

151

Chapter 9. Column generation for crew pairing problem

Lower bounds on the linear relaxation

The following proposition enables to obtain a lower bound on the value of the linear relaxation
when the column generation scheme is still not finished. The number of legs |L | can be
replaced by any other upper bound on the number of pairings in an optimal solution.

Proposition 9.2. Let P ′ be a subset of P , y∗
p be the optimal solution of the master problem

(9.1) restricted to P ′, c∗ =∑
p cp y∗

p , and (z∗
v , t∗s , λ∗,µ∗) be its dual solution. Suppose that the

corresponding PRICING SUBPROBLEM has been encoded as a MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM where vertices correspond to legs. Let P1, . . . ,P|L | be |L | solutions of
the pricing subproblem which satisfy one of the following conditions

1. P1, . . . ,P|L | are the |L | feasible paths of minimum reduced cost c̃P1 , . . . , c̃P|L | .
2. P1, . . . ,P|L | are the |L | feasible paths of minimum reduced cost c̃P1 , . . . , c̃P|L | among those

whose subpaths are non-dominated for the lattice ordered monoid order.

Then c∗+
|L |∑
i=1

[
c̃Pi

]− is a lower bound on the optimal solution of the master problem (9.1) on P ,

where [·]− denotes the negative part.

Case 1 is a standard column generation result which enables to obtain a lower bounds when
the k shortest path of the pricing subproblem are computed. In this dissertation, we use
this result to obtain bounds when the generalized A∗ algorithm of Chapter 4 is used to solve
the pricing subproblem. Case 2 is less standard stronger result that enables to obtain lower
bounds when the label correcting algorithm of Chapter 4 is used.

Remark 9.1. In the reduction of the pricing subproblem to a MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM, the only vertices that do not correspond to legs are the origin and
the destination vertex. As no paths are cut because of domination at these vertex, Case 2 still
applies.

Proof. We start by introducing some notations and a standard result on linear program bases.
For the purpose of the proof, let A, b, and c be one matrix and two vectors such that the master
problem (9.1) can be rewritten

min ct y,
s.t. Ay = b,

y ≥ 0,

where slack variables have been introduced. These slack variables do not play a role in the
objective. Let B be the basis corresponding to the solution y∗ considered in the proposition,
AB the corresponding matrix, and AN be the matrix of non-basic variables. Denoting cB (resp.
cN) the cost vector corresponding to the basic (resp. non-basic) variables, we can rewrite the
master problem as follows.

min ct
B AB + (ct

N −ct
B A−1

B AN)yN

s.t. yB = A−1
B b−A−1

B AN yN

yB ≥ 0,yN ≥ 0
(9.5)

152

9.1. Column generation approach to CREW PAIRING PROBLEM

Denoting z the vector of dual variables we can write the dual problem on P ′ as follows.

max zt b
s.t. zt A ≤ c

z ≥ 0

We now prove that, for each pairing p, the cost c̃p defined in Equation (9.4) is the reduced
cost (cN − ct

B A−1
B AN)p associated to the pairing variable yp . Let zt∗ = ct A−1

B . We have zt∗A =
ct A−1

B (AB ,AN) = (ct
B ,ct

B A−1
B AN) ≥ 0. As B is an optimal basis of the master problem reduced to

P ′, we have ct
N −ct

B A−1
B AN . Thus, zt∗A ≤ c, and z∗ is a feasible solution of the dual reduced to

P ′. Besides, the value of the dual at z∗ is equal to the value of the primal ct A−1
B b. Therefore, z∗

is an optimal solution of the dual by weak duality. As a consequence, if z is an optimal solution
of the dual, then ci −∑

j z j a j i that appears in the i ’th constraint of the dual is the reduced
cost associated to variable yi because the optimal solution of the dual is ct A−1

B where yB is the
optimal solution of the primal. Given the definition of c̃p , this gives the result mentioned at
the beginning of the paragraph.

Case 1 follows directly from (9.5). Indeed, let y be a solution of the master problem, and yN

be the corresponding solution to (9.5). Then we have ct y = ct y∗+ (ct
N −ct

B A−1
B AN)yN . Given

the fact that
∑

p∈N yp ≤ |L | due to the family of constraints
∑

p3` yp = 1, (ct
N −ct

B A−1
B AN)yN is

non-greater than the sum of the |L | smallest reduced costs of pairings in N , which gives the
result.

We now consider Case 2. Let (y′B ,y′N) be an arbitrary solution master problem (9.5) on the full
pairing set P . Let ` be a leg, and let P (`) be the set of all pairings such that yp ′ > 0 and whose
last leg is `. If P (`) is not empty, among all the pairing of minimum reduced cost ending in
`, there exists a non-dominated pairing. Let p(`) be such a pairing. We have c̃p(`) ≤ c̃p ≤ 0
for each p ∈P (`). Besides, as

∑
p3` yp = 1, and as ` belongs to a pairing ending in `, we have∑

p∈P (`) y ′
p ≤ 1. As each pairing has a last leg, we have

∑
p∈P

c̃p y ′
p = ∑

` ∈L :
P (`) 6= ;

∑
p∈P (`)

c̃p y ′
p ≥ ∑

` ∈L :
P (`) 6= ;

c̃p(`)

(∑
p∈P (`)

y ′
p

)
≥ ∑
`∈L

c̃p(`).

The pairings p(`) are non-dominated, and their last leg is `, they are distinct for distinct `.
As a consequence, the right hand side of the last equation is a sum of at most |L | distinct
non-dominated pairings, which gives the result.

9.1.4 Integer solutions

In practice, we want to solve the integer program obtained by replacing yp ≥ 0 by yp ∈ {0,1}
in (9.1). The standard procedure is to integrate column generation in a branch and bound
procedure. As the set of pairings used in the column generation evolves, variables yp cannot
be used for branching. A practical solution consists in branching on the variables νa that
are equal to

∑
p3a yp . Nonetheless, as the solution of the relaxed master problem(9.1) is near

optimal, we can avoid this branching scheme in our case.

153

Chapter 9. Column generation for crew pairing problem

We suppose to be at the end of the column generation scheme. We therefore have an optimal
solution y∗ of Problem (9.1), and we denote by c̃p the associated reduced cost. Let cU B be an
upper bound on the cost of the optimal solution.

Proposition 9.3. If c̃p > cU B −c y∗, then yp = 0 in any optimal solution of the integer solution
of Problem (9.1).

This result is a direct application of the following well-known and easy lemma on column
generation to Problem (9.1).

Lemma 9.4. Consider the following linear integer program program,

min cT x
s.t . Ax = b

x ∈Zn+
(IP)

with A ∈Rm×n and its linear relaxation,

min cT x
s.t . Ax = b

x ≥ 0
(LP)

Let y′ be a feasible solution of the dual of (LP) restricted to the generated pairings, and cU B be
an upper bound on the solution of (IP). Let c̃i = ci −∑

j y ′
j a j i be the reduced cost of variables xi .

Then if i is such that its c̃i > cU B − y ′T b, then xi = 0 in any optimal solution x of (IP).

Based on Proposition 9.3, the following scheme [18] enables to obtain an optimal solution
based on a good quality solution provided by a heuristic.

1. Solve the linear relaxation of Problem (9.1) by column generation and denote y∗ the
optimal solution.

2. Solve the integer version of Problem (9.1) using a heuristic and denote cU B the cost of
the best solution found.

3. Generate all the pairings p whose reduced cost satisfies c̃p ≤ cU B − c y∗.
4. Solve the integer version of Problem (9.1) using an integer programming solver.

Practically, an efficient heuristic is obtained by avoiding steps 2 and 3. Indeed, on all our
instances, the same solution is obtained after adding the new columns, the integrality gap of
the master problem (9.1) is non greater than 0.005%.

9.2 Resource constrained shortest path subproblem

In this section, we introduce an algorithm to solve the PRICING SUBPROBLEM, which aims
at finding a feasible pairing with minimum reduced cost. Let us recall the main notions
required by the definition of the PRICING SUBPROBLEM in Section 9.1.2. To be feasible, duties
and pairings must respect several rules. The most constraining rules in Air France case are
detailed in Section 9.2.1. The PRICING SUBPROBLEM is traditionally solved as a STANDARD

154

9.2. Resource constrained shortest path subproblem

RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. A first approach consists in generating
all the feasible duties to build the duty graph, and then solve the PRICING SUBPROBLEM

as a STANDARD RESOURCE CONSTRAINED SHORTEST PATH PROBLEM in the duty graph. We
later refer to this approach as the two steps approach. The second approach consists in
solving directly the PRICING SUBPROBLEM as a STANDARD RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM in the pairing graph. Due to the inherent complexity of Air France working
rules, the two steps approach was traditionally used at Air France [51]. The recent version
of the algorithm used the Boost C++ library [1]. Nonetheless, due to the large number of
feasible connections at the hub, the number of feasible duties becomes too large to be tackled
practically.

We therefore solve Air France PRICING SUBPROBLEM directly on the pairing connection graph.
The complexity of Air France working rules makes the use of the Boost C++ library impos-
sible in practice. In this section, we show that Air France subproblem can be dealt within
the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM formalism of Part I. Sec-
tion 9.2.1 gives the crew working rules that define Air France specific PRICING SUBPROBLEM.
Sections 9.2.2 and 9.2.3 show how to implement Air France PRICING SUBPROBLEM within the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework. Due to the nature
of crew working rules, Sections 9.2.1 to 9.2.3 are fairly technical, and they can be skipped by a
reader not interested in the practical implementation of an airline regulation.

In the next sections, we formulate the PRICING SUBPROBLEM as a MONOID RESOURCE CON-
STRAINED SHORTEST PATH PROBLEM. The first step is the definition of the digraph D in Section
9.2.2, and the second step is the definition of the lattice ordered monoid (M ,⊕,6). Due to the
technical complexity of Air France working rules, we do not give the exhaustive definition of
the lattice ordered monoid which enables to treat all working rules. A list of tips to handle all
working rules are given in Section 9.2.3.

9.2.1 Air France working rules

We now introduce some of the main working rules at Air France.

Air France working rule 3. The number of duties in a pairing must be non greater than nmax
d .

Air France working rule 4. The time between two successive legs in a duty must belong to
[t min
α , t max

α]

Air France working rule 5. A night rest must be longer than t min
r

where a night rest is the time between the end of a duty and the beginning of the next duty in
a pairing.

Air France working rule 6. A crew is assigned to a special airport called its base. A pairing starts
and ends in the same base.

In Air France instances considered, ORY and CDG airports are considered to be the same
“Paris” base. Besides Paris base is the unique base.

Air France working rule 7. The number of legs in a duty must be non greater than 4.

155

Chapter 9. Column generation for crew pairing problem

Air France working rule 8. The flying time in a duty d with one or two legs starting at t must
be non greater than t max;1,2

`
(t). The flying time in a duty d with three or four legs starting at t

must be non greater than t max;3,4
`

(t).

Air France working rule 9. The duty time in a duty d with 1 or 2 legs starting at t must be non
greater than t max;1,2

d (t). The duty time in a duty d with 3 or 4 legs starting at t must be non

greater than t max;3,4
d (t).

The next rules define the notions of normal night rest and reduced rest.

Air France working rule 10. An inter-duty connection is a normal night rest if its length is
greater than the maximum of 10h30 and the duty time of the preceding duty. Otherwise, it is a
reduced rest.

Air France working rule 11. There is at most one reduced rest in a pairing.

Air France working rule 12. The number of legs in a duty following a reduced rest is 3.

Technically speaking, these rules can be split into two groups. Rules 3 to 6 are used in Section
9.2.2 to define the pairing connection graph, while Rules 7 to 12 are used in Section 9.2.3 to
define the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM resource set.

9.2.2 Pairing connection graph

The pairing connection graph DP = (V P , AP) is an analogue for the CREW PAIRING PROBLEM

of the routing connection graph introduced in the context of AIRCRAFT ROUTING PROBLEM

in Section 8.1. As in the case of the routing connection graph, there is one vertex v` ∈V P per
flight leg ` in L . Vertex set V P is the union of the leg vertices {v`|` ∈L } and a source vertex o
and a sink vertex d . Arcs in AP correspond to feasible connections.

A pairing corresponds to a unique source to sink path in the connection graph. Therefore, the
connection graph enables to enforce three types of working rules. The first type of working
rules that can be implemented in the connection graph is composed of working rules which
limit the scope of the connection graph. Take for instance Rule 3, which limits the number
duties in a pairing. As the length of a duty is one day, this rule can easily be implemented by
working on nmax

d days subgraphs of the connection graph.

Arcs in AP correspond to feasible connections. As pairings are sequences of duties, there
are two types of connections: intra-duty connections α ∈ Aintra are connections between
legs inside a duty, whereas inter-duty connections α ∈ Ainter are connections between legs
belonging to two successive duties. The common property of intra and inter-duty connections
(`1,`2) is that `2 must depart from the arrival airport of `1 after the arrival of `1. Rule 4
defines the intra-duty feasible connection set Aintra, and Rule 5 defines the inter-duty feasible
connection set Ainter.

Third, the arcs from the source and to the sink enable to define where a pairing can start and
where a pairing can end, and thus to enforce Rule 6.

156

9.2. Resource constrained shortest path subproblem

9.2.3 Working rules lattice ordered monoid

We continue the reduction of the PRICING SUBPROBLEM by defining the lattice ordered monoid
(Rdet.,⊕det.,6det.), the non-decreasing cost function cdet., the non-decreasing feasibility func-
tion ρdet., and the resources qa for each arc a of the pairing connection graph. We use the index
·det., where det. stands for deterministic, to contrast with the stochastic monoid introduced
in Chapter 11. The requirements on the instance of the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM defined by DP , (Rdet.,⊕det.,6det.), cdet., ρdet., and (qa) are thus the
following ones: first it must properly encode the PRICING SUBPROBLEM, and second it should
be solved efficiently by the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algo-
rithms of Chapter 4.

MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM instance DP , (Rdet.,⊕det.,6det.),
cdet., ρdet., and (qa) properly encodes the PRICING SUBPROBLEM if, given a source to sink path
P and the corresponding sequence of flight legs p, then ρdet.(

⊕
a∈P qa) is equal to 0 if p is a

feasible pairing and to 1 otherwise, and cdet.(
⊕

a∈P qa) is the reduced cost of p. Therefore,
to encode properly the PRICING SUBPROBLEM, the resource x in the lattice ordered monoid
(Rdet.,⊕det.,6det.) must contain all the information required to check Rules 7 to 12.

The lattice ordered monoid (Rdet.,⊕det.,6det.) we use is such that Rdet. is a triple Rd ×Ri ×Rd .
A resource (qd1 , qi , qd2) ∈Rd×Ri ×Rd contains the information required to check the working
rules. Component qd1 contains the information on the first duty, component qi contains the
information on the rests and on the middle duty(ies), and finally component qd2 contains the
information on the last duty. Resources (qd1 , qi , qd2) and (q ′

d1
, q ′

i , q ′
d2

) can be added to obtain a
resource (q̃d1 , q̃i , q̃d2) = (qd1 , qi , qd2)⊕det. (q ′

d1
, q ′

i , q ′
d2

) . If a pairing p has resource (qd1 , qi , qd2),
and a pairing p ′ has resource (q ′

d1
, q ′

i , q ′
d2

), then the pairing corresponding to p followed by p ′

is a pairing with resource (q̃d1 , q̃i , q̃d2). This implies that ⊕det. is non-commutative, as pairing
p followed by pairing p ′ is not the same pairing as p ′ followed by p. Note that a resource
contains information on a sequence of flight legs which is only a partial pairing, in the sense
that this sequence may not start and end in a base. In the remaining of the section, we first
define Rd and Ri , and then ⊕det. and 6det.. The information on a partial pairing described by
a resource element of Rd ×Ri ×Rd is illustrated on Figure 9.1.

Partial duty Rest Duty Rest Duty Rest Partial duty

qd1
∈ Rd qi ∈ Ri qd2

∈ Rd

(qd1
, qi, qd2

) ∈ Rdet

Figure 9.1 – Resource in Rdet. =Rd ×Ri ×Rd containing the information on a partial duty.

Resource components in Rd thus contain the information on duties. In order to be able to
check Rules 7 to 9, elements of Rd have three components: one for the number of legs, one

157

Chapter 9. Column generation for crew pairing problem

for the flying time, and one for the duty time. This leads us to define Rd as Z+×R2+.

Resource components in Ri contain the information on the rests and the internal duties
necessary to check Rules 10 to 12 on rests, and the information necessary to check Rules 7 to 9
on the internal duties. The information on duties and rests in red on Figure 9.1 is summed up
by a binary variable b ∈ {0,1}, with b = 0 meaning that Rules 7 to 9 are satisfied by all duties
in red, and Rules 10 and 12 are satisfied by all rests in red. Besides, the number of reduced
rest nr r ∈Z+ among the rests in red is stored in order to be able to check Rule 12. The detailed
information required to check Rules 10 and 12 is stored for the first rest, in blue on Figure
9.1, that is to say the length qr ∈ R of the first rest and the number of flight legs in the duty
following the rest in blue n f d ∈Z+. For the last rest, in green on Figure 9.1, the duty time of
the duty immediately preceding the rest, and the length of the rest must be stored, which
means two components in R. To sum things up, set Ri is defined to be equal to {0,1}×Z2+×R3+
endowed with its canonical product order.

The set Rdet. = Rd ×Ri ×Rd is endowed with the canonical product order on (Z+×R2+)×
({0,1}×Z2+ ×R3+)× (Z+ ×R2+). The operator ⊕det. is defined by an algorithm which cannot
be easily written as an equation. The sequence of operations realized by this algorithm is
illustrated on Figure 9.2. It can be shown the canonical order 6 is compatible with operator
⊕det. by showing that each function of the algorithm, described by arrows on Figure 9.2, is
non-decreasing.

d1

r2 Reduced rest?

dc = d2 + d3

d1 d2 d3 d4r1 r2 r3 r4

dc ≤ 3 legs?

i1 i2

r3 Reduced rest?
i2 ≤ 3 legs?

i1 idic1 i1ic2

d4r4r1 ic

rules on dc.
Check duty

d ∈ Z+ ×R2
+

r ∈ R+ × Z+

i ∈ {0, 1} × Z+

r ∈ R2
+

{0, 1} × Z+

sum

Z+ ×R2
+

sum

Figure 9.2 – Algorithm defining ⊕det. on Rdet. = D × I ×D .

Note that the case of the resources for sequences of flight legs corresponding to a single duty
must be dealt with. The real lattice ordered monoid used is therefore Rdet. ∪Rd with properly

158

9.3. Numerical results on CREW PAIRING PROBLEM

adapted operators ⊕det. and 6det.. Besides, we don’t take into account all the working rules
in this section. We also have to take into account the cost and the reduced cost components.
Therefore additional components must be added to Rdet. and additional cases must be dealt
with in the algorithm. As these technical details present no major difficulty, we chose to omit
them for clarity.

The cost function cdet. and the feasibility function ρdet. are defined as algorithms on Rdet.. For
instance, feasibility function tests that Rules 7 to 9 are satisfied on the components in Rd , that
Rules 10 and 12 are satisfied by the Ri component, and Rule 11 is satisfied globally by the
three components. As the cost is non-decreasing in the different components of the resource,
and the working rules are mainly limitations on the size of these components, functions cdet.

and ρdet. are easily shown to be non-decreasing.

Intra-duty arc resources are chosen to be elements of Rd , and their value corresponds to the
flying time and the duty time of the first leg of the connection. Inter-duty arc resources are
chose as elements of Rdet. with both Rd components equal to 0.

9.2.4 Algorithm

All the enumeration algorithms of Chapter 4 can be used. As the connexion graph is acyclic,
their convergence is ensured by Theorems 4.3, 4.7 and 4.8. The numerical results of the next
section show that the label correcting algorithm with bounds provides by a clustering state
graph gives the best performances.

9.3 Numerical results on CREW PAIRING PROBLEM

9.3.1 Results on the main instance

We test the performance of the approach of this chapter on the CREW PAIRING PROBLEM

instances introduced in Tables 7.1 and 7.2. We use the label correcting algorithm with a
clustering state graph of our latticeRCSP library described in Appendix C to solve the pricing
subproblem. As the connection graphs is acyclic, we use the algorithm of Section 6.2.1 to
build the state graph. The exact scheme presented in Section 9.1.4 is used to obtain an integer
solution. We use CPLEX 12.1.0 to solve the linear and the integer programs. The numerical
experiments are performed on a server with 128 Gb of ram and 12 cores at 2.4 GHz. The
algorithms are not parallelized. All instances are solved to optimality.

Table 9.1 provides the performance of the algorithms. The first columns provide the instance
solved and the number of flight legs in the instance. The next column provides the maximum
number κ of state vertices per vertex in the connection graph. This parameter is given in input
to the state graph building algorithm. We give advices on how to choose κ in Section 9.3.3.
The two next columns provide the number of iterations in the column generation, and the
percentage of time spent in the pricing subproblem. This pricing time includes the time
needed by the computation of the clustering state graph during the preprocessing, and the
time needed by the bounding algorithm and the enumeration algorithm at each step of the
column generation. The two next columns indicate the percentage of the total CPU time
spent solving linear program during the column generation, and the percentage of time spent

159

Chapter 9. Column generation for crew pairing problem

Instance Legs κ Col. Gen.
Iter

Pricing
time

LP
time

MIP
time

Integ.
gap %

Total time
(hh:mm:ss)

CP50 290 10 89 59.01% 39.56% 1.14% 0.000% 00:00:17
CP70 408 10 152 57.97% 41.16% 0.69% 0.000% 00:01:12
CP90 516 50 268 73.19% 26.49% 0.26% 0.000% 00:09:41
A318 669 150 394 86.60% 13.34% 0.05% 0.000% 01:21:22
A319 957 150 264 60.66% 39.14% 0.15% 0.000% 00:10:47
A320 918 150 226 74.54% 25.20% 0.20% 0.000% 00:08:35
A321 778 150 382 65.82% 32.60% 1.25% 0.012% 00:33:51
A318-9 1626 150 867 69.71% 30.21% 0.07% 0.001% 05:43:00
A320fam 3398 250 2166 43.28% 56.62% 0.10% 0.003% 104:05:59

Table 9.1 – Crew Pairing Results.

solving the final mixed integer program. The next column provides the gap between the linear
relaxation at the end of the algorithm and the integer solution returned, and the last column
gives the total time needed by the algorithm.

We note that the gap provided is not an optimality gap: Proposition 9.3 ensures that all the
instances are solved to optimality. We provide this gap to outline the fact that, at the end of
the column generation, the master problem has near integrality property. Indeed, the gap
between the master problem integer value and its linear relaxation is extremely small. This
is the reason why the resolution of the final MIP is fast and takes less than 1% of the total
computation time on industrial instances. We also remark that, if the pricing subproblem is
the most time consuming phase on small and medium instances, its part in the computation
time decreases with the size of the instances. Indeed, thanks to the use of a clustering state
graph, the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM algorithms scale well,
and the simplex algorithm for the resolution of the relaxed master problem becomes the most
time consuming part on the largest instance.

Table 9.1 shows that four days of computing time are required to solve the largest industrial
instance. In the next section, we analyze the convergence of the column generation algorithm
in order to provide directions to reduce this computing time.

9.3.2 Convergence, branching scheme and stabilization

Figure 9.3 shows the evolution of the value of the master problem along the column generation
algorithm. The value has been scaled by the value of the optimal solution of the linear
relaxation. The instance solved is the A320 fam, and the results on Figure 9.3 and in Table 9.1
correspond to the same numerical experiment. The lower bound is provided by Proposition 9.2.
The bound plotted on Figure 9.3 is the best bound obtained up to the current iteration, as the
bound provided by Proposition 9.2 is not monotone.

The first direction to reduced the computation time is to initialize the algorithm with a solution
of good quality. Indeed, we have initialized the column generation with a solution of poor
quality: initial pairings contain only one flight leg and one deadhead leg. A good quality

160

9.3. Numerical results on CREW PAIRING PROBLEM

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

1

2

3

4

5

6

7

8

9

Column Generation Iterations

V
al

u
e

Master problem
Lower Bound

0

10

20

30

40

50

60

70

80

90

100

C
P

U
ti

m
e

(%
)

Master Problem
Lower Bound
CPU time (%)

Figure 9.3 – Column Generation tail effect on instance A320 fam.

initial solution can be produced either by a heuristic or by adapting the solution obtained on
previous horizons. Nonetheless, the first iterations are not the most time consuming ones.
The master problem solution is at 1% from the optimum after 897 iterations and less that
15% of the CPU time, and it is at 0.1% after 1435 iterations and 37% of the CPU time. Indeed,
column generation is known to suffer from the tail effect. Convergence is slow at the end of
the algorithm, and the last iterations are the most time consuming, both due to the increased
difficulty of the subproblem and to the increased size of the master problem.

