C. Acerbi, Coherent representations of subjective risk aversion. Risk Measures for the 21st Century, p.147, 2003.

C. Acerbi and P. Simonetti, Portfolio optimization with spectral measures of risk. arXiv preprint cond-mat/0203607, 2002.

Y. Adulyasak and P. Jaillet, Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines, Transportation Science, vol.50, issue.2, pp.608-626, 2015.
DOI : 10.1287/trsc.2014.0581

Y. Ageeva and J. Clarke, Approaches to incorporating robustness into airline scheduling, 2000.

S. Ahmadbeygi, A. Cohn, and M. Lapp, Decreasing airline delay propagation by re-allocating scheduled slack, IIE Transactions, vol.42, issue.7, pp.478-489, 2010.
DOI : 10.1142/9789812561701

V. Alfred, . Aho, E. John, and . Hopcroft, The design and analysis of computer algorithms, 1974.

K. Ravindra, . Ahuja, L. Thomas, J. B. Magnanti, and . Orlin, Network flows: theory, algorithms, and applications, 1993.

M. Ali-aloulou, M. Haouari, and F. Z. Mansour, Robust Aircraft Routing and Flight Retiming, Electronic Notes in Discrete Mathematics, vol.36, pp.367-374, 2010.
DOI : 10.1016/j.endm.2010.05.047

G. Amato, F. Scozzari, and H. Seidl, Efficiently intertwining widening and narrowing, Science of Computer Programming, vol.120, pp.1-24, 2016.
DOI : 10.1016/j.scico.2015.12.005

R. Anbil, R. Tanga, and E. L. Johnson, A global approach to crew-pairing optimization, IBM Systems Journal, vol.31, issue.1, pp.71-78, 1992.
DOI : 10.1147/sj.311.0071

K. Apinis, H. Seidl, and V. Vojdani, How to combine widening and narrowing for non-monotonic systems of equations, ACM SIGPLAN Notices, vol.48, issue.6, pp.377-386, 2013.
DOI : 10.1145/2499370.2462190

K. Apt, Principles of constraint programming, 2003.
DOI : 10.1017/CBO9780511615320

P. Artzner, F. Delbaen, J. Eber, and D. Heath, Coherent Measures of Risk, Mathematical Finance, vol.9, issue.3, pp.203-228, 1999.
DOI : 10.1111/1467-9965.00068

F. Baccelli, G. Cohen, G. J. Olsder, and J. Quadrat, Synchronization and linearity: an algebra for discrete event systems, 1992.

C. Roland, . Backhouse, A. Bernard, and . Carré, Regular algebra applied to path-finding problems, IMA Journal of Applied Mathematics, vol.15, issue.2, pp.161-186, 1975.

R. Baldacci, N. Christofides, and A. Mingozzi, An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts, Mathematical Programming, pp.351-385, 2008.
DOI : 10.1007/s10107-007-0178-5

M. Ball and A. Roberts, A Graph Partitioning Approach to Airline Crew Scheduling, Transportation Science, vol.19, issue.2, pp.107-126, 1985.
DOI : 10.1287/trsc.19.2.107

C. Barnhart, L. Natashia, . Boland, W. Lloyd, . Clarke et al., Flight String Models for Aircraft Fleeting and Routing, Transportation Science, vol.32, issue.3, pp.208-220, 1998.
DOI : 10.1287/trsc.32.3.208

H. Bast, D. Delling, A. Goldberg, M. Müller-hannemann, T. Pajor et al., Route Planning in Transportation Networks, 2014.
DOI : 10.1007/3-540-44676-1_3

N. Bäuerle and A. Müller, Stochastic orders and risk measures: Consistency and bounds, Insurance: Mathematics and Economics, vol.38, issue.1, pp.132-148, 2006.
DOI : 10.1016/j.insmatheco.2005.08.003

J. Beasley and N. Christofides, An algorithm for the resource constrained shortest path problem, Networks, vol.17, issue.4, pp.379-394, 1989.
DOI : 10.1002/net.3230190402

E. John, B. Beasley, and . Cao, A tree search algorithm for the crew scheduling problem, European Journal of Operational Research, vol.94, issue.3, pp.517-526, 1996.

