A. Gerbi, A. Jourdain, B. , C. , and E. , Abstract, Monte Carlo Methods and Applications, vol.22, issue.3, 2015.
DOI : 10.1515/mcma-2016-0109

A. Gerbi, A. Jourdain, B. , C. , and E. , Asymptotic error distribution for the ninomiya-victoir scheme in the commutative case, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390897

A. Gerbi, A. Jourdain, B. , C. , and E. , Asymptotics for the normalized error of the ninomiya-victoir scheme, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259915

A. Alfonsi, High order discretization schemes for the CIR process: Application to affine term structure and Heston models, Mathematics of Computation, vol.79, issue.269, pp.209-237, 2010.
DOI : 10.1090/S0025-5718-09-02252-2

URL : https://hal.archives-ouvertes.fr/hal-00143723

A. Alfonsi, Affine diffusions and related processes: simulation, theory and applications, 2015.
DOI : 10.1007/978-3-319-05221-2

V. Bally and C. Rey, Approximation of Markov semigroups in total variation distance, Electronic Journal of Probability, vol.21, p.44, 2016.
DOI : 10.1214/16-EJP4079

URL : https://hal.archives-ouvertes.fr/hal-01110015

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations, Probability Theory and Related Fields, vol.8, issue.1, pp.43-60, 1996.
DOI : 10.1007/BF01303802

URL : https://hal.archives-ouvertes.fr/inria-00074016

V. Bally and D. Talay, The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density, Monte Carlo Methods and Applications, vol.2, issue.2, pp.93-128, 1996.
DOI : 10.1515/mcma.1996.2.2.93

URL : https://hal.archives-ouvertes.fr/inria-00074016

C. Bayer and P. K. Friz, Cubature on Wiener Space: Pathwise Convergence, Applied Mathematics & Optimization, vol.35, issue.3, pp.261-278, 2013.
DOI : 10.1007/s00245-012-9187-8

URL : http://arxiv.org/pdf/1304.4623

B. Alaya, M. Kebaier, and A. , Central limit theorem for the multilevel Monte Carlo Euler method, The Annals of Applied Probability, vol.25, issue.1, pp.211-234, 2015.
DOI : 10.1214/13-AAP993

URL : https://hal.archives-ouvertes.fr/hal-00693191

A. Beskos, O. Papaspiliopoulos, and G. O. Roberts, Retrospective exact simulation of diffusion sample paths with applications, Bernoulli, vol.12, issue.6, pp.1077-1098, 2006.
DOI : 10.3150/bj/1165269151

F. Black and M. Scholes, The pricing of options and corporate liabilities. The journal of political economy, pp.637-654, 1973.

J. C. Butcher, Numerical methods for ordinary differential equations, 2008.
DOI : 10.1002/0470868279

J. M. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, Stochastic differential systems (Proc. IFIP-WG 7/1 Working Conf, pp.162-171, 1978.
DOI : 10.1007/BFb0004007

J. C. Cox, J. E. Ingersoll-jr, R. , and S. A. , A theory of the term structure of interest rates, Econometrica: Journal of the Econometric Society, pp.385-407, 1985.

K. Debrabant and A. Rößler, On the Acceleration of the Multi-Level Monte Carlo Method, Journal of Applied Probability, vol.52, issue.02, pp.307-322, 2015.
DOI : 10.1007/s10543-010-0276-2

J. Dieudonné, Fondements de l'analyse moderne. Traduit de l'anglais par D. Huet. Avant-propos de G, 1963.

H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), vol.13, issue.2, pp.99-125, 1977.

D. Duffie and P. Glynn, Efficient Monte Carlo Simulation of Security Prices, The Annals of Applied Probability, vol.5, issue.4, pp.897-905, 1995.
DOI : 10.1214/aoap/1177004598

T. Fujiwara, Sixth order methods of kusuoka approximation, Preprint UTMS, 2006.

J. G. Gaines and T. J. Lyons, Random Generation of Stochastic Area Integrals, SIAM Journal on Applied Mathematics, vol.54, issue.4, pp.1132-1146, 1994.
DOI : 10.1137/S0036139992235706

M. B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research, vol.56, issue.3, pp.607-617, 2008.
DOI : 10.1287/opre.1070.0496

M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L??vy area simulation, The Annals of Applied Probability, vol.24, issue.4, pp.1585-1620, 2014.
DOI : 10.1214/13-AAP957

URL : http://arxiv.org/abs/1202.6283

J. Guyon, Euler scheme and tempered distributions. Stochastic Process, Appl, vol.116, issue.6, pp.877-904, 2006.
DOI : 10.1016/j.spa.2005.11.011

