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Résumé

Dans cette thèse, on considère la modélisation de la loi jointe des statistiques d’ordre, c.à.d.
des vecteurs aléatoires avec des composantes ordonnées presque sûrement. La première partie est
dédiée à la modélisation probabiliste des statistiques d’ordre d’entropie maximale à marginales
fixées. Les marginales étant fixées, la caractérisation de la loi jointe revient à considérer la
copule associée. Dans le Chapitre 2, on présente un résultat auxiliaire sur les copules d’entropie
maximale à diagonale fixée. Une condition nécessaire et suffisante est donnée pour l’existence
d’une telle copule, ainsi qu’une formule explicite de sa densité et de son entropie. La solution
du problème de maximisation d’entropie pour les statistiques d’ordre à marginales fixées est
présentée dans le Chapitre 3. On donne des formules explicites pour sa copule et sa densité jointe.
On applique le modèle obtenu pour modéliser des paramètres physiques dans le Chapitre 4.

Dans la deuxième partie de la thèse, on étudie le problème d’estimation non-paramétrique
des densités d’entropie maximale des statistiques d’ordre en distance de Kullback-Leibler. Le
chapitre 5 décrit une méthode d’agrégation pour des densités de probabilité et des densités
spectrales, basée sur une combinaison convexe de ses logarithmes, et montre des bornes optimales
non-asymptotiques en déviation. Dans le Chapitre 6, on propose une méthode adaptative issue
d’un modèle exponentiel log-additif pour estimer les densités considérées, et on démontre qu’elle
atteint les vitesses connues minimax. L’application de cette méthode pour estimer des dimensions
des défauts est présentée dans le Chapitre 7.

Mots clés

agrégation, copule, densité de probabilité, densité spectrale, divergence de Kullback-Leibler,
entropie maximale, estimation adaptative, estimation non-paramétrique, modèle exponentiel
log-additif, statistiques d’ordre





Abstract

Modelling the dependence of order statistics and nonparametric
estimation

In this thesis we consider the modelling of the joint distribution of order statistics, i.e. random
vectors with almost surely ordered components. The first part is dedicated to the probabilistic
modelling of order statistics of maximal entropy with marginal constraints. Given the marginal
constraints, the characterization of the joint distribution can be given by the associated cop-
ula. Chapter 2 presents an auxiliary result giving the maximum entropy copula with a fixed
diagonal section. We give a necessary and sufficient condition for its existence, and derive an
explicit formula for its density and entropy. Chapter 3 provides the solution for the maximum
entropy problem for order statistics with marginal constraints by identifying the copula of the
maximum entropy distribution. We give explicit formulas for the copula and the joint density.
An application for modelling physical parameters is given in Chapter 4.

In the second part of the thesis, we consider the problem of nonparametric estimation of max-
imum entropy densities of order statistics in Kullback-Leibler distance. Chapter 5 presents an
aggregation method for probability density and spectral density estimation, based on the convex
combination of the logarithms of these functions, and gives non-asymptotic bounds on the ag-
gregation rate. In Chapter 6, we propose an adaptive estimation method based on a log-additive
exponential model to estimate maximum entropy densities of order statistics which achieves
the known minimax convergence rates. The method is applied to estimating flaw dimensions in
Chapter 7.

Keywords

adaptive estimation, aggregation, copula, Kullback-Leibler divergence, log-additive exponen-
tial model, maximum entropy, nonparametric estimation, order statistics, probability density,
spectral density





Remerciements

Tout d’abord, je tiens à remercier mes directeurs de thèse Cristina Butucea, Jean-François
Delmas et Anne Dutfoy. Ce trio d’encadrants complémentaires m’a permis de travailler dans
les meilleures conditions scientifiques et techniques. Je remercie Cristina pour l’introduction au
monde des statistiques non-paramétriques, et pour ses contributions indispensables surtout à la
deuxième partie de la thèse. Merci à Anne pour l’encadrement industriel au sein d’EDF. Elle a
fait tous pour que cette thèse soit une réussite académique ainsi qu’une véritable contribution
à la recherche appliquée menée chez EDF. Enfin je remercie Jean-François pour son soutien
continu tout au long de ces trois ans. Son aptitude à comprendre et résoudre des problèmes
complexes, sa rigueur pour la rédaction et sa capacité d’expliquer clairement les choses me ser-
vait d’exemple à suivre, et j’en tirais énormément d’expérience. Je les remercie également pour
leur confiance de m’avoir accepté en thèse sans connaissances préalables, et leurs disponibilités
pour des réunions fréquentes qui ont facilité l’avancement des travaux.

Je remercie Jean-David Fermanian et Johan Segers pour avoir accepté d’être rapporteurs de
ma thèse. Leurs remarques m’ont permis d’améliorer le manuscrit. C’est le cours de Jean-David
sur les copules à l’ENSAE qui a attiré mon attention sur ce domaine de la théorie de probabilités.
Je suis très heureux d’avoir Agnès Sulem dans mon jury, qui m’a chaleureusement recommandé
à mes futurs directeurs, ce qui a rendu cette thèse possible. Je remercie également Alexandre
Tsybakov de faire partie du jury en tant qu’examinateur, ses articles étaient une grande source
d’inspiration pour mes travaux statistiques.

Je suis très reconnaissant à Régis Lebrun pour les nombreux échanges sur la première partie
de la thèse qui concerne les copules de statistiques d’ordres, et son aide avec le logiciel Open-
TURNS. Sans lui, je n’aurais pas des résultats numériques dans ce manuscrit.

Je remercie le département Management des Risques Industriels d’EDF Recherche et Déve-
loppement pour le financement de thèse. En plus du soutien financier, les formations proposées
et la possibilité de travailler avec les chercheurs expérimentés m’ont permis d’approfondir mes
connaissances en probabilités et statistiques appliquées dans un contexte d’ingénierie. Je tiens
à remercier en particulier la communauté APSPP, où j’avais l’occasion de présenter mes avan-
cements d’une manière régulière. Les retours donnés par les participants étaient très formateurs
et donnaient des idées intéressantes pour l’ensemble de la thèse. Je remercie également l’Asso-
ciation Nationale de la Recherche et de la Technologie pour sa contribution au financement sous
forme de la convention CIFRE.

Pour l’excellent encadrement académique, je présente mes remerciements à l’École Doctorale
MSTIC de l’Université Paris-Est, et plus précisément le laboratoire CERMICS où j’ai passé la
plupart de mon temps en tant que thésard. Je voudrais remercier en particulier Jean-Philippe
Chancelier et Régis Monneau pour des discussions sur des questions d’optimisation, et dans un
sens plus large tous mes collègues avec qui j’ai eu de la chance de travailler. Coté administration,
merci à Isabelle Simunic et Sylvie Cach pour avoir rendu ma vie plus facile.

J’aimerais également remercier tous les doctorants, stagiaires, jeunes embauchés de CER-
MICS et d’EDF pour les pauses café étendues caractérisées par des débats intéressants et plein



8

de bonne humeur. Les afterworks passés ensemble étaient toujours les points culminants de la
semaine. Je voudrais y rajouter tous les doctorants et chercheurs avec qui j’ai fait connaissance
lors des conférences de proba et stat, et également tous mes camarades du Master de Dauphine.
Je suis très heureux d’avoir pu rencontrer autant de gens brillants et sympathiques.

Les salutations ne seraient pas complètes sans mentionner mes amis de la résidence Bleuzen
à Vanves. Vous étiez ma famille en France, et c’est grâce à vous que je ne me suis jamais senti
seul dans ce pays. Les soirées passées ensemble, les sorties du week-end, les longues conversa-
tions resteront toujours de beaux souvenirs, et j’ai hâte de vous revoir aussi souvent que possible.

Enfin, j’adresse toute ma gratitude à mes parents et ma soeur. Sans eux, je n’aurais jamais
réussi à arriver jusqu’ici. Ils m’ont beaucoup aidé dans mon parcours. Leur soutien inconditionnel
m’a donné la force d’aller jusqu’au bout. Les mots ne sont pas suffisants pour exprimer tous mes
sentiments, donc je dis tout simplement : merci, merci et encore merci.



Résumé substantiel

Les travaux présentés dans cette thèse portent sur la modélisation probabiliste et l’inférence
statistique des vecteurs aléatoires, qui sont soumis à des contraintes déterministes. En particulier,
nous nous sommes intéressés à l’étude des statistiques d’ordre, c.à.d. des vecteurs aléatoires dont
les composantes sont ordonnées presque sûrement. Après une introduction générale, le manuscrit
consiste en quatre papiers publiés ou soumis à des journaux scientifiques à comité de lecture :

• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Maximum entropy copula with given
diagonal section. Journal of Multivariate Analysis, 137, 61-81, 2015. [33]
• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Maximum entropy distribution of
order statistics with given marginals. En révision à Bernoulli. [36]
• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Optimal exponential bounds for
aggregation of estimators for the Kullback-Leibler loss. Soumis. [38]
• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Fast adaptive estimation of log-
additive exponential models in Kullback-Leibler divergence. Soumis. [37]

et deux papiers qui présentent des cas d’application issus des travaux au sein du département
Management des Risques Industriels à EDF R&D, paraissant dans des actes des congres :

• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Modélisation de la dépendance sous
contrainte déterministe. Dans Proceedings of Congrès Lambda Mu 19 de Maîtrise des
Risques et Sûreté de Fonctionnement, 2014. [31]
• C. Butucea, J.-F. Delmas, A. Dutfoy and R. Fischer. Nonparametric estimation of dis-
tributions of order statistics with application to nuclear engineering. Dans Safety and
Reliability of Complex Engineered Systems : ESREL 2015, 2015. [34]

La première partie de la thèse est consacrée à l’étude des statistiques d’ordre dont les dis-
tributions marginales sont fixées. Étant données ces contraintes, la loi jointe des statistiques
d’ordre peut être caractérisée en précisant sa copule associée. Une copule est la fonction de ré-
partition jointe d’un vecteur aléatoire U = (U1, . . . , Ud) telle que Ui est distribuée uniformément
sur l’intervalle I = [0, 1] pour tous 1 ≤ i ≤ d. Le théorème de Sklar nous assure que la fonction
de répartition jointe FX d’un vecteur de statistiques d’ordre X = (X1, . . . , Xd) s’écrit comme la
composition d’une copule et les fonctions de répartition marginales Fi de Xi :

FX(x) = C(F1(x1), . . . , Fd(xd)) pour x = (x1, . . . , xd) ∈ Rd.

De plus, la copule figurant dans cette décomposition est unique si les (Fi, 1 ≤ i ≤ d) sont conti-
nues. Dans la suite, on considère que les marginales sont continues. Parmi les lois jointes compa-
tibles avec les contraintes, nous cherchons celle qui contient la moindre information supplémen-
taire par rapport aux contraintes. Soit h une densité de référence sur R et h⊗d(x) = ∏d

i=1 h(xi)
pour x = (x1, . . . , xd) ∈ Rd. On mesure la quantité d’information d’un vecteur aléatoire X avec
fonction de répartition FX par l’entropie de Shannon relative Hh(FX) définie comme :

Hh(FX) =

−
∫
fX log

(
fX/h

⊗d
)

si FX est absolument continue avec densité fX ,
−∞ sinon.

Notez que Hh(FX) ∈ [−∞, 0] est bien définie. Quand h = 1I , on écrit tout simplement H(FX)
au lieu de Hh(FX). On cherche à maximiser ce critère parmi les lois jointes admissibles. Par
Lemme 3.1, l’entropie relative d’un vecteur aléatoire X = (X1, . . . , Xd) se décompose comme
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la somme des entropies relatives marginales Hh(Fi), 1 ≤ i ≤ d et l’entropie H(C) d’un vecteur
aléatoire U dont la fonction de répartition est la copule C associée à X :

Hh(FX) =
d∑
i=1

Hh(Fi) +H(C).

Par conséquent, la maximisation de l’entropie pour des statistiques d’ordre à marginales fixées
est équivalente à la maximisation de l’entropie de la copule associée.

Dans le Chapitre 2, qui correspond à [33], nous considérons le problème de trouver la co-
pule d’entropie maximale avec une diagonale fixée. Ce problème est fondamentalement lié au
problème de copule d’entropie maximale pour des statistiques d’ordre à marginales fixées, que
l’on expliquera plus tard. La diagonale δ : I → I d’une copule C est la fonction définie comme
δ(t) = C(t, . . . , t). Si U = (U1, . . . , Ud) est un vecteur aléatoire avec fonction de répartition
jointe C, alors la diagonale est la fonction de répartition de max1≤i≤d Ui. La diagonale porte
des informations sur la dépendance des queues de la copule, et peut caractériser la fonction
génératrice d’une copule Archimédienne sous une certaine condition, c.f. [77]. La solution de ce
problème repose sur la théorie de maximisation d’entropie abstraite de [25].

On donne une condition nécessaire et suffisante sur la diagonale δ pour l’existence d’une
copule d’entropie maximale. Notamment, une telle copule existe si et seulement si :

J (δ) =
∫
I
|log(t− δ(t))| dt < +∞. (1)

Cette condition est plus forte que celle de [102] pour l’existence d’une copule absolument continue
avec diagonale δ, qui requiert que l’ensemble Σδ = {t ∈ I, δ(t) = t} soit de mesure nulle par
rapport à la mesure de Lebesgue. Cette dernière condition est bien assurée par (1). Quand (1)
est vérifiée, on donne la formule explicite de la densité de la copule d’entropie maximale ainsi
que la valeur exacte de son entropie.

D’abord, on considère le cas Σδ = {0, 1}, c.à.d. δ(t) > t pour tous t ∈ (0, 1). On définit les
fonctions a et b comme, pour t ∈ I :

a(t) = d− δ′(t)
d

h(t)−1+1/d eF (t) et b(t) = δ′(t)
d

h(t)−1+1/d e−(d−1)F (t),

avec h et F données par :

h(t) = t− δ(t), F (t) = d− 1
d

∫ t

1
2

1
h(s) ds.

Ces fonctions nous permettent de définir la copule C̄δ, qui a pour densité c̄δ donnée par :

c̄δ(x) = b(max(x))
∏

xi 6=max(x)
a(xi) pour x ∈ Id, (2)

avec max(x) = max1≤i≤d xi.
Dans le cas général, la continuité de la diagonale δ nous assure que I \Σδ = ∪j∈J(αj , βj) avec

J au plus dénombrable. Pour chaque j ∈ J , on écrit ∆j = βj − αj , et on définit les fonctions δj
comme :

δj(t) = δ(αj + t∆j)− αj
∆j

pour t ∈ I.

On peut vérifier que δj est également la diagonale d’une copule qui satisfait Σδj = {0, 1}. Soit
c̄δj définie par (2) avec δ remplacée par δj . Enfin, soit Cδ la copule dont la densité cδ est donnée
par :

cδ(x) =
∑
j∈J

1
∆j

c̄δj

(
x− αj1

∆j

)
1(αj ,βj)d(x) pour x ∈ Id, (3)

avec 1 = (1, . . . , 1) ∈ Rd. Quand Σδ = {0, 1}, les fonctions cδ et c̄δ coïncident. Le résultat
principal du Chapitre 2 stipule que quand (1) est vérifiée, la copule Cδ est celle d’entropie
maximale avec diagonale δ. Notons par Cδ l’ensemble de tous les copules avec diagonale δ.
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Théorème. Soit δ la diagonale d’une copule.
a) Si J (δ) = +∞, alors maxC∈Cδ H(C) = −∞.
b) Si J (δ) < +∞, alors maxC∈Cδ H(C) > −∞, et Cδ ∈ Cδ, dont la densité cδ est donnée

par (3), est l’unique copule telle que : H (Cδ) = maxC∈Cδ H(C). De plus, on a :

H(Cδ) = −(d− 1)J (δ) + G(δ),

où G(δ) ∈ R est donnée par :

G(δ) = d log(d) + (d− 1) +H(δ)−
∫
I
(d− δ′) log(d− δ′).

Nous illustrons la différence entre les copules issues des familles classiques et les copules
d’entropie maximale avec la même diagonale à la fin de ce chapitre.

Dans le Chapitre 3, qui correspond à [36], on résout le problème initial de trouver la loi jointe
d’entropie maximale pour les statistiques d’ordre à marginales F = (Fi, 1 ≤ i ≤ d) fixées. Nous
avons déjà constaté que ce problème est équivalent à trouver la copule d’entropie maximale
compatible avec les contraintes. D’après [119] les copules compatibles sont exactement celles
dont le support est inclus dans un sous-ensemble de Id qui dépend de F. Vu qu’une contrainte
sur le support est difficile à traiter avec la formalisme de [25], nous établissons une bijection
entre les copules des statistiques d’ordre avec marginales F et un nouvel ensemble des copules
contraintes. Ce dernier ensemble est celui des copules symétriques avec une multidiagonale fixée.
La multidiagonale δδδ = (δ(1), . . . , δ(d)) d’une copule C est la généralisation de la diagonale. C’est
le vecteur des fonctions de répartition δ(i) de U(i) pour 1 ≤ i ≤ d, où U(i) est la i-ème plus grand
composante du vecteur aléatoire U dont la fonction de répartition est la copule C. Autrement
dit, (U(1), . . . , U(d)) est le vecteur des statistiques d’ordre associée à U . Remarquons que δ(d)
correspond à la diagonale δ définie précédemment. La multidiagonale fixée des copules dans
le nouvel ensemble est une fonction des marginales F. La bijection préserve l’entropie à une
constante additive près. Donc il faut que l’on trouve la copule symétrique d’entropie maximale
avec une multidiagonale fixée. Ce problème peut être résolu d’une manière similaire au problème
des copules d’entropie maximales à diagonale fixée. En fait, pour d = 2, ils sont équivalents.

De manière similaire à (1), la condition d’existence d’une copule d’entropie maximale avec
multidiagonale δδδ s’écrit comme :

J(δδδ) =
d∑
i=2

∫
I
δ(i)(dt)

∣∣∣log
(
δ(i−1)(t)− δ(i)(t)

)∣∣∣ < +∞. (4)

Pour donner la formule exacte de la solution, nous introduisons quelques notations. Notons :

Ψδδδ
i = {t ∈ I, δ(i−1)(t) > δi(t)} pour 2 ≤ i ≤ d.

L’ensemble complémentaire (Ψδδδ
i )c sur I est la collection des points où δ(i−1) = δ(i). On définit

l’ensemble Σδδδ ⊂ I comme Σδδδ = ⋃d
i=2 δ(i)

(
(Ψδδδ

i )c
)
. Selon [103], il existe une copule absolument

continue avec multidiagonale δδδ si Σδδδ est de mesure nulle. Celle-ci est bien assurée lorsque (4)
est vérifiée. Comme les ensembles Ψδδδ

i sont ouverts, il existe un ensemble au plus dénombrable
d’intervalles disjointes {(g(j)

i , d
(j)
i ), j ∈ Ji} tel que Ψδδδ

i = ⋃
j∈Ji(g

(j)
i , d

(j)
i ) pour 2 ≤ i ≤ d. Soient

m
(j)
i = (g(j)

i + d
(j)
i )/2 les points milieux de ces intervalles. L’ensemble Lδδδ est défini par :

Lδδδ = {u = (u1, . . . , ud) ∈ Id; (u(i−1), u(i)) ⊂ Ψδδδ
i pour tout 2 ≤ i ≤ d}.

Considérons la copule Cδδδ avec densité jointe cδδδ donnée par, pour x = (x1, . . . , xd) ∈ Id :

cδδδ(x) = 1
d! 1Lδδδ(x)

d∏
i=1

ai(x(i)), (5)
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où x(i) est la i-ème plus grande composante de x, et les fonctions ai, 1 ≤ i ≤ d, sont données
par, pour t ∈ I :

ai(t) = K ′i(t) eKi+1(t)−Ki(t) 1Ψδδδi∩Ψδδδi+1
(t),

avec pour 1 ≤ i ≤ d, t ∈ (g(j)
i , d

(j)
i ) :

Ki(t) =
∫ t

m
(j)
i

δ′(i)(s)
δ(i−1)(s)− δ(i)(s)

ds

et les conventions Ψδδδ
1 = (0, d1) avec d1 = inf{t ∈ I; δ(1)(t) = 1}, m1 = 0, Ψδδδ

d+1 = (gd+1, 1) avec
gd+1 = sup{t ∈ I; δ(d)(t) = 0}, md+1 = (1 + gd+1)/2, δ(0) = 1 et Kd+1 = 0.

La solution du problème est résumée dans le théorème suivant. Notons par Cδδδ l’ensemble des
copules de multidiagonale δδδ.

Théorème. Soit δδδ la multidiagonale d’une copule.
(a) Si J(δδδ) = +∞, alors maxC∈CδδδH(C) = −∞.
(b) Si J(δδδ) < +∞, alors maxC∈Cδδδ H(C) > −∞ et Cδδδ dont la densité cδδδ est donnée par (5)

est l’unique copule telle que H (Cδδδ) = maxC∈CδδδH(C). De plus, on a :

H(Cδδδ) = −J(δδδ) + log(d!) + (d− 1) +
d∑
i=1

H(δ(i)).

Puisque la solution est une copule symétrique, en appliquant la bijection sur celle-ci nous
retrouvons la copule d’entropie maximale pour des statistiques d’ordre à marginales F fixées.
Par le théorème de Sklar, on peut identifier, quand elle existe, la loi jointe d’entropie maximale
pour des statistiques d’ordre à marginales F fixées. Une telle distribution existe si et seulement
si Hh(Fi) > −∞ avec Xi distribuée selon Fi pour tous 1 ≤ i ≤ d, et si on a en plus :

J(F) =
d∑
i=2

∫
R
Fi(dt) |log (Fi−1(t)− Fi(t))| < +∞.

Dans ce cas, la densité fF de la distribution maximisant l’entropie prend la forme, pour x =
(x1, . . . , xd) ∈ Rd :

fF(x) = f1(x1)
d∏
i=2

fi(xi)
Fi−1 (xi)− Fi(xi)

exp
(
−
∫ xi

xi−1

fi(s)
Fi−1(s)− Fi(s)

ds

)
1LF(x), (6)

où fi la densité correspondant à Fi et LF ⊂ Rd est l’ensemble des vecteurs ordonnés (x1, . . . , xd),
tels que Fi−1(t) > Fi(t) pour tous t ∈ (xi−1, xi) et 2 ≤ i ≤ d. Le résultat principal de cette partie
de la thèse est le théorème suivant. Notons par LOSd (F) l’ensemble des fonctions de répartition
des statistiques d’ordre avec marginales F.

Théorème. Soit F = (Fi, 1 ≤ i ≤ d) un vecteur de fonctions de répartition tel que Fi−1 ≥ Fi
pour tous 2 ≤ i ≤ d et h une densité de référence sur R.

(a) S’il existe 1 ≤ i ≤ d tel que Hh(Fi) = −∞, ou si J(F) = +∞, alors maxF∈LOS
d

(F)Hh(F ) =
−∞.

(b) Si Hh(Fi) > −∞ pour tous 1 ≤ i ≤ d, et J(F) < +∞, alors maxF∈LOS
d

(F)Hh(F ) > −∞,
et la fonction de répartition jointe FF avec densité jointe fF définie dans (6) est la
fonction de répartition unique dans LOSd (F) telle que Hh(FF) = maxF∈LOS

d
(F)Hh(F ). De

plus, on a :

Hh(FF) = d− 1 +
d∑
i=1

Hh(Fi)− J(F).
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Nous remarquons que la densité fF a une forme produit sur LF, c.à.d. que l’on peut l’écrire,
pour x = (x1, . . . , xd) ∈ Rd :

fF(x) =
d∏
i=1

pi(xi)1LF(x), (7)

avec des fonctions non-négatives (pi, 1 ≤ i ≤ d).

Le Chapitre 4, qui a donné lieu à la présentation [31], présente une application de la loi jointe
d’entropie maximale des statistiques d’ordre avec des marginales fixées pour modéliser des pa-
ramètres d’entrée pour un code de calcul. Ce code simule une procédure de soudage, basé sur
une méthode d’éléments finis pour un modèle thermomécanique. Il évalue les caractéristiques
des fissures résiduelles qui peuvent apparaître dans le matériel pendant le soudage, ayant un
impact sévère sur la durée de vie du composant soudé. Le but de cette simulation est de réa-
liser des études d’analyse de sensibilité sur les valeurs des paramètres d’entrée afin d’identifier
ceux qui ont le plus d’impact sur la sortie du code. Les paramètres d’entrée correspondent à
des caractéristiques physiques du matériel comme le module de Young, la limite d’élasticité,
etc. Ces paramètres sont des fonctions monotones de la température, évalués sur une plage de
température couvrant une large gamme. Alors que les valeurs des paramètres pour les basses
températures sont relativement bien connues, les données sont rares pour des températures éle-
vées, ce qui conduit à des incertitudes que l’on doit prendre en compte.

Dans ce chapitre, nous proposons d’utiliser la loi d’entropie maximale des statistiques d’ordre
avec des marginales fixées pour remplacer la méthode actuelle qui consiste à imposer la valeur
moyenne à chaque température et puis à ajouter une fonction d’erreur multipliée par un bruit
aléatoire centré. Cette dernière approche présente plusieurs inconvénients : elle implique une
hypothèse assez forte sur la forme de la courbe des paramètres, et elle peut conduire à des profils
de paramètres non-monotones. Enfin, elle ne donne pas assez de flexibilité pour la modélisation
des marginales individuelles. La modélisation que l’on propose résout ces problèmes : elle permet
de choisir les distributions des marginales (lorsqu’elles sont stochastiquement ordonnées), elle
respecte la monotonie, et des formules simples sont disponibles pour générer des réalisations de
la loi obtenue. Le cas avec des marginales uniformes est discuté en détail.

Dans la deuxième partie de la thèse, on étudie le problème d’estimation non-paramétrique
des densités d’entropie maximales des statistiques d’ordre obtenues dans le Chapitre 3. Selon
l’équation (7), ces densités ont une forme produit sur un sous-ensemble du simplexe S = {x =
(x1, . . . , xd) ∈ Rd, x1 ≤ . . . ,≤ xd}. Cette structure spéciale suggère qu’une méthode conçue
spécifiquement pour estimer ces densités jointes pourrait atteindre une vitesse de convergence
univariée, évitant le fléau de la dimension qui impacte fortement la performance des méthodes
d’estimation usuelles. Dans le cadre non-paramétrique, on suppose que la densité jointe appar-
tient à un ensemble large de fonctions avec certaines propriétés de régularité, indexées par un
paramètre r. Nous nous sommes particulièrement intéressés à des méthodes adaptatives, c.à.d.
des méthodes qui n’utilisent pas de connaissances sur la régularité de la densité estimée, mais
réalise toutefois la vitesse de convergence optimale pour des valeurs multiples du paramètre r.
Tout au long de cette partie, on mesure la qualité de l’estimateur f̂n basé sur un échantillon
Xn = (X1, . . . , Xn) par la divergence de Kullback-Leibler, qui est une semi-distance entre des
fonctions non-négatives f et g, donnée par :

D (f‖g) =
∫
f log

(
f

g

)
−
∫
f +

∫
g.

Le chapitre 5, qui correspond à [38], présente une méthode d’agrégation convexe sur les
logarithmes des estimateurs pour le problème de sélection de modèle en déviation. Cette mé-
thode permet de créer un estimateur adaptatif de la densité d’entropie maximale des statistiques
d’ordre. Considérons un modèle probabiliste P = {Pf ; f ∈ F}, où f est un paramètre de dimen-
sion infini qui caractérise la loi Pf . On note par Pf la probabilité par rapport à la distribution
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Pf . Supposons que l’on possède un échantillon Xn = (X1, . . . , Xn) du modèle et des estimateurs
(fk, 1 ≤ k ≤ N) indépendants de Xn. Le but est de proposer un estimateur agrégé f̂n de f qui
vérifie, pour tous x > 0 :

Pf
(
D
(
f‖f̂n

)
> min

1≤k≤N
D (f‖fk) +Rn,N,x

)
≤ e−x,

avec un terme résiduel Rn,N,x le plus petit possible. On considère la classe des fonctions dont
les logarithmes sont bornés par rapport à une mesure de référence h, i.e. G = {f : Rd →
R+, ‖ log(f/h)‖∞ < +∞}.

D’abord, on étudie le problème d’estimation de densité de probabilité, où Xn est un échan-
tillon i.i.d. de la densité f . Quand f et (fk, 1 ≤ k ≤ N) appartiennent à G, on peut les écrire
comme :

f = et−ψ h et fk = etk−ψk h, (8)

où t et (tk, 1 ≤ k ≤ N) sont des fonctions telles que
∫
th = 0,

∫
tkh = 0, et ψ, ψk sont des

constantes de normalisation. L’estimateur agrégé f̂n sera choisi dans l’ensemble {fDλ , λ ∈ Λ+}
dont les éléments sont donnés par :

fDλ = etλ−ψλ h, avec tλ =
N∑
k=1

λktk et ψλ = log
(∫

etλ h
)
, (9)

avec :
Λ+ = {λ = (λk, 1 ≤ k ≤ N) ∈ RN , λk ≥ 0 et

∑
1≤k≤N

λk = 1}. (10)

Les poids λ d’agrégation sont déterminés à l’aide de l’échantillon Xn. On pose f̂n = fD
λ̂D∗

, où
λ̂D∗ ∈ Λ+ maximise un critère de maximum de vraisemblance pénalisé HD

n (λ) donné par :

HD
n (λ) = 1

n

n∑
j=1

tλ(Xj)− ψλ −
1
2 penD(λ), (11)

avec la pénalité :

penD(λ) =
N∑
k=1

λkD
(
fDλ ‖fk

)
=

N∑
k=1

λkψk − ψλ.

Le théorème suivant démontre que si les densités jointes appartiennent à FD(L) = {f ∈
G; ‖ t‖∞ ≤ L} pour L > 0, le terme résiduel Rn,N,x pour l’estimateur fD

λ̂D∗
est de l’ordre de

(log(N) + x)/n.

Théorème. Soient L,K > 0. Soient f ∈ FD(L) et (fk, 1 ≤ k ≤ N) des éléments de FD(K) tels
que (tk, 1 ≤ k ≤ N) sont linéairement indépendants. Soient Xn = (X1, . . . , Xn) un échantillon
i.i.d. de densité f . Soit fD

λ̂D∗
définie par (9) avec λ̂D∗ = argmax λ∈Λ+HD

n (λ). Alors pour tout
x > 0, on a :

Pf
(
D
(
f‖fD

λ̂D∗

)
− min

1≤k≤N
D (f‖fk) >

β(log(N) + x)
n

)
≤ e−x,

avec β = 2 exp(6K + 2L) + 4K/3.

Le théorème suivant assure que le terme résiduel Rn,N,x = (log(N)+x)/n est en fait optimal.

Théorème. Soient N ≥ 2, L > 0. Alors il existe N densités jointes (fk, 1 ≤ k ≤ N), avec
fk ∈ FD(L) telles que pour tous n ≥ 1, x ∈ R+ qui satisfont :

log(N) + x

n
< 3

(
1− e−L

)2
,
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on a :
inf
f̂n

sup
f∈FD(L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x,

avec l’infimum pris sur tous les estimateurs f̂n basés sur l’échantillon Xn = (X1, . . . , Xn), et
β′ = 2−17/2/3.

Nous considérons le même problème pour l’estimation de densité spectrale également. Dans
ce cas là, l’échantillon Xn correspond à n observations consécutives d’un processus Gaussien
stationnaire (Xk, k ∈ Z) de densité spectrale f . Dans la définition de la classe G, on choisit
h = 1/(2π)1[−π,π] comme densité de référence. Comme la densité spectrale est une fonction
non-négative sur [−π, π], non nécessairement d’intégrale 1, on écrit :

f = 1
2π eg 1[−π,π] et fk = 1

2π egk 1[−π,π].

L’estimateur agrégé f̂n est choisi dans l’ensemble {fSλ , λ ∈ Λ+} basé sur des combinaisons
convexes des fonctions (gk, 1 ≤ k ≤ N) :

fSλ = 1
2π egλ 1[−π,π] avec gλ =

N∑
k=1

λkgk. (12)

On note l’intégrale de fSλ par mλ. Les poids λ̂S∗ ∈ Λ+ d’agrégation maximisent le critère λ 7→
HS
n (λ) donné par :

HS
n (λ) =

∫
gλIn −mλ −

1
2 pens(λ),

avec la pénalité penS(λ) = ∑N
k=1 λkD

(
fSλ ‖fk

)
et In définie par, pour t ∈ [−π, π] :

In(t) = γ̂0
2π + 1

π

n−1∑
j=1

γ̂j cos(jt) avec γ̂j = 1
n

n−j∑
i=1

XiXi+j ,

où (γ̂j , 0 ≤ j ≤ n − 1) sont les estimateurs empiriques des corrélations (γj , 1 ≤ j ≤ n − 1).
Remarquons que In est un estimateur non-paramétrique biaisé de la densité spectrale. Pour
pouvoir établir un terme résiduel optimal, nous avons besoin d’une certaine régularité pour
les fonctions f et (fk, 1 ≤ k ≤ N). Pour une fonction périodique quelconque ` ∈ L2([−π, π]),
considérons son développement sur la base de Fourier : `(x) = ∑

k∈Z ak eikx p.p. avec ak =∫ π
−π e−ikx `(x) dx. La norme Sobolev fractionnaire ‖`‖2,r, r > 0 est définie comme :

‖`‖22,r = ‖`‖2L2(h) +{`}22,r avec {`}22,r =
∑
k∈Z
|k|2r|ak|2.

On prend l’ensemble des fonctions paires, non-négatives dont la norme Sobolev fractionnaire est
bornée pour r > 1/2 :

FSr (L) = {f ∈ G : g = log(2πf) vérifie ‖g‖2,r ≤ L/Cr et g pair},

où C2
r = ∑

k∈Z |k|
−2r est une constante qui dépend de r. Par l’inégalité de Cauchy-Schwarz, on

a également que ‖g‖∞ ≤ L, et donc f ∈ G. De plus, il existe une constante C(r, L) telle que
pour toutes f ∈ FSr (L), on a ‖2πf ‖2,r ≤ C(r, L), c.f. Lemme 5.9. Le théorème suivant assure
que pour des densités spectrales appartenant à FSr (L), le terme résiduel pour l’estimateur fS

λ̂S∗
est également (log(N) + x)/n.

Théorème. Soient r > 1/2, K,L > 0. Soient f ∈ FSr (L) et (fk, 1 ≤ k ≤ N) des éléments de
FSr (K) tels que (gk, 1 ≤ k ≤ N) sont linéairement indépendants. Soit Xn = (X1, . . . , Xn) un
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échantillon d’un processus Gaussien stationnaire avec densité spectrale f . Soit fS
λ̂S∗

définie par
(12) avec λ̂S∗ = argmax λ∈Λ+HS

n (λ). Alors pour tout x > 0, on a :

Pf
(
D
(
f‖fS

λ̂S∗

)
− min

1≤k≤N
D (f‖fk) >

β(log(N) + x)
n

+ α

n

)
≤ e−x,

avec β = 4(K eL + e2L+3K) et α = 4KC(r, L)/Cr.

Le terme résiduel (log(N) + x)/n est aussi optimal selon le théorème suivant.

Théorème. Soient N ≥ 2, r > 1/2, L > 0. Il existe N densités spectrales (fk, 1 ≤ k ≤ N)
appartenant à FSr (L) telles que pour tous n ≥ 1, x ∈ R+ qui satisfont :

log(N) + x

n
<

C(r, L)
log(N)2r

on a :
inf
f̂n

sup
f∈FSr (L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x,

avec l’infimum pris sur tous les estimateurs f̂n basés sur l’échantillon Xn = (X1, . . . , Xn), et
β′ = 8−5/2/3.

Dans le Chapitre 6, qui correspond à [37], on propose une méthode adaptative pour estimer
des densités d’entropie maximales des statistiques d’ordre issues du Chapitre 3. On se restreint
sur le cas où le support des densités est limité à l’ensemble 4 = {x = (x1, . . . , xd) ∈ Rd, 0 ≤
x1 ≤ . . . ≤ xd ≤ 1}. D’après le Chapitre 3, la densité jointe f est sous forme produit, c.f. (7)
Supposons de plus que f s’écrit comme :

f(x) = exp
(

d∑
i=1

`i(xi)− a0

)
14(x) pour x ∈ Rd, (13)

avec des fonctions `i bornées, centrées, mesurables sur I, la constante de normalisation a0 et
4 = {x = (x1, . . . , xd) ∈ Rd, 0 ≤ x1 ≤ . . . ≤ xd ≤ 1}. En plus de l’exemple du Chapitre 3, ce
genre de densités jointes apparaissent comme les densités jointes des observations dans le modèle
de troncature aléatoire, formulé dans [170]. Ce modèle a de nombreuses applications couvrant
des disciplines variées comme l’astronomie [126], l’économie [98, 90], l’analyse de données de
survie [118, 106, 125], etc.

Nous proposons d’estimer la densité jointe f par une famille exponentielle régulière qui
prend en compte sa forme spéciale. L’idée consiste à approximer les fonctions `i en utilisant un
développement limité sur une base appropriée (ϕi,k, k ∈ N) pour tous 1 ≤ i ≤ d. Lorsque l’on
prend m = (m1, . . . ,md) fonctions de base pour un total de |m| = ∑d

i=1mi, le modèle est donné
par, pour θ = (θi,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi) ∈ R|m| et x = (x1, . . . , xd) ∈ Rd :

fθ(x) = exp
(

d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)− ψ(θ)
)

14(x),

avec ψ(θ) = log
(∫
4 exp

(∑d
i=1

∑mi
k=1 θi,kϕi,k(xi)

)
dx
)
la constante de normalisation. Ce modèle

exponentiel log-additif est une version multivariée du modèle présenté dans [12]. Les paramètres
du modèle sont estimés par θ̂m,n = (θ̂m,n,i,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi) ∈ R|m| qui maximise la
log-vraisemblance de l’échantillon Xn :

θ̂m,n = argmax
θ∈R|m|

d∑
i=1

mi∑
k=1

θi,kµ̂m,n,i,k − ψ(θ)
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où µ̂m,n,i,k = (1/n)∑n
j=1 ϕi,k(X

j
i ) dénotent les moyennes empiriques. De manière équivalente,

θ̂m,n satisfait les équations de maximum de vraisemblance :∫
4
ϕi,k(xi)fθ̂m,n(x) dx = µ̂m,n,i,k pour 1 ≤ i ≤ d, 1 ≤ k ≤ mi.

Le choix des fonctions de base (ϕi,k, 1 ≤ i ≤ d, k ∈ N) sur [0, 1] est primordial pour obtenir des
vitesses de convergence rapides. On propose une base polynomiale basée sur les polynômes de
Jacobi. En particulier, les fonctions (ϕi,k, k ∈ N) sont orthonormales par rapport à la mesure de
Lebesgue sur 4 pour chaque 1 ≤ i ≤ d. Néanmoins, le système complet n’est pas orthonormal,
puisqu’il existe des produits scalaires non-nuls quand i varie. Les propriétés de la base sont
considérées en détail dans la Section 6.6.

Le risque D
(
f‖f̂m,n

)
entre la vraie densité f et son estimateur f̂m,n = fθ̂m,n peut être

décomposé en un terme de biais D
(
f‖fθ∗m

)
et un terme de variance D

(
fθ∗m‖f̂m,n

)
, où fθ∗m est la

projection de la densité jointe f sur le modèle exponentiel avec m fonctions de base, qui vérifie :∫
4
ϕi,k(xi)fθ∗m(x) dx =

∫
4
ϕi,k(xi)f(x) dx pour tous 1 ≤ i ≤ d, 1 ≤ k ≤ mi.

Pour contrôler le terme de biais, on suppose que pour tout 1 ≤ i ≤ d la fonction `i appartient à
la classe de Sobolev W 2

ri(qi) avec ri ∈ N∗ définie comme :

W 2
ri(qi) =

{
h ∈ L2(qi);h(ri−1) absolument continue et h(ri) ∈ L2(qi)

}
,

où qi est la marginale de la mesure de Lebesgue sur 4 dans la i-ème direction, c.f. (6.4). Le
théorème suivant donne la vitesse de convergence du modèle exponentiel log-additif quand on
fait tendre les nombres de paramètres mi d’une façon appropriée. Nous rappelons que pour une
suite de réels positifs (an, n ∈ N), la suite de variables aléatoires (Yn, n ∈ N) est OP(an) si pour
tout ε > 0, il existe Cε > 0 tel que :

P (|Yn/an| > Cε) < ε pour tout n ∈ N.

Théorème. Soit f une densité jointe de la forme (13). Supposons que les fonctions `i appar-
tiennent à des classes de Sobolev W 2

ri(qi), ri ∈ N avec ri > d pour tout 1 ≤ i ≤ d. Soit Xn
un échantillon i.i.d. de f . On considère la suite (m(n) = (m1(n), . . . ,md(n)), n ∈ N∗) telle que
limn→∞mi(n) = +∞ pour tous 1 ≤ i ≤ d, et :

lim
n→∞

|m|2d
(

d∑
i=1

m−2ri
i

)
= 0 et lim

n→∞
|m|2d+1

n
= 0.

La divergence de Kullback-Leibler D
(
f‖f̂m,n

)
entre f et l’estimateur f̂m,n converge en probabilité

vers 0 avec la vitesse :

D
(
f‖f̂m,n

)
= OP

(
d∑
i=1

m−2ri
i + |m|

n

)
.

De plus, la convergence est uniforme sur la classe des fonctions Kr(L), donnée pour L > 0
par :

Kr(L) =
{
f(x) = exp

(
d∑
i=1

`i(xi)− a0

)
14(x) une densité ; ‖`i ‖∞ ≤ L, ‖(`i)(ri) ‖L2(qi) ≤ L

}
.

Autrement dit, nous avons la borne supérieure suivante pour la vitesse de convergence en pro-
babilité :

lim
C→∞

lim sup
n→∞

sup
f∈Kr(L)

P
(
D
(
f‖f̂m,n

)
≥
(

d∑
i=1

m−2ri
i + |m|

n

)
C

)
= 0.
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Pour chaque mi, 1 ≤ i ≤ d, le choix optimal de mi(n) = bn1/(2ri+1)c rend le biais et la va-
riance égaux, qui donne alors la vitesse de convergence ∑d

i=1 n
−2ri/(2ri+1). Celle-ci est de l’ordre

n−2 min(r)/(2 min(r)+1), qui correspond à la vitesse optimale dans le cas univarié pour des classes
de Sobolev avec régularité min(r) (c.f. [12, 181]). La même vitesse peut être obtenue en choisis-
sant le même nombre de fonctions dans chaque direction, c.à.d m∗(n) = (v∗(n), . . . , v∗(n)) avec
v∗(n) = bn1/(2 min(r)+1)c.

Notons que le choix optimal des nombres mi(n) de fonctions de base fait intervenir le pa-
ramètre de régularité r. Dans la plupart des cas, on ne dispose pas d’une telle information. On
fait donc appel à des méthodes qui peuvent s’adapter naturellement à la régularité inconnue
de la densité sous-jacente. La méthode d’adaptation que l’on propose consiste en deux étapes.
L’échantillon Xn est séparé en deux partie Xn1 et Xn2 de taille proportionnelle à n, pour l’usage
de chacune des étapes.

D’abord, on fixe une suite (Nn, n ∈ N∗) croissante telle que limn→∞Nn = +∞. On note :

Nn =
{
bn1/(2(d+j)+1)c, 1 ≤ j ≤ Nn

}
et Mn =

{
m = (v, . . . , v) ∈ Rd, v ∈ Nn

}
.

Pour m ∈ Mn, soit f̂m,n l’estimateur dans le modèle exponentiel log-additif issu de l’échan-
tillon Xn1 . Les estimateurs Fn = (f̂m,n,m ∈ Mn) correspondent aux choix optimaux pour des
régularités r telles que min(r) ∈ {d+ j, 1 ≤ j ≤ Nn}.

Deuxièmement, on utilise la méthode d’agrégation convexe du Chapitre 5 pour construire
l’estimateur final. On dénote ˆ̀

m,n(x) = ∑d
i=1

∑mi
k=1 θ̂i,kϕi,k(xi) pour x = (x1, . . . , xd) ∈ 4 afin

d’alléger la notation. Rappelons l’ensemble Λ+ donné par (10). Pour λ ∈ Λ+, la combinaison
convexe ˆ̀

λ des fonctions ˆ̀
m,n, m ∈Mn et la densité jointe fλ sont définies par :

ˆ̀
λ =

∑
m∈Mn

λm ˆ̀
m,n et fλ = exp(ˆ̀

λ − ψλ)14,

avec ψλ = log
(∫
4 exp(ˆ̀

λ)
)
la constante de normalisation. Les poids d’agrégation λ̂∗n sont choisis

en maximisant le critère HD
n (λ) donné par (11).

Le théorème suivant montre que si on choisit Nn = o(log(n)) tel que limn→∞Nn = +∞,
la série d’estimateurs fλ̂∗n converge vers f avec la vitesse optimale comme si la régularité était
connue.

Théorème. Soit f une densité jointe de la forme (13). Supposons que les fonctions `i appar-
tiennent à des classes de Sobolev W 2

ri(qi), ri ∈ N avec ri > d pour tous 1 ≤ i ≤ d. Soit Xn un
échantillon i.i.d. de densité f . Soit Nn = o(log(n)) tel que limn→∞Nn = +∞. La divergence de
Kullback-Leibler D

(
f‖f̂m,n

)
entre f et son estimateur fλ̂∗n converge en probabilité vers 0 avec

la vitesse :
D
(
f‖fλ̂∗n

)
= OP

(
n
− 2 min(r)

2 min(r)+1

)
.

La série d’estimateurs fλ̂∗n permet d’obtenir la vitesse optimale uniformément sur des en-
sembles de densités avec une régularité croissante. Soit Rn = {j, d + 1 ≤ j ≤ Rn}, où Rn
satisfait les inégalités :

Rn ≤ Nn + d, Rn ≤
⌊
n

1
2(d+Nn)+1

⌋
et Rn ≤

log(n)
2 log(log(Nn)) −

1
2 ·

Sur l’ensemble Rn, on a la borne supérieure suivante pour la vitesse de convergence en proba-
bilité :

lim
C→∞

lim sup
n→∞

sup
r∈(Rn)d

sup
f∈Kr(L)

P
(
D
(
f‖fλ̂∗n

)
≥
(
n
− 2 min(r)

2 min(r)+1

)
C

)
= 0.

L’estimateur proposé est ainsi capable de s’adapter à la régularité inconnue de la densité sous-
jacente sans perte de vitesse pour un ensemble large de paramètres de régularité.
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Le Chapitre 7, qui a donné lieu à la présentation [34], présente le deuxième cas d’application
concernant la modélisation des paramètres d’entrée d’un code de calcul pour la propagation des
fissures dans un composant mécanique. Ce code implémente un modèle physique pour évaluer le
risque de l’apparition d’une rupture brutale dans le composant sous une forte pression. Nous nous
concentrons sur la modélisation jointe de deux paramètres d’entrée en particulier : la longueur
et la hauteur initiale des fissures. Ces variables sont naturellement liées.

Pour ce cas d’application, nous disposons d’une base de données qui provient d’inspections ré-
gulières menées dans les centrales ainsi que d’essais contrôlés. Les données disponibles suggèrent
que les dimensions vérifient la contrainte d’ordre. Les approches considérées antérieurement pour
modéliser ces paramètres ne tiennent pas compte de cette observation.

Dans ce chapitre, nous proposons d’utiliser l’estimateur de maximum de vraisemblance du
modèle exponentiel log-additif du Chapitre 6 pour estimer la loi jointe des dimensions des fis-
sures. Les résultats obtenus montrent que le modèle a tendance à sous-estimer le risque de
rupture par rapport aux approches précédentes. Ceci peut être dû au fait qu’une rupture est
plus probable quand les deux dimensions sont grandes en même temps, alors que notre modèle
accorde un poids considérable à la zone où la valeur de longueur est élevée et la valeur de hau-
teur est faible. Pour améliorer la performance du modèle proposé, il faudrait prendre en compte
cette dépendance de queue élevée, en introduisant, par exemple, un copule de référence et en
remplaçant la maximisation d’entropie par la maximisation d’entropie relative à cette copule.
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Chapter 1

Introduction

The results of this thesis concern the probabilistic and statistical modelling of multivariate
random vectors in presence of some constraints. Such constraints often arise in an industrial
context, and may include that:

• The support of the random vector is limited. This means that if X is a d-dimensional
random vector with d ≥ 2, the probabilistic mass must be concentrated on a subset
S ( Rd.
• The marginal distributions are fixed. In this case, only the dependence structure needs
to be modelled, which can be done by using copula theory.

We shall consider such constraints as we study the probabilistic modelling of order statistics,
i.e. random vectors that are almost surely ordered, with given marginal distributions. In the
first part, after identifying the feasible models, our aim is to find the one that contains the least
information in addition to these constraints.

The second part of the thesis is dedicated to the statistical estimation of the obtained model.
We present a nonparametric approach that allows us to estimate such distributions with a fast
convergence rate. The method is also adaptive to the unknown smoothness of the model.

Finally, two case studies are presented which apply these methods to various industrial
problems considering probabilistic safety assessment in nuclear engineering at EDF Research
and Development.

1.1 Probabilistic modelling

1.1.1 Preliminaries and basic definitions

A real-valued finite random variable X can be characterized by its cumulative distribution
function or, when it exists, its probability density function. The cumulative distribution function
(cdf for short) FX of a real-valued finite random variable X is the measurable function from
R to I = [0, 1] defined as FX(t) = P(X ≤ t). The cumulative distribution function FX is a
non-decreasing càdlàg (right continuous with left limits) function such that limt→−∞ FX(x) = 0
and limt→+∞ FX(x) = 1. If there exists a measurable function fX : R → R+ such that for all
t ∈ R:

FX(t) =
∫ t

−∞
fX(s) ds,

then FX is absolutely continuous, and fX is the probability density function (pdf for short)
of X. The same functions can be defined for finite random vectors as well, known as the joint
cumulative distribution function and the joint probability density function. The joint cumulative
distribution function (joint cdf for short) FX of a finite random vector X = (X1, . . . , Xd) taking
values in Rd is the measurable function from Rd to I defined as, for x = (x1, . . . , xd) ∈ Rd:

FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd).
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This function is also non-decreasing and càdlàg in each variable. If there exists a measurable
function fX : Rd → R+ such that for all x = (x1, . . . , xd) ∈ Rd:

FX(x) =
∫ x1

−∞
. . .

∫ xd

−∞
fX(y1, . . . , yd) dyd . . . dy1,

then FX is absolutely continuous, and fX is the joint probability density function (joint pdf for
short) of X.

The (joint) cumulative distribution function completely characterizes the distribution:X and
Y have the same distribution if and only if FX = FY . For a random vector X = (X1, . . . , Xd),
the i-th component Xi is a real-valued random variable which we call the i-th marginal of X.
Its cdf Fi = FXi , referred to as the i-th marginal cumulative distribution function (marginal cdf
for short) can be deduced from the joint cdf of X. The i-th marginal cdf Fi of a finite random
vector X = (X1, . . . , Xd) is given by, for t ∈ R:

Fi(t) = lim
s→+∞

FX(xi,t,s), (1.1)

where xi,t,s = (xi,t,s1 , . . . , xi,t,sd ) ∈ Rd is given by xi,t,sj = t1{j=i} + s1{j 6=i} for 1 ≤ j ≤ d.

Remark 1.1. Equation (1.1) implies that the distribution of the finite random vector X =
(X1, . . . , Xd) determines the distribution of the marginals Xi for all 1 ≤ i ≤ d. The inverse
implication is not true: the distribution of the marginals Xi, 1 ≤ i ≤ d does not characterize
completely the distribution of X.

In this thesis work, particular interest is given to random vectors which are almost surely
ordered. Note that the following definition is motivated by the usual definition in statistical
theory, where the order statistics are obtained by sorting the components of an underlying
random vector in increasing order.

Definition 1.2. A random vector X = (X1, . . . , Xd) is a vector of order statistics if we have:

P(X1 ≤ X2 ≤ . . . ≤ Xd) = 1.

The fact that X is a vector of order statistics imposes a stochastic ordering constraint on
the distribution of the marginals. For X and Y real-valued random variables, Y is stochastically
greater than X (in the usual sense) if the cdfs FX and FY verify:

FX(t) ≥ FY (t) for all t ∈ R.

We use the notation FX ≥ FY . The next proposition asserts that marginal cdfs of a vector of
order statistics are stochastically ordered, and inversely if we have a collection of stochastically
ordered random variables (Xi, 1 ≤ i ≤ d) , then there exist a vector of order statistics X with
marginals having the same distributions as (Xi, 1 ≤ i ≤ d).

Proposition 1.3. Let X = (X1, . . . , Xd) be a vector of order statistics. Then for all 2 ≤ i ≤ d,
we have Fi−1 ≥ Fi. Conversely, let (Fi, 1 ≤ i ≤ d) be a collection of cdfs such that for all
2 ≤ i ≤ d, we have Fi−1 ≥ Fi. Then there exist a vector of order statistics X = (X1, . . . , Xd)
such that Xi has cdf Fi for all 1 ≤ i ≤ d.

1.1.2 Dependence modelling via copulas

Remark 1.1 points out that the marginal distributions do not characterize the distribution
of a random vector. In addition to the distributions of the marginals, an object describing the
dependence structure between the marginals is necessary to fully determine the distribution of
a random vector. This object is the so called copula function (often referred to as connecting
copula), and this section is dedicated to give the definitions, properties and examples related to
copulas. For a more complete overview of the topic, we refer to [105] and [132].

We start by giving the definition of a copula function.
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Definition 1.4. A copula C is a measurable function from Id to I obtained as the restriction
of the joint cdf of a random vector U = (U1, . . . , Ud) whose marginals are uniformly distributed
on I, i.e. the marginal cdf Fi of Ui, 1 ≤ i ≤ d is given by, for t ∈ R:

Fi(t) = min(t, 1)1R+(t).

In the monograph of [132], a purely analytic definition of the multivariate copula function is
provided (see Definition 2.10.6), which is equivalent to the previous definition. The next theorem,
first appearing in [162] and referred to as Sklar’s theorem, shows that the joint cdf of any random
vector X can be written as the composition of a copula with the marginal cdfs, and inversely
the composition of a copula with any collection of cdfs yields a function that is the joint cdf of
a random vector X with marginal cdfs corresponding to the initial collection.

Theorem 1.5 (Sklar [162]). Let X = (X1, . . . , Xd) be a random vector with joint cdf FX and
marginal cdfs Fi, 1 ≤ i ≤ d. Then there exists a copula C such that for all x = (x1, . . . , xd) ∈ Rd:

FX(x) = C(F1(x1), . . . , Fd(xd)).

In addition, if Fi is continuous for all 1 ≤ i ≤ d, then C is unique, and we shall write CX the
copula associated to X.

Conversely, let C be a copula and (Fi, 1 ≤ i ≤ d) a collection of cdfs. Let us define the
function F : Rd → I as F (x) = C(F1(x1), . . . , Fd(xd)) for x = (x1, . . . , xd) ∈ Rd. Then there
exists a random vector Y = (Y1, . . . , Yd) such that F is the joint cdf of Y , and the i-th marginal
cdf of Y equals Fi for all 1 ≤ i ≤ d.

Remark 1.6. Sklar’s theorem implies that in order to give the distribution of a random vector
X = (X1, . . . , Xd), it is sufficient to precise the marginal distribution functions Fi, 1 ≤ i ≤ d,
and the copula C containing all information on the dependence of the components. This allows
for separate modelling of the marginals and the dependence structure.

Example 1.7 (Independence). Independence between the marginals of a random vector can be
characterized in terms of the copula function if all marginal cdfs are continuous. Namely, for
a random vector X = (X1, . . . , Xd) with continuous marginal cdfs Fi, 1 ≤ i ≤ d, we have that
the marginals Xi are independent if and only if the the copula CX of X is the so-called product
copula Π defined as, for u = (u1, . . . , ud) ∈ Id:

Π(u) = Πd
i=1ui.

Going back to Remark 1.1, two random vectors with the same marginal distributions can
have very different joint cdfs depending on the connecting copula of the random vectors. There
are numerous ways to construct copula functions: countless parametric families exist as well as
methods to create new copulas based on existing ones, see Chapters 3 and 4 of [132]. Table 1.1
present the parametric families of two-dimensional copulas occurring in Chapter 2. To illustrate
the variability of joint cdfs with the same marginal cdfs, Figure 1.1 gives an example of multiple
joint pdfs of two-dimensional random vectors which have the same standard normal marginal
distributions, but different copulas.

We also give the definition of the diagonal section of a copula C.

Definition 1.8. The diagonal section δC : I → I of a copula C is given by, for t ∈ I:

δC(t) = C(t, . . . , t).

If U = (U1, . . . , Ud) is a random variable with joint cdf the copula C, then the diagonal
section is the cdf of max(U) = max{Ui, 1 ≤ i ≤ d}. Diagonal sections of d-dimensional copulas
can be characterized by the following properties, see [102].

Proposition 1.9. A function δ : I → I is the diagonal section of a copula if and only if:
(a) δ is a cumulative function on [0, 1]: δ(0) = 0, δ(1) = 1 and δ is non-decreasing;
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Family Parameters C(u1, u2)

Gumbel θ ∈ [1,+∞) exp
(
−
[
(− log(u1))θ + (− log(u2))θ

] 1
θ

)
Marshall-Olkin γ1, γ2 ∈ (0, 1) min(u1−γ1

1 u2, u1u
1−γ2
2 )

Farlie-Gumbel-Morgenstern θ ∈ [−1, 1] u1u2 + θu1u2(1− u1)(1− u2)

Ail-Mikhail-Haq θ ∈ [−1, 1] u1u2
1−θ(1−u1)(1−u2)

Normal ρ ∈ [−1, 1] Φρ
(
Φ−1(u1),Φ−1(u2)

)
Table 1.1 – Parametric families of two dimensional copulas. Φρ denotes the joint cumulative dis-
tribution function of a two-dimensional normal random vector with standard normal marginals
and correlation parameter ρ ∈ [−1, 1], and Φ−1 denotes the quantile function of the standard
normal distribution.
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Figure 1.1 – Joint pdfs of two-dimensional random vectors with standard normal marginals and
different connecting copulas.
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(b) δ(t) ≤ t for t ∈ I and δ is d-Lipschitz: |δ(s)− δ(t)| ≤ d |s− t| for s, t ∈ I.

Special attention to copulas with a fixed diagonal section is given in Chapter 2.

Let us consider a two-dimensional random vector X = (X1, X2) with continuous marginal
cdfs. There exist several scalar measures which aim to quantify the stochastic dependence be-
tween X1 and X2. Scale-invariant measures aiming to quantify the dependence between X1 and
X2 can be expressed in terms of the copula CX . Two examples of widely used scale-invariant
measures of concordance which only depend on the copula function are Kendall’s tau τ(X) given
by:

τ(X) = 4
∫
I2
CX(u1, u2) dCX(u1, u2)− 1,

and Spearman’s rho ρS(X) given by:

ρS(X) = 12
∫
I2
u1u2 dC(u1, u2)− 3 = 12

∫
I2
C(u1, u2) du1du2 − 3.

Note that these measures can be extended to random vectors with dimension d > 2, see [89].
Another measure of association of extreme values of X1 and X2 is given by the upper and lower
tail dependence coefficient, which quantifies the dependence in the upper-right and lower left
quadrant of R2, respectively. For X = (X1, X2) with continuous marginal cdfs F1 and F2, the
upper and lower tail dependence coefficients denoted by λU and λL respectively, are defined as:

λU = lim
t↗1

P
(
X2 > F

(−1)
2 (t)|X1 > F

(−1)
1 (t)

)
, λL = lim

t↘0
P
(
X2 ≤ F (−1)

2 (t)|X1 ≤ F (−1)
1 (t)

)
,

when they exist. Notice that the upper and lower tail dependence coefficients of X can be
expressed with the help of the diagonal section of its copula CX :

λU = 2− lim
t↗1

1− δCX (t)
1− t , and λL = lim

t↘0

δCX (t)
t
·

1.1.3 Measuring uncertainty by entropy

In order to be able to choose a single model out of all models which verify certain constraints,
we need a decision criterion. The first attempt to give a principle comes from the works of
Bernoulli and Laplace, labelled as the principle of indifference (or principle of insufficient reason).
See Chapter I. in [143] for a discussion of this principle. It generally states that two events shall
be assigned the same probability mass if we have no reason to believe that one will occur
preferentially compared to the other. Aside from the lack of mathematical precision, application
of this principle resulted in multiple paradoxes, especially in the case of continuous random
variables. A detailed discussion of the drawbacks of this idea can be found in Chapter 4 of [113].

In the meanwhile, advances in statistical mechanics [82, 166] and information theory [161]
led to the emergence of a new criteria for model selection in statistical inference based on partial
knowledge, introducing a new measure of uncertainty called entropy. We give the definition of
the entropy for real-valued random variables and random vectors.

Definition 1.10. Let X be a real-valued random variable (or random vector) with cdf (joint
cdf) FX . The entropy H(FX) ∈ R of X (often referred to as differential entropy) is defined as:

H(FX) =
{
−
∫
fX log(fX) if FX is absolutely continuous with pdf (joint pdf) fX ,

−∞ otherwise.

We also say that the entropy of the real-valued random variable (or random vector) X is equal
to H(F ).
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Originating from two fundamentally different contexts, [104] shows that the two concepts
are essentially the same, and advocates the acceptance of the distribution which maximizes the
entropy among the admissible distributions. In the words of the author: “... making inferences on
the basis of partial information we must use that probability distribution which has maximum
entropy subject to whatever is known. This is the only unbiased assignment we can make; to
use any other would amount to arbitrary assumption of information which by hypothesis we do
not have.” This is known as the maximum entropy principal in statistical inference. We give a
few examples of maximum entropy distribution under various constraints.

Fixed interval support. The uniform distribution on the interval [a, b], a < b whose pdf
is given by f(t) = 1[a,b](t)/(b − a), has maximal entropy amongst real-valued random
variables X such that P(a ≤ X ≤ b) = 1.

Fixed expected value and positivity. The exponential distribution with parameter λ ∈
R+, whose pdf is given by f(t) = λ exp(−λt)1R+(t), has maximal entropy amongst real-
valued random variables X such that P(X > 0) = 1 and E[X] = 1/λ .

Fixed expected value and variance. The normal distribution with parameters µ ∈ R
and σ2 ∈ R+, whose pdf is given by f(t) = exp(−(t − µ)2/(2σ2))/

√
2πσ2, has maximal

entropy amongst real-valued random variables X such that E[X] = µ and Var (X) = σ2.
The differential entropy possesses some undesirable deficiencies. In particular, it can assume

negative values. Furthermore, it is not invariant under parameter transformation. This led to
the introduction of another measure of entropy for real-valued random variables and random
vectors, which quantifies the entropy relative to a reference probability measure (and not relative
to the Lebesgue measure). This measure of entropy was first introduced by Kullback and Leibler
in [117]. We provide the definition for absolutely continuous real-valued random variables and
random vectors.

Definition 1.11. Let X be an absolutely continuous real-valued random variable (resp. random
vector) with pdf (resp. joint pdf) fX . The Kullback-Leibler divergence (or relative entropy) of X
with respect to a reference pdf (resp. joint pdf) q, denoted by D (fX‖q) is given by:

D (fX‖q) =
∫
fX log

(
fX
q

)
. (1.2)

The Kullback-Leibler divergence does not suffer from the problems of the differential entropy:
it is non-negative and equals to 0 if and only if fX = q almost everywhere, and it is invariant
under parameter transformation. It can also be seen as a quantity which measures the difference
between (joint) pdfs, however it is not a distance on the set of (joint) pdfs, as it does not verify
the triangle inequality in particular. Nevertheless, we will use the Kullback-Leibler divergence to
measure the quality of estimators throughout Chapters 5, 6 and 7, as it has a natural connection
to entropy.

1.1.4 Main results of the first part

In this section we summarize the main results of the first part of the thesis. In Chapter 2,
which corresponds to [33], we studied maximum entropy copulas with any given diagonal section
as in Definition 1.8. The problem can be phrased as follows.