To avoid the large computing time required by the last 0.1%, a simple idea is to stop the column
generation algorithm before its convergence. Nonetheless, the reason why the MIP solver finds
quickly the optimal integer solution at the end of the column generation is that the master
problem has “near integrality” property at the end of the column generation. Unfortunately,
when the column generation is interrupted before its end, the master problem obtained does
not have the “near integrality” property, and the gap between the solution found by the MIP
solver and the optimal solution after two hours of computing time is around 10%. Another
direction is to implement an approximate branching scheme which alternates several steps of
column generation with heuristic branching. Once again, the quality of the solution we obtain
using this heuristic is poor, with an optimality gap of around 3%.

Therefore, implementing a method that reduces the tail effect looks like a more promising
direction. The tail effect of Column Generation algorithms is often correlated to the facts

161

Chapter 9. Column generation for crew pairing problem

that, first, the primal is degenerated, and second, the solution of the dual oscillates. Dual
penalization methods [31, 60] tackle with dual oscillations by solving a modified dual problem
with a penalization term that increases with the distance to the current dual solution. Among
these dual penalization methods, stabilized column generation has shown good performances
when tested by Du Merle et al. [60] on the CREW PAIRING PROBLEM. Elhallaoui et al. [66,
67] shows that dynamic constraint aggregation enables to accelerate convergence of the
column generation on a CREW PAIRING PROBLEM. The principle of this method is to aggregate
constraints in a first phase in order to reduced primal degeneration.

9.3.3 Pricing subproblem algorithms

Table 9.2 provides numerical results on the column generation algorithm performance to
solve the relaxed master problem using different algorithms of Chapters 4 and 6 to solve the
pricing subproblem. Both the generalized A∗ and label correcting algorithms are tested with
simple bounds and with sets of bounds provided by clustering state graphs of different sizes.
The three first columns of Table 9.2 provide the instance name, the algorithm used to solve it,
and the maximum number κ of state vertices per vertex of the connection graph. We use the
symbol – instead of the maximum number of state vertices per vertex to indicate that no state
graph has been used. The two next columns provide the number of vertices and the number
of arcs in the connection graph. The next columns provide the proportion of time spent in
the pricing algorithm, and the average number of paths enumerated. The average number
of paths enumerated is an average on each MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM solved. At each step, a MONOID RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM is solved for each 4 days graph. As the instances considered correspond to cyclic
week horizons , 7 MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM are solved at
each step. The “Cut Dom.” column gives the proportion of paths cut by the dominance test
when the label correcting algorithm. The remaining of the paths have been cut by the bound
test. We indicate – in the column “Cut Dom.” when the generalized A∗ algorithm is used, as
this algorithm does not use the dominance test to discard path. The last column provides the
total CPU time.

We note that the use of a state graph enables to divide the number of paths enumerated by
the algorithm by a factor 3 to 20. Besides, the number of paths enumerated decreases with
the size of the state graph. On all these instances, using a state graph enables to reduce the
computation time when compared to using no state graph. But the size of the state graph has
two effects on the computation time. On the one hand, a larger state graph enables to reduce
the number of paths enumerated. But on the other hand, a larger state graph requires larger
preprocessing times, and gives larger sets of bounds, which means a larger computing time
for each bound test (Clu) done by the enumeration algorithm. Therefore, a balance must be
found between a too small clustering state graph, which leads to large computation times due
to the number of paths enumerated, and a too large, which leads to avoidable preprocessing
times. Practically, we suggest to use a state graph such that the computation time needed by
the preprocessing algorithm that computes the bounds is of the same order of magnitude
as the time needed by the enumeration algorithm. Finally, we note that, as the difficulty of
the problem increases with the instance size, larger instances require larger clustering state

162

9.3. Numerical results on CREW PAIRING PROBLEM

Instance Alg. κ Vert. Arcs Pricing
time

av. nb paths
enum.

Cut
Dom.

Total time
(hh:mm:ss)

CP50 cor. – 293 1006 75.28% 6.016e+03 6.89% 00:00:23.0
10 59.87% 1.601e+03 4.01% 00:00:17.2
50 69.45% 7.766e+02 4.69% 00:00:24.7

100 77.06% 6.467e+02 5.03% 00:00:33.3
A∗ – 65.51% 1.512e+04 – 00:00:22.3

10 61.54% 2.512e+03 – 00:00:19.6
50 68.30% 1.299e+03 – 00:00:24.4

100 75.68% 9.982e+02 – 00:00:33.2
CP70 cor. – 411 1705 90.61% 2.752e+04 7.69% 00:04:40.7

10 58.48% 7.613e+03 4.28% 00:01:12.1
50 68.89% 3.917e+03 5.24% 00:01:23.0

100 77.43% 3.085e+03 5.77% 00:01:42.6
A∗ – 83.97% 1.084e+05 – 00:02:29.0

10 60.96% 1.493e+04 – 00:01:09.4
50 73.16% 8.126e+03 – 00:01:37.2

100 78.48% 6.659e+03 – 00:02:04.9
CP90 cor. – 519 2490 98.86% 1.488e+05 9.81% 02:56:33.1

10 81.86% 4.119e+04 5.88% 00:12:36.3
50 73.42% 2.534e+04 4.87% 00:09:39.7

100 77.98% 1.879e+04 5.60% 00:10:27.5
A∗ – 93.93% 3.403e+05 – 00:45:43.6

10 77.47% 1.401e+05 – 00:13:13.2
50 82.32% 1.000e+05 – 00:16:54.2

100 85.03% 7.382e+04 – 00:19:38.9
A318 cor. – 672 3741 97.87% 2.746e+05 8.99% 05:35:41.8

10 96.02% 2.420e+05 6.62% 05:06:46.6
50 88.78% 1.489e+05 3.73% 02:06:43.4

100 86.97% 1.270e+05 3.72% 01:32:49.6
150 86.94% 1.138e+05 3.75% 01:40:45.4

A∗ – 97.02% 1.148e+06 – 05:17:08.4
10 96.85% 1.070e+06 – 04:54:52.4
50 86.94% 5.735e+05 – 01:45:27.4

100 88.52% 4.783e+05 – 01:45:18.2

Table 9.2 – Influence of subproblem on computations time of the column generation scheme
for the linear relaxationof the CREW PAIRING PROBLEM.

163

Chapter 9. Column generation for crew pairing problem

graphs.

Concerning the choice between the generalized A∗ and the label correcting algorithms, we
underline the fact that, in all cases, less than 10% of the paths are cut by the dominance test.
This is a numerical confirmation of our statement in Chapter 4 that bound tests cut better than
dominance tests when there are many constraints. The number of paths enumerated by the
label correcting algorithm is smaller than the number of paths enumerated by the generalized
A∗ algorithm, but as the dominance test takes time, the effect on the total computation time
is not clear. On the large instances, when no clustering state graph is used, as the number
of non-dominated paths enumerated is large, dominance test becomes long, and using the
generalized A∗ algorithm becomes more interesting. Nonetheless, when used with a state
graph of proper side, the label correcting algorithm is slightly faster than the generalized A∗

algorithm. We therefore suggest to use the label correcting algorithm with a state graph whose
size is chosen using the criterion mentioned in the previous paragraph.

9.4 Bibliographical remarks

Crews and fuel are the two main sources of variable costs for airlines. The CREW PAIRING

PROBLEM has therefore been intensively studied. Due to the complexity of the problem and to
the size of industrial instances, heuristics have long been used to generate feasible solutions
[12, 94]. During the two last decades, column generation has become the state of the art
technique to solve the CREW PAIRING PROBLEM [12, 19, 24, 39, 51, 94, 105, 106, 114, 116, 168].
This technique has indeed two main advantages. First, it enables to hide working rules in
the subproblem, which can be efficiently solved within the resource constrained shortest
path framework [51]. Second, crew working rules are implemented in the pricing subproblem
independently of the master problem. This is a strong industrial advantage, as only the
subproblem solver needs to be updated when these rules change, and thus column generation
codes are easy to maintain. Second, column generation are easily turned into matheuristics,
enabling to cope with instances of large size. A detailed state of the art on CREW PAIRING

PROBLEM is available in [87]. Recent approaches to the CREW PAIRING PROBLEM have been
developed in the context of integrated approaches to the CREW PAIRING PROBLEM and the
CREW ASSIGNMENT PROBLEM [155, 177]. The CREW ASSIGNMENT PROBLEM affects pairing to
crews according to their preferences. We do not consider it in this dissertation because given
the specifities of Air France working rules, it cannot be integrated with the CREW PAIRING

PROBLEM at Air France. Saddoune et al. [155] reports that Dynamic Constraint Aggregation
[66, 66] enables to improve the convergence of the column generation algorithm.

The specificity of our approach lies in the fact that we use the MONOID RESOURCE CON-
STRAINED SHORTEST PATH PROBLEM algorithms of Part I instead of the usual resource con-
strained shortest path algorithms [97]. We can therefore use bounds to better cut partial paths.
The use of bounds on paths is non-standard on the crew pairing subproblem as it is highly
non-linear. Besides, by computing a state graph once and for all before the column generation,
we collect information on the structure shared by all the instances of the pricing subproblem
instances solved along the column generation. This information enables to speed-up the
resolution of each pricing subproblem, and thus strongly reduce the total time spent in the

164

9.4. Bibliographical remarks

column generation. Finally, the time spent in the preprocessing is easily controlled through
the number of state vertices allowed per connection graph vertex, and can thus be adapted to
the difficulty of the instance solved.

165

10 Numerical experiments on integrated
problem

This chapter details numerical experiments on the INTEGRATED PROBLEM solution scheme
introduced in Chapter 7, using as black boxes for the AIRCRAFT ROUTING PROBLEM and the
CREW PAIRING PROBLEM the solution schemes introduced respectively in Chapter 8 and
Chapter 9. We use as test set the instances introduced in Chapter 7.

In Section 7.1, we have introduced an exact version and an approximate version of the solution
scheme. The difference between these two schemes is done through the short connection
constraint (7.2c). In the exact version, the short connection constraint reads∑

p∈P

|p ∩S|yp ≤ |S|−1, ∀S ∈I SC

while in the approximate version, it is replaced by∑
p∈P

|p ∩S|yp ≤ mS , ∀S ∈I SC ,

with mS ¿|S|−1. We tested the exact algorithm on the small instances. For the approximate
algorithm, we used mS = γ|S| for different values of γ< 1.

The INTEGRATED PROBLEM is solved using the solution scheme of Section 7.1. AIRCRAFT

ROUTING PROBLEM feasibility is solved using compact integer program (8.2). The CREW

PAIRING PROBLEM is solved by column generation: following the approach of Section 9.1.4,
we solve the linear relaxation of the master problem to optimality, and then solve the integer
master problem with the columns generated. The pricing subproblem is solved using the
label correcting algorithm, and a clustering state graph is used to improve bounds quality.
The numerical experiments are performed on a server with 128 Gb of ram and 12 cores at
2.4 GHz. The algorithms are not parallelized. CPLEX 12.1.0 is used to solve the linear and
integer program.

Table 10.1 provides numerical results on the instances of Section 7.2. The first column pro-
vides the instance solved, and the next column the short connection constraints strength
parameter γ. The “Cuts added” column indicates the number of short connection constraints
(7.2c) that have been added to obtain an optimal solution. As a short connection constraint is
added if the last CREW PAIRING PROBLEM solution leads to an infeasible AIRCRAFT ROUTING

167

Chapter 10. Numerical experiments on integrated problem

Instance γ Cuts
added

κ CG it.
total

CP CG
time

CP MIP
time

AR
time

Sho.
Con.

Gap Total time
(dd:hh:mm:ss)

AR4 0.9 24 20 36 9.58% 54.85% 35.57% 63 0.03280% 00:00:18.4
0.8 6 20 23 24.31% 43.80% 31.89% 57 0.09370% 00:00:05.4
0.6 3 20 17 26.37% 44.43% 29.20% 49 0.81856% 00:00:04.5

AR8 0.9 61 20 172 20.55% 50.54% 28.90% 148 0.0070% 00:08:46.7
0.8 4 20 87 48.55% 29.95% 21.50% 136 0.0073% 00:00:48.9
0.6 5 20 144 55.66% 29.07% 15.28% 114 0.9426% 00:01:13.3

AR12 0.9 55 20 305 51.97% 31.90% 16.13% 213 0.0051% 00:27:48.3
0.8 35 20 381 19.21% 76.86% 3.03% 204 0.0403% 01:21:07.1
0.6 30 20 633 0.76% 99.07% 0.17% 159 1.4285% 01:11:28:58.2

A318 0.9 6 150 460 95.53% 2.56% 1.91% 323 0.0002% 01:53:47.4
0.8 5 150 461 95.62% 2.71% 1.67% 312 0.0029% 01:48:02.3
0.6 14 150 1030 26.27% 73.20% 0.53% 269 0.6857% 16:02:03.1

A318-9 0.9 2 150 915 97.66% 1.71% 0.63% 790 0.0008% 06:34:30.9

Table 10.1 – Numeric results on INTEGRATED PROBLEM

PROBLEM, the column“Cuts added” indicates the number of AIRCRAFT ROUTING PROBLEM

and CREW PAIRING PROBLEM instances solved along the solution scheme. For each cut added,
a column generation is launched to solve the subproblem. The two next columns provide the
maximum number κ of state vertices per connection graph vertex in the clustering state graph,
and the total number of column generation iterations realized. The column “CP CG time”
provides the proportion of the total CPU time spent in the column generation, i.e. solving
the pricing subproblem and the linear relaxation of the master problem. The next column
provides the proportion of the total CPU time spent solving the integer version of the crew
pairing master problem. The column “AR time” provides the percentage of the total CPU
time spent solving AIRCRAFT ROUTING PROBLEM compact integer program (8.2). The column
“Sho. Con.” gives the number of short connections in the final solution is provided. The linear
relaxation of the crew pairing master problem (7.2) with no short connection constraint is
used as the lower bound on the cost of an optimal solution. The gap provided is between the
cost of the solution returned and this lower bound. Finally, the last column provides the total
CPU time needed by the INTEGRATED PROBLEM algorithm.

Exact scheme on small instances

We have tested the exact scheme where mS = |S| − 1 on instances AR4 and AR8. On both
instances, the algorithm does not converge after 2000 iterations of the INTEGRATED PROBLEM

algorithms. The exact scheme does not enable to solve the INTEGRATED PROBLEM in practice.

Approximate scheme

We emphasize the fact that the solution returned by the approximate algorithm is near optimal.
Practically speaking, the gap obtained is non-greater than 10 euros. Besides, the computation

168

time needed to obtain a near optimal solution of the INTEGRATED PROBLEM is of the same
order of magnitude as the time needed to obtain a solution of the CREW PAIRING PROBLEM

in Table 9.1. The additional cost due to AIRCRAFT ROUTING PROBLEM feasibility is negligible.
Besides, the number of short connections in the solution returned is large: around half of the
arc in the solution are short connections.

On industrial instances, choosing a constraint strength parameter γ equal to 0.9 enables to
obtain solutions of excellent quality in reasonable time. On some instances, using stronger
constraints with γ= 0.8 enables to accelerate convergence and thus reduce the computation
time. Nonetheless, too strong constraints with γ= 0.6 lead to both extra computation time
and poorer quality solutions.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

220

240

Cuts added

It
er

at
io

n
s

/
Sh

o
rt

C
o

n
n

ec
ti

o
n

s

CG iterations
Short connections

0

10

20

30

40

50

60

70

80

90

100

C
P

U
ti

m
e

(%
)

CG iterations
Short Connections

CG CP CPU time (%)
IP CP CPU time (%)
IP AR CPU time (%)

Figure 10.1 – Computation time of INTEGRATED PROBLEM scheme on AR12 with γ= 0.9

Figure 10.1 shows the evolution of the cumulative computation time spent in the column
generation, the crew pairing integer master problem, and the aircraft routing compact integer
program along the INTEGRATED PROBLEM solution scheme, for instance AR12 with cut strength
parameter γ= 0.9. It reveals several interesting aspects on the computation time. A column
generation is launched at each step of the INTEGRATED PROBLEM scheme, but only the first
one is really time consuming. Indeed, during the first iteration, interesting columns must be
generated. These interesting columns can then be reused at the next iterations. As we can see
on Figure 10.1, very few columns need to be added in the following steps: the short connection
constraints do not affect too much the columns in the optimal solution. Besides, the time
needed to solve the CREW PAIRING PROBLEM integer program doesn’t evolve much along the

169

Chapter 10. Numerical experiments on integrated problem

algorithm. Finally, proving the non-feasibility of the AIRCRAFT ROUTING PROBLEM becomes
more and more difficult along the steps, and its contribution to the CPU time increases along
the algorithm. Nonetheless, solving the AIRCRAFT ROUTING PROBLEM remains easier than
solving the CREW PAIRING PROBLEM.

Figure 10.2 illustrates the same quantities on the same instance but with γ= 0.6. This choice
leads to a very large total CPU time. When we compare Figure 10.2 and Figure 10.1, the effect
of too strong cuts appears clearly. As cuts are strong, the CREW PAIRING PROBLEM is perturbed
by these short connection cuts, and a larger number of new columns must be generated by
the column generation at each iteration of the INTEGRATED PROBLEM scheme. The number of
short connections in the solution is strongly reduced. Besides, the integer program for the
CREW PAIRING PROBLEM becomes harder and requires higher computations time. We note
that the time spent solving the integer version of the crew pairing master problem remains
constant during the last twenty iterations. This is due to the fact that we have set a time limit of
two hours on the resolution of this integer problem, and the fact that this time limit is reached
by each of the twenty last iterations.

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

220

240

Cuts added

It
er

at
io

n
s

/
Sh

o
rt

C
o

n
n

ec
ti

o
n

s

CG iterations
Short connections

0

10

20

30

40

50

60

70

80

90

100

C
P

U
ti

m
e

(%
)

CG iterations
Short connections

CG CP CPU time (%)
IP CP CPU time (%)
IP AR CPU time (%)

Figure 10.2 – Computation time of INTEGRATED PROBLEM scheme on AR12 with γ= 0.6

170

11 Managing delay in airline operations

Due to many external factors such as weather, airport congestion, or mechanical failures,
airline operations are subject to delay. As both an airplane and its crew are needed to operate a
flight leg, leg delay propagates along airplane routes and crew pairings. As a consequence, the
resilience of operations with respect to delay depends on the solution of both the AIRCRAFT

ROUTING PROBLEM and the CREW PAIRING PROBLEM. The STOCHASTIC INTEGRATED PROBLEM

considered in this chapter consists in the simultaneous resolution of the AIRCRAFT ROUTING

PROBLEM and the CREW PAIRING PROBLEM with probabilistic constraints on the resulting
delay on each flight leg.

Delay appears on flight legs. On connections, it is partially absorbed due to the slack between
flight legs, and partially propagated to the next flight leg. Let (˜̀,`) be a feasible connection
for the AIRCRAFT ROUTING PROBLEM, t arr.

˜̀ be the arrival time of ˜̀, t dep.
`

be the departure time

of `, and ∆tR be the minimum time needed by an airplane to perform a connection. The
routing slack sR

(˜̀,`)
= t dep.

`
− t arr.

˜̀ −∆tR corresponds to the maximum airplane delay that can

be absorbed by routing connection (˜̀,`). Similarly, the pairing slack sP

(˜̀,`)
= t dep.

`
− t arr.

˜̀ −∆tP

corresponds to the maximum crew delay that can be absorbed by pairing connection (˜̀,`).
The total delay random variable ξ` on a flight leg ` can be modeled as the sum of the intrinsic
delay random variable ξintr

`
of `, which appears when ` is operated, and the propagated delay

random variable ξprop
l , which comes from the delay on the leg before ` on the route r and on

the pairing p that contain `,

ξ`(x,y) = ξprop
`

(x,y)+ξintr
` , (11.1)

where x and y are respectively solutions of the AIRCRAFT ROUTING PROBLEM (6.4) and of the
CREW PAIRING PROBLEM (6.5). The intrinsic delay ξintr

`
and the slacks are inputs of the model.

Given these inputs, the propagated delay ξprop
`

(x,y) and the total delay ξ`(x,y) are functions of
the solution AIRCRAFT ROUTING PROBLEM and CREW PAIRING PROBLEM solutions x and y. We
denote π`(x) the predecessor of ` in the route r that covers ` in routing solution x, and π`(y)

171

Chapter 11. Managing delay in airline operations

the predecessor of ` in the pairing p that covers ` in pairing solution y. We therefore have

ξ
prop
`

(x,y) = max
(
0,ξrout.

` ,ξpair.
`

)
, where

∣∣∣∣∣ ξ
rout.
`

= ξπ`(x)(x,y)− sR
(π`(x),`)

ξ
pair.
`

= ξπ`(y)(x,y)− sP
(π`(y),`)

where ξrout.
`

corresponds to the delay propagated by airplanes, and ξpair.
`

corresponds to the

delay propagated by crews. Both ξrout.
`

and ξ
pair.
`

depend on x and y. To make it easier to
compare to other delay models introduced later, we rewrite delay model (11.1) in a single
equation without propagated delay random variables ξprop.

ξ`(x,y) = max
(
0,ξrout.

` ,ξpair.
`

)
+ξintr

` , where

∣∣∣∣∣ ξ
rout.
`

= ξπ`(x)(x,y)− sR
(π`(x),`)

ξ
pair.
`

= ξπ`(y)(x,y)− sP
(π`(y),`)

(11.2)

To make probability computations feasible, assumptions must be made on the distribu-
tions of ξintr

`
. In this dissertation, we consider the case of independent ξintr

`
and the case of

non-independent but scenario based distributions for ξintr
`

. Generic distributions can be
approximated by scenario based distributions through the use of sampling. An analysis of the
quality of the solutions obtained when sampling is used is provided a the end of the chapter.

In this chapter, we consider a stochastic version of INTEGRATED PROBLEM (6.7) with the
additional constraint that the probability of having a delay ξ` on leg ` greater than a threshold
α is non greater than β.

P
[
ξ`(x,y) ≥α]≤β, ∀` ∈L . (11.3)

We therefore obtain the following STOCHASTIC INTEGRATED PROBLEM.

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
r3`

xr = 1, ∀` ∈L∑
p3`

yp = 1, ∀` ∈L∑
p3α

yp ≤ ∑
r3α

xr , ∀α ∈ Ashort

P
[
ξ`(x,y) ≥α]≤β, ∀` ∈L

xr ∈ {0,1}, ∀r ∈R

yp ∈ {0,1}, ∀p ∈P

(11.4)

This chapter extends the INTEGRATED PROBLEM algorithms in Chapters 7 to 9 to the STOCHAS-
TIC INTEGRATED PROBLEM.

• After an analysis of the complexity of probability computations in delay model (11.2),
Section 11.1 details the STOCHASTIC INTEGRATED PROBLEM algorithm. The algorithm of
Section 11.1 uses as black boxes solution schemes for stochastic versions of the AIRCRAFT

ROUTING PROBLEM and of the CREW PAIRING PROBLEM.

172

11.1. Solution approach to robust integrated problem

• Section 11.2 extends the column generation scheme for the CREW PAIRING PROBLEM in
Chapter 9 to a stochastic version of the CREW PAIRING PROBLEM. This algorithm relies
on the work on stochastic resource constrained shortest path problems in Part I. Its
efficiency is tested through numerical experiments on industrial instances. To the best
of our knowledge, it is the first approach to the stochastic CREW PAIRING PROBLEM where
delay is managed through probabilistic constraints. Besides, this approach applies to
both independent ξintr

`
and scenario based ξintr

`
. Its efficiency is tested on Air France

CREW PAIRING PROBLEM instances.
• Section 11.3 extends the compact integer program approach to AIRCRAFT ROUTING

PROBLEM in Chapter 8 to stochastic versions of the problem in the case of scenario based
ξintr
`

distributions. Its efficiency is tested through numerical experiments on industrial
instances. Its efficiency is tested on Air France AIRCRAFT ROUTING PROBLEM instances.

• Section 11.4 tests on Air France instances the efficiency of the STOCHASTIC INTEGRATED

PROBLEM approach of Section 11.2 when the algorithms of Sections 11.2 and 11.3 are
used as black boxes.

• Finally, Section 11.5 gives an exponential bound on the probability of obtaining an
infeasible solution when sampled distributions are used in problem (11.4).

11.1 Solution approach to robust integrated problem

11.1.1 Intrinsic delay distribution and difficulty of the inference problem

One key element for the tractability of the STOCHASTIC INTEGRATED PROBLEM is the choice of
the probability distribution of intrinsic delay random variables ξintr

`
. The two natural choices

for these distributions are discrete distributions with finite support under the assumption
that ξintr

`
are independent, or scenario based distributions with a finite number of scenarios.