R. Bellman, On a routing problem, Quarterly of Applied Mathematics, vol.16, issue.1, pp.87-90, 1958.
DOI : 10.1090/qam/102435

J. Dimitris and . Bertsimas, A vehicle routing problem with stochastic demand, Operations Research, vol.40, issue.3, pp.574-585, 1992.

J. Dimitris, D. Bertsimas, and . Simchi-levi, A new generation of vehicle routing research: robust algorithms, addressing uncertainty, Operations Research, vol.44, issue.2, pp.286-304, 1996.

T. Scott and B. , Lattices and ordered algebraic structures, 2005.

M. Bogerding, Kissfft library, 2013. URL http://sourceforge, 30] Ralf Borndörfer, Martin Grötschel, and Andreas Löbel. Scheduling duties by adaptive column generation, 2001.

O. Briant, C. Lemaréchal, P. Meurdesoif, and S. Michel, Comparison of bundle and classical column generation, Mathematical Programming, vol.94, issue.1, pp.299-344, 2008.
DOI : 10.1007/s10107-006-0079-z

URL : https://hal.archives-ouvertes.fr/inria-00342510

W. Matthew-carlyle, O. Johannes, . Royset, and . Wood, Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks, pp.256-270, 2008.

P. Carpentier, J. Chancelier, G. Cohen, and D. Michel, Stochastic Multi-Stage Optimization: At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming, 2015.
DOI : 10.1007/978-3-319-18138-7

URL : https://hal.archives-ouvertes.fr/hal-01165572

A. Bernard and . Carré, An algebra for network routing problems, IMA Journal of Applied Mathematics, vol.7, issue.3, pp.273-294, 1971.

T. Chang, Y. Wan, and W. Ooi, A stochastic dynamic traveling salesman problem with hard time windows, European Journal of Operational Research, vol.198, issue.3, pp.748-759, 2009.
DOI : 10.1016/j.ejor.2008.10.012

A. Chen and Z. Ji, Path finding under uncertainty, Journal of Advanced Transportation, vol.25, issue.6, pp.19-37, 2005.
DOI : 10.1002/atr.5670390104

. Bi-yu-chen, H. William, A. Lam, Q. Sumalee, H. Li et al., Finding reliable shortest paths in road networks under uncertainty. Networks and spatial economics, pp.123-148, 2013.

V. Boris, . Cherkassky, V. Andrew, T. Goldberg, and . Radzik, Shortest paths algorithms: Theory and experimental evaluation, Mathematical programming, vol.73, issue.2, pp.129-174, 1996.

D. Hai, E. Chu, . Gelman, L. Ellis, and . Johnson, Solving large scale crew scheduling problems, European Journal of Operational Research, vol.97, issue.2, pp.260-268, 1997.

J. Clarke, T. Melconian, E. Bly, and F. Rabbani, MEANS MIT Extensible Air Network Simulation, SIMULATION, vol.83, issue.5, pp.385-399, 2007.
DOI : 10.1177/0037549707063766

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Clarke, E. Johnson, G. Nemhauser, and Z. Zhu, The aircraft rotation problem, Annals of Operations Research, vol.69, pp.33-46, 1997.
DOI : 10.1023/A:1018945415148

A. Mainville-cohn and C. Barnhart, Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions, Operations Research, vol.51, issue.3, pp.387-396, 2003.
DOI : 10.1287/opre.51.3.387.14759

J. Cordeau, G. Stojkovi´cstojkovi´c, F. Soumis, and J. Desrosiers, Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling, Transportation Science, vol.35, issue.4, pp.375-388, 2001.
DOI : 10.1287/trsc.35.4.375.10432

P. Cousot and R. Cousot, Abstract interpretation, Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages , POPL '77, pp.238-252, 1977.
DOI : 10.1145/512950.512973

URL : https://hal.archives-ouvertes.fr/hal-01108790

P. Cousot and R. Cousot, Constructive versions of Tarski???s fixed point theorems, Pacific Journal of Mathematics, vol.82, issue.1, pp.43-57, 1979.
DOI : 10.2140/pjm.1979.82.43

P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino, On computing the diameter of real-world undirected graphs, Theoretical Computer Science, vol.514, pp.84-95, 2013.
DOI : 10.1016/j.tcs.2012.09.018

URL : https://hal.archives-ouvertes.fr/hal-00936304

A. Brian, . Davey, A. Hilary, and . Priestley, Introduction to lattices and order, 2002.

A. De and S. , Combining constraint programming and linear programming on an example of bus driver scheduling, Annals of Operations Research, vol.108, issue.1-4, pp.277-291, 2001.