Let δ : I → I be a function satisfying conditions (a) and (b) of Proposition 1.9. Find,
when it exists, the copula with diagonal section δ that has maximal entropy.

Copulas with prescribed diagonal section received a lot of attention in the literature, see
[72] for an overview on construction methods and properties of such copulas. Some recent works
focus on the characterization of generators of Archimedean copulas by its diagonal section [77],
singular copulas with given diagonal section [71], copulas with fixed diagonal and opposite
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diagonal section [58], and an extension of the diagonal section for copulas with dimension d ≥ 3
[73].

The solution of this problem relies on the theory outlined in [25]. The method described
in this paper was used to derive the maximum entropy copula with a given Spearman’s rho
coefficient in [128], and more generally in a multivariate discrete setting with a given set of
Spearman’s rho coefficients between some components in [141]. Maximum entropy copulas with
any finite number of expectation constraints are considered in [16]. Applications for maximum
entropy copulas include financial modelling [61, 46, 183], tomography processing [146], hydrology
[142, 97, 4], Bayesian networks [101], etc. In our work, the constraint on the diagonal section
of the copula gives an infinite dimensional optimization problem as opposed to the previously
cited papers where the imposed constraints are of finite dimension.

We give a necessary and sufficient condition for the existence of a maximum entropy copula
with a given diagonal section. Namely, we show that there exist a unique maximum entropy
copula with diagonal section δ if and only if:

J (δ) =
∫
I
|log(t− δ(t))| dt < +∞. (1.3)

This is a stronger condition than the condition for the existence of an absolutely continuous
copula with this diagonal section, given in [102]. The condition of [102] requires that Σδ = {t ∈
I, δ(t) = t} has zero Lebesgue measure, which is ensured whenever (1.3) holds. When (1.3) is
satisfied, we give the analytic formula of the maximum entropy copula as well as the exact value
of its entropy.

First, consider the case when Σδ = {0, 1}, i.e. δ(t) > t for all t ∈ (0, 1). Let us define the
functions a and b as, for t ∈ I:

a(t) = d− δ′(t)
d

h(t)−1+1/d eF (t) and b(t) = δ′(t)
d

h(t)−1+1/d e−(d−1)F (t),

with h and F defined as:

h(t) = t− δ(t), F (t) = d− 1
d

∫ t

1
2

1
h(s) ds. (1.4)

We define the copula C̄δ with joint pdf c̄δ given by:

c̄δ(x) = b(max(x))
∏

xi 6=max(x)
a(xi) for x ∈ Id. (1.5)

See Proposition 2.2 which verifies that C̄δ is indeed a copula with diagonal section δ.
For the general case, when Σδ does not necessarily euqal to {0, 1}, the continuity of δ allows

us to write I \ Σδ = ∪j∈J(αj , βj) with J at most countable. For each j ∈ J , let us define
∆j = βj − αj , and the function δj by:

δj(t) = δ(αj + t∆j)− αj
∆j

for t ∈ I.

It is easy to verify that δj satisfies the conditions (a) and (b) of Proposition 1.9, therefore it is
a diagonal section which verifies Σδj = {0, 1}. Let c̄δj be defined by (1.5) with δ replaced by δj .
Then let Cδ be the copula whose joint pdf cδ is given by:

cδ(x) =
∑
j∈J

1
∆j

c̄δj

(
x− αj1

∆j

)
1(αj ,βj)d(x) for x ∈ Id, (1.6)

with 1 = (1, . . . , 1) ∈ Rd. Notice that when Σδ = {0, 1}, then cδ and c̄δ coincide. The main result
of Chapter 2 states that when (1.3) holds, then Cδ is the maximum entropy copula with diagonal
section δ. Let us denote Cδ = {C a copula, δC = δ}, the set of all copulas whose diagonal section
is δ.
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Theorem 1.12. Let δ satisfy the conditions (a) and (b) of Proposition 1.9.
a) If J (δ) = +∞ then maxC∈Cδ H(C) = −∞.
b) If J (δ) < +∞ then maxC∈Cδ H(C) > −∞, and Cδ ∈ Cδ, whose joint pdf is given by

(1.6), is the unique copula such that H (Cδ) = maxC∈Cδ H(C). Furthermore, we have:

H(Cδ) = −(d− 1)J (δ) + G(δ),

where G(δ) ∈ R is given by:

G(δ) = d log(d) + (d− 1)−
∫
I
δ log(δ)−

∫
I
(d− δ′) log(d− δ′).

As an illustration, we compare the maximum entropy copula to classical families of copulas,
seen in Table 1.1, with the same diagonal section. Let us take, for example, the family of Farlie-
Gumbel-Morgenstern copulas, given by C(u1, u2) = u1u2 + θu1u2(1−u1)(1−u2) for θ ∈ [−1, 1].
Its diagonal section is given by, for t ∈ I:

δ(t) = t2 + θt2(1− t)2 = θt4 − 2θt3 + (1 + θ)t2.

This diagonal section verifies J (δ) < +∞ and Σδ = {0, 1}. Therefore the joint pdf cδ of the
maximum entropy copula Cδ equals to c̄δ given by (1.5). For the function F appearing in (1.4),
we have:

F (t) =


1
2 log

(
t

1−t

)
+ θ√

4θ−θ2 arctan
(

2θt−θ√
4θ−θ2

)
if θ ∈ (0, 1],

1
2 log

(
t

1−t

)
if θ = 0,

1
2 log

(
t

1−t

)
− θ√

θ2−4θ arctanh
(

2θt−θ√
θ2−4θ

)
if θ ∈ [−1, 0).

Therefore cδ is given by, for θ ∈ (0, 1] and (u1, u2) ∈ I2 with u1 ≤ u2 (by symmetry, the formula
is the same for u2 > u1 with u1, u2 exchanged):

cδ(u1, u2) =
(
1− 2θu3

1 + 3θu2
1 + (1 + θ)u1

)
(1− u1)

√
θu2

1 − θu1 + 1

(
2θu2

2 + 3θu2 + (1 + θ)
)√

θu2
2 − θu2 + 1

exp
(
− θ√

4θ − θ2

(
arctan

( 2θu2 − θ√
4θ − θ2

)
− arctan

( 2θu1 − θ√
4θ − θ2

)))
.

See Figure 1.2 which illustrates the difference between the joint pdfs of the Farlie-Gumbel-
Morgenstern copula with parameter θ = 0.5 and the maximum entropy copula Cδ with the same
diagonal section, and also the difference between their diagonal cross sections cδ(t, t), t ∈ I.

In Chapter 3, which corresponds to [36], we solve the central problem of the first part of the
thesis. Let h be a reference probability density function on R. We define h⊗d(x) = ∏d

i=1 h(xi)
for x = (x1, . . . , xd) ∈ Rd. We denote the relative entropy of a cdf F to h⊗d by:

Hh(F ) =

−
∫
f log

(
f/h⊗d

)
if F is absolutely continuous with pdf f ,

−∞ otherwise.
(1.7)

Notice that this is minus the Kullback-Leibler divergence as in Definition 1.11. The main problem
can be formulated as follows.

Let F = (Fi, 1 ≤ i ≤ d) be a set of continuous cdfs such that Fi−1 ≥ Fi for all 2 ≤ i ≤ d.
Find, when it exists, the distribution of the vector of order statistics X = (X1, . . . , Xd),
whose marginals Xi have cdf Fi for all 1 ≤ i ≤ d, and has maximal relative entropy.
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Figure 1.2 – Isodensity lines and the diagonal cross-section of the joint pdf of the Farlie-Gumbel-
Morgenstern (FGM) copula with parameter θ = 0.5 and the maximum entropy copula Cδ with
the same diagonal section.

Since the distributions of the marginals are fixed, by Remark 1.6 the distribution of such a
vector of order statistics is determined once the connecting copula is specified. The first problem
consists of identifying copulas which are compatible with the constraints. According to [119], the
copula CX of a vector of order statistics X = (X1, . . . , Xd) with fixed marginal distributions is
such that the support of the random vector U with joint cdf CX is included in a specific subset
of Id which only depends on the cdfs F.

For the next step, notice that the relative entropy of a random vector X = (X1, . . . , Xd)
with joint cdf FX can be decomposed into sum of the relative entropy of the marginals plus the
entropy the copula CX (see Lemma 3.1):

Hh(FX) =
d∑
i=1

Hh(Fi) +H(CX).

Therefore X has maximal entropy if its associated copula has maximal entropy. Therefore the
initial problem is equivalent to finding the maximum entropy copula compatible with the con-
straints.

Since constraints concerning the support of the copula is hard to take into account with
this approach, we transformed the maximization problem into an equivalent one, for which the
constraints could be treated with the formalism of [25]. When d = 2, this new set of constrained
copulas are symmetric copulas with a fixed diagonal section. This diagonal section is a function
of the originally fixed marginal cdfs. In the case of d ≥ 3, we need a more general object to
express the constraints of the image set of the transformation. Recall that the diagonal section
of a copula C is the cdf of max(U), where U is a random vector with joint cdf C. We introduce
a generalization of the diagonal section.

Definition 1.13. Let C be a d-dimensional copula and U a random vector with joint cdf C.
The multidiagonal δδδC = (δ(i), 1 ≤ i ≤ d) of C is a vector of cdfs given by, for 1 ≤ i ≤ d, t ∈ I:

δ(i)(t) = P(U(i) ≤ t),

where U(i) is the i-th largest component of the random vector U , that is (U(1), . . . , U(d)) are the
order statistics of U .

The diagonal section then corresponds to δ(d). This object was first considered in [103], and
in [154] for individual δ(i) functions. A characterization of multidiagonals is given in the following
lemma from [103].
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Lemma 1.14. A vector of cdfs δδδ = (δ(1), . . . , δ(d)) is the multidiagonal of a copula if and only
if δ(i) the following conditions hold:

δ(i−1) ≥ δ(i) for 2 ≤ i ≤ d, and
d∑
i=1

δ(i)(s) = ds for 0 ≤ s ≤ 1.

The transformation of the maximum entropy problem gives a bijection between copulas
of order statistics and symmetric copulas with fixed multidiagonals, see Proposition 3.6. The
multidiagonal of the transformed copula is a function of the fixed marginals F. It also preserves
the entropy of the copula up the an additive constant. Therefore, the problem of maxium entropy
copula of vectors of order statistics with given marginals is equivalent to finding the maximum
entropy symmetric copula with a given multidiagonal. As a part of Chapter 3, we solve the
maximum entropy problem of copulas with a fixed multidiagonal using similar arguments as in
Chapter 2, with the help of the framework of [25].

To give the solution to the problem of maximum entropy copula with a fixed multidiagonal
δδδ, we first give a few definitions. Let:

Ψδδδ
i = {t ∈ I, δ(i−1)(t) > δi(t)} for 2 ≤ i ≤ d. (1.8)

The complementary set (Ψδδδ
i )c on I is the collection of the points where δ(i−1) = δ(i). We define

Σδδδ ⊂ I as Σδδδ = ⋃d
i=2 δ(i)

(
(Ψδδδ

i )c
)
. According to [103], there exist an absolutely continuous

copula with multidiagonal δδδ if it verifies the conditions of Lemma 1.14 and Σδδδ has zero Lebesgue
measure. Since Ψδδδ

i are open subsets of I, there exist at most countably many disjoint intervals
{(g(j)

i , d
(j)
i ), j ∈ Ji} such that Ψδδδ

i = ⋃
j∈Ji(g

(j)
i , d

(j)
i ) for 2 ≤ i ≤ d. We denote by m

(j)
i =

(g(j)
i + d

(j)
i )/2 the midpoint of these intervals. We define the set Lδδδ as:

Lδδδ = {u = (u1, . . . , ud) ∈ Id; (u(i−1), u(i)) ⊂ Ψδδδ
i for all 2 ≤ i ≤ d},

Let us define the copula Cδδδ with joint pdf cδδδ on Id as, for x = (x1, . . . , xd) ∈ Id:

cδδδ(x) = 1
d! 1δδδ(x)

d∏
i=1

ai(x(i)), (1.9)

where x(i) is the i-th largest component of x, and the function ai, 1 ≤ i ≤ d, are given by, for
t ∈ I:

ai(t) = K ′i(t) eKi+1(t)−Ki(t) 1Ψδδδi∩Ψδδδi+1
(t),

with for 1 ≤ i ≤ d, t ∈ (g(j)
i , d

(j)
i ):

Ki(t) =
∫ t

m
(j)
i

δ′(i)(s)
δ(i−1)(s)− δ(i)(s)

ds

and the conventions Ψδδδ
1 = (0, d1) with d1 = inf{t ∈ I; δ(1)(t) = 1}, m1 = 0, Ψδδδ

d+1 = (gd+1, 1)
with gd+1 = sup{t ∈ I; δ(d)(t) = 0}, md+1 = (1 + gd+1)/2, δ(0) = 1 and Kd+1 = 0. Similarly to
(1.3), the condition for the existence of a maximum entropy copula with multidiagonal δδδ is:

J(δδδ) =
d∑
i=2

∫
I
δ(i)(dt)

∣∣∣log
(
δ(i−1)(t)− δ(i)(t)

)∣∣∣ < +∞.

The solution for the problem is summarized in the next theorem. Let Cδδδ denote the set of all
copulas with multidiagonal δδδ.

Theorem 1.15. Let δδδ be a vector of cdfs verifying the conditions of Lemma 1.14.
(a) If J(δδδ) = +∞ then maxC∈Cδδδ H(C) = −∞.
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(b) If J(δδδ) < +∞ then maxC∈Cδδδ H(C) > −∞ and Cδδδ with joint pdf cδδδ given by (1.9) is the
unique copula such that H (Cδδδ) = maxC∈Cδδδ H(C). Furthermore, we have:

H(Cδδδ) = −J(δδδ) + log(d!) + (d− 1) +
d∑
i=1

H(δ(i)).

Since the solution of the problem of maximum entropy copula with a fixed multidiagonal is
a symmetric copula, applying the inverse of the copula transformation on the solution provides
the maximum entropy copula for a vector of order statistics with given marginal distributions.
This allows us, by Sklar’s theorem, to identify, when it exists, the maximum entropy distribution
of a vector of order statistics with fixed marginal distributions. Such a distribution exists if and
only if Hh(Fi) > −∞ for all 1 ≤ i ≤ d, and:

J(F) =
d∑
i=2

∫
R
Fi(dt) |log (Fi−1(t)− Fi(t))| < +∞.

In this case the maximum entropy vector of order statistics is absolutely continuous with joint
pdf fF defined as, for x = (x1, . . . , xd) ∈ Rd:

fF(x) = f1(x1)
d∏
i=2

fi(xi)
Fi−1 (xi)− Fi(xi)

exp
(
−
∫ xi

xi−1

fi(s)
Fi−1(s)− Fi(s)

ds

)
1LF(x), (1.10)

where fi is the pdf corresponding to Fi and LF ⊂ Rd is the set of ordered vectors (x1, . . . , xd),
that is x1 ≤ · · · ≤ xd, such that Fi−1(t) > Fi(t) for all t ∈ (xi−1, xi) and 2 ≤ i ≤ d. The main
result of this part is given by the following theorem. Let LOSd (F) denote the set of joint cdfs of
vectors of order statistics with marginal cdfs F.

Theorem 1.16. Let F = (Fi, 1 ≤ i ≤ d) be a vector of cdfs such that Fi−1 ≥ Fi for all 2 ≤ i ≤ d.
(a) If there exists 1 ≤ i ≤ d such that Hh(Fi) = −∞, or if J(F) = +∞, then we have

maxF∈LOS
d

(F)Hh(F ) = −∞.
(b) If Hh(Fi) > −∞ for all 1 ≤ i ≤ d, and J(F) < +∞, then maxF∈LOS

d
(F)Hh(F ) > −∞,

and the joint cdf FF with joint pdf fF defined in (1.10) is the unique cdf in LOSd (F) such
that Hh(FF) = maxF∈LOS

d
(F)Hh(F ). Furthermore, we have:

Hh(FF) = d− 1 +
d∑
i=1

Hh(Fi)− J(F).

Notice that the joint pdf fF has a product form on LF, that is it can be written as, for a.e.
x = (x1, . . . , xd) ∈ Rd:

fF(x) =
d∏
i=1

pi(xi)1LF(x), (1.11)

with non-negative functions (pi, 1 ≤ i ≤ d). Conversely, all joint pdfs having a product form
as in (1.11) correspond to a maximum entropy distribution of order statistics for some fixed
marginals. Figure 1.3 shows the joint cdf and the copula of the maximum entropy distribution
of order statistics with Normal marginals with unit variance and different means.

1.1.5 Perspectives

In the first part of this thesis, we considered the probabilistic modelling of random vectors
with ordering and marginal constraints. In the followings, it would be interesting to consider
other type of constraints, for example for a matrix A ∈ Rr×d and a vector b ∈ Rr, one could
consider constraints of the type:

A ·X ≤ b,
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Figure 1.3 – Joint density and the copula of the maximum entropy distribution of order statistics
with Normal marginals.

where · is the usual matrix multiplication and the inequality is understood component-wise. In
particular, the ordering constraint can be written in this form with A ∈ R(d−1)×d and b ∈ Rd−1

given by, for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ d:

Aij = 1{i=j} − 1{i=j−1} and bi = 0.

More interesting and motivated by control of risks, a relaxation of the ordering constraint
can be to require that the components are ordered with a certain probability, that is:

P(X1 ≤ X2 ≤ . . . ,≤ Xd) ≥ p,

for some p ∈ (0, 1). This would allow the random vector to deteriorate from the monotonicity
constraint with probability 1− p introducing even more uncertainty to the problem.

For the problems of maximum entropy copulas with given diagonal section or multidiagonal,
one could consider maximization of the relative entropy of the copula with respect to a reference
joint pdf c0 on Id. Notice that maximization of the entropy for copulas is the same as maximiza-
tion of the relative entropy with respect to the uniform distribution on Id. This would allow
us to incorporate further information in the modelling procedure in form of a reference pdf, to
provide a more flexible framework.

1.2 Nonparametric statistical estimation

1.2.1 Nonparametric models

In many statistical problems, we consider a probabilistic model P = {Pf ; f ∈ F} character-
ized by a function f : Rd → R for some d ∈ N∗. Based on a sample X available from this model,
the goal is to estimate f . When an explicit form for the function f is not given prior to the
estimation, we have a nonparametric model. In the nonparametric setting, it is assumed that f
belongs to a large class of functions F possibly with some regularity conditions. In particular,
if F = {g(x, θ), θ ∈ Θ ⊆ Rk} for some k ∈ N∗ with g : Rd × Θ → R a given function, we
have a parametric model. In this case, the estimation problem is equivalent to estimating the
finite-dimensional parameter θ by θ̂ = θ̂(X) ∈ Θ based on the sample. Then the parametric
estimator of the function is simply given by g(x, θ̂). For the nonparametric model, the class F
can not be described by a finite-dimensional parameter. Here, an estimator of f is a function f̂
measurable with respect to the sample X, i.e. x 7→ f̂(x) = f̂(x,X). We describe the models we
consider.

Probability density estimation Let Xn = (X1, . . . , Xn) be independent, identically dis-
tributed, absolutely continuous real-valued random variables or random vectors with joint
pdf f . We refer to Xn as an i.i.d. sample of size n. The problem consists of estimating
f by f̂n(x) = f̂n(x,Xn), given that f belongs to a large class of functions F with some
regularity conditions.
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Spectral density estimation Let (Xk, k ∈ Z) be a stationary sequence of centered normal
random variables. Stationarity means that for all n ∈ N∗ and all (k1, . . . , kn) ∈ Zn, the
joint cdf of (Xk1 , . . . , Xkn) equals to the joint cdf of (Xk1+j , . . . , Xkn+j) for any j ∈ Z.
For j ∈ Z, let γj = Cov (Xk, Xk+j) be the covariance of difference j. If ∑j∈Z |γj | ≤ +∞,
then the spectral density associated to the sequence (Xk, k ∈ Z) is the real valued, even,
non-negative function f : [−π, π]→ R+ defined as, for t ∈ [−π, π]:

f(t) =
∑
j∈Z

γj
2π eijt = γ0

2π + 1
π

∞∑
j=1

γj cos(jt).

A sample Xn = (Xk, . . . , Xk+n−1) consists of the observations of n consecutive elements of
the sequence (Xk, k ∈ Z). The problem is to estimate the function f by f̂n(t) = f̂n(t,Xn),
under the assumption that f belongs to a large class of functions F with some regularity
conditions.

See [169] for other examples of nonparametric models. In the following, we concentrate on the
nonparametric probability density estimation, as it is the central problem of this part of the
thesis. However, in Chapter 5 we consider the spectral density estimation problem as well.

1.2.2 Nonparametric density estimation

Probably the most widely considered problem in the field of nonparametric statistics is
the nonparametric probability density estimation problem defined in the previous section. A
comprehensive survey on this topic is given by [100].

Convergence rates

Most of the problems concerning nonparametric density estimation aim at finding an esti-
mator and its convergence rate which is uniform over the function class F with respect to a
risk measure. Let Pf and Ef denote the probability and the expected value, respectively, with
respect to the distribution of the sample Xn = (X1, . . . , Xn) when Xj are i.i.d. with common
(joint) pdf f . Let d(f, g) be a semi-distance measuring the difference between the functions f
and g.

Definition 1.17. A positive sequence (ψ̃n, n ∈ N∗), which verifies limn→∞ ψ̃n = 0 is an upper
bound for the convergence rate in expectation of an estimator f̂n over the function class F if
there exists C > 0 such that:

lim sup
n→∞

sup
f∈F

Ef [d(f̂n, f)/ψ̃n] ≤ C.

After establishing the rate of convergence of a certain estimator f̂n, the natural question
which arises is: is this the best possible convergence rate we can attain for a particular problem?
This led to the notion of lower bound for the convergence rate.

Definition 1.18. The sequence (ψ̃n, n ∈ N∗) is a lower bound for the convergence rate in
expectation if there exists c > 0 such that:

lim inf
n→∞

inf
f̂n

sup
f∈F

Ef [d(f̂n, f)/ψ̃n] ≥ c,

where the infimum is taken over all estimators f̂n measurable with respect to the sample Xn.

We say that (ψ̃n, n ∈ N∗) is the optimal convergence rate in expectation if it is both an upper
and lower bound (it is also referred to as minimax convergence rate). In deviation, we have the
following definition for convergence rates.
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Definition 1.19. The sequence (ψ̃n, n ∈ N∗) is an upper bound for the convergence rate in
deviation of an estimator f̂n over the function class F if:

lim
C→∞

lim sup
n→∞

sup
f∈F

Pf (d(f̂n, f) ≥ Cψ̃n) = 0. (1.12)

Also, (ψ̃n, n ∈ N∗) is a lower bound for the convergence rate in deviation if there exists c > 0
such that:

lim
n→∞

inf
f̂n

sup
f∈F

Pf (d(f̂n, f) ≥ cψ̃n) = 1. (1.13)

An optimal convergence rate in deviation is both an upper and lower bound.

Nonparametric density estimation methods

Perhaps the earliest attempt to propose an estimator for the pdf without any assumption on
its functional form is the histogram. Originally a visualization tool for datasets, the histogram
appears in the literature of statistics as early as the nineteenth century. Suppose that the support
of the target density f is the interval [a, b]. For an i.i.d. sample Xn = (X1, . . . , Xn) and a partition
[a, b] = ∪mi=1[ti−1

n , tin) where a = t0n < t1n < . . . < tm−1
n < tmn = b are equally spaced with bin

width hn , the histogram estimator f̂Hn is defined as, for t ∈ R:

f̂Hn (t) = 1
nhn

m∑
i=1

 n∑
j=1

1[ti−1
n ,tin)(Xj)

1[ti−1
n ,tin)(t).

This is a maximum likelihood estimator on piecewise constant functions on the partition, see
[60]. Its statistical properties when n→∞ and nhn → 0 was studied for example by [159, 79, 80].

A more sophisticated estimation method is the kernel density estimator f̂Kn defined as, for
x ∈ Rd:

f̂Kn (x) = 1
nhdn

n∑
j=1

K

(
x−Xj

hn

)
,

with K : Rd → R a kernel function, i.e.
∫
K = 1, and hn the bandwidth parameter. This method

was proposed by [152] and [136], and has received widespread attention. The statistical properties
of the kernel estimator depends on the choice of the kernel function K [14, 39, 75, 81, 127], and
the choice of the bandwidth hn [45, 160, 94, 95, 63, 175]. Improvements proposed for the kernel
density estimator include for example variable kernels [171, 28], where the bandwidth for each
observation depends on the distance to its k-th nearest neighbour, or adaptive kernels [3, 165],
where the bandwidth for each observation depends on a preliminary kernel estimate evaluated
at the observation.

A different approach to nonparametric density estimation is the orthogonal series density
estimator introduced by [42]. Suppose that the joint pdf f belongs to L2(Ω, ν) for a set Ω ⊆ Rd
and a reference measure ν on Ω, and that it admits the series expansion for all x ∈ Ω:

f(x) =
∞∑
k=0

αkϕk(x), (1.14)

where {ϕk, k ∈ N} is a complete orthonormal sequence of functions for L2(Ω, ν). The coefficients
{αk, k ∈ N} can be calculated as αk =

∫
Ω ϕkf . This is the expected value of ϕk(X) if the joint

pdf of X is f . Therefore given a sample Xn = (X1, . . . , Xn) with joint pdf f , we can estimate
αk, k ∈ N by the unbiased estimator α̂k = (1/n)∑n

j=1 ϕk(Xj). The orthogonal series estimator
f̂On is obtained by taking a partial sum of rn terms in (1.14), then plugging in it the estimators
α̂k, 1 ≤ k ≤ rn. This gives, for x ∈ Ω:

f̂On (x) =
rn∑
k=0

α̂kϕk(x).
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The truncation point rn plays the same role as the bandwidth hn in the kernel density estimator.
For d = 1, some orthonormal sequences for finitely supported pdfs include the Fourier basis
for Ω = [0, 1] and ν the Lebesgue measure [172, 92], or the Legendre polynomials for Ω =
[−1, 1] and ν the Lebesgue measure [93]. For infinite supports, the Hermite polynomials form
on orthonormal basis for Ω = R and ν the standard normal probability measure [158], and the
Laguerre polynomials can be used when Ω = [0,+∞) and ν the exponential probability measure
[91].

Multiresolution analysis provides a system of orthonormal functions called the wavelet basis,
which can effectively take into account discontinuities and local smoothness properties of the
density function. Let us consider the one-dimensional setting. The construction of a wavelet basis
relies on a scaling function or father wavelet ϕ and a mother wavelet ζ. The orthonormal basis
consists of the functions {ϕ`0,k(x) = 2`0/2ϕ(2`0x− k), k ∈ Z} and {ζ`,k(x) = 2`/2ζ(2`x− k), ` ≥
j0, k ∈ Z}. Then the wavelet density estimator f̂Wn is given by, for t ∈ R:

f̂Wn (t) =
∑
k∈Z

α̂kϕ`0,k(t) +
∞∑
`=`0

∑
k∈Z

β̂`,kζ`,k(t), (1.15)

with α̂k = (1/n)∑n
j=1 ϕ`0,k(Xj) and β̂`,k = (1/n)∑n

j=1 ζ`,k(Xj). Note that if the scaling function
and the mother wavelet are compactly supported, then only a finite number of the coefficients
{α̂k, k ∈ Z} and {β̂`,k, ` ≥ `0, k ∈ Z} are non-zero, thus f̂Wn is a proper estimator. Wavelet
density estimation was considered for example in [109, 110] and [173].

1.2.3 Adaptive nonparametric density estimation

Usually, the class of functions F considered is a class of functions with a regularity property
depending on some parameter(s) r. A bound L > 0 is also imposed for a particular norm of the
functions in F . Therefore we use the notation F = Fr,L. In this case, the convergence rate of an
estimator also usually depends on the regularity parameter, and shall be noted by ψ̃n,r.

Example 1.20 (see Chapter 1.2.1. of [169]). Let Fr,L be the Hölder class of pdfs on R, that is
f ∈ Fr,L if f is a ` = brc times differentiable pdf, and verifies |f (`)(t) − f (`)(s)| ≤ L |t− s|r−`
for all t, s ∈ R. Let us measure the difference by the mean squared error at a fixed point
x0 ∈ R, that is d(f, g) = |f(x0)− g(x0)|2 for some x0 ∈ R. Then an upper bound for the
convergence rate in expectation for the kernel density estimator with window width hn is given
by ψ̃n,r = h2r

n + 1/(nhn). The optimal choice of hn = n−1/(2r+1) renders the two terms equal,
giving the upper bound ψ̃n,r = n−2r/(2r+1), which is also the optimal convergence rate.

As Example 1.20 shows, the construction of an optimal sequence of estimators required the
knowledge of the regularity parameter r, since the definition of hn depended on it. A more dif-
ficult problem consists of proposing an estimation procedure that does not require such extra
knowledge, and can achieve the optimal convergence rate for a large set of parameters. These
methods are called adaptive estimation methods, and it has been a key topic in the literature
of nonparametric estimation for all sorts of models, leading to the emergence of multiple ap-
proaches. We give a brief overview of papers concerning adaptation methods for nonparametric
density estimation.

Early papers to consider adaptive methods for nonparametric density estimation include [74]
who studied data-driven linear combinations of orthogonal series estimators over Sobolev classes
of periodic densities on [0, 1], and [86] for Sobolev classes on R. The so-called Lepski’s method,
proposed originally by [124], was also applied for the problem of point-wise adaptive estimation
for Sobolev classes in [30] and adaptation for the sup-norm loss in [83]. More recently, data driven
bandwidth selection methods which achieve adaptability over anisotropic Nikol’skii classes were
proposed in [84, 122, 85]. Another frequently employed approach applies model selection criteria
with model-complexity penalization to orthogonal series and wavelet estimators, see [11, 23, 10].

A popular adaptation method for Besov function classes for the wavelet density estimator is
the wavelet thresholding procedure. This method consists of keeping only significant coefficients
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in the expansion (1.15), and it was first applied to density estimation in [111] and [65]. An
improvement for this technique with block thresholding rules was proposed in [96] for global
error measures and [44] for local error measures such as point-wise mean squared error.

The method of aggregation of estimators, famous in machine learning and thoroughly dis-
cussed in the following section, can also be used to construct adaptive estimators. In [150],
kernel density estimators are aggregated to obtain an adaptive estimator over Sobolev classes.
Adaptation for the multiple index model via aggregation was considered in [155]. In Chapter
6, an aggregation method on the logarithms of density estimators, developed in Chapter 5, is
used to give an adaptive estimator for densities whose logarithm belongs to a large collection of
Sobolev spaces. A more detailed bibliography of aggregation methods can be found in the next
section.

1.2.4 Aggregation of estimators

A multitude of nonparametric density estimation methods have been presented previously.
Each method is more suited for some class of pdfs. For pdfs which belong to some parametric
model, parametric estimation methods provide even faster convergence rates than nonparamet-
ric methods. The idea of proposing a unified method, which can combine the advantages of
parametric models (fast convergence rate) and nonparametric methods (no fix functional form),
inspired the introduction of the aggregation framework, which is attributed to [135] who for-
mulated the problem for the nonparametric regression model. Let us give now a more detailed
definition in the density estimation setup.

Let Xn = (X1, . . . , Xn) denote an i.i.d. sample from a distribution with joint pdf f . Let
(fk, 1 ≤ k ≤ N) be a collection of estimators for f , which do not depend on the sample Xn.
Consider linear combinations of these estimators: for µ ∈ RN , let fµ = ∑N

k=1 µkfk. For a semi-
distance d(·, ·) and a set U ⊆ RN , the aggregation problem can be stated as follows: find an
estimator f̂n, such that there exists a constant C ≥ 1 for which f̂n satisfies an oracle inequality
either in expectation, that is:

Ef
[
d(f, f̂n)

]
≤ C min

µ∈U
d(f, fµ) +Rn,N , (1.16)

or in deviation, i.e. for all ε > 0:

Pf
(
d(f, f̂n) > C min

µ∈U
d(f, fµ) +Rn,N,ε

)
≤ ε, (1.17)

for some small remainder terms Rn,N , Rn,N,ε independent of f and (fk, 1 ≤ k ≤ N) belonging to
a certain class of functions. When C = 1, we say that the oracle inequality is sharp. According
to the choice of the set U , three main problems are considered in the literature.

Model selection aggregation U = {ek, 1 ≤ k ≤ N}, where ek ∈ RN denotes the unit
vector in the k-th direction. This means that the aggregate estimator has to mimic the
performance of the best estimator among (fk, 1 ≤ k ≤ N).

Convex aggregation U is a convex subset of RN , usually chosen to be the simplex:

Λ+ = {µ = (µk, 1 ≤ k ≤ N) ∈ RN , µk ≥ 0 and
∑

1≤k≤N
µk = 1}. (1.18)

This means that the aggregate estimator has to mimic the performance of the best convex
combination of the estimators (fk, 1 ≤ k ≤ N).

Linear aggregation U = RN . This means that the aggregate estimator has to mimic the
performance of the best linear combination of the estimators (fk, 1 ≤ k ≤ N).

Notice that these problems are increasing in difficulty, since the minimum in (1.16) and
(1.17) are taken over increasing sets. Hence the order of the remainder terms Rn,N and Rn,N,ε
is specific to each problem and also increases with the difficulty. For the semi-distance d(·, ·),
most papers in the literature consider the Lp distance with 1 ≤ p ≤ +∞, the Kullback-Leibler
divergence or the Hellinger distance. Optimality of the remainder term is defined similarly to
minimax convergence rates, see [167].
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Definition 1.21. The term Rn,N is the optimal rate of aggregation in expectation for functions
in a class F if:

• there exists an aggregate estimator f̂n and a constant C > 0 such that for all (fk, 1 ≤
k ≤ N), n ∈ N∗:

sup
f∈F

(
Ef
[
d(f, f̂n)

]
−min

µ∈U
d(f, fµ)

)
≤ CRn,N ,

• there exist N functions fk, 1 ≤ k ≤ N in F and a constant c > 0 such that for all n ∈ N∗:

inf
f̂n

sup
f∈F

(
Ef
[
d(f, f̂n)

]
−min

µ∈U
d(f, fµ)

)
≥ cRn,N .

Definition 1.22. The term (Rn,N,x, n ∈ N∗) is the optimal rate of aggregation in deviation for
functions in a class F if for all x in some interval (x, x̄):

• there exists an aggregate estimator f̂n and a constant C > 0 such that for all (fk, 1 ≤
k ≤ N), n ∈ N∗:

sup
f∈F

Pf
(
d(f, f̂n)−min

µ∈U
d(f, fµ) > CRn,N,x

)
≤ x,

• there exist N functions fk, 1 ≤ k ≤ N in F and a constant c > 0 such that for all n ∈ N∗:

inf
f̂n

sup
f∈F

Pf
(
d(f, f̂n)−min

µ∈U
d(f, fµ) > cRn,N,x

)
≥ x.

A lot of results on aggregation concern the nonparametric regression model with random
design, which can be formulated as follows. Let Xn = ((X1, Y 1), . . . , (Xn, Y n)) be a sample of
independent two-dimensional random vectors, where Y i, 1 ≤ i ≤ n is given by:

Y i = f(Xi) + ξi,

with f : R → R unknown and ξi, 1 ≤ i ≤ n integrable real valued random variables such that
E[ξi] = 0. The problem is to estimate the function f by f̂n(t) = f̂n(t,Xn), given the assumption
that f belongs to a large class of functions F with some regularity conditions. For the non-
parametric regression model with random design, model selection aggregation was considered in
[178, 174] for the L2 distance in expectation. The procedure considered in [178], called progres-
sive mixture method, is suboptimal in deviation according to [8], which proposes an alternative
which is optimal both in expectation and deviation. Optimality in deviation can be achieved with
restricted empirical risk minimization, see [121]. The problem of convex aggregation is addressed
in [107] and [180] for large values of N , while [168] also considers linear aggregation. A universal
method which achieves near optimal remainder terms in expectation for all three problems was
proposed by [29]. Extension of these results for nonparametric regression with fixed design can
be found in [53, 54, 50] for model selection aggregation, [52] for convex aggregation. Rates of
aggregation both in expectation and deviation with respect to the Kullback-Leibler divergence
for all three problems was studied in [149].

Results for model selection aggregation in density estimation were first given in [41, 179] in
expectation of the Kullback-Leibler divergence. The results were shown to be optimal in [120].
A generalization of the progressive mixture method of [41, 179] is given in [108]. Model selection
in deviation for L2 distance is addressed in [17]. The problem of convex and linear aggregation
for densities is considered in [150] for expectation with L2 distance.

To our knowledge, the only paper considering aggregation of spectral density estimators is
[43], where linear aggregation of lag window estimators for the L2 distance in expectation is
studied. The method was validated by a simulation study as well.
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1.2.5 Main results of the second part

In this section we present the results obtained in the second part of the thesis. In Chapter
5, which corresponds to [38], we consider the problem of model-selection aggregation (that is
U = {ek, 1 ≤ k ≤ N}) in deviation for the Kullback-Leibler divergence, defined by (1.2), with
exponential bounds. Let us state the problem in a general setup.

Let Xn = (X1, . . . , Xn) be a sample from the probabilistic model P = {Pf ; f ∈ F}. Let
(fk, 1 ≤ k ≤ N) be a set of estimators independent of Xn. Find an estimator f̂n of f such
that for all x > 0:

Pf
(
D
(
f‖f̂n

)
> min

1≤k≤N
D (f‖fk) +Rn,N,x

)
≤ e−x,

with a remainder term Rn,N,x that is optimal.

The considered class contains functions whose logarithm is bounded with respect to a refer-
ence pdf h. Let us denote:

G = {f : Rd → R+ measurable, ‖ log(f/h)‖∞ < +∞}

We first consider the density estimation problem, where f corresponds to the joint pdf from which
an i.i.d. sample Xn = (X1, . . . , Xn) is available. When the joint pdfs f and (fk, 1 ≤ k ≤ N)
belong to G, they have the following representation:

f = et−ψ h and fk = etk−ψk h, (1.19)

where t, tk are functions such that
∫
th = 0,

∫
tkh = 0, and ψ, ψk are normalizing constants. The

estimator f̂n will be chosen from the family {fDλ , λ ∈ Λ+} with Λ+ as in (1.18), whose elements
are given by:

fDλ = etλ−ψλ h with tλ =
N∑
k=1

λktk and ψλ = log
(∫

etλ h
)
. (1.20)

Therefore the estimator f̂n is based on a convex combination of the functions (tk, 1 ≤ k ≤ N)
(rather than a convex combination of (fk, 1 ≤ k ≤ N)), where the aggregation weights λ are
determined using the sample Xn. We set f̂n = fD

λ̂D∗
, where λ̂D∗ ∈ Λ+ maximizes a penalized

maximum likelihood criterion, i.e. λ̂D∗ = argmax λ∈Λ+HD
n (λ) where HD

n (λ) is given by:

HD
n (λ) = 1

n

n∑
j=1

tλ(Xj)− ψλ −
1
2 penD(λ), (1.21)

with penalty term:

penD(λ) =
N∑
k=1

λkD
(
fDλ ‖fk

)
=

N∑
k=1

λkψk − ψλ.

The following theorems show that for joint pdfs belonging to the set FD(L) = {f ∈
G; ‖ t‖∞ ≤ L} for some L > 0, the estimator fD

λ̂D∗
achieves the rate of aggregation Rn,N,x

given by (log(N) + x)/n.

Theorem 1.23. Let L,K > 0. Let f ∈ FD(L) and (fk, 1 ≤ k ≤ N) be elements of FD(K) such
that (tk, 1 ≤ k ≤ N) are linearly independent. Let Xn = (X1, . . . , Xn) be an i.i.d. sample from
the pdf f . Let fD

λ̂D∗
be given by (1.20) with λ̂D∗ = argmax λ∈Λ+HD

n (λ). Then for any x > 0 we
have:

Pf
(
D
(
f‖fD

λ̂D∗

)
− min

1≤k≤N
D (f‖fk) >

β(log(N) + x)
n

)
≤ e−x,

with β = 2 exp(6K + 2L) + 4K/3.
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The next theorem shows that Rn,N,x = (log(N) + x)/n is indeed optimal.

Theorem 1.24. Let N ≥ 2, L > 0. Then there exist N pdfs (fk, 1 ≤ k ≤ N), with fk ∈ FD(L)
such that for all n ≥ 1, x ∈ R+ satisfying:

log(N) + x

n
< 3

(
1− e−L

)2
,

we have:

inf
f̂n

sup
f∈FD(L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x,

with the infimum taken over all estimators f̂n based on the sample Xn = (X1, . . . , Xn), and
β′ = 2−17/2/3.

We consider the same problem for spectral density estimation as well. In this case, the
sample Xn corresponds to n consecutive observations from the stationary Gaussian sequence
(Xk, k ∈ Z) with spectral density f . The quality of a non-negative estimator f̂n is measured by
the generalized Kullback-Leibler divergence D

(
f‖f̂n

)
defined as:

D
(
f‖f̂n

)
=
∫
f log

(
f

f̂n

)
−
∫
f +

∫
f̂n.

Notice that this definition coincides with (1.2) when f and f̂n are pdfs. To define the function
class G, we choose h = 1/(2π)1[−π,π] as reference pdf. We give a slightly different representation
of f and the estimators (fk, 1 ≤ k ≤ N) than (1.19), which is necessary since these functions do
not necessary have unit integrals. Let:

f = 1
2π eg 1[−π,π] and fk = 1

2π egk 1[−π,π].

We choose our estimator f̂n amongst the function {fSλ , λ ∈ Λ+} based on the convex combina-
tions of the functions (gk, 1 ≤ k ≤ N):

fSλ = 1
2π egλ 1[−π,π] with gλ =

N∑
k=1

λkgk. (1.22)

We denote the integral of fSλ by mλ. The aggregation weights λ̂S∗ ∈ Λ+ maximizes the function
λ 7→ HS

n (λ) given by:
HS
n (λ) =

∫
gλIn −mλ −

1
2 penS(λ),

with penalty term penS(λ) = ∑N
k=1 λkD

(
fSλ ‖fk

)
and In defined as, for t ∈ [−π, π]:

In(t) = γ̂0
2π + 1

π

n−1∑
j=1

γ̂j cos(jt) with γ̂j = 1
n

n−j∑
i=1

XiXi+j ,

where (γ̂j , 0 ≤ j ≤ n−1) correspond to empirical estimates of the correlations (γj , 1 ≤ j ≤ n−1).
Notice that the function In is a biased nonparametric estimator of the spectral density. In order
to give the optimal remainder term for this problem, we have to assume some regularity on the
functions f and (fk, 1 ≤ k ≤ N). For a function ` ∈ L2([−π, π]) periodic on [−π, π], let us take
its Fourier series expansion: `(x) = ∑

k∈Z ak eikx a.e. with ak =
∫ π
−π e−ikx `(x) dx. Define the

fractional Sobolev norm ‖`‖2,r, r > 0 as:

‖`‖22,r = ‖`‖2L2(h) +{`}22,r with {`}22,r =
∑
k∈Z
|k|2r|ak|2.
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We consider non-negative, even functions whose logarithms have bounded fractional Sobolev
norms for some r > 1/2:

FSr (L) = {f ∈ G : g = log(2πf) verifies ‖g‖2,r ≤ L/Cr and g even},

where C2
r = ∑

k∈Z |k|
−2r is a constant depending on r. By the Cauchy-Schwarz inequality, we also

have that ‖g‖∞ ≤ L. There also exist a constant C(r, L) such that for all f ∈ FSr (L), we have
‖2πf ‖2,r ≤ C(r, L), see Lemma 5.9. The following theorems show that for spectral densities
belonging to FSr (L), the estimator fS

λ̂S∗
also achieves the rate of aggregation (log(N) + x)/n.

Theorem 1.25. Let r > 1/2, K,L > 0. Let f ∈ FSr (L) and (fk, 1 ≤ k ≤ N) be elements of
FSr (K) such that (gk, 1 ≤ k ≤ N) are linearly independent. Let Xn = (X1, . . . , Xn) be a sample
of a stationary centered Gaussian sequence with spectral density f . Let fS

λ̂S∗
be given by (1.22)

with λ̂S∗ = argmax λ∈Λ+HS
n (λ). Then for any x > 0, we have:

Pf
(
D
(
f‖fS

λ̂S∗

)
− min

1≤k≤N
D (f‖fk) >

β(log(N) + x)
n

+ α

n

)
≤ e−x,

with β = 4(K eL + e2L+3K) and α = 4KC(r, L)/Cr.

The rate (log(N) + x)/n is also optimal according to the next theorem.

Theorem 1.26. Let N ≥ 2, r > 1/2, L > 0. There exist N spectral densities (fk, 1 ≤ k ≤ N)
belonging to FSr (L) such that for all n ≥ 1, x ∈ R+ satisfying:

log(N) + x

n
<

C(r, L)
log(N)2r

we have:

inf
f̂n

sup
f∈FSr (L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x,

with the infimum taken over all estimators f̂n based on the sample sequence Xn = (X1, . . . , Xn),
and β′ = 8−5/2/3.

The aggregation method proposed in this section will be used to obtain an adaptive non-
parametric density estimator for maximum entropy distributions of vectors of order statistics in
the following.

Chapter 6, which corresponds to [37], is devoted to the study of the problem of nonparametric
estimation of maximum entropy distributions of vectors of order statistics, and can be given as
follows.

Let f be the joint pdf of a d-dimensional random vector with d ≥ 2, given by:

f(x) = exp
(

d∑
i=1

`i(xi)− a0

)
14(x) for x ∈ Rd, (1.23)

with `i bounded, centered, measurable functions on I, a0 the normalizing constant and 4 =
{x = (x1, . . . , xd) ∈ Rd, 0 ≤ x1 ≤ . . . ≤ xd ≤ 1}. Given an i.i.d. sample Xn = (X1, . . . , Xn)
of size n from the pdf f , the task is to estimate nonparametrically f with a convergence rate
that corresponds to the optimal rate of convergence in deviation for the univariate density
estimation problem.
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By (1.11), joint pdfs of maximum entropy distributions of order statistics with given marginals
are of the form (1.23) if the marginals are supported on I. In addition to this example, den-
sities of the form (1.23) appear as joint pdfs of observations in the random truncation model.
The random truncation model, which was first formulated in [170], appears in various contexts
ranging from astronomy [126], economics [98, 90] to survival data analysis [118, 106, 125]. See
[115] for an overview of possible applications. Some recent theoretical works cover estimation of
the probability of holes for the Lynden-Bell estimator [163], estimation of the mode of the den-
sity of interest [18], a Berry-Esseen type bound for the kernel density estimation under random
truncation [6], etc.

For d = 2, let (Z1, Z2) be a pair of independent random variables on I such that Zi has
pdf pi for i ∈ {1, 2}. In the random truncation model, we suppose that we can only observe
realizations of (Z1, Z2) if Z1 ≤ Z2. Let Z̄ = (Z̄1, Z̄2) denote the random vector distributed as
(Z1, Z2) conditionally on Z1 ≤ Z2. Then the joint pdf f of Z̄ is given by, for x = (x1, x2) ∈ I2:

f(x) = 1
α
p1(x1)p2(x2)14(x),

with α =
∫
I2 p1(x1)p2(x2)14(x) dx. The joint pdf can be written in the form of (1.23) with `i

defined as `i = log(pi)−
∫
I log(pi) for i ∈ {1, 2} (when pi is uniformly bounded from 0 and +∞,

and log(pi) is integrable).
We propose to estimate joint pdfs of the form (1.23) by a regular exponential family which

takes into consideration its special structure. The idea consists of approximating the function `i
by an orthogonal series expansion on a suitable basis (ϕi,k, k ∈ N) for all 1 ≤ i ≤ d. When we
take m = (m1, . . . ,md) basis functions for a total of |m| = ∑d

i=1mi, the model takes the form,
for θ = (θi,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi) ∈ R|m| and x = (x1, . . . , xd) ∈ Rd:

fθ(x) = exp
(

d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)− ψ(θ)
)

14(x),

with ψ(θ) = log
(∫
4 exp

(∑d
i=1

∑mi
k=1 θi,kϕi,k(xi)

)
dx
)
a normalizing constant. We will refer to

this model as the log-additive exponential model. We estimate the parameters of the model by
θ̂m,n = (θ̂m,n,i,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi) ∈ R|m| which maximizes the log-likelhood based on the
sample Xn:

θ̂m,n = argmax
θ∈R|m|

d∑
i=1

mi∑
k=1

θi,kµ̂m,n,i,k − ψ(θ)

with µ̂m,n,i,k = (1/n)∑n
j=1 ϕi,k(X

j
i ) the empirical means. Equivalently, the parameter estimate

θ̂m,n satisfies the maximum likelihood equations:∫
4
ϕi,k(xi)fθ̂m,n(x) dx = µ̂m,n,i,k for 1 ≤ i ≤ d, 1 ≤ k ≤ mi.

The choice of the functions (ϕi,k, 1 ≤ i ≤ d, k ∈ N) is crucial to obtain a fast convergence
rate. We propose a polynomial basis consisting of Jacobi polynomials (transformed to suit the
domain4). In particular, the system of functions (ϕi,k, k ∈ N) is orthonormal with respect to the
Lebesgue measure on 4 for each 1 ≤ i ≤ d. However, the complete system is not orthonormal,
as some of the scalar products are non-zero. For detailed properties of the basis, see Section 6.6.

We measure the risk between the true joint pdf f and its estimator f̂m,n = fθ̂m,n by the
Kullback-Leibler divergence D

(
f‖f̂m,n

)
. We show that D

(
f‖f̂m,n

)
can be separated into a

bias term D
(
f‖fθ∗m

)
and a variance term D

(
fθ∗m‖f̂m,n

)
, where fθ∗m is the so called information

projection of the joint pdf f onto the exponential model with m basis functions, verifying:∫
4
ϕi,k(xi)fθ∗m(x) dx =

∫
4
ϕi,k(xi)f(x) dx for 1 ≤ i ≤ d, 1 ≤ k ≤ mi.
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To control the bias term D
(
f‖fθ∗m

)
, we suppose for all 1 ≤ i ≤ d that the function `i belongs to

the Sobolev space W 2
ri(qi), ri ∈ N∗, defined as:

W 2
ri(qi) =

{
h ∈ L2(qi);h(ri−1) is absolutely continuous and h(ri) ∈ L2(qi)

}
,

where qi is the i-th marginal of the Lebesgue measure on 4. The following theorem gives the
convergence rate of the maximum likelihood estimator for the log-additive exponential model
when the number of parameters mi grows with n in an appropriate manner. We recall that for
a positive sequence (an, n ∈ N), the notation OP(an) of stochastic boundedness for a sequence
of random variables (Yn, n ∈ N) means that for every ε > 0, there exists Cε > 0 such that:

P (|Yn/an| > Cε) < ε for all n ∈ N.

Theorem 1.27. Let f be a joint pdf of the form (1.23). Assume the functions `i belong to the
Sobolev space W 2

ri(qi), ri ∈ N with ri > d for all 1 ≤ i ≤ d. Let Xn be an i.i.d. sample from f .
We consider a sequence (m(n) = (m1(n), . . . ,md(n)), n ∈ N∗) such that limn→∞mi(n) = +∞
for all 1 ≤ i ≤ d, and which satisfies:

lim
n→∞

|m|2d
(

d∑
i=1

m−2ri
i

)
= 0 and lim

n→∞
|m|2d+1

n
= 0.

The Kullback-Leibler distance D
(
f‖f̂m,n

)
between f and the maximum likelihood estimator f̂m,n

converges in probability to 0 with the convergence rate:

D
(
f‖f̂m,n

)
= OP

(
d∑
i=1

m−2ri
i + |m|

n

)
.

Furthermore, the convergence is uniform over the class of functions Kr(L) given by for a
regularity parameter r = (r1, . . . , rd) ∈ (N∗)d and L > 0:

Kr(L) =
{
f(x) = exp

(
d∑
i=1

`i(xi)− a0

)
14(x) a joint pdf; ‖`i ‖∞ ≤ L, ‖(`i)(ri) ‖L2(qi) ≤ L

}
.

That is, we have the following upper bound for the convergence rate in deviation (as in (1.12)
of Definition 1.19):

lim
C→∞

lim sup
n→∞

sup
f∈Kr(L)

P
(
D
(
f‖f̂m,n

)
≥
(

d∑
i=1

m−2ri
i + |m|

n

)
C

)
= 0.

We remark that lower bounds corresponding to (1.13) of Definition 1.19 are not available in the
literature for this setup. For eachmi, 1 ≤ i ≤ d, the choice ofmi(n) = bn1/(2ri+1)c balance out the
bias and variance term giving the convergence rate ψn,r = ∑d

i=1 n
−2ri/(2ri+1), which is the same

order as n−2 min(r)/(2 min(r)+1), corresponding to the optimal convergence rate in the univariate
case over Sobolev spaces with regularity parameter min(r) (see [12, 181]). The same rate can be
obtained by choosing the same number of functions in each direction:m∗(n) = (v∗(n), . . . , v∗(n))
with v∗(n) = bn1/(2 min(r)+1)c.

Notice that similarly to the example of Section 1.2.3, the optimal choice of the number of basis
functions m depended on the knowledge of the regularity parameter r. When such knowledge is
not available, we propose an adaptive estimation method which achieves the convergence rate
ψn,r = n−2 min(r)/(2 min(r)+1) for a large set of regularity parameters r. The adaptive method
consists of two steps: first we estimate the log-additive exponential model for multiple choices
of the number of basis functions m, which correspond to optimal choices for different regularity
parameters, then in a second step we utilize the aggregation method of Chapter 5 to create a
final estimator which automatically achieves the convergence rate n−2 min(r)/(2 min(r)+1) even if r
is unknown. We split the sample Xn into two parts Xn1 and Xn2 of size proportional to n, to use
for each step.
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Estimation step Let (Nn, n ∈ N∗) be a sequence of non-decreasing positive integers such
that limn→∞Nn = +∞. We denote:

Nn =
{
bn1/(2(d+j)+1)c, 1 ≤ j ≤ Nn

}
and Mn =

{
m = (v, . . . , v) ∈ Rd, v ∈ Nn

}
.

For m ∈Mn let f̂m,n be the maximum likelihood estimator for the log-additive exponen-
tial model based on the first sample Xn1 . Notice that the estimators Fn = (f̂m,n,m ∈Mn)
correspond to the optimal choices for regularity parameters r for which min(r) ∈ {d +
j, 1 ≤ j ≤ Nn}.

Aggregation step Let us write ˆ̀
m,n(x) = ∑d

i=1
∑mi
k=1 θ̂i,kϕi,k(xi) for x = (x1, . . . , xd) ∈ 4

to ease notation. We define the convex combination ˆ̀
λ of the functions ˆ̀

m,n, m ∈ Mn

and the joint pdf fλ as, for λ ∈ Λ+:

ˆ̀
λ =

∑
m∈Mn

λm ˆ̀
m,n and fλ = exp(ˆ̀

λ − ψλ)14,

with ψλ = log
(∫
4 exp(ˆ̀

λ)
)
. We choose the aggregation weights λ̂∗n by maximizing HD

n (λ)
given by (1.21) with Xn replaced by Xn2 .

Notice that in the setMn we only considered vectors with the same number of basis functions
in each direction. Since we have already seen that optimal rate can be achieved by choosing such
vectors, it is unnecessary to include vectors in Mn which correspond to anisotropic functions
classes (that is, where the regularity parameters r1, . . . , rd are not the same in each direction).

We remark also that the aggregation step requires that the functions ˆ̀
m,n, m ∈ Nn be

uniformly bounded. During the proof of our main result, we show that they are uniformly
bounded with high probability, which is sufficient for the convergence rate in deviation.

The next theorem asserts that if we choose Nn = o(log(n)) such that limn→∞Nn = +∞,
the series of convex aggregate estimators fλ̂∗n converge to f with the optimal convergence rate,
i.e. as if the smoothness was known.

Theorem 1.28. Let f be a joint pdf of the form (1.23). Assume the functions `i belongs to the
Sobolev space W 2

ri(qi), ri ∈ N with ri > d for all 1 ≤ i ≤ d. Let Xn be an i.i.d. sample from f . Let
Nn = o(log(n)) such that limn→∞Nn = +∞. The Kullback-Leibler distance D

(
f‖f̂m,n

)
between

f and the convex aggregate estimator fλ̂∗n converges in probability to 0 with the convergence rate:

D
(
f‖fλ̂∗n

)
= OP

(
n
− 2 min(r)

2 min(r)+1

)
.

The sequence of convex aggregate estimators fλ̂∗n achieves uniform convergence over sets of
densities with increasing regularity. Let Rn = {j, d+ 1 ≤ j ≤ Rn}, where Rn satisfies the three
inequalities:

Rn ≤ Nn + d, Rn ≤
⌊
n

1
2(d+Nn)+1

⌋
, Rn ≤

log(n)
2 log(log(Nn)) −

1
2 ·

On Rn, we have the following uniform upper bound for the convergence rate in deviation:

lim
C→∞

lim sup
n→∞

sup
r∈(Rn)d

sup
f∈Kr(L)

P
(
D
(
f‖fλ̂∗n

)
≥
(
n
− 2 min(r)

2 min(r)+1

)
C

)
= 0.

Therefore we obtained an estimator that is adaptive to the smoothness of the underlying density
for an increasing set of regularity parameters without loss in the convergence rate. A simulation
study confirms that the log-additive exponential model outperforms a truncated kernel estimator
for the truncation model with various choices for the pdfs pi, i = 1, 2. Figure 1.4 shows the true
joint pdf and its estimators in the case when p1 is the pdf of Normal mixture distribution and
p2 is the pdf of a Normal distribution.
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(c) Kernel

Figure 1.4 – Joint density functions of the true density and its estimators with Normal mix
marginals.

1.2.6 Perspectives

In the second part of the thesis, we considered the problem of nonparametric estimation of
maximum entropy distributions of vectors of order statistics with support 4. When considering
a distribution f with a support different from 4, problems may arise. Let fi denote the i-
th marginal pdf of of f and Ai ⊂ R its support for 1 ≤ i ≤ d. When Ai = A ⊆ R for all
1 ≤ i ≤ d, we can apply a strictly monotone mapping of A onto I to obtain a distribution with
a product form supported on 4. The transformation needs to be chosen carefully in order to
ensure that the resulting `i, 1 ≤ i ≤ d functions belong to certain Sobolev spaces. This can be
particularly difficult when A = R, where tail properties of the distribution have to be taken
into consideration. When the supports Ai differ, there is no simple transformation that gives a
random vector with joint pdf of the form (1.23). A possible way to treat this case consists of
constructing a family of basis functions which has similar properties with respect to the support
of f as the family (ϕi,k, 1 ≤ i ≤ d, k ∈ N) with respect to 4. This would allow us to define an
exponential model with this family of basis functions and support restricted to the support of
f . A complete description for all types of supports could be subject for future work.

When we applied this estimation method to a real dataset in Chapter 7, we did not obtain
satisfactory results, possibly due to the fact that the underlying joint pdf may not have the
form (1.23). This calls for a statistical testing procedure which could determine, based on the
available sample, whether the underlying joint pdf corresponds to the form (1.23) or not.

1.3 Industrial applications

The main motivation of this thesis work was to contribute to the need of modelling uncertain-
ties in engineering studies related to probabilistic safety assessment. We first give a brief overview
of the uncertainty quantification methodology developed by Électricité de France (EDF) Re-
search and Development and related industrial research institutes. Then, we introduce the two
case studies considered, which were presented at conferences dedicated to applied research in
industrial context. The first case study, described in Section 1.3.2, concerns the simulation of
physical parameters with monotonicity constraints in a numerical welding model. This study
was presented at the 19th Lambda-Mu Conference in Dijon, see [31]. The second case study,
detailed in Section 1.3.3, proposes a nonparametric method to estimate the joint density of the
dimensions of flaws in a mechanical component in a power plant. This work was presented at
the 25th European Safety and Reliability Conference in Zürich, see [34].

1.3.1 Uncertainty quantification in engineering : the EDF framework

In this section we present the general uncertainty treatment methodology of EDF Research
and Development, as well as a dedicated software platform called OpenTURNS which imple-
ments the methods related to uncertainty treatment.
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A four-step iterative method

Recently the need to comply with regulatory requirements led EDF to develop a global
methodology framework for treating uncertainties for models and simulations in collaboration
with other major companies, industrial research institutions and academic partners. We refer
to [138] and [137] for an overview on this topic with recent developments and numerous exam-
ples. The resulting generic uncertainty treatment methodology consists of a four step process
illustrated by Figure 1.5. These steps are the following:

Figure 1.5 – The uncertainty treatment methodology. Source: [15].

Step A: Uncertainty Problem Specification. The first step consists of specifying the
model we would like to study as well as the sources of uncertainty. The model (which
can be an analytical formula as well as a computer code or an experimental process) is
represented as a function G : Rp+q 7→ Rz. We can split the input vector into a set of
parameters X = (X1, . . . , Xp) that are subject to uncertainties, and a set of parameters
d = (d1, . . . , dq) that are considered as fixed. The output Y becomes a z-dimensional
random vector:

Y = G(X, d),

where X ∈ Rp is a random vector representing the uncertain inputs and d ∈ Rq is the
vector of deterministic inputs. We also need to specify the so called quantity of interest, a
relevant feature of the output variable Y which we would like to study in order to answer
the regulatory demand. Such features can be measures of central tendency (mean, median
or mode), measures of dispersion (range, variance or standard deviation), the probability
of exceeding certain thresholds, etc.

Step B: Uncertainty Quantification of the Input. Once the sources of uncertainty have
been fixed, we need to propose a probabilistic model to account for them. This involves
determining the joint distribution of the random vector X. The modelling procedure de-
pends on the available information. This information can come in the form of an expert
judgement, an available sample or some physical constraints which need to be respected.
If there is only scarce information based on expert opinions, a common method is to
use a the Maximum Entropy Principal (originating from [161]) to propose a distribution
which is the least informative given the available expert knowledge. If we possess a data
set of sufficient size, we can identify a parametric model and estimate its parameters or
we can proceed with a non-parametric approach if a convenient parametric model does
not emerge. In all cases, the probabilistic model needs to be validated before we continue
our analysis.
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Step C: Uncertainty Propagation. With the probabilistic model for the random input
vector established, uncertainties are propagated to the model outcome and estimate the
quantity of interest. Depending on the complexity and cost of the model evaluation, sev-
eral methods can be applied. The easiest case is when analytical formulas are available.
When this is not the case, we have to rely on approximation techniques. If we are in-
terested in central tendency or dispersion measures, we can use Monte Carlo sampling
methods. If the evaluation of the model G is costly, then we can apply the Taylor variance
decomposition method, or build a metamodel, whose cost is negligible compared to the
cost of G, and perform a Monte Carlo study with it. For the probability of threshold
exceedance, especially when we are interested in rare events, several techniques exist to
accelerate the estimation such as importance sampling, subset sampling, FORM-SORM
methods, etc.

Step C’: Analysis of Sensitivity and Importance Ranking. Finally, we analyse the
sensitivity of the quantity of interest with respect to the input variables in order to
determine which variables have the most influence on this quantity. Sensitivity can be
measured by simple correlation coefficients or variance based methods such as Sobol’s
indices. The ranking can help us to determine which variables require further attention
in order to obtain more precise results after taking some feedback action and refining our
model. Then the procedure can be iterated to attain more satisfactory results.

The work presented in this thesis concerns Step B of this scheme, the probabilistic modelling
of random input variables. The currently accepted EDF approach consists of modelling the
joint distribution of the input random vector X = (X1, . . . , Xp) by establishing the marginal
distributions Xi, 1 ≤ i ≤ p, and explicitly modelling the dependence structure via giving the
connecting copula of X. Chapter 3 considers the case when the expert’s knowledge include the
precise characterization of the marginal distributions (cumulative distribution function fixed)
and an almost sure ordering constraint between the components of X. The Maximum Entropy
Principal is applied to obtain the distribution which contains the least information in addition
to these constraints. In the first application case of Section 1.3.2, where physical parameters
which are monotone functions of the temperature are modelled, the setup was similar to this.
In absence of significant amount of empirical data, the marginals were considered to be uniform
random variables on intervals which correspond to the scarce experimental results, and the
physics of the welding model imposes the ordering constraint.