Even under the assumption that intrinsic delay random variables are independent, computing
probability functionals on total delay random variables is not tractable. The core of the
problem is illustrated on Figure 11.1. Suppose that intrinsic delay random variables ξintr

`
are

independent and that delay propagates according to model (11.2). Then delay ξ`2 of leg `2

and delay ξ`3 of leg `3 are not independent as they both depend on the delay ξ`1 of `1. Due to
this non-independence, delay ξ`4 of leg `4 cannot be computed directly from the distributions
of ξ`2 and ξ`3 using model (11.2), but requires the joint distribution on (ξ`3 ,ξ`4). In the next
paragraph, we show that, for theoretical reasons, the computation of the distribution of ξ`
requires to compute the joint distribution on a number of leg delay variables approximately
equal to the number of planes in the fleet, and is therefore exponential in the number of planes
in the fleet. From a practical point of view this means that exact delay distributions cannot be
computed in the case of independent intrinsic delay random variables. As a consequence, we
only use scenario based distributions when considering the delay model (11.2).

From a theoretical point of view, if variables ξintr
`

are supposed to be independent, model
(11.2) implies that the probability distribution of the random vector

(
ξ`(x,y)

)
`∈L is a graphical

model [108] on the digraph D(x,y) = (V , A(x,y)) whose vertex set V is the leg set L , and whose
arc set A(x,y) contains the connections in the routing solution x and the connections in
the pairing solution y. As a consequence, the exact computation of the distribution or any

173

Chapter 11. Managing delay in airline operations

`1

`2

`3

`4

Airplane route r

Crew pairing p

Figure 11.1 – Non independence of legs delay

probability functional on ξ` is an exact inference problem in D(x,y). Graphical model theory
tells that solving the inference problem requires to compute joint distributions on a number
of random variables equal to the treewidth of D(x,y). The complexity of the inference problem
is thus exponential in the treewidth of D(x,y). The treewidth of a graph is an abstract graph
notion, but for our purpose, it suffices to know that the treewidth of D(x,y) is approximately
equal to the number of airplanes in the fleet to conclude that the exact computation of the
distribution of ξ`(x,y) is not tractable. Nonetheless, this analysis suggests that approximate
inference algorithms in graphical models [108] can be used as an alternative to scenario based
distributions.

11.1.2 Exact solution scheme

We now extend the solution scheme for the deterministic INTEGRATED PROBLEM in Chapter 7
to the STOCHASTIC INTEGRATED PROBLEM. The general structure of the solution scheme
remains unchanged. We first solve a CREW PAIRING PROBLEM to obtain a pairing solution
y, and we then test if the AIRCRAFT ROUTING PROBLEM remains feasible given solution y.
The difference with Chapter 7 is that both the CREW PAIRING PROBLEM solved in the first
step and the AIRCRAFT ROUTING PROBLEM solved in the second step must satisfy additional
probabilistic constraints.

Let I be a set of infeasible solutions. We define the constrained STOCHASTIC CREW PAIRING

PROBLEM as follows.
min

yp

∑
p∈P

cp yp

s.t .

∣∣∣∣∣∣∣∣∣∣∣

∑
p3`

yp = 1, ∀` ∈L

ỹ ·y ≤ ỹ ·1−1, ∀ỹ ∈I

P
[
ξ`(0,y) ≥α]≤β, ∀` ∈L

yp ∈ {0,1}, ∀p ∈P

(11.5)

Note that as the CREW PAIRING PROBLEM is solved before the AIRCRAFT ROUTING PROBLEM,
delay propagation is considered only along pairings in ξ`(0,y), as the routing solution x is not
fixed when CREW PAIRING PROBLEM is solved. This is equivalent to replacing model (11.2) by
the following pairing only delay model.

ξ`(0,y) = max
(
0,ξπ`(y) − sP

(π`(y),`)

)
+ξintr

` = ξ`(p`(y)) (11.6)

174

11.1. Solution approach to robust integrated problem

where ξ` only depends on the pairing p`(y) of leg ` in pairing solution y. On the contrary,
when AIRCRAFT ROUTING PROBLEM is solved, pairing solution y is known, and the full delay
model can be considered in the constrained STOCHASTIC AIRCRAFT ROUTING PROBLEM.

∑
r3`

xr = 1, ∀` ∈L∑
p3α

yp ≤ ∑
r3α

xr , ∀α ∈ Ashort

P
[
ξ`(x,y) ≥α]≤β, ∀` ∈L

xr ∈ {0,1}, ∀r ∈R

(11.7)

The exact STOCHASTIC INTEGRATED PROBLEM solution scheme can now be presented. The set
of infeasible solutions I is initially empty. The following steps are executed

1. Solve the constrained STOCHASTIC CREW PAIRING PROBLEM (11.5) to obtain y. Stop if
(11.5) does not admit solution.

2. Solve the constrained STOCHASTIC AIRCRAFT ROUTING PROBLEM (11.7) with y as input:

• if Problem (11.7) is not feasible, then add y to I . Return to Step (1).
• else store the solution of the Problem (11.7) in x and return (x,y).

Theorem 11.1. The above algorithm converges after a finite number of steps. If a solution (x,y)
is returned, then it is an optimal solution of the STOCHASTIC INTEGRATED PROBLEM (11.4).
Otherwise Problem (11.4) does not admit solutions.

This solution scheme uses as black boxes solution schemes for the constrained STOCHAS-
TIC CREW PAIRING PROBLEM (11.5) and of the constrained STOCHASTIC AIRCRAFT ROUTING

PROBLEM (11.7). Its efficiency relies on our ability to solve efficiently both of these problems.
Efficient methods to solve them are provided respectively in Sections 11.2 and 11.3. Nonethe-
less, constraints ỹ ·y ≤ ỹ ·1−1 are not strong enough on large industrial instances. We therefore
introduce in Section 7.1.2 a heuristic version of the algorithm to be able to deal with industrial
instances.

Sketch of the proof of Theorem 11.1. The proof of Theorem 11.1 is almost identical to the proof
of Theorem 7.1. The only difference is that it is the constraint

ỹ ·y ≤ ỹ ·1, ∀ỹ ∈I

instead of the constraint ∑
p∈P

|p ∩S|yp ≤ |S|−1, ∀S ∈I SC

that ensures that a solution considered at one step is not considered anymore in the next
iterations.

175

Chapter 11. Managing delay in airline operations

11.1.3 Delay minimization as objective of the Aircraft Routing Problem

In this section, we provide a solution scheme motivated by practical applications. From
an industrial point of view, short connection constraint (6.6) and delay constraint (11.3)
do not play the same role in the STOCHASTIC INTEGRATED PROBLEM. Indeed, the short
connection constraint is a strong feasibility constraint, and a solution that violates it cannot
be executed in practice, whereas the delay constraint is only there to enforce robustness, and
can be violated on some industrial instances. To stick to this industrial policy, we adopt a
differentiated approach to these constraints: instead of enforcing delay constraint (11.3) in
the STOCHASTIC AIRCRAFT ROUTING PROBLEM, we minimize its violation. We emphasize
the fact that the scheme obtained does not solve anymore problem (11.4). Indeed, if the
solution returned is a feasible solution of the deterministic problem (6.7), it may not satisfy the
delay constraint (11.3). The resolution of (11.4) on large instances remains an open academic
problem.

Following the approach mentioned above, we replace (11.7) by the following STOCHASTIC

AIRCRAFT ROUTING PROBLEM,

min
x

∑
`∈L

E
(
ξ`(x,y)

)+

s.t .

∣∣∣∣∣∣∣∣∣

∑
r3`

xr = 1, ∀` ∈L∑
p3α

yp ≤ ∑
r3α

xr , ∀α ∈ Ashort

xr ∈ {0,1}, ∀r ∈R

(11.8)

where (·)+ denotes the positive part. Besides, as delay does not lead to infeasibility anymore
in the STOCHASTIC AIRCRAFT ROUTING PROBLEM, the only reason why a solution y can lead
to infeasibility in the STOCHASTIC AIRCRAFT ROUTING PROBLEM is the short connection
constraint (6.6). As a consequence, instead of forbidding solution y, we forbid the use of all
the short connections in y simultaneously. A short connection constraint set is a set of short
connections S. We denote I SC the set of all short connections set. We obtain the following
modified version of the STOCHASTIC CREW PAIRING PROBLEM (11.5).

min
∑

p∈P

cp yp

s.t .

∣∣∣∣∣∣∣∣∣∣∣∣

∑
p3`

yp = 1, ∀` ∈L∑
p∈P

|p ∩S|yp ≤ |S|−1 ∀S ∈I SC

P
[
ξ`(0,y) ≥α]≤β, ∀` ∈L

yp ∈ {0,1}, ∀p ∈P

(11.9)

Note that this new version of the CREW PAIRING PROBLEM is equivalent to the deterministic
one (11.5), with the additional constraint P

[
ξ`(0,y) ≥α]≤β. We finally obtain the following

exact optimization scheme for our new problem. The set of short connections constraints
I SC is initially empty. The following steps are executed.

176

11.1. Solution approach to robust integrated problem

1. Solve the constrained STOCHASTIC CREW PAIRING PROBLEM (11.9) to obtain y.
2. Solve the constrained STOCHASTIC AIRCRAFT ROUTING PROBLEM (11.8):

• if Problem (11.8) is not feasible, then add S to I SC , where S is the set of short
connections α ∈ Ashort contained in a pairing p such that yp = 1 in y. Return to
Step (1).

• else store the solution of the Problem (11.8) in (xr) and return (x,y).

We have mentioned in Section 7.1.2 that the algorithm for the deterministic CREW PAIRING

PROBLEM can be turned into a matheuristic by replacing ≤ |S|−1 by ≤ mS with mS ¿|S|−1 in
Problem (11.9). We also apply this technique to its stochastic counterpart to be able to deal
with industrial instances.

11.1.4 Probabilistic constraints in STOCHASTIC CREW PAIRING PROBLEM column
generation

The large number and the non linearity of crew working rules make them difficult to express
inside an integer program. Mathematical programming approach to Crew Pairing problem
therefore “hide” these working rules in the sub-problem of a column generation. The strength
of Problems (11.5) and (11.9) comes from the fact that, as aircraft routing solution is not active
in these problems, the delay propagates only along pairings. As a consequence, the delay of a
flight leg ξ`(0,y) only depends on the pairing p containing `, and delay model (11.2) simplifies
to (11.6). The delay constraint can therefore also be “hidden in the subproblem” by restricting
the set of feasible pairings P to the set of pairings which satisfy the delay constraint. From a
column generation point of view, it means that we only have to adapt the subproblem when
extending the column generation scheme of the CREW PAIRING PROBLEM to the STOCHASTIC

CREW PAIRING PROBLEM. Indeed, if we define

Pdel =
{

p ∈P |P[
ξ`(p) ≥α]≤β,∀` ∈ p

}
,

the STOCHASTIC CREW PAIRING PROBLEM (11.9) can be rewritten as the following master
problem

min
∑

p∈Pdel

cp yp ,

(zv) s.t.
∑
p3v

yp −1 = 0 ∀v ∈V ,

(tS)
∑

p∈Pdel

|p ∩S|yp − (|S|−1) ≤ 0 ∀S ∈I SC ,

yp ≥ 0, ∀p ∈Pdel,

(11.10)

which is identical to the CREW PAIRING PROBLEM master problem (9.1), the only difference
being that P has been replaced by Pdel. Note that the long duty and long pairing linking
constraints have been omitted for clarity in this chapter. We therefore obtain the following

177

Chapter 11. Managing delay in airline operations

pricing subproblem

min
p∈Pdel

cp + ∑
v∈p

zv +
∑

S∈I SC

tS |p ∩S|. (11.11)

Again, the only difference with the deterministic PRICING SUBPROBLEM of Section 9.1.2 is
that P has been replaced by Pdel. Therefore, extending the column generation approach of
Chapter 9 to the STOCHASTIC CREW PAIRING PROBLEM only requires to modify the subproblem
solution scheme. This is the goal of Section 11.2.

Remark 11.1. The full delay model (11.2) is used in the STOCHASTIC AIRCRAFT ROUTING PROB-
LEM (11.8). As delay propagates both along pairings and routes, the analysis of Section 11.1.1
applies. Therefore, the delay on a leg ` cannot be expressed as a function of the route r that
contains it. If a column generation was to be applied to this problem, it would have to consider
the probabilistic constraints as linking constraints instead of hiding them in the subproblem.
Therefore, column generation does not suit well to this problem. This is the reason why we use
a compact integer programming approach to the STOCHASTIC AIRCRAFT ROUTING PROBLEM

in Section 11.3.

11.2 Column generation approach to stochastic Crew Pairing

11.2.1 From deterministic to stochastic subproblem reduction

Deterministic pricing subproblem reduction

As for the deterministic PRICING SUBPROBLEM in Chapter 9, we reduce the stochastic pricing
subproblem (11.11) to a MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. We
therefore reuse the pairing connection digraph D = (V P , AP), the lattice ordered monoid
(Rdet.,⊕det.,6det.), the two monotone oracles cdet., ρdet., and the arc resources qa ∈ M defined
in Chapter 9. We recall that the vertices v in V P are the legs ` in L , and the arcs in AP are the
feasible connections. Digraph D also contains an origin vertex o, a destination vertex d , and
arcs starting in o (resp. ending in d) which enable to control where and when pairings can
start (resp. end). Pairings p are o-d paths P in D , and we have the property that the sequence
of flight legs p of an o-d path P in the pairing connection graph D is a feasible pairing p ∈P if
and only if ρdet.(qdet.

P) = 0. Besides, if ρdet.(qdet.
P) = 0, we have ρdet.(qdet.

P) = cp , where cp is the
cost of p.

To enhance readability and underline the fact that they correspond to the deterministic
problem, the resources qa of Chapter 9 are denoted qdet.

a in this chapter.

Stochastic pricing subproblem reduction

As we already mentioned, the only difference between the stochastic subproblem (11.11) and
its deterministic counterpart (9.3) is that the pairing set P is replaced by

Pdel =
{

p ∈P |P[
ξ`(p) ≥α]≤β,∀` ∈ p

}
.

178

11.2. Column generation approach to stochastic Crew Pairing

We therefore build a delay lattice ordered monoid Rdel., arc delay resources qdel.
a and a delay

feasibility oracle ρdel. in such a way that, given a path P in D and the corresponding pairing p,

ρdel.

(⊕
a∈P

qdel.
a

)
= 0 if and only if P

[
ξ`(p) ≥α]≤β for all ` ∈ p. (11.12)

The practical construction of such a lattice ordered monoid in the case of independent or
scenario based delay distributions is detailed in Section 11.2.2.

As the product of two lattices ordered monoid endowed with the product order is a lattice
ordered monoid, we use the product R =Rdet. ×Rdel. as the lattice ordered monoid of our
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM instances. Finally, we define the
feasibility and cost oracles by

ρ
((

qdet., qdel.
))

= max
(
ρdet.

(
qdet.

)
,ρdel.

(
qdel.

))
,

c
((

qdet., qdel.
))

= cdet.

(
qdet.

)
,

to obtain the following lemma.

Lemma 11.2. The sequence of flight legs p of an o-d path P in the pairing connection graph D
is a feasible pairing p ∈Pdel if and only if ρ

((
qdet.

P , qdel.
P

))= 0. Besides, if c
((

qdet.
P , qdel.

P

))= 0, we
have c

((
qdet.

P , qdel.
P

))= cp , where cp is the cost of p.

Proof. Let P be an o-d path in D , qP = (qdet.
P , qdel.

P) be its resource, and p be the corresponding
sequence of flight legs. Then p is a feasible pairing p ∈ P if and only if ρdet.

(
qdet.

P

) = 0, and
satisfies the delay constraints if and only if ρdel.(qdel.

P) = 0. Besides, c(qP) = cdet.(qdel.
P) = cp .

Given Lemma 11.2, and as (Rdet.,⊕det.,6det.) has already been defined in Chapter 9, it only re-
mains to define (Rdel.,⊕del.,6del.) to finish the reduction of the stochastic pricing subproblem
to the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM.

11.2.2 Delay lattice ordered monoid

To model delay random variables in the MONOID RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM framework, we need a family of random variables stable by sum and endowed
with a lattice order. Both the discrete distributions with finite order endowed with the usual
stochastic order or the scenario distributions can be used. See Chapter 5 for more details. In
the remaining of this chapter, we suppose that random variable distributions belong to one of
these set, and we denote ≤rv the corresponding order. The specificity of delay model (11.6)
comes from the fact that slack makes the sum of two pairing resources non-standard, and it
is a little bit technical to design an operator modeling this sum and which is also associative.
Therefore, when defining our sum operator, we enhance the specificities of delay computation
in the chronological direction, as in Equation (11.13), and in the reverse chronological direction,
as in Equation (11.14).

179

Chapter 11. Managing delay in airline operations

qP = ((
q1 ⊕q2

)⊕q3
)⊕q4, (11.13)

= q1 ⊕
(
q2 ⊕

(
q3 ⊕q4

))
. (11.14)

We recall for Part I that it is the associativity of ⊕ that enables to use bounds in an A∗ way
in resource constrained shortest path algorithms, and that these bounds enable significant
speed-ups of the algorithms in the case of stochastic resources. Practically, the algorithms
compute paths resources in the chronological direction and bounds resources in the reverse
chronological direction.

We now come to the definition of the delay lattice ordered monoid (Rdel.,⊕del.,6del.). Com-
puting the resource of a pairing in the reverse chronological direction requires to sum the
resources of the legs at the end of the pairing without knowing those at the beginning of
the pairing. As according to delay model (11.6), the delay on a flight leg depends on the
previous legs, this leads to a technical difficulty. We therefore have two define three types
of resources: connection resources, qcon. which contain all the information we need on arcs,
forward resources q forw. for pairing resources computed in the chronological direction, and
which represent the total delay ξ since the beginning of the duty, and finally backward re-
sources qback. for pairing resources computed in the reverse chronological direction, which are
list of connection resources. We then define operators between these resources: a forward sum
operator ⊕forw., a backward sum operator ⊕back. for backward sum of resources, and finally a
duty operator ⊕duty for the sum of a forward and a backward resource. Similarly, a connection
resource order 6con., a forward resource order 6forw. and a backward resource order 6back. are
defined. All these elements are then assembled to make the delay lattice ordered monoid
(Rdel.,⊕del.,6del.). The remaining of the section is devoted to the definition of these operators
and can be skipped by a reader not interested in implementations details.

o `1 `2 `3 `4 d
a1(

ξintr
`1

,0
) a2(

ξintr
`2

, sP
a2

) a3(
ξintr
`3

, sP
a3

) a4(
ξintr
`4

, sP
a4

) ad

(0,∞)

o `2 `3
P2 = a1a2

q forw.
P2

= ξ`2 (p)

a3(
ξintr
`3

, sP
a2

) ξ`2 (p) = max(ξ`1 − sP
a1

,0)+ξintr
`2

`2 `3
P3 = a1a2a3

q forw.
P3

= ξ`3 (p)
ξ`3 (p) = max(ξ`2 − sP

a2
,0)+ξintr

`3

Figure 11.2 – Chronological direction computation of duty delay

Connection resources

Consider the one duty pairing p of path P on Figure 11.2. Each arc corresponds to a feasible
connection. Therefore, to compute delay according to model (11.6), we need to store on

180

11.2. Column generation approach to stochastic Crew Pairing

each arc ai the intrinsic delay random variable ξintr
`i−1

of its origin arc and the slack sP
ai

of
connection ai . We therefore define the set of connection resources qcon.

a to be the set of pairs of
a random variable and a real number.

Forward resources for chronological computation of delay

We now explain how to compute delay ξ` in the chronological direction. Using model (11.6),
the total delay ξ`i on leg i depends only on the delay on ξ`i−1 and on the resource qcon.

ai−1
of

arc ai−1. As a consequence, to compute delay in the chronological direction, we only have
to propagate the total delay. The set of forward resources q forw. is thus defined to be the set
of random variables, and we define its order 6forw. to be the random variable order ≤rv. We
finally define the operator ⊕forw., which to a forward resource q forw.

`i
= ξ`i and a connection

resource qcon.
ai

= (ξintr
`i+1

, sP
ai

) associates the forward resource q forw.
`i

⊕forw. qcon.
ai

= q forw.
`i+1

= ξ`i+1

according to model (11.6).

Backward resources for reverse-chronological computation of delay

o `1 `2 `3 `4 d
a1(

ξintr
`1

,0
) a2(

ξintr
`2

, sP
a1

) a3(
ξintr
`3

, sP
a2

) a4(
ξintr
`4

, sP
a3

) ad

(0,∞)

`2 `3 d
a3(

ξintr
`3

, sP
a2

) P ′
3 = a4ad

qback.
P ′

3

qback.
P ′

3
=

[(
ξintr
`4

, sP
a3

)
, (0,∞)

]

`2 d
P ′

2 = a3a4ad

qP ′
2
=

[(
ξintr
`3

, sP
a2

)
,
(
ξintr
`4

, sP
a3

)
, (0,∞)

]
Figure 11.3 – Reverse chronological direction computation of duty delay

Consider now the reverse chronological computation of the resource qP of the duty pairing p
whose path P is illustrated on Figure 11.3. To be able to check the probabilistic delay constraint
(11.3), we need again to compute at least once the delay ξ`i for each leg `i . According to
delay model (11.6), delay ξ`i on leg `i depends on the delay on leg `i−1. As a consequence,
computing the sum of the resources of arc a3, a4, and ad does not enable to compute ξ`3 .
Delay ξ`3 on leg `3 will be accessible only once the beginning of the pairing has been reached.
Therefore the information on the intrinsic delay of each flight leg and on the slack of each
connection must be kept until the beginning of the duty has been reached. We therefore
define a backward resource qback. to be a list of connection resources qcon.. The backward
sum operator ⊕back. operator between two backward resources is simply the concatenation of
their respective connection resources lists.

181

Chapter 11. Managing delay in airline operations

Connection and backward resources orders

As backward resources are lists of connection resources, to compare backward resources, we
need to be able to compare connection resources. We therefore define the connection resource
order 6con. by

qcon.
1 = (ξ1, sP

1)6con. qcon.
2 = (ξ2, sP

2) if ξ1 ≤rv ξ2 and sP
1 ≥ sP

2 .

Note that a longer slack induces a reduced delay, and thus sP
1 needs to be non smaller than

sP
2 for qcon.

1 to be non greater than qcon.
2 . We can now define the backward resource order as a

term by term connection order.

qback. ¹ �qback. if

{
i ≤ ı̃,

qcon.
j ¹ �qcon.

j , ∀ j ≤ i ,
where

{
qback. = [

qcon.
1 , . . . qcon.

i

]
,�qback. =

[�qcon.
1 , . . . �qcon.

ı̃

]
.

Duty operator for sum of a forward resource with a backward resource

It remains to explain how the list of a backward duty resource qback. is dealt with when reaching
the beginning of a duty. We therefore define the duty sum operator ⊕duty between a forward
resource q forw. and a backward resource. Given a forward resource q forw. = ξ and a backward
resource qback. = [qcon.

1 , . . . , qcon.
k], operator ⊕duty computes iteratively the delay on the leg after

each connection in the connection list of qback., and returns the delay on the leg after the last
connection in qback. if constraint (11.3) is satisfied after each of the connections in qback., and
+∞ otherwise. Operator ⊕duty corresponds to recursive applications of the forward duty sum
operator ⊕forw..

q forw. ⊕duty qback. =
(((

q forw. ⊕forw. qcon.
1

)
⊕forw. . . .

)
⊕forw. qcon.

k

)
.

Delay lattice ordered monoid

We now explain how to combine the connection, forward, and backward resources to obtain
the delay lattice ordered monoid. We start with the case of inter-duty connections. As delay
does not propagate on nights, these inter-duty connections can be dealt with connection
resources qcon. whose slacks are infinite. We now come to the definition of pairing delay
resources qdel., which are resources for partial pairings. There are two types of partial pairings.
Partial pairings of the first type or middle duty partial pairings are composed of a single partial
duty, as illustrated on Figure 11.4. As such partial pairings are simply lists of connections, they
can be represented by a backward resource qback..

Partial pairings of the second type or multi-duty partial pairings are composed of several
duties. As illustrated on Figure 11.5, a multi-duty partial pairing starts by the end of a partial
duty and ends by the beginning of a partial duty. The resource qP of such a partial pairing path
P is thus encoded by a pair (qback.

P , q forw.
P), where qback.

P is the resource of the end of the first
duty of the pairing and q forw.

P is the resource of the beginning of the last duty of the pairing.

As middle duty partial pairings and multi-duty partial pairings use respectively backward
resources and multiple duty resources, we can define the delay resource set Rdel. as the union

182

11.2. Column generation approach to stochastic Crew Pairing

`i `2 `3
a2(

ξintr
`2

, sP
a1

) a3(
ξintr
`3

, sP
a2

)

`1 `3
P = a2a3

qP =
[(
ξintr
`2

, sP
a1

)
,
(
ξintr
`3

, sP
a2

)]
Figure 11.4 – A “middle duty” partial pairing.

`1 `2 `3 `4 `8 `9 `10 `11
a2 a3 night inner

duties

night

`1 `3 `9 `11

qback.
P =[

qcon.
a2

, qcon.
a3

]
q forw.