D. Denneberg, Distorted probabilities and insurance premiums, Methods of Operations Research, vol.63, issue.3, 1990.

O. Deprez, U. Hans, and . Gerber, On convex principles of premium calculation, Insurance: Mathematics and Economics, vol.4, issue.3, pp.179-189, 1985.
DOI : 10.1016/0167-6687(85)90014-9

G. Desaulniers, Y. Desrosiers, . Dumas, . Marc, . Rioux et al., Crew pairing at Air France, European Journal of Operational Research, vol.97, issue.2, pp.245-259, 1997.
DOI : 10.1016/S0377-2217(96)00195-6

G. Desaulniers, J. Desrosiers, Y. Dumas, M. Marius, F. Solomon et al., Daily Aircraft Routing and Scheduling, Management Science, vol.43, issue.6, pp.841-855, 1997.
DOI : 10.1287/mnsc.43.6.841

M. Desrochers, La fabrication d'horaires de travail pour les conducteurs d'autobus par une méthode de génération de colonnes, 1987.

M. Desrochers and Q. , Groupe d'études et de recherche en analyse des décisions École des hautes études commerciales (Montréal. An algorithm for the shortest path problem with resource constraints, 1988.

M. Desrochers and F. Soumis, A generalized permanent labeling algorithm for the shortest path problem with time windows, INFOR Information Systems and Operational Research, 1988.

J. Desrosiers, P. Pelletier, and F. Soumis, Plus court chemin avec contraintes d'horaires. Revue française d'automatique, d'informatique et de recherche opérationnelle, Recherche opérationnelle, vol.17, issue.4, pp.357-377, 1983.
DOI : 10.1051/ro/1983170403571

URL : http://www.numdam.org/article/RO_1983__17_4_357_0.pdf

J. Desrosiers, F. Soumis, and M. Desrochers, Routing with time windows by column generation, Networks, vol.14, issue.4, pp.545-565, 1984.
DOI : 10.1002/net.3230140406

J. Desrosiers, Y. Dumas, M. Marius, F. Solomon, and . Soumis, Time constrained routing and scheduling. Handbooks in operations research and management science, pp.35-139, 1995.
DOI : 10.1016/s0927-0507(05)80106-9

W. Edsger and . Dijkstra, A note on two problems in connexion with graphs. Numerische mathematik, pp.269-271, 1959.

D. Olivier-du-merle, J. Villeneuve, P. Desrosiers, and . Hansen, Stabilized column generation, Discrete Mathematics, vol.194, issue.1-3, pp.229-237, 1999.
DOI : 10.1016/S0012-365X(98)00213-1

I. Dumitrescu and N. Boland, Improved preprocessing, labeling and scaling algorithms for the Weight-Constrained Shortest Path Problem, Networks, vol.17, issue.48, pp.135-153, 2003.
DOI : 10.1002/net.10090

M. Dunbar, G. Froyland, and C. Wu, Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework, Transportation Science, vol.46, issue.2, pp.204-216, 2012.
DOI : 10.1287/trsc.1110.0395

M. Dunbar, G. Froyland, and C. Wu, An integrated scenario-based approach for robust aircraft routing, crew pairing and re-timing, Computers & Operations Research, vol.45, pp.68-86, 2014.
DOI : 10.1016/j.cor.2013.12.003

M. Ehrgott and D. Ryan, Constructing robust crew schedules with bicriteria optimization, Journal of Multi-Criteria Decision Analysis, vol.35, issue.3, pp.139-150, 2002.
DOI : 10.1002/mcda.321

A. Eiger, B. Pitu, H. Mirchandani, and . Soroush, Path Preferences and Optimal Paths in Probabilistic Networks, Transportation Science, vol.19, issue.1, pp.75-84, 1985.
DOI : 10.1287/trsc.19.1.75