The second application case of Section 1.3.3 studies a situation where a sample is available
from the random input vectorX, exhibiting similar ordering constraints as required in Chapter 3.
We attempt to model the random vector X with the family of maximum entropy distributions
of ordered random vector obtained in this section, and propose a non-parametric estimation
method in Chapter 6 to estimate the joint distribution of X. We compare the properties of
this new model to models proposed in previous papers (for example [148]) in an uncertainty
quantification study concerning the evaluation of the probability of a threshold exceedance.

OpenTURNS : an industrial software for uncertainty treatment

To implement the uncertainty treatment methodology described in the previous section,
EDF and its industrial partners Airbus Group, Phimeca Engineering and IMACS developed
a dedicated open source software platform named OpenTURNS. This C++ library endowed
with a Python TUI, available to download at www.openturns.org, implements the step-by-step
framework with a large selection of available methods for each step of the uncertainty treat-
ment methodology based on the specific characteristics of the underlying problem. In particular,
the methods cited in the description of methodology are readily implemented, see [15] for a
comprehensive (but not exhaustive) overview of the functionalities.

One of the main innovative features of the OpenTURNS platform is the ability of modelling
multivariate distributions by copula functions. This allows us to define the joint multivariate
cumulative distribution function of the random vector X of uncertain inputs as the composition

www.openturns.org
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of a copula function with the univariate marginal cumulative distribution functions. With a
large selection of copulas, including most well known parametric families as well as the ability to
combine different copulas via composition or to extract the copula of an arbitrary multivariate
distribution, OpenTURNS gives the possibility to specify complex dependence structures as
opposed to a simplistic, and often severely wrong, assumption of independence of the input
variables.

In particular, the maximum entropy distribution of order statistics associated to a vector
of marginals (Fi, 1 ≤ i ≤ p) given in Chapter 3 was implemented in this platform. One can
define such a distribution using the MaximumEntropyOrderStatisticsDistribution() object by
providing the list of marginal cumulative distribution functions. Then OpenTURNS verifies the
compatibility conditions of stochastic ordering between them before building the joint cumulative
distribution function. The following code implements the case when p = 2, and the marginals
are normally distributed with unit variance and means 0 and 1, respectively.

marg_1 = Normal (0 , 1 )
marg_2 = Normal (1 , 1 )
l ist_m = [marg_1 ,marg_2 ]
max_entr_dist = MaximumEntropyOrderStat ist icsDistr ibut ion ( l ist_m )

It is also possible to only define the copula function of the maximum entropy distribution of
order statistics through the object MaximumEntropyOrderStatisticsCopula(), and then combine
it with any set of marginals to obtain a joint distribution. Figure 1.3 illustrate the joint density
and the copula of the obtained distribution.

The non-parametric estimations of Chapters 6 and 7 have also been carried out with the help
of OpenTURNS. Many aspects of the library were utilized in the code such as the readily avail-
able families of orthogonal polynomials, sophisticated multidimensional numerical integration,
the TNC (Truncated Newton Constrained) optimization algorithm or the multivariate kernel
density estimator. An eventual implementation of the estimation method of Chapter 6 could
enrich the library with further non-parametric methods besides the kernel density estimator.

1.3.2 Numerical model for welding

The first application case study considered during my thesis work considers the probabilistic
modelling of input parameters of a numerical welding simulation procedure in order to conduct
uncertainty quantification analysis. The simulation is based on a numerical finite element method
based on a thermal-mechanical model. The simulations are used to evaluate the characteristics of
residual stresses formed during the welding procedure, which can severely impact the lifetime of
the welded component. Input parameters include several physical characteristics of the material
such as Young’s modulus, yield strength, coefficient of thermal expansion, etc. These parameters
are evaluated at different temperatures covering a large range. While the values of the parameters
for low temperatures are relatively well known, data is very scarce on their values for high
temperatures, which leads to uncertainties.

Several sensitivity analysis studies have been carried out by researchers at EDF Research
and Development in order to assess the influence of the input parameters on the appearance of
residual stresses, see [7], [144] and [145]. These papers consider the welding of steel plates (focus-
ing on the type 316L stainless steel), and the thermal-mechanical calculations are implemented
using the software platform Code_Aster developed by EDF Research and Development.

The contributions of this thesis work is presented in Chapter 4. We propose an alterna-
tive method to the currently utilized approach for the modelling of physical parameter profiles
which are monotone functions of the temperature. The current approach enforces the monotonic-
ity constraint by imposing a function for the mean values at each temperature, and introducing
variability by adding an error function multiplied by zero-mean noise. There are multiple draw-
backs of this approach. First, it implies a strong hypothesis on the form of the function curve,
which is not supported by the available empirical data. Second, it can also result in parameter
profiles which are not monotone as a function of the temperature. Third, since the uncertainty
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is modelled by a single random noise, the marginal distributions of the parameter values will be
the same up to an affine transformation.

Several papers signed by researchers of the Industrial Risk Management Department ad-
dressed the question of generating samples of parameters with ordering and marginal constraints.
[140] proposes a constrained Latin Hypercube Sampling method to generate pseudo-random re-
alizations of the parameters. The drawbacks of this method is that the exact joint distribution
of the generated sample is unknown, therefore no control on the convergence of the Monte Carlo
simulation is available. In [119], the authors give copula-based construction of a multivariate
joint distribution which verifies both constraints. However the analytic formula of this copula
requires the computation of a set of functions which are solutions of ordinary differential equa-
tions, which are generally hard to find.

The method we suggest is to use the maximum entropy distribution of order statistics pro-
posed by Chapter 3, see formula (1.10), to define the joint distribution of the parameter values
at different temperatures. This method has multiple advantages over the previously discussed
approaches. A simple analytic formula is available for the joint density function, which almost
surely verifies the ordering constraint as opposed to the currently maintained approach. The
maximum entropy distribution also has a clear information-theory interpretation. Furthermore,
the marginals can be freely chosen for each temperature value (as long as they are stochastically
ordered), and there is no function form enforced. Chapter 4 also discusses in detail the case
of uniform marginals, with an inversion method with explicit formulas provided for elementary
simulation.

1.3.3 Modelling physical flaws in a passive mechanic component

The second application case concerns the probabilistic modelling of input parameters for a
fissure propagation simulation code. This code implements the physical model of propagation
of initial cracks in a metallic material under severe pressure. If the calculated intensity factor
exceeds de resistance of the steel (which also depends on the input parameters), a brutal rupture
may occur, potentially damaging the integrity of the examined component. We focus on the joint
modelling of two inputs, the initial depth and the length of the crack. These variables naturally
exhibit dependence.

Contrary to the previous case of Section 1.3.2, a data set of several hundred joint observations
is available to aid the modelling process. The data comes from either observations accumulated
during regular inspection of components operating in EDF power plants, or from controlled
experiments. The data suggest that the dimensions verify the ordering constraint, as the length
of the cracks is greater then the depth of the crack for all observations (a physical argument to
support this hypothesis is yet to emerge).

The currently accepted approach makes the assumption that the depth and the ratio between
the depth and length are independent, and a distribution is fitted with parametric families suit-
ably chosen for both variables. In an attempt to correctly model the dependence structure
between the dimensions, [148] considers the estimation of the copula for the two-dimensional
distribution by parametric families such as Gaussian, Frank or Gumbel copulas. The inconve-
nience of this approach is that the parametric families contain only symmetric copulas, therefore
potential asymmetric features of the dependence structure can not be accounted for. In particu-
lar, if the hypothesis on the almost sure ordering relationship between the dimensions is correct,
then its copula has a restricted support and is not symmetric, as it was seen in Chapter 3.

In the conference paper [34], we presented the possibility of using the non-parametric esti-
mation procedure of Chapter 6 to estimate the joint density of the dimensions of the cracks. We
keep in mind that even if the model does not fit as well to the empirical data as other models,
preference should be given to a model which is conservative, i.e. which potentially overestimates
the risk of a brutal rupture.

The results of the study show that even though the proposed non-parametric estimator
disperses the probabilistic mass on a larger domain than the previous models, it considerably
underestimates the failure probability compared to the other models. This is due to the fact that
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a failure is more likely to occur when both dimensions assume large values, whereas the non-
parametric estimator gives considerable weight to combinations with a large value for the length,
but smaller value for the depth. This may indicate that we overlooked some physical phenomenon
by considering only ordered random vectors. An improvement to the modelling procedure would
be to consider maximum entropy copulas of order statistics relative to a reference copula with
high upper tail-dependence coefficient instead of the independent copula, so that more penalizing
scenarios are accounted for with higher probability.
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Modelling the dependence structure
of order statistics: a copula theory

approach





Chapter 2

Maximum entropy copula with given
diagonal section

2.1 Introduction

Dependence of random variables can be described by copula distributions. A copula is the
cumulative distribution function of a random vector U = (U1, . . . , Ud) with Ui uniformly dis-
tributed on I = [0, 1]. For an exhaustive overview on copulas, we refer to Nelsen [132]. The
diagonal section δ of a d-dimesional copula C, defined on I as δ(t) = C(t, . . . , t) is the cumulative
distribution function of max1≤i≤d Ui. The function δ is non-decreasing, d-Lipschitz, and verifies
δ(t) ≤ t for all t ∈ I with δ(0) = 0 and δ(1) = 1. It was shown that if a function δ satisfies
these properties, then there exists a copula with δ as diagonal section (see Bertino [20] or
Fredricks and Nelsen [78] for d = 2 and Cuculescu and Theodorescu [49] for d ≥ 2 ).

Copulas with a given diagonal section have been studied in different papers, as the diagonal
sections are considered in various fields of application. Beyond the fact that δ is the cumulative
distribution function of the maximum of the marginals, it also characterizes the tail dependence
of the copula (see Joe [105] p.33. and references in Nelsen et al. [134], Durante and
Jaworski [68], Jaworski [102]) as well as the generator for Archimedean copulas (Sungur
and Yang [164]). For d = 2, Bertino in [20] introduces the so-called Bertino copula Bδ given
by Bδ(u, v) = u ∧ v −minu∧v≤t≤u∨v(t− δ(t)) for u, v ∈ I. Fredricks and Nelsen in [78] give the
example called diagonal copula defined by Kδ(u, v) = min(u, v, (δ(u) + δ(v))/2) for u, v ∈ I. In
Nelsen et al. [133, 134] lower and upper bounds related to the pointwise partial ordering are
given for copulas with a given diagonal section. They showed that if C is a symmetric copula
with diagonal section δ, then for every u, v ∈ I, we have:

Bδ(u, v) ≤ C(u, v) ≤ Kδ(u, v).

Durante et al. [69] provide another construction of copulas for a certain class of diag-
onal sections, called MT-copulas named after Mayor and Torrens and defined as Dδ(u, v) =
max(0, δ(x ∨ y)− |x− y|). Bivariate copulas with given sub-diagonal sections δx0 : [0, 1− x0]→
[0, 1 − x0], δx0(t) = C(x0 + t, t) are constructed from copulas with given diagonal sections in
Quesada-Molina et al. [147]. Durante et al. [70] and [134] introduce the technique of di-
agonal splicing to create new copulas with a given diagonal section based on other such copulas.
According to [68] for d = 2 and Jaworski [102] for d ≥ 2, there exists an absolutely continuous
copula with diagonal section δ if and only if the set Σδ = {t ∈ I; δ(t) = t} has zero Lebesgue
measure. de Amo et al. [57] is an extension of [68] for given sub-diagonal sections. Further
construction of possibly asymmetric absolutely continuous bidimensional copulas with a given
diagonal section is provided in Erdely and González [76].

Our aim is to find the most uninformative copula with a given diagonal section δ. We choose
here to maximize the relative entropy to the uniform distribution on Id, among the copulas with
given diagonal section. This is equivalent to minimizing the Kullback-Leibler divergence with
respect to the independent copula. The Kullback-Leibler divergence is finite only for absolutely
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continuous copulas. The previously introduced bivariate copulas Bδ, Kδ and Dδ are not abso-
lutely continuous, therefore their Kullback-Leibler divergence is infinite. Possible other entropy
criteria, such as Rényi, Tsallis, etc. are considered for example in Pougaza and Mohammad-
Djafari [146]. We recall that the entropy of a d-dimensional absolutely continuous random
vector X = (X1, . . . , Xd) can be decomposed as the sum of the entropy of the marginals and
the entropy of the corresponding copula (see Zhao and Lin [183]) :

H(X) =
d∑
i=1

H(Xi) +H(U),

where H(Z) = −
∫
fZ(z) log fZ(z)dz is the entropy of the random variable Z with density fZ ,

and U = (U1, . . . , Ud) is a random vector with Ui uniformly distributed on I, such that U has
the same copula as X; namely U is distributed as

(
F−1

1 (X1), . . . F−1
d (Xd)

)
with Fi the cumu-

lative distribution function of Xi. Maximizing the entropy of X with given marginals therefore
corresponds to maximizing the entropy of its copula. The maximum relative entropy approach
for copulas has an extensive litterature. Existence results for an optimal solution on convex
closed subsets of copulas for the total variation distance can be derived from Csiszár [48].
A general discussion on abstract entropy maximization is given by Borwein et al. [25]. This
theory was applied for copulas and a finite number of expectation constraints in Bedford and
Wilson [16]. Some applications for various moment-based constraints include rank correlation
(Meeuwissen and Bedford [128], Chu [46], Piantadosi et al. [141]) and marginal moments
(Pasha and Mansoury [139]).

We shall apply the theory developed in [25] to compute the density of the maximum entropy
copula with a given diagonal section. We show that there exists a copula with diagonal section δ
and finite entropy if and only if δ satisfies:

∫
I | log(t− δ(t))|dt < +∞. Notice that this condition

is stronger than the condition of Σδ having zero Lebesgue measure which is required for the
existence of an absolutely continuous copula with diagonal section δ. Under this condition, and
in the case of Σδ = {0, 1}, the optimal copula’s density cδ turns out to be of the form, for
x = (x1, . . . , xd) ∈ Id:

cδ(x) = b(max(x))
∏

xi 6=max(x)
a(xi),

with the notation max(x) = max1≤i≤d xi, see Proposition 2.4. The optimal copula’s density in
the general case is given in Theorem 2.5. Notice that cδ is symmetric: it is invariant under the
permutation of the variables. This provides a new family of absolutely continuous symmetric
copulas with given diagonal section enriching previous work on this subject that we discussed,
see [20],[68],[70],[69],[76],[78],[134]. We also calculate the maximum entropy copula for diagonal
sections that arise from well-known families of bivariate copulas.

The rest of the paper is organised as follows. Section 2.2 introduces the definitions and
notations used later on, and gives the main theorems of the paper. In Section 2.3 we study the
properties of the feasible solution cδ of the problem for a special class of diagonal sections with
Σδ = {0, 1}. In Section 2.4, we formulate our problem as an optimization problem with linear
constraints in order to apply the theory established in [25]. Then in Section 2.5 we give the
proof for our main theorem showing that cδ is indeed the optimal solution when Σδ = {0, 1}.
In Section 2.6 we extend our results for the general case when Σδ has zero Lebesgue measure.
We give in Section 2.7 several examples with diagonals of popular bivariate copula families such
as the Gaussian, Gumbel or Farlie-Gumbel-Morgenstern copulas among others. In the Gaussian
case, we illustrate how different the Gaussian copula and the corresponding maximum entropy
copula can be, by calculating conditional extreme event probabilities.

2.2 Main results

Let d ≥ 2 be fixed. We recall a function C defined on Id, with I = [0, 1], is a d-dimensional
copula if there exists a random vector U = (U1, . . . , Ud) such that Ui are uniform on I and
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C(u) = P(U ≤ u) for u ∈ Id, with the convention that x ≤ y for x = (x1, . . . .xd) and y =
(y1, . . . , yd) elements of Rd if and only if xi ≤ yi for all 1 ≤ i ≤ d. We shall say that C is the
copula of U . We refer to [132] for a monograph on copulas. The copula C is said absolutely
continuous if the random variable U has a density, which we shall denote by cC . In this case, we
have for all u ∈ Id:

C(u) =
∫
Id
cC(v)1{v≤u} dv.

When there is no confusion, we shall write c for the density cC associated to the copula C.
We denote by C the set of d-dimensional copulas and by C0 the subset of the d-dimensional
absolutely continuous copulas.

The diagonal section δC of a copula C is defined by: δC(t) = C(t, . . . , t). Let us note, for
u ∈ Rd, max(u) = max1≤i≤d ui. Notice that if C is the copula of U , then δC is the cumulative
distribution function of max(U) as δC(t) = P(max(U) ≤ t) for t ∈ I. We denote by D = {δC , C ∈
C} the set of diagonal sections of d-dimensional copulas and by D0 = {δC ;C ∈ C0} the set of
diagonal sections of absolutely continuous copulas. According to [78], a function δ defined on I
belongs to D if and only if:

(i) δ is a cumulative function on [0, 1]: δ(0) = 0, δ(1) = 1 and δ is non-decreasing;
(ii) δ(t) ≤ t for t ∈ I and δ is d-Lipschitz: |δ(s)− δ(t)| ≤ d |s− t| for s, t ∈ I.

For δ ∈ D, we shall consider the set Cδ = {C ∈ C; δC = δ} of copulas with diagonal section δ,
and the subset Cδ0 = Cδ ⋂ C0 of absolutely continuous copulas with section δ. According to [68]
and [102], the set Cδ0 is non empty if and only if the set Σδ = {t ∈ I; δ(t) = t} has zero Lebesgue
measure.

For a non-negative measurable function f defined on Ik, k ∈ N, we set

Ik(f) =
∫
Ik
f(x) log(f(x)) dx,

with the convention 0 log(0) = 0. Since copulas are cumulative functions of probability measures,
we will consider the Kullback-Leibler divergence relative to the uniform distribution as a measure
of entropy, see [48]:

I(C) =
{
Id(c) if C ∈ C0,
+∞ if C 6∈ C0,

with c the density associated to C when C ∈ C0. Notice that the Shannon-entropy introduced
in [161] of the probability measure P defined on Id with cumulative distribution function C
is defined as H(P ) = −I(C). Thus minimizing the Kullback-Leibler divergence I (w.r.t. the
uniform distribution) is equivalent to maximizing the Shannon-entropy. It is well known that
the copula Π with density cΠ = 1, which corresponds to (Ui, 0 ≤ i ≤ d) being independent,
minimizes I(C) over C.

We shall minimize the Kullback-Leibler divergence I over the set Cδ or equivalently over Cδ0
of copulas with a given diagonal section δ ∈ D (in fact for δ ∈ D0 as otherwise Cδ0 is empty). If
C minimizes I on Cδ, it means that C is the least informative (or the “most random”) copula
with given diagonal section δ.

For δ ∈ D, let us denote:
J (δ) =

∫
I
|log(t− δ(t))| dt. (2.1)

Notice that J (δ) ∈ [0,+∞] and it is infinite if δ 6∈ D0. Since δ is d-Lipschitz, the derivative δ′ of
δ exists a.e. and since δ is non-decreasing we have a.e. 0 ≤ δ′ ≤ d. This implies that I1(δ′) and
I1(d− δ′) are well defined. Let us denote:

G(δ) = I1(δ′) + I1(d− δ′)− d log(d)− (d− 1). (2.2)

Since for any function f such that 0 ≤ f ≤ d we have −1/ e ≤ I1(f) ≤ d log(d), we can give a
rough upper bound for |G(δ)|:

sup
δ∈D
|G(δ)| ≤ d+ d log(d). (2.3)
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For δ ∈ D0 with Σδ = {0, 1}, we define the function cδ as:

cδ(x) = b(max(x))
∏

xi 6=max(x)
a(xi) for a.e. x = (x1, . . . , xd) ∈ Id, (2.4)

where the functions a and b are given by, for r ∈ I:

a(r) = d− δ′(r)
d

h(r)−1+1/d eF (r) and b(r) = δ′(r)
d

h(r)−1+1/d e−(d−1)F (r), (2.5)

with h and F defined as:

h(r) = r − δ(r), F (r) = d− 1
d

∫ r

1
2

1
h(s) ds. (2.6)

Remark 2.1. Notice that we define F in (2.6) as an integral from 1/2 to r. However, the value
1/2 can be chosen arbitrarily on (0, 1) as it will not affect the definition of the function cδ in
(2.4).

The following Proposition shows that cδ is an absolutely continuous copula whose diagonal
section is δ. The proof of this Proposition can be found in Section 2.3 and Section 2.8.1 is
dedicated to the proof of (2.7).

Proposition 2.2. Let δ ∈ D0 with Σδ = {0, 1}. The function cδ given by (2.4) is the density of
a symmetric copula Cδ with diagonal section δ.

Furthermore, we have:
I(Cδ) = (d− 1)J (δ) + G(δ). (2.7)

This and (2.3) readily implies the following Remark.

Remark 2.3. Let δ ∈ D0 such that Σδ = {0, 1}. We have I(Cδ) < +∞ if and only if J (δ) < +∞.

We can now state our main result in the simpler case Σδ = {0, 1}. It gives the necessary and
sufficient condition for Cδ to be the unique optimal solution of the minimization problem. The
proof is given in Section 2.5.

Proposition 2.4. Let δ ∈ D0 such that Σδ = {0, 1}.
a) If J (δ) = +∞ then minC∈Cδ I(C) = +∞.
b) If J (δ) < +∞ then minC∈Cδ I(C) < +∞ and Cδ is the unique copula such that I (Cδ) =

minC∈Cδ I(C).

To give the answer in the general case where Σδ has zero Lebesgue measure, which is the
necessary and sufficient condition for Cδ0 6= ∅, we need some extra notations. Since δ is continuous,
we get that I \Σδ can be written as the union of non-empty open disjoint intervals ((αj , βj), j ∈
J), with αj < βj and J at most countable. Notice that δ(αj) = αj and δ(βj) = βj . For J 6= ∅
and j ∈ J , we set ∆j = βj − αj and for t ∈ I:

δj(t) = δ (αj + t∆j)− αj
∆j

· (2.8)

It is clear that δj satisfies (i) and (ii) and it belongs to D0 as Σδj = {0, 1}. Let cδj be defined
by (2.4) with δ replaced by δj . For δ ∈ D0 such that Σδ 6= {0, 1}, we define the function cδ by,
for u ∈ Id:

cδ(u) =
∑
j∈J

1
∆j

cδj

(
u− αj1

∆j

)
1(αj ,βj)d(u), (2.9)

with 1 = (1, . . . , 1) ∈ Rd. It is easy to check that cδ is a copula density and that is zero outside
[αj , βj ]d for j ∈ J . We state our main result in the general case whose proof is given in Section
2.6.
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Theorem 2.5. Let δ ∈ D.
a) If J (δ) = +∞ then minC∈Cδ I(C) = +∞.
b) If J (δ) < +∞ then minC∈Cδ I(C) < +∞ and there exists a unique copula Cδ ∈ Cδ such

that I (Cδ) = minC∈Cδ I(C). Furthermore, we have:

I(Cδ) = (d− 1)J (δ) + G(δ);

the copula Cδ is absolutely continuous, symmetric; its density cδ is given by (2.4) if
Σδ = {0, 1} or by (2.9) if Σδ 6= {0, 1}.

Remark 2.6. For δ ∈ D, notice the condition J (δ) < +∞ implies that Σδ has zero Lebesgue
measure, and therefore, according to [68] and [102], δ ∈ D0. And if δ 6∈ D0, then I(C) = +∞
for all C ∈ Cδ. Therefore, we could replace the condition δ ∈ D by δ ∈ D0 in Theorem 2.5.

2.3 Proof of Proposition 2.2

We assume that δ ∈ D0 and Σδ = {0, 1}. We give the proof of Proposition 2.2, which states
that Cδ, with density cδ given by (2.4), is indeed a symmetric copula with diagonal section δ
whose entropy is given by (2.7).

Recall the definition of h, F, a, b and cδ given by (2.4) to (2.6). Notice that by construction
cδ is non-negative and well defined on Id. In order to prove that cδ is the density of a copula,
we only have to prove that for all 1 ≤ i ≤ d, r ∈ I:

∫
Id
cδ(u)1{ui≤r} du = r,

or equivalently ∫
Id
cδ(u)1{ui≥r} du = 1− r.

We define for r ∈ I:

A(r) =
∫ r

0
a(t) dt. (2.10)

Elementary computations yield for r ∈ (0, 1):

A(r) = h1/d(r) eF (r) . (2.11)

Notice that F (0) ∈ [−∞, 0] which implies that A(0) = 0. A direct integration gives:

d

∫
I
Ad−1(s)b(s)1{s≥r} ds = 1− δ(r). (2.12)

We also have:

(d− 1)
∫
I
Ad−2(s)b(s)1{s≥r} ds = (d− 1)

d

∫
I
δ′(s)h−1/d(s) e−F (s) 1{s≥r} ds

=
[
−h1−1/d(s) e−F (s)

]1
s=r

= h1−1/d(r) e−F (r), (2.13)
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where we used for the last step that h(1) = 0 and F (1) ∈ [0,∞]. We have:∫
Id
cδ(u)1{ui≥r} du =

∫
Id
b(max(u))

∏
uj 6=max(u)

a(uj)1{ui≥r} du

=
∫
I
Ad−1(s)b(s)1{s≥r} ds

+ (d− 1)
∫
I
Ad−2(s)b(s)(A(s)−A(r))1{s≥r} ds

= d

∫
I
Ad−1(s)b(s)1{s≥r} ds

− (d− 1)A(r)
∫
I
Ad−2(s)b(s)1{s≥r} ds

= 1− δ(r)− h(r)
= 1− r,

where in the second equality we separated the integral according to max(u) = ui or not and
used (2.10), then in the fourth equality we used (2.12) and (2.13). This implies that cδ is indeed
the density of a copula. We denote by Cδ the copula with density cδ. We check that δ is the
diagonal section of Cδ. Using (2.12), we get, for r ∈ I:∫

Id
cδ(u)1{max(u)≤r} du =

∫
Id
b(max(u))

∏
ui 6=max(u)

a(ui)1{max(u)≤r} du

= d

∫
I
Ad−1(s)b(s)1{s≤r} ds

= δ(r).

The calculations which show that the entropy of Cδ is given by (2.7) can be found in Section 2.8.1.

2.4 The minimization problem

Let δ ∈ D0. As a first step we will show, using [25], that the problem of a maximum
entropy copula with a given diagonal section δ has at most a unique optimal solution. To
formulate this problem in the framework of [25], we introduce the continuous linear functional
A = (Ai, 1 ≤ i ≤ d+ 1) : L1(Id)→ L1(I)d+1 defined by, for 1 ≤ i ≤ d, f ∈ L1(Id) and r ∈ I,

Ai(f)(r) =
∫
Id
f(u)1{ui≤r} du, and Ad+1(f)(r) =

∫
Id
f(u)1{max(u)≤r} du.

We also define bδ = (bi, 1 ≤ i ≤ d+ 1) ∈ L1(I)d+1 with bd+1 = δ and bi = idI for 1 ≤ i ≤ d, with
idI the identity map on I. Notice that the conditions Ai(c) = bi, 1 ≤ i ≤ d, and c ≥ 0 a.e. imply
that c is the density of a copula C ∈ C0. If we assume further that the condition Ad+1(c) = bd+1
holds then the diagonal section of C is δ (thus C ∈ Cδ0).

Since I is infinite outside Cδ0 and the density of any copula in C0 belongs to L1(Id), we get
that minimizing I over Cδ is equivalent to the optimization problem (P δ) given by:

minimize Id(c) subject to
{
A(c) = bδ,

c ≥ 0 a.e. and c ∈ L1(Id).
(P δ)

We say that a function f is feasible for (P δ) if f ∈ L1(Id), f ≥ 0 a.e.,A(f) = bδ and Id(f) < +∞.
Notice that any feasible f is the density of a copula. We say that f is an optimal solution to
(P δ) if f is feasible and Id(f) ≤ Id(g) for all g feasible.

Proposition 2.7. Let δ ∈ D. If there exists a feasible c, then there exists a unique optimal
solution to (P δ) and it is symmetric.
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Proof. Since A(f) = bδ implies A1(f)(1) = b1(1) that is
∫
Id f(x) dx = 1, we can directly apply

Corollary 2.3 of [25] which states that if there exists a feasible c, then there exists a unique
optimal solution to (P δ). Since the constraints are symmetric and the functional Id is also
symmetric, we deduce that the unique optimal solution is also symmetric.

The next Proposition gives that the set of zeros of any non-negative solution c of A(c) = bδ

contains:

Zδ = {u ∈ Id; δ′(max(u)) = 0 or ∃i such that ui < max(u) and δ′(ui) = d}. (2.14)

Proposition 2.8. Let δ ∈ D. If c is feasible then c = 0 a.e. on Zδ (that is c1Zδ = 0 a.e.).

Proof. Recall that 0 ≤ δ′ ≤ d. Since c ∈ L1(Id), the condition Ad+1(c) = bd+1, that is for all
r ∈ I ∫

Id
c(u)1{max(u)≤r} du =

∫ r

0
δ′(s) ds,

implies, by the monotone class theorem, that for all measurable subsets H of I, we have:∫
Id
c(u)1H(max(u)) du =

∫
H
δ′(s) ds.

Since c ≥ 0 a.e., we deduce that a.e. c(u)1{δ′(max(u))=0} = 0.
Next, notice that for all r ∈ I:∫

Id
c(u)

(
d∑
i=1

1{ui<max(u),ui≤r}

)
du =

d∑
i=1

(∫
Id
c(u)1{ui≤r} du−

∫
Id
c(u)1{ui=max(u),max(u)≤r} du

)
= dr − δ(r)

=
∫ r

0

(
d− δ′(s)

)
ds.

This implies that a.e. c(u)
(∑d

i=1 1{ui<max(u),δ′(ui)=d}
)

= 0, that is:

c(u)1{∃i such that ui<max(u),δ′(ui)=d} = 0.

This gives the result.

We define µ to be the Lebesgue measure restricted to Zcδ = Id \ Zδ: µ(du) = 1Zc
δ
(u)du. We

define, for f ∈ L1(Id, µ):
Iµ(f) =

∫
Id
f(u) log(f(u))µ(du).

From Proposition 2.8 we can deduce that if c is feasible then Iµ(c) = Id(c). Let us also define,
for 1 ≤ i ≤ d, r ∈ I:

Aµi (c)(r) =
∫
Id
c(u)1{ui≤r} µ(du), and Aµd+1(c)(r) =

∫
Id
c(u)1{max(u)≤r} µ(du).

The corresponding optimization problem (P δµ) is given by :

minimize Iµ(c) subject to
{
Aµ(c) = bδ,

c ≥ 0 µ-a.e. and c ∈ L1(Id, µ),
(P δµ)

with Aµ = (Aµi , 1 ≤ i ≤ d+ 1). For f ∈ L1(Id, µ), we define:

fµ =
{

f on Zcδ ,
0 on Zδ.

Using Proposition 2.8, we easily get the following Corollary.

Corollary 2.9. If c is a solution of (P δµ), then cµ is a solution of (P δ). If c is a solution of
(P δ), then it is also a solution of (P δµ).
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2.5 Proof of Proposition 2.4

2.5.1 Form of the optimal solution

Let (Aµ)∗ : L∞(I)d+1 → L∞(Id, µ) be the adjoint of Aµ. We will use Theorem 2.9. from [25]
on abstract entropy minimization, which we recall here, adapted to the context of (P δµ).

Theorem 2.10 (Borwein, Lewis and Nussbaum [25]). Suppose there exists c > 0 µ-a.e. which
is feasible for (P δµ). Then there exists a unique optimal solution, c∗, to (P δµ). Furthermore, we
have c∗ > 0 µ-a.e. and there exists a sequence (λn, n ∈ N) of elements of L∞(I)d+1 such that:∫

Id
c∗(x) |(Aµ)∗(λn)(x)− log(c∗(x))| µ(dx) −−−→

n→∞
0. (2.15)

We first compute (Aµ)∗. For λ = (λi, 1 ≤ i ≤ d+ 1) ∈ L∞(I)d+1 and f ∈ L1(Id, µ), we have:

〈(Aµ)∗(λ), f〉 = 〈λ,Aµ(f)〉

=
d∑
i=1

∫
I
λi(r)

∫
Id
f(x)1{xi≤r}dµ(x)dr +

∫
I
λd+1(r)

∫
Id
f(x)1{max(x)≤r}dµ(x)dr

=
∫
Id
f(x)

(
d∑
i=1

Λi(xi) + Λd+1(max(x))
)
dµ(x),

where we used the definition of the adjoint operator for the first equality, Fubini’s theorem for
the second, and the following notation for the third equality:

Λi(xi) =
∫
I
λi(r)1{r≥xi} dr, and Λd+1(t) =

∫
I
λd+1(r)1{r≥t} dr.

Thus, we can set for λ ∈ L∞(I)d+1 and x ∈ Id:

(Aµ)∗(λ)(x) =
d∑
i=1

Λi(xi) + Λd+1(max(x)). (2.16)

Now we are ready to prove that the optimal solution c∗ of (P δµ) is the product of measurable
univariate functions.

Lemma 2.11. Let δ ∈ D0 such that Σδ = {0, 1}. Suppose that there exists c > 0 µ-a.e.which is
feasible for (P δµ). Then there exist a∗, b∗ non-negative, measurable functions defined on I such
that

c∗(u) = b∗(max(u))
∏

ui 6=max(u)
a∗(ui) µ-a.e.

with a∗(s) = 0 if δ′(s) = d and b∗(s) = 0 if δ′(s) = 0.

Proof. According to Theorem 2.10, there exists a sequence (λn, n ∈ N) of elements of L∞(I)d+1

such that the optimal solution, say c∗, satisfies (2.15). This implies, thanks to (2.16), that there
exist d + 1 sequences (Λni , n ∈ N, 1 ≤ i ≤ d + 1) of elements of L∞(I) such that the following
convergence holds in L1(Id, c∗µ):

d∑
i=1

Λni (ui) + Λnd+1(max(u)) −−−→
n→∞

log(c∗(u)). (2.17)

Arguing as in Proposition 2.7 and since Zcδ , the support of µ, is symmetric, we deduce that
c∗ is symmetric. Therefore we shall only consider functions supported on the set 4 = {u ∈
Id;ud = max(u)}. The convergence (2.17) holds in L1(4, c∗µ). For simplicity, we introduce the
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functions Γni ∈ L∞(I) defined by Γni = Λni for 1 ≤ i ≤ d− 1, and Γnd = Λnd + Λnd+1. Then we have
in L1(4, c∗µ):

d∑
i=1

Γni (ui) −−−→
n→∞

log(c∗(u)). (2.18)

We first assume that there exist Γi, 1 ≤ i ≤ d measurable functions defined on I such that µ-a.e.
on 4:

d∑
i=1

Γi(ui) = log(c∗(u)). (2.19)

The symmetric property of c∗(u) seen in Proposition 2.7 implies we can choose Γi = Γ for
1 ≤ i ≤ d − 1 up to adding a constant to Γd. Set a∗ = exp(Γ) and b∗ = exp(Γd) so that µ-a.e.
on 4:

c∗(u) = b∗(ud)
d−1∏
i=1

a∗(ui). (2.20)

Recall µ(du) = 1Zc
δ
(u) du. From the definition (2.14) of Zδ, we deduce that without loss of

generality, we can assume that a∗(ui) = 0 if δ′(ui) = d and b∗(ud) = 0 if δ′(ud) = 0. Use the
symmetry of c∗ to conclude.

To complete the proof, we now show that (2.19) holds for Γ and Γd measurable functions. We
introduce the notation u(−i) = (u1, . . . , ui−1, ui+1, . . . , ud) ∈ Id−1. Let us define the probability
measure P (dx) = c∗(x)14(x)µ(dx)/

∫
4 c
∗(y)µ(dy) on Id. We fix j, 1 ≤ j ≤ d − 1. In order

to apply Proposition 2 of [153], which would ensure the existence of the limiting functions Γi,
1 ≤ i ≤ d, we first check that P is absolutely continuous with respect to P j1 ⊗ P j2 , where
P j1 (du(−j)) =

∫
uj∈I P (du(−j)duj) and P j2 (duj) =

∫
u(−j)∈Id−1 P (du(−j)duj) are the marginals of

P . Notice the following equivalence of measures:

P (du) ∼ 14(u)
d−1∏
i=1

1{δ′(ui) 6=d}1{δ′(ud)6=0} du. (2.21)

Let B ⊂ Id−1 be measurable. We have:

P1(B) = 0⇐⇒
∫
Id

14(u)
d−1∏
i=1

1{δ′(ui) 6=d}1{δ′(ud)6=0}1B(u(−j)) du = 0.

By Fubini’s theorem this last equality is equivalent to:∫
Id−1

d−1∏
i=1
i 6=j

(
1{δ′(ui)6=d}1{ui≤ud}

)
1{δ′(ud)6=0}1B(u(−j))

(∫
I

1{0≤uj≤ud}1{δ′(uj)6=d} duj
)
du(−j) = 0.

(2.22)
Since for ε > 0, δ(ε) < ε < dε, we have

∫
I 1{0≤uj≤s}1{δ′(uj)6=d} duj > 0 for all s ∈ I. Therefore

(2.22) is equivalent to∫
Id−1

d−1∏
i=1,i 6=j

(
1{δ′(ui)6=d}1{ui≤ud}

)
1{δ′(ud) 6=0}1B(u(−j)) du(−j) = 0.

This implies that there exists h > 0 a.e. on Id−1 such that

P j1 (du(−j)) = h(u(−j))
d−1∏

i=1,i 6=j

(
1{δ′(ui) 6=d}1{ui≤ud}

)
1{δ′(ud)6=0}du(−j).

Similarly we have for B′ ⊂ I that P j2 (B′) = 0 if and only if∫
I

1{δ′(uj) 6=d}1B′(uj)

∫
Id−1

d−1∏
i=1,i 6=j

(
1{δ′(ui)6=d}1{ui≤ud}

)
1{δ′(ud) 6=0} 1{ud≥uj}du(−j)

 duj = 0.

(2.23)
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Since, for ε > 0, δ(1) − δ(1 − ε) > 1 − (1 − ε) = ε > 0 , there exists g > 0 a.e. on I such that
P j2 (duj) = g(uj)1{δ′(uj) 6=d}duj . Therefore by (2.21) we deduce that P is absolutely continuous
with respect to P j1 ⊗P

j
2 . Then according to Proposition 2 of [153], (2.18) implies that there exist

measurable functions Φj and Γj defined respectively on Id−1 and I, such that c∗µ-a.e. on 4:

log(c∗(u)) = Φj(u(−j)) + Γj(uj).

As µ-a.e. c∗ > 0, this equality holds µ-a.e. on 4. Since we have such a representation for every
1 ≤ j ≤ d− 1, we can easily verify that there exists a measurable function Γd defined on I such
that log(c∗(u)) = ∑d

i=1 Γi(ui) µ-a.e. on 4.

2.5.2 Calculation of the optimal solution

Now we prove that the optimal solution to (P δ), if it exists, is indeed cδ.

Proposition 2.12. Let δ ∈ D0 such that Σδ = {0, 1}. If there exists a feasible solution c to (P δ)
such that c > 0 µ-a.e., then the optimal solution c∗ to (P δ) is cδ given by (2.4).

Proof. In Lemma 2.11 we have already shown that if an optimal solution exists for (P δ), then it
is of the form c∗(u) = b∗(max(u))∏ui 6=max(u) a

∗(ui). Here we will prove that the constraints of
(P δ) uniquely determine the functions a∗ and b∗ up to a multiplicative constant, giving c∗ = cδ.
We set for r ∈ I:

A∗(r) =
∫ r

0
a∗(s) ds

which take values in [0,+∞]. From Ad+1(c∗) = bδd+1, we have for r ∈ I:

δ(r) =
∫
Id
c∗(u)1{max(u)≤r} du

=
∫
Id
b∗(max(u))

∏
ui 6=max(u)

a∗(ui)1{max(u)≤r} du

= d

∫
I
(A∗(s))d−1b∗(s)1{s≤r} ds. (2.24)

Taking the derivative with respect to r gives a.e. on I:

δ′(r) = d(A∗(r))d−1b∗(r). (2.25)

This implies that A∗(r) is finite for all r ∈ [0, 1) and thus A∗(0) = 0. Similarly, using that
A1(c∗) = bδ1, we get that for r ∈ I:

1− r =
∫
Id
c∗(u)1{u1≥r} du

=
∫
Id
b∗(max(u))

∏
ui 6=max(u)

a∗(ui)1{u1≥r} du

=
∫
Id

d∏
i=2

(
a∗(ui)1{ui≤u1}

)
b∗(u1)1{u1≥r} du

+ (d− 1)
∫
Id
a∗(u1)

d∏
i=3

(
a∗(ui)1{ui≤u2}

)
b∗(u2)1{u2≥u1≥r} du

=
∫
I
(A∗(s))d−1b∗(s)1{s≥r} ds

+ (d− 1)
∫
I
(A∗(s))d−2b∗(s)(A∗(s)−A∗(r))1{s≥r} ds

= d

∫
I
(A∗(s))d−1b∗(s)1{s≥r} ds− (d− 1)A∗(r)

∫
I
(A∗(s))d−2b∗(s)1{s≥r} ds.
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Using this and (2.24) we deduce that for r ∈ I:

h(r) = (d− 1)A∗(r)
∫
I
(A∗(s))d−2b∗(s)1{s≥r} ds. (2.26)

Since r > δ(r) on (0, 1), we have that A∗ and
∫
I(A∗(s))d−2b∗(s)1{s≥r} ds are positive on (0, 1).

Dividing (2.25) by (2.26) gives a.e. for r ∈ I:

d− 1
d

δ′(r)
h(r) = (A∗(r))d−2b(r)∫

I(A∗(r))d−2b∗(s)1{r≤s≤1} ds
·

We integrate both sides to get for r ∈ I:

d− 1
d

(
log

(
h(r)
h(1/2)

)
−
∫ r

1/2

1
h(s) ds

)
= log

( ∫
I(A∗(s))d−2b∗(s)1{r≤s≤1} ds∫
I(A∗(s))d−2b∗(s)1{1/2≤s≤1} ds

)
.

Notice that the choice for the lower bound 1/2 of the integral was arbitrary, see Remark 2.1.
Taking the exponential yields:

αh(d−1)/d(r) e−F (r) =
∫
I
(A∗(s))d−2b∗(s)1{r≤s≤1} ds, (2.27)

for some positive constant α. From (2.26) and (2.27), we derive:

A∗(r) = 1
α(d− 1)h

1/d(r) eF (r) . (2.28)

This proves that the function A∗ is uniquely determined up to a multiplicative constant and so
is a∗. With the help of (2.25) and (2.28), we can express b∗ as, for r ∈ I:

b∗(r) = δ′(r)(α(d− 1))d−1

d
e−(d−1)F (r) . (2.29)

The function b∗ is also uniquely determined up to a multiplicative constant. Therefore (2.25)
implies that there is a unique c∗ of the form (2.20) which solves A(c) = bδ. (Notice however
that the functions a∗ and b∗ are defined up to a multiplicative constant.) Then according to
Proposition 2.2 we get that cδ defined by (2.20) with a and b defined by (2.5) solves A(c) = bδ,
implying that c∗ is equal to cδ.

2.5.3 Proof of Proposition 2.4

Let δ ∈ D0 such that Σδ = {0, 1}. By construction, we have µ-a.e. cδ > 0. According to
Proposition 2.2 and Remark 2.3, if J (δ) < +∞, the copula density cδ is feasible for (P δ).
Therefore Proposition 2.12 implies that it is the optimal solution as well. When J (δ) = +∞,
we show that there exists no feasible solution to cδ, see the supplementary material.

2.6 Proof of Theorem 2.5

We first state an elementary Lemma, whose proof is left to the reader. For f a function
defined on Id and 0 ≤ s < t ≤ 1, we define fs,t by, for u ∈ Id:

fs,t(u) = (t− s)f(s1 + u(t− s)).

Lemma 2.13. If c is the density of a copula C such that δC(s) = s and δC(t) = t for some fixed
0 ≤ s < t ≤ 1, then cs,t is also the density of a copula, and its diagonal section, δs,t, is given by,
for r ∈ I:

δs,t(r) = δC(s+ r(t− s))− s
t− s

·
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According to Remark 2.6, it is enough to consider the case δ ∈ D0, that is Σδ with zero
Lebesgue measure. We shall assume that Σδ 6= {0, 1}. Since δ is continuous, we get that I \ Σδ

can be written as the union of non-empty open disjoint intervals ((αj , βj), j ∈ J), with αj < βj
and J non-empty and at most countable. Set ∆j = βj−αj . Since Σδ is of zero Lebesgue measure,
we have ∑j∈J ∆j = 1. We define also S = ⋃

j∈J [αj , βj ]d
For s ∈ Σδ, notice that any feasible function c of (P δ) satisfies for all 1 ≤ i ≤ d:∫

Id
c(u)1{ui<s}1Dci (u) du =

∫
Id
c(u)1{ui<s} du−

∫
Id
c(u)1{max(u)<s} du = s− δ(s) = 0,

where Di = {u ∈ Id such that ∀j 6= i : uj < s}. This implies that c = 0 a.e. on Id \ S. We set
cj = cαj ,βj for j ∈ J . We deduce that if c is feasible for (P δ), then we have that a.e.:

c(u) =
∑
j∈J

1
∆j

cj
(
u− αj1

∆j

)
1(αj ,βj)d(u), (2.30)

and:
Id(c) =

∑
j∈J

∆j

(
Id(cj)− log(∆j)

)
. (2.31)

Thanks to Lemma 2.13, the condition A(c) = bδ is equivalent to A(cj) = bδ
j for all j ∈ J . We

deduce that the optimal solution of (P δ), if it exists, is given by (2.30), where the functions cj
are the optimal solutions of (P δj ) for j ∈ J . Notice that by construction Σδj = {0, 1}. Thanks
to Proposition 2.4, the optimal solution to (P δj ) exists if and only if we have J (δj) < +∞; and
if it exists it is given by cδj . Therefore, if there exists an optimal solution to (P δ), then it is cδ
given by (2.9). To conclude, we have to compute Id(cδ). Recall that x log(x) ≥ −1/ e for x > 0.
We have:

Id(cδ) = lim
ε↓0

∑
j∈J

∆j

(
Id(cj)− log(∆j)

)
1{∆j>ε}

= lim
ε↓0

∑
j∈J

∆j

(
(d− 1)J (δj)− log(∆j)

)
1{∆j>ε} +

∑
j∈J

∆jG(δj)

=
∑
j∈J

∆j

(
(d− 1)J (δj)− log(∆j)

)
+
∑
j∈J

∆jG(δj),

where we used the monotone convergence theorem for the first equality, (2.7) for the second and
the fact that G(δ) is uniformly bounded over D0 and the monotone convergence theorem for the
last. Elementary computations yields:

(d− 1)J (δ) =
∑
j∈J

∆j

(
(d− 1)J (δj)− log(∆j)

)
and G(δ) =

∑
j∈J

∆jG(δj).

So, we get:
Id(cδ) = (d− 1)J (δ) + G(δ).

Since G(δ) is uniformly bounded over D0, we get that Id(cδ) is finite if and only if J (δ) is finite.
To end the proof, recall the definition of I(Cδ) to conclude that I(Cδ) = (d− 1)J (δ) + G(δ).

2.7 Examples for d = 2
In this section we compute the density of the maximum entropy copula for various diagonal

sections of popular bivariate copula families. In this Section, u and v will denote elements of
I. The density for d = 2 is of the form cδ(u, v) = a(min(u, v))b(max(u, v)). For (u, v) ∈ 4 =
{(u, v) ∈ I2, u ≤ v}, the formula reads:

cδ(u, v) = δ′(u)
2
√
h(u)

2− δ′(v)
2
√
h(v)

e−(F (v)−F (u)),

with h, F defined in (2.6). We illustrate these densities by displaying their isodensity lines or
contour plots, and their diagonal cross-section ϕ defined as ϕ(t) = c(t, t), t ∈ I.
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t

δ(t)

α 1− α 1

1

Figure 2.1 – Piecewise linear diagonal section (Section 2.7.1). Graph of δ with α = 0.2.

2.7.1 Maximum entropy copula for a piecewise linear diagonal section

Let α ∈ (0, 1/2]. Let us calculate the density of the maximum entropy copula in the case of
the following diagonal section:

δ(r) = (r − α)1(α,1−α)(r) + (2r − 1)1[1−α,1](r).
This example was considered for example in [133]. The limiting cases α = 0 and α = 1/2
correspond to the Fréchet-Hoeffding upper and lower bound copulas, respectively. However for
α = 0, Σδ = I, therefore every copula C with this diagonal section gives I(C) = +∞. (In fact
the only copula that has this diagonal section is the Fréchet-Hoeffding upper bound M defined
by M(u, v) = min(u, v), u, v ∈ I.) When α ∈ (0, 1/2], J (δ) < +∞ is satisfied, therefore we can
apply Proposition 2.4 to compute the density of the maximum entropy copula. The graph of δ
can be seen in Figure 2.1 for α = 0.2. We compute the functions F , a and b:

F (r) =


1
2 log( rα)− 1

4α + 1
2 if r ∈ [0, α),

r
2α −

1
4α if t ∈ [α, 1− α),

1
2 log

(
α

1−r

)
+ 1

4α −
1
2 if t ∈ [1− α, 1],

a(r) = 1√
α

e−
1

4α+ 1
2 1[0,α](r) + 1

2
√
α

e
r

2α−
1

4α 1(α,1−α)(r),

and:

b(r) = 1
2
√
α

e−
r

2α+ 1
4α 1(α,1−α)(r) + 1√

α
e−

1
4α+ 1

2 1[1−α,1](r).

The density cδ(u, v) consists of six distinct regions on 4 as shown in Figure 2.2a and takes the
values:

cδ(u, v) = 1
2α e

α−v
2α 1{(u,v)∈DII} + 1

4α e
u−v
2α 1{(u,v)∈DIII}

+ 1
α

e
2α−1

2α 1{(u,v)∈DIV } + 1
2α e

u+α−1
2α 1{(u,v)∈DV } (2.32)

Figure 2.2b shows the isodensity lines of cδ. In the limiting case of α = 1
2 , the diagonal

section is given by δ(t) = max(0, 2t− 1),which is the pointwise lower bound for all elements in
D. Accordingly, it is the diagonal section of the Fréchet-Hoeffding lower bound copula W given
by W (u, v) = max(0, u+ v − 1) for u, v ∈ I. All copulas having this diagonal section are of the
following form:

DC1,C2(u, v) =


W (u, v) if (u, v) ∈ [0, 1/2]2 ∪ [1/2, 1]2,
1
2C1(2u, 2v − 1) if (u, v) ∈ [0, 1/2]× [1/2, 1],
1
2C2(2u− 1, 2v) if (u, v) ∈ [1/2, 1]× [0, 1/2],
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(b) Isodensity lines of cδ

Figure 2.2 – Piecewise linear diagonal section (Section 2.7.1). The partition and the isodensity
lines of cδ.

where C1 and C2 are copula functions. Recall that the independent copula Π with uniform
density cΠ = 1 on I2 minimizes I(C) over C. According to (2.32), the maximum entropy copula
with diagonal section δ is DΠ,Π. This corresponds to choosing the maximum entropy copulas on
[0, 1/2]× [1/2, 1] and [1/2, 1]× [0, 1/2].

2.7.2 Maximum entropy copula for δ(t) = tα

Let α ∈ (1, 2]. We consider the family of diagonal sections given by δ(t) = tα. This corre-
sponds to the Gumbel family of copulas and also to the family of Cuadras-Augé copulas. The
Gumbel copula with parameter θ ∈ [1,∞) is an Archimedean copula defined as, for u, v ∈ I:

CG(u, v) = ϕ−1
θ (ϕθ(u) + ϕθ(v))

with generator function ϕθ(t) = (− log(t))θ. Its diagonal section is given by δG(t) = t2
1
θ = tα

with α = 2 1
θ . The Cuadras-Augé copula with parameter γ ∈ (0, 1) is defined as, for u, v ∈ I:

CCA(u, v) = min(uv1−γ , u1−γv).

It is a subclass of the two parameter Marshall-Olkin family of copulas given by:

CM (u, v) = min(u1−γ1v, uv1−γ2).

The diagonal section of CCA is given by δ(t) = t2−γ = tα with α = 2 − γ. While the Gumbel
copula is absolutely continuous, the Cuadras-Augé copula is not, although it has full support.
Since J (δ) < +∞, we can apply Proposition 2.4. To give the density of the maximum entropy
copula, we have to calculate F (v)− F (u). Elementary computations yield:

F (v)− F (u) = 1
2

∫ v

u

ds

s− sα
= 1

2 log
(
v

u

)
− 1

2α− 2 log
(

1− vα−1

1− uα−1

)
.

The density cδ is therefore given by, for (u, v) ∈ 4:

cδ(u, v) = α

4
2− αuα−1

(1− uα−1)α/(2α−2) v
α−2(1− vα−1)(2−α)/(2α−2).

Figure 2.3 represents the isodensity lines of the Gumbel and the maximum entropy copula cδ
with common parameter α = 2 1

3 , which corresponds to θ = 3 for the Gumbel copula. We have
also added a graph of the diagonal cross-section of the two densities. In the limiting case of
α = 2, the above formula gives cδ(u, v) = 1, which is the density of the independent copula Π,
which is also maximizes the entropy on the entire set of copulas.
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Figure 2.3 – Power function diagonal section (Section 2.7.2). Isodensity lines and the diagonal
cross-section of copulas with diagonal section δ(t) = tα, α = 2 1

3 .

2.7.3 Maximum entropy copula for the Farlie-Gumbel-Morgenstern diagonal
section

Let θ ∈ [−1, 1]. The Farlie-Gumbel-Morgenstern family of copulas (FGM copulas for short)
are defined as:

C(u, v) = uv + θuv(1− u)(1− v).

These copulas are absolutely continuous with densities c(u, v) = 1+θ(1−2u)(1−2v). Its diagonal
section δθ is given by:

δθ(t) = t2 + θt2(1− t)2 = θt4 − 2θt3 + (1 + θ)t2.

Since δθ(t) < t on (0, 1) and it verifies J (δ) < +∞, we can apply Proposition 2.4 to calculate
the density of the maximum entropy copula. For F (r), we have:

F (r) =


1
2 log

(
r

1−r

)
+ θ√

4θ−θ2 arctan
(

2θr−θ√
4θ−θ2

)
if θ ∈ (0, 1],

1
2 log

(
r

1−r

)
if θ = 0,

1
2 log

(
r

1−r

)
− θ√

θ2−4θ arctanh
(

2θr−θ√
θ2−4θ

)
if θ ∈ [−1, 0).

The density cδ is given by, for θ ∈ (0, 1] and (u, v) ∈ 4:

cδ(u, v) =
(
1− 2θu3 + 3θu2 + (1 + θ)u

)
(1− u)

√
θu2 − θu+ 1

(
2θv2 + 3θv + (1 + θ)

)
√
θv2 − θv + 1

exp
(
− θ√

4θ − θ2

(
arctan

( 2θv − θ√
4θ − θ2

)
− arctan

( 2θu− θ√
4θ − θ2

)))
.

Figure 2.4 illustrates the isodensities of the FGM copula and the maximum entropy copula
with the same diagonal section for θ = 0.5 as well as the diagonal cross-section of their densities.

The case of θ = 0 corresponds once again to the diagonal section δ(t) = t2, and the formula
gives the density of the independent copula Π, accordingly.

2.7.4 Maximum entropy copula for the Ali-Mikhail-Haq diagonal section

Let θ ∈ [−1, 1]. The Ali-Mikhail-Haq (AMH for short) family of copulas are defined as:

C(u, v) = uv

1− θ(1− u)(1− v) ·
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Figure 2.4 – FGM diagonal section (Section 2.7.3). Isodensity lines and the diagonal cross-section
of copulas with diagonal section δ(t) = θt4 − 2θt3 + (1 + θ)t2, θ = 0.5.

This is a family of absolutely continuous copulas whose diagonal section is given by:

δ(t) = t2

1− θ(1− t)2 ·

Once again, δθ(t) < t on (0, 1) and J (δ) < +∞ is verified, so we can apply Proposition 2.4 to
calculate the density of the maximum entropy copula. For 0 ≤ u ≤ v ≤ 1:

F (v)− F (u) = 1
2

(
ln
(
v

u

)
− ln

(1− v
1− u

)
+ ln

(
θv + 1− θ
θu+ 1− θ

))
.

Then cδ is given by, for (u, v) ∈ 4:

cδ(u, v) = 1 + θu− 2θ(1− u) + θ2(1− u)3

(1− θ(1− u)2)
3
2

(
1− θ(1− v)2

)− 3
2 .

In the case of θ = 0, the AMH copula reduces to the independent copula Π. We illustrate
the density of the AMH copula and the corresponding maximum entropy copula with θ = 0.5
in Figure 2.5 and θ = −0.5 in Figure 2.6.
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Figure 2.5 – AMH diagonal section (Section 2.7.4). Isodensity lines and the diagonal cross-section
of copulas with diagonal section δ(t) = t2

1−θ(1−t)2 , θ = 0.5.

2.7.5 Maximum entropy copula for the Gaussian diagonal section

The Gaussian (normal) copula takes the form:

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
,
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Figure 2.6 – AMH diagonal section (Section 2.7.4). Isodensity lines and the diagonal cross-section
of copulas with diagonal section δ(t) = t2

1−θ(1−t)2 , θ = −0.5.

with Φρ the joint cumulative distribution function of a two-dimensional normal random variable
with standard normal marginals and correlation parameter ρ ∈ [−1, 1], and Φ−1 the quantile
function of the standard normal distribution. The density cρ of Cρ can be written as:

cρ(u, v) = ϕρ
(
Φ−1(u),Φ−1(v)

)
ϕ(Φ−1(u))ϕ(Φ−1(v)) ,

where ϕ and ϕρ stand for respectively the densities of a standard normal distribution and a
two-dimensional normal distribution with correlation parameter ρ, respectively. The diagonal
section and its derivative are given by:

δρ(t) = Φρ

(
Φ−1(t),Φ−1(t)

)
, δ′ρ(t) = 2Φ

(√
1− ρ
1 + ρ

Φ−1(t)
)
. (2.33)

Since δρ verifies δρ(t) < t on (0, 1) and J (δρ) < +∞, we can apply Proposition 2.4 to calculate
the density of the maximum entropy copula. We have calculated numerically the density of
the maximum entropy copula with diagonal section δρ for ρ = 0.95, 0.5,−0.5 and −0.95. The
comparison between these densities and the densities of the corresponding normal copula can
be seen in Figures 2.7,2.8 and 2.9. In the limiting case when ρ goes up to 1, we observe a similar
behaviour of cρ and cδρ , and we get the limiting diagonal δ(t) = t of the Fréchet-Hoeffding
upper boundM given byM(u, v) = min(u, v), which does not have a density. We observe a very
different behaviour of cρ and cδρ in the case of ρ < 0. In the limiting case when ρ goes down to
−1, we get the diagonal δ(t) = max(0, 2t− 1), which we have studied earlier in Section 2.7.1.

2.7.6 Comparison of conditional extreme event probabilities in the Gaussian
case

We compare the conditional probabilities of extreme values of a pair of random variables
(X1, X2) which has bivariate normal distribution with standard normal marginals and correlation
coefficient ρ, with a pair of random variables (Y1, Y2) whose marginals are also standard normal,
but has copula cδ, where δ is the diagonal of the copula of (X1, X2). We compute the conditional
probabilities P(X1 ≥ αt|X2 = t) and P(Y1 ≥ αt|Y2 = t) with α ≥ 1 and consider their asymptotic
behaviour when t goes to infinity. This comparison is motivated by consideration of correlated
defaults in mathematical finance, see Section 10.8 in [157]. (Notice however the parameters of
upper tail dependence of the two copulas are the same since they have the same diagonal.)

Since by construction max(X1, X2) has the same distribution as max(Y1, Y2), and X1, X2,
Y1 and Y2 have the same distribution, we deduce that min(X1, X2) has the same distribution as
min(Y1, Y2). We deduce that for all t ∈ R:

P(X1 ≥ t|X2 = t) = −∂tP(min(X1, X2) ≥ t)
ϕ(t) = −∂tP(min(Y1, Y2) ≥ t)

ϕ(t) = P(Y1 ≥ t|Y2 = t).
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Figure 2.7 – Gaussian diagonal section (Section 2.7.5). Isodensity lines and the diagonal cross-
section of copulas with diagonal section given by (2.33), with ρ = 0.5 and ρ = 0.95.

From now on, we shall consider α > 1. For k ∈ R, we recall the notations h(t) = O(tk) for t
large which means that lim supt→+∞ t

−k|h(t)| < +∞, and f(t) � g(t) for t large which means
that f and g are positive for t large and lim supt→∞ f(t)/g(t) = 0. The proof of the next Lemma
is given in the Appendix.

Lemma 2.14. Let α > 1 and ρ ∈ (−1, 1). We have for t large:

P(X1 ≥ αt|X2 = t) = κρ,αP(Y1 ≥ αt|Y2 = t) e−∆ρ,αt2/2(1 +O(t−2)), (2.34)

with:
κρ,α = α(1− ρ)

(α− ρ) and ∆ρ,α = ρ(α− 1)
1− ρ2 ((α+ 1)ρ− 2) .

We deduce that:
— for ρ > 0 and α > 2/ρ− 1 or ρ < 0, we have ∆ρ,α > 0 and thus P(X1 ≥ αX2|X2 = t)�

P(Y1 ≥ αY2|Y2 = t) for t large,
— for ρ > 0 and 1 < α < 2/ρ − 1, we have ∆ρ,α < 0 and thus P(X1 ≥ αX2|X2 = t) �

P(Y1 ≥ αY2|Y2 = t) for t large.
In conclusion, in the positive correlation case, the maximum entropy copula gives more weight

to the extremal conditional probabilities for large values of α.

Remark 2.15. Similar computations as in the proof of Lemma 2.14 give that for ρ > 0,
ρ ≤ α < 1:

P (αt ≤ X1 ≤ t|X2 = t) = Φ̄
(

α− ρ√
1− ρ2 t

)(
1 +O(t−2)

)
,

P (αt ≤ Y1 ≤ t|Y2 = t) = Φ̄
(
α

√
1− ρ
1 + ρ

t

)(
1 +O(t−2)

)
,
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Figure 2.8 – Gaussian diagonal section (Section 2.7.5). Isodensity lines and the diagonal cross-
section of copulas with diagonal section given by (2.33), with ρ = −0.5 and ρ = −0.95

with Φ̄ = 1 − Φ, the survival function of the standard Gaussian distribution. Using (2.42), we
have P (αt ≤ X1 ≤ t|X2 = t) � P(Y1 ≥ αY2|Y2 = t) for t large. This means that the maximum
entropy copula gives less weight to the “non-worse” case, when the first variable takes also large
values, but stays less than the second variable.

2.8 Appendix

2.8.1 Calculation of the entropy of Cδ
In this section, we show that (2.7) of Proposition 2.2 holds. Let us first introduce some

notations. Let ε ∈ (0, 1/2). Since x log(x) ≥ −1/ e for x > 0, we deduce by the monotone
convergence theorem that:

I(Cδ) = lim
ε↓0
Iε(Cδ), (2.35)

with:
Iε(Cδ) =

∫
[ε,1−ε]d

cδ(x) log(cδ(x)) dx.

Using δ(t) ≤ t and that δ is a non-decreasing, d-Lipschitz function, we get that for t ∈ I:

0 ≤ h(t) ≤ min(t, (d− 1)(1− t)) ≤ (d− 1) min(t, 1− t). (2.36)

We set:
w(t) = a(t) e−F (t) = d− δ′(t)

d
h−1+1/d(t). (2.37)

From the symmetric property of cδ, we have that

Iε(Cδ) = J1(ε) + J2(ε)− J3(ε), (2.38)
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Figure 2.9 – Gaussian diagonal section (Section 2.7.5). Sample of 500 drawn from the Gaussian
copula with ρ = −0.95 and from the corresponding Cδ

with:

J1(ε) = d

∫
[ε,1−ε]d

cδ(x)1{max(x)=xd}

(
d−1∑
i=1

log (w(xi))
)
dx,

J2(ε) = d

∫
[ε,1−ε]d

cδ(x)1{max(x)=xd} log
(
δ′(xd)
d

h−1+1/d(xd)
)
dx,

J3(ε) = d

∫
[ε,1−ε]d

cδ(x)1{max(x)=xd}

(
(d− 1)F (xd)−

d−1∑
i=1

F (xi)
)
dx.