P = ξ`11

`1 `11
P

qP = (
qback.

P , q forw.
P

)
Figure 11.5 – Multiple duties partial pairing

of the backward resources set and the multiple duty resource set. The pairing resource delay
sum operator ⊕del. and the pairing resource delay order 6del. are defined by disjunction of
cases using the sum operators and orders of the previous sections: Table 11.1 defines ⊕del.,
and Table 11.2 defines 6del..

Proposition 11.3. (Rdel.,⊕del.,6del.) is a lattice ordered monoid. Besides, given the definitions
of (Rdel.,⊕del.,6del.) and ρdel., Property (11.12) is satisfied for all o-d paths P in D.

Proof. Operator ⊕back. is associative by associativity of list concatenation. The associativity of
sequence q forw. ⊕forw. qback. ⊕back. �qback. follows from the associativity of the random variable
sum, the associativity of ⊕back., and the fact that forward resources are always summed in the
chronological direction.

q q̃ q ⊕del. q̃

qback. �qback. qback. ⊕back. �qback.

qback.
(�qback., �q forw.

) (
qback. ⊕back. �qback., �q forw.

)
(
qback., q forw.

) �qback.
(
qback., q forw. ⊕duty

�qback.
)

(
qback., q forw.

) (�qback., �q forw.
) {

∞ if q forw. ⊕duty
�qback. =∞(

qback., �q forw.
)

otherwise.

Table 11.1 – Definition of ⊕del.

183

Chapter 11. Managing delay in airline operations

q q̃ q 6del. q̃ if

qback. �qback. qback. 6back. �qback.

qback.
(�qback., �q forw.

)
qback. 6back. �qback.(

qback., q forw.
) �qback. qback. 6back. �qback. and q forw. = 0(

qback., q forw.
) (�qback., �q forw.

)
qback. 6back. �qback. and q forw. 6forw. �q forw.

Table 11.2 – Definition of 6del.

The monotonicity of the ⊕del. translations comes from the monotonicity of ⊕forw. left and right
translations with respect to 6forw. and 6back., which themselves comes from the monotonicity
of the sum of a real or of a random variable, and the monotonicity of the positive part with
respect to stochastic orders.

11.2.3 Algorithms

As it has been modeled in the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

framework, any algorithm of Section 4.1 can solve it. Nonetheless, as we explained in Chapter 5,
the dominance is rare when considering random variable resources, and thus dominance tests
only slow the algorithm without allowing to cut paths. Thus, the generalized A∗ algorithm
is more appropriate than the label correcting algorithm to solve the stochastic subproblem.
Besides, it is interesting to use a state graph to enhance the quality of the bounds used in the
algorithms. As the problem is highly non linear, there is no natural linear weight function
which would enable to use the conditional state graphs of Section 6.3. We therefore use the
clustering state graphs of Section 6.2.

11.2.4 Numerical results

We test our column generation approach to the STOCHASTIC CREW PAIRING PROBLEM on the
instances of Chapter 7. Following Lan et al. [112], we use truncated lognormal distributions to
model intrinsic delay random variables ξintr

`
. These distribution are fitted on historical data.

We increase delay on these historical data to enhance the delay propagation effect. We use
the generalized A∗ and the label correcting algorithm with bounds provided by the clustering
state graph. We choose the maximum number of states κ per vertex of the connection graph
based on the performance on the deterministic problem in Table 9.2. In delay constraint
(11.3), we use 30 minutes as threshold α, and thresholds β equal to 5%, 10%, and 15%. We use
the same implementations of discrete distributions with finite support as in Chapter 5. The
numerical experiments are performed on a server with 128 Gb of ram and 12 cores at 2.4 GHz.
The algorithms are not parallelized.

Table 11.3 provides the results on the different instances. The first columns provide the
instance considered, the threshold β, the algorithm used, and the maximum number κ of state
vertices per connection graph vertex. The next four columns provide the number of iterations
of the column generation, the percentage of time spent solving the pricing subproblem, the

184

11.2. Column generation approach to stochastic Crew Pairing

Instance β

(min)
Alg. κ CG

iter.
Pricing
time

Avg.
paths

Cut
Dom.

MIP
time

Add.
Cost

Total time
(hh:mm:ss)

CP50 5% A∗ 10 67 93.23% 1.730e+03 – 0.253% 138.01% 00:00:55.5
CP50 10% A∗ 10 78 92.34% 1.741e+03 – 0.161% 72.65% 00:01:02.0
CP50 15% A∗ 10 94 93.34% 3.029e+03 – 0.243% 0.00% 00:02:34.1
CP50 5% cor. 10 54 94.53% 1.903e+03 0.33% 0.232% 138.01% 00:01:02.2
CP50 10% cor. 10 62 94.75% 1.846e+03 0.30% 0.146% 72.65% 00:01:07.9
CP50 15% cor. 10 97 95.53% 2.976e+03 0.27% 0.083% 0.00% 00:03:32.8
CP70 5% A∗ 10 125 95.62% 1.172e+04 – 0.118% 57.64% 00:06:10.2
CP70 10% A∗ 10 150 95.11% 1.059e+04 – 0.756% 53.04% 00:06:28.1
CP70 15% A∗ 10 150 95.56% 1.822e+04 – 0.066% 0.00% 00:10:33.0
CP70 5% cor. 10 121 97.20% 1.150e+04 0.49% 0.069% 57.64% 00:09:37.6
CP70 10% cor. 10 140 97.46% 1.123e+04 0.45% 0.686% 53.07% 00:12:12.3
CP70 15% cor. 10 145 98.30% 1.562e+04 0.31% 0.026% 0.00% 00:23:01.4
CP90 5% A∗ 30 218 98.66% 7.928e+04 – 0.016% 45.57% 01:53:20.0
CP90 10% A∗ 30 236 98.93% 8.701e+04 – 0.053% 41.22% 02:23:22.6
CP90 15% A∗ 30 295 98.95% 1.324e+05 – 0.009% 0.00% 04:16:44.0
A318 5% A∗ 150 341 99.76% 3.888e+05 – 0.002% 8.30% 57:08:59.0
A318 10% A∗ 150 381 99.74% 4.342e+05 – 0.001% 7.32% 70:00:06.8
A318 15% A∗ 150 395 99.77% 4.783e+05 – 0.001% 0.00% 94:32:26.5

Table 11.3 – Numerical results of our column generation approach to the STOCHASTIC CREW PAIRING PROBLEM.

average number of paths enumerated by the subproblem algorithm, and the proportion of
paths cut by the dominance test when the label correcting algorithm is used. We then provide
the percentage of the total CPU time spent solving the mixed integer program at the end of
the column generation. The column “Add. Cost” provides the additional cost when compared
to the deterministic CREW PAIRING PROBLEM, and the last column gives the total CPU time.

We remark that whenβ= 15%, the constraints are not active and we obtain the non-constrained
solution. On small instances, these extra-costs are very large as many additional pairings are
required. These extra-cost decrease with the size of the instance, as more alternative pairings
become available. The number of iterations of the column generation decreases with the
strength of the constraint. This seems logical as the number of feasible pairings also decreases
with the constraint strength. Concerning the choice of the algorithm, Table 11.3 confirms our
statement of Part I that the dominance test is not useful in stochastic context. The number of
paths enumerated by the generalized A∗ algorithm is larger but of the same order of magnitude
as the one obtained in the deterministic case. Nonetheless, as convolutions and stochastic
order dominance tests are time consuming, the time needed to solve the problem is much
larger than in the deterministic case, and the time needed to solve the column generation
linear programs and the final integer program become small compared to the pricing time.

185

Chapter 11. Managing delay in airline operations

11.3 Compact integer program for Stochastic Aircraft Routing

We introduced in Chapter 8 the compact integer program (8.2) to model the deterministic
AIRCRAFT ROUTING PROBLEM (7.1). The objective of this section is to extend this approach
to the STOCHASTIC AIRCRAFT ROUTING PROBLEM (11.8), where delay is propagated by crews
and airplanes according to delay model (11.2). We were able to extend it only in the case of
scenario based distributions.

11.3.1 Deterministic problem compact integer program

We use the routing connection digraph DR = (V R , AR) and its maintenance state graph D =
(V ,A), which have both been introduced in Chapter 8. In a routing connection digraph,
there is one vertex v in V R for each leg ` in L , and one arc a in AR for each feasible routing
connection. V is the set of state vertices ϑ and A is the set of state arcs α. Each vertex v in the
routing connection graph has a set of state vertices Vv , and each arc a has a set of state arcs
Aa . Chapter 8 introduces the integer program (8.2), that we now restate, ans shows that it
encodes the deterministic AIRCRAFT ROUTING PROBLEM (7.1).

∑
ϑ ∈ Vv

α ∈ δ−(ϑ)

xα = 1 ∀v ∈V \S

∑
ϑ ∈ Vv

α ∈ δ+(ϑ)

xα = 1 ∀v ∈ S

∑
α∈δ−(ϑ)

xα = ∑
α∈δ+(ϑ)

xα ∀ϑ ∈ V

xα ∈ {0,1} ∀α ∈A

(8.2)

For the use of this chapter, we only need to know that, given a connection and its corresponding
arc a, this connection belongs to one pairing of the solution of (8.2) if and only if there is one
state arc α in Aa such that xα = 1.

11.3.2 Scenario approach compact integer program

We now suppose to have a set of scenarios ω ∈Ω. We denote respectively ξintr
vω and ξvω the

intrinsic and the total delay of the leg ` of vertex v under scenario ω.

The following equations enable to take into account delay propagated by crews according to
model (11.2).

ξ
prop
vω ≥ 0
ξ

prop
vω ≥ ξuω− sP

uv , ∀(u, v) ∈ y
ξvω = ξprop

vω +ξintr
vω

(11.15)

where (u, v) ∈ y means that (u, v) belongs to a pairing p such that yp = 1 in y. Let M be a large
constant. The following equation enables to take into account delay propagated by airplanes

186

11.3. Compact integer program for Stochastic Aircraft Routing

according to model (11.2).

ξ
prop
vω ≥ ξuω− sR

uv − (1−xuv)M , ∀(u, v) ∈ A (11.16)

In order to take into account maintenance constraints, we have go to the state graph formula-
tion to obtain the following program.

min
∑
ω

∑
v∈V

ξvω (11.17a)

s.t.
∑
ϑ ∈ Vv

α ∈ δ−(ϑ)

xα = 1 ∀v ∈V \S (11.17b)

∑
ϑ ∈ Vv

α ∈ δ+(ϑ)

xα = 1 ∀v ∈ S (11.17c)

∑
ϑ∈δ−(ϑ)

xα = ∑
ϑ∈δ+(ϑ)

xα ∀ϑ ∈ V (11.17d)

ξ
prop
vω ≥ ξuω− sP

uv , ,∀(u, v) ∈ y,∀ω (11.17e)

ξ
prop
vω ≥ ξuω− sR

uv − (1− ∑
α∈A(u,v)

xα)M , ∀(u, v) ∈ A,∀ω (11.17f)

ξvω = ξprop
vω +ξintr

vω ∀v ∈V ,∀ω (11.17g)

ξ
prop
vω ≥ 0,ξvω ∈R ∀v ∈V ,∀ω (11.17h)

xα ∈ {0,1} ∀α ∈A (11.17i)

Equations (11.17b) to (11.17d) ensure that the vector of xα defines a solution of the determinis-
tic AIRCRAFT ROUTING PROBLEM. Equations (11.17e) to (11.17h) ensure that ξvω corresponds
to the delay of the leg of vertex v under delay model (11.2).

Theorem 11.4. An optimal solution of (11.17) defines an optimal solution of the STOCHASTIC

AIRCRAFT ROUTING PROBLEM (11.8) when random variables ξintr
v are supposed to have scenario

distributions.

This compact integer program for robust AIRCRAFT ROUTING PROBLEM in inspired from the
scenario approach to robust CREW PAIRING PROBLEM developed by Yen and Birge [174]. But
contrary to theirs, our approach leads to a compact integer program that can be solved exactly
by a standard MILP solver.

11.3.3 Numerical experiments

We have tested the performance of the STOCHASTIC AIRCRAFT ROUTING PROBLEM compact
integer program on the instances of Chapter 7. The intrinsic delay random variables ξintr

`

scenarios are sampled from the truncated lognormal distributions of Section 11.2.4. In delay
constraint (11.3), we use 30 minutes as threshold α, and 10% as threshold β. The numerical
experiments are performed on a server with 128 Gb of ram and 12 cores at 2.4 GHz. We use

187

Chapter 11. Managing delay in airline operations

CPLEX 12.1.0 to solve the integer program.

Table 11.4 shows the compact integer program size and the computation time we obtain on
the aircraft routing instances of Chapter 7 using between 10 and 200 scenarios. For each
instance and number of scenarios, it provides the number of variables and the number of
constraints in the integer program, and the CPU time needed to solve it. We note that, even
for the largest instances with 200 scenarios, the compact integer program can be solved in less
than 10 minutes.

11.4 Numerical results on STOCHASTIC INTEGRATED PROBLEM

We test the solution approach to the STOCHASTIC INTEGRATED PROBLEM in Section 11.1.3 on
the small and medium size instances of Chapter 7. The solution schemes of Section 11.3.3 and
Section 11.2.4 are respectively used to solve the STOCHASTIC AIRCRAFT ROUTING PROBLEM

and STOCHASTIC CREW PAIRING PROBLEM instances. To model delay in the crew pairing part
of the integrated problem solution scheme, we use the discrete independent distributions of
Section 11.2.4. And we use the scenario based distributions of Section 11.3.3 in the aircraft
routing part of the solution scheme. The numerical experiments are performed on a server
with 128 Gb of ram and 12 cores at 2.4 GHz. The algorithms are not parallelized. In delay
constraint (11.3), we use 30 minutes as threshold α, and 10% as threshold β. Following the
heuristic approach at the end of Section 11.1.3, we use γ= 0.9 in the short connect constraint.

Table 11.5 provides numerical results on the STOCHASTIC INTEGRATED PROBLEM for different
number of scenarios. The two first columns provide the instance and the number of scenarios.
The next column gives the number of cuts added, i.e. the number of iterations of the INTE-
GRATED PROBLEM. The four next columns correspond to the crew pairing instances solved:
they provide the maximum number κ of state vertices per connection graph vertex used in the
clustering state graph, the total number of iterations in all the column generation schemes
launched along the algorithm, and the percentage of the total algorithm time spent in the
column generation, and the percentage of time spent solving the integer version the crew
pairing problem. The next column gives the percentage of time spent solving the AIRCRAFT

ROUTING PROBLEM compact integer program. The next columns provide the number of short
connections in the solution returned, and the gap between the optimal solution of the linear
program without short connect constraints and the solution returned. Finally, the last column
provides the total CPU time.

We note that the CPU time needed to solve these STOCHASTIC INTEGRATED PROBLEM instances
is between five and ten times larger than for their deterministic counterpart in Table 10.1.
Besides, the gap being very small, we can see that using the heuristic with γ= 0.9 does not
penalize the quality of the solution returned.

11.5 Sampling approach

The solution approach to the STOCHASTIC AIRCRAFT ROUTING PROBLEM in Section 11.3, and
thus the solution approach to the STOCHASTIC INTEGRATED PROBLEM in Section 11.1, work
only for scenario-based distributions. Suppose now that the intrinsic delay (ξintr) is a family

188

11.5. Sampling approach

Instance Scenarios Variables Constraints Total time
(mm:ss)

AR4 10 13377 23791 00:01.33
20 17297 46821 00:01.68
50 29057 115911 00:04.05

100 48657 231061 00:06.69
200 87857 461361 00:15.55

AR8 10 44001 92466 00:07.42
20 51341 183366 00:09.17
50 73361 456066 00:13.44

100 110061 910566 00:21.79
200 183461 1819566 00:37.01

AR12 10 90873 202991 00:28.70
20 101433 403631 00:31.78
50 133113 1005551 00:41.81

100 185913 2008751 01:01.59
200 291513 4015151 01:37.37

A318 10 174967 406256 01:35.95
20 189507 809166 01:49.89
50 233127 2017896 02:24.79

100 305827 4032446 02:41.03
200 451227 8061546 04:27.61

A319 10 208311 474246 02:25.99
20 229211 943706 02:33.03
50 291911 2352086 02:51.56

100 396411 4699386 03:50.07
200 605411 9393986 06:16.80

A320 10 222714 511181 04:26.96
20 242954 1017771 06:07.85
50 303674 2537541 06:17.05

100 404874 5070491 05:42.66
200 607274 10136391 08:04.82

A321 10 135678 307041 01:37.21
20 152358 610191 01:28.60
50 202398 1519641 01:46.61

100 285798 3035391 02:11.53
200 452598 6066891 03:01.77

Table 11.4 – Numerical results for the compact integer program approach to the STOCHASTIC

AIRCRAFT ROUTING PROBLEM

189

Chapter 11. Managing delay in airline operations

Instance Scen. Cuts κ CG it.
total

CP CG
time

CP MIP
time

AR
time

Sho.
Con.

Gap Total time
(hh:mm:ss)

AR4 10 23 20 40 9.98% 49.38% 40.65% 63 0.031% 00:00:48.9
20 32 20 47 5.27% 51.47% 43.26% 58 0.034% 00:01:47.9
50 33 20 52 4.98% 51.07% 43.95% 60 0.034% 00:01:56.7

AR8 10 30 20 130 42.88% 30.73% 26.39% 141 0.003% 00:14:50.7
20 70 20 162 28.06% 39.98% 31.96% 138 0.005% 00:28:12.2
50 34 20 135 22.91% 40.13% 36.96% 141 0.003% 00:23:04.7

AR12 10 127 20 349 71.62% 18.39% 9.99% 216 0.006% 04:04:51.1
20 108 20 341 68.03% 18.12% 13.85% 217 0.007% 03:59:10.7
50 134 20 357 70.94% 18.98% 10.08% 215 0.005% 04:15:35.2

Table 11.5 – Numeric results on STOCHASTIC INTEGRATED PROBLEM

of generic random variables on a probability space (Ω,F ,µ). As we mentioned in Chapter 2,
given an N -sample (ξintr)1, . . . , (ξintr)N of these random variables, we can obtain scenario based

distributions by replacing µ by its Monte-Carlo approximation µ̂N =
∑N

i=1δ(ξintr)i

N , where δ(ξintr)i is
the Dirac in (ξintr)i . In this section, we suppose that under µ, intrinsic delay (ξintr) has support
in Z+ and admits a square exponential moment

ε(µ) =
∫
RL

e |(ξ
intr)|2µ(dξintr).

We show that, under these hypotheses, if we replace the intractable constraint

Pµ
[
ξ`(x,y) ≥α]≤β, ∀` ∈L , (11.3)

by the tractable scenario constraint

Pµ̂N

[
ξ`(x,y) ≥α]≤β′, ∀` ∈L , (11.18)

where β′ <β, then we have an upper bound exponential in |L | and |N | on the probability that
a solution (x,y) satisfies the intractable constraint (11.3).

Proposition 11.5. Let (x,y) be a solution of (11.4) where the delay constraint (11.3) has been
replaced by the sampled one (11.18) with t =β−β′. The probability that (x,y) is not a solution
of (11.4) is non-greater than

C
(
exp

(
−cN t |L |

)
1t≤1 +exp

(−cN t 2)1t>1

)
,

where C and c are constants depending only on |L | and ε(µ), and 1·≤1 and 1·>1 are the indicator
functions of (−∞,1] and (1,+∞).

The probability in (11.5) is with respect to the sampling of (ξintr). An alternative bound can be
derived when µ has continuous support but bounded density.

190

11.6. Bibliographical remarks

Proof. Proposition 11.5 is a direct application of Theorems 2.4 and 2.7 as the function that
maps intrinsic delay ξintr to total delay ξ in delay model (11.2) is Lipschitz.

Using again Theorems 2.4 and 2.7, a similar result can be obtained for problem (11.9).

11.6 Bibliographical remarks

11.6.1 Delay models

There are three types of delay models in the approaches to the STOCHASTIC AIRCRAFT ROUT-
ING PROBLEM, the STOCHASTIC CREW PAIRING PROBLEM, and the STOCHASTIC INTEGRATED

PROBLEM. The first type of delay model was developed for the STOCHASTIC AIRCRAFT ROUTING

PROBLEM [112]. It relies on the notion of intrinsic ξintr
`

, and considers only delay propagated by
airplanes. Total delay is thus modeled as follows.

ξ`(0,x) = max
(
0,ξπ`(x) − sP

(π`(x),`)

)
= ξ`(r`(x)) (11.19)

where r`(x) is the route of leg ` in routing solution x. Our pairing delay model (11.6) is an
analogue of model (11.19) where delay is propagated only by crews. As we mentioned in
Section 11.1.4, the main strength of such models is their simplicity that enables to tackle with
delay in the subproblem when a column generation approach is used.

Our delay model (11.2) belongs to the second type of models, where intrinsic delay ξintr
`

appears on leg and is propagated by airplanes and crews. If such models are more realistic than
the previous ones, they suffer from the intractability of the exact computation of probabilities,
as we already explained in Section 11.1.1. Approaches using this model therefore rely on
averaged model [62], approximate heuristic inference [171], or simulation [7, 63].

Finally, richer models takes into account more accurately the origin of delay, modeling precise
events in the airports such as runway queue, passengers management system failure, and
precise events during the flying time such as events linked to air control. As a consequence
flight legs delay variables are heavily dependent, and exact inference is definitely intractable.
Therefore, these models rely on simulation. Several discrete event simulators have been
developed [40, 150], the most well known being SIM-AIR [150].

In the context of robust models, only the support of the random variable ξintr
`

modeling delay
on flight leg ` needs to be provided. Nonetheless, this simple model does not take into account
dependence between random variables, and may lead to poor results. Therefore, Yan and
Kung [173] suppose that the vector of delays on all legs belongs to a given oriented ellipsoid,
which is the robust equivalent to a normal distribution assumption in stochastic models.
The orientation matrix of the ellipsoid corresponds to the covariance matrix in the normal
distribution model and captures the dependencies between flight legs delays. Besides, it can
be estimated as the covariance matrix of the observed delay. The strength of this model is
its ability to capture dependencies between random variables while avoiding complicated
inference problems. Besides, even if it was developed for non-integrated aircraft routing, it
can be easily used in the integrated aircraft routing and crew pairing context. The limit of the

191

Chapter 11. Managing delay in airline operations

model lies in the choice of normal distributions, which is questionable when modeling delays.

11.6.2 Optimization approaches

STOCHASTIC AIRCRAFT ROUTING PROBLEM approaches

In their seminal paper, Lan et al. [112] state delay model (11.19) and consider the problem
of finding the aircraft routing solution that minimizes the sum of the expected delay on all
flight legs. They also develop an approximate column generation procedure to solve this
problem. This procedure is approximate because of an approximate solution of the pricing
subproblem. It could be made exact by using the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM approach and the delay monoid developed in Section 11.2. They tested their
approach on a 278 flight legs network.

Yan and Kung [173] develop a robust optimization approach based on the robust model men-
tioned in the previous section. The robust model is solved using column and row generation.
Column generation is used to generate routes, while row generation is used to generate con-
straints. Indeed, Yan and Kung [173] show that only a finite number of the infinite set of
constraints required to model an ellipsoidal feasibility set in linear programming is required,
and that these constraints can be identified efficiently. Yan and Kung [173]’s approach is the
most convincing one already implemented that takes into account dependencies between
flight leg delays.

In one of the first attempt to take into account uncertainty in aircraft routing, Ageeva and
Clarke [6] use a robust approach. They define an interval of time for flight leg departure
depending of a parameter δT and study the influence of this robustness parameter on the
cost of the solution.

Other approaches to robust aircraft routing focus on schedule tuning: the idea is to have some
flexibility on flight legs departure time in order to assign optimally the slack between flight legs
in order to absorb delay. Wu [172] defines a robustness criterion based on scenario generations
by a simulator. His solution scheme is a sequential algorithm that alternates aircraft routing
optimization and schedule tuning in order to maximize robustness. He mentions that im-
proved result can be obtained by using a richer model such as MEANS [40]. Aloulou et al. [10]
develop a similar approach based on a simple delay model. Finally, Maher et al. [122] define a
robustness criterion that takes into account maintenance disruption costs due to schedule
disruptions and delay. Maintenance disruption costs come from the maintenance process:
each aircraft must undergo a maintenance check every 6 nights. Due to schedule adaptation
caused by delay, some airplanes may not reach the airport where their maintenances were
scheduled, which may lead to a violation of the maintenance rule. The idea of this robust
optimization is to minimize the risk of violating the maintenance rule. They implement a two
stage model based on a heuristic and a simple stochastic model.

STOCHASTIC CREW PAIRING PROBLEM approaches

In the context of the STOCHASTIC CREW PAIRING PROBLEM, the objective considered by most
contributions is to minimize the extra crew pairing costs due to disruptions caused by delay.