URL : http://doi.org/10.1016/j.spa.2005.11.011

L. G. Gyurkó and T. J. Lyons, Efficient and Practical Implementations of Cubature on Wiener Space, Stochastic analysis 2010, pp.73-111, 2011.
DOI : 10.1007/978-3-642-15358-7_5

E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I, 1993.
DOI : 10.1007/978-3-662-12607-3

S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, vol.6, issue.2, pp.327-343, 1993.
DOI : 10.1093/rfs/6.2.327

T. S. Ho, L. , and S. , Term Structure Movements and Pricing Interest Rate Contingent Claims, The Journal of Finance, vol.10, issue.5, pp.1011-1029, 1986.
DOI : 10.1111/j.1540-6261.1986.tb02528.x

L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, vol.119, issue.0, pp.147-171, 1967.
DOI : 10.1007/BF02392081

J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, Séminaire de Probabilités, XXXI, pp.232-246, 1997.
DOI : 10.1007/978-3-662-02514-7

J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations, The Annals of Probability, vol.26, issue.1, pp.267-307, 1998.
DOI : 10.1214/aop/1022855419

S. Kanagawa, The Rate of Convergence for Approximate Solutions of Stochastic Differential Equations, Tokyo Journal of Mathematics, vol.12, issue.1, pp.33-48, 1989.
DOI : 10.3836/tjm/1270133546

A. Kebaier, Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing, The Annals of Applied Probability, vol.15, issue.4, pp.2681-2705, 2005.
DOI : 10.1214/105051605000000511

URL : https://hal.archives-ouvertes.fr/hal-00693106

P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, vol.23, 1992.

T. G. Kurtz and P. Protter, Wong-Zakai corrections, random evolutions, and simulation schemes for SDEs, Stochastic analysis, pp.331-346, 1991.
DOI : 10.1016/b978-0-12-481005-1.50023-5

S. Kusuoka, Approximation of expectation of diffusion process and mathematical finance, Taniguchi Conference on Mathematics Nara '98, pp.147-165, 2001.

S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, Advances in mathematical economics, pp.69-83, 2004.
DOI : 10.1007/978-4-431-68450-3_4

V. Lemaire and G. Pagès, Multilevel Richardson-Romberg extrapolation, 2014.
DOI : 10.2139/ssrn.2539114

URL : https://hal.archives-ouvertes.fr/hal-00920660

T. Lyons and N. Victoir, Cubature on Wiener space, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.460, issue.2041, pp.169-198, 2004.
DOI : 10.1098/rspa.2003.1239

T. J. Lyons, Differential equations driven by rough signals, Revista Matem??tica Iberoamericana, vol.14, issue.2, pp.215-310, 1998.
DOI : 10.4171/RMI/240

P. Malliavin, Stochastic analysis, volume 313 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1997.

?. Mil and G. N. ?te?-in, Approximate integration of stochastic differential equations, Teor. Verojatnost. i Primenen, vol.19, pp.583-588, 1974.

M. Ninomiya and S. Ninomiya, A new higher-order weak approximation scheme for??stochastic differential equations and??the??Runge???Kutta method, Finance and Stochastics, vol.8, issue.3???6, pp.415-443, 2009.
DOI : 10.1007/s00780-009-0101-4

S. Ninomiya and N. Victoir, Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, vol.29, issue.2, pp.107-121, 2008.
DOI : 10.1016/0020-7225(65)90045-5

K. Oshima, J. Teichmann, and D. Velu??ek, A new extrapolation method for weak approximation schemes with applications, The Annals of Applied Probability, vol.22, issue.3, pp.1008-1045, 2012.
DOI : 10.1214/11-AAP774

G. Pagès, Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity, Monte Carlo Methods and Applications, vol.13, issue.1, pp.37-70, 2007.
DOI : 10.1515/MCMA.2007.003

H. Pham, Continuous-time stochastic control and optimization with financial applications, volume 61 of Stochastic Modelling and Applied Probability, 2009.

E. Platen and W. Wagner, On a Taylor formula for a class of Itô processes, Probab. Math. Statist, vol.3, issue.1, pp.37-51, 1982.

A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, 1994.

A. Rényi, On stable sequences of events. Sankhy¯ a Ser, pp.293-302, 1963.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1999.
DOI : 10.1007/978-3-662-06400-9

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.483-509, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol.140, 2012.
DOI : 10.1090/gsm/140

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, vol.5, issue.2, pp.177-188, 1977.
DOI : 10.1016/0304-405X(77)90016-2

L. Yan, Asymptotic error for the Milstein scheme for SDEs driven by continuous semimartingales, The Annals of Applied Probability, vol.15, issue.4, pp.2706-2738, 2005.
DOI : 10.1214/105051605000000520