We introduce Aε(r) =
∫ r
ε a(x) dx. For J1(ε), we have:

J1(ε) = d(d− 1)
∫

[ε,1−ε]d
1{max(x)=xd}b(xd)

d−1∏
j=1

a(xj) log (w(x1)) dx

= d(d− 1)
∫

[ε,1−ε]

(∫
[t,1−ε]

Ad−2
ε (s)b(s) ds

)
a(t) log (w(t)) dt.

Notice that using (2.11) and (2.13), we have:

∫
[t,1−ε]

Ad−2
ε (s)b(s) ds =

∫
[t,1]

Ad−2(s)b(s) ds−
∫

[t,1]

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

−
∫

[1−ε,1]
Ad−2
ε (s)b(s) ds.

= h(t)
(d− 1)A(t) −

∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

−
∫

[1−ε,1]
Ad−2
ε (s)b(s) ds.

By Fubini’s theorem, we get:

J1(ε) = J1,1(ε)− J1,2(ε)− J1,3(ε),
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with:

J1,1(ε) =
∫

[ε,1−ε]
(d− δ′(t)) log (w(t)) dt

J1,2(ε) = d(d− 1)
(∫

[1−ε,1]
Ad−2
ε (s)b(s) ds

)∫
[ε,1−ε]

a(t) log (w(t)) dt

J1,3(ε) = d(d− 1)
∫

[ε,1−ε]

(∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

)
a(t) log (w(t)) dt.

To study J1,2, we first give an upper bound for the term
∫

[1−ε,1]A
d−2
ε (s)a(s)b(s) ds:

∫
[1−ε,1]

Ad−2
ε (s)b(s) ds ≤

∫
[1−ε,1]

Ad−2(s)b(s) ds

= 1
(d− 1) h

1−1/d(1− ε) e−F (1−ε)

≤ (d− 1)−1/dε1−1/d,

(2.39)

where we used that Aε(s) ≤ A(s) for s > ε for the first inequality, (2.13) for the first equality,
and (2.36) for the last inequality. Since t log(t) ≥ −1/ e, we have, using (2.37):

J1,2(ε) ≥ −d(d− 1)
e

(∫
[1−ε,1]

Ad−2
ε (s)b(s) ds

)∫
[ε,1−ε]

eF (t) dt

≥ −deh
1−1/d(1− ε)

∫
[ε,1−ε]

eF (t)−F (1−ε) dt

≥ −de ((d− 1)ε)1−1/d,

where we used (2.13) for the second inequality, and that F is non-decreasing and (2.39) for the
third inequality. On the other hand, we have t log(t) ≤ t

1
1−1/d , if t ≥ 0, which gives:

J1,2(ε) ≤ d(d− 1)
(∫

[1−ε,1]
Ad−2
ε (s)b(s) ds

)∫
[ε,1−ε]

eF (t)

(
d−δ′(t)

d

) 1
1−1/d

h(t) dt

= dh1−1/d(1− ε)
∫

[ε,1−ε]

eF (t)−F (1−ε)

h(t) dt

= dh1−1/d(1− ε)
(
1− eF (ε)−F (1−ε)

)
≤ d((d− 1)ε)1−1/d,

where we used (2.39) and t
1

1−1/d ≤ 1 for t ∈ I for the first inequality, and that F is non-decreasing
for the last. This proves that limε→0 J1,2(ε) = 0. For J1,3(ε), we first observe that for s ∈ [ε, 1−ε]
we have Aε(s) ≤ A(s) and thus:

(
Ad−2(s)−Ad−2

ε (s)
)

= A(ε)
d−3∑
i=0

Ai(s)Ad−3−i
ε (s) ≤ (d− 2)A(ε)Ad−3(s). (2.40)
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Using the previous inequality we obtain:

J1,3(ε) = d(d− 1)
∫

[ε,1−ε]

(∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

)
a(t) log (w(t)) dt

≥ −d(d− 1)
e

∫
[ε,1−ε]

(∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

)
eF (t) dt

≥ −d(d− 1)(d− 2)A(ε)
e

∫
[ε,1−ε]

(∫ 1

t
Ad−3(s)b(s) ds

)
eF (t) dt

≥ −d(d− 1)(d− 2)A(ε)
e

∫
[ε,1−ε]

(∫ 1
t A

d−2(s)b(s) ds
)

A(t) eF (t) dt

= −d(d− 2)A(ε)
e

∫
[ε,1−ε]

h(t)
A2(t) eF (t) dt

= −d(d− 2)h1/d(ε)
e

∫
[ε,1−ε]

h(t)1−2/d eF (ε)−F (t) dt

≥ −d(d− 2)(d− 1)1−1/dε1/d

e ,

where we used t log(t) ≥ −1/ e for the first inequality, (2.40) for the second, (2.11) and (2.13) in
the following equality, and (2.36) to conclude. For an upper bound, we have after noticing that
t log(t) ≤ t2:

J1,3(ε) = d(d− 1)
∫

[ε,1−ε]

(∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

)
a(t) log (w(t)) dt

≤ d(d− 1)
∫

[ε,1−ε]

(∫ 1

t

(
Ad−2(s)−Ad−2

ε (s)
)
b(s) ds

)
eF (t)w2(t) dt

≤ d(d− 1)(d− 2)A(ε)
∫

[ε,1−ε]

(∫ 1
t A

d−2(s)b(s) ds
)

A(t) eF (t) h−2+2/d(t) dt

= d(d− 2)A(ε)
∫

[ε,1−ε]

e−F (t)

h(t) dt

= d(d− 2)h1/d(ε)(1− eF (ε)−F (1−ε))
≤ d(d− 2)(d− 1)1/dε1/d,

where we used (2.40) and 0 ≤ (d − δ′(t))/d ≤ 1 for the second inequality; (2.11) and (2.13)
in the second equality; and (2.36) to conclude. The results on the two bounds show that
limε→0 J1,3(ε) = 0. Similarly, for J2(ε), we get:

J2(ε) =
∫

[ε,1−ε]d
1{max(x)=xd}b(xd)

d−1∏
j=1

a(xj) log
(
δ′(xd)
d

h−1+1/d(xd)
)

dx

= d

∫
[ε,1−ε]

Ad−1
ε (t)b(t) log

(
δ′(t)
d

h−1+1/d(t)
)

dt

= d

∫
[ε,1−ε]

Ad−1(t)b(t) log
(
δ′(t)
d

h−1+1/d(t)
)

dt

− d
∫

[ε,1−ε]

(
Ad−1(t)−Ad−1

ε (t)
)
b(t) log

(
δ′(t)
d

h−1+1/d(t)
)

dt

= J2,1(ε)− J2,2(ε)

with J2,1(ε) and J2,2(ε) given by, using (2.12):
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J2,1(ε) = d

∫
[ε,1−ε]

Ad−1(t)b(t) log
(
δ′(t)
d

h−1+1/d(t)
)

dt

J2,2(ε) = d

∫
[ε,1−ε]

(
Ad−1(t)−Ad−1

ε (t)
)
b(t) log

(
δ′(t)
d

h−1+1/d(t)
)

dt.

By (2.12), we have:

J2,1(ε) =
∫

[ε,1−ε]
δ′(t) log

(
δ′(t)
d

h−1+1/d(t)
)

dt. (2.41)

Similarly to J1,3(ε) we can show that limε→0 J2,2(ε) = 0.
Adding up J1(ε) and J2(ε) gives

J1(ε) + J2(ε) = Jε(δ) + J4(ε)− d log(d)(1− 2ε)− J1,2(ε)− J1,3(ε)− J2,2(ε)

with
Jε(δ) = (d− 1)

∫ 1−ε

ε
|log (h(t))| dt,

J4(ε) =
∫ 1−ε

ε

(
d− δ′(t)

)
log

(
d− δ′(t)

)
dt+

∫ 1−ε

ε
δ′(t) log

(
δ′(t)

)
dt.

Notice that Jε(δ) is non-decreasing in ε > 0 and that:

J (δ) = lim
ε→0
Jε(δ).

Since δ′(t) ∈ [0, d], we deduce that (d− δ′) log(d− δ′) and δ′ log(δ′) are bounded on I from above
by d log(d) and from below by −1/ e and therefore integrable on I. This implies :

lim
ε→0

J4(ε) = I1(δ′) + I1(d− δ′).

As for J3(ε), we have by integration by parts:

J3(ε) = d

∫
[ε,1−ε]d

1{max(x)=xd}b(xd)
d−1∏
i=i

a(xi)
(

(d− 1)F (xd)−
d−1∑
i=1

F (xi)
)
dx

= d(d− 1)
∫

[ε,1−ε]
Ad−1
ε (t)b(t)F (t) dt

− d(d− 1)
∫

[ε,1−ε]
Ad−2
ε (t)b(t)

(∫ t

ε
a(s)F (s) ds

)
dt

= d(d− 1)
∫

[ε,1−ε]
Ad−1
ε (t)b(t)F (t) dt

− d(d− 1)
∫

[ε,1−ε]
Ad−2
ε (t)b(t)

(
Aε(t)F (t)− d− 1

d

∫ t

ε

Aε(s)
h(s) ds

)
dt

= (d− 1)2
∫

[ε,1−ε]

(∫ 1−ε

t
Ad−2
ε (s)b(s) ds

)
Aε(t)
h(t) dt.

By the monotone convergence theorem, (2.11) and (2.13) we have:

lim
ε→0

J3(ε) = (d− 1)2
∫
I

(∫ 1

t
Ad−2(s)b(s) ds

)
A(t)
h(t) dt = d− 1.

Summing up all the terms and taking the limit ε = 0 give :

I(Cδ) = (d− 1)
∫
I
|log(t− δ(t))| dt+ I1(δ′) + I1(d− δ′)− d log(d)− (d− 1)

= (d− 1)J (δ) + G(δ).
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2.8.2 Proof of Lemma 2.14

Set Φ̄(x) = 1− Φ(x), the survival function of the standard Gaussian distribution. We recall
the well known approximation of Φ̄(t) for t > 0:

Φ̄(t) ≤ ϕ(t)
t

and Φ̄(t) = ϕ(t)
t

(
1− 1

t2
+g(t)

)
with 0 ≤ g(t) ≤ 3

t4
· (2.42)

We set W = (X1− ρX2)/
√

1− ρ2 so that W is standard normal and independent of X2. We
have:

P(X1 ≥ αt|X2 = t) = P
(
W ≥ (α− ρ)t√

1− ρ2

)
= Φ̄

(
(α− ρ)t√

1− ρ2

)

Since α ≥ ρ, this gives:

P(X1 ≥ αt|X2 = t) = 1√
2π t

√
1− ρÂ2

α− ρ
(1 +O(t−2)) exp

(
− 1

2
(α− ρ)2

(1− ρÂ2)
t2
)
. (2.43)

For (Y1, Y2), we have using notation from Section 2.2:

P(Y1 ≥ αt|Y2 = t) =
∫ ∞
αt

cδ(Φ(x),Φ(t))ϕ(x) dx =
∫ 1

Φ(αt)
b(s)a(Φ(t)) ds = B(Φ(αt))a(Φ(t)),

with B defined for r ∈ I as B(r) =
∫ 1
r b(s) ds. Using that B(r) = h1/2(r) e−F (r) as well as the

formulas (2.33) for δρ and δ′ρ, elementary computations give:

P(Y1 ≥ αt|Y2 = t) = Φ̄
(√

1− ρ
1 + ρ

t

)
e−Γt , (2.44)

with

Γt =
∫ αt

t
Φ
(√

1− ρ
1 + ρ

u

)
ϕ(u)

Φ̄(u)− Φ̄ρ(u, u)
du and Φ̄ρ(u, v) = P(X1 ≥ u,X2 ≥ v).

Using (2.42), it is easy to check that Φ̄ρ(u, u) = O(ϕ(u)u−5) for u large, and deduce that:

Γt = (α2 − 1)t2
2 + log(α) +O

(
t−2
)
.

Using (2.44) and (2.42), we get:

P(Y1 ≥ αt|Y2 = t) = 1√
2π t

1
α

√
1 + ρ

1− ρ (1 +O(t−2)) exp
(
− 1

2

(1− ρ
1 + ρ

+ α2 − 1
)
t2
)
.

Using (2.43), we obtain (2.34).

2.9 Supplementary material

We give the proof of Proposition 2.4 part (a), see Lemma 2.20.
Let Ti = {u ∈ Id; max(u) = ui} for 1 ≤ i ≤ d. For x ≤ y elements of Rd, we consider the

hyper-rectangle [x, y] = {z ∈ Rd, x ≤ z ≤ y}. The next Lemma ensures that every symmetric
feasible solution of (P δ) which is not of the form described in Lemma 2.11 can be changed locally
on any hyper-rectangle subset of T1 (and by symmetry on all Ti), in order to conserve or increase
its Kullback-Leibler divergence.
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Lemma 2.16. Let C ∈ Cδ with density c be a symmetric feasible solution to (P δ). Let x =
(x1, . . . , xd) and y = (y1, . . . , yd) be elements of T1 such that x ≤ y, xi = x2 and yi = y2 for
all 2 ≤ i ≤ d. Then we can define non-negative measurable functions ã, b̃ such that c̃ defined by
c̃ = c on Id \ [x, y] and a.e. for u = (u1, . . . , ud) ∈ [x, y]:

c̃(u) = b̃(u1)
d∏
i=2

ã(ui), (2.45)

is the density of a copula C̃ which verifies C̃ ∈ Cδ and I(C̃) ≤ I(C).

Proof. For u = (u1, . . . , ud) ∈ Id, we set u(−i) = (u1, . . . , ui−1, ui+1, . . . , ud) ∈ Id−1. Let M =
(
∫

[x,y] c(u) du)1/d. If M = 0, then simply take ã = 0 and b̃ = 0 and the proof is complete. If
M > 0, we define the functions b̃ and ãi, 2 ≤ i ≤ d as:

b̃(u1) = M1−d
∫

[x2,y2]d−1
c(u) du(−1) for u1 ∈ [x1, y1], (2.46)

ãi(ui) = M1−d
∫

[x1,y1]×[x2,y2]d−2
c(u) du(−i) for ui ∈ [x2, y2]. (2.47)

Notice that these functions are non-negative, and we have:∫ y1

x1
b̃(u1) du1 = M, and

∫ y2

x2
ãi(ui) dui = M for 2 ≤ i ≤ d. (2.48)

By the symmetry of c and the integration domain for 2 ≤ i ≤ d, we can deduce that ãi = ã
for all 2 ≤ i ≤ d. Let c̃ be defined by (2.45). We first check that Ad+1(c̃) = bd+1. Notice that
Ad+1(c̃)(r) = bd+1(r) holds for r ∈ [0, x1], since the density has not been changed in the region
of integration. When r ∈ [x1, 1], we have:

Ad+1(c̃)(r) =
∫
Id
c̃(u)1{max(u)≤r} du = Ad+1(c)(r) +

∫
[x,y]

(c̃(u)− c(u))1{max(u)≤r} du. (2.49)

Since we supposed that [x, y] ⊂ T1, we have that max(u) = u1 for u ∈ [x, y], in particular
y2 ∈ [0, x1] and thus [x2, y2] ⊂ [0, x1] ⊂ [0, r]. Therefore, we get:∫

[x,y]
c̃(u)1{max(u)≤r} du =

(
d∏
i=2

∫ y2

x2
ã(ui) dui

)(∫ r

x1
b̃(u1) du1

)
= Md−1

(∫ r

x1
b̃(u1) du1

)
=
∫

[x,y]
c(u)1{u1≤r} du,

=
∫

[x,y]
c(u)1{max(u)≤r} du,

where we used (2.46) for the third equality and [x, y] ⊂ T1 for the last. This implies the last
integral in (2.49) equals 0, ensuring Ad+1(c̃)(r) = bd+1(r) for all r ∈ I. Similarly, it is easy to
check Ai(c̃) = bi for 1 ≤ i ≤ d.

To show that I(C̃) ≤ I(C) that is Id(c̃) ≤ Id(c), we consider the following optimization
problem, say (P [x,y]), minimize I[x,y](f) subject to:

∫
[x,y] f(u)1{u1≤r} du = M−d

∫ r
x1
b̃(s) ds, for all r ∈ [x1, y1],∫

[x,y] f(u)1{ui≤r} du = M−d
∫ r
x2
ã(s) ds, for all 2 ≤ i ≤ d, r ∈ [x2, y2],

f ≥ 0 a.e. and f ∈ L1([x, y]),
(2.50)

where I[x,y](f) =
∫

[x,y] f log(f). This problem is exactly the problem of finding the density
f of the maximum entropy distribution on [x, y] with fixed marginals given by their den-
sities M−1b̃(u1)1[x1,y1](u1) and M−1ã(ui)1[x2,y2](ui) for 2 ≤ i ≤ d. These marginals verify
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I1(M−1b̃1[x1,y1]) < +∞ and I1(M−1ã1[x2,y2]) < +∞, since I[x,y](M−1c) ≤
∫
Id c| log(c)| < ∞.

Therefore by Corollary 3.2 of [48], M−dc̃ is the optimal solution for (P [x,y]), and in particular,
this yields ∫

[x,y]
c̃ log(c̃) ≤

∫
[x,y]

c log(c),

ensuring Id(c̃) ≤ Id(c).

An important consequence of Lemma 2.16 and Proposition 2.7 is that if there exists an
optimal (symmetric) solution of (P δ), it has a product form on all hyper-rectangles included in
T1.

Corollary 2.17. Assume there exists a feasible solution to (P δ). Let x = (x1, . . . , xd) and
y = (y1, . . . , yd) be elements of T1 such that x ≤ y, xi = x2 and yi = y2 for all 2 ≤ i ≤ d. Then,
there exist non-negative measurable functions g, h such that the unique optimal solution c∗ of
(P δ) takes the form c∗(u) = g(u1)∏d

i=2 h(ui) for a.e. u = (u1, . . . , ud) ∈ [x, y].

For arbitrary sets A,B ⊂ Rd, we write |A| the Lebesgue measure of A, A ⊂ B a.e. if
|A
⋂
Bc| = 0, A = B a.e. if a.e. A ⊂ B and a.e. B ⊂ A. For A, B subsets of I such, we define:

Θ(A,B) = T1 ∩
((
A× Id−1

)
∪
(

d
∪
i=2

Ii−1 ×B × Id−i
))

. (2.51)

We say that a subset of T1 is a stripe if it is a.e. equal to Θ(A,B) for some A, B Borel subsets
of I.

We give a characterization of zeros of any optimal solution of (P δ).

Lemma 2.18. Assume there exists an optimal solution c∗ of (P δ). Let K = {u ∈ T1, c
∗(u) = 0}

denote the subset of T1 where c∗ vanishes. Then at least one of the two following statements
hold:

— The set K is a stripe.
— There exists t ∈ (0, 1) such that a.e. (T1

⋂([t, 1]× Id−1) \ [t, 1]d) ⊂ K.

Proof. For t ∈ (0, 1), the hyper-rectangle Rt = [t, 1]× [0, t]d−1 is a subset of T1. We use notation
of Corollary 2.17 with x1 = t, x2 = 0, y1 = 1, y2 = t, and set At = {s ∈ [t, 1], g(s) = 0} as well as
Bt = {s ∈ [0, t], h(s) = 0}. We consider the stripe Θt = Θ(At, Bt). Notice that by construction
a.e.:

K
⋂
Rt = Θt

⋂
Rt.

We shall distinguishes two cases. In the first case, we assume that for all q ∈ Q
⋂(0, 1), a.e.

Θq ⊂ K. Set A = ⋃
q∈Q

⋂
(0,1)Aq, B = ⋃

q∈Q
⋂

(0,1)Bq, Θ = Θ(A,B) so that Θ = ⋃
q∈Q

⋂
(0,1) Θq ⊂

K. We get a.e.:
Θ
⋂
Rq ⊂ K

⋂
Rq = Θq

⋂
Rq ⊂ Θ

⋂
Rq.

That is a.e. for all q ∈ Q
⋂(0, 1), K ⋂

Rq = Θ⋂Rq. Use that a.e. T1 = ⋃
q∈Q

⋂
(0,1)Rq to get that

a.e. Θ = K.
In the second case, we assume there exists q ∈ Q

⋂(0, 1) such that |Θq
⋂
Kc| > 0. We first

assume that:
|(Aq × Id−1)

⋂
Kc| > 0.

We define:
t = inf{s > q, |(Aq × Id−1)

⋂
Kc

⋂
Rs| > 0}.

Notice that t belongs to [q, 1) as T1 = ⋃
s∈Q

⋂
(0,1)Rs and the boundary of T1 has zero Lebesgue

measure. By continuity, we get for all ε > 0 small enough:

|(Aq × Id−1)
⋂
Kc

⋂
Rt| = 0 and |(Aq × Id−1)

⋂
Kc

⋂
Rt+ε| > 0.
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We deduce from the last equality that Aq
⋂[t, 1] ⊂ At. We deduce from the last inequality and

the representation of Corollary 2.17 for the hyper-rectangle Rt+ε that g is non-zero on a subset
of Aq

⋂[t+ε, 1] of positive Lebesgue measure. Since Aq
⋂[t, 1] ⊂ At and c∗ is zero on At× [0, t]d−1

(by definition of At), this implies that h = 0 on [0, t], that is a.e. [t+ ε, 1]× [0, t]d−1 ⊂ K. Let ε
goes down to 0, we deduce that a.e. Rt ⊂ K.

Let s > t. Using the representation of Corollary 2.17 on the hyper-rectangle Rs, since c∗ = 0
on Rt, we get either g = 0 on [s, 1] or h = 0 at least on [0, t] and thus c∗ = 0 a.e. on [s, 1]× [0, t]×
[0, s]d−2. By symmetry, and letting s run in (t, 1)⋂Q, we get a.e. (T1

⋂([t, 1]×Id−1)\[t, 1]d) ⊂ K.
If |(Aq × Id−1)⋂Kc| = 0, then we have ∑d

i=2 |(Ii−1 × Bq × Id−i)
⋂
Kc| > 0. This case can

be handled similarly to the previous one.

Lastly we show that if the optimal solution of (P δ) vanishes on a stripe of T1, then the stripe
is a.e. a subset of Zδ.

Lemma 2.19. Assume there exists an optimal solution c∗ of (P δ). Let K = {u ∈ T1, c
∗(u) = 0}

denote the subset of T1 where c∗ vanishes. Let Θ be a stripe such that a.e. Θ ⊂ K. Then we have
a.e. Θ ⊂ Zδ.

Proof. Recall that a.e. Θ = Θ(A,B) is defined by (2.51) with A and B Borel sets. Using that
a.e. Θ ⊂ K and the symmetry of c∗, we get:∫

Id
c∗(u)1A(max(u)) du = 0.

By the monotone class theorem and the constraint Ad+1(c∗) = δ, we obtain that:

0 =
∫
Id
c∗(u)1A(max(u)) du =

∫
A
δ′(s) ds,

that is δ′ = 0 a.e. on A, since δ′ is non-negative. On the other hand we have:

∫
T1
c∗(u)

(
d∑
i=2

1B(ui)
)
du = 0.

By the symmetry of c∗, we get:

0 =
d∑
j=1

∫
Tj

c∗(u)

 d∑
i=1,i 6=j

1B(ui)

 du


=

d∑
i=1

(∫
Id
c∗(u)1B(ui) du−

∫
Id
c∗(u)1{ui=max(u)}1B(ui) du

)

=
d∑
i=1

(∫
Id
c∗(u)1B(ui) du

)
−
∫
Id
c∗(u)1B(max(u)) du.

Applying the monotone class theorem and the constraints Ai(c∗) = bi, 1 ≤ i ≤ d+ 1, we obtain
that:

0 =
d∑
i=1

(∫
Id
c∗(u)1B(ui) du

)
−
∫
Id
c∗(u)1B(max(u)) du =

∫
B

(d− δ′(s)) ds,

that is δ′ = d a.e. on B since a.e. δ′ ≤ d. This and δ′ = 0 a.e. on A implies that a.e. Θ ⊂ Zδ.

The next Lemma corresponds to Proposition 2.12 part (a).

Lemma 2.20. Let δ ∈ D0 such that Σδ = {0, 1}. If J (δ) = +∞ then there exists no feasible
solution to (P δ).
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Proof. Let us assume that there exists a feasible solution to (P δ). Then by Proposition 2.7, there
exists a unique symmetric copula C∗ with density c∗ such that I(C∗) = minC∈Cδ I(C) < +∞.
Let Υ = {u ∈ Id, c∗(u) = 0}. By Proposition 2.8, we have that a.e. Zδ ⊂ Υ.

By Proposition 2.2, J (δ) = +∞ implies that I(Cδ) = +∞, therefore cδ is not a feasible
solution to (P δ). We deduce from Proposition 2.12 that |Υ⋂Zcδ | > 0. Since c∗ i symmetric, this
implies that, with K = Υ ∩ T1, we have |K ⋂

Zcδ | > 0. According to Lemma 2.19 this implies
that K is not a stripe. We deduce from Lemma 2.18, that there exists t ∈ (0, 1) such that a.e.
(T1

⋂([t, 1]×Id−1)\[t, 1]d) ⊂ K. By symmetry, we deduce that c∗ = 0 on Id\([0, t]d⋃[t, 1]d). This
in turn implies that t ∈ Σδ. This leads to a contradiction since, we assumed that Σδ = {0, 1}.

In conclusion we get there is no feasible solution to (P δ).



Chapter 3

Maximum entropy distribution of
order statistics with given marginals

3.1 Introduction

Order statistics, an almost surely non-decreasing sequence of random variables, have re-
ceived a lot of attention due to the diversity of possible applications. If X = (X1, . . . , Xd) is a
d-dimensional random vector, then its order statistics XOS = (X(1), . . . , X(d)) corresponds to
the permutation of the components of X in the non-decreasing order, so that X(1) ≤ X(2) ≤
. . . ≤ X(d). The components of the underlying random vector X are usually, but not necessar-
ily, independent and identically distributed (i.i.d.). Special attention has been given to extreme
values X(1) and X(d), the range X(d) −X(1), or the median value. Direct application of the dis-
tribution of the k-th largest order statistic occurs in various fields, such as climatology, extreme
events, reliability, insurance, financial mathematics. We refer to the monographs of David and
Nagaraja [55] and Arnold, Balakrishnan, and Nagaraja [5] for a general overview on the sub-
ject of order statistics. We are interested in the dependence structure of order statistics, which
has received great attention. In the i.i.d. case, Bickel [21] showed that any two order statistics
are positively correlated. The copula of the joint distribution of X(1) and X(d) is derived in
Schmitz [156] with exact formulas for Kendall’s τ and Spearman’s ρ. In Avérous, Genest, and
Kochar [9], it is shown that the dependence of the j-th order statistic on the i-th order statistic
decreases as the distance between i and j increases according to the bivariate monotone regres-
sion dependence ordering. The copula connecting the limit distribution of the two largest order
statistics, called bi-extremal copula, is given by de Melo Mendes and Sanfins [59] with some
additional properties. Exact expressions for Pearson’s correlation coefficient, Kendall’s τ and
Spearman’s ρ for any two order statistics are obtained in Navarro and Balakrishnan [130]. For
the non i.i.d. case, Kim and David [114] shows that some pairs of order statistics can be nega-
tively correlated, if the underlying random vector is sufficiently negatively dependent. Positive
dependence measures for two order statistics are considered in Boland, Hollander, Joag-Dev, and
Kochar [24] when the underlying random variables are independent but arbitrarily distributed
or when they are identically distributed but not independent. A generalization of these results
for multivariate dependence properties is given by Hu and Chen [99]. See also Dubhashi and
Häggström [66] for conditional distribution of order statistics.

Here, we focus on the cumulative distribution function (cdf) of order statistics without refer-
ring to an underlying distribution. That is, we consider random vectors X = (X1, . . . , Xd) ∈ Rd
such that a.s. X1 ≤ · · · ≤ Xd and we suppose that the one-dimensional marginal distributions
F = (Fi, 1 ≤ i ≤ d) are given, where Fi is the cdf of Xi. A necessary and sufficient condi-
tion for the existence of a joint distribution of order statistics with one-dimensional marginals
F is that they are stochastically ordered, that is Fi−1(x) ≥ Fi(x) for all 2 ≤ i ≤ d, x ∈ R.
With the marginals fixed, the joint distribution of the order statistics can be characterized by
the connecting copula of the random vector, which contains all information on the dependence
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structure of the order statistics. Copulas of order statistics derived from an underlying i.i.d.
sample were considered in [9] in order to calculate measures of concordance between any two
pairs of order statistics. For order statistics derived from a general parent distribution, Navarro
and Spizzichino [131] shows that the copula of the order statistics depends on the marginals and
the copula of the parent distribution through an exchangeable copula and the average of the
marginals. Construction of some copula of order statistics with given marginals were given in
Lebrun and Dutfoy [119].

Our aim is to find the cdf of order statistics of dimension d with fixed marginals which
maximizes the relative entropy Hh defined by (3.13). In an information-theoretic interpretation,
the maximum entropy distribution is the least informative among order statistics with given
marginals. This problem appears in models where the one-dimensional marginals are well known
(either from different experimentation or from physical models) but the dependence structure is
unknown, see Butucea, Delmas, Dutfoy, and Fischer [34]. In [33], the same authors gave, when it
exists, the maximum entropy distribution of (X1, . . . , Xd) such that Xi is uniformly distributed
on [0, 1] for 1 ≤ i ≤ d and the distribution of X(d) = max1≤i≤dXi is given, see Remark 3.33.

For a d-dimensional random variable X = (X1, . . . , Xd) with cdf F and copula CF , the
relative entropy of F can be decomposed into the sum of the relative entropy (with respect to a
one-dimensional probability density h) of its one-dimensional marginals plus the entropy of CF ,
see Lemma3.1. In our case, since the marginals F = (Fi, 1 ≤ i ≤ d) are fixed, maximizing the
entropy of the joint distribution F of an order statistics is equivalent to maximizing the entropy
of its copula CF under constraints, (see Section 3.2.4). Therefore we shall find the maximum
entropy copula for order statistics with fixed marginal distributions.

The main result of this paper is given by Theorem 3.37. It states that there exists a unique
maximum entropy cdf FF given by (3.52) if and only if:

d∑
i=1

Hh(Fi)−
d∑
i=2

∫
R

Fi(dt) |log (Fi−1(t)− Fi(t))| > −∞.

In this case FF is absolutely continuous with density fF defined as, for x = (x1, . . . , xd) ∈ Rd:

fF(x) = f1(x1)
d∏
i=2

fi(xi)
Fi−1 (xi)− Fi(xi)

exp
(
−
∫ xi

xi−1

fi(s)
Fi−1(s)− Fi(s)

ds

)
1LF(x),

where fi is the density function of Fi and LF ⊂ Rd is the set of ordered vectors (x1, . . . , xd),
that is x1 ≤ · · · ≤ xd, such that Fi−1(t) > Fi(t) for all t ∈ (xi−1, xi) and 2 ≤ i ≤ d. See Example
3.41 for an illustrative example.

The rest of the paper is organized as follows. In Section 3.2, we introduce the basic notations
and give the definition of the objects used in later parts. Section 3.3 describes the connection
between copulas of order statistics with fixed marginals, and symmetric copulas with fixed
multidiagonals. The multidiagonal, given by Definition 3.8, is the generalization of the diagonal
section for copulas, which received great attention in copula literature. We show that there
exist a one-to-one map between these two sets of copulas, see Corollary 3.16. This bijection has
good properties with respect to the entropy as explained in Proposition 3.24. In Section 3.4,
we determine the maximum entropy copula with fixed multidiagonal, see Theorem 3.32. Since
we obtain a symmetric copula as a result, this is also the maximum entropy symmetric copula
with fixed multidiagonal. In Section 3.5, we use the one-to-one map between the two sets of
copulas established in Section 3.3 to give the maximum entropy copula of order statistics with
fixed marginals . We finally obtain the density of the maximum entropy distribution for order
statistics with fixed marginals by composing the maximum entropy copula with the marginals,
see Theorem 3.37. Section 3.6 contains the detailed proofs of Theorem 3.32 and other results
from Section 3.4. Section 3.7 collects the main notations of the paper to facilitate reading.
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3.2 Notations and definitions

3.2.1 Notations in Rd and generalized inverse

For a Borel set A ⊂ Rd, we write |A| for its Lebesgue measure. For x = (x1, . . . , xd) ∈ Rd and
y = (y1, . . . , yd) ∈ Rd, we write x ≤ y if xi ≤ yi for all 1 ≤ i ≤ d. We define min x = min{xi, 1 ≤
i ≤ d} and max x = max{xi, 1 ≤ i ≤ d} for x = (x1, . . . , xd) ∈ Rd. If J is a real-valued function
defined on R, we set J(x) = (J(x1), . . . , J(xd)). We shall consider the following subsets of Rd:

S = {(x1, . . . , xd) ∈ Rd, x1 ≤ · · · ≤ xd} and 4 = S ∩ Id,

with I = [0, 1]. In what follows, usually x, y will belong to Rd, and s, t to R or I. For a set
A ⊂ R, we note by Ac = R \A its complementary set.

If J is a bounded non-decreasing càd-làg function defined on R. Its generalized inverse J−1

is given by J−1(t) = inf{s ∈ R; J(s) ≥ t}, for t ∈ R, with the convention that inf ∅ = +∞ and
inf R = −∞. We have for s, t ∈ R:

J(t) ≥ s⇔ t ≥ J−1(s), J−1 ◦ J(t) ≤ t and J ◦ J−1 ◦ J(t) = J(t). (3.1)

We define the set of points where J is increasing on their left:

Ig(J) = {t ∈ R;u < t⇔ J(u) < J(t)}. (3.2)

We have:
1(Ig(J))c dJ = 0 a.e., (3.3)

J−1(R) ⊂ Ig(J) ∪ {±∞} (3.4)

and for s ∈ R, t ∈ Ig(J):

J(t) ≤ s⇔ t ≤ J−1(s) and J−1 ◦ J(t) = t. (3.5)

Notice that if J is continuous in addition, then we have for t ∈ J(R):

J ◦ J−1(t) = t. (3.6)

3.2.2 Cdf and copula

Let X = (X1, . . . , Xd) be a random vector on Rd. Its cumulative distribution function (cdf),
denoted by F is defined by: F (x) = P(X ≤ x), x ∈ Rd. The corresponding one-dimensional
marginals cdf are (Fi, 1 ≤ i ≤ d) with Fi(t) = P(Xi ≤ t), t ∈ R. The cdf F is called a copula if
Xi is uniform on I = [0, 1] for all 1 ≤ i ≤ d. (Notice a copula is characterized by its values on
Id only.)

We define Ld as the set of cdfs on Rd whose one-dimensional marginals cdfs are continuous,
and C ⊂ Ld as the subset of copulas. We set L0

d (resp. C0) the subset of absolutely continuous
cdf (resp. copulas) on Rd.

Let us define for a cdf F with one-dimensional marginals (Fi, 1 ≤ i ≤ d) the function CF
defined on Id:

CF (y) = F (F−1
1 (y1), . . . , F−1

d (yd)), y = (y1, . . . , yd) ∈ Id. (3.7)

If F ∈ Ld, then CF defined by (3.7) is a copula thanks to (3.6). According to Sklar’s theorem,
F is then completely characterized by its one-dimensional marginals cdf (Fi, 1 ≤ i ≤ d) and the
associated copula CF which contains all information on the dependence:

F (x) = CF (F1(x1), . . . , Fd(xd)) , x = (x1, . . . , xd) ∈ Rd. (3.8)

Equivalently, if X = (X1, . . . , Xd) has cdf F , then CF is the cdf of the random vector:

(F1(X1), . . . , Fd(Xd)). (3.9)
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3.2.3 Order statistics

For a d-dimensional cdf F , we write PF for the distribution of a random vector X =
(X1, . . . , Xd) with cdf F . A d-dimensional cdf F is a cdf of order statistics (and we shall say
that X is a vector of order statistics) if PF (X1 ≤ X2 ≤ . . . ≤ Xd) = 1. Let us denote by
LOSd ⊂ Ld the set of all cdf of order statistics with continuous one-dimensional marginals cdf.
The d-tuples (Fi, 1 ≤ i ≤ d) of marginal cdf’s then verify Fi−1 ≥ Fi for all 2 ≤ i ≤ d . Let Fd
be the set of d-tuples of continuous one-dimensional cdf’s compatible with the marginals cdf of
order statistics:

Fd = {F = (Fi, 1 ≤ i ≤ d) ∈ (L1)d ; Fi−1 ≥ Fi, ∀2 ≤ i ≤ d}. (3.10)

For a given F = (Fi, 1 ≤ i ≤ d) in Fd, we define the set of cdf’s F of order statistics with
marginals cdf F:

LOSd (F) = {F ∈ LOSd ; Fi = Fi, 1 ≤ i ≤ d}. (3.11)

If F ∈ Fd, then we have LOSd (F) 6= ∅, since the cdf of (F−1
1 (U), . . . ,F−1

d (U)), U uniformly
distributed on I, belongs to LOSd (F). We define COS(F) the set of copulas of order statistics
with marginals F:

COS(F) = {CF ∈ C;F ∈ LOSd (F)}. (3.12)

According to Sklar’s theorem, the map F 7→ CF is a bijection between LOSd (F) and COS(F) if
F ∈ Fd.

3.2.4 Entropy

Let h be a reference probability density function on R. We define h⊗d(x) = ∏d
i=1 h(xi) for

x = (x1, . . . , xd) ∈ Rd. The relative Shannon-entropy for a c.d.f. F ∈ Ld is given by:

Hh(F ) =

−∞ if F ∈ Ld \ L0
d,

−
∫
Rd f log

(
f/h⊗d

)
if F ∈ L0

d,
(3.13)

with f the density of F . Notice that Hh(F ) ∈ [−∞, 0] is well defined. We will use the notation
Hh(X) = Hh(F ) if X is a random vector with cdf F and Hh(f) = Hh(F ) if F has density f .
We shall simply write H(F ) (resp. H(X) and H(f)) instead of Hh(F ) (resp. Hh(X) and Hh(f))
when h = 1[0,1]. Note that H(F ) can be finite only if F is the cdf of a probability distribution
on [0, 1]d.

According to the next lemma, the relative entropy of any F ∈ L1c
d can be decomposed into

the relative entropy of the one-dimensional marginals cdf (Fi, 1 ≤ i ≤ d) and the entropy of the
associated copula CF .

Lemma 3.1. Let F ∈ L1c
d . We have:

Hh(F ) = H(CF ) +
d∑
i=1

Hh(Fi). (3.14)

Proof. It is left to the reader to check that F has a density, say f , if and only if Fi has a density,
say fi, for 1 ≤ i ≤ d and CF has a density, say cF . Furthermore, in this case, we have:

f(x) = cF (F1(x1), . . . , Fd(xd))
d∏
i=1

fi(xi) a.e. for x = (x1, . . . , xd) ∈ Rd,

as well as, with the convention 0/0 = 0,

cF (u) = f(F−1
1 (u1), . . . , F−1

d (ud))∏d
i=1 fi(F−1

i (ui))
a.e. for u = (u1, . . . , ud) ∈ Id.
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On the one hand, if F does not have a density then we have Hh(F ) = −∞. Since F does
not have a density, then one of the Fi or CF does not have a density either, and then H(CF ) +∑d
i=1Hh(Fi) = −∞. Thus (3.14) holds.
On the other hand, let us assume that F has a density, say f . Elementary computations give

with x = (x1, . . . , xd) and 1 ≤ i ≤ d:

Hh(Fi) = −
∫
R
fi(xi) log((fi/h)(xi)) dxi = −

∫
Rd
f(x) log((fi/h)(xi)) dx.

We also have with u = (u1, . . . , ud) and x = (x1, . . . , xd):

H(CF ) = −
∫

[0,1]d
cF log(cF ) = −

∫
f(F−1

1 (u1), . . . , F−1
d (ud))∏d

i=1 fi(F−1
i (ui))

log (cF (u)) du

= −
∫
f(x) log (cF (F1(x1), . . . , Fd(xd))) dx,

where, for the last equality, we used the change of variable Fi(xi) = ui (for xi ∈ Ig(Fi)) so that
F−1
i (ui) = F−1

i ◦ Fi(xi) = xi holds fi(xi)dxi-a.e and that f(x)dx = 0 on
(
⊗di=1Ig(Fi)

)c
. Then

use that f(x) = cF (F1(x1), . . . , Fd(xd))
∏d
i=1 fi(xi) a.e. for x = (x1, . . . , xd) ∈ Rd to deduce that

H(CF ) +∑d
i=1Hh(Fi) = −

∫
f log(f/h⊗d) = Hh(F ).

Remark 3.2. Notice that if Fi has density fi for 1 ≤ i ≤ d, then one can choose the reference
probability density h(t) = 1

d

∑d
i=1 fi(t) so that Hh(Fi) ≥ − log(d). In this case, Hh(F ) is finite

if and only if H(CF ) is finite, and we have:

H(CF ) = Hh(F )−
d∑
i=1

Hh(Fi) = −
∫
f(x) log

(
f(x)∏d

i=1 fi(xi)

)
dx.

Thus, H(CF ) is the relative entropy of the cdf F with respect to the probability distribution
with cdf ⊗di=1Fi of independent real valued random variables with the same one-dimensional
marginal as the one with cdf F . This emphasizes the fact that Hh(F )−∑d

i=1Hh(Fi), when it is
well defined, does not depend on h.

For F = (Fi, 1 ≤ i ≤ d) ∈ Fd, we define J(F) taking values in [0,+∞] by:

J(F) =
d∑
i=2

∫
R

Fi(dt) |log (Fi−1(t)− Fi(t))| . (3.15)

Our aim is to find the cdf F ∗ ∈ LOSd (F) which maximizes the entropy Hh. We shall see that
this is possible if and only if J(F) is finite. From an information theory point of view, this is
the distribution which is the least informative among distributions of order statistics with given
one-dimensional marginals cdf F. Since the vector of marginal distribution functions F is fixed,
thanks to (3.14), we notice that Hh(F ) is maximal on LOSd (F) if and only if H(CF ) is maximal
on COS(F). Therefore we focus on finding the copula C∗ ∈ COS(F) which maximizes the entropy
H. We will give the solution of this problem in Section 3.5 under some additional hypotheses
on F.

3.3 Symmetric copulas with given order statistics

In this Section, we introduce an operator on the set COS(F) of copulas of order statistics
with fixed marginals cdf F. This operator assigns to a copula C ∈ COS(F) the copula of the
exchangeable random vector associated to the order statistics with marginals cdf F and copula
C. We show that this operator is a bijection between COS(F) and a set of symmetric copulas
which can be characterized by their multidiagonal, which is a generalization of the well-known
diagonal section of copulas. This bijection has good properties with respect to the entropy H,
giving us a problem equivalent to maximizing H on COS(F). We shall solve this problem in
Section 3.4.
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3.3.1 Symmetric copulas

For x = (x1, . . . , xd) ∈ Rd we define xOS = (x(1), . . . , x(d)) the ordered vector (increasing
order) of x, where x(1) ≤ · · · ≤ x(d) and ∑d

i=1 δ̂xi = ∑d
i=1 δ̂x(i) , with δ̂t the Dirac mass at t ∈ R.

Let Sd be the set of permutations on {1, . . . , d}. For x = (x1, . . . , xd) ∈ Rd and π ∈ Sd,
we set xπ = (xπ(1), . . . , xπ(d)). A function h defined on Rd is symmetric if h(xπ) = h(x) for all
π ∈ Sd. A random vector X taking values in Rd is exchangeable if Xπ is distributed as X for
all π ∈ Sd. In particular a random vector X taking values in Rd is exchangeable if and only if
its cdf is symmetric. Let Lsymd ⊂ Ld (resp. Csym ⊂ Ld) denote the set of symmetric cdf (resp.
copulas) on Rd.

Let F ∈ Ld and define its symmetrization F sym ∈ Lsymd by:

F sym(x) = 1
d!
∑
π∈Sd

F (xπ), x ∈ Rd. (3.16)

In particular, if X is a random vector taking values in Rd with cdf F and Π is a random variable
independent of X, uniformly distributed on Sd, then XΠ is exchangeable with cdf F sym.

We define the following operator on the set of copulas of order statistics.

Definition 3.3. Let F ∈ (L1)d. For C ∈ C we define SF(C) as the copula of the exchangeable
random variable XΠ, where X is a random vector on Rd with one-dimensional marginals cdf F
and copula C and Π is an independent random variable uniform on Sd.

The application SF is well-defined on C and takes values in Csym. In the above definition,
with F = (Fi, 1 ≤ i ≤ d), the one-dimensional marginals cdf of XΠ are equal to:

G = 1
d

d∑
i=1

Fi. (3.17)

Since the one-dimensional marginals cdf Fi are continuous, we get that G is continuous and
thus the cdf of XΠ belongs to Ld. In particular, thanks to Sklar’s theorem, the copula of XΠ is
indeed uniquely defined.

Combining (3.8), (3.7) and (3.16), we can give an explicit formula for SF(C):

SF(C)(u) = 1
d!
∑
π∈Sd

C
(
F1(G−1(uπ(1))), . . . ,Fd(G−1(uπ(d)))

)
, u ∈ Id. (3.18)

Remark 3.4. The copula SF(C) is not equal in general to the exchangeable copula Csym defined
similarly to (3.16) by Csym = (1/d!)∑π∈Sd C(xπ). However this is the case if the one-dimensional
marginals cdf Fi are all equal, in which case Fi = G for all 1 ≤ i ≤ d.

If X is a random vector on Rd, let XOS = (X(1), . . . , X(d)) be the order statistics of X. The
proof of the next Lemma is elementary.

Lemma 3.5. Let X be a random vector on Rd with cdf F and Π a random variable independent
of X, uniformly distributed on Sd. We have:

— If F ∈ LOSd , then a.s. (XΠ)OS = X
— If F ∈ Lsymd , then (XOS)Π has the same distribution as X.

For F ∈ Fd, we define the set of copulas Csym(F) ⊂ Csym as the image of COS(F) by the
symmetrizing operator SF:

Csym(F) = SF(COS(F)). (3.19)

The following Lemma is one of the main result of this section.

Lemma 3.6. Let F ∈ Fd. The symmetrizing operator SF is a bijection from COS(F) onto
Csym(F).
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Proof. Let C1, C2 ∈ COS(F) with SF(C1) = SF(C2). Let X and Y be random vectors with
one-dimensional marginals cdf F and copula C1, C2 respectively. Since C1, C2 ∈ COS(F), we get
that X and Y are order statistics. Notice XΠ and YΠ have the same one-dimensional marginals
according to (3.17) and same copula given by SF(C1) = SF(C2). Therefore XΠ and YΠ have the
same distribution. Thus, their corresponding order statistics (XΠ)OS and (YΠ)OS have the same
distribution. By Lemma 3.5 we get that X and Y have the same distribution as well, which
implies C1 = C2.

Remark 3.7. We have in general Csym(F) 6= COS(F) ∩ Csym. One exception being when the
marginals cdf’s Fi are all equal. In this case, both sides reduce to one copula which is the
Fréchet-Hoeffding upper bound copula: C+(u) = min u, u ∈ Id.

3.3.2 Multidiagonals and characterization of Csym(F)
Let C ∈ C be a copula and U a random vector with cdf C. The map t 7→ C(t, . . . , t) for t ∈ I,

which is called the diagonal section of C, is the cdf of maxU . We shall consider a generalization
of the diagonal section of C in the next Definition.

Definition 3.8. Let C ∈ C be a copula on Rd and U a random vector with cdf C. The multi-
diagonal of the copula C, δC = (δ(i), 1 ≤ i ≤ d), is the d-tuple of the one-dimensional marginals
cdf of UOS = (U(1), . . . , U(d)) the order statistics of U : for 1 ≤ i ≤ d

δ(i)(t) = P(U(i) ≤ t), t ∈ I.

We denote by D = {δC ;C ∈ C} the set of multidiagonals. Notice that D ⊂ Fd, see Remark
3.9. For δ ∈ D a multidiagonal, we define Cδ = {C; δC = δ} the set of copulas with multidiagonal
δ.

A characterization of the set D is given by Theorem 1 of [103]: a vector of functions δ =
(δ(1), . . . , δ(d)) belongs to D if and only if δ(i) is a one-dimensional cdf and the following conditions
hold:

δ(i) ≥ δ(i+1), 1 ≤ i ≤ d− 1, (3.20)
d∑
i=1

δ(i)(s) = ds, 0 ≤ s ≤ 1. (3.21)

Remark 3.9. The condition (3.21) implies that δ(i) ∈ L1, 1 ≤ i ≤ d, moreover they are d-
Lipschitz. Also, it is enough to know d − 1 functions from δ(i), 1 ≤ i ≤ d, the remaining one is
implicitly defined by (3.21). Condition (3.20) along with the continuity of δ(i) implies that any
multidiagonal δC is compatible with the continuous marginal distributions of an order statistics,
therefore D ⊂ Fd.

Remark 3.10. Since δ(i), 1 ≤ i ≤ d are non-decreasing and d-Lipschitz, we have for almost
every t ∈ I: 0 ≤ (δ(i))′(t) ≤ d and thus

∣∣∣(δ(i))′(t) log((δ(i))′(t))
∣∣∣ ≤ d log(d) for d ≥ 2. We deduce

that for d ≥ 2: ∣∣∣H(δ(i))
∣∣∣ ≤ d log(d). (3.22)

Remark 3.11. Let C ∈ Csym be a symmetric copula on Rd and U a random vector with cdf C.
We check that the multidiagonal δC = (δ(i), 1 ≤ i ≤ d) can be expressed in terms of the diagonal
sections (C{i}, 1 ≤ i ≤ d) where for 1 ≤ i ≤ d:

C{i}(t) = P
(

max
1≤k≤i

Uk ≤ t
)

= C(t, . . . , t︸ ︷︷ ︸
i terms

, 1, . . . , 1︸ ︷︷ ︸
d−i terms

), t ∈ I.

According to 2.8 of [103], we have for 1 ≤ i ≤ d:

δ(i)(t) =
d∑
j=i

(−1)j−i
(
j − 1
i− 1

)(
d

j

)
C{j}(t), t ∈ I.
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Conversely, we can express the functions (C{i}, 1 ≤ i ≤ d) with δC . Let Π denote the random
permutation such that UΠ = UOS , where UOS is the order statistics associated to U . It is well
known that Π and UOS are independent. Therefore, for 1 ≤ i ≤ d and t ∈ I, we have:

C{i}(t) = P
(

max
1≤k≤i

Uk ≤ t
)

=
d∑
j=i

P(U(j) ≤ t, max
1≤k≤i

Uk = U(j))

=
d∑
j=i

P(U(j) ≤ t, max
1≤k≤i

Π(k) = j)

=
d∑
j=i

P( max
1≤k≤i

Π(k) = j)P(U(j) ≤ t)

=
d∑
j=i

(j−1
i−1
)(d

i

) δ(j)(t),

where we used the independence of Π and UOS for the fourth equality, and the definition of δ(i)
plus the exchangeability of U for the fifth equality.

The next technical Lemma will be used in forthcoming proofs. Recall that J−1 denotes
the generalized inverse of a non-decreasing function J , see Section 3.2.1 for its definition and
properties, in particular, J−1 ◦ J(t) ≤ t for t ∈ R. Recall also that for x = (x1, . . . , xd) ∈ Rd, we
write G(x) = (G(x1), . . . , G(xd)).

Lemma 3.12. Let X = (X1, . . . , Xd) be a random vector on Rd with one-dimensional marginals
cdf (Fi, 1 ≤ i ≤ d). Set G = ∑d

i=1 Fi/d. We have for 1 ≤ i ≤ d:

P(Xi ≤ G−1 ◦G(t)) = P(Xi ≤ t), t ∈ R, that is Fi ◦G−1 ◦G = Fi. (3.23)

We also have for x ∈ Rd:
P(G(X) ≤ x) = P(X ≤ G−1(x)). (3.24)

Proof. Since G is the average of the non-decreasing functions Fi, if G(s) = G(s′) for some s, s′ ∈
R, then we have Fi(s) = Fi(s′) for every 1 ≤ i ≤ d. Thanks to (3.1), we have G◦G−1◦G(t) = G(t)
and thus Fi ◦G−1 ◦G(t) = Fi(t). This gives (3.23).

Recall definition (3.2) for Ig(J) the set of points where the function J is increasing on
their left. Since G is the average of the non-decreasing functions Fi, we deduce that Ig(G) =⋃

1≤i≤d Ig(Fi). Notice that a.s. Xi belongs to Ig(Fi). Thanks to (3.5), we get that a.s. {G(X) ≤
x} = {X ≤ G−1(x)}. This gives (3.24).

We will also require the following Lemma.

Lemma 3.13. Let X = (X1, . . . , Xd) be a random vector on Rd with one-dimensional marginals
cdf (Fi, 1 ≤ i ≤ d). Set G = ∑d

i=1 Fi/d. We have for 1 ≤ i ≤ d:

(Fi ◦G−1)−1 = G ◦ F−1
i . (3.25)

Proof. Recall Definition (3.2) for Ig(J) the set of points where the function J is increasing on
their left. Let 1 ≤ i ≤ d. Thanks to (3.4), we have F−1

i (R) ⊂ Ig(Fi) ∪ {±∞}. Since G is the
average of the non-decreasing functions Fi, we deduce that Ig(G) = ⋃

1≤i≤d Ig(Fi). Thus we get:

F−1
i (R) ⊂ Ig(G) ∪ {±∞}, (3.26)

for all 1 ≤ i ≤ d. The function Fi ◦ G−1 is also bounded, non-decreasing and càd-làg therefore
we have for t, s,∈ R:

t ≥ (Fi ◦G−1)−1(s)⇐⇒ Fi ◦G−1(t) ≥ s⇐⇒ G−1(t) ≥ F−1
i (s)⇐⇒ t ≥ G ◦ F−1

i (s),
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where we used the equivalence of (3.1) for the first and second equivalence, (3.26) and the
equivalence of (3.5) for the last. This gives that (Fi ◦G−1)−1 = G ◦ F−1

i .

In the following Lemma, we show that for F ∈ Fd, all copulas in Csym(F) share the same
multidiagonal denoted by δF.

Lemma 3.14. Let F = (Fi, 1 ≤ i ≤ d) ∈ Fd. Let C ∈ COS(F) and U be a random vector with
cdf SF(C). Let δF = (δ(i), 1 ≤ i ≤ d) be the multidiagonal of SF(C), that is the one-dimensional
marginals cdf of UOS, the order statistics of U . We have that δF does not depend on C and for
1 ≤ i ≤ d:

δ(i) = Fi ◦G−1 and δ−1
(i) = G ◦ F−1

i , (3.27)

with G given by (3.17). Furthermore, C is the unique copula of UOS.

With obvious notation, we might simply write δF = F ◦G−1, with G given by (3.17).

Proof. Let X be a random vector of order statistics with marginals F ∈ Fd and copula C. Then
SF(C) is the copula of the exchangeable random vector XΠ, where Π is uniform on Sd and
independent of X. We have already seen in (3.17) that the one-dimensional marginals of XΠ
have the same distribution given by G ∈ L1. Thanks to (3.9), we deduce that the random vector
U , with cdf SF(C), has the same distribution as G(XΠ). Since G is non-decreasing, this implies
that the order statistics of U , UOS , has the same distribution as G

(
(XΠ)OS

)
that is as G(X),

thanks to Lemma 3.5. Then use (3.24) to get for x ∈ Rd:

P(UOS ≤ x) = P(G(X) ≤ x) = P(X ≤ G−1(x)). (3.28)

This gives the first part of the Lemma as the multidiagonal of U is the one-dimensional marginals
cdf of its order statistics. The second equation in (3.27) is due to Lemma 3.13. The fact that C
is the copula of UOS and its uniqueness are due to (3.28) and the continuity of δ(i), see Remark
3.9.

The next proposition shows that the set Csym(F) is actually the set of symmetric copulas
with diagonal section δF. This yields the main result of this section given by the subsequent
corollary.

Proposition 3.15. Let F ∈ Fd. We have Csym(F) = CδF ∩ Csym.

Proof. By Lemma 3.14, we have Csym(F) ⊂ CδF ∩ Csym.
Let C ∈ CδF ∩ Csym and U be a random vector with cdf C. Let G be given by (3.17). Notice

that X = G−1(U) is an exchangeable random vector with marginals G and copula C. Thanks to
Lemma 3.5, the proof will be complete as soon as we prove that the one-dimensional marginals
cdf of XOS = (X(1), . . . , X(d)), the order statistics of X, is given by F. Notice XOS = G−1(UOS),
with UOS the order statistics of U whose one-dimensional marginals cdf are given by δF. We
have for 1 ≤ i ≤ d and t ∈ R:

P(X(i) ≤ t) = P(G−1(U(i)) ≤ t) = P(U(i) ≤ G(t)) = Fi ◦G−1 ◦G(t) = Fi(t),

where we used (3.1) for the second equality, (3.27) for the third, and (3.23) for the last. This
finishes the proof.

Corollary 3.16. According to Proposition 3.15, (3.19) and Lemma 3.6, we get that for any
F ∈ Fd, the symmetrizing operator SF is a bijection between COS(F) and CδF ∩ Csym.

We end this Section by an ancillary result we shall use later.

Lemma 3.17. Let F ∈ Fd. We have J(F) = J(δF).
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Proof. Let F = (Fi, 1 ≤ i ≤ d). We get, using (3.27) and the change of variable s = G−1(t) that:∫
I
δ′(i)(t)

∣∣∣log
(
δ(i−1)(t)− δ(i)(t)

)∣∣∣ dt =
∫
G−1((0,1))

Fi(ds) |log (Fi−1(s)− Fi(s))| .

Since dFi = 0 outside G−1((0, 1)) (as G is increasing as soon as Fi is increasing), we get that
the last integration above is also over R. We deduce that:

J(δF) =
d∑
i=2

∫
R

Fi(ds) |log (Fi−1(s)− Fi(s))| = J(F).

3.3.3 Density and entropy of copulas in Csym(F)
We prove in this Section that SF preserves the absolute continuity on COS(F) for F ∈ Fd

and the entropy up to a constant. Let us introduce some notation. For marginals F ∈ Fd, let

ΨF
i = {s ∈ R, Fi−1(s) > Fi(s)} for 2 ≤ i ≤ d. (3.29)

The complementary set (ΨF
i )c is the collection of the points where Fi−1 = Fi. We define ΣF ⊂ I

as:

ΣF =
d⋃
i=2

Fi

(
(ΨF

i )c
)
. (3.30)

By Remark 3.9 we have D ⊂ Fd, then the definitions (3.29) and (3.30) apply for all δ ∈ D. In
particular, for δ = (δ(1), . . . , δ(d)) ∈ D the sets Ψδ

i , 2 ≤ i ≤ d are open subsets of I, therefore
(Ψδ

i )c∩I is a compact subset. This and the continuity of δ(i) imply that δ(i)((Ψδ
i )c) = δ(i)((Ψδ

i )c∩
I) is also compact, hence Σδ is compact. Notice that {0, 1} ⊂ Σδ always holds. We define
C0
δ = Cδ ∩ C0 the subset of absolutely continuous copulas with multidiagonal δ and the subset
D0 = {δ ∈ D, C0

δ 6= ∅} of multidiagonals of absolutely continuous copulas. According to Theorem
2 of [103], the multidiagonal δ belongs to D0 if and only if it belongs to D and the Lebesgue
measure of Σδ is zero:

∣∣∣Σδ
∣∣∣ = 0.

Lemma 3.18. Let δ ∈ D. We have δ ∈ D0 if and only if for all 2 ≤ i ≤ d, a.e.:

δ′(i−1)1(Ψδi )c
= δ′(i)1(Ψδi )c

= 0. (3.31)

Furthermore, we have that J(δ) < +∞ implies δ ∈ D0.

Proof. Let J be a function defined on I, Lipschitz and non-decreasing. Let A be a Borel subset
of I. We have:

|J(A)| =
∫

1J(A)(t) dt =
∫ 1

0
1{s∈J−1◦J(A)} J

′(s)ds =
∫ 1

0
1A(s) J ′(s)ds,

where we used (3.3) and (3.5) for the last equality. This gives that |J(A)| = 0 if and only if
a.e. J ′1A = 0. Then use that δ ∈ D0 if and only if

∣∣∣δ(i)((Ψδ
i )c)

∣∣∣ = 0 for all 1 ≤ i ≤ d and that
δ(i−1)((Ψδ

i )c) = δ(i)((Ψδ
i )c) to conclude that δ ∈ D0 if and only if (3.31) holds for all 2 ≤ i ≤ d.

The last part of the Lemma is clear.

Definition 3.19. Let F0
d ⊂ Fd be the subset of marginals F such that there exists an absolutely

continuous cdf of order statistics with marginals F, that is LOSd (F) ∩ L0
d 6= ∅.

In particular, we have D0 ⊂ F0
d . The next lemma gives a characterization of the set F0

d .

Lemma 3.20. Let F ∈ Fd. Then F ∈ F0
d if and only if Fi ∈ L0

1 for 1 ≤ i ≤ d and
∣∣ΣF∣∣ = 0.

Furthermore, we have that Fi ∈ L0
1 for 1 ≤ i ≤ d and J(F) < +∞ imply F ∈ F0

d .
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Proof. Let F ∈ LOSd (F). We know that F ∈ L0
d if and only if Fi ∈ L0

1 for 1 ≤ i ≤ d and CF ∈ C0,
the subset of absolutely continuous copulas (see for example [102]). Therefore F ∈ F0

d if and
only if Fi ∈ L0

1 for 1 ≤ i ≤ d and COS(F) ∩ C0 6= ∅. Recall that δF is defined by (3.27). We first
show that

COS(F) ∩ C0 6= ∅ if and only if C0
δF ∩ Csym 6= ∅. (3.32)

Let C ∈ COS(F) ∩ C0. Then Lemma 3.14 ensures that SF(C) ∈ CδF ∩ Csym. The absolute
continuity of SF(C) is a direct consequence of (3.18), (3.27) and Remark 3.9 which ensures
that δF

(i), 1 ≤ i ≤ d are d-Lipschitz, therefore their derivatives exist a.e. on I. This ensures that
C0
δF ∩ Csym 6= ∅.

Conversely, let C ∈ C0
δF∩Csym. Let U be a random vector with cdf C. Then its order statistics

UOS is also absolutely continuous. Therefore the copula of UOS , which is S−1
F (C) by Lemma

3.14, is also absolutely continuous. This proves thanks to Proposition 3.15 and Lemma 3.6 that
S−1

F (C) ∈ COS(F) ∩ C0. This gives (3.32).
Notice that C0

δF ∩Csym 6= ∅ is equivalent to C0
δF 6= ∅, since for any C ∈ C0

δF we have that Csym

defined by (3.16) belongs to C0
δF ∩ Csym. By Theorem 2 of [103], C0

δF 6= ∅ if and only if ΣδF has
zero Lebesgue measure. The proof is then complete as one can easily verify using (3.27) that
ΣδF = ΣF and thanks to Lemma 3.17.

From now on we consider F ∈ F0
d . We give an auxiliary lemma on the support of the copulas

in COS(F) ∩ C0.

Lemma 3.21. Let F = (Fi, 1 ≤ i ≤ d) ∈ F0
d and C ∈ COS(F) ∩ C0. Then the density of C

vanishes a.e. on Id \ TF with:

TF = {u = (u1, . . . , ud) ∈ Id; F−1
1 (u1) ≤ · · · ≤ F−1

d (ud)}. (3.33)

Proof. Let X = (X1, . . . , Xd) be a random vector of order statistics with one-dimensional
marginals cdf F and copula C ∈ C0. Let U = (U1, . . . , Ud) be a random vector with cdf C.
Then it is distributed as (F1(X1), . . . ,Fd(Xd)), see (3.9). We get P(U ∈ TF) = 1, since X is a
vector of order statistics and Xi ∈ Ig(Fi) a.s. for 1 ≤ i ≤ d. This gives the result.

