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Chapter 1

Introduction en francais

1.1 Motivations, un petit détour par les statistiques bayési-
ennes

L’échantillonnage d’une loi de probabilité est la principale motivation des travaux de
cette theése. Ce probléme provient de diverses applications. En particulier, 'inférence
bayesienne repose sur l’exploration d’une loi a posteriori.

La statistique bayésienne suppose un modele probabiliste sur des données d’observation
w: w est supposé étre une réalisation d’une variable aléatoire W a valeurs dans un espace
mesurable (W, W) et on considére un modele paramétrique pour W, (W, W, Pg) ou Pg
est un ensemble de mesures de probabilité défini par:

Po ={K(®,)|ve0O}.

K est un noyau de transition sur (W, W) et (©,F) est un ensemble mesurable. Dans la
plupart des applications, © est soit un espace discret, une partie de R%, d > 1, ou un
espace fonctionnel. On suppose que le modele est dominé par une mesure p sur (W, W),
i.e. K admet une densité de transition par rapport a u: il existe une fonction mesurable
L:0 xW = Ry telle que pour tout ¥ € O et w € W,
K(9..
L) ) = (i)

La fonction ¥ — L(W|¥) s’appelle la vraisemblance du modele. Alors que en statistique
fréquentiste, on inférerait le parameétre ¥ en maximisant la vraisemblance, les statistiques
bayesiennes considerent le parametre ¢ comme lui-méme une réalisation d’une variable
aléatoire 6, et posent une loi de probabilité a priori sur cette derniere, que I'on notera
vg. Le théoréme de Bayes [Sch95, Théoreme 1.31] donne alors l'expression de la loi
conditionnelle de 6 sachant W, appelée loi a posteriori, en fonction de la vraisemblance
et de la loi a priori vy. Cette loi conditionnelle admet une densité de transition par
rapport a vy qui est donnée pour vyp-presque tout 9 et pu-presque tout w par

L(w|)
pw (w)

pQ\W(w”’g) = ) (1.1)



2 1.2. Algorithmes de Monte Carlo et Monte Carlo par chaines de Markov

ol pw est la densité marginale de W donnée pour tout w € W par

pu(w) = [ £lwl)vo(as) (12)

Si w sont des données d’observation, la mesure de probabilité associée a la densité
pow (W, -) est appelée la distribution a posteriori.

1.2 Algorithmes de Monte Carlo et Monte Carlo par chaines
de Markov

Soit maintenant une mesure de probabilité 7 sur un espace d’état mesurable (E, &) et
f : E — R une fonction intégrable par rapport a w. La mesure de probabilité 7 sera
appelée distribution cible. On s’intéresse & l'estimation de la quantité [¢ f(z)n(dz).
Gardons & l'esprit que la plupart du temps E est soit discret ou une partie de R?. Les
méthodes de Monte Carlo classiques sont basées sur la loi forte de grands nombres pour
les suites indépendantes et identiquement distribuées (i.i.d.) de loi 7 : soient (Y;) ey une
suite i.i.d. de loi 7 alors [¢ f(x)m(dz) est approchée par la suite d’estimateurs définie
pour tout N € N* par

R 1 N-1
fr=y T 509 (13)

Par la loi forte des grands nombres fy converge presque stirement vers Je f(x)m(dx)
lorsque N tend vers I'infini, et si f? est intégrable par rapport a , alors le théoreme
central limite donne une expression de ’erreur asymptotique. Bien que cette procédure
soit trés simple, elle requiert des échantillons i.i.d. de loi 7. Pour cela, sauf cas triviaux,
les méthodes les plus connues sont la méthode de la transformée inverse et la méthode
de rejet, voir [RC10, section 2.1.2] et [RC10, section 2.3].

Cependant lorsque la dimension de I'espace d’état devient grand, ces méthodes de-
viennent vite inefficaces. De plus dans le cadre de l'inférence bayésienne, 7 admet une
densité par rapport a la loi a priori (1.1) donnée avec les notations de la Section 1.1 par:

L(w]|z)
7 ow(w)

ol w sont les données d’observation. On peut observer que cette densité n’est connue
qu’a une constante multiplicative pres. Sauf dans le cas de lois dites conjuguées [Rob06,
section 3.3], la densité marginale py définie par (1.2) n’a pas de forme analytique. Cette
contrainte rend d’autant plus difficile ’application des deux méthodes mentionnées ci-
dessus.

Une autre classe de méthode de Monte Carlo sont les méthodes de Monte Carlo par
chaines de Markov. La suite de variables aléatoires (Y;);en peut ne plus étre i.i.d. et
étre corrélée. Plus précisément, un estimateur de [¢ f(z)m(dx) est toujours défini par
(1.3), mais (Y;)ien est une chaine de Markov de noyau P et de loi invariante 7. Tout
comme dans le cas i.i.d., sous de bonnes hypotheses sur 7 et le noyau P, une loi forte
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des grands nombres et un théoréme central limite peuvent étre établis [MT09, chapitre
17], ce qui justifie ces méthodes. En effet, [MT09, Theorem 17.1.7] montre que si P est
Harris récurrent! et admet 7 comme loi invariante, alors pour tout x € E

N-1
NTUY D f) = / f(y)m(dy),  Pp-presque siirement ,
i=0 E

ot P, est la loi induite par le noyau P et la distribution initiale &, sur (EN,E®N) et
(Y;)ien est la chaine canonique sur (EN 76'@)1\],]}”%). Un premier probleme quant a ces
méthodes est de trouver un noyau de transition admettant 7 comme loi invariante. Les
algorithmes de type Metropolis-Hastings sont des méthodes permettant de construire de
tel noyau de transition.

1.3 Les échantillonneurs de type Metropolis-Hastings

La premiere version de I’algorithme de Metropolis-Hastings a été proposée dans [Met+53],
et généralisée dans [Has70] et [Tie98]. Considérons un noyau de transition P sur (E, &)
sous la forme: pour tout x € Eet A € &,

Plo.d) = [ alwy)Qe.dy) +6:0) [~ ale.)Q.dy) (1.4)

ou @ est un noyau sur (E,£), que 'on appelera noyau de proposition, et a : E x E —
[0, 1] une fonction mesurable, que I'on appelera ratio d’acceptation. On peut facilement
simuler une chaine de Markov de noyau P si c¢’est le cas pour le noyau Q. Soit x € E et
W de loi Q(z,-). Définissons la variable aléatoire Y par

v — {W avec probabilité a(x, W)

x sinon .