I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers, Dynamic Aggregation of Set-Partitioning Constraints in Column Generation, Operations Research, vol.53, issue.4, pp.632-645, 2005.
DOI : 10.1287/opre.1050.0222

I. Elhallaoui, A. Metrane, F. Soumis, and G. Desaulniers, Multi-phase dynamic constraint aggregation for set partitioning type problems, Mathematical Programming, pp.345-370, 2010.
DOI : 10.1007/s10107-008-0254-5

D. Eppstein, Finding the k Shortest Paths, SIAM Journal on Computing, vol.28, issue.2, pp.652-673, 1998.
DOI : 10.1137/S0097539795290477

S. Even, A. Itai, and A. Shamir, On the complexity of time table and multicommodity flow problems, Foundations of Computer Science 16th Annual Symposium on, pp.184-193, 1975.

T. Fahle, U. Junker, E. Stefan, N. Karisch, M. Kohl et al., Constraint programming based column generation for crew assignment, Journal of Heuristics, vol.8, issue.1, pp.59-81, 2002.
DOI : 10.1023/A:1013613701606

Y. Fan and Y. Nie, Optimal Routing for Maximizing the Travel Time Reliability, Networks and Spatial Economics, vol.173, issue.3-4, pp.333-344, 2006.
DOI : 10.1007/s11067-006-9287-6

D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems, Networks, vol.35, issue.3, pp.216-229, 2004.
DOI : 10.1002/net.20033

A. Thomas, . Feo, F. Jonathan, and . Bard, Flight scheduling and maintenance base planning, Management Science, vol.35, issue.12, pp.1415-1432, 1989.

E. Fink, A survey of sequential and systolic algorithms for the algebraic path problem, 1992.

A. Flajolet, S. Blandin, and P. Jaillet, Robust adaptive routing under uncertainty. arXiv preprint, 2014.

W. Robert and . Floyd, Algorithm 97: shortest path, Communications of the ACM, vol.5, issue.6, p.345, 1962.

R. Lester, . Ford, R. Delbert, and . Fulkerson, Maximal flow through a network, Canadian journal of Mathematics, vol.8, issue.3, pp.399-404, 1956.

F. Lester, D. R. Jr, and . Fulkerson, Constructing maximal dynamic flows from static flows, Operations research, vol.6, issue.3, pp.419-433, 1958.

S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism problem, Theoretical Computer Science, vol.10, issue.2, pp.111-121, 1980.
DOI : 10.1016/0304-3975(80)90009-2

URL : http://doi.org/10.1016/0304-3975(80)90009-2

N. Fournier and A. Guillin, On the rate of convergence in wasserstein distance of the empirical measure. Probability Theory and Related Fields, pp.1-32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00915365

H. Frank, Shortest Paths in Probabilistic Graphs, Operations Research, vol.17, issue.4, pp.583-599, 1969.
DOI : 10.1287/opre.17.4.583

L. Fu, An adaptive routing algorithm for in-vehicle route guidance systems with real-time information, Transportation Research Part B: Methodological, vol.35, issue.8, pp.749-765, 2001.
DOI : 10.1016/S0191-2615(00)00019-9

L. Fu, R. Larry, and . Rilett, Expected shortest paths in dynamic and stochastic traffic networks, Transportation Research Part B: Methodological, vol.32, issue.7, pp.499-516, 1998.
DOI : 10.1016/S0191-2615(98)00016-2

R. Michael, . Garey, S. David, and . Johnson, Computers and intractability, 2002.

M. Gondran and M. Minoux, Graphs, dioids and semirings: new models and algorithms, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01304880

B. Gopalakrishnan and E. Johnson, Airline Crew Scheduling: State-of-the-Art, Annals of Operations Research, vol.3, issue.2, pp.305-337, 2005.
DOI : 10.1007/s10479-005-3975-3

R. Gopalan, T. Kalyan, and . Talluri, The Aircraft Maintenance Routing Problem, Operations Research, vol.46, issue.2, pp.260-271, 1998.
DOI : 10.1287/opre.46.2.260

E. Chrysanthos, W. Gounaris, . Wiesemann, A. Christodoulos, and . Floudas, The robust capacitated vehicle routing problem under demand uncertainty, Operations Research, vol.61, issue.3, pp.677-693, 2013.