Now we establish the connection between the sets COS(F) ∩ C0 and Csym(F) ∩ C0.

Lemma 3.22. Let F ∈ F0
d . The symmetrizing operator SF is a bijection from COS(F)∩C0 onto

Csym(F) ∩ C0. Moreover, if C ∈ COS(F) ∩ C0, with density function c, then the density function
sF(C) of SF(C) is given by, for a.e. u = (u1, . . . , ud) ∈ Id:

sF(C)(u) = 1
d! c

(
δ(1)(u(1)), . . . , δ(d)(u(d))

) d∏
i=1

δ′(i)(u(i)). (3.34)

Let TF be given by (3.33). If C ∈ Csym(F)∩C0 with density c, then the density s−1
F (C) of S−1

F (C)
is given by, for a.e. u = (u1, . . . , ud) ∈ Id:

s−1
F (C)(u) = d!

c
(
δ−1

(1)(u1), . . . , δ−1
(d)(ud)

)
∏d
i=1 δ

′
(i) ◦ δ

−1
(i) (ui)

1TF(u)1{∏d

i=1 δ
′
(i)◦δ

−1
(i) (ui)>0

}. (3.35)

Proof. By Proposition 3.15, we deduce that Csym(F) ∩ C0 = C0
δF ∩ Csym. Lemma 3.6 and the

proof of Lemma 3.20 ensures that SF is a bijection between COS(F)∩C0 and Csym(F)∩C0. The
explicit formula (3.34) can be obtained by taking the mixed derivative of the right hand side of
(3.18). By Lemma 3.21, all the terms in the sum disappear except the one on the right hand
side of (3.34).

To obtain (3.35), let C ∈ Csym(F) ∩ C0 with density c, and U be a random vector with
cdf C. The order statistics UOS derived from U is also absolutely continuous with cumulative
distribution function K, and density function k given by:

k(u) = d! c(u)14(u), u ∈ Id.
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By Lemma 3.14, S−1
F (C) is the copula of UOS . From (3.7), we have for u = (u1, . . . , ud) ∈ Id:

S−1
F (C)(u) = K(δ−1

(1)(u1), . . . , δ−1
(d)(ud)). (3.36)

According to (3.5), we deduce thatG−1◦G◦F−1
i = F−1

i on (0, 1). This implies that for s, t ∈ (0, 1),
1 ≤ i < j ≤ d:

δ−1
(i) (s) ≤ δ−1

(j)(t)⇔ G ◦ F−1
i (s) ≤ G ◦ F−1

j (t)

⇒ G−1 ◦G ◦ F−1
i (s) ≤ G−1 ◦G ◦ F−1

j (t)
⇔ F−1

i (s) ≤ F−1
j (t)

⇒ G ◦ F−1
i (s) ≤ G ◦ F−1

j (t),

where we used (3.27) for the first equivalence, that G−1 is non-decreasing for the first implication
and G is non-decreasing for the second. Thus we have, for s, t ∈ (0, 1), that the two conditions
δ−1

(i) (s) ≤ δ−1
(j)(t) and F−1

i (s) ≤ F−1
j (t) are equivalent. Thus we deduce that the two sets{

(u1, . . . , ud) ∈ Id; δ−1
(1)(u1) ≤ · · · ≤ δ−1

(d)(ud)
}

and TF are equal up to a set of zero Lebesgue measure. Then we deduce (3.35) from (3.36).

We give a general result on the entropy of an exchangeable random vector and the entropy
of its order statistics.

Lemma 3.23. Let X be a random vector on Id, XOS the corresponding order statistics and Π
an independent uniform random variable on Sd. Then we have:

H((XOS)Π) = log(d!) +H(XOS).

Proof. Let F be the cdf of XOS . If F /∈ L0
d, then the cdf F sym of (XOS)Π given by (3.16) verifies

also F sym /∈ L0
d, therefore H((XOS)Π) = H(XOS) + log(d!) = −∞. If F ∈ L0

d with density
function f , then the density function fsym of F sym is given by, for x ∈ Id:

f sym(x) = 1
d! f(xOS),

where xOS is the ordered vector of x. Therefore, using that f(x) = 0 if x 6= xOS , we have:

H((XOS)Π) = −
∫
Id
fsym log(fsym)

= log(d!)− 1
d!

∫
Id
f(xOS) log(f(xOS)) dx

= log(d!)−
∫
Id
f(x) log(f(x)) dx

= log(d!) +H(XOS).

Now we are ready to give the connection between the entropy of C and SF(C) for C ∈ COS(F),
which is the main result of this Section. Recall the definition of δF = (δF

(i), 1 ≤ i ≤ d) given in
Lemma 3.14 and thanks to Remark 3.10, H(δF

(i)) is finite for all 1 ≤ i ≤ d.

Proposition 3.24. Let F ∈ Fd and C ∈ COS(F). Then we have:

H(SF(C)) = log(d!) +H(C) +
d∑
i=1

H(δF
(i)). (3.37)
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Proof. Let U be an exchangeable random vector with cdf SF(C), and UOS its order statistics.
According to Lemma 3.14, UOS has one-dimensional marginals cdf δF = (δF

(i), 1 ≤ i ≤ d) and
copula C. Therefore, using Lemma 3.1 with h = 1I , we get:

H(UOS) = H(C) +
d∑
i=1

H(δF
(i)).

On the other hand, since SF(C) is symmetric, Lemma 3.5 ensures that (UOS)Π has the same
distribution as U . Therefore Lemma 3.23 gives:

H(SF(C)) = H(U) = H
(
(UOS)Π

)
= H(UOS) + log(d!) = H(C) +

d∑
i=1

H(δF
(i)) + log(d!).

Corollary 3.25. Since the marginals cdf F are fixed, the difference between H(C) and H(SF(C))
is constant for all C ∈ COS(F). Therefore if the entropy of a copula C ∈ COS(F) is maximal,
then SF(C) also has maximal entropy on Csym(F) = CδF ∩ Csym.

3.4 Maximum entropy copula with given multidiagonals

This section is a generalization of [33], where the maximum entropy copula with given diag-
onal section (i.e. given distribution for the maximum of its marginals) is studied.

Recall that multidiagonals of copulas on Rd are given by Definition 3.8. We recall some
further notation: D denotes the set of multidiagonals; for δ ∈ D, Cδ denotes the subset of
copulas with multidiagonal δ; C0 denotes the subset copulas which are absolutely continuous,
and C0

δ = Cδ ∩ C0. The set D0 ⊂ D contains all diagonals for which C0
δ 6= ∅.

We give an explicit formula for C∗ such that H(C∗) = maxC∈Cδ H(C), with H the entropy,
see definition (3.13). Notice that the maximum can be taken over C0

δ , since the entropy is minus
infinity otherwise. When d = 2, the problem was solved in [33].

Let δ = (δ(i), 1 ≤ i ≤ d) ∈ D be a multidiagonal. Since δ(i), 1 ≤ i ≤ d are d-Lipschitz, the
entropy of H(δ(i)) is well defined and finite, see Remark 3.10 and J(δ) given by (3.15) is also
well defined and belongs to [0,+∞].

The next two lemmas provide sets on which the density of a copula with given multidiagonal
is zero. For δ ∈ D, let:

Zδ = {u ∈ Id; there exists 1 ≤ i ≤ d such that δ′(i)(u(i)) = 0}. (3.38)

Lemma 3.26. Let δ ∈ D0. Then for all copulas C ∈ C0
δ with density c, we have c1Zδ = 0 a.e.

that is c(u)1Zδ(u) = 0 for a.e. u ∈ Id.

Proof. By definition of δ(i), we have for all r ∈ I:∫
Id
c(u)1{u(i)≤r} du = δ(i)(r) =

∫ r

0
δ′(i)(s) ds.

This implies, by the monotone class theorem, that for all measurable subsets K of I, we have:∫
Id
c(u)1K(u(i)) du =

∫
K
δ′(i)(s) ds.

Since c ≥ 0 a.e., we deduce that a.e. c(u)1{δ′(i)(u(i))=0} = 0 and thus a.e. c1Zδ = 0.

Recall the definition of Ψδ
i given by (3.29) for 2 ≤ i ≤ d. We also define Ψδ

1 = (0, d1) with
d1 = inf{s ∈ I; δ(1)(s) = 1} and Ψδ

d+1 = (gd+1, 1) with gd+1 = sup{s ∈ I; δ(d)(s) = 0} . Since Ψδ
i
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are open subsets of I, there exist at most countably many disjoint intervals {(g(j)
i , d

(j)
i ), j ∈ Ji}

such that
Ψδ
i =

⋃
j∈Ji

(g(j)
i , d

(j)
i ). (3.39)

We denote bym(j)
i = (g(j)

i +d(j)
i )/2 the midpoint of these intervals for 2 ≤ i ≤ d+1. In particular

md+1 = (1 + gd+1)/2. We also define m1 = 0. For δ ∈ D, let:

Lδ = {u = (u1, . . . , ud) ∈ Id; (u(i−1), u(i)) ⊂ Ψδ
i for all 2 ≤ i ≤ d}. (3.40)

We have the following Lemma for all absolutely continuous copulas C ∈ C0
δ with density c.

Lemma 3.27. Let δ ∈ D0 and 2 ≤ i ≤ d. Then for all copulas C ∈ C0
δ with density c, we have

c1I\Lδ = 0 a.e., that is for a.e. u = (u1, . . . , ud) ∈ Id, for all s /∈ Ψδ
i :

c(u)1{u(i−1)<s<u(i)} = 0. (3.41)

Proof. The complementary set (Ψδ
i )c is given by:

(Ψδ
i )c =

⋃
j∈Ji
{g(j)
i , d

(j)
i }. (3.42)

Let U = (U1, . . . , Ud) be a random vector with cdf C ∈ C0
δ . For 2 ≤ i ≤ d and s ∈ ⋃j∈Ji{g(j)

i , d
(j)
i },

that is δ(i−1)(s) = δ(i)(s), we have:

P(U(i−1) < s < U(i)) = P(U(i−1) < s)− P(U(i) ≤ s) = δ(i−1)(s)− δ(i)(s) = 0.

This implies that (3.41) holds a.e. for all s ∈ ⋃j∈Ji{g(j)
i , d

(j)
i }. Since Ji is at most countable, we

have for a.e. u ∈ Id and for all s ∈ ⋃j∈Ji{g(j)
i , d

(j)
i }, that (3.41) holds. Since for all u ∈ I, s /∈ Ψδ

i

there exists s′ ∈ ⋃j∈Ji{g(j)
i , d

(j)
i } such that

1{u(i−1)<s<u(i)} = 1{u(i−1)<s′<u(i)},

we can conclude that for a.e. u ∈ Id and for all s /∈ Ψδ
i (3.41) hold.

Notice that for all u = (u1, . . . , ud) ∈ Id:

1Lδ(u) ≤
d∏
i=1

1Ψδi∩Ψδi+1
(u(i)). (3.43)

We define the function cδ on Id as, for u = (u1, . . . , ud) ∈ Id:

cδ(u) = 1
d! 1Lδ(u)

d∏
i=1

ai(u(i)), (3.44)

where the function ai, 1 ≤ i ≤ d, are given by, for t ∈ I:

ai(t) = K ′i(t) eKi+1(t)−Ki(t) 1Ψδi∩Ψδi+1
(t), (3.45)

with for 1 ≤ i ≤ d, t ∈ (g(j)
i , d

(j)
i ):

Ki(t) =
∫ t

m
(j)
i

δ′(i)(s)
δ(i−1)(s)− δ(i)(s)

ds (3.46)

and the conventions δ(0) = 1 and Kd+1 = 0. Notice that for t ∈ Ψδ
1:

K1(t) = − log(1− δ(1)(t)). (3.47)
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Remark 3.28. The choice of m(j)
i for the integration lower bound in (3.46) is arbitrary as any

other value in (g(j)
i , d

(j)
i ) would not change the definition of cδ in (3.44).

Remark 3.29. For all 1 ≤ i ≤ d, j ∈ Ji, t ∈ (m(j)
i , d

(j)
i ), we have the following lower bound for

Ki(t):

Ki(t) ≥
∫ t

m
(j)
i

δ′(i)(s)

δ(i−1)(d
(j)
i )− δ(i)(s)

ds = log

δ(i−1)(d
(j)
i )− δ(i)(m

(j)
i )

δ(i−1)(d
(j)
i )− δ(i)(t)

 .
Since δ(i) is non-decreasing and δ(i−1)(d

(j)
i ) = δ(i)(d

(j)
i ), we have lim

t↗d(j)
i

Ki(t) = +∞.

The following proposition states that cδ is the density of an absolutely continuous symmetric
copula Cδ ∈ C0

δ ∩ Csym. It is more general than the results in [33], where only the diagonal δ(d)
was supposed given.
Proposition 3.30. Let δ ∈ D0. The function cδ defined in (3.44)-(3.46) is the density of a
symmetric copula Cδ ∈ C0

δ ∩ Csym. In addition, we have:

H(Cδ) = −J(δ) + log(d!) + (d− 1) +
d∑
i=1

H(δ(i)). (3.48)

The proof of this proposition is given in Section 3.6.2. The following characterization of Cδ
is proved in Section 3.6.6.
Proposition 3.31. Let δ ∈ D0. Then Cδ is the only copula in C0

δ whose density is of the form
(1/d!)1Lδ(u)∏d

i=1 hi(u(i)), where hi, 1 ≤ i ≤ d are measurable non-negative functions defined on
I.

The following Theorem states that the unique optimal solution of maxC∈Cδ H(C), if it exists,
is given by Cδ. Its proof is given in Sections 3.6.7 for case (a) and 3.6.8 for case (b).
Theorem 3.32. Let δ ∈ D.

(a) If J(δ) = +∞ then maxC∈Cδ H(C) = −∞.
(b) If J(δ) < +∞ then δ ∈ D0, maxC∈Cδ H(C) > −∞ and Cδ given in Proposition 3.30 is

the unique copula such that H (Cδ) = maxC∈Cδ H(C).
The copula Cδ will be called the maximum entropy copula with given multidiagonal.

Remark 3.33. In [33], we considered the problem of the maximum entropy copula with given
diagonal section, that is when only δ(d) is fixed. When d = 2, the problem considered here
coincides with the problem of maximum entropy copula with given diagonal section, see Remark
3.9. For d > 2 the constraints of the problem discussed here are more restrictive. With the
same techniques it is possible to calculate the maximum entropy copula for which the cdf of
the k largest order statistics are given (that is δ(i) are given for d − k + 1 ≤ i ≤ d). Reasoning
the same way as in the proof of Theorem 3.32, we can deduce that this copula will be of the
form ∏d−k

i=1 b̃(u(i))
∏d
i=d−k+1 ãi(u(i)) on its domain, involving k + 1 different functions b̃ and ãi,

d− k + 1 ≤ i ≤ d to compute based on the constraints.

3.5 Maximum entropy distribution of order statistics with given
marginals

We use the results of Section 3.4 to compute the density of the maximum entropy copula for
marginals F ∈ F0

d with F0
d defined in Section 3.3.3. Recall δF = (δ(1), . . . , δ(d)) = F ◦ G−1 and

the definition of ΣδF in (3.30). Recall Ki defined by (3.46), for 1 ≤ i ≤ d and TF defined by
(3.33). We define the function cF on Id, for u = (u1, . . . , ud) ∈ Id:

cF(u) =
d∏
i=2

eKi(δ
−1
(i−1)(ui−1))−Ki(δ−1

(i) (ui))

δ(i−1) ◦ δ−1
(i) (ui)− ui

1{u∈TF;(δ−1
(1)(u1),...,δ−1

(d)(ud))∈L
δF} 1{∏d

i=1 δ
′
(i)◦δ

−1
(i) (ui)>0}.

(3.49)
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Recall the function J(δ) defined on the set of multidiagonals by (3.15) and CδF the copula
with density given by (3.44)-(3.46).

Proposition 3.34. Let F ∈ F0
d . The function cF defined by (3.49) is the density of the copula

CF = S−1
F (CδF) which belongs to COS(F). The entropy of CF is given by:

H(CF) = d− 1− J(δF). (3.50)

Proof. Since F ∈ F0
d , we have that δF ∈ D0. According to Proposition 3.30, cδF defined by (3.44)

is the density of a symmetric copula CδF which belongs to Csym(F) ∩ C0, thanks to Proposition
3.15 and Lemma 3.22. According to Lemma 3.22, formula (3.35) we get that cF = s−1

F (CδF) is
therefore the density of a copula CF which belongs to COS(F)∩C0. Use (3.35) and (3.6) to check
(3.49). To conclude, use (3.37) and (3.48) to get (3.50).

Analogously to Lemma 3.27, we have the following restriction on the support of all F ∈
LOSd (F)⋂L0

d. Recall the definition of ΨF
i in (3.29). The proof of the next Lemma is similar to

the proof of Lemma 3.27 and is left to the reader.

Lemma 3.35. Let F ∈ F0
d and t ∈ Fi

(
(ΨF

i )c
)
for some 2 ≤ i ≤ d. Then we have for all

F ∈ LOSd (F)⋂L0
d with density function f :

f(x)1{xi−1<t<xi} = 0 for a.e. x = (x1, . . . , xd) ∈ S.

For δ ∈ D, recall the definition of Lδ in (3.40). Let Lδ = Lδ ∩ S. More generally, for F ∈ Fd,
we set:

LF = {x = (x1, . . . , xd) ∈ S; (xi−1, xi) ⊂ ΨF
i for all 2 ≤ i ≤ d}. (3.51)

The next Lemma establishes the connection between the sets LδF defined by (3.40) and LF.

Lemma 3.36. Let F = (F1, . . . ,Fd) ∈ F0
d with density functions fi for 1 ≤ i ≤ d. Let

δF = (δ(1), . . . , δ(d)) given by (3.27), TF given by (3.33) and LδF defined by (3.40). Then for∏d
i=1 fi(xi)dx1 . . . xd-a.e. x ∈ Rd we have that

1TF (F1(x1), . . . ,Fd(xd)) 1L
δF

(
δ−1

(1) ◦ F1(x1), . . . , δ−1
(d) ◦ Fd(xd)

)
= 1LF(x)

Proof. According to (3.3) and (3.5), we have fi(t) dt-a.e. that F−1
i ◦Fi(t) = t. This implies that∏

i=1 fi(xi) dx1 · · · dxd-a.e., (F1(x1), . . . ,Fd(xd)) belongs to TF if and only if x ∈ S. Recall the
sets ΨδF

i given by (3.29). For ∏i=1 fi(xi) dx1 · · · dxd-a.e. x ∈ S, we have:

(δ−1
(1) ◦ F1(x1), . . . , δ−1

(d) ◦ Fd(xd)) ∈ LδF

⇐⇒
(
δ−1

(i−1) ◦ Fi−1(xi−1), δ−1
(i) ◦ Fi(xi)

)
⊂ ΨδF

i , 2 ≤ i ≤ d

⇐⇒∀t ∈
(
δ−1

(i−1) ◦ Fi−1(xi−1), δ−1
(i) ◦ Fi(xi)

)
: δ(i−1)(t) > δ(i)(t), 2 ≤ i ≤ d

⇐⇒∀t ∈
(
G ◦ F−1

i−1 ◦ Fi−1(xi−1), G ◦ F−1
i ◦ Fi(xi)

)
: Fi−1 ◦G−1(t) > Fi ◦G−1(t), 2 ≤ i ≤ d

⇐⇒∀t ∈ (G(xi−1), G(xi)) : Fi−1 ◦G−1(t) > Fi ◦G−1(t), 2 ≤ i ≤ d,

where the first equivalence comes from the definition of LδF , the second from the definition of
ψδ

F
i , the third from (3.27) and the last from the fact that fi(t) dt-a.e. F−1

i ◦ Fi(t) = t. Consider
the change of variable s = G−1(t). We have by (3.1):

t < G(xi)⇐⇒ G−1(t) < xi ⇐⇒ s < xi.

Since xi−1 ∈ Ig(Fi−1) fi−1(xi−1) dxi−1-a.e., we get xi−1 ∈ Ig(G) and by (3.5):

G(xi−1) < t⇐⇒ xi−1 < G−1(t)⇐⇒ xi−1 < s.
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Therefore we deduce that ∏i=1 fi(xi) dx1 · · · dxd-a.e. x ∈ S:

(δ−1
(1) ◦ F1(x1), . . . , δ−1

(d) ◦ Fd(xd)) ∈ LδF

⇐⇒∀s ∈ (xi−1, xi) : Fi−1(s) > Fi(s), 2 ≤ i ≤ d
⇐⇒x ∈ LF.

Using Proposition 3.24, we check that the copula CF maximizes the entropy over the set
COS(F). For F ∈ F0

d , we define the cdf FF as, for x = (x1, . . . , xd) ∈ Rd:

FF(x) = CF(F1(x1), . . . ,Fd(xd)). (3.52)

Let fi denote the density function of Fi when it exists. Let us further note for 2 ≤ i ≤ d,
t ∈ R:

`i(t) = fi(t)
Fi−1(t)− Fi(t)

· (3.53)

When the densities fi exist for all 1 ≤ i ≤ d, we define the function fF for x = (x1, . . . , xd) ∈ Rd
as:

fF(x) = f1(x1)
d∏
i=2

`i(xi) exp
(
−
∫ xi

xi−1
`i(s) ds

)
1LF(x), (3.54)

with LF given by (3.51). The next theorem asserts that the cdf FF maximizes the entropy over
the set LOSd (F) and that its density is fF. Recall J defined by (3.15) and h is an arbitrary
probability density on R.

Theorem 3.37. Let F = (Fi, 1 ≤ i ≤ d) ∈ Fd.
(a) If there exists 1 ≤ i ≤ d such that Hh(Fi) = −∞, or if J(F) = +∞, then we have

maxF∈LOS
d

(F)Hh(F ) = −∞.

(b) If Hh(Fi) > −∞ for all 1 ≤ i ≤ d, and J(F) < +∞, then F ∈ F0
d , maxF∈LOS

d
(F)Hh(F ) >

−∞, and FF defined in (3.52) is the unique cdf such that Hh(FF) = maxF∈LOS
d

(F)Hh(F ).
Furthermore, the density function of FF exists, and is given by fF defined in (3.54). We
also have:

Hh(FF) = d− 1 +
d∑
i=1

Hh(Fi)− J(F).

Proof. The proof of case (a) is postponed to Section 3.6.7.
We shall assume that Hh(Fi) > −∞ for all 1 ≤ i ≤ d and J(δF) < +∞. This implies that

the densities fi of Fi exist for 1 ≤ i ≤ d and, thanks to Lemma 3.20, that F ∈ F0
d . Let FF be

defined by (3.52), that is the cdf with copula CF from Proposition 3.34 and one-dimensional
marginals cdf F. Thanks to Proposition 3.34, we have FF ∈ LOSd (F).

We deduce from (3.14), Propositions 3.15 and 3.24, Theorem 3.32 case (b) and Proposition
3.34 that FF is the only cdf such that Hh(FF) = maxF∈LOS

d
(F)Hh(F ). We deduce from (3.14),

(3.50) and Lemma 3.17 that:

Hh(FF) = d− 1 +
d∑
i=1

Hh(Fi)− J(F).

Since the copula CF is absolutely continuous with density cF given in (3.49), we deduce from
(3.52) that FF has density fF given by, for a.e. x = (x1, . . . , , xd) ∈ Rd:

fF(x) = cF (F1(x1), . . . ,Fd(xd))
d∏
i=1

fi(xi). (3.55)
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Recall the expression (3.49) of cF as well as Ki defined by (3.46), for 1 ≤ i ≤ d. Using the change
of variable s = G−1(t) and (3.23), we get (similarly to the proof of Lemma 3.17):

Ki ◦ δ−1
(i) ◦ Fi(xi)−Ki ◦ δ−1

(i−1) ◦ Fi−1(xi−1) =
∫ F−1

i ◦Fi(xi)

F−1
i−1◦Fi−1(xi−1)

`i(s) ds. (3.56)

Using (3.23), we also get:

fi(xi)
δ(i−1) ◦ δ−1

(i) ◦ Fi(xi)− Fi(xi)
= fi(xi)

Fi−1 ◦ F−1
i ◦ Fi(xi)− Fi(xi)

· (3.57)

According to (3.5), we have fi(t) dt-a.e. that F−1
i ◦ Fi(t) = t. For 1 ≤ i ≤ d, we have from (3.5)

that ∏i=1 fi(xi) dx1 · · · dxd-a.e.:

1{∏d

i=1 δ
′
(i)◦δ

−1
(i) (Fi(xi))>0

} = 1. (3.58)

We deduce from (3.49), (3.55), (3.56), (3.57), (3.58) and Lemma 3.36 that a.e. for x = (x1, . . . , xd) ∈
Rd:

fF(x) = f1(x1)
d∏
i=2

`i(xi) e
−
∫ xi
xi−1

`i(s) ds 1LF(x).

Remark 3.38. We deduce from the proof of Theorem 3.37 case (b) and Proposition 3.34, that
if F = (Fi, 1 ≤ i ≤ d) ∈ F0

d , then fF defined by (3.54) is a probability density function on
S ⊂ Rd.

Remark 3.39. The density fF has a product form on LF, that is it can be written as, for a.e.
x = (x1, . . . , xd) ∈ Rd:

fF(x) =
d∏
i=1

pi(xi)1LF(x), (3.59)

where the functions (pi, 1 ≤ i ≤ d) are measurable and non-negative.

In addition to Remark 3.39, the next Corollary asserts that FF is the only element of LOSd (F),
whose density has a product form.

Corollary 3.40. Let F ∈ F0
d . Let F ∈ LOSd (F) be an absolutely continuous cdf with density f

given by, a.e. for x = (x1, . . . , xd) ∈ Rd: f(x) = ∏d
i=1 hi(xi)1LF(x), with hi, 1 ≤ i ≤ d some

measurable non-negative functions on R. Then we have F = FF on Rd.

Proof. Let X = (X1, . . . , Xd) be an order statistic with cdf F , and F sym the cdf of XΠ given
by (3.16), with Π uniform on Sd and independent of X. Then the cdf F sym is also absolutely
continuous, and its density fsym is given by :

fsym(x) = 1
d!

d∏
i=1

hi(x(i))1LF(xOS), (3.60)

where xOS is the ordered vector of x. The one-dimensional marginal cdf’s of XΠ are all equal to
G given by (3.17). Let C ∈ COS(F) ∩ C0 denote the copula of F . Then according to (3.7), the
copula SF(C) of XΠ is given by, for a.e. u = (u1, . . . , ud) ∈ Id:

SF(C)(u) = F sym
(
G−1(u)

)
.
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Therefore its density sF(C) can be expressed as:

sF(C)(u) = fsym(G−1(u))∏d
i=1 g ◦G−1(ui)

d∏
i=1

1{g◦G−1(ui)>0}

= 1
d! 1LF(G−1(uOS))

d∏
i=1

hi ◦G−1(u(i))
g ◦G−1(u(i))

1{g◦G−1(u(i))>0},

where g is the density of G. Notice that for x = (x1, . . . , xd) ∈ S, we have a.e.:

1{∏d

i=1 hi(xi)>0} ≤ 1{∏d

i=1 fi(xi)>0},

with fi the density of Xi. Therefore by Lemma 3.36 and since G is continuous, we have that∏d
i=1 hi ◦G−1(u(i)) du1 . . . dud-a.e.:

1LF(G−1(uOS)) = 1L
δF (δ−1

(1) ◦ δ(1)(u(1)), . . . , δ−1
(d) ◦ δ(d)(u(d))).

By Lemma 3.14, SF(C) belongs to C0
δF and thus sF(C) = 0 a.e. on ZδF defined by (3.38). Then

use (3.3) and (3.5) to get that δ−1
(i) ◦ δ(i)(u(i)) = u(i) a.e. on ZcδF . This gives:

1LF(G−1(uOS)) = 1L
δF (uOS) = 1L

δF (u)

that is sF(C) is of the form sF(C)(u) = (1/d!)1L
δF (u)∏d

i=1 h̄i(u(i)) for some measurable non-
negative functions (h̄i, 1 ≤ i ≤ d). Then, thanks to Proposition 3.31, we get that SF(C) = CδF .
Then, use Proposition 3.34 to get that F = FF.

Example 3.41. We consider the following example. Let +∞ > λ1 > · · · > λd > 0 and
for 1 ≤ i ≤ d let Fi be the cdf of the exponential distribution with mean 1/λi and density
fi(t) = λi e−λit 1{t>0}. Notice that Fi−1 > Fi on (0,+∞), so that LF = {(x1, . . . , xd) ∈ Rd; 0 ≤
x1 ≤ . . . ≤ xd}. It is easy to check that J(F) < +∞ with F = (Fi, 1 ≤ i ≤ d). Elementary com-
putations yield that the maximum entropy density of the order statistic (X1, . . . , Xd), where Xi

has distribution Fi, is given by:

fF(x1, . . . , xd) = 1LF(x)λ1 e−∆2x1
(
1− e−∆2x1

)λ2/∆2
d∏
i=2

λi e−∆i+1xi

(
1− e−∆i+1xi

)λi+1/∆i+1

(
1− e−∆ixi

)λi−1/∆i
,

where ∆i = λi−1 − λi for 1 ≤ i ≤ d+ 1 and λd+1 = 0.
In the particular case λi = (d− i+ 1)λ for some λ > 0, we get:

fF(x1, . . . , xd) = 1LF(x) d!λd e−λx1(1− e−λx1)d−1
d∏
i=2

e−λxi

(1− e−λxi)2 ·

By considering the change of variable ui = 1−e−λxi , we get the following result. For 1 ≤ i ≤ d
let Fi be the cdf of the β(1, d−i+1) distribution with density fi(t) = (d−i+1)(1−t)d−i1(0,1)(t).
Notice that Fi−1 > Fi on (0, 1). The maximum entropy density of the order statistic (U1, . . . , Ud),
where Ui has distribution Fi, is given by:

fF(u1, . . . , ud) = 1{0<u1<···<ud<1} d!ud−1
1

d∏
i=2

1
u2
i

·

Elementary computations give H(FF) = − log(d!) + 2d− (d+ 1)∑d
i=1(1/i).
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3.6 Proofs

3.6.1 Preliminary notations for the optimization problem

Recall notations from Sections 3.2 and 3.3. In particular if u = (u1, . . . , ud) ∈ Id then
uOS = (u(1), . . . , u(d)) denote the ordered vector of u.

In order to apply the technique established in [25], we introduce the linear functional A =
(Ai, 1 ≤ i ≤ 2d) : L1(Id)→ L1(I)2d as, for f ∈ L1(Id) and r ∈ I :

Ai(f)(r) =
∫
Id
f(u)1{ui≤r} du and Ad+i(f)(r) =

∫
Id
f(u)1{u(i)≤r} du for 1 ≤ i ≤ d.

Let δ = (δ(i), 1 ≤ i ≤ d) ∈ D0 be a multidiagonal, see Definition 3.8. We set bδ = (bi, 1 ≤ i ≤ 2d)
given by bi = idI the identity function on I and bd+i = δ(i), for 1 ≤ i ≤ d. If, for c ∈ L1(Id),
we have Ai(c) = bi, 1 ≤ i ≤ d and c ≥ 0 a.e., then we deduce that c is the density of an
absolutely continuous copula, say C. If we further have Ad+i(c) = bd+i, for 1 ≤ i ≤ d, then δ is
the multidiagonal of C.

Lemma 3.42. Let δ ∈ D0 and bδ = (bi, 1 ≤ i ≤ 2d). If c ∈ L1(Id) is non-negative, symmetric
and satisfies Ad+i(c) = bd+i for 1 ≤ i ≤ d, then c is the density of a copula with multidiagonal
δ.

Proof. The symmetry and non-negativity of c as well as the condition Ad+1(c)(1) =
∫
Id c =

bd+1(1) = 1 ensures that c is a density function of an exchangeable random vector V =
(V1, . . . , Vd) on Id. Recall V OS = (V(1), . . . , V(d)) denotes the corresponding order statistics.
By symmetry, the lemma is proved as soon as we check that A1(c) = b1. We have for r ∈ I:

A1(c)(r) = P(V1 ≤ r) =
d∑
i=1

P(V(i) ≤ r|V1 = V(i))P(V1 = V(i)) =
d∑
i=1

δ(i)(r)
1
d

= r,

where we used the exchangeability of V and the definition of δ(i) for the third equality, and
(3.21) for the last. This gives A1(c) = b1.

3.6.2 Proof of Proposition 3.30

Let δ ∈ D0. Lemma 3.18 implies that δ(i)((Ψδ
i )c) has zero Lebesgue measure for all 2 ≤ i ≤ d

with Ψδ
i given by (3.29). By construction, the function cδ defined by (3.44) is non-negative,

symmetric and well defined a.e. on Id. Recall the notation (g(j)
i , d

(j)
i ) used in (3.39) and the

definition (3.45) of the functions ai. We define the functions Bi on I as, for 1 ≤ i ≤ d + 1,
t ∈ (g(j)

i , d
(j)
i ) (with the conventions Ψδ

1 = (0, d1),Ψδ
d+1 = (gd+1, 1)):

Bd+1(t) = 1 and Bi(t) =
∫ d

(j)
i

t
ai(s)Bi+1(s) ds for 1 ≤ i ≤ d. (3.61)

For t ∈ (Ψδ
i )c, we set Bi(t) = 0. Recall Ki defined in (3.46) for 1 ≤ i ≤ d + 1 with the

convention Kd+1 = 0. We show that Bi can be simply expressed by Ki on Ψδ
i .

Lemma 3.43. Let 1 ≤ i ≤ d+ 1 and t ∈ Ψδ
i . Then we have:

Bi(t) = exp (−Ki(t)) . (3.62)

Proof. For i = d + 1, the result is trivial. We proceed by induction on i. We suppose that
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Bi+1(t) = exp (−Ki+1(t)) holds for some 1 ≤ i ≤ d, and all t ∈ ψδi+1. We have for t ∈ (g(j)
i , d

(j)
i ):

Bi(t) =
∫ d

(j)
i

t
ai(s)Bi+1(s) ds

=
∫ d

(j)
i

t
K ′i(s) eKi+1(s)−Ki(s) 1Ψδi∩Ψδi+1

(s)Bi+1(s) ds

=
∫ d

(j)
i

t
K ′i(s) e−Ki(s) 1Ψδi∩Ψδi+1

(s) ds.

=
∫ d

(j)
i

t
K ′i(s) e−Ki(s) ds

= exp(−Ki(t)),

where we used the definition of ai given by (3.45) for the second equality, the induction hypothesis
for the third equality, (t, d(j)

i ) ⊂ Ψδ
i and Lemma 3.18 for the fourth equality, and finally Remark

3.29 for the fifth equality. This ends the induction.

Similarly, we define the functions Ei on I as, for 0 ≤ i ≤ d as for t ∈ (g(j)
i+1, d

(j)
i+1):

E0(t) = 1, and Ei(t) =
∫ t

g
(j)
i+1

ai(s)Ei−1(s) ds for 1 ≤ i ≤ d. (3.63)

For t ∈ (Ψδ
i+1)c we set Ei(t) = 0. The next Lemma gives a simple formula for Ei on Ψδ

i+1.

Lemma 3.44. Let 0 ≤ i ≤ d and t ∈ Ψδ
i+1. Then we have:

Ei(t) =
(
δ(i)(t)− δ(i+1)(t)

)
exp (Ki+1(t)) . (3.64)

Proof. For i = 0 the result is clear thanks to the convention δ(0) = 1 and (3.47). We proceed by
induction on i. We suppose that Ei−1(t) = (δ(i−1)(t)−δ(i)(t)) exp(Ki(t)) holds for some 1 ≤ i ≤ d,
and all t ∈ ψδi . Let us denote hi = δ(i−1) − δ(i). Before computing Ei(t) for t ∈ (g(j)

i+1, d
(j)
i+1), we

give an alternative expression for exp(Ki(s)) for s ∈ (g(j)
i+1, t):

eKi+1(s) = exp
(
−
∫ t

m
(j)
i+1

h′i+1(u)
hi+1(u) +

∫ t

s

h′i+1(u)
hi+1(u) +

∫ s

m
(j)
i+1

δ′(i)(u)
hi+1(u) du

)

= hi+1(t)
hi+1(s) exp

(
−
∫ t

m
(j)
i+1

h′i+1(u)
hi+1(u) +

∫ s

m
(j)
i+1

δ′(i)(u)
hi+1(u) du

)
. (3.65)

Then we have for t ∈ (g(j)
i+1, d

(j)
i+1):

Ei(t) =
∫ t

g
(j)
i+1

ai(s)Ei−1(s) ds

=
∫ t

g
(j)
i+1

K ′i(s) eKi+1(s)−Ki(s) 1Ψδi∩Ψδi+1
(s)Ei−1(s) ds

=
∫ t

g
(j)
i+1

K ′i(s) eKi+1(s) hi(s)1Ψδi∩Ψδi+1
(s) ds

=
∫ t

g
(j)
i+1

δ′(i)(s) eKi+1(s) 1Ψδi∩Ψδi+1
(s) ds

= hi+1(t) exp
(
−
∫ t

m
(j)
i+1

h′i+1(u)
hi+1(u) du

)∫ t

g
(j)
i+1

(
δ′(i)(s)
hi+1(s) exp

(∫ s

m
(j)
i+1

δ′(i)(u)
hi+1(u) du

))
ds

= hi+1(t) exp
(
−
∫ t

m
(j)
i+1

h′i+1(u)− δ′(i)(u)
hi+1(u) du

)
= hi+1(t) exp(Ki+1(t)),
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where we used the definition of ai given by (3.45) for the second equality, the induction hypothesis
for the third equality, Lemma 3.18 and (3.65) for the fifth equality, and for the seventh equality
we use that, for t ∈ (g(j)

i+1,m
(j)
i+1) (similarly to Remark 3.29):∫ t

m
(j)
i+1

δ′(i)(s)
hi+1(s) ds ≤

∫ t

m
(j)
i+1

δ′(i)(s)

δ(i)(s)− δ(i+1)(g
(j)
i+1)

ds = log

 δ(i)(t)− δ(i+1)(g
(j)
i+1)

δ(i)(m
(j)
i+1)− δ(i+1)(g

(j)
i+1)

 ,
giving lim

t↘g(j)
i+1

∫ t
m

(j)
i+1

δ′(i)(s)
hi+1(s) ds = −∞.

The following Lemma justifies the introduction of the functions Bi, Ei.
Lemma 3.45. We have with u(0) = 0 for 1 ≤ i ≤ d, t ∈ Ψδ

i :∫
Id
cδ(u)1{u(i−1)≤t≤u(i)} du = Bi(t)Ei−1(t). (3.66)

Proof. The definition (3.61) of Bi for 1 ≤ i ≤ d gives that for t ∈ I:

Bi(t) =
∫
ai(ri)ai+1(ri+1) . . . ad(rd)1{t≤ri≤ri+1≤...≤rd≤1}1{[t,ri)⊂Ψδi }

d−1∏
j=i

1{(rj ,rj+1)⊂Ψδj+1}
dr,

with r = (ri, ri+1, . . . , rd) ∈ Id−i+1. Similarly, we have for 1 ≤ i ≤ d, t ∈ I that Ei−1(t) is equal
to: ∫

a1(q1)a2(q2) . . . ai−1(qi−1)1{0≤q1≤q2≤...≤qi−1≤t}1{(qi−1,t]⊂Ψδi }

i−2∏
j=1

1{(qj ,qj+1)⊂Ψδj+1}
dq,

with q = (q1, q2, . . . , qi−1) ∈ Ii−1. Multiplying Bi(t) with Ei−1(t) gives:

Bi(t)Ei−1(t) =
∫
4

d∏
j=1

aj(uj)1{ui−1≤t≤ui}

d−1∏
j=1

1{(uj ,uj+1)⊂Ψδj+1}
du

=
∫
4

d∏
j=1

aj(uj)1{ui−1≤t≤ui}1Lδ(u) du

= d!
∫
4
cδ(u)1{ui−1≤t≤ui} du

=
∫
Id
cδ(u)1{u(i−1)≤t≤u(i)} du,

where we used the symmetry of cδ for the fourth equality.

Lemma 3.45 with i = 1 ensures that
∫
Id cδ(u) du = limt↘0B1(t)E0(t) = 1, that is cδ a

probability density function on Id. Now we compute Ad+1(cδ). We have, for t ∈ Ψδ
i :

Ad+1(cδ)(t) =
∫
Id
cδ(u)1{u(1)≤t} du = 1−

∫
Id
cδ(u)1{u(1)≥t} du = 1−B1(t)E0(t) = δ(1)(t),

where we used Lemma 3.45 with i = 1 for the third equality, then (3.62) and (3.47) for the fourth
equality. By continuity this gives Ad+1(cδ) = δ(1) on I. For 2 ≤ i ≤ d, we have by induction for
t ∈ Ψδ

i :

Ad+i(cδ)(t) =
∫
Id
cδ(u)1{u(i)≤t} du

=
∫
Id
cδ(u)1{u(i−1)≤t} du−

∫
Id
cδ(u)1{u(i−1)≤t≤u(i)} du

= Ad+i−1(cδ)(t)−Bi(t)Ei−1(t)

= δ(i−1)(t)−
(
δ(i−1)(t)− δ(i)(t)

)
= δ(i)(t),
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where we used the induction and Lemma 3.45 for the third equality, as well as (3.62) and (3.64)
for the fourth. By continuity, we obtain Ad+i(cδ) = δ(i) on I. Then use Lemma 3.42 to get that
cδ is the density of a (symmetric) copula, say Cδ, with multidiagonal δ.

To conclude, we compute the entropy H(Cδ) = −
∫
Id cδ log(cδ).

Lemma 3.46. We have:

H(Cδ) = log(d!) +
d∑
i=1

H(δ(i)) + (d− 1)− J(δ).

Proof. Recall that for u ∈ Lδ:

log(cδ(u)) = − log(d!) +
d∑
i=1

log
(
δ′(i)(u(i))

)
−

d∑
i=2

log
(
δ(i−1)(u(i))− δ(i)(u(i))

)

−
d∑
i=2

(
Ki(u(i))−Ki(u(i−1))

)
,

where we used (3.47) to express a1 = δ′(1) eK2 a.e., so that the sums in the last two terms start
at i = 2.

We first show that the function u 7→ cδ(u) log(δ′(i)(u(i))) belongs to L1(Id) for all 1 ≤ i ≤ d.
Since Ad+i(cδ) = δ(i), we deduce that for 1 ≤ i ≤ d and any measurable non-negative function
h defined on I: ∫

Id
cδ(u)h(u(i)) du =

∫
I
δ′(i)(t)h(t) dt. (3.67)

In particular, we get:∫
Id
cδ(u)

∣∣∣log(δ′(i)(u(i)))
∣∣∣ du =

∫
I
δ′(i)(t)

∣∣∣log(δ′(i)(t))
∣∣∣ dt,

which is finite thanks to Remark 3.10. Therefore the function u 7→ cδ(u) log(δ′(i)(u(i))) is indeed
in L1(Id), and its integral J1,i is given by:

J1,i =
∫
Id
cδ(u) log(δ′(i)(u(i))) du =

∫
I
δ′(i)(t) log(δ′(i)(t)) dt = −H(δ(i)).

We proceed by showing that u 7→ cδ(u)(Ki(u(i))−Ki(u(i−1))) belongs to L1(Id) for 2 ≤ i ≤ d.
Since this is a non-negative function, a direct calculation of its integral J2,i gives:

J2,i = d!
∫
4
cδ(u) (Ki(ui)−Ki(ui−1)) du,

=
∫
I2

(Ei−2ai−1)(ui−1) (Ki(ui)−Ki(ui−1)) (aiBi+1)(ui)1{ui−1≤ui,(ui−1,ui)⊂Ψδi }
dui−1dui,

where we used the symmetry of cδ for the first equality; the definition of the functions Bi and Ei
given by (3.61) and (3.63) for the second equality. Using (3.45),(3.62), (3.64) and Lemma 3.18,
we have:

Ei−2ai−1 = δ′(i−1) eKi 1Ψδi−1∩Ψδi
= δ′(i−1) eKi and aiBi+1 = K ′i e−Ki 1Ψδi∩Ψδi+1

= K ′i e−Ki .

Therefore we have:

J2,i =
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′(i−1)(ui−1)

∫ d
(j)
i

ui−1
K ′i(ui) (Ki(ui)−Ki(ui−1)) eKi(ui−1)−Ki(ui) dui

 dui−1

=
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′(i−1)(ui−1)
(∫ +∞

0
s e−s ds

)
dui−1

=
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′(i−1)(ui−1) dui−1

= 1,
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where we applied the change of variable s = Ki(ui)−Ki(ui−1) and Remark 3.29 for the fourth
equality; finally Lemma 3.18 for the sixth equality.

Let us define J3,i, 2 ≤ i ≤ d as:

J3,i = −
∫
Id
cδ(u) log(δ(i−1)(u(i))− δ(i)(u(i))) du.

Notice that the integrand is non-positive a.e., since for t ∈ I, 2 ≤ i ≤ d, we have δ(i−1)(t) −
δ(i)(t) ≤ 1. Therefore, we get by (3.67):

J3,i =
∫
Id
cδ(u)

∣∣∣log(δ(i−1)(u(i))− δ(i)(u(i)))
∣∣∣ du =

∫
I
δ′(i)(t)

∣∣∣log(δ(i−1)(t)− δ(i)(t))
∣∣∣ dt.

Notice that J3,i ∈ [0,+∞] and ∑d
i=2 J3,1 = J(δ). The results on J1,i, J2,i and J3,i imply that we

can decompose H(Cδ) as:

H(Cδ) = log(d!)−
d∑
i=1

J1,i +
d∑
i=2

J2,i −
d∑
i=2

J3,i = log(d!) +
d∑
i=1

H(δ(i)) + (d− 1)− J(δ).

3.6.3 The optimization problem

Let δ ∈ D0. Recall notation from Section 3.6.1. The problem of maximizing H over C0
δ can

be written as an optimization problem (P δ) with infinite dimensional constraints:

maximize H(c) subject to
{
A(c) = bδ,

c ≥ 0 a.e. and c ∈ L1(Id).
(P δ)

Notice that if f ∈ L1(Id) is non-negative and solves A(f) = bδ, then f is the density of a
copula. We say that a function f is feasible for (P δ) if f ∈ L1(Id), f ≥ 0 a.e., A(f) = bδ and
H(f) > −∞. We say that f is an optimal solution of (P δ) if f is feasible and H(f) ≥ H(g) for
all g feasible. The next proposition gives conditions which ensure the existence of an optimal
solution.

Proposition 3.47. Let δ ∈ D0. If there exists c feasible for (P δ), then there exists a unique
optimal solution to (P δ) and it is symmetric.

Proof. Since A(f) = bδ implies A1(f)(1) = b1(1) that is
∫
Id f(x) dx = 1, we can directly apply

Corollary 2.3 of [25] which states that if there exists a feasible c, then there exists a unique
optimal solution to (P δ). Since the constraints of (P δ) are symmetric, such as the functional
H, we deduce that if c∗ is the optimal solution, then so is c∗π defined for π ∈ Sd and u ∈ Id

as c∗π(u) = c∗(uπ). By uniqueness of the optimal solution, we deduce that c∗ = c∗π for all
permutations π ∈ Sd; hence c∗ is symmetric.

Combining Lemmas 3.27 and 3.26 gives the following Corollary on the support of any c
verifying A(c) = bδ.

Corollary 3.48. Let δ ∈ D0. If c ∈ L1(Id) is non-negative and verifies A(c) = bδ, then c = 0
a.e. on Zδ

⋃
Lcδ with Lδ defined by (3.40) and Lcδ = Id \ Lδ.

3.6.4 Reduction of the optimization problem (P δ)

Let δ ∈ D0. Since the optimal solution of (P δ) is symmetric, see Proposition 3.47, we can
reduce the optimization problem by considering it on the simplex 4. We define µ to be the
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Lebesgue measure restricted to (Zcδ ∩ Lδ) ∩ 4: µ(du) = 1(Zcδ∩Lδ)∩4(u)du. We define, for f ∈
L1(Id):

Hµ(f) = −
∫
Id
f(u) log(f(u))µ(du).

From Corollary 3.48 we can deduce that if c ∈ L1(Id) is non-negative symmetric and solves
A(c) = bδ, then:

H(c) = d!Hµ(c). (3.68)

Let us also define, for f ∈ L1(Id), 1 ≤ i ≤ d, r ∈ I:

Aµi (c)(r) = d!
∫
Id
c(u)1{ui≤r} µ(du).

We shall consider the restricted optimization problem (P δµ) given by:

maximize Hµ(c) subject to
{
Aµ(c) = δ,

c ≥ 0 µ-a.e. and c ∈ L1(Id).
(P δµ)

We have the following equivalence between (P δ) and (P δµ). Recall that uOS denotes the ordered
vector of u ∈ Rd.

Corollary 3.49. Let δ ∈ D0. If c is the optimal solution of (P δ) then it is also an optimal
solution to (P δµ). If ĉ is an optimal solution of (P δµ), then c, defined by c(u) = ĉ(uOS)1Zc

δ
∩Lδ(u)

is the optimal solution to (P δ).

Notice the Corollary implies that (P δµ) has a µ-a.e. unique optimal solution: if c1 and c2
are two optimal solutions of (P δµ) then µ-a.e. c1 = c2. Thanks to Proposition 3.47 and (3.68),
Corollary 3.49 is a direct consequence of the following Lemma that establishes the connection
between the constraints.

Lemma 3.50. Let δ ∈ D0. For c ∈ L1(Id) symmetric and non-negative the following two
conditions are equivalent:

1. A(c) = bδ.
2. Aµ(c) = δ and c = 0 a.e. on Zδ

⋃
Lcδ.

Proof. Assume that A(c) = bδ. We have, by Corollary 3.48, that c = 0 a.e. on Zδ ∪Lcδ. This and
the symmetry of c gives, for 1 ≤ i ≤ d, r ∈ I:

Aµi (c)(r) = d!
∫
Id
c(u)1{u(i)≤r}14(u) du =

∫
Id
c(u)1{u(i)≤r} du = δ(i)(r).

On the other hand, let us assume that Aµ(c) = δ and c = 0 a.e. on Zδ ∪ Lcδ. We have, for
1 ≤ i ≤ d, r ∈ I:

Ad+i(c)(r) =
∫
Id
c(u)1{u(i)≤r}1Zcδ∩Lδ(u) du = d!

∫
Id
c(u)1{ui≤r} µ(du) = δ(i)(r),

where we used c = 0 a.e. on Zδ ∪ Lcδ for the first equality, the symmetry of c and the definition
of µ for the second, and Aµ(c) = δ for the third. Lemma 3.42 ensures then that Ai(c) = bi for
1 ≤ i ≤ d. This ends the proof.

3.6.5 Solution for the reduced optimization problem (P δ
µ)

Let δ ∈ D0. We compute (Aµ)∗ : L∞(I)d → L∞(Id) the adjoint of Aµ. For λ = (λi, 1 ≤ i ≤
d) ∈ L∞(I)d and f ∈ L1(Id), we have:

〈(Aµ)∗(λ), f〉 = 〈λ,Aµ(f)〉 =
d∑
i=1

∫
I
λi(r)

∫
Id
f(u)1{ui≤r}dµ(u) dr =

∫
Id
f(u)

d∑
i=1

Λi(ui) dµ(u),
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where we used the definition of the adjoint operator for the first equality, Fubini’s theorem for
the second, and the following definition of the functions (Λi, 1 ≤ i ≤ d) for the third:

Λi(t) =
∫
I
λi(r)1{r≥t} dr, t ∈ I.

Thus, we have for λ ∈ L∞(I)d and u = (u1, . . . , ud) ∈ Id:

(Aµ)∗(λ)(u) =
d∑
i=1

Λi(ui). (3.69)

We will use Theorem 2.9. from [25] on abstract entropy minimization, which we recall here,
adapted to the context of (P δµ).

Theorem 3.51 (Borwein, Lewis and Nussbaum). Suppose there exists c > 0 µ-a.e. which is
feasible for (P δµ). Then there exists a µ-a.e. unique optimal solution, c∗, of (P δµ). Furthermore,
we have c∗ > 0 µ-a.e. and there exists a sequence (λn, n ∈ N∗) of elements of L∞(I)d such that:∫

Id
c∗(u) |(Aµ)∗(λn)(u)− log(c∗(u))| µ(du) −−−→

n→∞
0. (3.70)

Now we are ready to prove that the optimal solution c∗ of (P δµ) is the product of measurable
univariate functions.

Lemma 3.52. Let δ ∈ D0. Suppose that there exists c > 0 µ-a.e.which is feasible for (P δµ). Then
there exist non-negative, measurable functions (a∗i , 1 ≤ i ≤ d) defined on I such that a∗i (s) = 0
if δ′(i)(s) = 0 and the function c∗ defined a.e. on Id by:

c∗(u) = 1
d! 1Lδ(u)

d∏
i=1

a∗i (ui)

is the optimal solution to (P δµ).

Proof. According to Theorem 3.51, there exists a sequence (λn, n ∈ N) of elements of L∞(I)d
such that the optimal solution, say c∗, satisfies (3.70). This implies, thanks to (3.69), that
there exist d sequences (Λni , n ∈ N∗, 1 ≤ i ≤ d) of elements of L∞(I) such that the following
convergence holds in L1(Id, c∗µ):

d∑
i=1

Λni (ui) −−−→
n→∞

log(c∗(u)). (3.71)

We first assume that there exist Λi, 1 ≤ i ≤ d measurable functions defined on I such that
µ-a.e. on S:

d∑
i=1

Λi(ui) = log(c∗(u)). (3.72)

Set a∗i = d
√
d! exp(Λi) so that µ-a.e. on S:

c∗(u) = 1
d!

d∏
i=1

a∗i (ui).

Recall µ(du) = 1(Zc
δ
∩Lδ)∩4(u) du. From the definition (3.38) of Zδ, we deduce that without

loss of generality, we can assume that a∗i (ui) = 0 if δ′(i)(ui) = 0. Therefore we obtain c∗(u) =
(1/d!)1Lδ(u)∏d

i=1 a
∗
i (ui) for u ∈ Id.

To complete the proof, we now show that (3.72) holds for Λi, 1 ≤ i ≤ d measurable
functions. We introduce the notation u(−i) = (u1, . . . , ui−1, ui+1, . . . , ud) ∈ Id−1. Let us de-
fine the probability measure P (du) = c∗(u)µ(du)/

∫
Id c
∗(y)µ(dy) on Id. We fix j, 1 ≤ j ≤ d.
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In order to apply Proposition 2 of [153], which ensures the existence of the limiting measur-
able functions Λi, 1 ≤ i ≤ d, we first check that P is absolutely continuous with respect to
P j1 ⊗P

j
2 , where P

j
1 (du(−j)) =

∫
uj∈I P (du(−j)duj) and P j2 (duj) =

∫
u(−j)∈Id−1 P (du(−j)duj) are the

marginals of P . Notice that there exists a non-negative density function h such that P (du) =
h(u(−j), uj)du(−j)duj . Let h1(u(−j)) =

∫
h(u(−j), uj)duj and h2(uj) =

∫
h(u(−j), uj)du(−j) denote

the density of the marginals P j1 and P j2 . Then the density of the product measure P j1⊗P
j
2 is given

by P j1 ⊗P
j
2 (du) = h1(u(−j))h2(uj)du(−j)duj . The support of the density h is noted by T0 = {u ∈

Id;h(u) > 0}, and the support of the marginals are noted by T1 = {v ∈ Id−1;h1(v) > 0} and
T2 = {t ∈ I;h2(t) > 0}. With this notation, we have that a.e. T0 ⊂ T1×T2 (that is T0∩(T1×T2)c
is of zero Lebesgue measure). If A ⊂ Id is such that

∫
1A(u)h1(u(−j))h2(uj)du(−j)duj = 0, then

we also have
∫

1A∩(T1×T2)(u)h1(u(−j))h2(uj)du(−j)duj = 0. Since h1h2 is positive on T1 × T2,
this implies that A ∩ (T1 × T2) has zero Lebesgue measure. Therefore we have:∫

1A(u)h(u)du =
∫

1A∩(T1×T2)(u)h(u)du+
∫

1A\(T1×T2)(u)h(u)du = 0,

since h = 0 a.e. on A \ (T1 × T2). This proves that P is absolutely continuous with respect to
P j1 ⊗ P

j
2 . Then according to Proposition 2 of [153], (3.71) implies that there exist measurable

functions Φj and Λ̃j defined respectively on Id−1 and I, such that c∗µ-a.e. on 4:

log(c∗(u)) = Φj(u(−j)) + Λ̃j(uj).

As µ-a.e. c∗ > 0, this equality holds µ-a.e. on S. Since we have such a representation for every
1 ≤ j ≤ d, we can easily verify that log(c∗(u)) = ∑d

i=1 Λi(ui) µ-a.e. with Λ̃j = Λj up to an
additive constant.

3.6.6 Proof of Proposition 3.31

Let δ ∈ D0. Recall that uOS denotes the ordered vector of u ∈ Rd. Let c be the density
of a symmetric copula in Rd such that A(c) = bδ and c is of product form, that is, thanks to
Corollary 3.49, c(u) = c∗(uOS) with

c∗(u) = 1
d! 1Lδ(u)

d∏
i=1

a∗i (ui), u = (u1, . . . , ud) ∈ 4,

where a∗i , 1 ≤ i ≤ d are measurable non-negative functions defined on I. In this section, we
shall prove that c equals cδ defined by (3.44); that is, for all 1 ≤ i ≤ d, a∗i is a.e. equal, up to a
multiplicative constant, to ai defined in (3.45). This will prove Proposition 3.31.

Recall the definitions of g(j)
i ,m

(j)
i , d

(j)
i from Section 3.4, for 1 ≤ i ≤ d + 1. We deduce from

(3.43) that:

c∗(u) = 1
d! 1Lδ(u)

d∏
i=1

a∗i (ui)1Ψδi∩Ψδi+1
(ui), u = (u1, . . . , ud) ∈ 4.

We deduce also from Lemma 3.50 that Aµ(c∗) = δ. We introduce the following family of func-
tions:

B∗d+1(t) = E∗0(t) = 1,

and for 1 ≤ i ≤ d, t ∈ (g(j)
i , d

(j)
i ) and t′ ∈ (g(j)

i+1, d
(j)
i+1):

B∗i (t) =
∫ d

(j)
i

t
a∗i (s)B∗i+1(s) ds, E∗i (t′) =

∫ t′

g
(j)
i+1

a∗i (s)E∗i−1(s) ds.

Recall the functions Bi, for 1 ≤ i ≤ d + 1, and Ei, for 0 ≤ i ≤ d defined by (3.61) and (3.63).
We will prove by (downward) induction on i ∈ {1, . . . , d+ 1} that:

B∗i (t) = B∗i (m(j)
i )Bi(t), t ∈ (g(j)

i , d
(j)
i ). (3.73)
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For i = d + 1, it trivially holds. Let us assume that (3.73) holds for i + 1, d ≥ i ≥ 1. Recall
the convention Kd+1 = 0, δ(d+1) = 0 and δ(0) = 1. Arguing as in the proof of Lemma 3.45, we
deduce from Aµi (c∗) = δ(i) that for r ∈ Ψδ

i :

δ(i)(r) = d!
∫
Id
c∗(u)1{u(i)≤r} µ(du)

= d!
∫
Id
c∗(u)1{u(i+1)≤r} µ(du) +

∫
4

1Lδ(u)
d∏
j=1

(
a∗j (uj)1Ψδj∩Ψδj+1

(uj)
)

1{ui≤r≤ui+1} du

= δ(i+1)(r) +B∗i+1(r)E∗i (r).

This gives on Ψδ
i :

δ(i) − δ(i+1) = B∗i+1E
∗
i . (3.74)

Notice (3.74) holds for i = d thanks to the conventions. We get on Ψδ
i :

δ′(i) − δ
′
(i+1) = −K ′i+1B

∗
i+1E

∗
i +B∗i+1a

∗
iE
∗
i−1 = −δ′(i+1) +B∗i+1a

∗
iE
∗
i−1.

where we took the derivative in (3.74), twice the induction hypothesis for B∗i+1 and (3.62) for
the first equality; then (3.46) and (3.74) for the second. We deduce that on Ψδ

i :

δ′(i) = B∗i+1a
∗
iE
∗
i−1. (3.75)

On Ψδ
i , we can divide (3.75) by (3.74) and get, thanks to (3.46):

a∗iB
∗
i+1

B∗i
=

δ′(i)
δ(i−1) − δ(i)

= K ′i.

Notice that (B∗i )′ = −a∗iB∗i+1. So using the representation (3.62) of Bi, we get that (3.73) holds
for i. Thus (3.73) holds for 1 ≤ i ≤ d + 1. Then use (3.73) as well as (B∗i )′ = −a∗iB∗i+1 and
B′i = −aiBi+1 to get that for t ∈ (g(j)

i , d
(j)
i ) ∩ (g(k)

i+1, d
(k)
i+1):

a∗i (t) = B∗i (m(j)
i )

B∗i+1(m(k)
i+1)

ai(t).

Therefore if u = (u1, . . . , ud) ∈ Lδ, we have:

d∏
i=1

a∗i (u(i)) = B∗1(m1)
B∗d+1(md+1)

d∏
i=1

ai(u(i)),

since when u ∈ Lδ, u(i−1) and u(i) belong to the same interval (g(j)
i , d

(j)
i ) for 2 ≤ i ≤ d. This

ensures that cδ and c∗ are densities of probability function which differ by a multiplicative
constant, therefore they are equal. This ends the proof of Proposition 3.31.

3.6.7 Proof of case (a) for Theorems 3.32 and 3.37

We first consider the case d = 2. Let δ ∈ D0 with J(δ) = +∞. Recall J(δ) is defined by
(3.15). We have:

J(δ) = −
∫
I
δ′(2)(t) log(2(t− δ(2)(t))) dt

= − log(2)−
∫
I

log(t− δ(2)(t)) dt+
∫
I
(1− δ′(2)(t)) log(t− δ(2)(t)) dt

= − log(2)−
∫
I

log(t− δ(2)(t)) dt+
[
(t− δ(2)(t)) log(t− δ(2)(t))− (t− δ(2)(t))

]1
0

= − log(2)−
∫
I

log(t− δ(2)(t)) dt,
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where we used δ(1) +δ(2) = 2t for the first equality, δ(2)(1) = 1 and δ(2)(0) = 0 for the second and
last. In particular, we obtain that J(δ) is equal to − log(2) + J (δ(2)), with J as also defined by
(1) in [33]. Therefore we deduce case (a) of Theorem 3.32 (for d = 2) from case (a) of Theorem
2.4 in [33]. Then, we get from (3.14) and Theorem 3.32 case (a) that Hh(F ) = −∞ for all
F ∈ LOS2 (F). This proves case (a) for Theorem 3.37 (for d = 2).

We then consider the case d ≥ 2. Let δ ∈ D0 with J(δ) = +∞. This implies that there exists
2 ≤ i ≤ d such that

∫
I δ
′
(i)(t)

∣∣∣log(δ(i−1)(t)− δ(i)(t))
∣∣∣ dt = +∞. Set F = (δ(i−1), δ(i)) and notice

that F belongs to F2 as δ(i) is d-Lipschitz. Since
∫
I δ
′
(i)(t)

∣∣∣log(δ(i−1)(t)− δ(i)(t))
∣∣∣ dt = +∞, we

deduce from the first part of this Section that maxF∈LOS2 (F)Hh(F ) = −∞.
Consider a copula C belonging to Cδ

⋂
Csym and U a random vector on Id with cdf C.

According to Lemma 3.23 and Lemma 3.5, as C is symmetric, we have:

H(UOS) = H(U)− log(d!) = H(C)− log(d!).

It is easy to check that if X = (X1, . . . , Xd) is a random vector on Id and 2 ≤ i ≤ d, then we
have H((Xi−1, Xi)) ≥ H(X). This implies that, for V = (UOSi−1, U

OS
i ),

H(V ) ≥ H(C)− log(d!).

Since the cdf of UOS` is δ(`) as C ∈ Cδ, we deduce the cdf of V belongs to LOS2 (F), and thus
H(V ) = −∞. This implies that H(C) = −∞. Thanks to Proposition 3.47 which states that the
entropy is maximal on symmetric copulas, we deduce that:

max
C∈Cδ

H(C) = max
C∈Cδ

⋂
Csym

H(C) = −∞.