Alors, on déduit aisément que Y a pour loi P(x,-). On peut observer que si P est sous
la forme (1.4) alors par définition il est réversible par rapport a 7 si et seulement si pour
toute fonction mesurable bornée f : E2 — R,

/E2 fla,y)m (@) P(de, dy) = /E2 f(a,y)m(dy) P(y, dz) ,
ce qui est équivalent a
o, [ (@ y)al@,y)r(de)Q(z, dy) = /E2 fla,y)aly, 2)m(dy)Q(y, dz) .
Définissons les deux mesures sur (E2,£%2), et u* pour tout A € £%2 par?:

p) = [ el 2)m(d)Q(y. d2)

W) = [ T )ndy)Q(y.d2)

1yoir Definition A.14
2voir Definition-Proposition A.1 pour une définition rigoureuse
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Alors P est réversible par rapport & 7 si il existe un ensemble mesurable S € £%2, qui
soit symétrique, tel que « est nul sur S¢, u(- N S) soit absolument continue par rapport
a T (-N'S) de densité m et p-presque partout

a(z,y)m(z,y) = a(y, z) . (1.5)
On dira que le noyau P est de type Metropolis-Hastings si il est sous la forme (1.4)

et vérifie (1.5). Deux exemples importants que l'on traitera dans ce manuscrit sont les
suivants.

(A) Supposons qu’il existe un mesure v sur (E, &) qui domine 7 et @, i.e. m admet
une densité encore notée m par rapport a v et () admet une densité de transition ¢ par
rapport a v. Alors si on définit

s ={(z.y) € B | n(2)q(,y) > 0, 7(y)aly,x) > 0} ,
et

o (1 "Wy )\
alwy) =4 <1’7T(~’6)Q(:v,y)> pour (z,y) €8 (1.6)
0 sinon

les conditions pour que P soit réversible sont satisfaites avec

m(x,y) = min (1, %) ,

défini sur S.

Dans ce cadre un choix simple pour le noyau de proposition () est la mesure de domi-
nation v si celle-ci est une mesure de probabilité. Alors les variables aléatoires proposées
au cours de 'algorithme constituent une suite i.i.d. de loi commune v. Observons que
dans ce cas pour tout (x,y) € S,

a(z,y) =min (1,7 (y)/7(z)) . (1.7)

Cet algorithme est appelé 'algorithme de Metropolis-Hastings indépendant. Une autre
possibilité pour définir un noyau de Metropolis-Hastings, lorsque la structure de E le
permet et que v est invariante par translation, est de considérer une marche aléatoire
associée a une mesure symétrique sur (E, &) qui admet une densité ¢ par rapport a v.
Aussi, les variables aléatoires proposées au cours de 'algorithme sont de la forme

Wis1 =Y + Zpta

ou Yy, est I’état courant a l'itération k et (Z;);>1 est une suite i.i.d. de variables aléatoires
de densité §. On peut observer que dans ce cas le noyau de transition est donné pour
tout x,y € E par q(z,y) = ¢y — x) et comme ¢ est supposé symétrique « est encore une
fois sous la forme (1.7). Cette méthode est appelée 1'algorithme de Metropolis & marche
aléatoire symétrique. Un exemple de ce type de méthode est ’algorithme de Metropolis
4 marche aléatoire symétrique sur R? muni de la mesure de Lebesgue et ol

a(w,y) = @me?) " exp (— |ly — 2 /(26%)) -
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(B) Si m admet une densité positive, encore notée 7, par rapport & une mesure v,
et le noyau Q) est réversible par rapport a v, alors en définissant S = E et pour tout

(z,y) € E?, .
. ™Y
a(x,y) =min [ 1, —= | ,
(2 = min (1. 75)
(1.4) définit toujours un noyau de Metropolis-Hastings réversible par rapport a 7. Notons
que dans ce cadre contrairement a (A), il n’est pas nécessaire que @ soit dominé par
rapport a v.

1.4 La diffusion de Langevin

1.4.1 Dynamique markovienne continue

Au lieu de considérer des dynamiques discretes, on peut aussi penser & utiliser des pro-
cessus markoviens en temps continu associés a un semi-groupe (P);>o sur (E, &), pour
lequel 7 est invariante. Pour cela, on suppose que E est un espace polonais locale-
ment compact et que (P¢):>o est fellerien *. On associe & (P¢)>0, un opérateur appelé
son générateur et noté /. Notons Cy(E) I'ensemble des fonctions continues nulles a
I'infini*. L’ensemble de définition 2(&/) de &7 est I'ensemble des fonctions h € Cp(E)
pour lesquelles il existe une fonction g, € Cy(E) telle que pour tout = € E,
gn(x) = lim 17 {P,h(x) — h(x)} .

Alors on définit pour tout h € Z(&), o/h = g,. L’étude du générateur associé a un
semi-groupe markovien permet de déduire de nombreuses informations sur celui-ci. Soit
A une algebre incluse dans 2(.«7) et dense dans Co(E). Notamment si E = RY, alors
on peut considérer pour A, I’ensemble des fonctions k-fois différentiable et a support
compact, noté C¥(R?), pour k& € NU {co}. Par [RY99, Proposition 1.5, chapitre VII]
et [EK86, Théoreme 9.17, chapitre 3], si pour tout h € A, [p &/h(x)dn(z) = 0, alors
7 est invariante pour (P¢);>0. Si 7 est une distribution invariante pour (P;):> et que
(P¢)e>0 est Harris récurrent” alors on a toujours une loi forte des grands nombres [RY99,
Théoreme 3.12, chapitre X] : pour tout = € E et toute fonction f € L!(7)

T
lim T_l/ f(Ys)ds = / f(z)dn(x) , P,-presque stirement ,
T—+o00 0 E

ou (Y¢)e>0 est le processus markovien canonique associé & (Py);>0 et P, I'unique prob-
abilité induite par le semi-groupe et la distribution initiale 6,°. Nous nous intéresserons
dans la suite aux semi-groupes de Markov associés aux équations différentielles stochas-
tiques (EDS) homogenes sur R

3voir Definition A.25
4yoir Definition A.24
5voir Definition A.30
6voir Theorem A.26
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Soit b : R — R et ¢ une fonction de R? dans Mg m(R), Pensemble des matrices de
dimension d x m, telle que pour tout = € R%, a(w)a(x)T est définie positive. On suppose
que ces deux fonctions sont localement Lipschitziennes et on considere 'EDS associée:

dY; = b(Yy)dt + o(Y)dB" ,

ou (B{")i>0 est un mouvement brownien m-dimensionnel. Par [IW89, Théoreme 2.3,
Théoreme 3.1, chapitre 4], pour toute condition initiale Yo = 2 € R?, cette EDS admet
une unique solution (Y¢)tco sur un espace de probabilité filtré (Q, F, (F;)i>0,P) muni
d’un mouvement brownien (Bj");>0, jusqu’a un temps d’explosion £ qui est le temps
d’arrét défini par

E=inf{t>0|Y; =00} .

On suppose que presque surement £ = +oo. Alors par [SVT79, Corollaire 10.1.5] et
[IW89, Théoreme 6.1, chapitre 4], la loi de (Y¢)ico définit un semi-groupe de Markov
fellerien (P;);>p donné pour tout A € B(R?) et z € RY par Py(z,A) = P,[Y; € A]. De
plus [Bha78, Lemme 2.4] montre que ce semi-groupe est irréductible” pour la mesure
de Lebesgue. Enfin [Bha78, Théoreme 3.3] donne une critére pour que la diffusion soit
Harris récurrente.