S. Gualandi and F. Malucelli, Constraint programming-based column generation, pp.113-137, 2009.
DOI : 10.1007/s10288-009-0101-4

W. Randolph and . Hall, The fastest path through a network with random time-dependent travel times, Transportation science, vol.20, issue.3, pp.182-188, 1986.

Y. Gabriel, I. Handler, and . Zang, A dual algorithm for the constrained shortest path problem, Networks, vol.10, issue.4, pp.293-309, 1980.

E. Peter, . Hart, J. Nils, B. Nilsson, and . Raphael, A formal basis for the heuristic determination of minimum cost paths, Systems Science and Cybernetics IEEE Transactions on, vol.4, issue.2, pp.100-107, 1968.

L. Karla, M. Hoffman, and . Padberg, Solving airline crew scheduling problems by branch-and-cut, Management Science, vol.39, issue.6, pp.657-682, 1993.

I. Ioachim, S. Gelinas, F. Soumis, and J. Desrosiers, A dynamic programming algorithm for the shortest path problem with time windows and linear node costs, Networks, issue.3, pp.31193-204, 1998.

S. Irnich, Resource extension functions: properties, inversion, and generalization to segments, OR Spectrum, vol.45, issue.2, pp.113-148, 2008.
DOI : 10.1007/s00291-007-0083-6

S. Irnich and G. Desaulniers, Shortest Path Problems with Resource Constraints, 2005.
DOI : 10.1007/0-387-25486-2_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Irnich and D. Villeneuve, ??? 3, INFORMS Journal on Computing, vol.18, issue.3, pp.391-406, 2006.
DOI : 10.1287/ijoc.1040.0117

P. Jaillet, A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited, Operations Research, vol.36, issue.6, pp.929-936, 1988.
DOI : 10.1287/opre.36.6.929

P. Jaillet and A. Odoni, The probabilistic vehicle routing problem Vehicle routing: methods and studies, 1988.

P. Jaillet, J. Qi, and M. Sim, Routing Optimization Under Uncertainty, Operations Research, vol.64, issue.1, 2016.
DOI : 10.1287/opre.2015.1462

C. Hans and . Joksch, The shortest route problem with constraints, Journal of Mathematical analysis and applications, vol.14, issue.2, pp.191-197, 1966.

H. Jula, M. Dessouky, A. Petros, and . Ioannou, Truck Route Planning in Nonstationary Stochastic Networks With Time Windows at Customer Locations, IEEE Transactions on Intelligent Transportation Systems, vol.7, issue.1, pp.51-62, 2006.
DOI : 10.1109/TITS.2006.869596

U. Junker, E. Stefan, N. Karisch, B. Kohl, and . Vaaben, Torsten Fahle, and Meinolf Sellmann. A framework for constraint programming based column generation, International Conference on Principles and Practice of Constraint Programming, pp.261-274, 1999.

D. Klabjan and K. Schwan, Airline crew pairing generation in parallel, 1999.

D. Klabjan, L. Ellis, . Johnson, L. George, E. Nemhauser et al., Airline Crew Scheduling with Time Windows and Plane-Count Constraints, Transportation Science, vol.36, issue.3, pp.337-348, 2002.
DOI : 10.1287/trsc.36.3.337.7831

N. Kohl, J. Desrosiers, B. Oli, . Madsen, M. Marius et al., 2-Path Cuts for the Vehicle Routing Problem with Time Windows, Transportation Science, vol.33, issue.1, pp.101-116, 1999.
DOI : 10.1287/trsc.33.1.101

D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques, 2009.

S. Kosuch and A. Lisser, Stochastic Shortest Path Problem with Delay Excess Penalty, Electronic Notes in Discrete Mathematics, vol.36, pp.511-518, 2010.
DOI : 10.1016/j.endm.2010.05.065

J. Kuntzmann, Théorie des réseaux, 1972.

S. Kusuoka, On law invariant coherent risk measures, Advances in mathematical economics, pp.83-95, 2001.
DOI : 10.1007/978-4-431-67891-5_4

S. Lan, J. Clarke, and C. Barnhart, Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions, Transportation Science, vol.40, issue.1, pp.15-28, 2006.
DOI : 10.1287/trsc.1050.0134

J. Larsen, Parallelization of the vehicle routing problem with time windows, 1999.

S. Lavoie, M. Minoux, and E. Odier, A new approach for crew pairing problems by column generation with an application to air transportation, European Journal of Operational Research, vol.35, issue.1, pp.45-58, 1988.
DOI : 10.1016/0377-2217(88)90377-3

J. Daniel and . Lehmann, Algebraic structures for transitive closure, Theoretical Computer Science, vol.4, issue.1, pp.59-76, 1977.