This proves cases (a) for Theorem 3.32. Then, we get from (3.14) that Hh(F ) = −∞ for all
F ∈ LOSd (F). This proves case (a) for Theorem 3.37.

3.6.8 Proof of Theorem 3.32, case (b)

Let δ ∈ D with J(δ) < +∞. Thanks to Lemma 3.18, J(δ) < +∞ implies that δ ∈ D0. By
construction, cδ introduced in Proposition 3.30 verifies µ−a.e. cδ > 0. The density cδ is a feasible
solution to the problem (P δµ). Theorem 3.51 ensures the existence of a unique optimal solution
c∗. Furthermore, by Lemma 3.52, we have that there exist non-negative, measurable functions
a∗i , 1 ≤ i ≤ d, such that c∗(u) = (1/d!)1Lδ(u)∏d

i=1 a
∗
i (ui) µ-a.e. By Corollary 3.49, the optimal

solution c of (P δ) is given by, for u = (u1, . . . , ud):

c(u) = c∗(uOS)1Zc
δ
∩Lδ(u) = 1

d! 1Lδ(u)
d∏
i=1

a∗i (u(i))1{δ′(i)(u(i))6=0}.

Since c is of product form, Proposition 3.31 yields that c = cδ a.e., therefore Cδ is the unique
copula achieving H(Cδ) = maxC∈Cδ H(C).

3.7 Overview of the notations

- Fd: set of continuous one-dimensional marginals cdf F = (F1, . . . ,Fd) of d-dimensional
order statistics, see (3.10).

- F0
d : set of continuous one-dimensional marginals cdf F = (F1, . . . ,Fd) of d-dimensional

abs. cont. order statistics, see Definition 3.19.
- Hh(F ): the relative entropy (with respect to the reference probability density h) of the
random variable corresponding to the cdf F , see (3.13).

- H(F ): this equals Hh(F ) with h = 1[0,1] and F a cdf of a random variable taking values
in [0, 1]d.
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- J(F): the quantity appearing in the expression of the entropy of the maximum entropy
distribution of order statistics with marginals cdf F ∈ Fd, see (3.15).

- Ld: set of cdf’s on Rd with continuous one-dimensional marginals cdf.
- L0

d: set of absolutely continuous cdf’s on Rd.
- LOSd : set of cdf’s of d-dimensional order statistics with continuous one dimensional marginals
cdf.

- LOSd (F): set of cdf’s of d-dimensional order statistics with marginals cdf F, see (3.11).
- Lsymd : set of symmetric cdf’s on Rd with continuous one-dimensional marginals cdf.
- F sym: the symmetrization of the cdf F , see (3.16).
- SF: symmetrizing operator on copulas, associated to the marginals cdf F, see Definition
3.3.

- C: set of all copulas.
- C0: set of absolutely continuous copulas.
- COS(F): set of copulas of order statistics with marginals cdf F, see (3.12).
- Csym: set of symmetric (permutation invariant) copulas.
- Csym(F): image of the set COS(F) by the operator SF, see (3.19). It is the set of symmetric
copulas with multidiagonal δF.

- Cδ: set of copulas with multidiagonal δ, see Section 3.3.2.
- C0

δ : set of abs. cont. copulas with multidiagonal δ, see Section 3.3.2.
- D: set of multidiagonals of copulas, see Section 3.3.2.
- D0: set of multidiagonals of abs. cont. copulas, see Section 3.3.2.
- ΨF

i : set of points t ∈ R for which the marginals cdf F = (F1, . . . ,Fd) verify Fi−1(t) >
Fi(t), see (3.29).

- TF: set of points u = (u1, . . . , ud) ∈ Id for which F−1
1 (u1) ≤ . . . ≤ F−1

d (ud), see (3.33).
The density of all copulas in COS(F) vanishes outside TF.

- LF: set of ordered vectors x ∈ Rd such that the marginals cdf’s F = (F1, . . . ,Fd) verify
Fi−1(t) > Fi(t) for all t ∈ (xi−1, xi), 2 ≤ i ≤ d, see (3.51). The density of any abs. cont.
cdf in LOSd (F) vanishes outside LF.

- Lδ: set of points u = (u1, . . . , ud) ∈ Id for which all points t ∈ (u(i−1), u(i)) verify
δ(i−1)(t) > δ(i)(t) for all 2 ≤ i ≤ d, see (3.40). The density of any copula in C0

δ vanishes
outside Lδ.

- Zδ: set of points u = (u1, . . . , ud) ∈ Id such that δ′(i)(u(i)) = 0 for some 1 ≤ i ≤ d, see
(3.38). The density of any copula in C0

δ vanishes on Zδ.



Chapitre 4

Application pour la quantification
d’incertitude

4.1 Introduction

L’étude modélise une plaque d’acier sur laquelle on fait une ligne de soudure. Un calcul
physique correspond à l’enchaînement de trois calculs :

• un calcul thermique qui définit l’historique de température,
• un calcul métallurgique (éventuellement, qui définit la transformation subie par l’acier
due à l’historique de température précédent),
• un calcul mécanique qui estime la carte des contraintes résiduelles dans l’acier suite à la
soudure.

Une analyse de sensibilité effectuée sur les paramètres mécaniques permet de déterminer les pa-
ramètres sur lesquels l’analyste doit porter son attention en priorité. Les paramètres mécaniques
considérés sont les suivants :

• E : module de Young de l’acier,
• α : coefficient de dilatation thermique,
• σm : limite d’élasticité,
• Dsde : pente d’écrouissage.

Chacun des paramètres (E,α, σm, Dsde) est une fonction monotone de la température T :
croissante pour α, décroissante pour (E, σm, Dsde). La plage de températures considérée est
[20°C, 1200°C], discrétisée en un nombre n de températures (n ∼ 10).

4.2 Modélisation actuelle

La variation des paramètres est modélisée comme suit. Pour chaque paramètre P et tempé-
rature T , on considère :

• la valeur nominale de P à la température T (donnée expérimentale), notée par P0(T ) ;
• une amplitude maximale ErrP (T ) de P autour de P0(T ), qui dépend de manière poly-

nomiale de T :
ErrP (T ) = λP (T − Tmin)k + ErrPmin (4.1)

où (λP , Tmin, ErrPmin) sont des paramètres fixés, k = 1 ou k = 2 ;
• la variation de P autour de sa valeur nominale est donnée par :

P (T ) = P0(T )
(
1 +AP × ErrP (T )

)
(4.2)

où AP est une variable aléatoire uniforme sur [−1, 1]. AP ne dépend pas de T .
Ainsi, la valeur de la variable aléatoire AP permet de déterminer la courbe P (T ) qui respecte bien
la monotonie imposée par la physique (quand les paramÃ¨tres sont correctement choisis). Les
variables aléatoires (AE , Aα, Aσm , ADsde) sont supposées indépendantes. L’analyse de sensibilité
consiste donc à étudier la sensibilité des résultats de sortie (carte des contraintes résiduelles) à
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ces quatre paramètres. L’avantage de cette méthode est de permettre la réduction du nombre
de variables dans l’analyse de sensibilité : la sensibilité des contraintes résiduelles est calculée
par rapport aux quatre variables (AE , Aα, Aσm , ADsde) et non plus aux 4n variables initiales.
L’inconvénient de cette méthode est qu’elle impose une relation de monotonie particulière en
fonction de la température pour chaque paramètre, donnée par la relation (4.2), une fois l’aléa
(AE , Aα, Aσm , ADsde) réalisé. De plus, pour les paramètres décroissants nous devons nous as-
surer que la fonction P0(T )(1 + ErrP (T )) est bien décroissante, car cette propriété n’est pas
automatiquement assurée par le modèle.

4.3 Données de la littérature sur les paramètres mécaniques

Le nombre de bases de donnée sur les paramètres mécaniques du soudage est limité. On
fait référence à la thèse de Depradeux [62] qui rassemble les différents sources de données sur
ces paramètres. Figure 4.1 illustre par exemple la variation des profils de la limite d’élasticité
issus de différentes bases de donnée. La modélisation actuelle utilise également les valeurs de
paramètres obtenues dans ce document comme valeurs nominales.

Figure 4.1 – Comparaison des limites conventionnelles d’élasticité σm avec des valeurs issues
de différentes bases de donnée existantes, figure de [62]

On observe qu’il y a une forte variation à chaque instance de température, et que les courbes
ont différentes formes qui peuvent éventuellement se croiser. Cette caractéristique des paramètres
n’est pas prise en compte par la modélisation actuelle qui impose la forme de la courbe simulée,
donc elle impose également que la différence entre la valeur nominale et la valeur modélisée a la
même signe pour chaque température. Ces problèmes font appel à une modélisation différente
qui peut assurer une plus grande variation des profils de paramètres toujours conservant la
monotonie et assurant un contrôle sur les marginales à chaque température.
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4.4 Modélisation proposée à l’aide d’une copule d’entropie maxi-
male

Afin de relâcher la contrainte sur la forme de la courbe des paramètres, nous proposons une
approche différente pour modéliser chacun des 4n paramètres (E(Ti), α(Ti), σm(Ti), Dsde(Ti))ni=1
qui conserve les marginales uniformes des P (Ti) autour de sa valeur nominale P0(Ti) et qui
respecte la contrainte de la monotonie sans rajouter aucune autre. La distribution de la variable
aléatoire P (Ti) est uniforme sur ITi = [Pmin(Ti), Pmax(Ti)] avec :

Pmin(Ti) = P0(Ti)(1− ErrP (Ti)) et Pmax(Ti) = P0(Ti)(1 + ErrP (Ti))

La longueur de l’intervalle ITi sera notée par Li. Notons par Fi la fonction de répartition de
P (Ti) donnée par, pour x ∈ R :

Fi(x) = 1
Li

(
x− Pmin(Ti)

)
1ITi (x) + 1(Pmax(Ti),+∞)(x).

Pour pouvoir utiliser les résultats sur la copule d’entropie maximale des statistiques d’ordre, on
doit s’assurer que les conditions suivantes soient vérifiées par les marginales.

Fi−1(t) > Fi(t) (4.3)

pour tout t ∈ (ai−1, bi), avec ai−1 = sup{x ∈ R;F(i−1)(x) = 0} et bi = inf{x ∈ R;F(i)(x) = 1} ;
d’autre part une condition d’intégrabilité donnée par :

d∑
i=2

∫
R
fi(t) |log(Fi−1(t)− Fi(t))| dt < +∞. (4.4)

Pour assurer (4.3), il suffit que les quantités Pmin(Ti), Pmax(Ti) vérifient pour i = 2, . . . , n :

Pmin(Ti−1) ≤ Pmin(Ti) et Pmax(Ti−1) ≤ Pmax(Ti). (4.5)

La condition (4.4) est vérifiée une fois qu’on a (4.5). Alors la densité f∗P de la loi jointe d’entropie
maximale pour P = (P (T1), . . . , P (Tn)) s’écrit d’après (3.54), pour x1, . . . , xn ∈ R :

f∗P (x1, . . . , xn) =

 1
L1

∏n
i=2

1
Li(Fi−1(xi)−Fi(xi)) e

−
∫ xi
xi−1

1
ITi

(s)
Li(Fi−1(s)−Fi(s)) ds si ∀i : xi ∈ ITi ,

0 sinon.
(4.6)

4.5 Simulation de P

Une réalisation de P peut être engendrée de manière séquentielle :

1. On engendre U1 uniforme sur [0, 1], et on met P (T1) = L1U1 + Pmin(T1).
2. On engendre P (Ti), i = 2, . . . , n à l’aide des Ui uniformes sur [0, 1] de la façon suivante :
(a) si Pmax(Ti−1) < Pmin(Ti), alors P (Ti) = LiUi + Pmin(Ti) ;
(b) si Pmin(Ti) ≤ Pmax(Ti−1) on utilise la fonction de répartition conditionnelle de P (Ti)

étant donnée la valeur de P (Ti−1) :

Fi(xi|P (Ti−1) = xi−1) = 1− e
−
∫ xi
xi−1

1
ITi

(s)
Li(Fi−1(s)−Fi(s)) ds pour xi−1 ≤ xi ≤ Pmax(Ti),

et on met P (Ti) = F−1
i (Ui|P (Ti−1)).
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Quand on souhaite donner la forme analytique de la fonction Fi(.|P (Ti−1)) requise en (2b),
il faut distinguer entre deux cas selon la valeur de P (Ti−1). On définit la constante ci = Li

Li−1
−1.

Si P (Ti−1) = xi−1 < Pmin(Ti) et ci 6= 0, on obtient, pour xi ∈ ITi :

Fi(xi|P (Ti−1) = xi−1) =

1−
(
ciP

min(Ti)−di
cixi−di

) 1
ci si xi ∈ [Pmin(Ti), Pmax(Ti−1)],

1− gi Pmax(Ti)−xi
Pmax(Ti)−Pmax(Ti−1) si xi ∈ [Pmax(Ti−1), Pmax(Ti)],

avec des constantes di = Li
Li−1

Pmin(Ti−1)− Pmin(Ti) et gi =
(

ciP
min(Ti)−di

ciPmax(Ti−1)−di

) 1
ci . Si ci = 0 alors

l’expression prend la forme :

Fi(xi|P (Ti−1) = xi−1) =

1− e(xi−Pmin(Ti))/di si xi ∈ [Pmin(Ti), Pmax(Ti−1)],
1− ĝi Pmax(Ti)−xi

Pmax(Ti)−Pmax(Ti−1) si xi ∈ [Pmax(Ti−1), Pmax(Ti)],

avec ĝi = e(Pmax(Ti−1)−Pmin(Ti))/di . Dans le cas xi−1 ≥ Pmin(Ti), on obtient, pour ci 6= 0 et
xi ∈ ITi :

Fi(xi|P (Ti−1) = xi−1) =


0 si xi ∈ [Pmin(Ti), xi−1],

1−
(
cixi−1−di
cixi−di

) 1
ci si xi ∈ [xi−1, P

max(Ti−1)],
1− hi Pmax(Ti)−xi

Pmax(Ti)−Pmax(Ti−1) si xi ∈ [Pmax(Ti−1), Pmax(Ti)],

avec hi =
(

cixi−1−di
ciPmax(Ti−1)−di

) 1
ci . Quand ci = 0, on a :

Fi(xi|P (Ti−1) = xi−1) =


0 si xi ∈ [Pmin(Ti), xi−1],
1− e(xi−xi−1)/di si xi ∈ [xi−1, P

max(Ti−1)],
1− ĥi Pmax(Ti)−xi

Pmax(Ti)−Pmax(Ti−1) si xi ∈ [Pmax(Ti−1), Pmax(Ti)],

avec ĥi = e(Pmax(Ti−1)−xi−1)/di . La fonction inverse F−1
i (.|P (Ti−1)) est donnée par, quand xi−1 <

Pmin(Ti) et ci 6= 0 :

F−1
i (ui|P (Ti−1) = xi−1) =


ciP

min(Ti)−di
ci(1−ui)ci + di

ci
si ui ∈ [0, 1− gi],

Pmax(Ti)− (1−ui)(Pmax(Ti)−Pmax(Ti−1))
gi

si ui ∈ [1− gi, 1].

Si ci = 0, alors l’inverse est donnée par :

F−1
i (ui|P (Ti−1) = xi−1) =

{
Pmin(Ti) + di log(1− ui) si ui ∈ [0, 1− ĝi],
Pmax(Ti)− (1−ui)(Pmax(Ti)−Pmax(Ti−1))

ĝi
si ui ∈ [1− ĝi, 1].

Dans le cas xi−1 ≥ Pmin(Ti) et ci 6= 0, l’inverse est donnée par :

F−1
i (ui|P (Ti−1) = xi−1) =


cixi−1−di
ci(1−ui)ci + di

ci
si ui ∈ [0, 1− hi],

Pmax(Ti)− (1−ui)(Pmax(Ti)−Pmax(Ti−1))
hi

si ui ∈ [1− hi, 1].

Finalement, quand ci = 0, on a :

F−1
i (ui|P (Ti−1) = xi−1) =

xi−1 + di log(1− ui) si ui ∈ [0, 1− ĥi],
Pmax(Ti)− (1−ui)(Pmax(Ti)−Pmax(Ti−1))

ĥi
si ui ∈ [1− ĥi, 1].

La forme analytique des inverses nous permet de simuler le vecteur P sans complexifier les calculs.
La figure 4.2 illustre la différences entre les réalisations de P en utilisant les deux approches
décrites ci-dessus. L’approche proposée n’impose pas de modèle particulier à la monotonie des
paramètres, ce qui entraîne donc des profils plus réalistes des paramètres mécaniques.



4.6. Conclusion 119

Figure 4.2 – Profils du module de Young E issues de l’approche initiale (en haut) et de l’ap-
proche innovante (en bas).

4.6 Conclusion

Dans cette communication, nous avons étudié les distributions de statistiques d’ordre sous
contrainte de marginales fixées. Les marginales étant imposées, la copule du vecteur aléatoire
comprend toutes les informations sur la dépendance entre ses composants, ainsi que sur la loi
jointe. La présence d’une contrainte de relation d’ordre limite l’espace des copules compatibles.
Nous avons donné une caractérisation des copules des statistiques d’ordre avec des marginales
fixées, ce qui permet de calculer la densité de la copule optimale maximisant l’entropie (donc
l’incertitude) du vecteur aléatoire. Nous avons illustré à travers un exemple de simulation des
paramètres mécaniques du soudage que les résultats théoriques peuvent être bien implémentés
dans un contexte industriel. Les marginales uniformes dans ce cas particulier mènent à un
schéma de simulation explicite, qui n’est pas toujours assuré lorsqu’on se donne des marginales
différentes. L’étude des méthodes de simulation dans le cas général fera partie des travaux futurs
et l’approche proposée sera appliquée à d’autres études de quantification d’incertitude liées aux
activités d’EDF.
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Chapter 5

Optimal exponential bounds for
aggregation of estimators for the
Kullback-Leibler loss

5.1 Introduction

The pure aggregation framework with deterministic estimators was first established in [135]
for nonparametric regression with random design. Given N estimators fk, 1 ≤ k ≤ N and a
sample X = (X1, . . . , Xn) from the model f , the problem is to find an aggregated estimate f̂
which performs nearly as well as the best fµ, µ ∈ U , where:

fµ =
N∑
k=1

µkfk,

and U is a certain subset of RN (we assume that linear combinations of the estimators are valid
candidates). The performance of the estimator is measured by a loss function L. Common loss
functions include Lp distance (with p = 2 in most cases), Kullback-Leibler or other divergences,
Hellinger distance, etc. The aggregation problem can be formulated as follows: find an aggregate
estimator f̂ such that for some C ≥ 1 constant, f̂ satisfies an oracle inequality in expectation,
i.e.:

E
[
L(f, f̂)

]
≤ C min

µ∈U
L(f, fµ) +Rn,N , (5.1)

or in deviation, i.e. for ε > 0 we have with probability greater than 1− ε:

L(f, f̂) ≤ C min
µ∈U

L(f, fµ) +Rn,N,ε, (5.2)

with remainder terms Rn,N and Rn,N,ε which do not depend on f or fk, 1 ≤ k ≤ N . If C = 1,
then the oracle inequality is sharp.

Three types of problems were identified depending on the choice of U . In the model selection
problem, the estimator mimics the best estimator amongst f1, . . . , fN , that is U = {ek, 1 ≤ k ≤
N}, with ek = (µj , 1 ≤ j ≤ N) ∈ RN the unit vector in direction k given by µj = 1{j=k}. In the
convex aggregation problem, fµ are the convex combinations of fk, 1 ≤ k ≤ N , i.e. U = Λ+ ⊂ RN
with:

Λ+ = {µ = (µk, 1 ≤ k ≤ N) ∈ RN , µk ≥ 0 and
∑

1≤k≤N
µk = 1}. (5.3)

Finally in the linear aggregation problem we take U = RN , the entire linear span of the initial
estimators.

Early papers usually consider the L2 loss in expectation as in (5.1). For the regression
model with random design, optimal bounds for the L2 loss in expectation for model selection
aggregation was considered in [178] and [174], for convex aggregation in [107] with improved
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results for large N in [180], and for linear aggregation in [168]. These results were extended to
the case of regression with fixed design for the model selection aggregation in [53] and [54], and
for affine estimators in the convex aggregation problem in [52]. A unified aggregation procedure
which achieves near optimal loss for all three problems simultaneously was proposed in [29].

For density estimation, early results include [41] and [179] which independently considered
the model selection aggregation under the Kullback-Leibler loss in expectaion. They introduced
the progressive mixture method to give a series of estimators which verify oracle inequalities with
optimal remainder terms. This method was later generalized as the mirror averaging algorithm in
[108] and applied to various problems. Corresponding lower bounds which ensure the optimality
of this procedure was shown in [120]. The convex and linear aggregation problems for densities
under the L2 loss in expectation were considered in [150].

While a lot of papers considered the expected value of the loss, relatively few papers address
the question of optimality in deviation, that is with high probability as in (5.2). For the regres-
sion problem with random design, [8] shows that the progressive mixture method is deviation
sub-optimal for the model selection aggregation problem, and proposes a new algorithm which is
optimal for the L2 loss in deviation and expectation as well. Another deviation optimal method
based on sample splitting and empirical risk minimization on a restricted domain was proposed
in [121]. For the fixed design regression setting, [149] considers all three aggregation problems
in the context of generalized linear models and gives constrained likelihood maximization meth-
ods which are optimal in both expectation and deviation with respect to the Kullback-Leibler
loss. More recently, [50] extends the results of [149] for model selection by introducing the Q-
aggregation method and giving a greedy algorithm which produces a sparse aggregate achieving
the optimal rate in deviation for the L2 loss. More general properties of this method applied to
other aggregation problems as well are discussed in [51].

For the density estimation, optimal bounds in deviation with respect to the L2 loss for model
selection aggregation are given in [17]. The author gives a non-asymptotic sharp oracle inequality
under the assumption that f and the estimators fk, 1 ≤ k ≤ N are bounded, and shows the
optimality of the remainder term by providing the corresponding lower bounds as well. The
penalized empirical risk minimization procedure introduced in [17] inspired our current work.
Here, we consider a more general framework which incorporates, as a special case, the density
estimation problem. Moreover, we give results in deviation for the Kullback-Leibler loss instead
of the L2 loss considered in [17].

Linear aggregation of lag window spectral density estimators with L2 loss was studied in
[43]. The method we propose is more general as it can be applied to any set of estimators fk,
1 ≤ k ≤ N , not only kernel estimators. However we consider the model selection problem, which
is weaker than the linear aggregation problem. Also, this paper concerns optimal bounds in
deviation for the Kullback-Leibler loss instead of the L2 loss in expectaion.

We now present our main contributions. We propose aggregation schemes for the estimation
of probability densities on Rd and the estimation of spectral densities of stationary Gaussian
processes. We consider model selection type aggregation for the Kullback-Leibler loss in devia-
tion. For positive, integrable functions p, q, let D (p‖q) denote the generalized Kullback-Leibler
divergence given by:

D (p‖q) =
∫
p log(p/q)−

∫
p+

∫
q. (5.4)

This is a Bregman-divergence, therefore D (p‖q) is non-negative and D (p‖q) = 0 if and only if
a.e. p = q. The Kullback-Leibler loss of an estimator f̂ is given by D (f ||f̂). For initial estimators
fk, 1 ≤ k ≤ N , the aggregate estimator f̂ verifies the following sharp oracle inequality for every
f belonging to a large class of functions F , with probability greater than 1 − exp(−x) for all
x > 0:

D
(
f‖f̂

)
≤ min

1≤k≤N
D (f‖fk) +Rn,N,x. (5.5)

We propose two methods of convex aggregation for non-negative estimators, see Propositions
5.3 and 5.3. Contrary to the usual approach of giving an aggregate estimator which is a linear
or convex combination of the initial estimators, we consider an aggregation based on a convex
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combination of the logarithms of these estimators. The convex aggregate estimators f̂ = fD
λ̂

and
f̂ = fS

λ̂
with λ̂ = λ̂(X1, . . . , Xn) ∈ Λ+ maximizes a penalized maximum likelihood criterion. The

exact form of the convex aggregates fD
λ̂

and fS
λ̂
will be precised in later sections for each setup.

The first method concerns estimators with a given total mass and produces an aggregate fD
λ̂

which has also the same total mass. This method is particularly adapted for density estimation as
it provides an aggregate which is also proper density function. We use this method to propose an
adaptive nonparametric density estimator for maximum entropy distributions of order statistics
in [37]. The second method, giving the aggregate fS

λ̂
, does not have the mass conserving feature,

but can be applied to a wider range of statistical estimation problems, in particular to spectral
density estimation. We show that both procedures give an aggregate which verifies a sharp oracle
inequality with a bias and a variance term. When applied to density estimation, we obtain sharp
oracle inequalities with the optimal remainder term of order log(N)/n, that is we have (5.5) with:

Rn,N,x = β
log(N) + x

n
,

with β depending only on the infinity norm of the logarithms of f and fk, 1 ≤ k ≤ N , see
Theorem 5.6. In the case of spectral density estimation, we need to suppose a minimum of
regularity for the logarithm of the true spectral density and the estimators. We require that the
logarithms of the functions belong to the periodic Sobolev space Wr with r > 1/2. We show
that this also implies that the spectral densities itself belong to Wr. We obtain (5.5) with:

Rn,N,x = β
log(N) + x

n
+ α

n
,

where β and α constants which depend only on the regularity and the Sobolev norm of the
logarithms of f and fk, 1 ≤ k ≤ N , see Theorem 5.10.

To show the optimality in deviation of the aggregation procedures, we give the corresponding
tight lower bounds as well, with the same remainder terms, see Propositions 5.13 and 5.14. This
complements the results of [120] and [17] obtained for the density estimation problem. In [120]
the lower bound for the expected value of the Kullback-Leibler loss was shown with the same
order for the remainder term, while in [17] similar results were obtained in deviation for the L2

loss.
The rest of the paper is organised as follows. In Section 5.2 we introduce the notation and

give the basic definitions used in the rest of the paper. We present the two types of convex
aggregation method for the logarithms in Sections 5.3.1 and 5.3.1. For the model selection
aggregation problem, we give a general sharp oracle inequality in deviation for the Kullback-
Leibler loss for each method. In Section 5.3.2 we apply the methods for the probability density
and the spectral density estimation problems. The results on the corresponding lower bounds
can be found in Section 5.4 for both problems. We summarize the properties of Toeplitz matrices
and periodic Sobolev spaces in the Appendix.

5.2 Notations

Let B+(Rd), d ≥ 1, be the set of non-negative measurable real function defined on Rd and
h ∈ B+(Rd) be a reference probability density. For f ∈ B+(Rd), we define:

gf = log(f/h), (5.6)

with the convention that log(0/0) = 0. Notice that we have ‖gf ‖∞ < ∞ if and only if f and
h have the same support H = {h > 0}. We consider the subset G of the set of non-negative
measurable functions with support H = {h > 0}:

G = {f ∈ B+(Rd); ‖gf ‖∞ < +∞}.
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For f ∈ G, we set:
mf =

∫
f, ψf = −

∫
gf h and tf = gf + ψf , (5.7)

and we get
∫
tf h = 0 as well as the inequalities:

mf ≤ e‖gf‖∞ , |ψf | ≤ ‖gf ‖∞, ‖ tf ‖∞ ≤ 2 ‖gf ‖∞ and ψf + log(mf ) ≤ ‖ tf ‖∞ . (5.8)

Notice that the Kullback-Leibler divergence D (f ′‖f), defined in (5.4), is finite for any function
f ′, f ∈ G. When there is no confusion, we shall write g, m, ψ and t for gf , mf , ψf and tf .

We consider a probabilistic model P = {Pf ; f ∈ F(L)}, with F(L) a subset of G with addi-
tional constraints (such as smoothness or integral condition) and Pf a probability distribution
depending on f . In the sequel, the model Pf corresponds to a sample of i.i.d. random variables
with density f (Section 5.3.1) or a sample from a stationary Gaussian process with spectral
density f (Section 5.3.1). Suppose we have (fk, 1 ≤ k ≤ N), which are N distinct estimators
of the function f ∈ F(L) such that there exists K > 0 (possibly different from L) for which
fk ∈ F(K) for 1 ≤ k ≤ N , as well as a sample X = (X1, . . . , Xn), n ∈ N∗ with distribution
Pf . We shall propose two convex aggregation estimator of f , based on these estimators and the
available sample, that behaves, with high probability, as well as the best initial estimator fk∗ in
terms of the Kullback-Leibler divergence, where k∗ is defined as:

k∗ = argmin
1≤k≤N

D (f‖fk) . (5.9)

For 1 ≤ k ≤ N , we set gk = gfk , mk = mfk , ψk = ψfk and tk = tfk . Notice that:

f = exp(g)h = exp(t− ψ)h and fk = exp(gk)h = exp(tk − ψk)h. (5.10)

We denote by In an integrable estimator of the function f measurable with respect to the
sample X = (X1, . . . , Xn). The estimator In may be a biased estimator of f . We note f̄n the
expected value of In:

f̄n = E[In].

We fix some additional notation. For a measurable function p on Rd and a measure Q on Rd
(resp. a measurable function q on Rd), we write 〈p,Q〉 =

∫
p(x)Q(dx) (resp. 〈p, q〉 =

∫
pq) when

the integral is well defined. We shall consider the L2(h) norm given by ‖p‖L2(h) =
(∫
p2h

)1/2.
5.3 Convex aggregation for the Kullback-Leibler divergence

In this section, we propose two convex aggregation methods, suited for models submitted to
different type of constraints. First, we state non-asymptotic oracle inequalities for the Kullback-
Leibler divergence in general form. Then, we derive more explicit non-asymptotic bounds for
two applications: the probability density model and the spectral density of stationary Gaussian
processes, respectively.

5.3.1 Aggregation procedures

In this section, we describe the two aggregation methods of f using the estimators (fk, 1 ≤
k ≤ N). The first one is the convex aggregation of the centered logarithm (tk, 1 ≤ k ≤ N)
which provides an aggregate estimator fDλ . This is particularly useful when considering density
estimation, as the final estimator is also a density function. The second one is the convex
aggregation of the logarithm (gk, 1 ≤ k ≤ N) which provides an aggregate estimator fSλ . This
method is suitable for spectral density estimation and it can be used for density estimation as
well.
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Density functions

In this Section, we shall consider probability density function, but what follows can readily
be adapted to functions with any given total mass. Notice that if f ∈ G is a density, then we get
D (h‖f) = ψf , which in turn implies that ψf ≥ 0 that is, using also the last inequality of (5.8):

0 ≤ ψf ≤ ‖ tf ‖∞ . (5.11)

We want to estimate a density function f ∈ G based on the estimators fk ∈ G for 1 ≤ k ≤ N
which we assume to be probability density functions. Recall the representation (5.10) of f and
fk with t = tf and tk = tfk . For λ ∈ Λ+ defined by (5.3), we consider the aggregate estimator
fDλ given by the convex combination of (tk, 1 ≤ k ≤ N):

fDλ = exp (tλ − ψλ) h with tλ =
N∑
k=1

λktk and ψλ = log
(∫

etλ h
)
.

Notice that fDλ is a density function with tfD
λ

= tλ, ψfD
λ

= ψλ, and that ‖ tλ ‖∞ ≤ max1≤k≤N ‖ tk ‖∞ <

+∞, that is fDλ ∈ G. The Kullback-Leibler divergence for the estimator fDλ of f is given by:

D
(
f‖fDλ

)
=
∫
f log

(
f/fDλ

)
= 〈t− tλ, f〉+(ψλ − ψ). (5.12)

Minimizing the Kullback-Leibler distance is thus equivalent to maximizing λ 7→ 〈tλ, f〉−ψλ.
Notice that 〈tλ, f〉 is linear in λ and the function λ 7→ ψλ is convex since ∇2ψλ is the covariance
matrix of the random vector (tk(Yλ), 1 ≤ k ≤ N) with Yλ having probability density function
fDλ . As In is a non-negative estimator of f based on the sample X = (X1, . . . , Xn), we estimate
the scalar product 〈tλ, f〉 by 〈tλ, In〉. To select the aggregation weights λ, we consider on Λ+ the
penalized empirical criterion HD

n (λ) given by:

HD
n (λ) = 〈tλ, In〉−ψλ −

1
2 penD(λ), (5.13)

with penalty term:

penD(λ) =
N∑
k=1

λkD
(
fDλ ‖fk

)
=

N∑
k=1

λkψk − ψλ.

Remark 5.1. The penalty term in (5.13) can be multiplied by any constant θ ∈ (0, 1) instead
of 1/2. The choice of 1/2 is optimal in the sense that it ensures that the constant exp(−6K)/4
in (5.22) of Proposition 5.3 is maximal, giving the sharpest result.

The penalty term is always non-negative and finite. Let LDn (λ) = 〈tλ, In〉− 1
2
∑N
k=1 λkψk.

Notice that LDn (λ) is linear in λ, and that HD
n simplifies to:

HD
n (λ) = LDn (λ)− 1

2 ψλ. (5.14)

Lemma 5.2 below asserts that the function HD
n , defined by (5.13), admits a unique maximizer

on Λ+ and that it is strictly concave around this maximizer.

Lemma 5.2. Let f and (fk, 1 ≤ k ≤ N) be density functions, elements of G such that (tk, 1 ≤
k ≤ N) are linearly independent. Then there exists a unique λ̂D∗ ∈ Λ+ such that:

λ̂D∗ = argmax
λ∈Λ+

HD
n (λ). (5.15)

Furthermore, for all λ ∈ Λ+, we have:

HD
n (λ̂D∗ )−HD

n (λ) ≥ 1
2 D

(
fD
λ̂D∗
‖fDλ

)
. (5.16)
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Proof. Consider the form (5.14) of HD
n (λ). Recall that the function λ 7→ LDn (λ) is linear in λ

and that λ 7→ ψλ is convex. Notice that ∇ψλ = (
〈
tk, f

D
λ

〉
, 1 ≤ k ≤ N). This implies that for all

λ, λ′ ∈ Λ+:

(λ− λ′) · ∇ψλ′ +D
(
fDλ′ ‖fDλ

)
=

N∑
k=1

(λk − λ′k)
〈
tk, f

D
λ′

〉
+
〈
tλ′ − tλ, fDλ′

〉
+ψλ − ψλ′

= ψλ − ψλ′ . (5.17)

Since ψλ is convex and differentiable, we deduce from (5.14) that HD
n is concave and differen-

tiable. We also have by the linearity of LDn and (5.17) that for all λ, λ′ ∈ Λ+:

HD
n (λ)−HD

n (λ′) = (λ− λ′) · ∇HD
n (λ′)− 1

2 D
(
fDλ′ ‖fDλ

)
. (5.18)

The concave function HD
n on a compact set attains its maximum at some points Λ∗ ⊂ Λ+. For

λ̂∗ ∈ Λ∗, we have for all λ ∈ Λ+:

(λ− λ̂∗) · ∇HD
n (λ̂∗) ≤ 0, (5.19)

see for example Equation 4.21 of [26]. Using (5.18) with λ′ = λ̂∗ and (5.19), we get (5.16) . Let
λ̂1
∗ and λ̂2

∗ be elements of Λ∗. Then by (5.16), we have:

0 = HD
n (λ̂1

∗)−HD
n (λ̂2

∗) ≥
1
2 D

(
fD
λ̂1
∗
‖fD
λ̂2
∗

)
,

which implies that a.e. fD
λ̂1
∗

= fD
λ̂2
∗
. By the linear independence of (tk, 1 ≤ k ≤ N), this gives

λ̂1
∗ = λ̂2

∗, giving the uniqueness of the maximizer.

Using λ̂D∗ defined in (5.15), we set:

f̂D∗ = fD
λ̂D∗
, t̂D∗ = tλ̂D∗

and ψ̂D∗ = ψλ̂D∗
. (5.20)

We show that the convex aggregate estimator f̂D∗ verifies almost surely the following non-
asymptotic inequality with a bias and a variance term.

Proposition 5.3. Let K > 0. Let f and (fk, 1 ≤ k ≤ N) be probability density functions,
elements of G such that (tk, 1 ≤ k ≤ N) are linearly independent and max1≤k≤N ‖ tk ‖∞ ≤ K.
Let X = (X1, . . . , Xn) be a sample from the model Pf . Then the following inequality holds:

D
(
f‖f̂D∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek),

with the functional Bn given by, for ` ∈ L∞(R):

Bn(`) =
〈
`, f̄n − f

〉
. (5.21)

and the function V D
n : Λ+ → R given by:

V D
n (λ) =

〈
In − f̄n, tλ − tk∗

〉
−e−6K

4

N∑
k=1

λk ‖ tk − tk∗ ‖2L2(h) . (5.22)

Proof. Using (5.12), we get:

D
(
f‖f̂D∗

)
−D (f‖fk∗) =

〈
tk∗ − t̂D∗ , f

〉
+ψ̂D∗ − ψk∗ .
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By the definition of k∗, together with penD(ek) = 0 for all 1 ≤ k ≤ N and the strict concavity
(5.16) of HD

n at λ̂D∗ with λ = ek∗ , we get:

D
(
f‖f̂D∗

)
−D (f‖fk∗) ≤

〈
tk∗ − t̂D∗ , f

〉
+ψ̂D∗ − ψk∗ +HD

n (λ̂D∗ )−HD
n (ek∗)−

1
2 D

(
f̂D∗ ‖fk∗

)
=
〈
t̂D∗ − tk∗ , In − f

〉
− 1

2 D
(
f̂D∗ ‖fk∗

)
− 1

2 penD(λ̂D∗ )

= Bn
(
t̂D∗ − tk∗

)
+ADn ,

with:

ADn =
〈
t̂D∗ − tk∗ , In − f̄n

〉
− 1

2 D
(
f̂D∗ ‖fk∗

)
− 1

2

N∑
k=1

λ̂D∗,kD
(
f̂D∗ ‖fk

)
. (5.23)

We recall, see Lemma 1 of [12], that for any non-negative integrable functions p and q on Rd
satisfying ‖ log(p/q)‖∞ < +∞, we have:

D (p‖q) ≥ 1
2 e−‖log(p/q)‖∞

∫
p (log(p/q))2 . (5.24)

We have:

D
(
f̂D∗ ‖fk

)
≥ 1

2 e−‖log(f̂D∗ /fk)‖∞
∫
f̂D∗

(
log(f̂D∗ /fk)

)2

≥ 1
2 e−4K−‖̂tD∗ −ψ̂D∗ ‖∞

∫
h
(
log(f̂D∗ /fk)

)2

≥ 1
2 e−6K

(
‖ t̂D∗ − tk ‖

2
L2(h) +(ψ̂D∗ − ψk)2

)
≥ 1

2 e−6K ‖ t̂D∗ − tk ‖
2
L2(h),

where we used (5.24) for the first inequality, (5.11) for the second, and (5.11) as well as
∫
tfh = 0

for third. By using this lower bound onD
(
f̂D∗ ‖fk

)
to both terms on the right hand side of (5.23),

we get:

ADn ≤
〈
t̂D∗ − tk∗ , In − f̄n

〉
−e−6K

4 ‖ t̂D∗ − tk∗ ‖
2
L2(h)−

e−6K

4

N∑
k=1

λ̂D∗,k ‖ t̂D∗ − tk ‖
2
L2(h)

=
〈
t̂D∗ − tk∗ , In − f̄n

〉
−e−6K

4

N∑
k=1

λ̂D∗,k ‖ tk − tk∗ ‖
2
L2(h)

= V D
n (λ̂D∗ ),

where the first equality is due to the following bias-variance decomposition equality which holds
for all ` ∈ L2(h) and λ ∈ Λ+:

N∑
k=1

λk ‖ tk − `‖2L2(h) = ‖ tλ − `‖2L2(h) +
N∑
k=1

λk ‖ tλ − tk ‖2L2(h) . (5.25)

The function V D
n is affine in λ, therefore it takes its maximum on Λ+ at some ek, 1 ≤ k ≤ N ,

giving:
D
(
f‖f̂D∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek).

This concludes the proof.
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Non-negative functions

In this Section, we shall consider non-negative functions. We want to estimate a function
f ∈ G based on the estimators fk ∈ G for 1 ≤ k ≤ N . Since most of the proofs in this Section
are similar to those in Section 5.3.1, we only give them when there is a substantial new element.
Recall the representation (5.10) of f and fk. For λ ∈ Λ+ defined by (5.3), we consider the
aggregate estimator fDλ given by the convex aggregation of (gk, 1 ≤ k ≤ N):

fSλ = exp (gλ) h with gλ =
N∑
k=1

λkgk. (5.26)

Notice that ‖gλ ‖∞ ≤ max1≤k≤N ‖gk ‖∞ < +∞, that is fDλ ∈ G. We set mλ = mfS
λ
the integral

of fSλ , see (5.7). The Kullback-Leibler distance for the estimator fSλ of f is given by:

D
(
f‖fSλ

)
=
∫
f log

(
f/fSλ

)
−m+mλ = 〈g − gλ, f〉−m+mλ. (5.27)

Since both g and gλ are bounded, we deduce that D
(
f‖fSλ

)
<∞ for all λ ∈ Λ+. Minimization

of the Kullback-Leibler distance given in (5.27) is therefore equivalent to maximizing λ 7→
〈gλ, f〉−mλ. Notice that 〈gλ, f〉 is linear in λ and the function λ 7→ mλ is convex, since the
Hessian matrix ∇2mλ is given by:

[
∇2mλ

]
i,j =

∫
gigjf

S
λ , which is positive-semidefinite. As In is

a non-negative estimator of f based on the sample X = (X1, . . . , Xn), we estimate the scalar
product 〈gλ, f〉 by 〈gλ, In〉. Here we select the aggregation weights λ based on the penalized
empirical criterion HS

n (λ) given by:

HS
n (λ) = 〈gλ, In〉−mλ −

1
2 penS(λ), (5.28)

with the penalty term:

penS(λ) =
N∑
k=1

λkD
(
fSλ ‖fk

)
=

N∑
k=1

λkmk −mλ.

The choice of the factor 1/2 for the penalty is justified by arguments similar to those given
in Remarks 5.1. The penalty term is always non-negative and finite. Let us define LSn(λ) =
〈gλ, In〉−1/2∑N

k=1 λkmk. Notice that LSn(λ) is linear in λ, and that HS
n simplifies to:

HS
n (λ) = LSn(λ)− 1

2 mλ. (5.29)

Lemma 5.4 below asserts that the function HS
n admits a unique maximizer on Λ+ and that

it is strictly concave around this maximizer.

Lemma 5.4. Let f and (fk, 1 ≤ k ≤ N) be elements of G such that (gk, 1 ≤ k ≤ N) are linearly
independent. Let HS

n be defined by (5.28). Then there exists a unique λ̂S∗ ∈ Λ+ such that:

λ̂S∗ = argmax
λ∈Λ+

HS
n (λ). (5.30)

Furthermore, for all λ ∈ Λ+, we have:

HS
n (λ̂S∗ )−HS

n (λ) ≥ 1
2 D

(
fS
λ̂S∗
‖fSλ

)
. (5.31)

Proof. Notice that for all λ, λ′ ∈ Λ+:

mλ −mλ′ = (λ− λ′) · ∇mλ′ +D (fλ′‖fλ) . (5.32)

The proof is then similar to the proof of Lemma 5.2 using (5.32) instead of (5.17).
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Using λ̂S∗ defined in (5.30), we set:

f̂S∗ = fS
λ̂D∗

and ĝS∗ = gλ̂S∗
. (5.33)

We show that the convex aggregate estimator f̂S∗ verifies almost surely the following non-
asymptotic inequality with a bias and a variance term.

Proposition 5.5. Let K > 0. Let f and (fk, 1 ≤ k ≤ N) be elements of G such that (gk, 1 ≤
k ≤ N) are linearly independent and max1≤k≤N ‖gk ‖∞ ≤ K. Let X = (X1, . . . , Xn) be a sample
from the model Pf . Then the following inequality holds:

D
(
f‖f̂S∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek),

with the functional Bn given by (5.21), and the function V S
n : Λ+ → R given by:

V S
n (λ) =

〈
gλ − gk∗ , In − f̄n

〉
−e−3K

4

N∑
k=1

λk ‖gk − gk∗ ‖2L2(h) .

Proof. Similarly to the proof of Proposition 5.3 we obtain that:

D
(
f‖f̂S∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ASn ,

with:

ASn =
〈
ĝS∗ − gk∗ , In − f̄n

〉
− 1

2 D
(
f̂S∗ ‖fk∗

)
− 1

2

N∑
k=1

λ̂S∗,kD
(
f̂S∗ ‖fk

)
. (5.34)

Since ‖ log(f̂S∗ /fk)‖∞ = ‖gλ̂∗ − gk ‖ ≤ 2K for 1 ≤ k ≤ N , we can apply (5.24) with f̂S∗ and fk:

D
(
f̂S∗ ‖fk

)
≥ 1

2 e−‖log(f̂S∗ /fk)‖∞
∫
f̂S∗

(
log(f̂S∗ /fk)

)2

≥ 1
2 e−2K−‖̂gS∗‖∞

∫
h
(
ĝS∗ − gk

)2

≥ 1
2 e−3K ‖ ĝS∗ − gk ‖

2
L2(h), (5.35)

where in the second and third inequalities we use that ‖ ĝS∗ ‖∞ ≤ max1≤k≤N ‖gk ‖∞ ≤ K.
Applying (5.35) to both terms on the right hand side of (5.34) gives:

An(λ̂S∗ ) ≤
〈
ĝS∗ − gk∗ , In − f̄n

〉
−e−3K

4 ‖ ĝS∗ − gk∗ ‖
2
L2(h)−

e−3K

4

N∑
k=1

λ̂S∗,k ‖ ĝS∗ − gk ‖
2
L2(h)

=
〈
ĝS∗ − gk∗ , In − f̄n

〉
−e−3K

4

N∑
k=1

λ̂S∗,k ‖gk − gk∗ ‖
2
L2(h)

= V S
n (λ̂S∗ ),

where we used (5.25) for the second equality. The function V S
n is affine in λ, therefore it takes

its maximum on Λ+ at some ek, 1 ≤ k ≤ N , giving:

D
(
f‖f̂S∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek).

This concludes the proof.

5.3.2 Applications

In this section we apply the methods established in Section 5.3.1 and 5.3.1 to the problem of
density estimation and spectral density estimation, respectively. By construction, the aggregate
fDλ of Section 5.3.1 is more adapted for the density estimation problem as it produces a proper
density function. For the spectral density estimation problem, the aggregate fSλ will provide the
correct results.
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Probability density estimation

We consider the following subset of probability density functions, for L > 0:

FD(L) = {f ∈ G; ‖ tf ‖∞ ≤ L and mf = 1}.

The model {Pf , f ∈ FD(L)} corresponds to i.i.d. random sampling from a probability density
f ∈ FD(L), that is the random variable X = (X1, . . . .Xn) has density f⊗n(x) = ∏n

i=1 f(xi),
with x = (x1, . . . , xn) ∈ (Rd)n. We estimate the probability measure f(y)dy by the empirical
probability measure In(dy) given by:

In(dy) = 1
n

n∑
i=1

δXi(dy),

where δy is the Dirac measure at y ∈ Rd. Notice that In is an unbiased estimator of f :

f(y)dy = E[In(dy)] for y = Rd.

In the following Theorem, we give a sharp non-asymptotic oracle inequality in probability
for the aggregation procedure f̂D∗ with a remainder term of order log(N)/n. We prove in Section
5.4.1 the lower bound giving that this remainder term is optimal.

Theorem 5.6. Let L,K > 0. Let f ∈ FD(L) and (fk, 1 ≤ k ≤ N) be elements of FD(K) such
that (tk, 1 ≤ k ≤ N) are linearly independent. Let X = (X1, . . . , Xn) be an i.i.d. sample from f .
Let f̂D∗ be given by (5.20). Then for any x > 0 we have with probability greater than 1−exp(−x):

D
(
f‖f̂D∗

)
−D (f‖fk∗) ≤

β(log(N) + x)
n

,

with β = 2 exp(6K + 2L) + 4K/3.

Proof. By Proposition 5.3, we have that:

D
(
f‖f̂D∗

)
−D (f‖fk∗) ≤ Bn

(
t̂D∗ − tk∗

)
+ max

1≤k≤N
V D
n (ek). (5.36)

Since In(dy) is an unbiased estimator of f(y)dy, we get Bn
(
t̂D∗ − tk∗

)
= 0. Notice that

P
(
V D
n (ek) ≥

β(log(N) + x)
n

)
≤ e−x

N
for all 1 ≤ k ≤ N, (5.37)

implies
P
(

max
1≤k≤N

V D
n (ek) ≥

β(log(N) + x)
n

)
≤ e−x,

which will provide a control of the second term on the right hand side of (5.36). Thus, the proof
of the theorem will be complete as soon as (5.37) is proved.

To prove (5.37), we use the concentration inequality of Proposition 5.3 in [17] which states
that for Y1, . . . , Yn independent random variables with finite variances such that |Yi − EYi| ≤ b
for all 1 ≤ i ≤ n, we have for all u > 0 and a > 0:

P
(

1
n

n∑
i=1

(Yi − EYi − aVar Yi) >
( 1

2a + b

3

)
u

n

)
≤ e−u . (5.38)

Let us choose Yi = tk(Xi)− tk∗(Xi) for 1 ≤ i ≤ n. Then, since fk and fk∗ belong to FD(K), we
have |Yi − EYi| ≤ 4K, and:

Var Yi ≤
∫

(tk − tk∗)2f ≤ e2L ‖ tk − tk∗ ‖2L2(h) . (5.39)
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Applying (5.38) with a = exp(−6K − 2L)/4, b = 4K and u = log(N) + x, we obtain:

e−x
N
≥ P

(〈
tk − tk∗ , In − f̄n

〉
−e−6K−2L

4 Var Y1 >
β(log(N) + x)

n

)

≥ P
(〈
tk − tk∗ , In − f̄n

〉
−e−6K

4 ‖ tk − tk∗ ‖2L2(h) >
β(log(N) + x)

n

)

= P
(
V D
n (ek) >

β(log(N) + x)
n

)
,

where the second inequality is due to (5.39). This proves (5.37) and completes the proof.

Remark 5.7. We can also use the aggregation method of Section 5.3.1 and consider the nor-
malized estimator f̃S∗ = f̂S∗ /mλ̂S∗

= fD
λ̂S∗
, which is a proper density function. Notice that the

optimal weights λ̂D∗ (which defines f̂D∗ ) and λ̂S∗ (which defines f̃S∗ ) maximize different criteria.
Indeed, according to (5.30) the vector λ̂S∗ maximizes:

HS
n (λ) = 〈gλ, In〉−

1
2 mλ −

1
2

N∑
k=1

λkmk = 〈gλ, In〉−
1
2 mλ −

1
2 ,

and according to (5.15) the vector λ̂D∗ maximizes:

HD
n (λ) = 〈tλ, In〉−

1
2 ψλ −

1
2

N∑
k=1

λkψk = 〈gλ, In〉−
1
2 ψλ + 1

2

N∑
k=1

λkψk = 〈gλ, In〉−
1
2 log(mλ),

where we used the identity gλ = tλ −
∑N
k=1 λkψk for the second equality and the equality

log(mλ) = log
(∫

etλ−
∑N

k=1 λkψk h

)
= ψλ −

∑N
k=1 λkψk for the third.

Spectral density estimation

In this section we apply the convex aggregation scheme of Section 5.3.1 to spectral density
estimation of stationary centered Gaussian sequences. Let h = 1/(2π)1[−π,π] be the reference
density and (Xk)k∈Z be a stationary, centered Gaussian sequence with covariance γ function
defined as, for j ∈ Z:

γj = Cov (Xk, Xk+j).

Notice that γ−j = γj . Then the joint distribution of X = (X1, . . . , Xn) is a multivariate, centered
Gaussian distribution with covariance matrix Σn ∈ Rn×n given by [Σn]i,j = γi−j for 1 ≤ i, j ≤ n.
Notice the sequence (γj)j∈Z is semi-definite positive.

We make the following standard assumption on the covariance function γ:
∞∑
j=0
|γj | = C1 < +∞. (5.40)

The spectral density f associated to the process is the even function defined on [−π, π] whose
Fourier coefficients are γj :

f(x) =
∑
j∈Z

γj
2π eijx = γ0

2π + 1
π

∞∑
j=1

γj cos(jx).

The first condition in (5.40) ensures that the spectral density is well-defined, continuous and
bounded by C1/π. It is also even and non-negative as (γj)j∈Z is semi-definite positive. The
function f completely characterizes the model as:

γj =
∫ π

−π
f(x) eijx dx =

∫ π

−π
f(x) cos(jx) dx for j ∈ Z. (5.41)
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For ` ∈ L1(h), we define the corresponding Toeplitz Tn(`) of size n× n by:

[Tn(`)]j,k = 1
2π

∫ π

−π
`(x) ei(j−k)x dx.

Notice that Tn(2πf) = Σn. Some properties of the Toeplitz matrix Tn(`) are collected in Section
5.5.1.

We choose the following estimator of f , for x ∈ [−π, π]:

In(x) = γ̂0
2π + 1

π

n−1∑
j=1

γ̂j cos(jx),

with (γ̂j , 0 ≤ j ≤ n− 1) the empirical estimates of the correlations (γj , 1 ≤ j ≤ n− 1):

γ̂j = 1
n

n−j∑
i=1

XiXi+j . (5.42)

The function In is a biased estimator, where the bias is due to two different sources: truncation
of the infinite sum up to n, and renormalization in (5.42) by n instead of n − j (but it is
asymptotically unbiased as n goes to infinity if condition (5.40) is satisfied). The expected value
f̄n of In is given by:

f̄n(x) =
∑
|j|<n

(
1− |j|

n

)
γj
2π ejx = γ0

2π + 1
π

n−1∑
j=1

(n− j)
n

γj cos(jx).

In order to be able to apply Proposition 5.5, we assume that f and the estimators f1, . . . , fN
of f belongs to G (they are in particular positive and bounded) and are even functions. In
particular the estimators f1, . . . , fN and the convex aggregate estimator f̂S∗ defined in (5.33) are
proper spectral densities of stationary Gaussian sequences.

Remark 5.8. By choosing h = 1/(2π)1[−π,π], we restrict our attention to spectral densities
that are bounded away from +∞ and 0, see [129] and [27] for the characterization of such
spectral densities. Note that we can apply the aggregation procedure to non even functions fk,
1 ≤ k ≤ N , but the resulting estimator would not be a proper spectral density in that case.

To prove a sharp oracle inequality for the spectral density estimation, since In is a biased
estimator of f , we shall assume some regularity on the functions f and f1, . . . , fN in order to
be able to control the bias term. More precisely those conditions will be Sobolev conditions on
their logarithm, that is on the functions g and g1, . . . , gN defined by (5.6).

For ` ∈ L2(h), the corresponding Fourier coefficients are defined for k ∈ Z by ak =
1

2π
∫ π
−π e−ikx `(x) dx. From the Fourier series theory, we deduce that ∑k∈Z |ak|2 = ‖`‖2L2(h)

and a.e. `(x) = ∑
k∈Z ak eikx. If furthermore ∑k∈Z |ak| is finite, then ` is continuous, `(x) =∑

k∈Z ak eikx for x ∈ [−π, π] and ‖`‖∞ ≤
∑
k∈Z |ak|.

For r > 0, we define the Sobolev norm ‖`‖2,r of ` as:

‖`‖22,r = ‖`‖2L2(h) +{`}22,r with {`}22,r =
∑
k∈Z
|k|2r|ak|2.

The corresponding Sobolev space is defined by:

Wr = {` ∈ L2(h); ‖`‖2,r < +∞}.

For r > 1/2, we can bound the supremum norm of ` by its Sobolev norm:

‖`‖∞ ≤
∑
k∈Z
|ak| ≤ Cr{`}2,r ≤ Cr ‖`‖2,r, (5.43)
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where we used Cauchy-Schwarz inequality for the second inequality with

C2
r =

∑
k∈Z∗
|k|−2r < +∞. (5.44)

The proof of the following Lemma seems to be part of the folklore, but since we didn’t find
a proper reference, we give it in Section 5.5.2.

Lemma 5.9. Let r > 1/2, K > 0. There exists a finite constant C(r,K) such that for any
g ∈Wr with ‖g‖2,r ≤ K, then we have ‖exp(g)‖2,r ≤ C(r,K).

For r > 1/2, we consider the following subset of functions:

FSr (L) = {f ∈ G : ‖gf ‖2,r ≤ L/Cr and gf even}. (5.45)

For f ∈ FSr (L), we deduce from (5.43) that gf is continuous (and bounded by L). This implies
that f is a positive, continuous, even function and thus a proper spectral density. Notice that
2π ‖f ‖∞ ≤ exp(L) . We deduce from (5.41) that γk =

∫ π
−π e−ikx f(x) dx and thus:

‖f ‖22,r = γ2
0

4π2 + 1
2π2

∞∑
k=1

(1 + k2r)γ2
k .

Thus Lemma 5.9 and (5.43) imply also that the covariance function associated to f ∈ FSr (L)
satisfies (5.40). We also get that ∑∞j=1 jγ

2
j < +∞, which is a standard assumption for spectral

density estimation.
The following Theorem is the main result of this section.

Theorem 5.10. Let r > 1/2, K,L > 0. Let f ∈ FSr (L) and (fk, 1 ≤ k ≤ N) be elements of
FSr (K) such that (gk, 1 ≤ k ≤ N) are linearly independent. Let X = (X1, . . . , Xn) be a sample
of a stationary centered Gaussian sequence with spectral density f . Let f̂S∗ be given by (5.26).
Then for any x > 0, we have with probability higher than 1− exp(−x):

D
(
f‖f̂S∗

)
−D (f‖fk∗) ≤

β(log(N) + x)
n

+ α

n
,

with β = 4(K eL + e2L+3K) and α = 4KC(r, L)/Cr.

Remark 5.11. When the value of γ0 is given, we shall use the aggregation method of Section
5.3.1 after normalizing the estimators fk, 1 ≤ k ≤ N by dividing fk with mk =

∫
fk. The final

estimator of f would take the form f̃D
λ̂D∗

= γ0f
D
λ̂D∗

and verifies a similar sharp oracle inequality
as f̂S∗ (that is without the term α/n of Theorem 5.10). When the value of γ0 is unknown, it
could be estimated empirically by γ̂0 = 1

n

∑n
i=1X

2
i . Then we could use γ̂0f

D
λ̂D∗

to estimate f .
However the empirical estimation of γ0 introduces an error term of order 1/

√
n, which leads to

a suboptimal remainder term for this aggregation method.

Proof. Using Proposition 5.5 and the notations defined there, we have that:

D
(
f‖f̂S∗

)
−D (f‖fk∗) ≤ Bn

(
ĝS∗ − gk∗

)
+ max

1≤k≤N
V S
n (ek). (5.46)

First step: Concentration inequality for max1≤k≤N V
S
n (ek).

We shall prove that

P
(

max
1≤k≤N

V S
n (ek) ≥

β(log(N) + x)
n

)
≤ e−x . (5.47)

It is enough to prove that for each 1 ≤ k ≤ N :

P
(
V S
n (ek) ≥

βu

n

)
≤ e−u . (5.48)
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Indeed take u = log(N) + x and the union bound over 1 ≤ k ≤ N to deduce (5.47) from (5.48).
The end of this first step is devoted to the proof of (5.48). Recall definition (5.67) of

Toeplitz matrices associated to Fourier coefficients. We express the scalar product 〈`, In〉 for
` ∈ L∞([−π, π]) in a matrix form:

〈`, In〉 = 1
2πn

n∑
i=1

n∑
j=1

XiXj

∫ π

−π
`(x) cos((i− j)x) dx = 1

n
XTTn(`)X. (5.49)

We have the following expression of the covariance matrix of X: Σn = 2πTn(f). Since f is
positive, we get that Σn is positive-definite. Set ξ = Σ−1/2

n X so that ξ is a centered n-dimensional
Gaussian vector whose covariance matrix is the n-dimensional identity matrix. By taking the
expected value in (5.49), we obtain:

E 〈`, In〉 =
〈
`, f̄n

〉
= 1
n

tr (Rn(`)),

where tr (A) denotes the trace of the matrix A, and Rn(`) = Σ
1
2
nTn(`)Σ

1
2
n . Therefore the difference〈

`, In − f̄n
〉
takes the form:

〈
`, In − f̄n

〉
= 1
n

(
ξTRn(`)ξ − tr (Rn(`))

)
.

We shall take ` = gk − gk∗ . For this reason, we assume that ` is even and ‖`‖∞ ≤ 2K. Let
η = (ηi, 1 ≤ i ≤ n) denote the eigenvalues of the symmetric matrix Rn(`), with η1 having the
largest absolute value. Similarly to Lemma 4.2. of [22], we have that for all a > 0:

e−u ≥ P
(〈
`, In − f̄n

〉
≥ 2 |η1|u

n
+ 2 ‖η‖

√
u

n

)

≥ P
(〈
`, In − f̄n

〉
≥ 2 |η1|u

n
+ ‖η‖

2

an
+ au

n

)
, (5.50)

where we used for the second inequality that 2
√
vw ≤ v/a + aw for all v, w, a > 0. Let us give

upper bounds for |η1| and ‖η‖2. We note ρ(A) for A ∈ Rn×n the spectral radius of the matrix
A. Then by the well-known properties of the spectral radius, we have that:

|η1| = ρ(Rn(`)) ≤ ρ(Σn)ρ(Tn(`))

We deduce from (5.68) that ρ(Σn) = ρ(2πTn(f)) ≤ 2π ‖f ‖∞ ≤ exp(L) and ρ(Tn(`)) ≤ ‖`‖∞ ≤
2K. Therefore we obtain:

|η1| ≤ 2K eL . (5.51)

As for ‖η‖2, we have:

‖η‖2 = tr
(
R2
n(`)

)
= tr

(
(ΣnTn(`))2

)
≤ ρ(Σn)2 tr

(
T 2
n(`)

)
≤ e2L n ‖`‖2L2(h), (5.52)

where we used (5.69) for the last inequality. Using (5.51) and (5.52) in (5.50) gives:

e−u ≥ P

〈`, In − f̄n〉 ≥ 4K eL u
n

+
e2L ‖`‖2L2(h)

a
+ au

n


≥ P

(〈
`, In − f̄n

〉
−e−3K

4 ‖`‖2L2(h) ≥
βu

n

)
,

where for the second inequality we set a = 4 exp(2L+ 3K). This proves (5.48), thus (5.47).
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Second step: Upper bound for the bias term Bn(ĝS∗ − gk∗)

We set `∗ = ĝS∗ −gk∗ and we have ‖`∗ ‖2,r ≤ 2K/Cr. Let (ak)k∈Z be the corresponding Fourier
coefficients, which are real as `∗ is even. We decompose the the bias term as follows:

Bn(`∗) =
〈
f̄n − f, `∗

〉
=
〈
f̄n,1 − f, `∗

〉
−
〈
f̄n,2, `∗

〉
, (5.53)

with f̄n,1, f̄n,2 given by, for x ∈ [−π, π]:

f̄n,1(x) =
∑
|j|<n

γj
2π eijx and f̄n,2(x) = 1

n

∑
|j|<n

|j|γj
2π eijx .

For the first term of the right hand side of (5.53) notice that:

f̄n,1(x)− f(x) = −
∑
|j|≥n

γj
2π eijx .

We deduce that
〈
f̄n,1 − f, `∗

〉
=
〈
f̄n,1 − f, ¯̀∗

〉
, with ¯̀∗ = ∑

|j|≥n aj eijx. Then, by the Cauchy-
Schwarz inequality, we get:∣∣∣〈f̄n,1 − f, ¯̀∗

〉∣∣∣ ≤ ‖ f̄n,1 − f ‖L2(h) ‖ ¯̀∗ ‖L2(h) .