Dans le cas ot E = R? et 7 admet une densité positive par rapport & la mesure de

Lebesgue de la forme
m(z) = e_U(x)// e U@z | (1.8)
R4

ott U : RY — R est une fonction contintiment différentiable, la diffusion de Langevin
définie par

dY} = -VU(YF) +v24BY, (1.9)
admet 7 comme distribution invariante. Son générateur &% est donné pour toute fonc-
tion h € C?(R?) et 2 € R par

dVh(x) = — (VU (z), Vh(z)) + Ah(z) .

Pour que le processus soit non explosif, on suppose que pour tout x € R? [MT93Db,
Théoréme 2.1],
<VU(1')7'%'> > —ay HxHQ —az,

pour des constantes aj,as € Ry. Par un simple changement de variable, on montre que
pour toute fonction h € C2(R9),

/]Rd {;szh} (x)m(xz)dx =0,

ce qui montre que 7 est invariante pour le semi-groupe de Markov (P});>¢ associé a (1.9).
Donc par [MT09, Proposition 10.1.1] et Corollaire A.34, (PF);>o est Harris récurrent.
A de rares exceptions, il n’existe pas de facon simple de simuler des trajectoires solu-
tions de 'EDS. Bien que des simulations exactes aient été proposées (voir [beskos:roberts:2005
1), leur mise en oeuvre en temps long est tres couteuse.

"voir Definition A.28
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1.4.2 Deux algorithmes MCMUC basés sur ’equation de Langevin: ’ULA
et le MALA

On considére dans cette theése la discrétisation de Euler-Maruyama associée a (1.9) et
définie pour une condition initiale donnée par : pour tout k > 0,

Vi1 =Y — VU (Yy) + V272541 (1.10)

ol v > 0 est le pas de discrétisation et (Zj)r>1 est une suite i.i.d. de variables aléa-
toires gaussiennes centrées réduites d dimensionnelle. La discrétisation (Y;,)nen peut
alors étre considérée comme une trajectoire approchée de (Y;);>o et utilisée pour échan-
tillonner suivant w. Cet algorithme a été tout d’abord proposé par [Erm75] et [Par81]
pour des applications en dynamique moléculaire. Il a été ensuite rendu populaire dans la
communauté de 'apprentissage statistique par [Gre83], [GM94] et en statistiques com-
putationnelles par [Nea93] et [RT96a]. Comme dans [RT96a], cet algorithme sera appelé
dans ce manuscrit I’algorithme de Langevin non-ajusté (ULA pour Unadjusted Langevin
Algorithm).

Le désavantage de cette méthode est que méme si (Y;,)nen possede une unique distri-
bution invariante 7, et est ergodique (ce qui est garanti sous des conditions tres faibles
sur U), cette mesure est dans la grande majorité des cas différente de 7. Utiliser une
telle méthode introduit alors un biais dans le calcul de [za f(z)dm(x), i.e.

N-1
Nl—i>I-Il—loo N1t kgo f(Yr) = /Rd f(x)dmy(x) # /]Rd flx)dn(x), P,-presque strement .

Néanmoins [T'T90] ont montré que sous de bonnes hypotheses sur f (régularité et crois-
sance polynomiale), la chaine (Y}, )nen et sur la diffusion (Y¢)¢>o, il existe une constante
C qui dépend de f et 7 telle que pour tout v > 0 dans un voisinage de 0

[ J@yr,(@) = [ fa)dn(a) = €1+ 06

Ainsi prendre un pas de discrétisation suffisamment petit permet de réduire Ierreur
dans le calcul de [pq f(z)dm(x) et justifie 'intérét de cette méthode. Pour supprimer ce
biais, il a été proposé dans [RDF78] et [RT96a] d’utiliser le noyau de transition associé
a la discrétisation d’Euler (1.10) comme noyau de proposition dans un algorithme de
Metropolis Hastings. Suivant [RT96a], nous appellerons cet algorithme ’algorithme de
Langevin-Metropolis ajusté (MALA pour Metropolis Adjusted Langevin Algorithm).

Une autre méthode pour supprimer le biais de ULA est d’utiliser des pas décroissants
(V) k>1 qui vérifient limy_, oo v = 0 et Zzﬁol v, = +00. On définit la chaine de Markov
inhomogene (Y),),en associée, avec une condition initiale donnée, pour tout k& > 0 par

Yit1 =Y — %+ VU (Yx) + vV27%+1Zk+1 »
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U (Zg)k>1 est une suite ii.d. de variables aléatoires gaussiennes centrées réduites d
dimensionnelle. Il a été montré dans [LP02, Théoréme 6] que sous de bonnes hypotheses
sur f et m, pour tout z € R,

N-1
Y,
lim Lik=0 ;\yfk“f( D) :/ f(z)dn(x) , P,-presque stirement .
N=too >y Yk R¢

Dans la suite, cet algorithme sera toujours appelé 'algorithme ULA.

1.5 Convergence des méthodes MCMC

Soit (Y)ken une chaine de Markov homogene, de distribution initiale po et de noyau
P, sur un espace polonais E muni d’'une distance d et de sa tribu borélienne toujours
notée £. Définissons la suite des lois marginales (Mopk)keN* de la chaine (Yj)ren par
récurrence pour tout k£ € N* et A € E:

poP*(8) = [ Ta(y)uoP* ! (do)Pla,dy)

Nous nous intéressons dans cette section a l’existence et surtout 1'unicité d’une mesure
de probabilité invariante pour P. Nous donnons de plus des résultats de convergence
de la suite de mesures de probabilité (,uoPk)keN* vers I'unique mesure de probabilité
invariante de P lorsqu’elle existe.

Nous avons vu dans les Section 1.3 et Section 1.4.2 des méthodes permettant de
construire des chaines de Markov ayant une probabilité donnée m comme probabilité
invariante. L’étude de la convergence des lois marginales est motivée par ’analyse de la
convergence de Destimateur fy, défini par (1.3) vers fpa f(x)dm(z) quand N tend vers
l'infini. En effet, comme (Y;)reny n’est pas un échantillon i.i.d. de loi 7, une premieére
étape est de mesurer le biais de ’estimation défini par

|- S (o= [l

La convergence des lois marginales (10 P*)xcn de la chaine a été I'objet de nombreuses
études [MT09], [Num84], [HMS11]. Cette convergence est établie pour différentes dis-
tances sur l'espace des mesures de probabilité sur (E, £), notée P(E). Nous considérerons
deux sortes de distances dans ce manuscrit, les distances en V-variation totale et les dis-
tances de Wasserstein.