D. Levine, Application of a hybrid genetic algorithm to airline crew scheduling, Computers & Operations Research, vol.23, issue.6, pp.547-558, 1996.
DOI : 10.1016/0305-0548(95)00060-7

X. Li, P. Tian, C. Stephen, and . Leung, Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm, International Journal of Production Economics, vol.125, issue.1, pp.137-145, 2010.
DOI : 10.1016/j.ijpe.2010.01.013

P. Stuart and . Lloyd, Least squares quantization in pcm Information Theory, IEEE Transactions on, vol.28, issue.2, pp.129-137, 1982.

R. Prescott and L. , Optimal paths in graphs with stochastic or multidimensional weights, Communications of the ACM, vol.26, issue.9, pp.670-676, 1983.

L. Lozano, L. Andrés, and . Medaglia, On an exact method for the constrained shortest path problem, Computers & Operations Research, vol.40, issue.1, pp.378-384, 2013.
DOI : 10.1016/j.cor.2012.07.008

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967.

S. Maher, G. Desaulniers, and F. Soumis, Recoverable robust single day aircraft maintenance routing problem, Computers & Operations Research, vol.51, pp.130-145, 2014.
DOI : 10.1016/j.cor.2014.03.007

L. Mazmanyan, D. Trietsch, and K. Baker, Stochastic traveling salesperson models with safety time, 2009.

A. Mercier and F. Soumis, An integrated aircraft routing, crew scheduling and flight retiming model, Computers & Operations Research, vol.34, issue.8, pp.2251-2265, 2007.
DOI : 10.1016/j.cor.2005.09.001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Mercier, J. Cordeau, and F. Soumis, A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem, Computers & Operations Research, vol.32, issue.6, pp.1451-1476, 2005.
DOI : 10.1016/j.cor.2003.11.013

E. Miller-hooks and H. Mahmassani, Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks, European Journal of Operational Research, vol.146, issue.1, pp.67-82, 2003.
DOI : 10.1016/S0377-2217(02)00231-X

D. Elise, . Miller-hooks, S. Hani, and . Mahmassani, Least possible time paths in stochastic, time-varying networks, Computers & operations research, vol.25, issue.12, pp.1107-1125, 1998.

E. D. Miller-hooks, Optimal routing in time-varying, stochastic networks: algorithms and implementations. The University of Texas at Austin, 1997.

B. Pitu and . Mirchandani, Shortest distance and reliability of probabilistic networks, Computers & Operations Research, vol.3, issue.4, pp.347-355, 1976.

M. Mohri, Semiring frameworks and algorithms for shortest-distance problems, Journal of Automata, Languages and Combinatorics, vol.7, issue.3, pp.321-350, 2002.

A. Müller and D. Stoyan, Comparison methods for stochastic models and risks, 2002.

I. Murthy and S. Sarkar, A Relaxation-Based Pruning Technique for a Class of Stochastic Shortest Path Problems, Transportation Science, vol.30, issue.3, pp.220-236, 1996.
DOI : 10.1287/trsc.30.3.220

I. Murthy and S. Sarkar, Stochastic Shortest Path Problems with Piecewise-Linear Concave Utility Functions, Management Science, vol.44, issue.11-part-2, pp.125-136, 1998.
DOI : 10.1287/mnsc.44.11.S125

?. Ibrahim-muter, ¸. Birbil, K. Bülbül, and G. Güvenç¸sahin, Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, vol.40, issue.3, pp.815-830, 2013.
DOI : 10.1016/j.cor.2010.11.005

Y. Nie and Y. Fan, Arriving-on-Time Problem: Discrete Algorithm That Ensures Convergence, Transportation Research Record: Journal of the Transportation Research Board, vol.1964, issue.1, pp.193-200, 2006.
DOI : 10.3141/1964-21

Y. Marco, N. , and X. Wu, Shortest path problem considering on-time arrival probability, Transportation Research Part B: Methodological, vol.43, issue.6, pp.597-613, 2009.