Thanks to Lemma 5.9, we get:

‖ f̄n,1 − f ‖
2
L2(h) =

∞∑
|j|≥n

γ2
j

4π2 ≤
∞∑
|j|≥n

|j|2r

n2r
γ2
j

4π2 ≤
1
n2r {f}

2
2,r ≤

1
n2r ‖f ‖

2
2,r ≤

C(r, L)2

n2r ·

This gives ‖ f̄n,1 − f ‖L2(h) ≤ C(r, L)n−r. Similarly, we have:

‖ ¯̀∗ ‖L2(h) ≤ n
−r{`∗}2,r ≤ n−r ‖`∗ ‖2,r ≤ 2Kn−r/Cr.

We deduce that: ∣∣∣〈f̄n,1 − f, ¯̀∗
〉∣∣∣ ≤ 2KC(r, L)

Cr
n−2r. (5.54)

For the second term on the right hand side of (5.53), we have:〈
f̄n,2, `∗

〉
= 1
n

∑
|j|<n

|j|γj
2π aj .

Using the Cauchy-Schwarz inequality and then Lemma 5.9, we get as r > 1/2:∣∣∣〈f̄n,2, `∗〉∣∣∣ ≤ 1
n
{`∗}2,1/2{f}2,1/2 ≤

1
n
‖`∗ ‖2,r ‖f ‖2,r ≤

2KC(r, L)
Cr

n−1. (5.55)

Therefore combining (5.54) and (5.55), we obtain the following upper bound for the bias:

|Bn(`∗)| ≤
4KC(r, L)
Cr

n−1. (5.56)

Third step: Conclusion

Use (5.47) and (5.56) in (5.46) to get the result.

5.4 Lower bounds

In this section we show that the aggregation procedure given in Section 5.3 is optimal by giv-
ing a lower bound corresponding to the upper bound of Theorem 5.6 and 5.10 for the estimation
of the probability density function as well as for the spectral density.
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5.4.1 Probability density estimation

In this section we suppose that the reference density is the uniform distribution on [0, 1]d:
h = 1[0,1]d .

Remark 5.12. If the reference density is not the uniform distribution on [0, 1]d, then we can
apply the Rosenblatt transformation, see [151], to reduce the problem to this latter case. More
precisely, according to [151], if the random variable Z has probability density h, then there
exists two maps T and T−1 such that U = T (Z) is uniform on [0, 1]d and a.s. Z = T−1(U).
Then if the random variable X has density f = exp(g)h, we deduce that T (X) has density
fT = exp(g ◦ T−1)1[0,1]d . Furthermore, if f1 and f2 are two densities (with respect to the
reference density h), then we have D (f1‖f2) = D

(
fT1 ‖fT2

)
.

We give the main result of this Section. Let Pf denote the probability measure when
X1, . . . , Xn are i.i.d. random variable with density f .

Proposition 5.13. Let N ≥ 2, L > 0. Then there exist N probability densities (fk, 1 ≤ k ≤ N),
with fk ∈ FD(L) such that for all n ≥ 1, x ∈ R+ satisfying:

log(N) + x

n
< 3

(
1− e−L

)2
, (5.57)

we have:

inf
f̂n

sup
f∈FD(L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x,

with the infimum taken over all estimators f̂n based on the sample X1, . . . , Xn, and β′ =
2−17/2/3.

In the following proof, we shall use the Hellinger distance which is defined as follows. For
two non-negative integrable functions p and q, the Hellinger distance H(p, q) is defined as:

H(p, q) =
√∫

(√p−√q)2.

A well known property of this distance is that its square is smaller then the Kullback-Leibler
divergence defined by 5.4, that is for all non-negative integrable functions p and q, we have:

H2(p, q) ≤ D (p‖q) .

Proof. Since the probability densities (fk, 1 ≤ k ≤ N) belongs to FD(L), we have:

inf
f̂n

sup
f∈FD(L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)

≥ inf
f̂n

max
1≤k≤N

Pfk
(
D
(
fk‖f̂n

)
≥ β′ (log(N) + x)

n

)
≥ inf

f̂n

max
1≤k≤N

Pfk
(
H2(fk, f̂n) ≥ β′ (log(N) + x)

n

)
.

For the choice of (fk, 1 ≤ k ≤ N), we follow the choice given in the proof of Theorem 2
of [120]. Let D be the smallest positive integer such that 2D/8 ≥ N and ∆ = {0, 1}D. For
0 ≤ j ≤ D − 1, s ∈ R, we set:

αj(s) = T

D
1(0, 1

2 ](Ds− j)−
T

D
1( 1

2 ,1](Ds− j),
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where T verifies 0 < T ≤ D(1− e−L). Notice the support of the function αj is (j/D, (j + 1)/D].
Then for any δ = (δ1, . . . , δD) ∈ ∆, the function f δ defined by:

f δ(y) = 1 +
D−1∑
j=0

δjαj(y1), y = (y1, . . . , yd) ∈ [0, 1]d,

is a probability density function with eL ≥ 1 + T/D ≥ f ≥ 1 − T/D ≥ e−L. This implies that
f δ ∈ FD(L). As shown in the proof of Theorem 2 in [120], there exists N probability densities
(fk, 1 ≤ k ≤ N) amongst {f δ, δ ∈ ∆} such that for any i 6= j, we have:

H2(fi, fj) ≥
8−3/2T 2

4D2 ,

and f1 can be chosen to be the density of the uniform distribution on [0, 1]d. Recall the notation
p⊗n of the n-product probability density corresponding to the probability density p. Then we
also have (see the proof of Theorem 2 of [120]) for all 1 ≤ i ≤ N :

D
(
f⊗ni ‖f

⊗n
1

)
≤ nT 2

D2 ·

Let us take T = D
√

(log(N) + x)/3n, so that with condition (5.57) we indeed have T ≤ D(1−
e−L). With this choice, and the defintion of β′, we have for 1 ≤ i 6= j ≤ N

H2(fi, fj) ≥ 4β
′ (log(N) + x)

n
and D

(
f⊗ni ‖f

⊗n
1

)
≤ log(N) + x

3 ·

Now we apply Corollary 5.1 of [17] with m = N − 1 and with the squared Hellinger distance
instead of the L2 distance to get that for any estimator f̂n:

max
1≤k≤N

Pfk
(
H2(fk, f̂n) ≥ β′ (log(N) + x)

n

)
≥ 1

12 min
(
1, (N − 1) e−(log(N)+x)

)
≥ 1

24 e−x .

This concludes the proof.

5.4.2 Spectral density estimation

In this section we give a lower bound for aggregation of spectral density estimators. Let Pf
denote the probability measure when (Xn)n∈Z is a centered Gaussian sequence with spectral
density f . Recall the set of positive even function FSr (L) ⊂ G defined by (5.45) for r ∈ R.

Proposition 5.14. Let N ≥ 2, r > 1/2, L > 0. There exist a constant C(r, L) and N spectral
densities (fk, 1 ≤ k ≤ N) belonging to FSr (L) such that for all n ≥ 1, x ∈ R+ satisfying:

log(N) + x

n
<

C(r, L)
log(N)2r (5.58)

we have:

inf
f̂n

sup
f∈FSr (L)

Pf
(
D
(
f‖f̂n

)
− min

1≤k≤N
D (f‖fk) ≥

β′ (log(N) + x)
n

)
≥ 1

24 e−x, (5.59)

with the infimum taken over all estimators f̂n based on the sample sequence X = (X1, . . . , Xn),
and β′ = 8−5/2/3.

Proof. Similarly to the proof of Proposition 5.13, the left hand side of (5.59) is greater than:

inf
f̂n

max
1≤k≤N

Pfk
(
H2(fk, f̂n) ≥ β′ (log(N) + x)

n

)
.
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We shall choose a set of spectral densities (fk, 1 ≤ k ≤ N) similarly as in the proof of
Proposition 5.13 such that fk ∈ FSr (L). Let us define ϕ : [0, π]→ R as, for x ∈ [0, π]:

ϕ(x) = ζ(x)1[0,π/2](x)− ζ(x)1[π/2,π](x) with ζ(x) = e−1/x(π2−x) .

We have that ϕ ∈ C∞(R) and:

‖ϕ‖∞ = e−16/π2
,

∫ π

0
ϕ = 0. (5.60)

Let D be the smallest integer such that 2D/8 ≥ N and ∆ = {0, 1}D. For 1 ≤ j ≤ D, x ∈ [0, π],
let ᾱj(x) be defined as:

ᾱj(x) = ϕ(Dx− (j − 1)π),

and for any δ = (δ1, . . . , δD) ∈ ∆ and s ≥ 0, let the function f δs be defined by:

2π f δs (y) = 1 + s
D∑
j=1

δjᾱj(|y|), y ∈ [−π, π]. (5.61)

Since
∫ π

0 ϕ = 0, we get:

1
2π

∫ π

−π
f δs (x) dx = 1 and 1− s ‖ϕ‖∞ ≤ 2πf δs ≤ 1 + s ‖ϕ‖∞ . (5.62)

We assume that s ∈ [0, 1/2], so that 2πf δs ≥ 1/2. Let us denote gδs = gfδs = log(2πf δs ). We first
give upper bounds for ‖(gδs)(p) ‖L2(h) with p ∈ N.

For p = 0, we have by (5.62) :

‖gδs ‖L2(h) ≤ log
(

1
1− s ‖ϕ‖∞

)
≤ s ‖ϕ‖∞

1− s ‖ϕ‖∞
≤ 2s. (5.63)

For p ≥ 1, we get by Faà di Bruno’s formula that:

‖(gδs)(p) ‖L2(h) =

∥∥∥∥∥∥
∑
k∈Kp

p!
k1!k2! . . . kp!

(−1)k̄+1k̄!
(2πf δs )k̄

p∏
`=1

(
(2πf δs )(`)

`!

)k`∥∥∥∥∥∥
L2(h)

, (5.64)

with Kp = {k = (k1, . . . , kp) ∈ Np;∑p
`=1 `k` = p} and k̄ = ∑p

`=1 k`. The `-th derivative of 2πf δs
is given by, for y ∈ [0, π]:

(2πf δs (y))(`) = sD`
D∑
j=1

δjϕ
(`)(Dy − (j − 1)π).

Therefore we have the following bound for this derivative:

‖(2πf δs (y))(`) ‖∞ ≤ sD
` ‖ϕ(`) ‖∞ .

From ϕ ∈ C∞(R), we deduce that ‖ϕ(`) ‖∞ is finite for all ` ∈ N∗. Since s ∈ [0, 1/2] and
2πf δs ≥ 1 − s ‖ϕ‖∞ ≥ 1/2, there exists a constant C̄p depending on p (and not depending on
N), such that :

‖(gδs)(p) ‖L2(h) ≤ sC̄pD
p ≤ sC̄p

16p
log(2)p log(N)p. (5.65)

In order to have f δs ∈ FSr (L), we need to ensure that ‖gδs ‖2,r ≤ L/Cr. For r ∈ N∗, we have:

‖gδs ‖2,r =
√
‖gδs ‖

2
L2(h) + ‖(gδs)(r) ‖2L2(h).
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Therefore if s ∈ [0, sr,L] with sr,L ∈ [0, 1/2] given by:

sr,L = log(N)−rC̄r,L, with C̄r,L = min
( log(2)r

2 ,
log(2)rL√

8Cr
,

log(2)rL√
2Cr16rC̄r

)
,

then by (5.63) and (5.65) we get:

‖gδs ‖2,r ≤
√
L2

2C2
r

+ L2

2C2
r

= L

Cr
·

Let dre and brc denote the unique integers such that dre−1 < r ≤ dre and brc ≤ r < brc+1.
For r /∈ N∗, Hölder’s inequality yields:

‖gδs ‖2,r =
√
‖gδs ‖

2
L2(h) + {gδs}

2
2,r

≤
√
‖gδs ‖

2
L2(h) + {gδs}

2(r−brc)
2,dre {gδs}

2(dre−r)
2,brc

=
√
‖gδs ‖

2
L2(h) + ‖(gδs)(dre) ‖2(r−brc)

L2(h) ‖(gδs)(brc) ‖2(dre−r)
L2(h) .

Using (5.65) and (5.65) with p = dre and p = brc, we obtain:

‖(gδs)(dre) ‖2(r−brc)
L2(h) ‖(gδs)(brc) ‖2(dre−r)

L2(h) ≤ s2C̄
2(r−brc)
dre C̄

2(dre−r)
brc

162r

log(2)2r logN2r.

Hence if s ∈ [0, sr,L] with sr,L ∈ [0, 1/2] given by:

sr,L = log(N)−rC̄r,L, with C̄r,L = min

 log(2)r
2 ,

log(2)rL√
8Cr

,
log(2)rL

√
2Cr16rC̄r−brcdre C̄

dre−r
brc

 ,
we also have ‖gδs ‖2,r ≤ L/Cr, providing f δs ∈ FSr (L).

Mimicking the proof of Theorem 2 in [120] and omitting the details, we first obtain (see last
inequality of p.975 in [120]) that for δ, δ′ ∈ ∆:

H2
(
f δs , f

δ′
s

)
≥ 8−3/2σ(δ, δ′)

D

2
π
s2
∫ π

0
ϕ2,

with σ(δ, δ′) the Hamming distance between δ and δ′, and then deduce that there exist (δk, 1 ≤
k ≤ N) in ∆ with δ1 = 0 such that for any 1 ≤ i 6= j ≤ N and s ∈ [0, sr,L], we have (see first
inequality of p.976 in [120]):

H2(f δis , f δ
j

s ) ≥ 2 · 8−5/2

π
s2
∫ π

0
ϕ2.

Notice f δ1
s = f0

s = h is the density of the uniform distribution on [−π, π].
With a slight abuse of notation, let us denote by Pf the joint probability density of the cen-

tered Gaussian sequence X = (X1, . . . , Xn) corresponding to the spectral density f . Assume X
is standardized (that is Var (X1) = 1), which implies

∫
f = 1. Let Σn,f denote the corresponding

covariance matrix. Since h = (1/2π)1[−π,π], we have Σn,h = In the n × n-dimensional identity
matrix. We compute:

D (Pf‖Ph) =
∫
Rn

Pf (x) log
(Pf (x)

Ph(x)

)
dx

=
∫
Rn

Pf (x) log

 1√
det(Σn,f )

exp
(
− 1

2 x
T
(
Σ−1
n,f − In

)
x

) dx

= −1
2 log (det(Σn,f ))− 1

2 Ef
[
XT

(
Σ−1
δ − In

)
X
]
.
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The expected value in the previous equality can be written as:

Ef
[
XT

(
Σ−1
n,f − In

)
X
]

= tr
((

Σ−1
n,f − In

)
Ef [XTX]

)
= tr (In − Σn,f ) = 0,

where for the last equality, we used that the Gaussian random variables are standardized. This
yields D (Pf‖Ph) = −1

2 log (det(Σn,f ))). We can use this last equality for f = f δs since
∫
f δs = 1

thanks to (5.60), and obtain:

D
(
Pfδs ‖Pf0

s

)
= −1

2 log
(
det(Σn,fδs

)
)
.

Notice that for s ∈ [0, sr,L], we have 3/2 ≥ 1 + s ‖ϕ‖∞ ≥ 2πf δs ≥ 1 − s ‖ϕ‖∞ ≥ 1/2 thanks to
(5.62) and (5.60). Therefore we have:

D
(
Pfδs ‖Pf0

s

)
≤ n

2 ‖2πf δs − 1‖2L2(h) ≤
n

2
s2

π

∫ π

0
ϕ2, (5.66)

where we used Σn,fδs
= Tn(2πf δs ) and Lemma 5.16 with ` = 2πf δs for the first inequality, and

(5.61) for the second inequality. We set:

C(r, L) =
3C̄2

r,L

∫ π
0 ϕ

2

2π and s =
√

2π
3
∫ π

0 ϕ
2

√
log(N) + x

n
,

so that (5.58) holds for s ∈ [0, sr,L]. We obtain for all δ1, δ2 ∈ ∆̄, δ ∈ ∆:

H2
(
f δ1
s , f

δ2
s

)
≥ 4β

′(log(N) + x)
n

and D
(
Pfδs ‖Pf0

s

)
≤ log(N) + x

3 ·

We conclude the proof as in the end of the proof of Proposition 5.13.

5.5 Appendix

5.5.1 Results on Toeplitz matrices

Let ` ∈ L1(h) be a real function with h = 1/(2π)1[−π,π]. We define the corresponding Toeplitz
matrix Tn(`) of size n× n of its Fourier coefficients by:

[Tn(`)]j,k = 1
2π

∫ π

−π
`(x) ei(j−k)x dx for 1 ≤ j, k ≤ n. (5.67)

Notice that Tn(`) is Hermitian. It is also real if ` is even. Recall that ρ(A) denotes the spectral
density of the matrix A.

Lemma 5.15. Let ` ∈ L2(h) be a real function.
1. All the eigenvalues of Tn(`) belong to [min `,max `]. In particular, we have the following

upper bound on the spectral radius ρ(Tn(`)) of Tn(`):

ρ(Tn(`)) ≤ ‖`‖∞ . (5.68)

2. For the trace of Tn(`) and T 2
n(`), we have:

tr (Tn(`)) = n

2π

∫ π

−π
`(x) dx and tr

(
T 2
n(`)

)
≤ n ‖`‖2L2(h) . (5.69)

Proof. For Property (1), see Equation (6) of Section 5.2 in [88]. For Property (2), the first part
is clear and for the second part, see Lemma 3.1 of [56].
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We shall use the following elementary result.

Lemma 5.16. Let ` ∈ L2(h) such that
∫
`h = 1 and `(x) ∈ [1/2, 3/2], then we have:

log (det(Tn(`))) ≥ −n ‖`− 1‖2L2(h) . (5.70)

Proof. Notice that by Property (1), the eigenvalues (νi, 1 ≤ i ≤ n) of Tn(`) verify νi ∈ [1/2, 3/2].
For t ∈ [−1/2, 1/2], we have log(1 + t) ≥ t− t2, giving that:

log (det(Tn(`))) =
n∑
i=1

log(νi) ≥
n∑
i=1

(νi − 1)− (νi − 1)2 = − tr
(
T 2
n(`− 1)

)
≥ −n ‖`− 1‖2L2(h),

where we used that Tn(` − 1) = Tn(`) − In for the second equality and Property (2) for the
second inequality.

5.5.2 Proof of Lemma 5.9

The next Lemma is inspired by the work of [64] on fractional Sobolev spaces. For r ∈ (0, 1)
and ` ∈ L2(h), we define:

Ir(`) = 1
2π

∫
[−π,π]2

|`(x+ y)− `(x)|2
|y|1+2r dxdy,

where we set `(z) = `(z − 2π) for z ∈ (π, 2π] and `(z) = `(z + 2π) for z ∈ [−2π,−π).

Lemma 5.17. Let r ∈ (0, 1) and ` ∈ L2(h). Then we have:

cr{`}22,r ≤ Ir(`) ≤ Cr{`}22,r. (5.71)

Proof. Using the Fourier representation of `, we get:

Ir(`) =
∑
k∈Z
|ak|2

∫ π

−π

|1− eiky |2
|y|1+2r dy =

∑
k∈Z
|k|2r|ak|2

∫ |k|π
−|k|π

|1− eiz |2
|z|1+2r dz.

For r ∈ (0, 1) and k ∈ Z∗, we have

0 < cr :=
∫ π

−π

|1− eiz |2
|z|1+2r dz ≤

∫ |k|π
−|k|π

|1− eiz |2
|z|1+2r dz ≤

∫
R

|1− eiz |2
|z|1+2r dz =: Cr < +∞.

This yields (5.71).

First step : r ∈ (1/2, 1)

Let r ∈ (1/2, 1) and set L = CrK. Let f = eg with g ∈ Wr such that ‖g‖2,r ≤ K. Thanks
to (5.43), we have ‖g‖∞ ≤ CrK = L. Using that | ex− ey | ≤ eL |x − y| for x, y ∈ [−L,L], we
deduce that:

Ir(f) = Ir(eg) ≤ e2L Ir(g) and ‖f ‖2L2(h) ≤ e2L . (5.72)

Using (5.71) twice, we get:

‖f ‖22,r ≤ e2L
(

1 + Cr
cr
{g}22,r

)
≤ e2CrK

(
1 + Cr

cr
K2
)
.

Which proves the Lemma for r ∈ (1/2, 1).
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Second step : r ∈ N∗

Let r ∈ N∗. For ` ∈Wr, the r-th derivative of `, say `(r), exists in L2(h) and:

{`}22,r = ‖`(r) ‖2L2(h) as well as ‖`‖22,r = ‖`‖2L2(h) + ‖`(r) ‖2L2(h) .

According to (5.43), we also get that for all p ∈ N with p < r we have ‖`(p) ‖∞ ≤ Cr−p{`(r)}2,r ≤
C1{`(r)}2,r.

Set L = CrK. Let f = eg with ‖g‖2,r ≤ K. We have ‖g(p) ‖∞ ≤ C1K for all integer p < r.
According to Leibniz’s rule, we get that f (r) = g(r)f + Pr(g(1), . . . , g(r−1))f , where Pr is a
polynomial function of maximal degree r such that:

max
x1,...,xr−1∈[−C1K,C1K]

|Pr(x1, . . . , xr−1)| ≤ Cr,1Kr. (5.73)

for some finite constant Cr,1. We deduce that:

‖f (r) ‖L2(h) ≤ eL ‖g(r) ‖L2(h) + eLCr,1Kr.

Then use that ‖f ‖L2(h) ≤ eL to get the Lemma for r ∈ N∗.

Third step : r > 1, r 6∈ N∗

Let r > 1 such that r 6∈ N∗. Set p = brc ∈ N∗ the integer part of r and s = r − p ∈ (0, 1).
For ` ∈Wr, the p-th derivative of `, say `(p), exists in L2(h) and:

{`}22,r = {`(p)}22,s as well as ‖`‖22,r = ‖`‖2L2(h) +{`(p)}22,s. (5.74)

Thanks to (5.71) (twice) and the triangle inequality, we have for all measurable function t:

cs{`t}22,s ≤ Is(`t) ≤ ‖ t‖2∞ Is(`) + Js(`, t) ≤ ‖ t‖2∞Cs{`}
2
2,s + Js(`, t), (5.75)

with
Js(`, t) = 1

2π

∫
[−π,π]2

`(x)2 |t(x+ y)− t(x)|2
|y|1+2s dxdy.

Let K > 0 and set L = CrK. Let f = eg with g ∈ Wr such that ‖g‖2,r ≤ K. Following the
proof of Lemma 5.17, we first give an upper bound of Js(`, f) in this context under the only
condition that ` ∈ L2(h). Using that | ex− ey | ≤ eL |x− y| for x, y ∈ [−L,L], we deduce that:∫ π

−π

|f(x+ y)− f(x)|2
|y|1+2s dy ≤ e2L

∫ π

−π

|g(x+ y)− g(x)|2
|y|1+2s dy.

Since a.e. g(x) = ∑
k∈Z ak eikx, we deduce that:

Js(`, f) ≤ e2L

2π

∫ π

−π
dx `(x)2 ∑

k,j∈Z
|ak||aj |

∫ π

−π

|(1− eiky)(1− e−ijy)|
|y|1+2s dy.

Let ε ∈ (0, 1/2) such that s+ ε ≤ 1. Since |1− eix | ≤ 2|x|s+ε for all x ∈ R, we deduce that:∫ π

−π

|(1− eiky)(1− e−ijy)|
|y|1+2s dy ≤ C2,ε|k|s+ε|j|s+ε,

for some constant C2,ε depending only on ε. Using Cauchy-Schwarz inequality and the fact that
r − s− ε > 1/2, we get: ∑

k∈Z
|k|s+ε|ak| ≤ Cr−s−ε{g}2,r.

We deduce that:
Js(`, f) ≤ e2L ‖`‖2L2(h)C2,εC2

r−s−ε{g}22,r. (5.76)
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According to Leibniz’s rule, we get that f (p) = `f + g(p)f with ` = Pp(g(1), . . . , g(p−1)). We get:

cs{`f}22,s ≤ ‖f ‖
2
∞Cs{`}

2
2,s + Js(`, f) ≤ e2LCs{f}22,s + e2L ‖`‖2L2(h)C2,εC2

r−s−ε{g}22,r, (5.77)

where we used (5.75) for the first inequality and (5.76) for the latter. Then use (5.73) with r
replaced by p to get that ‖`‖L2(h) ≤ ‖`‖∞ ≤ Cp,1Kp. Notice also that:

{f}22,s ≤ e2L Cs
cs
{g}22,s,

using (5.71) twice and (5.72) (with s instead of r). We deduce that {`f}2,s is bounded by a
constant depending only on K, r and ε.

The upper bound of {g(p)f}22,s is similar. Using (5.75) and (5.76), we get:

cs{g(p)f}22,s ≤ ‖f ‖
2
∞ Is(g(p)) + Js(g(p), f) ≤ e2LCs{g(p)}22,s + e2L ‖g(p) ‖2L2(h)C2,εC2

r−s−ε{g}22,r.

We deduce that {g(p)f}2,s, and thus f (p), is bounded by a constant depending only on K, r and
ε. Then use (5.74) and that ‖f ‖L2(h) ≤ ‖f ‖∞ ≤ eL to get the Lemma for r > 1 and r 6∈ N. This
concludes the proof.





Chapter 6

Fast adaptive estimation of
log-additive exponential models in
Kullback-Leibler divergence

6.1 Introduction

In this paper, we estimate densities with product form on the simplex 4 = {(x1, . . . , xd) ∈
Rd, 0 ≤ x1 ≤ · · · ≤ xd ≤ 1} by a nonparametric approach given a sample of n independent
observations Xn = (X1, . . . , Xn). We restrict our attention to densities which can be written in
the form, for x = (x1, . . . , xd) ∈ Rd:

f0(x) = exp
(

d∑
i=1

`0i (xi)− a0

)
14(x), (6.1)

with `0i bounded, centered, measurable functions on I = [0, 1] for all 1 ≤ i ≤ d, and normalizing
constant a0. Densities of this form arise, in particular, as solutions for the maximum entropy
problem for the distribution of order statistics with given marginals, or in the case of the random
truncation model.

The first example is the random truncation model, which was first formulated in [170], and
has various applications ranging from astronomy ([126]), economics ([98], [90]) to survival data
analysis ([118], [106], [125]). For d = 2, let (Z1, Z2) be a pair of independent random variables
on I such that Zi has density function pi for i ∈ {1, 2}. Let us suppose that we can only observe
realizations of (Z1, Z2) if Z1 ≤ Z2. Let (Z̄1, Z̄2) denote a pair of random variables distributed
as (Z1, Z2) conditionally on Z1 ≤ Z2. Then the joint density function f0 of (Z̄1, Z̄2) is given by,
for x = (x1, x2) ∈ I2:

f0(x) = 1
α
p1(x1)p2(x2)14(x), (6.2)

with α =
∫
I2 p1(x1)p2(x2)14(x) dx. Notice that f is of the form required in (6.1):

f(x) = exp(`01(x1) + `02(x2)− a0)14(x),

with `0i defined as `0i = log(pi) −
∫
I log(pi) for i ∈ {1, 2}. According to Corollary 3.40, f is the

density of the maximum entropy distribution of order statistics with marginals f1 and f2 given
by:

f1(x1) = 1
α
p1(x1)

∫ 1

x1
p2(s) ds and f2(x2) = 1

α
p2(x2)

∫ x2

0
p1(s) ds.

More generally, in [36], the authors give a necessary and sufficient condition for the existence
of a maximum entropy distribution of order statistics with fixed marginal cumulative distribution
functions Fi, 1 ≤ i ≤ d. See [34] for motivations for this problem. Moreover, its explicit expression
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is given as a function of the marginal distributions. Let us suppose, for the sake of simplicity,
that all Fi are absolutely continuous with density function fi supported on I = [0, 1], and that
Fi−1 > Fi on (0, 1) for 2 ≤ i ≤ d. Then the maximum entropy density fF, when it exists, is
given by, for x = (x1, . . . , xd) ∈ Rd:

fF(x) = f1(x1)
d∏
i=2

hi(xi) exp
(
−
∫ xi

xi−1
hi(s) ds

)
14(x),

with hi = fi/(Fi−1 − Fi) for 2 ≤ i ≤ d. This density is of the form required in (6.1) with `0i
defined as:

`01 = log(f1) +K2 and `0i = log (hi)−Ki +Ki+1 for 2 ≤ i ≤ d,

with Ki, 2 ≤ i ≤ d a primitive of hi chosen such that `0i are centered, and Kd+1 = c a constant.

We present a log-additive exponential model specifically designed to estimate such densities.
This exponential model is a multivariate version of the exponential series estimator considered
in [12] in the univariate setting. Essentially, we approximate the functions `0i by a family of
polynomials (ϕi,k, k ∈ N), which are orthonormal for each 1 ≤ i ≤ d with respect to the i-th
marginal of the Lebesgue measure on the support4. The model takes the form, for θ = (θi,k; 1 ≤
i ≤ d, 1 ≤ k ≤ mi) and x = (x1, . . . , xd) ∈ 4:

fθ = exp
(

d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)− ψ(θ)
)
,

with ψ(θ) = log
(∫
4 exp

(∑d
i=1

∑mi
k=1 θi,kϕi,k(xi)

)
dx
)
. Even though the polynomials (ϕi,k, k ∈

N) are orthonormal for each 1 ≤ i ≤ d, if we take i 6= j, the families (ϕi,k, k ∈ N) and (ϕj,k, k ∈ N)
are not completely orthogonal with respect to the Lebesgue measure on 4. The exact definition
and further properties of these polynomials can be found in the Appendix. We estimate the
parameters of the model by θ̂ = (θ̂i,k; 1 ≤ i ≤ d, 1 ≤ k ≤ mi), obtained by solving the maximum
likelihood equations:∫

4
ϕi,k(xi)fθ̂(x) dx = 1

n

n∑
j=1

ϕi,k(Xj
i ) for 1 ≤ i ≤ d, 1 ≤ k ≤ mi.

Approximation of log-densities by polynomials appears in [87] as an application of the max-
imum entropy principle, while [47] shows existence and consistency of the maximum likelihood
estimation. We measure the quality of the estimator fθ̂ of f

0 by the Kullback-Leibler divergence
D
(
f0‖fθ̂

)
defined as:

D
(
f0‖fθ̂

)
=
∫
4
f0 log

(
f0/fθ̂

)
.

Convergence rates for nonparametric density estimators have been given by [94] for kernel den-
sity estimators, [12] and [177] for the exponential series estimators, [13] for histogram-based
estimators, and [116] for wavelet-based log-density estimators. Here, we give results for the con-
vergence rate in probability when the functions `0i belong to a Sobolev space with regularity
ri > d for all 1 ≤ i ≤ d. We show that if we take m = m(n) = (m1(n), . . . ,md(n)) members of
the families (ϕi,k, k ∈ N), 1 ≤ i ≤ d, and let mi grow with n such that (∑d

i=1m
2d
i )(∑d

i=1m
−2ri
i )

and (∑d
i=1mi)2d+1/n tend to 0, then the maximum likelihood estimator fθ̂m,n verifies:

D
(
f0‖fθ̂m,n

)
= OP

(
d∑
i=1

(
m−2ri
i + mi

n

))
.

Notice that this is the sum of the same univariate convergence rates as in [12]. By choosing
mi proportional to n1/(2ri+1), which gives the optimal convergence rate OP(n−2ri/(2ri+1)) in the
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univariate case as shown in [181], we achieve a convergence rate of OP(n−2 min(r)/(2 min(r)+1)).
Therefore by exploiting the special structure of the underlying density, and carefully choosing
the basis functions, we managed to reduce the problem of estimating a d-dimensional density
to d one-dimensional density estimation problems. We highlight the fact that this constitutes a
significant gain over convergence rates of general nonparametric multivariate density estimation
methods.

In most cases the smoothness parameters ri, 1 ≤ i ≤ d, are not available, therefore a method
which adapts to the unknown smoothness is required to estimate the density with the best
possible convergence rate. Adaptive methods for function estimation based on a random sample
include Lepski’s method, model selection, wavelet thresholding and aggregation of estimators.

Lepski’s method, originating from [123], consists of constructing a grid of regularities, and
choosing among the minimax estimators associated to each regularity the best estimator by
an iterative procedure based on the available sample. This method was extensively applied for
Gaussian white noise model, regression, and density estimation, see [30] and references therein.
Adaptation via model selection with a complexity penalization criterion was considered by [23]
and [10] for a large variety of models including wavelet-based density estimation. Loss in the
Kullback-Leibler distance for model selection was studied in [179] and [40] for mixing strategies,
and in [182] for the information complexity minimization strategy. More recently, bandwidth
selection for multivariate kernel density estimation was addressed in [84] for Ls risk, 1 ≤ s <
∞, and [122] for L∞ risk. Wavelet based adaptive density estimation with thresholding was
considered in [111] and [65], where an upper bound for the rate of convergence was given for a
collection of Besov-spaces. Linear and convex aggregate estimators appear in the more recent
work [150] with an application to adaptive density estimation in expected L2 risk, with sample
splitting.

Here we extend the convex aggregation scheme for the estimation of the logarithm of the
density proposed in [38] to achieve adaptability. We take the estimator fθ̂m,n for different values of
m ∈Mn, whereMn is a sequence of sets of parameter configurations with increasing cardinality.
These estimators are not uniformly bounded as required in [38], but we show that they are
uniformly bounded in probability and that it does not change the general result. The different
values of m correspond to different values of the regularity parameters. The convex aggregate
estimator fλ takes the form:

fλ = exp

 ∑
m∈Mn

λm

(
d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)
)
− ψλ

14,

with λ ∈ Λ+ = {λ = (λm,m ∈ Mn), λm ≥ 0 and ∑
m∈Mn

λm = 1} and normalizing constant
ψλ given by:

ψλ = log

∫
4

exp

 ∑
m∈Mn

λm

(
d∑
i=1

mi∑
k=1

θi,kϕi,k(xi)
) dx

 .
To apply the aggregation method, we split our sample Xn into two parts Xn1 and Xn2 , with
size proportional to n. We use the first part to create the estimators fθ̂m,n , then we use the
second part to determine the optimal choice of the aggregation parameter λ̂∗n. We select λ̂∗n by
maximizing a penalized version of the log-likelihood function. We show that this method gives
a sequence of estimators fλ̂∗n , free of the smoothness parameters r1, . . . , rd, which verifies:

D
(
f0‖fλ̂∗n

)
= OP

(
n
− 2 min(r)

2 min(r)+1

)
.

The rest of the paper is organized as follows. In Section 6.2 we introduce the notation used
in the rest of the paper. In Section 6.3, we describe the log-additive exponential model and
the estimation procedure, then we show that the estimator converges to the true underlying
density with a convergence rate that is the sum of the convergence rates for the same type of
univariate model, see Theorem 1.27. We consider an adaptive method with convex aggregation of
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the logarithms of the previous estimators to adapt to the unknown smoothness of the underlying
density in Section 6.4, see Theorem 6.8. We assess the performance of the adaptive estimator
via a simulation study in Section 6.5. The definition of the basis functions and their properties
used during the proofs are given in Section 6.6. The detailed proofs of the results in Section 6.3
and 6.4 are contained in Sections 6.7, 6.8 and 6.9.

6.2 Notation

Let I = [0, 1], d ≥ 2 and 4 = {(x1, . . . , xd) ∈ Id, x1 ≤ x2 ≤ . . . ≤ xd} denote the simplex of
Id. For an arbitrary real-valued function hi defined on I with 1 ≤ i ≤ d, let h[i] be the function
defined on 4 such that for x = (x1, . . . , xd) ∈ 4:

h[i](x) = hi(xi)14(x). (6.3)

Let qi, 1 ≤ i ≤ d be the one-dimensional marginals of the Lebesgue measure on 4:

qi(dt) = 1
(d− i)!(i− 1)!(1− t)

d−iti−1 1I(t) dt. (6.4)

If hi ∈ L1(qi), then we have:
∫
4 h[i] =

∫
I hiqi.

For a measurable function f , let ‖f ‖∞ be the usual sup norm of f on its domain of definition.
For f defined on 4, let ‖f ‖L2 =

√∫
4 f

2. For f defined on I, let ‖f ‖L2(qi) =
√∫

I f
2qi.

For a vector x = (x1, . . . , xd) ∈ Rd, let min(r) (max(r)) denote the smallest (largest) com-
ponent.

Let us denote the support of a probability density g by supp (g) = {x ∈ Rd, g(x) > 0}.
Let P(4) denote the set of probability densities on 4. For g, h ∈ P(4), the Kullback-Leibler
distance D (g‖h) is defined as:

D (g‖h) =
∫
4
g log (g/h) .

Recall that D (g‖h) ∈ [0,+∞].

Definition 6.1. We say that a probability density f0 ∈ P(4) has a product form if there exist
(`0i , 1 ≤ i ≤ d) bounded measurable functions defined on I such that

∫
I `

0
i qi = 0 for 1 ≤ i ≤ d

and a.e. on 4:
f0 = exp

(
`0 − a0

)
14, (6.5)

with `0 = ∑d
i=1 `

0
[i] and a0 = log

(∫
4 exp (`0)

)
, that is f0(x) = exp

(∑d
i=1 `

0
i (xi)− a0

)
for a.e.

x = (x1, . . . , xd) ∈ 4.

Definition 6.1 implies that supp (f0) = 4 and f0 is bounded. Let Xn = (X1, . . . , Xn) denote
an i.i.d. sample of size n from the density f0.

For 1 ≤ i ≤ d, let (ϕi,k, k ∈ N) be the family of orthonormal polynomials on I with respect
to the measure qi; see Section 6.6 for a precise definition of those polynomials and some of their
properties. Recall ϕ[i],k(x) = ϕi,k(xi) for x = (x1, . . . , xd) ∈ 4. Notice that (ϕ[i],k, 1 ≤ i ≤
d, k ∈ N) is a family of normal polynomials with respect to the Lebesgue measure on 4, but not
orthogonal.

Let m = (m1, . . . ,md) ∈ (N∗)d and set |m| = ∑d
i=1mi. We define the R|m|-valued function

ϕm = (ϕ[i],k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) and the Rmi-valued functions ϕi,m = (ϕi,k; 1 ≤ k ≤ mi) for
1 ≤ i ≤ d. For θ = (θi,k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) and θ′ = (θ′i,k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d) elements
of R|m|, we denote the scalar product:

θ · θ′ =
d∑
i=1

mi∑
k=1

θi,kθ
′
i,k
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and the norm ‖θ‖ =
√
θ · θ. We define the function θ · ϕm as follows, for x ∈ 4:

(θ · ϕm)(x) = θ · ϕm(x).

For a positive sequence (an)n∈N, the notationOP(an) of stochastic boundedness for a sequence
of random variables (Yn, n ∈ N) means that for every ε > 0, there exists Cε > 0 such that:

P (|Yn/an| > Cε) < ε for all n ∈ N.

6.3 Additive exponential series model

In this Section, we study the problem of estimation of an unknown density f0 with a product
form on the set 4, as described in (6.5), given the sample Xn drawn from f0. Our goal is to
give an estimation method based on a sequence of regular exponential models, which suits
the special characteristics of the target density f0. Estimating such a density with standard
multidimensional nonparametric techniques naturally suffer from the curse of dimensionality,
resulting in slow convergence rates for high-dimensional problems. We show that by taking into
consideration that f0 has a product form, we can recover the one-dimensional convergence rate
for the density estimation, allowing for fast convergence of the estimator even if d is large.
The quality of the estimators is measured by the Kullback-Leibler distance, as it has strong
connections to the maximum entropy framework of [36].

We propose to estimate f0 using the following log-additive exponential model, form ∈ (N∗)d:

fθ = exp (θ · ϕm − ψ(θ)) 14, (6.6)

with ψ(θ) = log
(∫
4 exp (θ · ϕm)

)
. This model is similar to the one introduced in [177], but there

are two major differences. First, we have only kept the univariate terms in the multivariate expo-
nential series estimator of [177] since the target probability density is the product of univariate
functions. Second, we have restricted our model to 4 instead of the hyper-cube Id, and we have
chosen the basis functions ((ϕi,k, k ∈ N), 1 ≤ i ≤ d) which are appropriate for this support.

Remark 6.2. In the genaral case, one has to be careful when considering a density f0 with a
product form and a support different from 4. Let f0

i denote the i-th marginal density function
of f0. If supp (f0

i ) = A ⊂ R for all 1 ≤ i ≤ d, we can apply a strictly monotone mapping of
A onto I to obtain a distribution with a product form supported on 4. When the supports of
the marginals differ, there is no transformation that yields a random vector with a density as in
Definition 6.1. A possible way to treat this case consists of constructing a family of basis functions
which has similar properties with respect to supp (f0) as the family ((ϕi,k, k ∈ N), 1 ≤ i ≤ d)
with respect to 4, which we discuss in detail in Section 6.6. Then we could define an exponential
series model with this family of basis functions and support restricted to supp (f0) to estimate
f0.

Let m ∈ (N∗)d. We define the following function on R|m| taking values in R|m| by:

Am(θ) =
∫
4
ϕmfθ, θ ∈ R|m|. (6.7)

According to Lemma 3 in [12], we have the following result on Am.

Lemma 6.3. The function Am is one-to-one from R|m| to Ωm = Am(R|m|).

We denote by Θm : Ωm 7→ R|m| the inverse of Am. The empirical mean of the sample Xn of
size n is:

µ̂m,n = 1
n

n∑
j=1

ϕm(Xj). (6.8)

In Section 6.8.2 we show that µ̂m,n ∈ Ωm a.s. when n ≥ 2.



152 Chapter 6. Fast adaptive estimation of log-additive exponential models

For n ≥ 2, we define a.s. the maximum likelihood estimator f̂m,n = fθ̂m,n of f0 by choosing:

θ̂m,n = Θm(µ̂m,n). (6.9)

The loss between the estimator f̂m,n and the true underlying density f0 is measured by the
Kullback-Leibler divergence D

(
f0‖f̂m,n

)
.

For r ∈ N∗, letW 2
r (qi) denote the Sobolev space of functions in L2(qi), such that the (r−1)-th

derivative is absolutely continuous and the L2 norm of the r-th derivative is finite:

W 2
r (qi) =

{
h ∈ L2(qi);h(r−1) is absolutely continuous and h(r) ∈ L2(qi)

}
.

The main result is given by the following theorem whose proof is given in Section 6.8.3.

Theorem 6.4. Let f0 ∈ P(4) be a probability density with a product form, see Definition 6.1.
Assume the functions `0i , defined in (6.5) belong to the Sobolev space W 2

ri(qi), ri ∈ N with ri > d
for all 1 ≤ i ≤ d. Let (Xn, n ∈ N∗) be i.i.d. random variables with density distribution f0. We
consider a sequence (m(n) = (m1(n), . . . ,md(n)), n ∈ N∗) such that limn→∞mi(n) = +∞ for
all 1 ≤ i ≤ d, and which satisfies:

lim
n→∞

|m|2d
(

d∑
i=1

m−2ri
i

)
= 0, (6.10)

lim
n→∞

|m|2d+1

n
= 0. (6.11)

The Kullback-Leibler distance D
(
f0‖f̂m,n

)
of the maximum likelihood estimator f̂m,n defined by

(6.9) to f0 converges in probability to 0 with the convergence rate:

D
(
f0‖f̂m,n

)
= OP

(
d∑
i=1

m−2ri
i + |m|

n

)
. (6.12)

Remark 6.5. Let us take (m◦(n) = (m◦1(n), . . . ,m◦d(n)), n ∈ N∗) with m◦i (n) = bn1/(2ri+1)c.
This choice constitutes a balance between the bias and the variance term. Then the conditions
(6.10) and (6.11) are satisfied, and we obtain that :

D
(
f0‖f̂m◦,n

)
= OP

(
d∑
i=1

n−2ri/(2ri+1)
)

= OP
(
n−2 min(r)/(2 min(r)+1)

)
.

Thus the convergence rate corresponds to the least smooth `0i . This rate can also be obtained
with a choice where all mi are the same. Namely, with (m∗(n) = (v∗(n), . . . , v∗(n)), n ∈ N∗) and
v∗(n) = bn1/(2 min(r)+1)c.

For r = (r1, . . . , rd) ∈ (N∗)d, ri > d for 1 ≤ i ≤ d, and a constant κ > 0, let :

Kr(κ) =
{
f0 = exp

(
d∑
i=1

`0[i] − a0

)
∈ P(4); ‖`0i ‖∞ ≤ κ, ‖(`0i )(ri) ‖L2(qi) ≤ κ

}
. (6.13)

The constants A1 and A2, appearing in the upper bounds during the proof of Theorem 6.4 (more
precisely in Propositions 6.35 and 6.37), are uniformly bounded on Kr(κ), thanks to Corollary
6.24 and ‖ log(f0)‖∞ ≤ 2dκ+ |log(d!)|, which is due to (6.43). This yields the following corollary
for the uniform convergence in probability on the set Kr(κ) of densities:

Corollary 6.6. Under the assumptions of Theorem 6.4, we get the following result:

lim
K→∞

lim sup
n→∞

sup
f0∈Kr(κ)

P
(
D
(
f0‖f̂m,n

)
≥
(

d∑
i=1

m−2ri
i + |m|

n

)
K

)
= 0.
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Remark 6.7. Since we let ri vary for each 1 ≤ i ≤ d, our class of densities Kr(κ) has an
anisotropic feature. Estimation of anisotropic multivariate functions for Ls risk, 1 ≤ s ≤ ∞,
was considered in multiple papers. For a Gaussian white noise model, [112] obtains minimax
convergence rates on anisotropic Besov classes for Ls risk, 1 ≤ s < ∞ ,while [19] gives the
minimax rate of convergence on anisotropic Hölder classes for the L∞ risk. For kernel density
estimation, results on the minimax convergence rate for anisotropic Nikol’skii classes for Ls risk,
1 ≤ s < ∞, can be found in [84]. These papers conclude in general, that if the considered
class has smoothness parameters r̃i for the i-th coordinate, 1 ≤ i ≤ d , then the optimal
convergence rate becomes n−2R̃/(2R̃+1) (multiplied with a logarithmic factor for L∞ risk), with
R̃ defined by the equation 1/R̃ = ∑d

i=1 1/r̃i. Since R̃ < r̃i for all 1 ≤ i ≤ d, the convergence rate
n−2 min(r)/(2 min(r)+1) is strictly better than the convergence rate for these anisotropic classes. In
the isotropic case, when ri = r for all 1 ≤ i ≤ d, the minimax convergence rate specializes to
n−2r/(2r+d) (which was obtained in [177] as an upper bound). This rate decreases exponentially
when the dimension d increases. However, by exploiting the multiplicative structure of the model,
we managed to obtain the univariate convergence rate n−2r/(2r+1), which is minimax optimal,
see [181].

6.4 Adaptive estimation

Notice that the choice of the optimal series of estimators f̂m∗,n with m∗ defined in Remark
6.5 requires the knowledge of min(r) at least. When this knowledge is not available, we propose
an adaptive method based on the proposed estimators in Section 6.3, which can mimic asymp-
totically the behaviour of the optimal choice. Let us introduce some notation first. We separate
the sample Xn into two parts Xn1 and Xn2 of size n1 = bCenc and n2 = n − bCenc respectively,
with some constant Ce ∈ (0, 1). The first part of the sample will be used to create our estimators,
and the second half will be used in the aggregation procedure. Let (Nn, n ∈ N∗) be a sequence
of non-decreasing positive integers depending on n such that limn→∞Nn = +∞. Let us denote:

Nn =
{
bn1/(2(d+j)+1)c, 1 ≤ j ≤ Nn

}
and Mn =

{
m = (v, . . . , v) ∈ Rd, v ∈ Nn

}
. (6.14)

For m ∈ Mn let f̂m,n be the maximum likelihood estimator for the log-additive exponential
model based on the first half of the sample, namely:

f̂m,n = exp
(
θ̂m,n · ϕm − ψ(θ̂m,n)

)
14,

with θ̂m,n given by (6.9) using the sample Xn1 (replacing n with n1 in the definition (6.8) of
µ̂m,n). Let :

Fn = {f̂m,n,m ∈Mn}

denote the set of different estimators obtained by this procedure. Notice that Card (Fn) ≤
Card (Mn) ≤ Nn. Recall that by Remark 6.5, we have that for r = (r1, . . . , rd) with ri > d and
n ≥ n̄, where n̄ is given by:

n̄ = min{n ∈ N, Nn ≥ min(r)− d+ 1}, (6.15)

the sequence of estimators f̂m∗,n, with m∗ = m∗(n) = (v∗, . . . , v∗) ∈ Mn given by v∗ =
bn1/(2 min(r)+1)c, achieves the optimal convergence rate OP(n−2 min(r)/(2 min(r)+1)). By letting Nn

go to infinity, we ensure that for every combination of regularity parameters r = (r1, . . . , rd)
with ri > d, the sequence of optimal estimators f̂m∗,n is included in the sets Fn for n large
enough.

We use the second part of the sample Xn2 to create an aggregate estimator based on Fn,
which asymptotically mimics the performance of the optimal sequence f̂m∗,n. We will write
ˆ̀
m,n = θ̂m,n · ϕm to ease notation. We define the convex combination ˆ̀

λ of the functions ˆ̀
m,n,

m ∈Mn:
ˆ̀
λ =

∑
m∈Mn

λm ˆ̀
m,n,
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with aggregation weights λ ∈ Λ+ = {λ = (λm,m ∈Mn) ∈ RMn , λm ≥ 0 and ∑
m∈Mn

λm = 1}.
For such a convex combination, we define the probability density function fλ as:

fλ = exp(ˆ̀
λ − ψλ)14, (6.16)

with ψλ = log
(∫
4 exp(ˆ̀

λ)
)
. We apply the convex aggregation method for log-densities developed

in [38] to get an aggregate estimator which achieves adaptability. Notice that the reference
probability measure in this paper corresponds to d!14(x)dx. This implies that ψλ here differs
from the ψλ of [38] by the constant log(d!), but this does not affect the calculations. The
aggregation weights are chosen by maximizing the penalized maximum likelihood criterion Hn

defined as:
Hn(λ) = 1

n2

∑
Xj∈Xn2

ˆ̀
λ(Xj)− ψλ −

1
2 pen(λ), (6.17)

with the penalizing function pen(λ) = ∑
m∈Mn

λmD
(
fλ‖f̂m,n

)
. The convex aggregate estimator

fλ̂∗n
is obtained by setting:

λ̂∗n = argmax
λ∈Λ+

Hn(λ). (6.18)

The main result of this section is given by the next theorem which asserts that if we choose
Nn = o(log(n)) such that limn→∞Nn = +∞, the series of convex aggregate estimators fλ̂∗n
converge to f0 with the optimal convergence rate, i.e. as if the smoothness was known.

Theorem 6.8. Let f0 ∈ P(4) be a probability density with a product form given by (6.5).
Assume the functions `0i belongs to the Sobolev spaceW 2

ri(qi), ri ∈ N with ri > d for all 1 ≤ i ≤ d.
Let (Xn, n ∈ N∗) be i.i.d. random variables with density f0. Let Nn = o(log(n)) such that
limn→∞Nn = +∞. The convex aggregate estimator fλ̂∗n defined by (6.16) with λ̂∗n given by
(6.18) converges to f0 in probability with the convergence rate:

D
(
f0‖fλ̂∗n

)
= OP

(
n
− 2 min(r)

2 min(r)+1

)
. (6.19)

The proof of this theorem is provided in Section 6.9. Similarly to Corollary 6.6, we have
uniform convergence over sets of densities with increasing regularity. Recall the definition (6.13)
of the set Kr(κ). Let Rn = {j, d+ 1 ≤ j ≤ Rn}, where Rn satisfies the three inequalities:

Rn ≤ Nn + d, (6.20)

Rn ≤
⌊
n

1
2(d+Nn)+1

⌋
, (6.21)

Rn ≤
log(n)

2 log(log(Nn)) −
1
2 · (6.22)

Corollary 6.9. Under the assumptions of Theorem 6.8, we get the following result:

lim
K→∞

lim sup
n→∞

sup
r∈(Rn)d

sup
f0∈Kr(κ)

P
(
D
(
f0‖fλ̂∗n

)
≥
(
n
− 2 min(r)

2 min(r)+1

)
K

)
= 0.

Remark 6.10. For example when Nn = log(n)/(2 log(log(n))), then (6.20), (6.21) and (6.22)
are satisfied with Rn = Nn for n large enough.

6.5 Simulation study : random truncation model

In this section we present the results of Monte Carlo simulation studies on the performance of
the maximum likelihood estimator of the log-additive exponential model. We take the example
of the random truncation model introduced in Section 6.1 with d = 2, which is used in many
applications. This model naturally satisfies our model assumptions.
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Let Z = (Z1, Z2) be a pair of independent random variable with density functions q1, q2
respectively such that 4 ⊂ supp (q), where q(x1, x2) = q1(x1)q2(x2) is the joint density function
of Z. Suppose that we only observe pairs (Z1, Z2) if 0 ≤ Z1 ≤ Z2 ≤ 1. Then the joint density
function f of the observable pairs is given by, for x = (x1, x2) ∈ R2 :

f(x) = q1(x1)q2(x2)∫
4 q(y) dy 14(x).

This corresponds to the form (6.2) with p1, p2 given by:

p1 = q11I∫
I q1

and p2 = q21I∫
I q2
·

We will choose the densities q1, q2 from the following distributions:
• Normal(µ, σ2) with µ ∈ R, σ > 0:

fµ,σ2(t) = 1√
2πσ2

e−
(t−µ)2

2σ2 ,

• NormalMix(µ1, σ
2
1, µ2, σ

2
2, w) with w ∈ (0, 1):

f(t) = wfµ1,σ2
1
(t) + (1− w)fµ2,σ2

2
(t),

• Beta(α, β, a, b) with 0 < α < β, a < 0, b > 1 :

f(t) = (t− a)α−1(b− t)β−α−1

(b− a)β−1B(α, β − α) 1(a,b)(t),

• Gumbel(α, β) with α > 0, β ∈ R:

f(t) = α e−α(t−β)−e−α(t−β)
.

The exact choices for densities q1, q2 are given in Table 6.1. Figure 6.1 shows the resulting
density functions p1 and p2 for each case.

Model q1 q2
Beta Beta(1, 6,−1, 2) Beta(3, 5,−1, 2)

Gumbel Gumbel(4, 0.3) Gumbel(2.4, 0.7)
Normal mix NormalMix(0.2, 0.1, 0.6, 0.1, 0.5) Normal(0.8, 0.2)

Table 6.1 – Distributions for the left-truncated model used in the simulation study.
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Figure 6.1 – Density functions p1, p2 of the left-truncated models used in the simulation study.

To calculate the parameters θ̂m,n, we recall that θ̂m,n is the solution of the equation (6.9),
therefore can be also characterized as:

θ̂m,n = argmax θ∈R|m|θ · µ̂m,n − ψ(θ), (6.23)
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with µ̂m,n defined by (6.8), see Lemma 6.28 . We use a numerical optimisation method to
solve (6.23) and obtain the parameters θ̂m,n. We estimate our model with m1 = m2 = m̄, and
m̄ = 1, 2, 3, 4. We compute the final estimator based on the convex aggregation method proposed
in Section 6.4. We ran 100 estimations with increasing sample sizes n ∈ {200, 500, 1000}, and we
calculated the average Kullback-Leibler distance as well as the L2 distance between f0 and its
estimator. We used Ce = 80% of the sample to calculate the initial estimators, and the remaining
20% to perform the aggregation. The distances were calculated by numerical integration. We
compare the results with a truncated kernel density estimator with Gaussian kernel functions
and bandwidth selection based on Scott’s rule. The results are summarized in Table 6.2 and
Table 6.3.

Table 6.2 – Average Kullback-Leibler distances for the log-additive exponential series estimator
(LAESE) and the truncated kernel estimator (Kernel) based on 100 samples of size n. Variances
provided in parenthesis.

KL distances n=200 n=500 n=1000
LAESE Kernel LAESE Kernel LAESE Kernel

Beta 0.0137 0.0524 0.0048 0.0395 0.0028 0.0339
(8.94E-05) (1.73E-04) (9.51E-06) (4.61E-05) (3.50E-06) (2.14E-05)

Gumbel 0.0204 0.0249 0.0089 0.0180 0.0050 0.0154
(1.48E-04) (8.03E-05) (2.88E-05) (2.07E-05) (6.70E-06) (1.03E-05)

Normal mix 0.0545 0.0774 0.0337 0.0559 0.0259 0.0433
(4.51E-04) (7.29E-05) (1.88E-04) (2.95E-05) (2.50E-05) (1.52E-05)

Table 6.3 – Average L2 distances for the log-additive exponential series estimator (LAESE) and
the truncated kernel estimator (Kernel) based on 100 samples of size n. Variances provided in
parenthesis.

L2 distances n=200 n=500 n=1000
LAESE Kernel LAESE Kernel LAESE Kernel

Beta 0.0536 0.2107 0.0200 0.1660 0.0120 0.1429
(1.42E-03) (2.60E-03) (2.27E-04) (8.04E-04) (7.45E-05) (3.52E-04)

Gumbel 0.0683 0.0856 0.0297 0.0621 0.0166 0.0522
(1.95E-03) (9.94E-04) (3.61E-04) (2.49E-04) (8.74E-05) (1.19E-04)

Normal mix 0.2314 0.3534 0.1489 0.2545 0.1112 0.1952
(1.17E-02) (1.43E-03) (5.53E-03) (6.95E-04) (9.25E-04) (3.83E-04)

We can conclude that the log-additive exponential series estimator outperforms the kernel
density estimator both with respect to the Kullback-Leibler distance and the L2 distance. As
expected, the performance of both methods increases with the sample size. The boxplot of the
100 values of the Kullback-Leibler and L2 distance for the different sample sizes can be found
in Figures 6.2, 6.4 and 6.6. Figures 6.3, 6.5 and 6.7 illustrate the different estimators compared
to the true joint density function for the three cases obtained with a sample size of 1000. We
can observe that the log.additive exponential model leads to a smooth estimator compared to
the kernel method.

Remark 6.11. The log-additive exponential model encompasses a lot of popular choices for
the marginals q1, q2. For example, the exponential distribution is included in the model for
mi = 1, and the normal distribution is included for mi = 2. Thus we expect that if we choose
exponential or normal distributions for q1, q2, we obtain even better results for the log-additive
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Figure 6.2 – Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Beta marginals.
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Figure 6.3 – Joint density functions of the true density and its estimators with Beta marginals.
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Figure 6.4 – Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Gumbel marginals.



158 Chapter 6. Fast adaptive estimation of log-additive exponential models

X_1

0.0
0.2

0.4
0.6

0.8
1.0

X_2

0.0

0.2

0.4

0.6
0.8

1.0

f(
X
_1

,X
_2

)

0

1

2

3

4

5

6

(a) True density

X_1

0.0
0.2

0.4
0.6

0.8
1.0

X_2

0.0

0.2

0.4

0.6
0.8

1.0

f(
X
_1

,X
_2

)

0

1

2

3

4

5

6

(b) LAESE

X_1

0.0
0.2

0.4
0.6

0.8
1.0

x_2

0.0

0.2

0.4

0.6
0.8

1.0

f(
X
_1

,X
_2

)

0

1

2

3

4

5

6

(c) Kernel

0.0 0.2 0.4 0.6 0.8
x_1

0.0

0.2

0.4

0.6

0.8

x
_2

0.
50
0

1.0
00

1
.0
0
0

1
.5
0
0

2
.0
0
0

2
.5
0
0

3.000

(d) True density

0.0 0.2 0.4 0.6 0.8
x_1

0.0

0.2

0.4

0.6

0.8

x
_2 0.

50
0

1
.0
0
0

1.
50
0

(e) LAESE

0.0 0.2 0.4 0.6 0.8
x_1

0.0

0.2

0.4

0.6

0.8

x
_2 0.

50
0

1.000

1
.0
0
0

1.
50
0

2.000

2
.5
0
0

3
.0
0
0

(f) Kernel

Figure 6.5 – Joint density functions of the true density and its estimators with Gumbel marginals.
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Figure 6.6 – Boxplot of the Kullback-Leibler and L2 distances for the additive exponential series
estimator (AESE) and the truncated kernel estimators with Normal mix marginals.
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Figure 6.7 – Joint density functions of the true density and its estimators with Normal mix
marginals.
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exponential series estimator, which was confirmed by the numerical experiments (not included
here for brevity).

6.6 Appendix: Orthonormal series of polynomials

6.6.1 Jacobi polynomials

The following results can be found in [2] p. 774. The Jacobi polynomials (P (α,β)
k , k ∈

N) for α, β ∈ (−1,+∞) are series of orthogonal polynomials with respect to the measure
wα,β(t)1[−1,1](t) dt, with wα,β(t) = (1− t)α(1 + t)β for t ∈ [−1, 1]. They are given by Rodrigues’
formula, for t ∈ [−1, 1], k ∈ N:

P
(α,β)
k (t) = (−1)k

2kk!wα,β(t)
dk

dtk

[
wα,β(t)(1− t2)k

]
.

The normalizing constants are given by:∫ 1

−1
P

(α,β)
k (t)P (α,β)

` (t)wα,β(t) dt = 1{k=`}
2α+β+1

2k + α+ β + 1
Γ(k + α+ 1)Γ(k + β + 1)

Γ(k + α+ β + 1)k! · (6.24)

In what follows, we will be interested in Jacobi polynomials with α = d − i and β = i − 1,
which are orthogonal to the weight function wd−i,i−1(t) = 1[−1,1](t)(1 − t)d−i(1 + t)i−1. The
leading coefficient of P (d−i,i−1)

k is:

ω′i,k = (2k + d− 1)!
2kk!(k + d− 1)! · (6.25)

Let r ∈ N∗. Recall that P (α,β)
k has degree k. The derivatives of the Jacobi polynomials P (d−i,i−1)

k ,
r ≤ k, verify, for t ∈ I (see Proposition 1.4.15 of [67]):

dr

dtr
P

(d−i,i−1)
k (t) = (k + d− 1 + r)!

2r(k + d− 1)! P
(d−i+r,i−1+r)
k−r (t). (6.26)

We also have:
sup

t∈[−1,1]

∣∣∣P (d−i,i−1)
k (t)

∣∣∣ = max
((k + d− i)!
k!(d− i)! ,

(k + i− 1)!
k!(i− 1)!

)
. (6.27)

6.6.2 Definition of the basis functions

Based on the Jacobi polynomials, we define a shifted version, normalized and adapted to the
interval I = [0, 1].

Definition 6.12. For 1 ≤ i ≤ d, k ∈ N, we define for t ∈ I:

ϕi,k(t) = ρi,k

√
(d− i)!(i− 1)!P (d−i,i−1)

k (2t− 1),

with
ρi,k =

√
(2k + d)k!(k + d− 1)!/((k + d− i)!(k + i− 1)!). (6.28)

Recall the definition (6.4) of the marginals qi of the Lebesgue measure on the simplex.
According to the following Lemma, the polynomials (ϕi,k, k ∈ N) form an orthonormal basis of
L2(qi) for all 1 ≤ i ≤ d. Notice that ϕi,k has degree k.

Lemma 6.13. For 1 ≤ i ≤ d, k, ` ∈ N, we have:∫
I
ϕi,kϕi,` qi = 1{k=`}.
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Proof. We have, for k, ` ∈ N:∫
I
ϕi,kϕi,` qi = ρi,kρi,`

∫ 1

0
P

(d−i,i−1)
k (2t− 1)P (d−i,i−1)

` (2t− 1)(1− t)d−iti−1 dt

= ρi,kρi,`
2d

∫ 1

−1
P

(d−i,i−1)
k (s)P (d−i,i−1)

` (s)wd−i,i−1(s) ds

= 1{k=`},

where we used (6.24) for the last equality.

6.6.3 Mixed scalar products

Recall notation (6.3), so that ϕ[i],k(x) = ϕi,k(xi) for x = (x1, . . . , xd) ∈ 4. Notice that
(ϕ[i],k, k ∈ N) is a family of orthonormal polynomials with respect to the Lebesgue measure on
4, for all 1 ≤ i ≤ d.

We give the mixed scalar products of (ϕ[i],k, k ∈ N) and (ϕ[j],`, ` ∈ N), 1 ≤ i < j ≤ d with
respect to the Lebesgue measure on the simplex 4.

Lemma 6.14. For 1 ≤ i < j ≤ d and k, ` ∈ N, we have:∫
4
ϕ[i],k ϕ[j],` = 1{k=`}

√
(j − 1)!(d− i)!
(i− 1)!(d− j)!