192

11.6. Bibliographical remarks

These sources of cost are the same as the ones of the deterministic problem: hotel nights,
credited hours, and so on. Ehrgott and Ryan [64] develop a heuristic robustness criterion and
incorporate it in a bicriteria optimization problem.

Recent approaches minimize the expected costs in a two stage optimization problem, the first
stage being crew pairing and the second stage being a disruption management system. Yen and
Birge [174] develop an integer programming approach based on sampled scenarios. They treat
instances up to 11 planes and 79 legs. The approach of Schaefer et al. [158] is one of the most
promising. They use Sim-Air [150] to model the costs of delay. They develop matheuristics
to solve the problem. These heuristics rely on Monte Carlo simulation to approximate the
average costs. They treat instances with up to 120 legs.

Shebalov and Klabjan [162] deal with uncertainty in another way. Instead of using a stochastic
model, they define a robustness criterion in order to maximize the possibility to switch pairings
between crews in case of disruptions. They deal with instances with up to 228 legs.

Finally, Muter et al. [134] seek a different objective: for operational reason, the company they
work for needs to incorporate extra-legs after crew pairing optimization. The stochasticity
is thus in the distribution of these extra-legs. They develop a two-stage model to solve this
problem.

STOCHASTIC INTEGRATED PROBLEM approaches

The approaches to the robust integrated aircraft routing and crew pairing problem available
in the literature are extensions of the seminal robust aircraft routing approach of [112]. They
use similar column generation solution schemes. Weide et al. [171] introduce (11.2), and use
an approximate inference scheme based on convolution product of distributions to derive
delay distributions. This enables to define approximate expected costs of delay, which are
then introduced in an optimization matheuristic. They test their solutions on schedules with
up to 750 flight legs. Using the same stochastic model, Dunbar et al. [62] define a bicriteria
optimization problem. The results of these two heuristic approaches must be taken with care
because of the approximate nature of inference performed. Dunbar et al. [63] enhance these
by replacing the approximate inference variational scheme by scenario sampling. Dunbar
et al. [62] and Dunbar et al. [63] use a network with 54 flight legs.

193

12 Conclusion

As a conclusion, we sum up the main contributions of this dissertation, and outline some
research directions suggested by our results.

12.1 Main contributions

In this dissertation, we have developed algorithms for some shortest path and airline oper-
ations problems. The first part is mainly theoretical and introduces a methodology to solve
constrained shortest path problems through the MONOID RESOURCE CONSTRAINED SHORTEST

PATH PROBLEM framework. The second part applies this framework to solve some airline
operations problems in their full industrial complexity.

Part I introduces an algebraic framework for resource constrained shortest path problem,
the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. This framework is at the
crossroad of two distinct branches of the literature on path problem: the one that develops
solution methods for resource constrained shortest path problems, and the one that studies
algebraic modeling of shortest path problems.

Most contributions in the resource constrained shortest path community rely on the resource
extension functions framework [55, 96, 97]. In this non-algebraic framework, each path P has a
resource qP , each arc a a resource extension function ζa , and the resource of P followed by arc
a is ζa(qP). Enumeration algorithms are used to solve these problems: a dominance relation is
used to discard partial solutions in a smart enumeration of all the paths. It is well known that
lower bounds on paths resources enable to speed-up enumeration algorithms [61] in two ways.
They are used to guide the search, which enables to find faster good solutions, and to discard
partial solutions, which reduces the number of paths enumerated. However, if the literature
contains ad-hoc procedures to compute lower bounds on some specific problems, there
is no standard algorithm to build such lower bounds, and the resource extension function
framework does not provide standard way of using them in enumeration algorithms. Our
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework provides standard
procedures to build such bounds, and new versions of the enumeration algorithms which
use these bounds. The numerical experiments show that the use of these bounds practically
speeds-up the resolution of a wide range of constrained shortest path problems, among which
stochastic, non-linear, and industrial problems for which no bounding techniques existed.

195

Chapter 12. Conclusion

Our procedures to build lower bounds are in the line of a long tradition of algebraic frameworks
for path problems [8, 17, 34, 74, 115, 130, 152, 178]. In this tradition, arcs a do not have
resource extension functions ζa but resources qa that belong to the same set R as the paths
resources qP . The resource set R is endowed with an algebraic structure, that is generally the
one of idempotent semiring. The canonical ordering 6 associated to the idempotent binary
operator of the semiring plays the role of the dominance relation of the resource extension
function framework. We denote ⊕ the other binary operator of the semiring. The translation
q 7→ q ⊕ qa plays the role of the resource extension function ζa . In that algebraic setting,
a dynamic-programming equation can be written. Its solution is the greatest lower bound
on all the paths resources, and algorithms such as Ford-Bellman algorithm can compute
its solution in polynomial time. These algorithms therefore provide the desired standard
procedure to compute lower bounds. However, the idempotent semiring structure is too
strong to model the practically interesting constrained shortest path problem for which we
need the bounding procedure. We therefore endow (R,⊕,6) with the weaker structure of
lattice ordered monoid, which is versatile enough to model a wide range of path problems.
The difference between the two structures lies in the fact that ⊕ is no more distributive with
respect to the meet operator ∧ of 6. We show that, in this more general case, the polynomial
algorithms mentioned above still provide a lower bound on all the paths resources, even if it is
not necessarily the largest one. These algorithms are therefore standard procedures to build
lower bounds in the versatile framework of lattice ordered monoid. To sum things up, the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM provides a versatile framework
for resource constrained shortest path problems that leverages on ideas and algorithms from
the algebraic path problem community to standardize the use of bounds in enumeration
algorithms, and thus improve their practical practical performance.

The MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework shows its full
power on stochastic path problems. Indeed, we show in Chapter 5 that it can model a wide
range of path problems with stochasticity in the objective, in the constraints, or in both, and
that our algorithms are practically efficient in solving them. In that case, the monoid is the
space of random variables endowed with the addition. Depending on the hypotheses on the
random variables, we endow it with the almost sure order, or with usual stochastic order, the
second being coarser that the first. The coarser the order is, the tighter the lower bounds
are, and the more efficient the enumeration algorithms are. Most probability functionals of
interest are monotone with respect to these orders, which make the approach versatile. To
the best of our knowledge, this approach provides the first practically efficient algorithms
for path problems with probabilistic constraints. Chapter 11 shows the relevance of the ap-
proach on industrial instances of the airline STOCHASTIC CREW PAIRING PROBLEM where delay
propagation is controlled. This idea of using an algebraic approach to solve stochastic path
problems is quite original in stochastic optimization, and it is one of the main contribution of
this dissertation.

When it comes to implementation, the advantage of a standardized framework is that its
algorithms can be implemented once and for all in a library, and then applied to a wide range
of problems. During this thesis, we have developed the C++ library LatticeRCSP that imple-
ments all the algorithms in Part I. C++ templates enable to use this library on any path problem

196

12.1. Main contributions

that can be modeled as a MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM. The
coding work to deal with a new path problem is minimal: we only need to implement the
elements and the operators of the lattice ordered monoid (R,⊕,6), the cost function c and
the feasibility function ρ. All the numerical experiments in this dissertation have been realized
using this library. The main features of the library are described in Appendix C.

Part II focuses on airline operations problems. The AIRCRAFT ROUTING PROBLEM builds
the rotations operated by the airplanes, and the CREW PAIRING PROBLEM those operated
by the crews. As the solutions of these two problems are linked, they should ideally be
solved in a single INTEGRATED PROBLEM. However, due to computational complexity, the
current industrial practice is to solve them sequentially. Part II introduces a solution scheme
for the INTEGRATED PROBLEM that can solve to near optimality large industrial instances.
This scheme relies on efficient solution schemes for the AIRCRAFT ROUTING PROBLEM and
the CREW PAIRING PROBLEM. We introduce a compact integer program for the AIRCRAFT

ROUTING PROBLEM. On large industrial instances, this integer program is solved in at most
a few minutes by modern MIP solvers. Besides, it is easier to implement than the column
generation approach available in the literature. Following the literature, we solve the CREW

PAIRING PROBLEM using a column generation approach. However, due to the complexity of
the crew working rules, the usual resource constrained shortest path algorithms solve the
pricing subproblem too slowly to be usable in a column generation scheme on large industrial
instances. Our main contribution lies in the use of the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM algorithms of Part I to solve the pricing subproblem. Thanks to
the use of bounds to discard paths, the use of these paths algorithms dramatically speeds up
the resolution of the pricing subproblem and enable to solve to optimality large industrial
instances. The value of these contributions comes from the importance of the problems
considered for the airline industry.

Chapter 6 introduces techniques to improve the performance of the enumeration algorithms
on difficult instances of the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM

thanks to a preprocessing. In a column generation approach, this preprocessing needs to be
done only once, and speeds-up the resolution of the pricing subproblem at all iterations of the
column generation. Numerical experiments show that this technique enables to speed-up
by a factor three the resolution of our industrial instances of the CREW PAIRING PROBLEM.
This preprocessing technique can be applied to any problem that can be modeled within the
MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework. It can therefore be
applied to speed up column generation approaches to a wide range of routing and schedul-
ing problems whose subproblems can be modeled as instances of the MONOID RESOURCE

CONSTRAINED SHORTEST PATH PROBLEM.

Finally, Chapter 11 extends the AIRCRAFT ROUTING PROBLEM, the CREW PAIRING PROBLEM,
and the INTEGRATED PROBLEM solution schemes to stochastic versions of these problems
where the propagation of delay along rotations is controlled. Each of these stochastic problems
can be solved to near optimality instances with hundreds of flight legs. The difficult part is
the CREW PAIRING PROBLEM. Thanks to the ability of the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM framework to deal with stochasticity, the column generation ap-
proach can solve to optimality industrial instances of the stochastic CREW PAIRING PROBLEM.

197

Chapter 12. Conclusion

Besides, to our knowledge, it is the first approach to these problems where delay is controlled
thanks to probabilistic constraints – instead of a penalization in the objective.

Along this thesis, we developed first the ideas for the stochastic path problems, and detailed
them in the following preprint.

Axel Parmentier and Frédéric Meunier. Stochastic shortest paths and risk measures. arXiv
preprint arXiv:1408.0272, 2014

Working in parallel on the column generation approach to the airline CREW PAIRING PROBLEM,
we had the problem that the available resource constrained shortest path library were not
powerful enough to solve Air France industrial instances. We then figured out that the algebraic
ideas we used for stochastic path problems could be generalized to a much wider setting, and
we developed the MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework in
the following preprint.

Axel Parmentier. Algorithms for non-linear and stochastic resource constrained shortest paths.
arXiv preprint arXiv:1504.07880, 2015

The link of our work to the algebraic path problem community came later, and Part I rereads
and extends the content of those two preprints in that context. These contributions to path
problems have also been presented in many conferences, and enabled me to win the first
prize at the 2016 young researcher award of the French operations research society, the “prix
jeune chercheur de la ROADEF”. Articles based on Part II are currently being finalized.

12.2 Research directions

We now outline research directions to continue the research opened in this dissertation, from
mature techniques to open questions.

The algorithms of Part II can be improved using techniques of the literature. As we detail
in Section 9.3.2, the column generation approach to the CREW PAIRING PROBLEM can be
improved by defining a heuristic to initialize the column generation with a good quality
solution, by using a stabilization approach [60], and by using constraint aggregation [66, 67].
We also have mention in Remark 7.1 that the solution scheme for the INTEGRATED PROBLEM

can be improved using a Branch and Check approach [167].

The MONOID RESOURCE CONSTRAINED SHORTEST PATH PROBLEM framework provides a
practically efficient solution methodology for stochastic resource constrained shortest path
problems. As resource constrained shortest path problems naturally arise as subproblems of
decomposition approach to routing and scheduling problems, it provides a methodology to
deal with stochastic versions of these problems. We are currently working on its applications
to stochastic versions of the unit commitment problem.

We are also working on more data oriented versions of the stochastic path problems. On some
practical applications, there is no easy model of the stochasticity in the resource constraints.
From a machine learning point of view, instead of defining a random variable ξa , we would
consider a vectorφa of sufficient statistics. The infeasibility function ρ can then be interpreted
as a binary classifier, that can be learned from the data. However, this raises the following

198

12.2. Research directions

question: given a machine learning classifier ρ that is adequate from a statistical point of view,
is there a lattice ordered monoid (R,⊕,6) modeling the problem such that ρ is isotone with
respect to 6. The answer is yes in the case of generalized linear problems, and in the one of
neural networks with monotone activation function. We are considering the application of
this methodology to an airline operation problem not considered in this dissertation.

It is not standard in stochastic optimization to use algebraic approaches such as the one we
develop for stochastic path problems. A natural question is therefore: can such an approach be
generalized to other stochastic problems? Practically, these algorithms comes from a new look
on an old literature of algebraic generalizations of the usual shortest path problem [86, 178].
We can therefore ask ourselves if other algebraic generalizations of traditional problems can
be turned into algorithms for stochastic versions of the problem.

199

PartAppendix

2 4 6 8 10 12 14 16 18 20 22 24

|ζ| ≤ 2

2 < |ξ| ≤ 4

∆max

tbξ

10

10.5

11

11.5

12

12.5

5 : 42 13 : 28

0

8

|ζ > 4|

201

A Wasserstein distance and stochastic
optimization

The aim of this appendix is to prove Theorems 2.5 to 2.7 of Chapter 2. The appendix is
organized as follows.

• Section A.1 introduces general results on the robusteness of probability functionals with
respect to Wasserstein distance.

• Section A.2 considers stochastic optimization problems with stochastic objective func-
tion and deterministic set of feasible solutions. Theorems 2.5 and 2.6 are proved in this
chapter.

• Section A.3 considers stochastic optimization problems whose set of feasible solutions
is defined through probabilistic constraints, and proves Theorem 2.7.

A.1 Robustness of probability functionals with respect to Wasser-
stein distance

A.1.1 Risk measures

To control the error made in risk measures evaluation, we need the following lemma [144, 145].

Lemma A.1. Let ρ(·) be a version independent risk measure and supσ∈S ρσ be its distortion
functional representation. If f is κ-Lipschitz, then∣∣ρµ f (X)−ρµ̃ f (X)

∣∣≤ κW1
(
µ, µ̃

)
sup
σ∈S

‖σ‖∞.

A.1.2 Distributions with bounded density

To model on time arrival in the context of stochastic shortest path problem, or to model
probabilistic constraints, we use probability functionals of the form ρ(·) =P(· > τ) for a given
threshold τ. Unfortunately, Lemma A.1 does not apply to these functionals. Indeed, given
ε> 0, let µ be the Dirac in τ−ε/2 and µ̃ be the Dirac in in τ+ε/2, we have

Pµ(ξ> τ) = 0, Pµ̃(ξ> τ) = 1, and W1(µ, µ̃) = ε.

Nonetheless, under an additional assumption on the regularity of µ, we have the following

203

Appendix A. Wasserstein distance and stochastic optimization

analogue of Lemma A.1.

Lemma A.2. Let α > 0. If f is κ-Lipschitz and the distribution µ f (ξ) induced by f (ξ) on R is
bounded by B, then ∣∣Pµ (

f (ξ) >α)−Pµ̃ (
f (ξ) >α)∣∣≤ 2

√
BκW1(µ, µ̃).

Proof. It follows directly from the definition of the Wasserstein distance from the inherited
distance that W1

(
µ f (ξ), µ̃ f (ξ)

) ≤ κW1
(
µξ, µ̃ξ

) = κW1(µ, µ̃) for κ-Lipschitz functions f . As a
consequence, we only need to prove that∣∣Pµ (ξ>α)−Pµ̃ (ξ>α)

∣∣≤ 2
√

BW1(µ, µ̃).

Let ∆> 0, and π be an optimal coupling between Pµ and Pµ̃.

Pµ(f (ξ) >α)−Pµ̃(f (ξ) >α)
=Pπ

{
(x, y)|x >α and y ≤α}−Pπ {

(x, y)|x ≤α and y >α}
≤Pπ

{
(x, y)|x >α and y ≤α}

=Pπ
{
(x, y)|x >α+∆ and y ≤α}+Pπ {

(x, y)|α+∆≥ x >α and y ≤α}
≤Pπ

{
(x, y)||x − y | ≥∆}+Pπ {

(x, y)|α+∆≥ x >α}
.

(A.1)

Besides, we have,

W1(µ, µ̃) =
∫
R2
|x − y |dπ≥

∫
{|x−y |≥∆}

∆dπ=∆Pπ
{
(x, y)||x − y | ≥∆}

,

which implies Pπ
{
(x, y)||x − y | ≥∆} ≤ W1(µ,µ̃)

∆ . In addition, the hypothesis on µ f (ξ) implies
Pπ

{
(x, y)|α+∆≥ x >α}≤ B∆. Therefore, Equation (A.1) gives

Pµ(f (ξ) >α)−Pµ̃(f (ξ) >α) ≤ W1(µ, µ̃)

∆
+B∆. (A.2)

Minimizing on ∆, and reiterating the proof in the other direction gives the result.

A.2 Stochastic objective functions

We can now prove the following Theorems 2.5 and 2.6.

Theorem 2.5. Suppose that X is compact, ξ 7→ f (x,ξ) is κ-Lipschitz for all x, and that ρ is a
version independent risk measure, and S be a set of distortion function that generates it. The
existence of such an S is ensured by Corollary 2.2. Let µ and µ̃ be two probability distributions,
and let x∗ and x̃ denote optimal solutions of min

x∈X
ρµ

(
f (x,ξ)

)
and min

x∈X
ρµ̃

(
f (x,ξ)

)
respectively.

Then,
ρµ

(
f (x̃,ξ)

)−ρµ (
f (x∗,ξ)

)≤ 2κ sup
σ∈S

‖σ‖∞W1
(
µ, µ̃

)
.

Note that the existence of optimal solutions x∗ and x̃ is a consequence of the compactness of
X and the fact that f is Lipschitz.

204

A.2. Stochastic objective functions

Proof of Theorem 2.5. Let g (x) = ρµ
(

f (x,ξ)
)

and g̃ (x) = ρµ̃
(

f (x,ξ)
)
, and M = κW1

(
µ, µ̃

)
supσ∈S ‖σ‖∞.

Lemma A.1 gives |g (x)− g̃ (x)| ≤ M for all x in X. As x̃ minimizes g̃ , we have

ρµ
(

f (x,ξ)
)= g (x̃)

≤ M + g̃ (x̃)

≤ M + g̃ (x∗)

≤ 2M + g (x∗)

= ρµ
(

f (x∗,ξ)
)+2κ sup

σ∈S
‖σ‖∞W1

(
µ, µ̃

)
,

which gives the result.

Theorem 2.6. Suppose that X is compact, ξ 7→ f (x,ξ) is κ-Lipschitz for all x, and that τ is a
given threshold, and let x∗ and x̃ be defined as in Theorem 2.5.

1. If the support of f (x,ξ) under µ and µ̃ is in Z for all x, then

Pµ
(

f (x̃,ξ) > τ)−Pµ (
f (x∗,ξ) > τ)≤ 2κW1

(
µ, µ̃

)
.

2. If there exists a B such that, for each x ∈X, the distribution of f (x,ξ) is non-atomic and
with density bounded by B, then

Pµ
(

f (x̃,ξ) > τ)−Pµ (
f (x∗,ξ) > τ)≤ 4

√
BκW1(µ, µ̃).

Again, the existence of optimal solutions x∗ and x̃ is a consequence of the compactness of X
and the fact that f is Lipschitz.

Proof of Theorem 2.6. Point 1 of the theorem is a corollary of Theorem 2.5. Indeed, let m be
the floor of τ, and let φ be the function t 7→ max(0,min(1, t −m)). Then φ and 1·>τ coincide
on Z, which implies Pµ

(
f (x,ξ) > τ)= Eµ (

φ(f (x,τ)
)

and Pµ̃
(

f (x,ξ) > τ)= Eµ̃ (
φ(f (x,τ)

)
for all

x. As φ is 1-Lipschitz, ξ 7→φ(f (x,ξ)) is κ-Lipschitz, and Theorem 2.5 gives the result.

Let g (x) = Pµ
(

f (x,ξ) > τ) and g̃ (x) = Pµ̃
(

f (x,ξ) > τ), and M = 2
√

BκW1(µ, µ̃). Lemma A.2
gives |g (x)− g̃ (x)| ≤ M . As x̃ minimizes g̃ , we have

Pµ
(

f (x̃,ξ) > τ)= g (x̃)

≤ M + g̃ (x̃)

≤ M + g̃ (x∗)

≤ 2M + g (x∗)

=Pµ
(

f (x∗,ξ) > τ)+2
√

BκW1(µ, µ̃),

which gives Point 2.

205

Appendix A. Wasserstein distance and stochastic optimization

A.3 Probabilistic constraints

Given a random variable ξ with probability distribution µ, Theorem 2.7 considers feasible sets
of the form

Xεµ(ξ) = {
x ∈X|Pµ

[
g (x,ξ) > 0

]≤ ε} with ξ 7→ g (x,ξ) κg -Lipschitz.

Theorem 2.7. Suppose that one of the following assumptions is satisfied.

1. For all x and ξ in the union of the supports of µ and µ̃, g (x,ξ) ∈Z .
2. There exists a B such that, for each x ∈X, the distribution of f (x,ξ) is non-atomic and

with density bounded by B.

Then,

Xαµ̃ ⊆ X ε
µ ⊆ X β

µ̃ , where



α= ε−κGW1(µ, µ̃),
β= ε+κGW1(µ, µ̃),

under Assumption 1,

α= ε−2
√

BκGW1(µ, µ̃),
β= ε+2

√
BκGW1(µ, µ̃),

under Assumption 2,

κG is the Lipschitz constant of g , and Xα
µ̃ =; if α< 0. If in addition ρµ is a version independent

risk measure generated by a set of functionals S and σ∞ = supσ∈S ‖σ‖∞, we have

min
x∈Xβµ̃(ξ)

ρµ̃
[

f (x,ξ)
]−2κ f σ∞W1(µ, µ̃) ≤ min

x∈Xεµ(ξ)
ρµ

[
f (x,ξ)

]≤ min
x∈Xαµ̃ (ξ)

ρµ̃
[

f (x,ξ)
]+2κ f σ∞W1(µ, µ̃).

Proof. Suppose that Assumption 1 is satisfied. As in the proof of Theorem 2.6, remark that
Pµ

(
g (x,ξ) > 0

)= Eµ (
φ(g (x,τ)

)
and Pµ̃

(
f (x,ξ) > τ)= Eµ̃ (

φ(f (x,τ)
)

for all x where φ is the Lip-
schiz function t 7→ max(0,min(1, t)). Let x be in Xαµ̃ . Lemma A.1 applied to function φ then
implies that

Pµ
[
g (x,ξ) > 0

]≤Pµ̃ [
g (x,ξ) > 0

]+κg W1(µ, µ̃) ≤α+κg W1(µ, µ̃) = ε,

and thus x belongs to Xεµ. The same method gives X ε
µ ⊆ X β

µ̃ .

Suppose now that Assumption 2 is satisfied. Let x be in Xαµ̃ . Lemma A.2 implies

Pµ
[
g (x,ξ) > 0

]≤Pµ̃ [
g (x,ξ) > 0

]+2
√

BκGW1(µ, µ̃) ≤α+2
√

BκGW1(µ, µ̃) = ε,

which again gives the result.

Assuming that ρ is generated by the set of distortion function S , we have

min
x∈Xεµ(ξ)

ρµ
[

f (x,ξ)
]≤ min

x∈Xαµ̃ (ξ)
ρµ

[
f (x,ξ)

]≤ min
x∈Xαµ̃ (ξ)

ρµ̃
[

f (x,ξ)
]+2κ f σ∞W1(µ, µ̃),

206

A.3. Probabilistic constraints

the second inequality following from Theorem 2.5. The same method gives

min
x∈Xβµ̃(ξ)

ρµ̃
[

f (x,ξ)
]≤ min

x∈Xεµ(ξ)
ρµ̃

[
f (x,ξ)

]≤ min
x∈Xεµ(ξ)

ρµ
[

f (x,ξ)
]+2κ f σ∞W1(µ, µ̃).

207

B AIRCRAFT ROUTING PROBLEM N P -
completeness

The input of the AIRCRAFT ROUTING PROBLEM introduced in Part II is a connection graph.
This is not the standard input for the AIRCRAFT ROUTING PROBLEM. Indeed, a more natural
input is the set of flight legs that should be covered. The objective of this appendix is to prove
the complexity theorems sketched in Chapter 8 for the “schedule version” of the AIRCRAFT

ROUTING PROBLEM.

Appendix B is organized as follows.

• Appendix B.1 gives a definition of AIRCRAFT ROUTING PROBLEM based on flight legs
schedule.

• Appendix B.2 gives a polynomial algorithm for the AIRCRAFT ROUTING PROBLEM which
proves Theorem 8.3. The bound on AIRCRAFT ROUTING PROBLEM complexity given in
this Appendix is stronger than the one in Chapter 8.