Y. Marco-nie, X. Wu, and T. Mello, Optimal path problems with second-order stochastic dominance constraints. Networks and Spatial Economics, pp.561-587, 2012.

E. Nikolova, High-Performance Heuristics for Optimization in Stochastic Traffic Engineering Problems, Large-Scale Scientific Computing, pp.352-360, 2010.
DOI : 10.1007/978-3-642-12535-5_41

E. Nikolova, A. Jonathan, M. Kelner, M. Brand, and . Mitzenmacher, Stochastic Shortest Paths Via Quasi-convex Maximization, Algorithms?ESA 2006, pp.552-563, 2006.
DOI : 10.1007/11841036_50

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Papadakos, Integrated airline scheduling, Computers & Operations Research, vol.36, issue.1, pp.176-195, 2009.
DOI : 10.1016/j.cor.2007.08.002

A. Parmentier, Algorithms for non-linear and stochastic resource constrained shortest paths. arXiv preprint, 2015.

A. Parmentier and F. Meunier, Stochastic shortest paths and risk measures. arXiv preprint, 2014.

G. Ch, P. , and A. Pichler, Multistage Stochastic Optimization, 2014.

A. Pichler, Distance of probability measures and respective continuity properties of acceptability functionals, 2010.

A. Pichler, Evaluations of Risk Measures for Different Probability Measures, SIAM Journal on Optimization, vol.23, issue.1, pp.530-551, 2013.
DOI : 10.1137/110857088

B. Warren, Z. Powell, and . Chen, A generalized threshold algorithm for the shortest path problem with time windows, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.40, pp.303-318, 1998.

G. Righini and M. Salani, Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints, Discrete Optimization, vol.3, issue.3, pp.255-273, 2006.
DOI : 10.1016/j.disopt.2006.05.007

G. Righini and M. Salani, Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming, Computers & Operations Research, vol.36, issue.4, pp.1191-1203, 2009.
DOI : 10.1016/j.cor.2008.01.003

R. Tyrrell, R. , and S. Uryasev, Optimization of conditional value-at-risk, Journal of risk, vol.2, pp.21-42, 2000.

M. Jay, . Rosenberger, L. Ellis, . Johnson, L. George et al., A robust fleet-assignment model with hub isolation and short cycles, Transportation Science, vol.38, issue.3, pp.357-368, 2004.

L. Rousseau, M. Gendreau, G. Pesant, and F. Focacci, Solving VRPTWs with Constraint Programming Based Column Generation, Annals of Operations Research, vol.130, issue.1-4, pp.199-216, 2004.
DOI : 10.1023/B:ANOR.0000032576.73681.29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Roy, Transitivité et connexité, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol.249, issue.2, pp.216-218, 1959.

R. Russell and T. Urban, Vehicle routing with soft time windows and Erlang travel times, Journal of the Operational Research Society, vol.31, issue.3???4, pp.1220-1228, 2008.
DOI : 10.1287/trsc.31.2.170

G. Sabran, S. Samaranayake, and . Bayen, Precomputation techniques for the stochastic on-time arrival problem, In ALENEX, pp.138-146, 2014.
DOI : 10.1137/1.9781611973198.13

M. Saddoune, G. Desaulniers, I. Elhallaoui, and F. Soumis, Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation, Transportation Science, vol.46, issue.1, pp.39-55, 2012.
DOI : 10.1287/trsc.1110.0379

S. Samaranayake, S. Blandin, and A. Bayen, A tractable class of algorithms for reliable routing in stochastic networks, Transportation Research Part C: Emerging Technologies, vol.20, issue.1, pp.199-217, 2012.
DOI : 10.1016/j.trc.2011.05.009

L. Santos, J. Coutinho-rodrigues, R. John, and . Current, An improved solution algorithm for the constrained shortest path problem, Transportation Research Part B: Methodological, vol.41, issue.7, pp.756-771, 2007.
DOI : 10.1016/j.trb.2006.12.001