√
(k + d− j)!(k + i− 1)!
(k + d− i)!(k + j − 1)! ·

We also have 0 ≤
∫
4 ϕ[i],k ϕ[j],` ≤ 1 for all k, ` ∈ N.

Proof. We have:∫
4
ϕ[i],k ϕ[j],` =

∫ 1

0

(∫ xj

0

xi−1
i

(i− 1)!
(xj − xi)j−i−1

(j − i− 1)! ϕi,k(xi) dxi
)
ϕj,`(xj)

(1− xj)d−j
(d− j)! dxj

=
∫
I
rkϕj,` qj ,

with rk a polynomial defined on I given by:

rk(s) = (j − 1)!
∫ 1

0

ti−1

(i− 1)!
(1− t)j−i−1

(j − i− 1)! ϕi,k(st) dt.

Notice that rk is a polynomial of degree at most k as ϕi,k is a polynomial with degree k. Therefore
if k < ` , we have

∫
4 ϕ[i],kϕ[j],` = 0 since ϕj,` is orthogonal (with respect to the measure qj) to

any polynomial of degree less than `. Similar calculations show that if k > `, the integral is also
0.

Let us consider now the case k = `. We compute the coefficient νk of tk in the polynomial
rk. We deduce from (6.25) that the leading coefficient ωi,k of ϕi,k is given by:

ωi,k = ρi,k

√
(d− i)!(i− 1)!ω′i,k = ρi,k

√
(d− i)!(i− 1)! (2k + d− 1)!

k!(k + d− 1)! ·

Using this we obtain for νk :

νk = (j − 1)!ωi,k
∫ 1

0

tk+i−1

(i− 1)!
(1− t)j−i−1

(j − i− 1)! dt

= ωi,k
(k + i− 1)!(j − 1)!
(k + j − 1)!(i− 1)! ,

and thus rk has degree k. The orthonormality of (ϕj,k, k ∈ N) ensures that
∫
I rkϕj,k qj = νk/ωj,k.

Therefore, we obtain:∫
4
ϕ[i],kϕ[j],k = νk

ωj,k
=
√

(j − 1)!(d− i)!
(i− 1)!(d− j)!

√
(k + d− j)!(k + i− 1)!
(k + d− i)!(k + j − 1)! ·
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Since (j− 1)!/(i− 1)! ≤ (k+ j− 1)!/(k+ i− 1)!, and (d− i)!/(d− j)! ≤ (k+ d− i)!/(k+ d− j)!,
we can conclude that 0 ≤

∫
4 ϕ[i],kϕ[j],k ≤ 1.

This shows that the family of functions ϕ = (ϕi,k, 1 ≤ i ≤ d, k ∈ N) is not orthogonal with
respect to the Lebesgue measure on 4. For k ∈ N∗, let us consider the matrix Rk ∈ Rd×d with
elements:

Rk(i, j) =
∫
4
ϕ[i],kϕ[j],k. (6.29)

If Y = (Y1, . . . , Yd) is uniformly distributed on 4, then Rk is the correlation matrix of the
random variable (ϕ1,k(Y1), . . . , ϕd,k(Yd)). Therefore it is symmetric and positive semi-definite.
Let λk,1 ≤ . . . ≤ λk,d denote the eigenvalues of Rk. We aim to find a lower bound for these
eigenvalues which is independent of k.

Lemma 6.15. For k ∈ N∗, the smallest eigenvalue λk,d of Rk is given by:

λk,d = k

k + d− 1 ,

and we have λk,d ≥ 1/d.

Proof. It is easy to check that the inverse R−1
k of Rk exists and is symmetric tridiagonal with

diagonal entries Di, 1 ≤ i ≤ d and lower (and upper) diagonal elements Qi, 1 ≤ i ≤ d− 1 given
by:

Di = (k + d− 1)(k + 1) + 2(i− 1)(d− i)
k(k + d) and Qi = −

√
i(d− i)(k + i)(k + d− i)

k(k + d) ·

The matrix R−1
k is positive definite, since all of its principal minors have a positive determinant.

In particular, this ensures that the eigenvalues of Rk and R−1
k are all positive. Let ci(λ), 1 ≤ i ≤ d

denote the i-th leading principal minor of the matrix R−1
k − λId, where Id is the d-dimensional

identity matrix. The eigenvalues of R−1
k are exactly the roots of the characteristic polynomial

cd(λ). Since R−1
k is symmetric and tridiagonal, we have the following recurrence relation for

ci(λ), 1 ≤ i ≤ d:
ci(λ) = (Di − λ)ci−1(λ)−Q2

i−1ci−2(λ),
with initial values c0(λ) = 1, c−1(λ) = 0.

Let Mk be the symmetric tridiagonal matrix d × d with diagonal entries Di, 1 ≤ i ≤ d and
lower (and upper) diagonal elements |Qi|, 1 ≤ i ≤ d− 1. Notice the characteristic polynomial of
Mk is also cd(λ). So Mk and R−1

k have the same eigenvalues.
It is easy to check that λ∗ = (k + d − 1)/k is an eigenvalue of Mk with corresponding

eigenvector v = (v1, . . . , vd) given by, for 1 ≤ i ≤ d:

vi =
√

(d− 1)!
(d− i)!

(k + d− 1)!
(k + d− i)!

k!
(k + i− 1)!

1
(i− 1)! ·

(One can check that v′ = (v′1, . . . , v′d), with v′i = (−1)i−1vi, is an eigenvector of R−1
k with

eigenvalue λ∗.)
The matrix Mk has non-negative elements, with positive elements in the diagonal, sub- and

superdiagonal. Therefore Mk is irreducible, and we can apply the Perron-Frobenius theorem for
non-negative, irreducible matrices: the largest eigenvalue of Mk has multiplicity one and is the
only eigenvalue with corresponding eigenvector x such that x > 0. Since v > 0, we deduce that λ∗
is the largest eigenvalue ofMk. It is also the largest eigenvalue of R−1

k . Thus 1/λ∗ = k/(k+d−1)
is the lowest eigenvalue of Rk.

Since λk,d is increasing in k, we have the uniform lower bound 1/d.

Remark 6.16. We conjecture that the eigenvalues λk,i of Rk are given by, for 1 ≤ i ≤ d:

λk,i = k(k + d)
(k + i)(k + i− 1) ·
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6.6.4 Bounds between different norms

In this Section, we will give inequalities between different types of norms for functions defined
on the simplex 4. These inequalities are used during the proof of Theorem 6.4. Let m =
(m1, . . . ,md) ∈ (N∗)d. Recall the notation ϕm and θ · ϕm with θ = (θi,k; 1 ≤ k ≤ mi, 1 ≤ i ≤
d) ∈ R|m| from Section 6.3.

For 1 ≤ i ≤ d, we set θi = (θi,k, 1 ≤ k ≤ mi) ∈ Rmi , ϕi,m = (ϕi,k, 1 ≤ k ≤ mi) and:

θi · ϕi,m =
mi∑
k=1

θi,kϕi,k and θi · ϕ[i],m =
mi∑
k=1

θi,kϕ[i],k,

with ϕ[i],m = (ϕ[i],k, 1 ≤ k ≤ mi). In particular, we have ϕm = ∑d
i=1 ϕ[i],m and θ · ϕm =∑d

i=1 θi · ϕ[i],m. We first give lower and upper bounds on ‖θ · ϕm ‖L2 .

Lemma 6.17. For all θ ∈ R|m| we have:

‖θ‖√
d
≤ ‖θ · ϕm ‖L2 ≤

√
d ‖θ‖ .

Proof. For the upper bound, one simply has, by the triangle inequality and the orthonormality:

‖θ · ϕm ‖L2 ≤
d∑
i=1
‖θi · ϕi,m ‖L2(qi) =

d∑
i=1
‖θi ‖ ≤

√
d ‖θ‖ .

For the lower bound, we have:

‖θ · ϕm ‖2L2 =
d∑
i=1

mi∑
k=1

θ2
i,k + 2

∑
i<j

min(mi,mj)∑
k=1

θi,kθj,k

∫
4
ϕ[i],kϕ[j],k, (6.30)

where we used the normality of ϕ[i],k with respect to the Lebesgue measure on 4 and Lemma
6.14 for the cross products. We can rewrite this in a matrix form:

‖θ · ϕm ‖2L2 ≥
max(m)∑
k=1

(θ∗k)TRkθ∗k,

where Rk ∈ Rd×d is given by (6.29) and θ∗k = (θ∗1,k, . . . , θ∗d,k) ∈ Rd is defined, for 1 ≤ i ≤ d,
1 ≤ k ≤ max(m), as:

θ∗i,k = θi,k1{k≤mi}.

Since, according to Lemma 6.15, all the eigenvalues of Rk are uniformly larger than 1/d, this
gives:

‖θ · ϕm ‖2L2 ≥
1
d

max(m)∑
k=1

‖θ∗k ‖
2 = ‖θ‖

2

d
·

This concludes the proof.

We give an inequality between different norms for polynomials defined on I.

Lemma 6.18. If h is a polynomial of degree less then or equal to n on I, then we have for all
1 ≤ i ≤ d:

‖h‖∞ ≤
√

2(d− 1)!(n+ d)d ‖h‖L2(qi)

Proof. There exists (βk, 0 ≤ k ≤ n) such that h = ∑n
k=0 βkϕi,k. By the Cauchy-Schwarz inequal-

ity, we have:

|h| ≤
(

n∑
k=0

β2
k

)1/2( n∑
k=0

ϕ2
i,k

)1/2

. (6.31)
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We deduce from Definition 6.12 of ϕi,k and (6.27) that:

‖ϕi,k ‖∞ =

√
(2k + d)(k + d− 1)!

k! max
(√

(i− 1)!(k + d− i)!
(d− i)!(k + i− 1)! ,

√
(d− i)!(k + i− 1)!
(i− 1)!(k + d− i)!

)
.

For all 1 ≤ i ≤ d, we have the uniform upper bound:

‖ϕi,k ‖∞ ≤
√

(d− 1)!
√

2k + d
(k + d− 1)!

k! · (6.32)

This implies that for t ∈ I:
n∑
k=0

ϕ2
i,k(t) ≤

n∑
k=0
‖ϕ2

i,k ‖∞ ≤ (d− 1)!
n∑
k=0

(2k + d)
((k + d− 1)!

k!

)2
≤ 2(d− 1)!(n+ d)2d.

Bessel’s inequality implies that ∑n
k=0 β

2
k ≤ ‖h‖

2
L2(qi). We conclude the proof using (6.31).

We recall the notation Sm of the linear space spanned by (ϕ[i],k; 1 ≤ k ≤ mi, 1 ≤ i ≤ d), and
the different norms introduced in Section 6.7.

Lemma 6.19. Let m ∈ (N∗)d and κm =
√

2d!
√∑d

i=1(mi + d)2d. Then we have for every g ∈ Sm:
‖g‖∞ ≤ κm ‖g‖L2 .

Proof. Let g ∈ Sm. We can write g = θ · ϕm for a unique θ ∈ R|m|. Let gi = θi · ϕi,m so that
g = ∑d

i=1 g[i], where gi is a polynomial defined on I of degree at most mi for all 1 ≤ i ≤ d. We
have:

‖g‖∞ ≤
d∑
i=1
‖gi ‖∞

≤
√

2(d− 1)!
d∑
i=1

(mi + d)d ‖gi ‖L2(qi)

≤ κm√
d

(
d∑
i=1
‖gi ‖2L2(qi)

)1/2

= κm√
d
‖θ‖

≤ κm ‖θ · ϕm ‖L2

= κm ‖g‖L2 .

where we used Lemma 6.18 for the second inequality, Cauchy-Schwarz for the third inequality,
and Lemma 6.17 for the fourth inequality.

Remark 6.20. For d fixed, κm as a function of m verifies:

κm = O


√√√√ d∑
i=1

m2d
i

 = O(|m|d).

6.6.5 Bounds on approximations

Now we bound the L2 and L∞ norm of the approximation error of additive functions where
each component belongs to a Sobolev space. Let m = (m1, . . . ,md) ∈ (N∗)d, r = (r1, . . . , rd) ∈
(N∗)d such thatmi+1 ≥ ri for all 1 ≤ i ≤ d. Let ` = ∑d

i=1 `[i] with `i ∈W 2
ri(qi) and

∫
I `iqi = 0 for

1 ≤ i ≤ d. Let `i,mi be the orthogonal projection in L2(qi) of `i on the span of (ϕi,k, 0 ≤ k ≤ mi)
given by `i,mi = ∑mi

k=1 (
∫
I `iϕi,kqi)ϕi,k. Then `m = ∑d

i=1 `[i],mi is the approximation of ` on Sm
given by (6.47). We start by giving a bound on the L2(qi) norm of the error when we approximate
`i by `i,mi .
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Lemma 6.21. For each 1 ≤ i ≤ d, mi + 1 ≥ ri and `i ∈W 2
ri(qi) , we have:

‖`i − `i,mi ‖
2
L2(qi) ≤

2−2ri(mi + 1− ri)!(mi + d)!
(mi + 1)!(mi + d+ ri)!

‖`(ri)i ‖
2
L2(qi) . (6.33)

Proof. Notice that (6.26) implies that the series (ϕ(ri)
i,k , k ≥ ri) is orthogonal on I with respect

to the weight function vi(t) = (1 − t)d−i+riti−1+ri , and the normalizing constants κi,k ≥ 0 are
given by:

κ2
i,k =

∫ 1

0

(
ϕ

(ri)
i,k (t)

)2
vi(t) dt

= ρ2
i,k(d− i)!(i− 1)!

∫ 1

0

(
dri

dtri
P

(d−i,i−1)
k (2t− 1)

)2
vi(t) dt

= ρ2
i,k(d− i)!(i− 1)! ((k + d− 1 + ri)!)2

2d+2ri((k + d− 1)!)2

∫ 1

−1

(
P

(d−i+ri,i−1+ri)
k−ri (s)

)2
wd−i+ri,i−1+ri(s) ds

= (d− i)!(i− 1)! k!(k + d− 1 + ri)!
(k − ri)!(k + d− 1)! , (6.34)

where we used the definition of ϕi,k for the second equality, (6.26) for the third equality and (6.24)
for the fourth equality. Notice that κi,k is non-decreasing as a function of k. Since `i − `i,mi =∑∞
k=mi+1 βi,kϕi,k, we have:

‖`i − `i,mi ‖
2
L2(qi) =

∞∑
k=mi+1

β2
i,k ≤

1
κ2
i,mi+1

∞∑
k=mi+1

κ2
i,kβ

2
i,k ≤

1
κ2
i,mi+1

∞∑
k=ri

κ2
i,kβ

2
i,k, (6.35)

where the first inequality is due to the monotonicity of κi,k as k increases. Thanks to (6.26) and
the definition of κi,k, we get that (ϕ(ri)

i,k /κi,k, k ≥ ri) is an orthonormal basis of L2(vi). Therefore,
we have

∞∑
k=ri

κ2
i,kβ

2
i,k =

∫ 1

0

(
`
(ri)
i (t)

)2
vi(t) dt ≤

(d− i)!(i− 1)!
22ri

‖`(ri)i ‖
2
L2(qi), (6.36)

since supt∈I qi(t)/vi(t) = (d− i)!(i− 1)!/22ri . This and (6.35) implies (6.33).

Lemma 6.21 yields a simple bound on the L2 norm of the approximation error `− `m.

Corollary 6.22. For m = (m1, . . . ,md), mi + 1 ≥ ri and `i ∈W 2
ri(qi) for all 1 ≤ i ≤ d, we get:

‖`− `m ‖L2 = O


√√√√ d∑
i=1

m−2ri
i

 .
Proof. We have:

‖`− `m ‖L2 ≤
d∑
i=1
‖`i − `i,mi ‖L2(qi) = O

(
d∑
i=1

m−rii

)
= O


√√√√ d∑
i=1

m−2ri
i

 ,
where we used (6.33) for the first equality.

Lastly, we bound the L∞ norm of the approximation error.

Lemma 6.23. For each 1 ≤ i ≤ d, mi + 1 ≥ ri > d and `i ∈W 2
ri(qi), we have:

‖`i − `i,mi ‖∞ ≤
2−ri

√
2(d− 1)! eri√

2ri − 2d− 1
1

(mi + ri)ri−d−
1
2
‖`(ri)i ‖L2(qi) . (6.37)
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Proof. We recall the constants κi,k, 1 ≤ i ≤ d, 1 ≤ k ≤ mi given by (6.34). Since `i − `i,mi =∑∞
k=mi+1 βi,kϕi,k we have:

‖`i − `i,mi ‖∞ =

∥∥∥∥∥∥
∞∑

k=mi+1
βi,kϕi,k

∥∥∥∥∥∥
∞

≤
∞∑

k=mi+1
|βi,k| ‖ϕi,k‖∞

≤

√√√√ ∞∑
k=mi+1

‖ϕi,k‖2∞
κ2
i,k

√√√√ ∞∑
k=mi+1

κ2
i,kβ

2
i,k

≤

√√√√ ∞∑
k=mi+1

2(d− 1)!(k + d)2d

κ2
i,k

√
(d− i)!(i− 1)!

22ri
‖`(ri)i ‖L2(qi)

≤

√√√√ ∞∑
k=mi+1

2(d− 1)!
(d− i)!(i− 1)!

e2ri

(k + ri)2ri−2d

√
(d− i)!(i− 1)!

22ri
‖`(ri)i ‖L2(qi)

≤ 2−ri
√

2(d− 1)! eri
√

2ri − 2d− 1
√

(mi + ri)2ri−2d−1
‖`(ri)i ‖L2(qi),

where we used Cauchy-Schwarz for the second inequality, (6.32) and (6.36) for the third inequal-
ity, κ2

i,k ≥ (d− i)!(i− 1)!(k+ ri)2ri e−2ri for the fourth inequality, and ∑∞k=mi+1(k+ ri)−2ri+2d ≤
(2ri − 2d− 1)−1(mi + ri)−2ri+2d+1 for the fifth inequality.

Corollary 6.24. There exists a constant C > 0 such that for all `i ∈W 2
ri(qi) and mi+1 ≥ ri > d

for all 1 ≤ i ≤ d, we have:

‖`− `m ‖∞ ≤ C
d∑
i=1
‖`(ri)i ‖L2(qi) .

Proof. Notice that for mi + 1 ≥ ri > d, we have:

2−ri
√

2(d− 1)! eri√
2ri − 2d− 1

1
(mi + ri)ri−d−

1
2
≤ 2−ri

√
2(d− 1)! eri√

2ri − 2d− 1
1

(2ri − 1)ri−d− 1
2
,

and that the right hand side is bounded by a constant C > 0 for all ri ∈ N∗. Therefore:

‖`− `m ‖∞ ≤
d∑
i=1
‖`i − `i,mi ‖∞ ≤ C

d∑
i=1
‖`(ri)i ‖L2(qi) .

6.7 Preliminary elements for the proof of Theorem 6.4

We adapt the results from [12] to our setting. Let us recall Lemmas 1 and 2 of [12].

Lemma 6.25 (Lemma 1 of [12]). Let g, h ∈ P(4). If ‖ log(g/h)‖∞ < +∞, then we have:

D (g‖h) ≥ 1
2 e−‖log(g/h)‖∞

∫
4
g log2 (g/h) , (6.38)

and for any κ ∈ R:

D (g‖h) ≤ 1
2 e‖log(g/h)−κ‖∞

∫
4
g (log (g/h)− κ)2 , (6.39)

∫
4

(g − h)2

g
≤ e2(‖log(g/h)−κ‖∞−κ)

∫
4
g (log (g/h)− κ)2 . (6.40)
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Lemma 6.25 readily implies the following Corollary.

Corollary 6.26. Let g, h ∈ P(4). If ‖ log(g/h)‖∞ < +∞, then we have, for any constant
κ ∈ R:

D (g‖h) ≤ 1
2 e‖log(g/h)−κ‖∞ ‖g‖∞

∫
4

(log (g/h)− κ)2 , (6.41)

and:
‖g − h‖L2 ≤ ‖g‖∞ e(‖log(g/h)−κ‖∞−κ) ‖ log (g/h)− κ‖L2 . (6.42)

Recall Definition 6.1 for densities f0 with a product form on 4. We give a few bounds
between the L∞ norms of log(f0), `0 and the constant a0.

Lemma 6.27. Let f0 ∈ P(4) given by Definition 6.1. Then we have:

|a0| ≤ ‖`0 ‖∞+ |log(d!)|, ‖ log(f0)‖∞ ≤ 2 ‖`0 ‖∞+ |log(d!)|, (6.43)

|a0| ≤ ‖ log(f0)‖∞, ‖`0 ‖∞ ≤ 2 ‖ log(f0)‖∞ . (6.44)

Proof. The first part of (6.43) can be obtained by bounding `0 with ‖`0 ‖∞ in the definition of
a0. The second part is a direct consequence of this. The first part of (6.44) can be deduced from
the fact that

∫
4 `

0 = 0. The second part is again a direct consequence of the first part.

Let m ∈ (N∗)d. Recall the application Am defined in (6.7) and set Ωm = Am(R|m|). For
α ∈ R|m|, we define the function Fα on R|m| by:

Fα(θ) = θ · α− ψ(θ). (6.45)

Recall also the log-additive exponential model fθ given by (6.6).

Lemma 6.28 (Lemma 3 of [12]). Let m ∈ (N∗)d. The application Am is one-to-one from R|m|
onto Ωm, with inverse say Θm. Let f ∈ P(4) such that α =

∫
4 ϕmf belongs to Ωm. Then for

all θ ∈ R|m|, we have with θ∗ = Θm(α):

D (f‖fθ) = D (f‖fθ∗) +D (fθ∗‖fθ) . (6.46)

Furthermore, θ∗ achieves maxθ∈R|m| Fα(θ) as well as minθ∈R|m| D (f‖fθ).

Definition 6.29. Let m ∈ (N∗)d. For f ∈ P(4) such that α =
∫
4 ϕmf ∈ Ωm, the probability

density fθ∗ , with θ∗ = Θm(α) (that is
∫
4 ϕmf =

∫
4 ϕmfθ∗), is called the information projection

of f .

The information projection of a density f is the closest density in the exponential family
(6.6) with respect to the Kullback-Leibler distance to f .

We consider the linear space of real valued functions defined on 4 and generated by ϕm:

Sm = {θ · ϕm; θ ∈ R|m|}. (6.47)

Let κm =
√

2d!
√∑d

i=1(mi + d)2d. The following Lemma summarizes Lemmas 6.17 and 6.19.

Lemma 6.30. Let m ∈ (N∗)d. We have for all g ∈ Sm:

‖g‖∞ ≤ κm ‖g‖L2 , (6.48)

For all θ ∈ R|m|, we have:
‖θ‖√
d
≤ ‖θ · ϕm ‖L2 ≤

√
d ‖θ‖ . (6.49)

Now we give upper and lower bounds for the Kullback-Leibler distance between two members
of the exponential family fθ and fθ′ in terms of the Euclidean distance ‖θ − θ′ ‖. Notice that for
all θ ∈ R|m|, ‖ log(fθ)‖∞ = supx∈4 |log(fθ(x))| is finite.
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Lemma 6.31. Let m ∈ (N∗)d. For θ, θ′ ∈ R|m|, we have:

‖ log(fθ/fθ′)‖∞ ≤ 2
√
d κm ‖θ − θ′ ‖, (6.50)

D (fθ‖fθ′) ≤
d

2 e‖log(fθ)‖∞+
√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2, (6.51)

D (fθ‖fθ′) ≥
1
2d e−‖log(fθ)‖∞−2

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2 . (6.52)

Proof. Since ψ(θ′) − ψ(θ) = log
(∫
4 e(θ′−θ)·ϕm fθ

)
, we get |ψ(θ′)− ψ(θ)| ≤ ‖(θ′ − θ) · ϕm ‖∞.

This implies that:

‖ log(fθ/fθ′)‖∞ ≤ 2 ‖(θ − θ′) · ϕm ‖∞
≤ 2κm ‖(θ − θ′) · ϕm ‖L2

≤ 2
√
d κm ‖θ − θ′ ‖,

where we used (6.6) for the first inequality, (6.48) for the second and (6.49) for the third. To
prove (6.51), we use (6.39) with κ = ψ(θ′)− ψ(θ). This gives:

D (fθ‖fθ′) ≤
1
2 e‖(θ−θ′)·ϕm‖∞

∫
4
fθ
(
(θ − θ′) · ϕm

)2
≤ 1

2 e‖log(fθ)‖∞+
√
d κm ‖θ−θ′‖ ‖(θ − θ′) · ϕm ‖2L2

≤ d

2 e‖log(fθ)‖∞+
√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2,

where we used (6.48) and (6.49) for the second inequality, and (6.49) for the third. To prove
(6.52), we use (6.38). We obtain:

D (fθ‖fθ′) ≥
1
2 e−‖log(fθ/fθ′ )‖∞

∫
4
fθ
(
(θ − θ′) · ϕm − (ψ(θ)− ψ(θ′))

)2
≥ 1

2 e−‖log(fθ)‖∞−2
√
d κm ‖θ−θ′‖

∫
4

(
(θ − θ′) · ϕm − (ψ(θ)− ψ(θ′))

)2
≥ 1

2 e−‖log(fθ)‖∞−2
√
d κm ‖θ−θ′‖ ‖(θ − θ′) · ϕm ‖2L2

≥ 1
2d e−‖log(fθ)‖∞−2

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2,

where we used (6.50) for the second inequality, the fact that the functions (ϕ[i],k, 1 ≤ i ≤ d, 1 ≤
k ≤ mi) are orthogonal to the constant function with respect to the Lebesgue measure on 4 for
the third inequality, and (6.49) for the fourth inequality.

Now we will show that the application Θm is locally Lipschitz.

Lemma 6.32. Let m ∈ (N∗)d and θ ∈ R|m|. If α ∈ R|m| satisfies:

‖Am(θ)− α‖ ≤ e−(1+‖log(fθ)‖∞)

6d 3
2κm

, (6.53)

Then α belongs to Ωm and θ∗ = Θm(α) exists. Let τ be such that:

6d
3
2 e1+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ ≤ 1.

Then θ∗ satisfies:

‖θ − θ∗ ‖ ≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖, (6.54)

‖ log(fθ/fθ∗)‖∞ ≤ 6d
3
2 eτ+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ, (6.55)

D (fθ‖fθ∗) ≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 . (6.56)
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Proof. Suppose that α 6= Am(θ) (otherwise the results are trivial). Recall Fα defined in (6.45).
We have, for all θ′ ∈ R|m|:

Fα(θ)−Fα(θ′) = (θ − θ′) · α+ ψ(θ′)− ψ(θ)
= D (fθ‖fθ′)−(θ − θ′) · (Am(θ)− α). (6.57)

Using (6.52) and the Cauchy-Schwarz inequality, we obtain the strict inequality:

Fα(θ)−Fα(θ′) > 1
3d e−‖log(fθ)‖∞−2

√
d κm ‖θ−θ′‖ ‖θ − θ′ ‖2−‖θ − θ′ ‖ ‖Am(θ)− α‖ .

We consider the ball centered at θ: Br = {θ′ ∈ R|m|, ‖θ − θ′ ‖ ≤ r} with radius r given by
r = 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖. For all θ′ ∈ ∂Br, we have:

Fα(θ)−Fα(θ′) >
(

eτ−6d
3
2 κm ‖Am(θ)−α‖ eτ+‖log(fθ)‖∞ −1

)
3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 .

The right hand side is non-negative as 6d 3
2 e1+‖log(fθ)‖∞ κm ‖Am(θ)− α‖ ≤ τ ≤ 1, see the con-

dition on τ . Thus, the value of Fα at θ, an interior point of Br, is larger than the values of Fα

on ∂Br. Therefore Fα is maximal at a point, say θ∗, in the interior of Br. Since the gradient
of Fα at θ∗ equals 0, we have ∇Fα(θ∗) = α −

∫
4 ϕmfθ∗ = 0, which means that α ∈ Ωm and

θ∗ = Θm(α). Since θ∗ is inside Br, we get (6.54). The upper bound (6.55) is due to (6.50) of
Lemma 6.31. To prove (6.56), we use (6.57) and the fact that Fα(θ)−Fα(θ∗) ≤ 0, which gives:

D (fθ‖fθ∗) ≤ (θ − θ∗) · (Am(θ)− α) ≤ ‖θ − θ∗ ‖ ‖Am(θ)− α‖ ≤ 3d eτ+‖log(fθ)‖∞ ‖Am(θ)− α‖2 .

6.8 Proof of Theorem 6.4

In this Section, we first show that the information projection fθ∗ of f0 onto {fθ, θ ∈ R|m|}
exists for all m ∈ (N∗)d. Moreover, the maximum likelihood estimator θ̂m,n, defined in (6.9)
based on an i.i.d sample Xn, verifies almost surely θ̂m,n = Θm(µ̂m,n) for n ≥ 2 with µ̂m,n the
empirical mean given by (6.8). Recall Ωm = Am(R|m|) with Am defined by (6.7).

Lemma 6.33. The mean α =
∫
4 ϕmf

0 verifies α ∈ Ωm and the empirical mean µ̂m,n verifies
µ̂m,n ∈ Ωm almost surely when n ≥ 2.

Remark 6.34. By Lemma 6.28, this also means that θ̂m,n = argmax θ∈R|m|Fµ̂m,n(θ), and since
Fµ̂m,n(θ) = (1/n)∑n

j=1 log(fθ(Xj)), the estimator f̂m,n = fθ̂m,n is the maximum likelihood
estimator of f0 in the model {fθ, θ ∈ Rm} based on Xn.

Proof. Notice that ψ(θ) = log(E[exp(θ ·ψm(U))])−log(d!), where U is a random vector uniformly
distributed on4. The Hessian matrix ∇2ψ(θ) is equal to the covariance matrix of ϕm(X), where
X has density fθ. Therefore ∇2ψ(θ) is positive semi-definite, and we show that it is positive
definite too. Indeed, for λ ∈ R|m|, λT∇2ψ(θ)λ = 0 is equivalent to E[(λ · ϕm(X))2] = 0, which
implies that λ·ϕm(X) = 0 a.e. on4. Since (ϕi,k, 1 ≤ i ≤ d, 1 ≤ k ≤ mi) are linearly independent,
this means λ = 0. Thus ∇2ψ(θ) is positive definite, providing that θ 7→ ψ(θ) is a strictly convex
function.

Let ψ∗ : R|m| → R ∪ {+∞} denote the Legendre-Fenchel transformation of the function
θ 7→ ψ(θ), i.e. for α ∈ R|m|:

ψ∗(α) = sup
θ∈R|m|

α · θ − ψ(θ) = sup
θ∈R|m|

Fα(θ).

Suppose that α ∈ Ωm. Then according to Lemma 6.28, ψ∗(α) = Fα(θ∗) with θ∗ = Θm(α), thus
ψ∗(α) is finite. Therefore Ωm ⊆ Dom (ψ∗), where Dom (ψ∗) = {α ∈ R|m| : ψ∗(α) < +∞}.
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Inversely, let α ∈ Dom (ψ∗). This ensures that θ∗ = argmax θ∈R|m|Fα(θ) exists uniquely, since
Fα(θ) is finite for all θ ∈ R|m|, α ∈ R|m|. This also implies that:

0 = ∇Fα(θ∗) = α−
∫
4
ϕmfθ∗ = α−Am(θ∗),

giving α ∈ Ωm. Thus we obtain Ωm = Dom (ψ∗). By Lemma 6.32, we have that Ωm is an open
subset of R|m|. Set Υ = int (cv (supp (ϕm(U)))), where int (A) and cv (A) is the interior and
convex hull of a set A ⊆ R|m|, respectively. Thanks to Lemma 4.1. of [1], we have Dom (ψ∗) = Υ.
The proof is complete as soon as we prove that α ∈ Υ and µ̂m,n ∈ Υ almost surely when n ≥ 2.
Since (ϕi,k, 1 ≤ i ≤ d, 1 ≤ k ≤ mi) are linearly independent polynomials, they coincide only on
a finite number of points. This directly implies that α ∈ Υ. To show that µ̂m,n ∈ Υ, notice that
the probability measures of ϕm(X) and ϕm(U) are equivalent. Therefore it is sufficient to prove
that (1/n)∑n

j=1 ϕm(U j) ∈ Υ, with (U1, . . . , Un) i.i.d. random vectors uniformly distributed on
4. The linear independence of (ϕi,k, 1 ≤ i ≤ d, 1 ≤ k ≤ mi) and the fact that U j , 1 ≤ j ≤ n are
uniformly distributed on 4 easily implies that for n ≥ 2, 1/n∑n

j=1 ϕm(U j) ∈ Υ, and the proof
is complete.

We divide the proof of Theorem 6.4 into two parts: first we bound the error due to the bias
of the proposed exponential model, then we bound the error due to the variance of the sample
estimation. We formulate the results in two general Propositions, which can be later specified
to get Theorem 6.4.

6.8.1 Bias of the estimator

The bias error comes from the information projection of the true underlying density f0 onto
the family of the exponential series model {fθ, θ ∈ R|m|}. We recall the linear space Sm spanned
by (ϕ[i],k, 1 ≤ k ≤ mi, 1 ≤ i ≤ d) where ϕi,k is a polynomial of degree k, and the form of the
probability density f0 given in (6.5). For 1 ≤ i ≤ d, let `0i,m be the orthogonal projection in
L2(qi) of `0i on the vector space spanned by (ϕi,k, 0 ≤ k ≤ mi) or equivalently on the vector
space spanned by (ϕi,k, 1 ≤ k ≤ mi), as we assumed that

∫
I `

0
i qi = 0. We set `0m = ∑d

i=1 `
0
[i],m

the approximation of `0 on Sm. In particular we have `0m = θ0 · ϕm for some θ0 ∈ R|m|. Let:

∆m = ‖`0 − `0m ‖L2 and γm = ‖`0 − `0m ‖∞

denote the L2 and L∞ errors of the approximation of `0 by `0m on the simplex 4.

Proposition 6.35. Let f0 ∈ P(4) have a product form given by Definition 6.1. Let m ∈ (N∗)d.
The information projection fθ∗ of f0 exists (with θ∗ ∈ R|m| and

∫
4 ϕmfθ∗ =

∫
4 ϕmf

0) and
verifies, with A1 = 1

2 eγm+‖log(f0)‖∞:

D
(
f0‖fθ∗

)
≤ A1∆2

m. (6.58)

Proof. The existence of θ∗ is due to Lemma 6.33. Thanks to Lemma 6.28 and (6.41) with
κ = ψ(θ0)− a0, we can deduce that:

D
(
f0‖fθ∗

)
≤ D

(
f0‖fθ0

m

)
≤ 1

2 e‖̀ 0−`0m‖∞ ‖f0 ‖∞ ‖`
0 − `0m ‖

2
L2 ≤

1
2 eγm+‖log(f0)‖∞ ∆2

m.

Set:
εm = 6d

5
2κm∆m e(4γm+2 ‖log(f0)‖∞+1) . (6.59)

We need the following lemma to control ‖ log(f0/fθ∗)‖∞.
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Lemma 6.36. If εm ≤ 1, we also have:

‖ log(f0/fθ∗)‖∞ ≤ 2γm + εm ≤ 2γm + 1. (6.60)

Proof. To show (6.60), let f0
m = fθ0 denote the density function in the exponential family

corresponding to θ0, and α0 =
∫
4 ϕmf

0. For each 1 ≤ i ≤ d, the functions ϕi,m = (ϕ[i],k,
1 ≤ k ≤ mi) form an orthonormal set with respect to the Lebesgue measure on 4. We set
α0
i,m =

∫
4 ϕi,mf

0 and Ai,m(θ0) =
∫
4 ϕi,mfθ0 . By Bessel’s inequality, we have for 1 ≤ i ≤ d:

‖α0
i,m −Ai,m(θ0)‖ ≤ ‖f0 − f0

m ‖L2 .

Summing up these inequalities for 1 ≤ i ≤ d, we get:

‖α0 −Am(θ0)‖ ≤
d∑
i=1
‖α0

i,m −Ai,m(θ0)‖

≤ d ‖f0 − f0
m ‖L2

≤ d ‖f0 ‖∞ e(‖̀ 0−`0m‖∞−(ψ(θ0)−a0)) ‖`0 − `0m ‖L2

≤ d e‖log(f0)‖∞+2γm ∆m,

where we used (6.42) with κ = ψ(θ0)−a0 for the third inequality and
∣∣ψ(θ0)− a0

∣∣ ≤ γm (due to
ψ(θ0)− a0 = log(

∫
exp(`0m − `0)f0)) for the fourth inequality. The latter argument also ensures

that ‖ log(f0/f0
m)‖∞ ≤ 2γm. In order to apply Lemma 6.32 with θ = θ0, α = α0, we check

condition (6.53), which is implied by:

d e‖log(f0)‖∞+2γm ∆m ≤
e−(1+‖log(f0

m)‖∞)

6d 3
2κm

·

Since ‖ log(f0
m)‖∞ ≤ ‖ log(f0)‖∞+ ‖ log(f0/f0

m)‖∞ ≤ ‖ log(f0)‖∞+2γm, this condition is en-
sured whenever εm ≤ 1. In this case, we deduce from (6.55) with τ = 1 that ‖ log(f0

m/fθ∗)‖∞ ≤
εm. By the triangle inequality, we obtain ‖ log(f0/fθ∗)‖∞ ≤ 2γm + εm. This completes the
proof.

6.8.2 Variance of the estimator

We control the variance error due to the parameter estimation by the size of the sample.
We keep the notations used in Section 6.8.1. In particular εm is defined by (6.59) and κm =
√

2d!
√∑d

i=1(mi + d)2d. The results are summarized in the following proposition.

Proposition 6.37. Let f0 ∈ P(4) have a product form given by Definition 6.1. Let m ∈ (N∗)d
and suppose that εm ≤ 1. Set:

δm,n = 6d
3
2κm

√
|m|
n

e2γm+‖log(f0)‖∞+2 .

If δm,n ≤ 1, then for every 0 < K ≤ δ−2
m,n, we have:

P
(
D
(
fθ∗‖f̂m,n

)
≥ A2

|m|
n
K

)
≤ exp(‖ log(f0)‖∞)/K. (6.61)

where A2 = 3d e2γm+εm+‖log(f0)‖∞+τ , and τ = δm,n
√
K ≤ 1.

Proof. Let θ∗ be defined in Proposition 6.35. Let X = (X1, . . . , Xd) denote a random variable
with density f0. Let θ in Lemma 6.32 be equal to θ∗, which gives Am(θ∗) = α0 = E[ϕm(X)],
and for α, we take the empirical mean µ̂m,n. With this setting, we have:

‖α− α0 ‖2 =
d∑
i=1

mi∑
k=1

(µ̂m,n,i,k − E[ϕi,k(Xi)])2 .
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By Chebyshev’s inequality ‖α− α0 ‖2 ≤ |m|K/n except on a set whose probability verifies:

P
(
‖α− α0 ‖2 > |m|

n
K

)
≤ 1
|m|K

d∑
i=1

mi∑
k=1

σ2
i,k.

with σ2
i,k = Var [ϕi,k(Xi)]. We have the upper bound σ2

i,k ≤ ‖f0 ‖∞
∫
4 ϕ

2
[i],k ≤ e‖log(f0)‖∞ by the

normality of ϕi,k. Therefore we obtain:

P
(
‖α− α0 ‖2 > |m|

n
K

)
≤ e‖log(f0)‖∞

K
·

We can apply Lemma 6.32 on the event {‖α− α0 ‖ ≤
√
|m|K/n} if:√

|m|
n
K ≤ e−(1+‖log(fθ∗ )‖∞)

6d 3
2κm

· (6.62)

Thanks to (6.60) we have:

‖ log(fθ∗)‖∞ ≤ ‖ log(f0/fθ∗)‖∞+ ‖ log(f0)‖∞ ≤ 2γm + εm + ‖ log(f0)‖∞ . (6.63)

Since εm ≤ 1, (6.62) holds if δ2
m,n ≤ 1/K. Then except on a set of probability less than

e‖log(f0)‖∞ /K, the maximum likelihood estimator θ̂m,n satisfies, thanks to (6.56) with τ =
δm,n
√
K:

D
(
fθ∗‖fθ̂m,n

)
≤ 3d e‖log(fθ∗ )‖∞+τ |m|

n
K ≤ 3d e2γm+εm+‖log(f0)‖∞+τ |m|

n
K. (6.64)

6.8.3 Proof of Theorem 6.4

Recall that r = (r1, . . . , rd) ∈ Nd is fixed. We assume `0i ∈W 2
ri(qi) for all 1 ≤ i ≤ d. Corollary

6.22 ensures ∆m = O(
√∑d

i=1m
−2ri
i ) and the boundedness of γm when mi > ri for all 1 ≤ i ≤ d

is due to Corollary 6.24. By Remark 6.20, we have that κm = O(|m|d). If (6.10) holds, then
κm∆m converges to 0. Therefore for m large enough, we have that εm defined in (6.59) is less
than 1. By Proposition 6.35, the information projection fθ∗ of f0 exists. For such m, by Lemma
6.28, we have that for all θ ∈ R|m|:

D
(
f0‖fθ

)
= D

(
f0‖fθ∗

)
+D (fθ∗‖fθ) .

Proposition 6.35 and ∆m = O(
√∑d

i=1m
−2ri
i ) ensures that the D

(
f0‖fθ∗

)
= O(∑d

i=1m
−2ri
i ).

The condition δm,n ≤ 1 in Proposition 6.37 is verified for n large enough since γm is bounded
and (6.11) holds, giving limn→∞ δm,n = 0. Proposition 6.37 then ensures that D

(
fθ∗‖f̂m,n

)
=

OP(|m| /n). Therefore the proof is complete.

6.9 Proof of Theorem 6.8

In this section we provide the elements of the proof of Theorem 6.8. We assume the hy-
potheses of Theorem 6.8. Recall the notation of Section 6.4. We shall stress out when we use
the inequalities (6.20), (6.21) and (6.22) to achieve uniformity in r in Corollary 6.9.

First recall that `0 from (6.5) admits the following representation: `0 = ∑d
i=1

∑∞
k=1 θ

0
i,kϕ[i],k.

For m = (m1, . . . ,md) ∈ (N∗)d, let `0m = ∑d
i=1

∑mi
k=1 θ

0
i,kϕ[i],k and f0

m = exp(`0m − ψ(θ0
m)). Using

Corollary 6.24 and
∣∣ψ(θ0

m)− a0
∣∣ ≤ ‖`0m − `0 ‖∞, we obtain that ‖ log(f0

m/f
0)‖∞ is bounded for

all m ∈ (N∗)d such that mi ≥ ri:

‖ log(f0
m/f

0)‖∞ ≤ 2γm ≤ 2γ, (6.65)
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with γm = ‖`0m − `0 ‖∞, and γ = C∑d
i=1 ‖`

(ri)
i ‖L2(qi) with C defined in Corollary 6.24 which

does not depend on r or m. For m = (v, . . . , v) ∈ Mn, we have that an ≤ v ≤ bn, with an, bn
given by:

an =
⌊
n1/(2(d+Nn)+1)

⌋
and bn =

⌊
n1/(2(d+1)+1)

⌋
. (6.66)

The upper bound (6.65) is uniform over m ∈ Mn and r ∈ (Rn)d when (6.21) holds. Since
Nn = o(log(n)), we have limn→+∞ an = +∞. Hence, for n large enough, say n ≥ n∗, we have
εm ≤ 1 for all m = (v, . . . , v) ∈ Mn with εm given by (6.59), since κm∆m = O(ad−min(r)

n ).
According to Proposition 6.35, this means that the information projection fθ∗m of f onto the set
of functions (ϕ[i],k, 1 ≤ i ≤ d, 1 ≤ k ≤ v) verify, by (6.55) with τ = 1, for all m ∈Mn:

‖ log(fθ∗m/f
0
m)‖∞ ≤ 1. (6.67)

Recall the notation A0
m =

∫
4 ϕmf

0 for the expected value of ϕm(X1), µ̂m,n the corresponding
empirical mean based on the sample Xn1 , and ˆ̀

m,n = θ̂m,n · ϕm where θ̂m,n is the maximum
likelihood estimate given by (6.9). Let Tn > 0 be defined as:

Tn = n1 e−4γ−4−2 ‖log(f0)‖∞

36d5d!bn(bn + d)2d log(bn) , (6.68)

with bn given by (6.66) and γ as in (6.65). We define the sets:

Bm,n = {‖A0
m − µ̂m,n ‖

2
> |m|Tn log(bn)/n1} and An =

 ⋃
m∈Mn

Bm,n

c .
We first show that with probability converging to 1, the estimators are uniformly bounded.
Lemma 6.38. Let n ∈ N∗, n ≥ n∗ andMn as in (6.14). Then we have:

P(An) ≥ 1−Nn2dnCTn ,

with CTn defined as:

CTn = 1
2d+ 3

(
1− Tn

2 ‖f0 ‖∞+C
√
Tn

)
,

with a finite constant C given by (6.72). Moreover, on the event An, we have the following
uniform upper bound for ‖ ˆ̀

m,n ‖∞, m ∈Mn:

‖ ˆ̀
m,n ‖∞ ≤ 4 + 4γ + 2 ‖ log(f0)‖∞ . (6.69)

Remark 6.39. Notice that by the definition of bn, limn→∞ Tn = +∞. For n large enough, we
have CTn < −ε < 0 for some positive ε, so that:

lim
n→∞

Nn2dnCTn = 0. (6.70)

This ensures that limn→∞ P(An) = 1, that is (ˆ̀
m,n,m ∈ Mn) are uniformly bounded with

probability converging to 1.
Proof. For m = (v, . . . , v) ∈ Mn fixed, in order to bound the distance between the vectors
µ̂m,n = (µ̂m,n,i,k, 1 ≤ i ≤ d, 1 ≤ k ≤ v) and A0

m = E[µ̂m,n] = (α0
i,k, 1 ≤ i ≤ d, 1 ≤ k ≤ v), we first

consider a single term
∣∣∣α0
i,k − µ̂m,n,i,k

∣∣∣. By Bernstein’s inequality, we have for all t > 0:

P
(∣∣∣α0

i,k − µ̂m,n,i,k
∣∣∣ > t

)
≤ 2 exp

(
− (n1t)2/2
n1Var ϕ[i],k(X1) + 2n1t ‖ϕi,k ‖∞ /3

)

≤ 2 exp

− (n1t)2/2
n1E

[
ϕ2

[i],k(X1)
]

+ 2n1t
√

2(d− 1)!(bn + d)d− 1
2 /3


≤ 2 exp

(
− n1t

2/2
‖f0 ‖∞+2t

√
2(d− 1)!(bn + d)d− 1

2 /3

)
,



6.9. Proof of Theorem 6.8 173

where we used, thanks to (6.32):

‖ϕi,k ‖∞ ≤
√

(d− 1)!
√

2k + d
(k + d− 1)!

k! ≤
√

2(d− 1)!(bn + d)d−
1
2

for the second inequality, and the orthonormality of ϕ[i],k for the third inequality. Let us choose
t =

√
Tn log(bn)/n1. This gives:

P

∣∣∣α0
i,k − µ̂m,n,i,k

∣∣∣ >
√
Tn log(bn)

n1

 ≤ 2 exp

− Tn log(bn)/2
‖f0 ‖∞+2

√
2Tn log(bn)(d−1)!(bn+d)2d−1

9n1


≤ 2b

− Tn
2 ‖f0‖∞ +C

√
Tn

n , (6.71)

with C given by:

C = sup
n∈N∗

4
√

2 log(bn)(d− 1)!(bn + d)2d−1

9n1
· (6.72)

Notice C < +∞ since the sequence
√

log(bn)(bn + d)2d−1/9n1 is o(1). For the probability of
Bn,m we have:

P (Bn,m) ≤
d∑
i=1

v∑
k=1

P
(∣∣∣α0

i,k − µ̂m,n,i,k
∣∣∣2 > Tn log(bn)

n1

)

≤
d∑
i=1

v∑
k=1

2b
− Tn

2 ‖f0‖∞ +C
√
Tn

n

≤ 2dnCTn .

This implies the following lower bound on P(An) :

P(An) = 1− P

 ⋃
m∈Mn

Bn,m

 ≥ 1−
∑

m∈Mn

P(Bn,m) ≥ 1−Nn2dncTn .

On An, by the definition of Tn, we have for all m ∈Mn:

‖A0
m − µ̂m,n ‖ 6d2√2d!(v + d)d e2γm+2 ≤

√
bn
Tn log(bn)

n1
6d

5
2
√

2d!(bn + d)d e2γ+2 = 1.

Notice that whenever (6.9) holds, condition (6.53) of Lemma 6.32 is satisfied with θ = θ∗m and
α = µ̂m,n, thanks to κm ≤

√
d2d!(bn + d)d and:

‖ log(fθ∗m)‖∞ ≤ ‖ log(fθ∗m/f
0
m)‖∞+ ‖ log(f0

m/f
0)‖∞+ ‖ log(f0)‖∞ ≤ 1 + 2γ + ‖ log(f0)‖∞ .

According to Equation (6.55) with τ = 1, we can deduce that on An, we have:

‖ log(f̂m,n/fθ∗m)‖∞ ≤ 1 for all m ∈Mn, n ≥ n∗.

This, along with (6.65) and (6.67), provide the following uniform upper bound for (‖ ˆ̀
m,n ‖∞,m ∈

Mn) on An:

1
2 ‖

ˆ̀
m,n ‖∞ ≤ ‖ log(f̂m,n)‖∞

≤ ‖ log(f̂m,n/fθ∗m)‖∞+ ‖ log(fθ∗m/f
0
m)‖∞+ ‖ log(f0

m/f
0)‖∞+ ‖ log(f0)‖∞

≤ 2 + 2γ + ‖ log(f0)‖∞,

where we used (6.44) for the first inequality.
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We also give a sharp oracle inequality for the convex aggregate estimator fλ̂∗n conditionally
on An with n fixed . The following lemma is a direct application of Theorem 3.6. of [38] and
(6.69).
Lemma 6.40. Let n ∈ N∗ be fixed. Conditionally on An, let fλ̂∗n be given by (6.16) with λ̂∗n
defined as in (6.18). Then for any x > 0 we have with probability greater than 1− exp(−x):

D
(
f0‖fλ̂∗n

)
− min
m∈Mn

D
(
f0‖f̂m,n

)
≤ β(log(Nn) + x)

n2
, (6.73)

with β = 2 exp(6K + 2L) + 4K/3, and L,K ∈ R given by :

L = ‖`0 ‖∞, K = 4 + 4γ + 2 ‖ log(f0)‖∞,

with γ as in (6.65).

Now we prove Theorem 6.8. For n ∈ N∗ and C > 0, we define the event Dn(C) as:

Dn(C) =
{
D
(
f0‖fλ̂∗n

)
≥ C

(
n
− 2 min(r)

2 min(r)+1

)}
.

Let ε > 0. To prove (6.19), we need to find Cε > 0 such that for all n large enough:

P (Dn(Cε)) ≤ ε. (6.74)

We decompose the left hand side of (6.74) according to An:

P (Dn(Cε)) ≤ P (Dn(Cε) | An)P(An) + P(Acn). (6.75)

The product P (Dn(Cε) | An)P(An) is bounded by:

P (Dn(Cε) | An)P(An) ≤ An(Cε) +Bn(Cε),

with An(Cε) and Bn(Cε) defined by:

An(Cε) = P
(
D
(
f0‖fλ̂∗n

)
− min
m∈Mn

D
(
f0‖f̂m,n

)
≥ Cε

2

(
n
− 2 min(r)

2 min(r)+1

) ∣∣∣∣An) ,
Bn(Cε) = P

(
min
m∈Mn

D
(
f0‖f̂m,n

)
≥ Cε

2

(
n
− 2 min(r)

2 min(r)+1

))
.

To bound An(Cε) we apply Lemma 6.40 with x = xε = − log(ε/4):

P
(
D
(
f0‖fλ̂∗n

)
− min
m∈Mn

D
(
f0‖f̂m,n

)
≥ β(log(Nn) + xε)

n2

∣∣∣∣An) ≤ ε

4 ·

Let us define Cε,1 as:

Cε,1 = sup
n∈N∗

β(log(Nn) + xε)

n2n
− 2 min(r)

2 min(r)+1

 . (6.76)

Since Nn = o(log(n)), we have Cε,1 < +∞ as the sequence on the right hand side of (6.76) is o(1).
This bound is uniform over regularities in (Rn)d thanks to (6.22) Therefore for all Cε ≥ Cε,1,
we have An(Cε) ≤ ε/4.

For Bn(Cε), notice that if n ≥ n̄ with n̄ given by (6.15), then m∗ = (v∗, . . . , v∗) ∈ Mn with
v∗ = bn1/(2 min(r)+1)c. This holds for all r ∈ (Rn)d due to (6.20). By Remark 6.5, we have that
D
(
f0‖f̂m∗,n

)
= OP(n−2 min(r)/(2 min(r)+1)). This ensure that there exists Cε,2 such that for all

Cε ≥ Cε,2, n ≥ n̄ :

Bn(Cε) ≤ P
(
D
(
f0‖f̂m∗,n

)
≥ Cε,2

2

(
n
− 2 min(r)

2 min(r)+1

))
≤ ε

4 ·

We also have by (6.70) that there exists ñ ∈ N∗ such that P(Acn) ≤ ε/2 for all n ≥ ñ. Therefore
by setting Cε = max(Cε,1, Cε,2) in (6.75), we have for all n ≥ max(n∗, n̄, ñ):

P (Dn(Cε)) ≤ An(Cε) +Bn(Cε) + P(Acn) ≤ ε

2 + ε

2 = ε,

which gives (6.74) and thus concludes the proof.



Chapter 7

Application to nuclear engineering
data

7.1 Industrial context and the dataset

In this section, we apply the proposed methodology to estimate the joint distribution of the
dimensions of flaws of a passive component in an EDF electric power plant. These flaws may lead
to a crack under the severe stress to which the material is exposed, endangering the integrity
of the component. The model predicting the propagation of the flaws requires its size (given
by Length × Depth) as an input parameter, therefore the joint modelling of the distribution of
these two quantities is crucial. Since higher values of the size of the flaws are more penalizing
for the occurrence of a crack, we prefer a model which is not only adequate for the dataset, but
assigns relatively great probability to higher values of these dimensions to obtain a conservative
estimation of the failure probability of the component.

EDF possesses a database of joint measurements of these quantities which contains n = 198
measurements obtained by supervised experimentations along with 341 observations registered
during regular inspections of the components in operation. We will only consider the database
coming from the experimentations as these can be considered statistically perfect, whereas the
inspection data is subject to measurement uncertainty and detection threshold.

Both sets of data suggest that the dimensions verify the ordering constraint, since for every
pair of dimensions we have that the length of the flaw is greater than the depth. The currently
applied modelling schemes does not take into consideration this aspect of the dataset. Figure
7.1 presents the experimentation dataset after applying a strictly monotone transformation on
both dimensions to obtain values on [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
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0.0

0.2
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0.6
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1.0
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g
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Figure 7.1 – Scatter-plot of the transformed data set
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7.2 Available modelling schemes

We will compare our approach to the currently approved modelling scheme as well as a
method proposed by the former conference paper [148]. In what follows, we note by L the
random variable of the length of the flaw and by D the random variable of the depth.

7.2.1 Reference model

The first method used in current statistical studies of this problem at EDF consists of
modelling the joint distribution of the pair (D,R), where R = D/L is the random variable
of the ratio between the two dimensions. The model takes the assumption that D and R are
independent, and propose the following distributions for these variables (we omit the parameters
of the distributions for confidentiality reasons):

• FD: Weibull with two parameters,
• FR: Log-normal.

7.2.2 Parametric model

[148] proposes a parametric copula-based approach for modelling the dependence structure
between D and L. Copula theory allows to separate the modelling of the marginals and the
dependence structure. The joint distribution function F(D,L) of the pair (D,L) can be expressed
by Sklar’s Theorem as:

F(D,L)(d, l) = C(D,L)(FD(d), FL(l)),
where FD, FL are the marginal distribution functions of D and L, and C(D,L) is the connecting
copula containing all information on the dependence. We refer to [132] for an overview of copula
theory. In this setting, both dimensions D and L are modelled by Weibull distributions with
two parameters. For the connecting copula C(D,L) the Authors consider multiple parametric
families such as Gaussian, Frank or Gumbel copulas. They estimate, based on the dataset, the
parameters in each family by various methods, and compare the resulting joint distributions in
order to determine the most relevant model. In conclusion, the Gumbel copula proved to give
the most satisfactory results according to the graphical criterion of the Kendall plots and the
Cramér-von-Mises goodness-of-fit test.

7.3 Estimation of the nonparametric model

For the nonparametric model, we have first transformed the dataset by using the monotone
transformation T given by, for x ∈ R+ :

T (x) = cx

cx+ 1 ,

with c a constant. This is necessary since the estimation procedure requires a sample distributed
on 4. The impact of the choice of the transformation function T as well as the constant c on
the estimation quality has not been addressed in this paper. We choose an equal number of
parameters m = m1 = m2 for both dimensions. We estimate the parameters θ = (θi,k; 1 ≤ i ≤
2, 1 ≤ k ≤ m) by maximizing the function G given by:

G(θ) =
2∑
i=1

m∑
k=1

θi,kµ̂i,k − ψ(θ)

with µ̂1,k = (1/n)∑n
j=1 ϕ1,k(Dj), µ̂2,k = (1/n)∑n

j=1 ϕ2,k(Lj), and ψ(θ) is given by ψ(θ) =
log(

∫
4 exp(∑2

i=1
∑m
k=1 θi,kϕi,k(xi)) dx). This is equivalent to solving equation (6.9). We estimate

our model for increasing values of m, using the result of the previous estimation with fewer
parameters as described in [176]. We use the TNC algorithm of the OpenTURNS library for
Python to numerically maximize G. The estimated parameters for m = 1, 2, 3, 4 can be found
in Table 7.1.
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Table 7.1 – Estimated parameters for m = 1, 2, 3, 4.

m θ̂1,k θ̂2,k
1 θ̂1,1 = −0.000307772 θ̂2,1 = −0.0277476
2 θ̂1,1 = −0.523519 θ̂2,1 = 0.295835

θ̂1,2 = −1.06206 θ̂2,2 = −0.814702
3 θ̂1,1 = −0.545568 θ̂2,1 = −0.0445993

θ̂1,2 = −1.10107 θ̂2,2 = −0.603401
θ̂1,3 = −0.00991902 θ̂2,3 = −0.310838

4 θ̂1,1 = −1.82941 θ̂2,1 = 0.759716
θ̂1,2 = −2.73921 θ̂2,2 = −2.43278
θ̂1,3 = −1.1029 θ̂2,3 = 0.626079
θ̂1,4 = −0.631885 θ̂2,4 = −1.03101

Table 7.2 – Log-likelihood and BIC of the competing models with empirical data.

Model Copula Log-likelihood BIC
Reference - −957.399 1930.663
Parametric Gumbel −927.196 1880.833

Nonparametric MaxEntropy −998.516 2039.338

7.4 Comparison of the competing models

7.4.1 Fitting to the empirical data

Here we compare the three different approaches in terms of goodness-of-fit to the underlying
dataset and the resulting failure probability. For the reference and parametric model, we utilize
the parameters obtained in the previous studies. For the nonparametric model, we take m1 =
m2 = 4. In Figure 7.2, the densities obtained from each model can be seen along with the
dataset. One can observe that the support of the nonparametric model is indeed the half plane
S, whereas the other two models allow the variables to take values such that L < D. In Table
7.2 we calculated the log-likelihood of each model along with the BIC value. According to these
values, the parametric model seems the most adapted for the sample followed by the reference
model and the nonparametric model. The results suggest that distribution of the sample may
not belong to the family of maximum entropy distributions of order statistics, and there may
exist a hidden constraint that needs to be taken into consideration.

(a) Reference model (b) Parametric model (Gumbel) (c) Nonparametric model

Figure 7.2 – Isodensities for the competing models with empirical data.
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Figure 7.3 – Scatter-plot of the two transformed data sets.

Table 7.3 – Log-likelihood and BIC of the competing models with simulated data.

Model Copula Log-likelihood BIC
Reference - −1050.075 2116.016
Parametric Frank −1031.315 2089.072
Parametric Gumbel −1030.492 2087.425
Parametric Normal −1021.243 2068.928

Nonparametric MaxEntropy −995.058 2032.423

7.4.2 Fitting to simulated data

In order to show that effectiveness of the nonparametric model when the underlying dis-
tribution belongs to the family of maximum entropy distributions of order statistics, we simu-
late a dataset with 198 entries from the maximum entropy distribution with the same Weibull
marginals which were used to construct the parametric model in 7.2.2. Figure 7.3 shows the
difference between the two sets of data. We re-estimated all the parameters of the three com-
peting models, and Table 7.3 shows the log-likelihood and BIC values for each model. For the
parametric model, we made estimations using the Frank, Gumbel and Normal (Gaussian) fam-
ily of copulas. The results confirm that if the underlying distribution belongs to the family of
maximum entropy distributions of order statistics, then the nonparametric model outperforms
the reference and parametric models.

(a) Reference model (b) Parametric model (Normal) (c) Nonparametric model

Figure 7.4 – Isodensities for the competing models with simulated data.

7.4.3 Failure probability

We use the joint distribution of the pair (D,L) estimated in three different ways in 7.4.1
to carry out a Monte Carlo study to determine the impact of the modelling on the component
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Table 7.4 – Failure probabilities calculated with the competing models using an importance
sampling method with 10−4 simulations.

Model R̂fmodel cmodel
Reference 1 2.09%
Parametric 1.022 1.99%

Nonparametric 0.148 4.14%

failure probability. The failure probability P f is the probability that one of the output factors of
the fracture mechanics model stays below a certain threshold. To estimate this probability, we
couple the fracture mechanics model with the OpenTURNS platform. The fracture mechanics
model takes 15 input variables, we assume that the pair (L,D) is independent of the rest of
the variables whose values are fixed at an average level for this study. We evaluate the failure
probabilities by Monte-Carlo simulations with importance sampling using N = 104 simulations.
The simulations provide the estimators P̂ fmodel for the three models. The results are summarized
in Table 7.4, where we give the estimated failure probabilities relative to the failure probability
of the reference model, that is the ratio:

R̂fmodel = P̂ fmodel
P̂ fref.model

,

and the coefficient of variation cmodel given by:

cmodel =

√√√√1− P̂ fmodel
P̂ fmodelN

·

We observe that the nonparametric model estimates the failure probability to be much lower
than the other two models. This is due to the fact that a failure usually occurs when both D and
L assume high values. The Gumbel copula ensures a high positive tail dependence, leading to
more frequent common high values, whereas the nonparametric model, as Figure 7.2 suggests,
gives more probabilistic mass to the upper-left zones with greater L values but smaller D values.

7.5 Conclusions

In this paper we draw attention to the importance of modelling the dependence structure
of random variables appearing in uncertainty quantification studies. The modelling should take
into consideration all the available statistical data, but ensure a maximum of freedom besides
this knowledge. We presented the family of maximum entropy distribution of ordered random
variables as well as a nonparametric estimation procedure to efficiently estimate such distribu-
tions. We examined its statistical performance in an uncertainty quantification study compared
to some other approaches. We have seen that when the underlying data set comes from a dis-
tribution which belongs to the family of maximum entropy distributions of order statistics, the
nonparametric density estimation approach proposed in Section 6 performs well. When applied
to the industrial case study, we observe a decline in the performance of the nonparametric esti-
mator, suggesting that there are some hidden constraints in addition to the ordering which was
not taken into consideration by this approach (for example the high upper tail dependence). The
failure probability calculations shows that the dependence modelling have a significant impact
on the estimation of failure risks.

In following studies we would like to determine, via extensive simulation studies, the cases
where such distributions may give more favourable results compared to other approaches. We
would like to give a testing procedure to determine whether the underlying data set comes
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from a maximum entropy distribution or there are other hidden constraints which need to be
taken into consideration. An aggregation method is also under development to give an adaptive
nonparametric estimator of the maximum entropy distribution which performs as well as the
nonparametric model with an optimal number of parameters which depends on the density’s
unknown regularity.
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