• Appendix B.3 proves Theorem 8.2 which states AIRCRAFT ROUTING PROBLEM N P -
completeness. The proof in this is valid for the natural definition of AIRCRAFT ROUTING

PROBLEM, which takes in input the set of flight legs to be covered. This complexity result
is stronger than the one proved in Chapter 8, which is valid only for the definition of
AIRCRAFT ROUTING PROBLEM in terms of connection graph.

B.1 AIRCRAFT ROUTING PROBLEM definition

B.1.1 Problem definition

We consider the flight legs operated by a company on a period of time. Let horizon H be
the number of days this period lasts. Time is discretized in τ steps per day. The network is
composed of a set of airportsα ∈A . Maintenance operations can be performed on airplanes in
only a few airports called maintenance bases. Let B ⊆A be the set of maintenance bases. Each
flight leg ` ∈L ⊆ (A×[τ]×[H])2 is identified by two airport time day triples, one corresponding
to its departure (αdep

`
, t dep
`

,d dep
`

) and one corresponding to its arrival (αarr
`

, t arr
`

,d arr
`

). The
scheduled arrival time t arr

`
is equal to the scheduled landing time plus the minimum turn time

between two flight legs – this way the airplane operating ` can be chained to any flight leg
leaving αarr

`
after t arr

`
. To each day d ∈ [H −1] corresponds a night set Λd ⊆L ∪L 2. A flight

leg ` belongs to night set Λd if d dep
`1

≤ d and d arr
`2

> d . A couple of flight legs (`1,`2) belongs

209

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

a.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2 Day 3

12:00 00:00

Day 4

NY - Base

Flight

b.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2 Day 3

12:00 00:00

Day 4

NY - Base

Feasible string Unfeasible string D = 4

c.

Paris

12:00 00:00 12:00 00:00 12:00 00:00

Day 1 Day 2

12:00 00:00

Day 4

NY - Base

Day 3

String 1 String 2 String 3 D = 4

Figure B.1 – a. An aircraft routing instance – b. flight leg strings – c. A feasible routing

210

B.1. AIRCRAFT ROUTING PROBLEM definition

to night set Λd if the departure airport of `2 is equal to the arrival airport of `1 and d arr
`1

≤ d

and d dep
`2

> d . A couple of flight legs is a maintenance couple (`1,`2) ∈Πd ⊆Λd if it is a night
couple (`1,`2) ∈Λd in a base αarr

`1
∈B such that the time interval between the two flight legs is

sufficient to perform a maintenance check (t dep
`2

+τ)− t arr
`1

≥ τM , where τM is the time needed
to perform a maintenance check. An example of aircraft routing instance is on Figure B.1.

A flight leg string σ is a list of flight legs σ= (`1,`2, . . . ,`p) such that αarr
`i

=αdep
`i+1

and t arr
`i

≤ t dep
`i+1

for i = 1, . . . , p −1. A string operates a maintenance on night d if there exist two successive
flight legs `i and `i+1 of σ such that (`i ,`i+1) ∈ Πd is a maintenance couple for night d . A
flight leg string is feasible if it visits a maintenance night (`i ,`i+1) ∈πd at least once in each
sequence of δmaint successive nights. A flight leg ` is covered by a flight leg string σ if it is one
of the flight legs of σ. Considering a flight leg `, the number of days of operations o` = d dep

`
−d

of ` with respect to σ is equal to the number of days between the departure of the flight leg
d dep
`

and the last maintenance night set Πd covered by σ. Example of flight leg strings are
given on Figure B.1.

The goal of the AIRCRAFT ROUTING PROBLEM is to cover all flight legs with feasible flight
leg strings. But considering one specific flight leg string σ, the last flight leg ` of σ does not
necessarily arrive in a maintenance base, and thus its number of days of operations o` must
be taken into account as an initial condition in the AIRCRAFT ROUTING PROBLEM for the
next period. Thus, in the AIRCRAFT ROUTING PROBLEM, the initial positions of airplanes are
given: for each day of operation d ∈ [δmaint] and airport α, there are initially κd

α airplanes that
must visit a maintenance base after at most δmaint −d +1 days. For each airport α and day of
operation δmaint, the final conditions are given by the γo

α: there are at least
∑d

o=1γ
o
α airplanes

that have had a maintenance in the last δmaint nights. The fleet size is k =∑
α∈A

∑
d∈[δmaint]κ

d
α.

A routing S is a collection of flight leg strings σ ∈ S . A routing is feasible if each flight leg
string σ ∈S is feasible, each flight leg ` ∈L is covered by one unique flight leg string σ ∈S ,
at least

∑δmaint

o=d κo
α flight leg strings starting in airport a visit a maintenance night after at most

δmaint −d +1 days for all d ∈ [δmaint], and at least
∑d

o=1γ
o
α flight leg string ending in airport a

have visited a maintenance night in the last δmaint days for all d ∈ [δmaint]. A feasible routing is
on Figure B.1.

AIRCRAFT ROUTING PROBLEM

Input. An horizon H , a time discretization T , a set of airports a ∈A , a set of bases B ⊆A , a
set of flight legs L ⊆ (A ×T ×D)2, a maximum number of days between two maintenance
nights δmaint, and for each airport a ∈ A and day o ∈ [δmaint] the initial and final number of
airplanes κo

α and γo
α.

Output. A feasible routing S .

B.1.2 Equivalence with the Airport-Time graph routing problem

In Chapter 8, we use a connection graph whose vertices are the flight legs and whose arcs are
the feasible connection to model the AIRCRAFT ROUTING PROBLEM. In this appendix, we use
the notion of airport time graph. The vertices of an airport time graph are the pairs (a, t) of
an airport a and a time t such that there is leg ` departing from a at t . The arcs of an airport

211

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

Step 1

Step 2

Step 3

Cover

Figure B.2 – Greedy algorithm to find a path partition on an equigraph

time graph correspond to the flight legs or to some ground arcs between successive departure
times in the same airport. If the grounds arcs are defined with the right multiplicity, an aircraft
route is a source to sink path in the airport time graph, and an aircraft routing problem is a
partition of the arcs of the airport time graph into source to sink paths. We therefore start by
introducing the properties of graphs that can be partitioned in source to sink paths. These
properties are the key ingredients of the algorithms and proofs of this appendix. We then
introduce the AIRPORT-TIME GRAPH ROUTING PROBLEM and prove its equivalence with the
AIRCRAFT ROUTING PROBLEM.

S −T paths partitions of graphs

Let D = (V , A) be an acyclic directed graph. Let δ−(v) (resp. δ+(v)) be the set of incoming
(resp. outgoing) arcs from v . Let d−(v) = |δ−(v)| (resp. d+(v) = |δ+(v)|) be the incoming (resp.
outgoing) degree of v . A vertex v ∈V is a source if δ−(v) =;, and it is a sink if δ+(v) =;. We
denote by S the set of sources, and by T the set of sinks. Let I =V \(S∪T) be the set of internal
vertices. A path P ∈G is a source to sink path, or S −T path if it starts in a source and ends in a
sink. An arc a ∈ A is covered by a path P if a ∈ P . A collection of paths P is a path partition of
D if for each arc a ∈ A, there exists one and only one path P ∈P such that a ∈ P . In a directed
graph, a directed cut is an arc set C such that C = δ−(U) for a vertex set U satisfying δ+(U) =;.
Besides, C is an S-T directed cut if T ⊆U and S ⊆ (V \U). Note that δ+(S) and δ−(T) are S-T
directed cuts.

Proposition B.1. Let D = (V , A) be an acyclic directed graph. The three following properties are
equivalent.

1. There exists a partition of the arcs of D in S-T paths.
2. d−(v) = d+(v) for each internal vertex v ∈ I .
3. All the S-T directed cuts of D have the same cardinal.

Besides, all the S-T paths partitions of D have the same number of paths, which is equal to the
cardinal of the S-T directed cuts.

An acyclic directed graph satisfying the properties of Proposition B.1 is called an equigraph.
The flow of an equigraph is the cardinal of the S-T directed cuts.

Proof of Proposition B.1. The fact that Property 1 implies Property 2 comes from the fact that,
if a digraph admits an S-T paths partition, the incoming degree and the outgoing degree of
each internal vertex is equal to the number of paths in the partition that cross v . The converse

212

B.1. AIRCRAFT ROUTING PROBLEM definition

comes from the greedy algorithm applied in a graph satisfying d−(v) = d+(v). Indeed, the
property d−(v) = d+(v) is not affected by the removal of an S-T path, as the incoming and the
outgoing degree of any internal vertex are decreased by the same quantity.

We now prove that Property 2 is equivalent to Property 3. Let D be a digraph satisfying
d−(v) = d+(v) for each internal vertex, C be an S-T directed cut, and P be a path partition
of G , then each path P ∈P intersects C exactly once: there is a one to one mapping from P

to C , which gives the “only if” direction. Conversely, let D be a graph that does not satisfy
Property 2. There exists a vertex v such that d+(v),d−(v) > 0 and d+(v) 6= d−(v). Suppose
first that |δ−(v)| < |δ+(v)|. Let U be the union of the set of vertices u such that there is a path
from v to u with the set of sinks. Then δ−(U) and δ−(U ∪ {v}) are two S-T directed cuts, and
|δ−(U ∪ {v})| 6= |δ−(U)|. The case with |δ−(v)| > |δ+(v)| is analogous.

The final remark comes from the fact that δ+(S) is a directed cut, and that, as D is acyclic, each
path of a partition intersects δ+(S) exactly once.

Lemma B.2. If P is an S-T path in an equigraph D, then D\P, the graph obtained by removing
the arcs of P and the newly isolated vertices is an equigraph.

Proof. No incoming (resp. outgoing) arcs are added to sources (resp. sinks), and if v is
an internal vertex on P , both its incoming and outgoing degree are decreased by the same
quantity.

This lemma can be seen as a linear time greedy algorithm to find a path partition on an
equigraph in O(|A|). Indeed, as for each internal vertex, |δ−(v)| = |δ+(v)|, a path from a source
to the sinks set is always found by choosing arbitrarily the successive arcs in the set of outgoing
arcs from the path current destination. Thus, a path partition is found by iteratively picking a
path from sources to sink and remove it from the equigraph, as shown on Figure B.2. At each
step, the graph obtained by removing a path is still an equigraph whose number of sources
or sinks has been decreased by one. Because it is acyclic, an equigraph without sources and
sinks is empty, and the algorithm finally gives a path partition of the equigraph.

Airport-time graph problem

Given an acyclic digraph D = (V , A), a collection of directed cuts Nd = δ−(Ud) for d ∈ [H] is
a collection of nights if Ud+1 ⊆Ud for all d ∈ [H −1] and UH = T is the set of sinks. Such a
collection is illustrated on Figure B.3. The horizon is the number of nights H . The day of a
vertex day(v) is the index of the first night after v : day(v) = d if v ∈ Ud−1\Ud . Besides, the
maintenance checks operated in bases during nights are modeled thanks to a given collection
Md of maintenance arc sets satisfying Md ⊆ Nd . Set Md identifies the maintenance night arcs
among the night arcs of Nd . A path P intersects a set N if P ∩N 6= ;.

Let δmaint be an integer called the maintenance requirement. A path P from sources S to sinks
T necessarily intersects all nights Nd . It is a feasible path if it intersects a maintenance night

arc at least every δmaint nights: P ∩
(
∪d+δmaint−1

o=d M o
)
6= ; for d ∈ [H −δmaint+1]. A path P covers

an arc a if a ∈ P . For an arc a covered by a path P , the number of days of operations oP (a)

213

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

U1
U2

U3

N1 N2 N3

Figure B.3 – A set of nights on an equigraph

Maintenance nights

Non-maintenance nights

Figure B.4 – A feasible routing

is equal to the number of days between a and the last maintenance night Md intersected.
Thus, a path is feasible if the number of days of operations of all its arcs is smaller than the
maintenance constraint: oP (a) ≤ δmaint for all a ∈ P .

Initial and final constraints are given on the number of days of operations at the beginning
(source) and at the end (sink) of each feasible path. For each source (resp. sink) s and integer
o ∈ [δmaint], let κo

s (γo
s) be these constraints. A collection of feasible paths P is a feasible routing

if the following conditions are satisfied: first, each vertex is covered exactly once. Second,
there are at least

∑δmaint

o=d κo
s paths starting in source s that visits one of the first δmaint −d +1

maintenance night arc sets
⋃δmaint−d+1

o=1 Mo for all d ∈ [δmaint]. Finally there are at least
∑d

o=1γ
o
t

paths ending in sink t that visits one of the last δmaint maintenance night arc sets
⋃H

o=H−d+1 Mo

for all d ∈ [δmaint]. Integer κo
s are the initial requirements, and γo

t are the final requirements. A
feasible routing is plotted on Figure B.4.

The AIRPORT-TIME GRAPH ROUTING PROBLEM can be stated as follows:

AIRPORT-TIME GRAPH ROUTING PROBLEM

Input. An acyclic digraph D = (V , A), a collection of nights Nd ⊆ A, a collections of mainte-

214

B.1. AIRCRAFT ROUTING PROBLEM definition

nance nights Md ⊆ Nd , a maintenance requirement δmaint, a collection of initial requirements
κo

s for each source s and o ∈ [δmaint], and a collection of final requirements γo
t for each sink t

and o ∈ [δmaint].
Output. A feasible routing.

Note that, as a feasible routing is an S-T path partition of D, if the AIRPORT-TIME GRAPH

ROUTING PROBLEM admits a solution, then D is an equigraph.

Theorem B.3. The AIRCRAFT ROUTING PROBLEM and the AIRPORT-TIME GRAPH ROUTING

PROBLEM are equivalent: each problem can be reduced to the other one in linear time.

Thanks to this theorem, the AIRPORT-TIME GRAPH ROUTING PROBLEM and the AIRCRAFT

ROUTING PROBLEM have the same complexity and can be solved by the same algorithms.
The remaining of this appendix focuses on AIRPORT-TIME GRAPH ROUTING PROBLEM. In the
following long proof, only the methods used to build the equivalent instance are of practical
interest.

Remark B.1. The reason why an analogue of Theorem B.3 cannot be proved for the connection
graph statement of the AIRCRAFT ROUTING PROBLEM in Chapter 8 is that the connection graph
is the line-graph of the airport time graph. As a consequence, if a connection graph can be
rebuilt from the airport time graph, the converse is false.

Proof. We first prove that AIRCRAFT ROUTING PROBLEM can be reduced in linear time to
an equivalent AIRPORT-TIME GRAPH ROUTING PROBLEM. Let T,A ,B,L ,δmaint,κd

α,γd
α be an

instance of the AIRCRAFT ROUTING PROBLEM.

First, we build the AIRPORT-TIME GRAPH ROUTING PROBLEM instance D ′, N ′
d , M ′

d ,δ′maint,κ
d
s
′
,γd

t
′
.

The total number of airplanes initially in α is θt0
α = ∑δmaint

o=1 κo
α. As each flight leg is covered

exactly once, the number of airplanes θt
α at t in α is obtained by counting the arrivals and the

departures.

θt
α = θ

t0
α +|{arrivals before t}|− |{departures before t}| (B.1)

= θ
t0
α +

t∑
τ=0

 ∑
`|αa

`
=α,t a

`
=τ

1− ∑
`|αd

`
=α,t d

`
=τ

1

 (B.2)

The aircraft routing directed graph D ′ = (V ′, A′) is defined as follows: for each airport a ∈
A and each time (t ,d) such that there is at least one departure from α at (t ,d), there is
a corresponding internal vertex v ′(α, t) ∈ V ′. For each airport α there is a corresponding
source s′α ∈ S and a sink t ′α ∈ T . For each flight leg ` = ((αd

`
, t d
`

,d d
`

), (αa
`

, t a
`

,d a
`

)), there is a
corresponding flight leg arc between v ′(αd

`
, t d
`

,d d
`

) and v ′(αa
`

, t1,d1) where (t1,d1) is the first
time instant after (t a

`
,d a

`
) such that there is a flight leg departure from α in (t1,d1). If such a

time instant does not exist, then the destination vertex of the flight leg arc is t ′α. Each vertex v ′

corresponds to an airport, a time and a day day(v ′). Let t1, t2, . . . , tn be the successive departure
times at an airport α, for i ∈ [n], there are θti

α ground arcs between v ′(α, ti) and v ′(α, ti+1) or
t ′a if i = n. Night N ′

d = δ−(U ′
d) is the directed cut of events on day greater than δmaint, i.e.

215

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

S1
A = 0

Time

Nb of aircrafts in B

Source Internal Vertex Sink

Arc Non-maintenance night arc Maintenance night arc

S2
A = 1

S1
B = 0

S2
B = 0

S1
C = 3

S2
C = 0

T 1
A = 0

T 2
A = 1

T 1
A = 0

T 2
A = 0

T 1
A = 3

T 2
A = 0

S1
s1 = 0

S2
s1 = 1

S1
s2 = 3

S2
s2 = 0

T 1
t1 = 0

T 2
t1 = 1

T 1
t2 = 0

T 2
t2 = 3

Figure B.5 – Aircraft routing instance and corresponding airport time graph. Rows on the first
figure correspond to airports, and arrows on the first figure correspond to flight legs. The
second figure gives the number of aircrafts in A airport B , and the last one illustrates the
corresponding airport time graph

U ′
d = {v ′|day(v ′) > d}. Thus, night characterization U ′

d+1 ⊆U ′
d is satisfied. Maintenance arcs

in Md are night arcs in Nd that are ground arcs in a base b. For all s, t and δmaint, initial and
final constraints are equal κd

α
′ = κd

s and γd
t
′ = γd

t . This process for a small instance of aircraft
routing in on Figure B.5.

The resulting graph is an equigraph. Indeed, sources s′ and sinks t ′ satisfy d−(s′) = 0 and
d+(t ′) = 0. Let v = v ′(α, t) be an internal vertex, and t− the former departure time fromα, then

d+(v)−d−(v) = θt
v −θt−

v −
 ∑
`|αa

`
=α,t a

`
=t

1− ∑
`|αd

`
=α,t d

`
=t

1

= 0 (B.3)

which gives the result.

AIRCRAFT ROUTING PROBLEM feasibility implies AIRPORT-TIME GRAPH ROUTING PROBLEM

feasibility. Suppose the aircraft routing admits a solution S . A flight leg string σ covers a
ground arc a if a is between two successive flight leg arcs in σ. The number of parallel ground
arcs is equal to the number or airplanes at the corresponding airport and time, thus each

216

B.2. Polynomial algorithm

copy can be assigned to one unique flight leg string σ to form a corresponding path P ′(σ).
P ′(σ) is feasible because σ is feasible. P = {P (σ)|σ ∈S } satisfies equigraph cover constraint,
initial constraints, and final constraints because R satisfies equigraph cover constraint and
sink constraints.

Conversely, AIRPORT-TIME GRAPH ROUTING PROBLEM feasibility implies AIRCRAFT ROUTING

PROBLEM feasibility. Let P be a solution of the equigraph problem. Each feasible path P
induces (without ambiguity) a feasible string S(P) and σ= {S(P),P ∈P } is a feasible routing.

Now, we prove that the AIRPORT-TIME GRAPH ROUTING PROBLEM can be reduced to the
AIRCRAFT ROUTING PROBLEM. Let D = (V , A),B ,δmaint,κd

s ,γd
t be an instance of AIRPORT-TIME

GRAPH ROUTING PROBLEM. Then an instance T ′,A ′,B′,L ,δ′maint,κ
d ,
α ,γd ,

α of aircraft routing
is built as follows. Day day(v) has already been defined for an equigraph with night. A time
index respecting the natural ordering of each vertex of a day is obtained thanks to a depth first
exploration of the reduced graphs Ud \Ud+1 corresponding to one day, assigning to each vertex
the maximum index of its predecessors plus one. To each arc in (v1, v2) ∈ A\B corresponds a
flight leg f = ((α(v1), t (v1),d(v1)), (α(v2), t (v2),d(v2)). T ′ is the maximum of the time indices.

AIRCRAFT ROUTING PROBLEM feasibility implies AIRPORT-TIME GRAPH ROUTING PROBLEM

feasibility: feasible paths give feasible strings. AIRPORT-TIME GRAPH ROUTING PROBLEM

feasibility implies AIRCRAFT ROUTING PROBLEM feasibility: feasible strings give feasible paths.

B.2 Polynomial algorithm

B.2.1 Maintenance state graph

This section introduces for airport time graphs the notion of state graph that has been intro-
duced in Section 8.2 for connection graphs.

Given an instance (D, Nd , Md ,δmaint,κo
s ,γo

s) of the AIRPORT-TIME GRAPH ROUTING PROBLEM,
we define its maintenance state graph D = (V ,A) on the airport time graph D as follows. For
each vertex v , we built δmaint state vertices ϑ1

v , . . . ,ϑδmaint
v . The index o on ϑo

v indicates that the
last maintenance of an airplane which crosses ϑo

v happened o days ago. For each vertex, we
denote Vv the set of state vertices of v , and for each state vertex ϑ, we denote θ(ϑ) the vertex v
such that ϑ ∈ Vv .

We build the state arcs in order to ensure that for each source to sink path π in D covering ϑo
v ,

the number of days since the last visit of P in a maintenance arc is equal to o, where P is the
path corresponding toΠ in D . We denote Aa the set of state arcs of a, and θ(α) the arc a such
that α ∈Aa . For each arc a = (v1, v2) ∈ A\(∪d Nd) and o ∈ [δmaint], we add to Aa the state arc
(ϑo

v1
,ϑo

v2
). State does not change on a non-night arc. For each arc a = (v1, v2) ∈ ∪d Md and

o ∈ [δmaint], add the arc (ϑo
v1

,ϑ1
v2

) to Aa . After a maintenance arc, the number of days since
the last maintenance night is equal to 1. Finally, for each arc a = (v1, v2) ∈ (∪d Nd \∪d Md)
and o ∈ [δmaint −1], add the arc (ϑo

v1
,ϑo+1

v2
) to Aa . After a non-maintenance night, the number

of days since the last maintenance night has increased by one. If δmaint days have elapsed

217

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

Sources Internal vertices Sinks

v

Vv

a

Aa

Figure B.6 – A network graph and its state graph

since the last visit of an airplane in v1 to a maintenance night arc, then it cannot take a
non-maintenance night arc.

For each path π= (α1,α2, . . . ,αk) ∈D, we denote θ(π) the path (θ(α1),θ(α2), . . . ,θ(αk)). We call
a maintenance paths partition of D a collectionΠ of arc-disjoint paths in D such that the set of
paths θ(π) for π ∈Π is an S-T path partition of D . We denote θ(Π) this S-T partition. For each
state ϑ, we denote #Π(ϑ) the number of paths in Π that intersects ϑ. We have the following
lemma.

Lemma B.4. Let D be a routing state graph on an instance D, Nd , Md ,κo
s ,γo

s of the AIRPORT-
TIME GRAPH ROUTING PROBLEM.

1. An S-T path P ∈ D is feasible if and only there exists an S −T path π ∈ D such that
θ(π) = P.

2. An S-T path partition P is a feasible routing if and only if there exists a maintenance
path partition Π such that for each source s, sink t , and positive integer o ≤ δmaint, we
have #Π(ϑo

s) = κo
s , and

∑
õ≥o

γõ
t ≤

∑
õ≥o

#Π(ϑõ
t).

Proof. The first point follows from the definition of the maintenance state graph. Indeed, if P
is not feasible, any path π such that θ(π) = P would have more than δmaint non-maintenance
night arcs without maintenance arcs in-between.

Given a source s (resp. a sink t), an S-T pathΠ starting in ϑo
s (resp. ending in ϑo

t) goes through
a maintenance night arc at most δmaint−o nights after s (resp. has gone through a maintenance
night o nights before t). Thus, the hypotheses of the second point implies that P satisfies the

218

B.2. Polynomial algorithm

initial and final conditions, and the first point gives the result.

B.2.2 Polynomial algorithm for network paths partition problem

This section is devoted to the proof of Theorem 8.3.

Theorem 8.3. The AIRCRAFT ROUTING PROBLEM is polynomial when the number of airplanes
k is fixed. It can be solved in time bounded from above by 2|V |δk

maint, where k is the number of
airplanes and n the number of flight legs.

The proof of Theorem 8.3 consists in a polynomial algorithm inspired of the pebbling game
algorithm to solve the integer multicommodity flow problem [79]. In the remaining of the
section, three lemmas are introduced to be able to prove Theorem 8.3 at the end of the section.