\ i) - [ f@)ne

1.5.1 Convergence des chaines de Markov
Meétriques sur ’espace des mesures de probabilité

Soit V' : E — [1,00) une fonction mesurable. Pour h : E — R une fonction mesurable,
on définit la V-norme de h par

|l = Sup \h(z)|/V(z) .
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Soit p une mesure signée bornée sur (E,£). On définit la V-variation totale de y par

/hxd,u

SiV =1, alors |||y est la variation totale notée |- ||rv. Pour deux mesures de probabilité
w,v € P(E), la distance en V-variation totale entre p et v est la V-variation totale de la
mesure ¢ —v. De méme la distance en variation totale entre et v est la variation totale
de la mesure p — v. L’ensemble des mesures de probabilités {y € P(E) |V € L(u)} est
un espace de Banach lorsqu’il est muni de la distance en V-variation totale, voir [DMS14,
Proposition 6.16].

Une autre distance que l'on considere est la distance de Wasserstein associée a la
distance d sur E. Soit h : E — R une fonction lipschitzienne i.e. il existe C' > 0 tel que
pour tout z,y € E, |h(z) — h(y)| < Cd(z,y). Pour h: E — R lipschitzienne, on définit

|h||Lip = sup {M}

z,y€E d(CC, y)

Définissons ’ensemble des mesures de probabilité P;(E) par

[ullv = (1/2) sup
IRl <1

Pu(E) = {n € P(E)| [ d(r,a0)du(z) < +oo}

pour un élément xy € E fixé. La distance de Wasserstein est définie par pour tout

Mayepl(E)’
/hxdu /h )dv(x

D’apres [Vil09, Theorems 6.8 and 6.16], P;(E) muni de Wy est un espace polonais.
La distance de Wasserstein et la distance en variation totale ne sont la plupart du
temps pas comparables, sauf lorsque d est bornée et dans ce cas pour tout u,v € P(E),

Wa(p,v) < sup {d(z,y)}[|p—v|rv.
z,ycE2

Wa(p,v) = sup
I lLip <1

Il est aisé de voir que la convergence en I'une de ces deux distances implique la conver-
gence faible.

D’apres le théoreme de Monge-Kantorovich [Vil09, Theorem 5.10], la distance de
Wasserstein et la distance en variation totale entre deux mesures de probabilité u et v
sur E, possedent des formes duales qui font intervenir I’ensemble des couplages entre u
et v. Une mesure de probabilité ¢ sur (E x E,;€ ® £) est un plan de transport entre
p et v si sa premieére marginale (- x E) est égale a p et sa seconde ((E X -) est égale
a v. L’ensemble des plans de transport entre p et v sera noté II(u,v). Il est d’usage
d’appeler couplage de p et v tout couple de variables aléatoires (X,Y) de loi ¢ € TI(p, v).
L’ensemble des couplages de p et v sera noté f[(,u, v). La distance en variation totale
peut s’écrire sous la forme : pour tout u,v € P(E)

| —v|Tv = inf / Iag(z,y)¢(dz,dy) = inf PX#Y),
Cell(p,v) JEXE (X,Y)ell(u,v)
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ou Ag = {(z,y) € Ex E|z = y}. De méme la distance de Wasserstein s’écrit sous la
forme : pour tout u,v € P(E)

Wa(p,v) = _inf d(z,y)¢(dw,dy) = _inf  E[d(X,Y)].
Cell(p,v) JEXE (X,Y)€ell(p,v)

De plus, 'infimum est atteint pour ces deux distances.

Convergence des chaines en variation totale et V-variation totale

L’analyse des chaines est grandement facilitée lorsque I’on suppose que la chaine possede
un atome accessible. Un ensemble mesurable @ € £ est un atome pour le noyau P
sur (E, &) si il existe une mesure de probabilité v sur (E, &) telle que pour tout z € a,
P(x,-) = v. En effet, dans ce cas 'existence d’une mesure invariante et 1’analyse de la
convergence en V-variation totale se ramene a I’étude du temps de retour a cet atome
[MT09, section 10.2, 13.2, 14.1, 15.1].

Soit (Yi)ken et (Fk)ken la chaine et la filtration canonique associées a P. Pour tout
A € &, on définit le temps de retour a A par:

oy =inf {k € N*|Y, € A} .

On définit ensuite les temps de retour successifs (agm))meN* de P a A par récurrence.

Pour m =1, a,({”) = 0, et pour m > 2, on pose

o™ =inf {k € N*| Yy, 1 € A} .
Observons que pour tout A € £ et m € N*, a,((”) est un (Fk)gen-temps d’arrét.

Sauf dans le cas ou l'espace d’état est discret. L’existence d’un atome est une con-
dition tres forte qui n’est que tres rarement vérifiée. Une condition moins forte est
Iexistence d’un ensemble small pour P. Soit n € N*. L’ensemble C € £ est un ensemble
small ou n-small pour P si il existe une mesure non triviale o-finie v sur (E, £) telle que
pour tout z € C, P*(x,-) > v(-). Lorsque P admet un ensemble 1-small C, alors la tech-
nique de scission (splitting) due a [Num78] permet de construire un noyau de transition
P sur l'espace étendu (E x {0,1},€ ® B({0,1})), qui admet C x {1} comme atome et tel
que pour tout z € E, b € {0,1} et A € &,

P((x,b),A x {0,1}) = P(z,A) .

Aussi le temps de retour a l’atome C x {1} de P est intimement lié aux temps de retour
successifs de P a C et ’analyse du noyau P se fait a travers le processus de renouvellement
défini par ces temps d’arréts. Si C est un ensemble petite®, ce dernier est tout de méme
un ensemble 1-small pour un noyau échantillonné” associé & P et la technique de scission

s’applique au noyau échantillonné. Ainsi moralement, I’étude des chaines irréductibles

8¢f Definition A.8
9¢f Definition A.5
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qui ont un ensemble petite, se ramene a ’étude des temps de retour a cet ensemble et a
utiliser les résultats pour les chalnes possédant un atome.

Des controles sur les moments des temps de retour a un ensemble C € £ peuvent étre
obtenus a partir de conditions de dérive (drift) de Foster-Lyapunov.