A. Schaefer, E. Johnson, A. Kleywegt, and G. Nemhauser, Airline Crew Scheduling Under Uncertainty, Transportation Science, vol.39, issue.3, pp.340-348, 2005.
DOI : 10.1287/trsc.1040.0091

B. Schroeder, Ordered Sets: An Introduction, 2003.
DOI : 10.1007/978-3-319-29788-0

M. Shaked and J. Shanthikumar, Stochastic orders, 2007.
DOI : 10.1007/978-0-387-34675-5

URL : https://hal.archives-ouvertes.fr/hal-00539122

S. Shao, D. Hanif, M. Sherali, and . Haouari, A Novel Model and Decomposition Approach for the Integrated Airline Fleet Assignment, Aircraft Routing, and Crew Pairing Problem, Transportation Science, vol.51, issue.1, 2015.
DOI : 10.1287/trsc.2015.0623

S. Shebalov and D. Klabjan, Robust Airline Crew Pairing: Move-up Crews, Transportation Science, vol.40, issue.3, pp.300-312, 2006.
DOI : 10.1287/trsc.1050.0131

A. Raj, R. Sivakumar, and . Batta, The variance-constrained shortest path problem, Transportation Science, vol.28, issue.4, pp.309-316, 1994.

I. Sungur, F. Ordónez, and M. Dessouky, A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty, IIE Transactions, vol.40, issue.5, pp.509-523, 2008.
DOI : 10.1287/trsc.1060.0167

T. Kalyan and . Talluri, The four-day aircraft maintenance routing problem, Transportation Science, vol.32, issue.1, pp.43-53, 1998.

D. Ta¸sta¸s, . Gendreau, T. Dellaert, A. D. Van-woensel, and . Kok, Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach, European Journal of Operational Research, vol.236, issue.3, pp.789-799, 2014.
DOI : 10.1016/j.ejor.2013.05.024

S. Erlendur and . Thorsteinsson, Branch-and-check: A hybrid framework integrating mixed integer programming and constraint logic programming, International Conference on Principles and Practice of Constraint Programming, pp.16-30, 2001.

H. Pamela, C. Vance, . Barnhart, L. Ellis, . Johnson et al., Airline crew scheduling: A new formulation and decomposition algorithm, Operations Research, vol.45, issue.2, pp.188-200, 1997.

S. Shaun, . Wang, R. Virginia, . Young, H. Harry et al., Axiomatic characterization of insurance prices, Insurance: Mathematics and economics, vol.21, issue.2, pp.173-183, 1997.

S. Warshall, A Theorem on Boolean Matrices, Journal of the ACM, vol.9, issue.1, pp.11-12, 1962.
DOI : 10.1145/321105.321107

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Weide, D. Ryan, and M. Ehrgott, An iterative approach to robust and integrated aircraft routing and crew scheduling, Computers & Operations Research, vol.37, issue.5, pp.833-844, 2010.
DOI : 10.1016/j.cor.2009.03.024

C. Wu, Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms, Networks and Spatial Economics, vol.30, issue.1, pp.235-251, 2006.
DOI : 10.1007/s11067-006-9282-y

C. Yan and J. Kung, Robust aircraft routing. Available at SSRN 2518028, 2014.
DOI : 10.2139/ssrn.2518028

J. Yen and J. Birge, A Stochastic Programming Approach to the Airline Crew Scheduling Problem, Transportation Science, vol.40, issue.1, pp.3-14, 2006.
DOI : 10.1287/trsc.1050.0138

M. Yoeli, A Note on a Generalization of Boolean Matrix Theory, The American Mathematical Monthly, vol.68, issue.6, pp.552-557, 1961.
DOI : 10.2307/2311149

G. Yu and J. Yang, On the Robust Shortest Path Problem, Computers & Operations Research, vol.25, issue.6, pp.457-468, 1998.
DOI : 10.1016/S0305-0548(97)00085-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Zeghal and M. Minoux, Modeling and solving a Crew Assignment Problem in air transportation, European Journal of Operational Research, vol.175, issue.1, pp.187-209, 2006.
DOI : 10.1016/j.ejor.2004.11.028

URL : https://hal.archives-ouvertes.fr/hal-01146497

P. Stochastic-optimization, 26 stochastic order, p.80