Given a topological ordering v1, v2, . . . , vn of the internal vertices I of an equigraph with
source set S and sink set T , let Ui be the set of vertices strictly after vi in the ordering, Ui ={

v j ∈V | j > i
}∪T , and U0 =V \S. As v1, v2, . . . , vn is a topological ordering, Ci = δ−(Ui) is an

S-T directed cut. This way, to each topological ordering v1, v2, . . . , vn corresponds a collection
of directed cuts Ck ,Ck+1, . . . ,Cn−k with Ci = δ−(Ui) and V \S =Uk)Uk+1) · · ·)Un−k = T . A
topological ordering and its directed cuts collection are illustrated on Figure B.7. Besides, we
have:

Ui−1 = {vi }∪Ui

Ci−1\Ci = δ−(vi)

Ci \Ci−1 = δ+(vi)

Finally, we define the partial graph Di as the union
⋃i

j=0 Ci of the directed cuts C j whose index
j is smaller than i . As all the S-T directed cuts of Di are S-T directed cuts of D , they have all
the same cardinality and Proposition B.1 ensures that Di is an equigraph. Let Di be the partial
graph of D whose arcs are in A i =∪a∈Gi Aa . Let Ti be the set of sinks of Di , and Ti be the set
of sinks of Di .

A distribution of pebble on Ti is an application Xi : Ti → Z+; it is reachable if there exists a
maintenance path partition Πi on Di such that #Πi (ϑ) = Xi (ϑ) for each state vertex ϑ ∈ Ti .
Partition Πi is ending in Xi . Let χi be the set of reachable distributions on Ti . Let Xi be a
reachable distribution in χi , andΠi a corresponding path partition of Di . A distribution Xi+1

on Ti+1 can be reached from Xi if any maintenance path partitionΠi of Di ending in Xi can
be completed in a maintenance path partitionΠi+1 on Di+1 ending in Xi+1. The idea of the
algorithm is to deduce χi+1 from χi as the union of the distributions Xi+1 that can be reached
from a distribution xi ∈χi thanks to a legal move of pebbles.

Lemma B.5. A pebble distribution Xi+1 on Ti+1 is reachable from distribution Xi on Ti if and
only if the following conditions are satisfied:

1. Pebbles that are not in Vvi are unmoved.

219

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

U0

U1

U2

U3

U4

U5

U6

U7

Figure B.7 – A topological ordering and its ordering cuts collection

2. A pebble initially on vertex ϑ1 can be moved to vertex ϑ2 if and only if (ϑ1,ϑ2) is an arc in
D.

3. Only one pebble goes through each arc set Aa with a ∈ δ+(v).

A pebble move satisfying these conditions is called a legal move. Let m(ϑ) be the number of
pebbles moved to ϑ, then Xi+1(ϑ) = Xi (ϑ)+m(ϑ) if ϑ ∈Ti ∩Ti+1 and Xi+1(ϑ) = m(ϑ) otherwise.

Proof. Suppose that a legal move leads from Xi to Xi+1. Given a maintenance path partition
Πi ending in Xi , we affect each pebble moved from ϑ ∈Ti \Ti+1 to a path π ∈Πi ending in ϑ,
and complete π by the arc α crossed by its pebble. The completed paths form a maintenance
path partition on Di+1 ending in Ti+1.

Conversely, if Xi+1 is reached from Xi in the maintenance path partitionΠi+1, then we move
one pebble along each arc ofΠi+1 ∩

(∪a∈Ci Aa
)

to obtain a legal move.

We define φi :χi → 2χi+1 as the operator that associates to a reachable distribution Xi the set
of distributions Xi+1 reachable from Xi . Lemma B.5 ensures that χi+1 = ∪Xi∈χiφi (Xi). Let
χ=∪iχi be the set of reachable distributions. Let I ⊆χ0 be the set of distributions of pebbles
on the sources such that X (ϑo

s) = κo
s for each source s and positive integer o ≤ δmaint, and let

J ⊆χn be the set of distributions on the sinks such that for each sink t ,
∑

õ≥o X (ϑo
t) ≤ γo

t . The
acyclic directed distribution graph associated to the network state graph is defined as follows:
one vertex for each reachable pebble distribution X ∈χ, and for each pebble distribution X in
χ, one arc between X and each distribution X ′ in φ(X).

Lemma B.6. The AIRCRAFT ROUTING PROBLEM admits a solution if and only if there exists an
I -J path in the distribution graph.

Proof. We first prove that there exists a maintenance path partition of D if and only if there
exists a χ0-χn path in the distributions graph. A path from a source distribution to a sink
distribution is obtained from a maintenance path partition by a applying recursively Lemma
B.5. Conversely, given a path D from a source distribution to a sink distribution, let D′ be
the partial graph of D obtained by taking the arcs crossed by a pebble during one of the legal

220

B.2. Polynomial algorithm

move of D. This graph is a state equigraph, and thus a path partition can be deduced from it
in linear time by applying the greedy path partition algorithm in equigraphs.

The definition of I and J ensures that a χ0-χn path in the distribution graph is an I -J path
if and only if its maintenance path partition is such that, for each source s, sink t , and positive
integer o ≤ δmaint, we have #Π(ϑo

s) = κo
s , and

∑
õ≥o

γõ
t ≤

∑
õ≥o

#Π(ϑõ
t).

Lemma B.4 then gives the equivalence of the existence of an I -J path in the distributions
graph with the feasibility of the AIRPORT-TIME GRAPH ROUTING PROBLEM. Theorem B.3
enables to conclude.

Finally, a last lemma on the cardinality of the arc set of the distribution graph is needed to be
able to prove Theorem 8.3.

Lemma B.7. The number of arcs in the distribution graph of a state graph D is bounded from
above by 2|V |δk

maint, where k is the flow of equigraph D.

Proof. Let B0 = 2|V |δk
maint. We start by proving that

B1 =
∑

v∈S∪I

(∏
u∈Sv∩Sv+1

(
|Vu |−1

pv (u)+|Vu |−1

))
· |Vv |d(v),

and then prove that B1 ≤ B0.

As arcs in the distribution graphs are between χi and χi+1, it suffices to bound the number
of legal moves between χi and χi+1. As each network arc a ∈ A is crossed exactly once, the
number of pebbles on vertices in Vu is identical for each distribution in χv . Define pv (u) as
the number of pebbles on state vertices in Vu in distribution of χv . Thus, the number of legal
moves is equal to the number of distributions of pebbles on Sv ∩Sv+1, which correspond to the
pebbles which do not move, multiplied by the number of legal moves of the moving pebbles.

For each vertex u in Sv ∩Sv+1, the number of way to distribute pv (u) pebbles on |Su | states is

equal to

(
|Vu |−1

pv (u)+|Vu |−1

)
.

Let ϑ1,ϑ2, . . . ,ϑ` be the state vertices in Vv and xi be the number of pebbles on ϑi in distribu-
tion Xi . Then x1 +x2 +·· ·+x` = d(v). As, first, in the path partition, each arc of D is covered
exactly once and, second, for each network arc, there is at most one state arc outgoing from
each state vertex of Vv , the number of legal moves is bounded from above by the number of
partitions of the d(v) arcs in δ+(v) into sets of cardinal x1, x2, . . . , xi (which correspond to the

origin of the state arcs):

(
x1, x2, . . . , xm

d(v)

)
. Thus, the total number of legal moves is bounded

from above by (∏
u∈Sv∩Sv+1

(
|Vu |−1

pv (u)+|Vu |−1

))
·∑x1+x2+...+x`=d(v)

(
x1, x2, . . . , x`

d(v)

)

=
(∏

u∈Sv∩Sv+1

(
|Vu |−1

pv (u)+|Vu |−1

))
· l d(v)

(B.4)

221

Appendix B. AIRCRAFT ROUTING PROBLEM N P -completeness

Summing the upper bounds |φ(χi)| gives the upper bound B1 on |φ(χ)|. B1 ≤ B0 is obtained

from

(
|Vu |−1

pv (u)+|Vu |−1

)
≤ |Vu |pv (u),

∑
u∈Sv

pv (u) = k, and maxv∈V |Vv | ≤ δmaint.

Proof of Theorem 8.3. Lemma B.6 ensures that a path finding algorithm in the distributions
graph enables to decide if the AIRCRAFT ROUTING PROBLEM admits a solution. As the distribu-
tion graph is acyclic, the complexity of a path finding algorithm in this graph is linear in the
number of arcs in the distribution graph. Lemma B.7 then gives the result.

Remark B.2. A shortest path algorithm in distribution graph solves the optimization version
of the AIRCRAFT ROUTING PROBLEM mentioned in Section 8.2.2. As the distribution graph is
acyclic, its complexity admits the same bounds B0 and B1 as the path finding algorithm.

B.3 Aircraft routing NP-completeness

We now prove Theorem 8.2.

Theorem 8.2. The AIRCRAFT ROUTING PROBLEM is N P -complete for δmaint ≥ 3.

The TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH is N P -complete
[69].

TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH

Input. A directed acyclic graph D = (V , A), vertices s1 and s2 called sources, t1 and t2 called
terminals, two non negative R1 and R2

Output. Ri arc paths forms si to ti for i = 1,2

Proof. The TWO-COMMODITIES ARC-DISJOINT PATHS PROBLEM ON ACYCLIC DIGRAPH can be
reduced to the AIRPORT-TIME GRAPH ROUTING PROBLEM. Without restriction, we suppose that
δmaint = 3. Larger δmaint can be dealt with analogously by adding (δmaint−3) non-maintenance
night arcs before each source of the instance constructed.

Let D, s1, s2, t1, t2,R1,R2 be an instance of the TWO-COMMODITIES ARC-DISJOINT PATHS PROB-
LEM ON ACYCLIC DIGRAPH. We build the graph D ′ by extending D in the following way:
2R1+2R2 sources vertices are added to form S1,T1 and S2,T2, an arc is added from each vertex
of Si to si and from ti to each vertex of Ti . Other vertices are internal vertices. If v is such that
δ−(v) > δ+(v), then δ−(v)−δ+(v) sources are added with one arc between each of these and
v , and δ+(v)−δ−(v) terminal linked to v are added if δ+(v) > δ−(v). Thus, D is an equigraph.
This extension is illustrated on Figure B.8.

We now build night sets Nd ⊆ A′′, maintenance night sets Md ⊆ Nd and a digraph D ′′ = (V ′′, A′′)
that extends D ′ as follows. For each vertex s ∈ S′, we build two vertices us , vs and the two arcs
(us , vs) and (vs , s), and we add these arcs respectively to 1 and N2. If s ∉ S1 ∪S2, then we add
both (us , vs) to M1 and (vs , s) to M2. If s ∈ S1, then we add only (us , vs) to M1, and if s ∈ S2, we
do not add (us , vs) and (vs , s) to M1 or M2. Symmetrically, for each vertex t ∈ T ′, we build two
vertices ut , vt and the arcs (t ,ut) and (ut , vt) and we add these arcs respectively to N3 and

222

B.3. Aircraft routing NP-completeness

S1

S2

s1

s2

t1

t2

T1

T2

Initial and terminal arcs

Balance arcs to obtain an equigraph

Arcs of initial grap H

Figure B.8 – Equigraph D as an extension of initial graph H

N4. If t ∈∉ T1 ∪T2, we do not add (t ,ut) and (ut , vt) to M3 nor to M4. If t ∈ T1, then we add
(ut , vt) to M4, and if t ∈ T2, we add both (t ,ut) to M3 and (ut , vt) to M4. The triple (D ′′, N , M)
defines an instance of the AIRCRAFT ROUTING PROBLEM with no boundary conditions. This
construction is also illustrated on Figure 8.3.

Suppose that two-commodities arc-disjoint paths problem on acyclic directed graph admits
a solution P . Then, applying Lemma B.2 for each path P of P , D\P is still an equigraph,
and can be covered by arc disjoint paths using the greedy algorithm relying on Lemma B.2.
Thus, P can be extended to an equigraph cover of D with Ri paths from Si to Ti . Besides,
the definition of M1, . . . , M4 ensures that each path of the partition satisfies the maintenance
constraint, and thus the partition is a solution to AIRPORT-TIME GRAPH ROUTING PROBLEM.

Conversely, suppose that AIRPORT-TIME GRAPH ROUTING PROBLEM admits a solution P . Then
P ∩ H is a solution to the two-commodities arc-disjoint paths problem. Indeed, any path
going through S2 has to go through T2 to be satisfy the maintenance constraint, which implies
than any path going through S1 has to end in T1 to satisfy the maintenance constraint.

223

C LatticeRCSP library

This appendix describes the main features of the latticeRCSP library we have developed dur-
ing this thesis. This templated C++ library implements the MONOID RESOURCE CONSTRAINED

SHORTEST PATH PROBLEM framework of Part I. The numerical experiments in Chapters 4 to 6,
9 and 10 are performed using this library.

The library relies on several families of classes.

• Resource classes enable to implement lattice ordered monoids (R,⊕,6). The attributes
of an object of a resource class contain the information that identifies a resource q of
the monoid R. The methods of the class describe the operators ⊕, 6, ∧, and ∨ of the
lattice ordered monoid (R,⊕,6), as well as its smallest, largest and neutral element.

These resource classes can be pretty elaborated. For instance, the resource class which
implements the lattice ordered monoid of discrete distributions with finite support of
Section 5.1 performs a convolution product for each sum. To speed-up the computation,
this convolution product is done using a fast fourier transform using the kissFFT
library [29].

• Classes implementing cost functions c and infeasibility functions ρ. The methods of
these classes take in input a resource q and return respectively c(q) and ρ(q).

• Template classes implementing digraph D = (V , A) with origin o, destination d and
resource qa for each arc a. The attributes of this class contain the bounds bv on v-d
paths resources in addition to the elements already mentioned. The methods of the
class contain the algorithms computing bounds of Section 4.2.

• Template classes that enable to build and store the state graphs of Chapter 6.
• Template classes that implement MONOID RESOURCE CONSTRAINED SHORTEST PATH

PROBLEM problems. The template arguments of a problem are: the resource class of the
lattice ordered monoid, the cost function, and the infeasibility function. The attributes
of the class are a digraph class and a set of solution to the problem.

• Template classes that implement the enumeration algorithms. These classes take in
input a problem, and their method implement the algorithm of Section 4.1.

To tackle with a new problem, the only classes that must be implemented are the resource,
the cost function and the infeasibility function. The procedure to solve the problem is then
standardized: the following step are executed.

225

Appendix C. LatticeRCSP library

1. Build the digraph.
2. Build the lower bounds bv on v-d paths or build a state graph and compute its bounds.
3. Build the problem.
4. Select an enumeration algorithm and solve the problem using this enumeration algo-

rithm.

In addition to the main blocks described, several heuristics are implemented. These include
notably the use of the mapping φ mentionned in Remark 4.5 to speed-up the generalized
Dijkstra algorithm, the heuristics to find good quality solutions that can be used as candidate
paths, as mentioned in Section 4.3.3. To build clustering state graphs, we have implemented
the heuristics mentioned in Section 6.2.4.

226

Bibliography
[1] Boost resource constrained shortest path library. URL http://www.boost.org/doc/libs/

1_58_0/libs/graph/doc/r_c_shortest_paths.html.

[2] 2006. URL http://www.dis.uniroma1.it/challenge9/.

[3] Carlo Acerbi. Coherent representations of subjective risk aversion. Risk Measures for the
21st Century, page 147, 2003.

[4] Carlo Acerbi and Prospero Simonetti. Portfolio optimization with spectral measures of
risk. arXiv preprint cond-mat/0203607, 2002.

[5] Yossiri Adulyasak and Patrick Jaillet. Models and algorithms for stochastic and robust
vehicle routing with deadlines. Transportation Science, 50(2):608–626, 2015.

[6] Yana Ageeva and John-Paul Clarke. Approaches to incorporating robustness into airline
scheduling. ICAT - Reports and Paper, 2000.

[7] Shervin Ahmadbeygi, Amy Cohn, and Marcial Lapp. Decreasing airline delay propaga-
tion by re-allocating scheduled slack. IIE Transactions, 42(7):478–489, 2010.

[8] Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms.
Pearson Education India, 1974.

[9] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. 1993.

[10] Mohamed Ali Aloulou, Mohamed Haouari, and Farah Zeghal Mansour. Robust aircraft
routing and flight retiming. Electronic Notes in Discrete Mathematics, 36:367–374, 2010.

[11] Gianluca Amato, Francesca Scozzari, Helmut Seidl, Kalmer Apinis, and Vesal Vojdani.
Efficiently intertwining widening and narrowing. Science of Computer Programming,
120:1–24, 2016.

[12] Ranga Anbil, Rajan Tanga, and Ellis L. Johnson. A global approach to crew-pairing
optimization. IBM Systems Journal, 31(1):71–78, 1992.

[13] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. How to combine widening and nar-
rowing for non-monotonic systems of equations. ACM SIGPLAN Notices, 48(6):377–386,
2013.

227

http://www.boost.org/doc/libs/1_58_0/libs/graph/doc/r_c_shortest_paths.html
http://www.boost.org/doc/libs/1_58_0/libs/graph/doc/r_c_shortest_paths.html
http://www.dis.uniroma1.it/challenge9/

Bibliography

[14] Krzysztof Apt. Principles of constraint programming. Cambridge University Press, 2003.

[15] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures
of risk. Mathematical finance, 9(3):203–228, 1999.

[16] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchro-
nization and linearity: an algebra for discrete event systems. John Wiley & Sons Ltd,
1992.

[17] Roland C Backhouse and Bernard A Carré. Regular algebra applied to path-finding
problems. IMA Journal of Applied Mathematics, 15(2):161–186, 1975.

[18] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming, 115(2):351–385, 2008.

[19] Michael Ball and Anito Roberts. A graph partitioning approach to airline crew schedul-
ing. Transportation Science, 19(2):107–126, 1985.

[20] Cynthia Barnhart, Natashia L Boland, Lloyd W Clarke, Ellis L Johnson, George L
Nemhauser, and Rajesh G Shenoi. Flight string models for aircraft fleeting and routing.
Transportation Science, 32(3):208–220, 1998.

[21] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route Planning in Trans-
portation Networks, 2014.

[22] Nicole Bäuerle and Alfred Müller. Stochastic orders and risk measures: consistency and
bounds. Insurance: Mathematics and Economics, 38(1):132–148, 2006.

[23] JE Beasley and Nicos Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19(4):379–394, 1989.

[24] John E Beasley and B Cao. A tree search algorithm for the crew scheduling problem.
European Journal of Operational Research, 94(3):517–526, 1996.

[25] Richard Bellman. On a routing problem. Quarterly of applied mathematics, pages 87–90,
1958.

[26] Dimitris J Bertsimas. A vehicle routing problem with stochastic demand. Operations
Research, 40(3):574–585, 1992.

[27] Dimitris J Bertsimas and David Simchi-Levi. A new generation of vehicle routing re-
search: robust algorithms, addressing uncertainty. Operations Research, 44(2):286–304,
1996.

[28] Thomas Scott Blyth. Lattices and ordered algebraic structures, volume 1. Springer, 2005.

[29] Mark Bogerding. Kissfft library, 2013. URL http://sourceforge.net/projects/kissfft/.

228

http://sourceforge.net/projects/kissfft/

Bibliography

[30] Ralf Borndörfer, Martin Grötschel, and Andreas Löbel. Scheduling duties by adaptive
column generation. 2001.

[31] Olivier Briant, Claude Lemaréchal, Ph Meurdesoif, Sophie Michel, Nancy Perrot, and
François Vanderbeck. Comparison of bundle and classical column generation. Mathe-
matical programming, 113(2):299–344, 2008.

[32] W Matthew Carlyle, Johannes O Royset, and R Kevin Wood. Lagrangian relaxation and
enumeration for solving constrained shortest-path problems. Networks, 52(4):256–270,
2008.

[33] Pierre Carpentier, Jean-Philippe Chancelier, Guy Cohen, and DE Michel. Stochastic
Multi-Stage Optimization: At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming, volume 75. Springer, 2015.

[34] Bernard A Carré. An algebra for network routing problems. IMA Journal of Applied
Mathematics, 7(3):273–294, 1971.

[35] Tsung-Sheng Chang, Yat-wah Wan, and Wei Tsang Ooi. A stochastic dynamic traveling
salesman problem with hard time windows. European Journal of Operational Research,
198(3):748–759, 2009.

[36] Anthony Chen and Zhaowang Ji. Path finding under uncertainty. Journal of advanced
transportation, 39(1):19–37, 2005.

[37] Bi Yu Chen, William HK Lam, Agachai Sumalee, Qingquan Li, Hu Shao, and Zhixiang
Fang. Finding reliable shortest paths in road networks under uncertainty. Networks and
spatial economics, 13(2):123–148, 2013.

[38] Boris V Cherkassky, Andrew V Goldberg, and Tomasz Radzik. Shortest paths algorithms:
Theory and experimental evaluation. Mathematical programming, 73(2):129–174, 1996.

[39] Hai D Chu, Eric Gelman, and Ellis L Johnson. Solving large scale crew scheduling
problems. European Journal of Operational Research, 97(2):260–268, 1997.

[40] John-Paul Clarke, Terran Melconian, Elizabeth Bly, and Fabio Rabbani. Means — MIT
extensible air network simulation. Simulation, 83(5):385–399, 2007.

[41] Lloyd Clarke, Ellis Johnson, George Nemhauser, and Zhongxi Zhu. The aircraft rotation
problem. Annals of Operations Research, 69:33–46, 1997.

[42] Amy Mainville Cohn and Cynthia Barnhart. Improving crew scheduling by incorporating
key maintenance routing decisions. Operations Research, 51(3):387–396, 2003.

[43] Jean-François Cordeau, Goran Stojković, François Soumis, and Jacques Desrosiers.
Benders decomposition for simultaneous aircraft routing and crew scheduling. Trans-
portation science, 35(4):375–388, 2001.

229

Bibliography

[44] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252. ACM, 1977.

[45] Patrick Cousot and Radhia Cousot. Constructive versions of tarski’s fixed point theorems.
Pacific Journal of Mathematics, 82(1):43–57, 1979.

[46] Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. On
computing the diameter of real-world undirected graphs. Theoretical Computer Science,
514:84–95, 2013.

[47] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge
university press, 2002.

[48] Amal De Silva. Combining constraint programming and linear programming on an
example of bus driver scheduling. Annals of Operations Research, 108(1-4):277–291,
2001.

[49] Dieter Denneberg. Distorted probabilities and insurance premiums. Methods of Opera-
tions Research, 63(3), 1990.

[50] Olivier Deprez and Hans U Gerber. On convex principles of premium calculation.
Insurance: Mathematics and Economics, 4(3):179–189, 1985.

[51] Guy Desaulniers, J Desrosiers, Y Dumas, S Marc, B Rioux, Marius M Solomon, and
Francios Soumis. Crew pairing at air france. European Journal of Operational Research,
97(2):245–259, 1997.

[52] Guy Desaulniers, Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François
Soumis. Daily aircraft routing and scheduling. Management Science, 43(6):841–855,
1997.

[53] Martin Desrochers. La fabrication d’horaires de travail pour les conducteurs d’autobus
par une méthode de génération de colonnes. Université de Montréal, Centre de recherche
sur les transports, 1987.

[54] Martin Desrochers and Québec). Groupe d’études et de recherche en analyse des déci-
sions École des hautes études commerciales (Montréal. An algorithm for the shortest
path problem with resource constraints. Montréal: École des hautes études commer-
ciales, 1988.

[55] Martin Desrochers and François Soumis. A generalized permanent labeling algorithm
for the shortest path problem with time windows. INFOR Information Systems and
Operational Research, 1988.

[56] Jacques Desrosiers, Paul Pelletier, and François Soumis. Plus court chemin avec con-
traintes d’horaires. Revue française d’automatique, d’informatique et de recherche opéra-
tionnelle. Recherche opérationnelle, 17(4):357–377, 1983.

230

Bibliography

[57] Jacques Desrosiers, François Soumis, and Martin Desrochers. Routing with time win-
dows by column generation. Networks, 14(4):545–565, 1984.

[58] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time
constrained routing and scheduling. Handbooks in operations research and management
science, 8:35–139, 1995.

[59] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[60] Olivier Du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized
column generation. Discrete Mathematics, 194(1):229–237, 1999.

[61] Irina Dumitrescu and Natashia Boland. Improved preprocessing, labeling and scaling
algorithms for the weight-constrained shortest path problem. Networks, 42(3):135–153,
2003.

[62] Michelle Dunbar, Gary Froyland, and Cheng-Lung Wu. Robust airline schedule plan-
ning: minimizing propagated delay in an integrated routing and crewing framework.
Transportation Science, 46(2):204–216, 2012.

[63] Michelle Dunbar, Gary Froyland, and Cheng-Lung Wu. An integrated scenario-based ap-
proach for robust aircraft routing, crew pairing and re-timing. Computers & Operations
Research, 45:68–86, 2014.

[64] Matthias Ehrgott and David Ryan. Constructing robust crew schedules with bicriteria
optimization. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2002.

[65] Amir Eiger, Pitu B Mirchandani, and Hossein Soroush. Path preferences and optimal
paths in probabilistic networks. Transportation Science, 19(1):75–84, 1985.

[66] Issmail Elhallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic
aggregation of set-partitioning constraints in column generation. Operations Research,
53(4):632–645, 2005.