(1) La premiere condition de dérive que nous présentons est la suivante : il existe
une fonction mesurable propre V : E — R, et a € Ry tels que

PV <V-1+4alg, sup V(z) < 4+o00. (1.11)
zeC

D’apres le théoreme de Dynkin'’, pour tout z € E,

E, oc] < V(x) + ale(z) , supE, [o¢] < 400 . (1.12)
z€eC
[MT09, p. 13.0.1] montre que si C est petite, P est irréductible, apériodique et Harris
récurrente, alors (1.12) est équivalent & l'existence d’une unique mesure de probabilité
invariante 7 pour P et pour tout z € R?,
lim ||0,P" — 7|lpy =0.
n—-+0o00
Si P n’est pas Harris récurrent mais seulement irréductible, apériodique et récurrent, et
(1.12) est satisfait, alors d’aprés [MT09, Theorem 9.1.5]'!, il existe une unique mesure
de probabilité invariante 7 pour P et un ensemble N € & tels que m(N) = 0 et pour tout
x € N€,
lim ||0,P" —7|lry =0.
n—-—+o0o
(2) La seconde inégalité de dérive que nous présentons permet d’avoir une conver-
gence en des distances plus “fortes” que la distance en variation totale. Supposons qu’il
existe une fonction mesurable propre V : E — R, , une fonction mesurable f : E —
[1,400) et a € Ry tels que

PV <V —-f+4+aleg, sup V(z) < 400 .
zeC

Toujours d’apres le théoreme de Dynkin, nous avons

< +00. (1.13)
zeC

0’c—1 0’c—1
E, [Z f(Yk)] <V(x) +ale(z), supE, [Z £(Y7,)
k=0 k=0

[MT09, Theorem 14.0.1] montre que si P est irréductible apériodique et C est un ensemble
petite, (1.13) implique que P admet une unique distribution invariante 7 et pour tout
z € {V < +oo},
lim ||0,P" —7|f=0.
n—+oo

10¢cf Corollary A.20
Hef Theorem A.15
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(3) Nous présentons finalement une condition impliquant un taux de convergence de
(0 P™)nen vers m en V-variation totale. On suppose qu'il existe une fonction mesurable
propre V : E — [1,4+00], A € [0,1) et a € Ry tels que

PV <AV +alg, supV(z) < +00. (1.14)
zeC

Le théoreme de Dynkin implique que pour tout x € (1, A7), il existe C' > 0 tel que

oc—1 oc—1
E, [Z KkV(Yk)] < C(V(x)+alg(z)) , supE, [Z KMV (V)| < 400 (1.15)

k=0 TEC k=0

[MT09, Theorem 15.4.1] montre que si P est irréductible, apériodique et (1.15) est
satisfait avec un ensemble petite C, alors il existe r > 1 et C > 0 tels que pour tout
ze{V < +oo}, et n>1,

|0, P — 7|y < CV(x)r™.

Finalement nous mentionnons aussi qu’il existe deux types de condition de dérive
proposés respectivement dans [TT94] et [Dou+04], pour avoir des convergences sous-
géométriques en V-variation totale d’une chaine de Markov irréductible et apériodique.
Moralement ces deux conditions de dérive entrainent des moments sous géométriques
pour les temps de retour a un ensemble, ce qui entraine la convergence sous géométrique
dans le cas ou cet ensemble est un petite set.

1.5.2 Application a la convergence des méthodes MCMC

De nombreux travaux portent sur I’obtention des taux de convergence pour des noyaux
de type Metropolis-Hastings sur (E,£), quand 7 admet une densité par rapport & une
mesure de domination v et le noyau de proposition, une densité de transition g par
rapport aussi a v, cf Section 1.3-(A).

Notons Py un noyau de Metropolis-Hastings vérifiant ces conditions et défini par
(1.4)-(1.6). [Tie94, Corollary 2] montre que si Py est m-irréductible, alors il est Harris
récurrent. Pour vérifier que Pyig est m-irréductible, une condition trés simple est que
pour tout z € E, w(x) > 0 implique que ¢(y,z) > 0 pour tout y € E, [MT96, Lemma
1.1]. Dans le cas ot E = R? pour d > 1, et v est la mesure de Lebesgue, cette condition
est affaiblie par [RT96b, Theorem 2.2] qui établit que si 7 est positive et bornée sur R4,
et il existe dq4, €, > 0 tels que

q(x,y) > €, pour tout z,y € Rd, |z —yl| <dq, (1.16)

alors P est irréductible par rapport a la mesure de Lebesgue et donc m-irréductible.
De plus le théoreme indique aussi que ces conditions entrainent que P est fortement
apériodique et tout ensemble compact non vide est small. Notons que ce résultat est
immédiat si m et g sont continus car Py est Feller et donc tout ensemble compact
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non vide est petite si il est irréductible'?. Ainsi analyse des taux de convergence des
algorithmes de Metropolis Hastings dans le cas dominé se divise en deux catégories.

Si le noyau satisfait une condition de minoration uniforme, alors il est uniformément
ergodique. Par exemple, dans le cas de 'algorithme de Metropolis indépendant (voir
Section 1.3-(A)), [MT96, Theorem 2.1] montre que si il existe 5, > 0 tel que pour tout
x € E, q(z)/n(x) > By, alors Py est uniformément ergodique : pour tout n > 1,

sup [|0; Py — oy < (1 — Bg)" .
z€E

Si le noyau n’est pas uniformément ergodique, alors I’approche classique consiste a
établir une condition de dérive géométrique ou sous-géométrique. C’est par exemple le
cas pour l'analyse de 'algorithme de Metropolis avec marche aléatoire symétrique sur
R?, et lorsque m admet une densité par rapport & la mesure de Lebesgue, qui soit positive
et continue. Dans ce cadre, diverses conditions sur la géométrie des lignes de niveaux
de 7 ont été proposées dans [RT96b] et [JHOO] qui impliquent une condition de dérive
géométrique de la forme (1.14). En particulier, ces conditions sont satisfaites pour des
densités de la forme: il existe £ € N*, un polynéme positive homogene p : R¢ — R% de
degré ¢, un polynome q : R — R de degré strictement plus petit que £, et un polynéme
positif r : R? — R% tels que pour tout = € R,

m(z) < r(z) exp(—p(x) — q(@)) - (1.17)

Par suite, si la densité de proposition satisfait (1.16), I’algorithme de Metropolis & marche
aléatoire symétrique est géométriquement ergodique pour ce type de densité. Pour le
cas de distributions avec des queues plus lourdes que celles de la forme (1.17), des
conditions de dérive peuvent étre établies mais qui n’entrainent que des convergences
sous-géométriques de la chaine Py vers m, cf [FMO00], [FMO03] et [JRO7].

Pour des applications a des méthodes de Monte Carlo, avoir des bornes explicites
de convergence pour les noyaux de de transition associés est important. La dérivation
de bornes explicites en variation totale a fait I'objet de nombreux travaux. La plupart
des ces résultats s’appuient encore sur une condition de dérive et une condition de mi-
noration par l'existence d’un ensemble small, cf [Ros95], [RT99], ou [Bax05]. Ces bornes
sont établies soit en utilisant la technique de scission de Nummelin précédemment in-
troduite, soit par couplages. Cependant, il a été observé dans [JHO1] que les bornes
obtenues a partir de ces résultats sont difficilement utilisables pour une analyse fine de
la convergence.

1.5.3 Analyse de ULA et MALA

[RT96a] a analysé la convergence des chaines produites par les algorithmes MALA et
ULA & pas constant v > 0, présentés en Section 1.4.2. Cependant, aucun résultat n’est
établi sur la convergence de ULA vers la densité cible 7, seulement vers une distribution
invariante qui, comme nous ’avons indiqué, est la plupart du temps différente de .

12¢f Proposition A.22
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Notons par ailleurs que puisque la mesure invariante 7, de la chaine de Markov produite
par ULA a pas constant differe de la loi cible w, d’autres méthodes de preuve doivent
étre combinées a celles présentées en Section 1.5.1.

