High dimensional Markov chain Monte Carlo methods : theory, methods and applications - Archive ouverte HAL Access content directly
Theses Year : 2016

High dimensional Markov chain Monte Carlo methods : theory, methods and applications

Méthodes de Monte Carlo par chaîne de Markov en grandes dimensions : théorie, méthodes et applications

(1)
1

Abstract

The subject of this thesis is the analysis of Markov Chain Monte Carlo (MCMC) methods and the development of new methodologies to sample from a high dimensional distribution. Our work is divided into three main topics. The first problem addressed in this manuscript is the convergence of Markov chains in Wasserstein distance. Geometric and sub-geometric convergence with explicit constants, are derived under appropriate conditions. These results are then applied to thestudy of MCMC algorithms. The first analyzed algorithm is an alternative scheme to the Metropolis Adjusted Langevin algorithm for which explicit geometric convergence bounds are established. The second method is the pre-Conditioned Crank-Nicolson algorithm. It is shown that under mild assumption, the Markov chain associated with thisalgorithm is sub-geometrically ergodic in an appropriated Wasserstein distance. The second topic of this thesis is the study of the Unadjusted Langevin algorithm (ULA). We are first interested in explicit convergence bounds in total variation under different kinds of assumption on the potential associated with the target distribution. In particular, we pay attention to the dependence of the algorithm on the dimension of the state space. The case of fixed step sizes as well as the case of nonincreasing sequences of step sizes are dealt with. When the target density is strongly log-concave, explicit bounds in Wasserstein distance are established. These results are then used to derived new bounds in the total variation distance which improve the one previously derived under weaker conditions on the target density.The last part tackles new optimal scaling results for Metropolis-Hastings type algorithms. First, we extend the pioneer result on the optimal scaling of the random walk Metropolis algorithm to target densities which are differentiable in Lp mean for p ≥ 2. Then, we derive new Metropolis-Hastings type algorithms which have a better optimal scaling compared the MALA algorithm. Finally, the stability and the convergence in total variation of these new algorithms are studied.
L'objet de cette thèse est l'analyse fine de méthodes de Monte Carlopar chaînes de Markov (MCMC) et la proposition de méthodologies nouvelles pour échantillonner une mesure de probabilité en grande dimension. Nos travaux s'articulent autour de trois grands sujets.Le premier thème que nous abordons est la convergence de chaînes de Markov en distance de Wasserstein. Nous établissons des bornes explicites de convergence géométrique et sous-géométrique. Nous appliquons ensuite ces résultats à l'étude d'algorithmes MCMC. Nous nous intéressons à une variante de l'algorithme de Metropolis-Langevin ajusté (MALA) pour lequel nous donnons des bornes explicites de convergence. Le deuxième algorithme MCMC que nous analysons est l'algorithme de Crank-Nicolson pré-conditionné, pour lequel nous montrerons une convergence sous-géométrique.Le second objet de cette thèse est l'étude de l'algorithme de Langevin unajusté (ULA). Nous nous intéressons tout d'abord à des bornes explicites en variation totale suivant différentes hypothèses sur le potentiel associé à la distribution cible. Notre étude traite le cas où le pas de discrétisation est maintenu constant mais aussi du cas d'une suite de pas tendant vers 0. Nous prêtons dans cette étude une attention toute particulière à la dépendance de l'algorithme en la dimension de l'espace d'état. Dans le cas où la densité est fortement convexe, nous établissons des bornes de convergence en distance de Wasserstein. Ces bornes nous permettent ensuite de déduire des bornes de convergence en variation totale qui sont plus précises que celles reportées précédemment sous des conditions plus faibles sur le potentiel. Le dernier sujet de cette thèse est l'étude des algorithmes de type Metropolis-Hastings par échelonnage optimal. Tout d'abord, nous étendons le résultat pionnier sur l'échelonnage optimal de l'algorithme de Metropolis à marche aléatoire aux densités cibles dérivables en moyenne Lp pour p ≥ 2. Ensuite, nous proposons de nouveaux algorithmes de type Metropolis-Hastings qui présentent un échelonnage optimal plus avantageux que celui de l'algorithme MALA. Enfin, nous analysons la stabilité et la convergence en variation totale de ces nouveaux algorithmes.
Fichier principal
Vignette du fichier
73643DURMUS2016archivage.pdf (3.89 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-01529750 , version 1 (31-05-2017)

Identifiers

  • HAL Id : tel-01529750 , version 1

Cite

Alain Durmus. High dimensional Markov chain Monte Carlo methods : theory, methods and applications. Probability [math.PR]. Université Paris-Saclay, 2016. English. ⟨NNT : 2016SACLT001⟩. ⟨tel-01529750⟩
515 View
355 Download

Share

Gmail Facebook Twitter LinkedIn More