[67] Issmail Elhallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers.
Multi-phase dynamic constraint aggregation for set partitioning type problems. Mathe-
matical Programming, 123(2):345–370, 2010.

[68] David Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):
652–673, 1998.

[69] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of time table and multi-
commodity flow problems. In Foundations of Computer Science, 1975., 16th Annual
Symposium on, pages 184–193. IEEE, 1975.

[70] Torsten Fahle, Ulrich Junker, Stefan E Karisch, Niklas Kohl, Meinolf Sellmann, and
Bo Vaaben. Constraint programming based column generation for crew assignment.
Journal of Heuristics, 8(1):59–81, 2002.

231

Bibliography

[71] Yueyue Fan and Yu Nie. Optimal routing for maximizing the travel time reliability.
Networks and Spatial Economics, 6(3-4):333–344, 2006.

[72] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algo-
rithm for the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks, 44(3):216–229, 2004.

[73] Thomas A Feo and Jonathan F Bard. Flight scheduling and maintenance base planning.
Management Science, 35(12):1415–1432, 1989.

[74] Eugene Fink. A survey of sequential and systolic algorithms for the algebraic path
problem. 1992.

[75] Arthur Flajolet, Sébastien Blandin, and Patrick Jaillet. Robust adaptive routing under
uncertainty. arXiv preprint arXiv:1408.3374, 2014.

[76] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM , 5(6):345,
1962.

[77] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8(3):399–404, 1956.

[78] Lester R Ford Jr and Delbert Ray Fulkerson. Constructing maximal dynamic flows from
static flows. Operations research, 6(3):419–433, 1958.

[79] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10(2):111–121, 1980.

[80] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance
of the empirical measure. Probability Theory and Related Fields, pages 1–32, 2014.

[81] H Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583–599,
1969.

[82] Liping Fu. An adaptive routing algorithm for in-vehicle route guidance systems with
real-time information. Transportation Research Part B: Methodological, 35(8):749–765,
2001.

[83] Liping Fu and Larry R Rilett. Expected shortest paths in dynamic and stochastic traffic
networks. Transportation Research Part B: Methodological, 32(7):499–516, 1998.

[84] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman, 2002.

[85] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D Lawson, Michael Mis-
love, and Dana S Scott. Continuous lattices and domains, volume 93. Cambridge
University Press, 2003.

[86] Michel Gondran and Michel Minoux. Graphs, dioids and semirings: new models and
algorithms, volume 41. Springer Science & Business Media, 2008.

232

Bibliography

[87] Balaji Gopalakrishnan and Ellis Johnson. Airline crew scheduling: State-of-the-art.
Annals of Operations Research, 140:305–337, 2005.

[88] Ram Gopalan and Kalyan T Talluri. The aircraft maintenance routing problem. Opera-
tions Research, 46(2):260–271, 1998.

[89] Chrysanthos E Gounaris, Wolfram Wiesemann, and Christodoulos A Floudas. The
robust capacitated vehicle routing problem under demand uncertainty. Operations
Research, 61(3):677–693, 2013.

[90] Stefano Gualandi and Federico Malucelli. Constraint programming-based column
generation. 4OR, 7(2):113–137, 2009.

[91] Randolph W Hall. The fastest path through a network with random time-dependent
travel times. Transportation science, 20(3):182–188, 1986.

[92] Gabriel Y Handler and Israel Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10(4):293–309, 1980.

[93] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107, 1968.

[94] Karla L Hoffman and Manfred Padberg. Solving airline crew scheduling problems by
branch-and-cut. Management Science, 39(6):657–682, 1993.

[95] Irina Ioachim, Sylvie Gelinas, Francois Soumis, and Jacques Desrosiers. A dynamic
programming algorithm for the shortest path problem with time windows and linear
node costs. Networks, 31(3):193–204, 1998.

[96] Stefan Irnich. Resource extension functions: Properties, inversion, and generalization
to segments. OR Spectrum, 30(1):113–148, 2008.

[97] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints.
Springer, 2005.

[98] Stefan Irnich and Daniel Villeneuve. The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18(3):
391–406, 2006.

[99] Patrick Jaillet. A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Operations research, 36(6):929–936, 1988.

[100] Patrick Jaillet and A Odoni. The probabilistic vehicle routing problem. Vehicle routing:
methods and studies. North Holland, Amsterdam, 1988.

[101] Patrick Jaillet, Jin Qi, and Melvyn Sim. Routing optimization under uncertainty. Opera-
tions Research, 2016.

233

Bibliography

[102] Hans C Joksch. The shortest route problem with constraints. Journal of Mathematical
analysis and applications, 14(2):191–197, 1966.

[103] Hossein Jula, Maged Dessouky, and Petros A Ioannou. Truck route planning in nonsta-
tionary stochastic networks with time windows at customer locations. IEEE Transactions
on Intelligent Transportation Systems, 7(1):51–62, 2006.

[104] Ulrich Junker, Stefan E Karisch, Niklas Kohl, Bo Vaaben, Torsten Fahle, and Meinolf
Sellmann. A framework for constraint programming based column generation. In
International Conference on Principles and Practice of Constraint Programming, pages
261–274. Springer, 1999.

[105] Diego Klabjan and Karsten Schwan. Airline crew pairing generation in parallel. Technical
report, Technical Report TLI/LEC-99-09, Georgia Institute of Technology, Atlanta, GA,
1999.

[106] Diego Klabjan, Ellis L Johnson, George L Nemhauser, Eric Gelman, and Srini Ra-
maswamy. Airline crew scheduling with time windows and plane-count constraints.
Transportation Science, 36(3):337–348, 2002.

[107] Niklas Kohl, Jacques Desrosiers, Oli BG Madsen, Marius M Solomon, and Francois
Soumis. 2-path cuts for the vehicle routing problem with time windows. Transportation
Science, 33(1):101–116, 1999.

[108] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[109] Stefanie Kosuch and Abdel Lisser. Stochastic shortest path problem with delay excess
penalty. Electronic Notes in Discrete Mathematics, 36:511–518, 2010.

[110] Jean Kuntzmann. Théorie des réseaux. 1972.

[111] Shigeo Kusuoka. On law invariant coherent risk measures. In Advances in mathematical
economics, pages 83–95. Springer, 2001.

[112] Shan Lan, John-Paul Clarke, and Cynthia Barnhart. Planning for robust airline opera-
tions: Optimizing aircraft routings and flight departure times to minimize passenger
disruptions. Transportation Science, 40(1):15–28, 2006.

[113] Jesper Larsen. Parallelization of the vehicle routing problem with time windows. PhD
thesis, Technical University of DenmarkDanmarks Tekniske Universitet, Department of
Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Model-
lering, 1999.

[114] Sylvie Lavoie, Michel Minoux, and Edouard Odier. A new approach for crew pairing
problems by column generation with an application to air transportation. European
Journal of Operational Research, 35(1):45–58, 1988.

[115] Daniel J Lehmann. Algebraic structures for transitive closure. Theoretical Computer
Science, 4(1):59–76, 1977.

234

Bibliography

[116] David Levine. Application of a hybrid genetic algorithm to airline crew scheduling.
Computers & Operations Research, 23(6):547–558, 1996.

[117] Xiangyong Li, Peng Tian, and Stephen CH Leung. Vehicle routing problems with time
windows and stochastic travel and service times: Models and algorithm. International
Journal of Production Economics, 125(1):137–145, 2010.

[118] Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transac-
tions on, 28(2):129–137, 1982.

[119] Ronald Prescott Loui. Optimal paths in graphs with stochastic or multidimensional
weights. Communications of the ACM , 26(9):670–676, 1983.

[120] Leonardo Lozano and Andrés L Medaglia. On an exact method for the constrained
shortest path problem. Computers & Operations Research, 40(1):378–384, 2013.

[121] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[122] Stephen Maher, Guy Desaulniers, and François Soumis. Recoverable robust single day
aircraft maintenance routing problem. Computers & Operations Research, 51:130–145,
2014.

[123] Lilit Mazmanyan, Dan Trietsch, and KR Baker. Stochastic traveling salesperson models
with safety time. Technical report, Working paper, 2009.

[124] Anne Mercier and François Soumis. An integrated aircraft routing, crew scheduling and
flight retiming model. Computers & Operations Research, 34(8):2251–2265, 2007.

[125] Anne Mercier, Jean-François Cordeau, and François Soumis. A computational study of
benders decomposition for the integrated aircraft routing and crew scheduling problem.
Computers & Operations Research, 32(6):1451–1476, 2005.

[126] Elise Miller-Hooks and Hani Mahmassani. Path comparisons for a priori and time-
adaptive decisions in stochastic, time-varying networks. European Journal of Opera-
tional Research, 146(1):67–82, 2003.

[127] Elise D Miller-Hooks and Hani S Mahmassani. Least possible time paths in stochastic,
time-varying networks. Computers & operations research, 25(12):1107–1125, 1998.

[128] Elise Deborah Miller-Hooks. Optimal routing in time-varying, stochastic networks:
algorithms and implementations. The University of Texas at Austin, 1997.

[129] Pitu B Mirchandani. Shortest distance and reliability of probabilistic networks. Com-
puters & Operations Research, 3(4):347–355, 1976.

[130] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

235

Bibliography

[131] Alfred Müller and Dietrich Stoyan. Comparison methods for stochastic models and risks,
volume 389. Wiley, 2002.

[132] Ishwar Murthy and Sumit Sarkar. A relaxation-based pruning technique for a class of
stochastic shortest path problems. Transportation Science, 30(3):220–236, 1996.

[133] Ishwar Murthy and Sumit Sarkar. Stochastic shortest path problems with piecewise-
linear concave utility functions. Management Science, 44(11-part-2):S125–S136, 1998.

[134] İbrahim Muter, Şİlker Birbil, Kerem Bülbül, Güvenç Şahin, Hüsnü Yenigün, Duygu Taş,
and Dilek Tüzün. Solving a robust airline crew pairing problem with column generation.
Computers & Operations Research, 40(3):815–830, 2013.

[135] Yu Nie and Yueyue Fan. Arriving-on-time problem: discrete algorithm that ensures
convergence. Transportation Research Record: Journal of the Transportation Research
Board, 1964(1):193–200, 2006.

[136] Yu Marco Nie and Xing Wu. Shortest path problem considering on-time arrival proba-
bility. Transportation Research Part B: Methodological, 43(6):597–613, 2009.

[137] Yu Marco Nie, Xing Wu, and Tito Homem-de Mello. Optimal path problems with
second-order stochastic dominance constraints. Networks and Spatial Economics, 12
(4):561–587, 2012.

[138] Evdokia Nikolova. High-performance heuristics for optimization in stochastic traffic
engineering problems. In Large-Scale Scientific Computing, pages 352–360. Springer,
2010.

[139] Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Algorithms–ESA 2006,
pages 552–563. Springer, 2006.

[140] Nikolaos Papadakos. Integrated airline scheduling. Computers & Operations Research,
36(1):176–195, 2009.

[141] Axel Parmentier. Algorithms for non-linear and stochastic resource constrained shortest
paths. arXiv preprint arXiv:1504.07880, 2015.

[142] Axel Parmentier and Frédéric Meunier. Stochastic shortest paths and risk measures.
arXiv preprint arXiv:1408.0272, 2014.

[143] Georg Ch Pflug and Alois Pichler. Multistage Stochastic Optimization. Springer, 2014.

[144] Alois Pichler. Distance of probability measures and respective continuity properties of
acceptability functionals. PhD thesis, uniwien, 2010.

[145] Alois Pichler. Evaluations of risk measures for different probability measures. SIAM
Journal on Optimization, 23(1):530–551, 2013.

236

Bibliography

[146] Warren B Powell and Zhi-Long Chen. A generalized threshold algorithm for the short-
est path problem with time windows. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 40:303–318, 1998.

[147] Giovanni Righini and Matteo Salani. Symmetry helps: bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints.
Discrete Optimization, 3(3):255–273, 2006.

[148] Giovanni Righini and Matteo Salani. Decremental state space relaxation strategies and
initialization heuristics for solving the orienteering problem with time windows with
dynamic programming. Computers & Operations Research, 36(4):1191–1203, 2009.

[149] R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk.
Journal of risk, 2:21–42, 2000.

[150] Jay M Rosenberger, Ellis L Johnson, and George L Nemhauser. A robust fleet-assignment
model with hub isolation and short cycles. Transportation Science, 38(3):357–368, 2004.

[151] Louis-Martin Rousseau, Michel Gendreau, Gilles Pesant, and Filippo Focacci. Solving
vrptws with constraint programming based column generation. Annals of Operations
Research, 130(1-4):199–216, 2004.

[152] Bernard Roy. Transitivité et connexité. Comptes Rendus Hebdomadaires Des Seances De
L Academie Des Sciences, 249(2):216–218, 1959.

[153] RA Russell and TL Urban. Vehicle routing with soft time windows and erlang travel
times. Journal of the Operational Research Society, 59(9):1220–1228, 2008.

[154] Guillaume Sabran, Samitha Samaranayake, and Alexandre M Bayen. Precomputation
techniques for the stochastic on-time arrival problem. In ALENEX , pages 138–146. SIAM,
2014.

[155] Mohammed Saddoune, Guy Desaulniers, Issmail Elhallaoui, and François Soumis. In-
tegrated airline crew pairing and crew assignment by dynamic constraint aggregation.
Transportation Science, 46(1):39–55, 2012.

[156] Samitha Samaranayake, Sebastien Blandin, and A Bayen. A tractable class of algorithms
for reliable routing in stochastic networks. Transportation Research Part C: Emerging
Technologies, 20(1):199–217, 2012.

[157] Luis Santos, João Coutinho-Rodrigues, and John R Current. An improved solution
algorithm for the constrained shortest path problem. Transportation Research Part B:
Methodological, 41(7):756–771, 2007.

[158] Andrew Schaefer, Ellis Johnson, Anton Kleywegt, and George Nemhauser. Airline crew
scheduling under uncertainty. Transportation Science, 39(3):340–348, 2005.

[159] Bernd Schroeder. Ordered Sets: An Introduction. Springer Science & Business Media,
2003.

237

Bibliography

[160] Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer, 2007.

[161] Shengzhi Shao, Hanif D Sherali, and Mohamed Haouari. A novel model and decompo-
sition approach for the integrated airline fleet assignment, aircraft routing, and crew
pairing problem. Transportation Science, 2015.

[162] Sergey Shebalov and Diego Klabjan. Robust airline crew pairing: Move-up crews. Trans-
portation Science, 40(3):300–312, 2006.

[163] Raj A Sivakumar and Rajan Batta. The variance-constrained shortest path problem.
Transportation Science, 28(4):309–316, 1994.

[164] Ilgaz Sungur, Fernando Ordónez, and Maged Dessouky. A robust optimization approach
for the capacitated vehicle routing problem with demand uncertainty. IIE Transactions,
40(5):509–523, 2008.

[165] Kalyan T Talluri. The four-day aircraft maintenance routing problem. Transportation
Science, 32(1):43–53, 1998.

[166] D Taş, M Gendreau, N Dellaert, Tom Van Woensel, and AG De Kok. Vehicle routing with
soft time windows and stochastic travel times: A column generation and branch-and-
price solution approach. European Journal of Operational Research, 236(3):789–799,
2014.

[167] Erlendur S Thorsteinsson. Branch-and-check: A hybrid framework integrating mixed
integer programming and constraint logic programming. In International Conference
on Principles and Practice of Constraint Programming, pages 16–30. Springer, 2001.

[168] Pamela H Vance, Cynthia Barnhart, Ellis L Johnson, and George L Nemhauser. Airline
crew scheduling: A new formulation and decomposition algorithm. Operations Research,
45(2):188–200, 1997.

[169] Shaun S Wang, Virginia R Young, and Harry H Panjer. Axiomatic characterization of
insurance prices. Insurance: Mathematics and economics, 21(2):173–183, 1997.

[170] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):
11–12, 1962.

[171] Oliver Weide, David Ryan, and Matthias Ehrgott. An iterative approach to robust and
integrated aircraft routing and crew scheduling. Computers & Operations Research, 37
(5):833–844, 2010.

[172] Cheng-Lung Wu. Improving airline network robustness and operational reliability by
sequential optimisation algorithms. Networks and Spatial Economics, 6(3-4):235–251,
2006.

[173] Chiwei Yan and Jerry Kung. Robust aircraft routing. Available at SSRN 2518028, 2014.

[174] Joyce Yen and John Birge. A stochastic programming approach to the airline crew
scheduling problem. Transportation Science, 40(1):3–14, 2006.

238

Bibliography

[175] Michael Yoeli. A note on a generalization of boolean matrix theory. The American
Mathematical Monthly, 68(6):552–557, 1961.

[176] Gang Yu and Jian Yang. On the robust shortest path problem. Computers & Operations
Research, 25(6):457–468, 1998.

[177] FM Zeghal and Michel Minoux. Modeling and solving a crew assignment problem in air
transportation. European Journal of Operational Research, 175(1):187–209, 2006.

[178] Uwe Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic Struc-
tures. Elsevier, 1981.

239

Index
A
absorbing element . 42
Aircraft Routing Problem 125, 137

Leg Based . 211
Stochastic . 176

Algebraic Path Problem . 42
algorithm . 50

extented Ford-Bellman 59
generalized A∗ . 51
generalized Dijkstra 61
generic enumeration 50
label dominance . 51

B
bounds . 59

C
clustering . 113

k-means . 113
local search . 113
similarity measure 112

column generation . 7, 150
tail effect .160

Conditional Value-at-Risk 24
constraint

short connection . 126
constraints

interval .47
path structural . 44
probabilistic . 29
strength . 65

convolution product . 80
cost function . 33, 39
Crew Pairing Problem . 126

Stochastic . 176

D
delay model .172, 191

pairing . 174

digraph . 38
dioid . 42
distortion functional .25
distribution . 79

discrete with finite support 80
cumulative .79
independent . 79
normal . 82

distributive operator .42
dynamic programming

equation . 42, 59
property . 41

F
flight leg . 1

deadhead . 151

G
group . 39

lattice ordered . 39

I
infeasibility function .33
infinitely small for translation 39
Integrated Problem . 126

Stochastic . 172

J
join .38

K
Knaster-Tarski fixed point theorem 43, 59
Kusuoka’s representation theorem 24

L
lattice . 38

complete .38
lower semi-lattice .38

M
mapping . 38

241

Index

antitone .38
isotone . 38
monotone . 38

matheuristic . 134
meet . 38
monoid .33, 38

delay . 179
lattice ordered . 38
ordered . 38
product . 47
working rules . 157

Monte-Carlo approximation problem 26

O
order

coarser . 38
compatible . 38

P
path . 38

elementary . 38
simple . 38

probability functional . 23
risk-averse . 23
risk-prone . 23
version independent 23

R
resource . 33, 39
risk measure . 24

coherent . 24
Conditional Value-at-Risk 24
distortion functional 25
version independent 24

S
Sampled Problem Convergence . . . 28, 94, 188
semiring . 42

bounded . 42
canonical order . 43
idempotent . 42

set of resources .33, 39
shortest distance .42
Shortest Path Problem . 40

Monoid Resource Constrained 33, 39
Standard . 40
Stochastic . 77
Stochastic Resource Constrained77
Usual Resource Constrained 40

state graph . 108
clustering . 109
conditional . 114

Stochastic On Time Arrival Problem83
Stochastic Optimization Problem 26
stochastic order . 25, 80

usual . 25, 80

W
Wasserstein distance .27

242

	Remerciements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	Introduction
	Mathematics for Air France operations
	Resource constrained and stochastic path problems
	Column generation
	Stochasticity

	Introduction (Français)
	Mathématiques pour les opérations aériennes
	Problèmes de plus court chemin sous contraintes
	Génération de colonnes
	Prise en compte de l'aléa

	Probabilistic tools for stochastic optimization
	Risk measures
	Version independent and risk-averse probability functional
	Risk measures definition
	Conditional Value at Risk
	Distortion Functional
	Monotonicity with respect to stochastic orders

	Convergence of the Monte-Carlo approximation of a stochastic problem
	Wasserstein distances
	Robustness of solutions with respect to Wasserstein distance
	Probabilistic constraints

	I Shortest path problems
	Introduction to Part I
	Algebraic structure of the resource set in path problems
	Generalities on graphs and ordered monoids
	Digraphs
	Ordered monoid and lattices

	Monoid Resource Constrained Shortest Path Problem
	First examples
	Main properties

	Links with the algebraic path problem
	Problem statement
	Link with our lattice ordered monoid framework

	Modeling with lattice ordered monoid
	Bibliographical remarks and path problems classification
	Example: a continent wide truck delivery
	Modeling techniques

	Algorithms for path problems with resources in an ordered monoid
	Enumeration algorithms
	Generic algorithm
	Convergence of the algorithms
	Dealing with non positive cycles, non commutativity or absence of the Archimedean property

	Extended dynamic programming in lattice ordered monoids
	Extended Ford-Bellman algorithm
	Generalized Dijkstra algorithm for faster bound computations

	Numerical results on a resource constrained shortest path problem
	Graph instances used
	Resources and constraints
	Experimental setting
	Diameter, difficulty of instances, and algorithms performances
	Influence of constraint strength
	Influence of dimension

	Bibliographical remarks
	Bounding algorithms and algebraic path problem
	Enumeration algorithm for resource constrained path problems

	Applications to stochastic path problems
	Independent distribution
	Discrete distributions lattice ordered monoid
	Parametrized families of distribution
	Link with the online on time arrival problem

	Numerical results for independent distributions with discrete support
	Instances, resources, and constraints used
	Results on the Stochastic Shortest Path Problem
	Results on the Stochastic Resource Constrained Shortest Path Problem

	Scenario based distributions
	Scenario lattice ordered monoid
	Complexity of the problem with finite number of scenarios
	Bounds and online problem
	Convergence to the optimal solution of the initial problem

	Numerical results for scenario based distributions
	Instances and problem considered
	Main results
	Influence of the number of samples

	Bibliographical remarks
	Offline stochastic shortest path
	Online stochastic path problems
	Shortest path under probability constraint
	Stochastic traveling salesman and vehicle routing problems

	State graphs to improve algorithm convergence
	Notion of state graph
	Clustering state graphs
	Clustering state graph for acyclic graphs
	Dealing with cycles
	Choice of similarity measure for clustering
	Clustering algorithm

	Conditional state graphs
	Conditional state graph

	Conditional versus clustered lower bounds
	Numerical results
	Resource constrained shortest path with ten constraints
	Clustering state graph and Stochastic Shortest Path Problem

	II Airline operations problems
	Introduction to Part II
	Integrated aircraft routing and crew pairing problem statement
	Solution scheme
	Feedback Aircraft Routing Problem loop
	From exact algorithm to matheuristic

	Instances
	Bibliographical remarks

	Compact integer program for aircraft routing
	Aircraft routing problem definition
	Maintenance state graph and compact integer program
	Maintenance state graph and integer program
	Costs
	Numerical results

	Aircraft routing problem complexity
	NP-completeness
	Fixed parameter tractability

	Bibliographical remarks

	Column generation for crew pairing problem
	Column generation approach to Crew Pairing Problem
	Master problem
	Pricing subproblem
	Column generation algorithm for the linear relaxation
	Integer solutions

	Resource constrained shortest path subproblem
	Air France working rules
	Pairing connection graph
	Working rules lattice ordered monoid
	Algorithm

	Numerical results on Crew Pairing Problem
	Results on the main instance
	Convergence, branching scheme and stabilization
	Pricing subproblem algorithms

	Bibliographical remarks

	Numerical experiments on integrated problem
	Managing delay in airline operations
	Solution approach to robust integrated problem
	Intrinsic delay distribution and difficulty of the inference problem
	Exact solution scheme
	Delay minimization as objective of the Aircraft Routing Problem
	Probabilistic constraints in Stochastic Crew Pairing Problem column generation

	Column generation approach to stochastic Crew Pairing
	From deterministic to stochastic subproblem reduction
	Delay lattice ordered monoid
	Algorithms
	Numerical results

	Compact integer program for Stochastic Aircraft Routing
	Deterministic problem compact integer program
	Scenario approach compact integer program
	Numerical experiments

	Numerical results on Stochastic Integrated Problem
	Sampling approach
	Bibliographical remarks
	Delay models
	Optimization approaches

	Conclusion
	Main contributions
	Research directions

	Appendix
	Wasserstein distance and stochastic optimization
	Robustness of probability functionals with respect to Wasserstein distance
	Risk measures
	Distributions with bounded density

	Stochastic objective functions
	Probabilistic constraints

	Aircraft Routing ProblemNP-completeness
	Aircraft Routing Problem definition
	Problem definition
	Equivalence with the Airport-Time graph routing problem

	Polynomial algorithm
	Maintenance state graph
	Polynomial algorithm for network paths partition problem

	Aircraft routing NP-completeness

	LatticeRCSP library

	Bibliography
	Index