[RT96a] a établi un résultat de convergence géométrique pour MALA sous la condi-
tion que

im q(z,y)dy =0,
llzll =400 Ja(x)

ou ¢ est la densité de transition associée & MALA, A(x) est une zone de rejet potentiel
restreinte donnée par

A= (B(z)UC(x))\ (B(x)NC(x)),

et
B(z) = {y € R?| n(2)g(z,9) < 7(W)aly,2)} , C(x) = {y € R |ly] < =]} -

Cependant vérifier cette condition s’avere tres compliqué en pratique.

Un des objectifs de ce travail de these est de fournir des bornes explicites pour la
convergence des méthodes de Monte Carlo par chaine de Markov, MALA et ULA (a pas
constants et tendant vers 0), en variation totale et en distance de Wasserstein. Pour des
modeles particuliers de distributions cibles, nous avons analysé la dépendance de cette
convergence en la dimension de ’espace d’état.

Par ailleurs, les résultats introduits en Section 1.5.1 supposent que la chaine est
irréductible. Or cette condition n’est souvent pas vérifiée en dimension infinie car les
mesures de probabilité ont tendance & étre singulieres. Par exemple si (By)i>0 est un
mouvement brownien pour tout o > 0, 0% # 1, les lois associées & (Bt)i>0 et (Bi)i>o
sont singulieres sur I'espace des fonctions continues de Ry dans R%. Nous établirons
au cours de ce manuscrit un résultat de convergence qui ne supposent pas de condition
d’irréductibilité.

1.6 Echelonnage optimal d’algorithmes de type Metropolis-
Hastings

Une autre approche pour I'étude des algorithmes de type Metropolis-Hastings en grande
dimension est 1’étude de 1’échelonnage optimal de telles méthodes. Considérons une
mesure cible 7 sur R%. Si on souhaite appliquer 1'algorithme de Metropolis & marche
aléatoire symétrique ou l'algorithme MALA, un parameétre a besoin d’étre choisi : re-
spectivement la taille des incréments de la marche aléatoires et le pas de discrétisation
dans MALA. Les études d’échelonnage optimal ont pour but de trouver le meilleur choix
possible pour ce parametre (en un certain sens) et sa dépendance en la dimension d.
Nous donnons dans cette section une présentation des résultats d’échelonnage optimal
pour ces deux algorithmes.
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1.6.1 L’échelonnage optimal de 1’algorithme de Metropolis a marche
aléatoire symétrique

L’analyse par échelonnage optimal des algorithmes de type Metropolis-Hastings a été
proposée dans le papier fondateur [RGG97]. Soit 7¢ une densité cible positive (7%(z) > 0
pour tout z € R%) par rapport & la mesure de Lebesgue sur R?, d > 1. Nous considérons
I’algorithme de Metropolis & marche aléatoire symétrique avec incrément gaussien qui
définit la chaine de Markov (ka) reN comme suit : pour une condition initiale Y donnée,
pour tout k > 0,

ka + UngH avec probabilité a (Yd, ka + JngH)

Yl = (1.18)

ka sinon

ouoy € RY, (Z4);>1 est une suite i.i.d. de gaussiennes centrées réduites d-dimensionnelles

et pour tout x,y € R¢
od(x,y) = min (1,7Td(y)/7rd(:v)) . (1.19)

En pratique le choix du parametre o4 est laissé a I'utilisateur. On peut alors se demander
si il existe un choix optimal pour ce parametre et si oui qu’elle est sa valeur et sa
dépendance en la dimension. A premiere vue, on pourrait penser a prendre oy le plus
grand possible pour que la chaine puisse visiter 'espace plus facilement. Cependant, il
faut veiller & ce que les mouvements soient acceptés en proportion non négligeable. Cet
aspect limite le choix de o4. Une premiere étape est d’identifier la dépendance en la
dimension du parametre o4 de telle sorte que le ratio d’acceptation moyen, en régime
stationnaire (Yg ~ 7¢), admette une limite lorsque la dimension tend vers l'infini dans
I'intervalle |0, 1], i.e.

lim B o (Y, Ve +0azf) | €)0,1].

d—+o00

[RCGI7] s’est intéressé au cas ot la densité 7@ est de la forme:

d
7Td(xd) = H exp (_U(xg)) ) xd = (xtlia e ,.%'g) ) (120)
1=1

ou U : R — R est une fonction qui satisfait :
H 1 U est trois fois continiment dérivable et U’ est Lipschitz.
H 2 E[(U'(W))?] < oo et E[(U”(W))*] < oo ot W est une variable aléatoire de loi 7.

[RGGI7, corollary 1.2] montre que en régime stationnaire si o4 = 0d=1/2 avec £ > 0, et
Y est de loi 79,

lim B o (Y, Yy +0d™22])| = 28(~0/2VT) (1.21)

d—+o00
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ou P est la fonction de répartition de la loi gaussienne standard et

I /R (U2 (2)r (z)da . (1.22)

[RGGI7, Theorem 1.1] montre que en régime stationnaire, chaque composante de
la chaine de Markov (}/l-d)ieN, correctement mise a I’échelle, converge faiblement vers la
solution de I’equation de Langevin associée & m!. Plus précisément, considérons la suite
de chaines de Markov {(Y)x>0; d > 1} définies par (1.18) en prenant pour tout d > 1,
Yod est de loi 7% et

oq = Ld?.

[RGGI7, Theorem 1.1] définit la suite de processus de sauts markovien {(Y¢);>0; d > 1}
a partir de {(Y%);en; d > 1} par

pour tout £t >0etd>1, Yf:Ygft,

ou (S¢)i>0 est un processus de Poisson homogene d’intensité d. Notons Yg 1 la premiere
composante de Yf. Si 7 est donnée par (1.20) et U vérifie H1 et H2, la suite de processus
{(Y¢1)e=0; d > 1} converge faiblement dans I'espace de Skorokhod vers la solution de
I’equation de Langevin

dY, = \/n(0)dB! — %h(E)U’(Yt)dt , (1.23)

ol (B})i>0 est un mouvement brownien unidimensionnel, Yo est de loi 7! et h(f) est

donnée par

h(¢) = 20%® (—g ﬁ) : (1.24)

et I est défini par (1.22).

Ce résultat permet de choisir en pratique le parametre £. Considérons la diffusion de
Langevin suivante

dY¢ = —cVU(Y})dt + V2ed B},

pour ¢ € R% et Y§ = u € R. Sous de bonnes conditions sur U, [Bha78] montre que pour
toute fonction f € L2(7!) telle que [ f(x)7'(dz) = 0, le processus ¢ — ¢t~/ fg f(Yhds
converge faiblement vers une loi normale centrée de variance E.[(f;"* f(Y1)ds)?]. On
peut alors observer par un simple changement de variable que plus ¢ est grand, plus
cette quantité est petite. Ainsi, on aimerait trouver la constante ¢ qui maximise h(¥)
dans (1.23). D’apres (1.21), un calcul montre que la fonction ¢ — h(¢) est maximale en
point tel que la limite (1.21) vaut 0.234.

Les résultats introduits sont établis sous la condition que le potentiel U est au moins
trois fois différentiable. Nous présenterons une extension de ce résultat sous des condi-
tions beaucoup moins fortes sur le potentiel.
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1.6.2 L’échelonnage optimal du MALA

La méme étude peut étre menée pour MALA. Soit 7¢ une densité cible positive par
rapport & la mesure de Lebesgue sur R sous la forme (1.20) avec U : R — R une fonction
continiment dérivable. Dans ce cas, MALA définit la chaine de Markov (Yid)ieN pour
une condition initiale Yod donnée, pour tout k£ > 0,

yd | = ng+1 =Y + 02V log nd(Y,d) + ﬂangH avec probabilité o (ka, Wgﬂ)
* ka sinon
(1.25)

ol og € RY, (Z4);>1 est une suite i.i.d. de gaussiennes centrées réduites d-dimensionnelle

et pour tout x,y € R4

w()exp (o — v - o3V Iog (o) /(403))

md(x) exp (— ly — 2z — 03V log 7rd(gu)||2 /(403))

ad(z,y) = min < 1, (1.26)

Comme pour algorithme de Metropolis & marche aléatoire symétrique, le choix du
parametre oy est laissé a 'utilisateur.

On peut alors avoir les mémes considérations: il est naturel de chercher & établir
la dépendance en la dimension de o4 pour que E_a[a?(Yg, W{)] converge lorsque la
dimension tend vers l'infini vers une limite dans |0, 1[. Le parametre o4 doit cette fois-ci
étre de la forme o4 = £d~'/ pour £ € R%.. En effet, [RR98, Theorem 1] montre que si le
potentiel U vérifie:

M 1 U est huit fois contintiment dérivable et il existe un polynéme P satisfaisant pour
tout i € {0,--- ,8} et z € R, ‘U(i)(az)’ < P(z)

M 2 Pour tout p > 1, [p |z|P mi(z)dz < oo
alors

lim B o (Yo, Ve + 2d7 PV log n (V) + V20d 02| = 28(~° V2) , (1.27)

d—+o0

ou ® est la fonction de répartition de la loi gaussienne standard, ¢ > 0 et

J = (48)71 /R {5(U<3> (z))? —3(U?) @))3} rH(x)dz > 0. (1.28)

[RR98, Theorem 2] montre qu'il existe un limite diffusive pour MALA. Considérons
la suite de chaines de Markov {(Y;%);en; d > 1} donnée pour tout d > 1 par (1.25) avec

1
comme condition initiale Yod de loi 7%, et

oq=td'" .
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On définit la suite de processus de sauts markovien {(Y@);>0;d > 1} a partir de
{(V%)ien; d > 1} par

pour tout £t >0etd>1, Yf:Ygt,

ol (St)¢>0 est un processus de Poisson homogene d’intensité d'/3. Notons Yg 1 la premiere
composante de Yf. Si ? est donnée par (1.20) et U vérifie M1 et M2, la suite de processus
{(Y{})iz0; d > 1} converge faiblement dans I'espace de Skorokhod vers la solution de
I’equation de Langevin

dY; = \/2g(¢)dB} — g(O)U'(Y,)dt , (1.29)

o (B})i>0 est un mouvement brownien unidimensionnel, Y est de loi 7! et g(¢) est
donnée par

g(0) = 820 (—5V27) (1.30)

et J est défini par (1.28).

Comme pour I'algorithme de Metropolis a marche aléatoire symétrique, ce résultat
permet aussi de choisir en pratique le parametre ¢. D’apres (1.27), un calcul montre
que la fonction £ — g(¢) est maximale pour une valeur moyenne du ratio d’acceptation
de lordre de 0.574. On peut observer que 'algorithme MALA permet en régime sta-
tionnaire de prendre des pas plus grands vis a vis de la dimension que 'algorithme de
Metropolis & marche aléatoire symétrique le permet. Nous présenterons dans un chapitre
une alternative a I’algorithme MALA avec un meilleur échelonnage dimensionnel.

1.7 Plan du manuscrit et contributions

Cette these est divisée en trois parties qui correspondent aux différents themes et travaux
que nous avons menés. Chacune est constituée de deux chapitres. A une exception pres,
ces chapitres sont des articles acceptés ou en révision.

Dans la premiere partie, nous établissons des résultats de convergence de chaines
de Markov sur un espace polonais en distance de Wasserstein, puis nous appliquons ces
résultats a des algorithmes MCMC.

Dans la seconde partie, nous nous intéressons a des bornes explicites pour ’algorithme
ULA en variation totale et en distance de Wasserstein sous différentes conditions sur la
densité cible.

Enfin nous traitons dans la derniére partie de I’échelonnage optimal pour I’algorithme
de Metropolis & marche aléatoire symétrique et des accélérations de ’algorithme MALA.

Nous présentons ci-dessous un résumé des contributions et des résultats des chapitres
de ce manuscrit.
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1.7.1 Partie I Chapitre 3

Dans ce premier chapitre, nous établissons tout d’abord un résultat de convergence
géométrique en distance de Wasserstein pour un noyau de transition P sur un espace
polonais (E,d) muni de sa tribu borélienne £. Il est obtenu en combinant une condition
de contraction locale en distance de Wasserstein pour le noyau et une condition de dérive
géométrique de type Foster-Lyapounov. Plus précisément, on suppose que P vérifie une
condition de contraction sur un ensemble G € £ ® £ pour la distance de Wasserstein
associée a la métrique de E, i.e. il existe € €]0,1] et £ € N* tels que pour tout z,y € G,

Wa(P(z,), P'(y,) < (1 - e)d(z,y) - (1.31)

On suppose de plus qu’il existe une fonction mesurable V' : E — [1,+o00[, b € R, et
A € [0,1] tels que pour tout z,y € E,

PV(z) + PV(y) < MV (2) + V(y)) + ble(z,y),  sup {V(z)+V(w)} < +c0.
(z,w)€EXE
(1.32)
Cette derniere condition est similaire & la condition de dérive géométrique (1.14) mais
est formulée sur I'espace produit. Le résultat que nous déduisons de ces deux hypotheses
donne un contréle quantitatif sur la convergence de la chaine lorsque cette derniére
n’est pas irréductible. D’autre part, méme dans le cas irréductible, il fournit des bornes
de convergence en distance de Wasserstein qui peuvent étre plus précises que pour la
variation totale. Ce type de résultat avait déja été établi dans [HMS11], cependant les
bornes obtenues dans ce chapitre sont plus directement exploitables car elles dépendent
de facon plus simple des constantes apparaissant dans (1.31) et (1.32). De plus, la
méthode de preuve est completement différente et s’effectue directement par couplage.
Nous appliquons ensuite ce résultat pour I’analyse d’un algorithme MCMC présenté
ci-dessous. Considérons une densité cible donnée pour tout = € R% par

m(z) = 2~ exp(~U () — I(x)) ,

avec Z = [gaexp(=U(x) — ['(z))dr < 0o, T : RY — Ret U : R — R de la forme pour
tout = € R?,

Uz) = (1/2)27Qu + Y(x),
oll ) est une matrice définie positive et T : R — R une fonction convexe de gradient
Lipschitz. On considére alors la diffusion de Langevin associée a U:

dY, = =Y, dt — Q7 'VY(Y,)dt + vV2Q V/2dB¢ |
YO =%,
ot (Bf);>0 est un mouvement brownien d-dimensionnel. Par hypothese sur U, cette

EDS admet une unique solution forte (Yy);>o. Il est aisé de voir que pour tout ¢ > 0 et
6 >0,

t+6 t+0
Yiis=Ye - / ¢~ QTIVY(Y,)ds + vV2Q /2 / e~ =g | (1.33)
t t
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Une discrétisation de Euler-Maruyama de (1.33) avec un pas d > 0 mene alors a la chaine
de Markov (Y%)ken, définie pour une condition initiale donnée pour tout k > 0 par

Vi = Vie = (1 —e)Q'VY(Ye) + Zpy1 (1.34)

ou (Z)ren+ est une suite i.i.d. de variables aléatoires gaussiennes centrées et de matrice
de covariance (1—e*25)Q*1. Ce type de discrétisation est appelé intégrateur stochastique
exponentiel d’Euler, voir [LRO04]. La chaine associée & la relation (1.34) définit un noyau
de Markov qui est alors utilisé comme loi de proposition dans un algorithme de type
Metropolis-Hastings avec comme loi cible 7. L’algorithme ainsi défini sera appelé EI-
MALA. Cet algorithme généralise un algorithme de Metropolis pour la simulation de
diffusion proposé dans [Bes-+08] : dans ce cas h = 2(1 —e %) et T' = 0. Cet algorithme
a été analysé dans [Ebel4] sous certaines conditions sur @ et T. Nous complétons cette
analyse en établissant sous des conditions appropriées, une convergence géométrique du
noyau produit par I'algorithme avec des bornes explicites. En particulier, nous montrons
une dépendance logarithmiquement polynomiale en la dimension dans le cas ou T = 0
et I est bornée. Aussi nous vérifions que les hypotheses de notre résultat principal sont
satisfaites dans le cas d’un probléeme inverse bayesien. Enfin, nous donnons quelques
simulations numériques pour illustrer les performances de la méthode.
Ce travail a fait I'objet de la publication [DM15b].

1.7.2 Partie I Chapitre 4

Nous complétons dans cette partie le chapitre 3 sur ’étude de chaines de Markov qui ne
sont pas nécessairement irréductibles, en particulier de chalnes dans des espaces d’état
fonctionnels. Nous cherchons a établir

e des conditions d’existence et surtout d’unicité de la mesure invariante d’un noyau
de Markov P sur un espace polonais (E,d), muni de sa tribu borélienne &,

e des taux de convergences de la chaine vers sa mesure stationnaire.

A Tlinstar du cas irréductible, on suppose aussi qu’il existe une fonction mesurable V' :
E— [1,400) et b € Ry tels que pour tout z,y € E,

PV(z)+PV(y) <V(x)+V(y) —1+blg(z,y), sup {V(2)+V(w)} < +o0,

(z,w)€G

ol G € £ ® & est un ensemble pour lequel le noyau vérifie la condition de contraction
(1.31). Cette condition est similaire & la condition (1.11) dans le cas irréductible mais
est formulée sur I'espace produit.

Nous nous établlissons des bornes quantitatives de convergence en distance de Wasser-
stein. De telles bornes dans le cas géométrique ont été obtenues par [HMS11] et le
travail présenté en chapitre 3. Nous établissons dans ce chapitre un résultat de conver-
gence sous-géométrique en distance de Wasserstein sous des conditions de dérive sous-
géométriques. Ces conditions sont similaires a celles proposées dans [TT94] et [Dou+04]
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pour établir des convergences sous-géométrique en variation totale. La convergence en
distance de Wasserstein avait déja été considéré dans [Butl4] mais les taux obtenus ne
correspondaient pas aux taux connus pour la distance en variation totale.

Nos travaux, appliqués a la variation totale, conduisent aux méme taux de conver-
gences que ceux donnés dans [Dou+04] pour la distance en variation totale (dans le cas
des taux polynomiaux et logarithmiques). Alors que la méthode de [Butl4] s’inspire
de [HMS11], notre preuve s’inspire de celle dans le cas géométrique présentée dans le
chapitre 3 et d’idées présentes dans [Dou+04].

Nous considérons deux applications de nos contributions théoriques. Nous étudions
d’abord un modele fonctionnel auto-régressif dans R? de la forme

Yir1 = h(Ye) + &t1 s (1.35)

ot h : RY — R est une fonction mesurable et (&k)ken+ est une suite i.i.d. de vecteurs
aléatoires. Notons que si la suite (§)gen+ est & valeurs dans un espace discret, alors la
chaine n’est pas irréductible. On suppose que h est une contraction stricte au centre de
Iespace, i.e. il existe une fonction @ : R? x R? —]0, 1] telle que pour tout z,y € RY,

Ih(z) = h(y)|| < w@(z,y) lz -yl ,

et pour tout R € Ry, ¢(R) = sup{w(z,y) | [[z||+[lyl| < R} < 1. Lorsque supgcp, ¢(R) <
1, alors le modele est géométriquement ergodique en distance de Wasserstein. Nous nous
intéressons aux cas ou ¢ tend vers 1 lorsque R tend vers +o0o. Suivant des conditions sur
le taux de cette convergence et des conditions de moments sur la loi de la suite (& )ken-
nous établissons des taux de convergence sous géométriques pour le noyau associé a
(1.35).

Le deuxieme exemple traite de I'algorithme de Crank-Nicolson pré-conditionné. Ce
dernier est un algorithme de type Metropolis-Hastings défini sur un espace de Hilbert H
muni d’une mesure gaussienne pg et pour une mesure cible ayant une densité positive
x — exp(—®(x)) par rapport a pg. Le noyau de proposition est celui associé a celui d’un
modele auto-regressif :

Wi = (1 =)Wy + 02240, (1.36)

oun € [0,1] et (Z)ren+ est une suite de variables aléatoires gaussiennes de loi .
Observons que si GGy et G5 sont deux variables aléatoires gaussiennes de loi g, alors pour
tout n €]0,1[, (G1, (1 —n)2G1 +n'/2Gs) et (1 — n)'/2Gy + n'/2Gy,G1) sont toujours
deux gaussiennes de méme loi. On en déduit que le noyau @) associé a la chaine de
Markov définie par (2.35) est réversible par rapport a . Donc d’apres la discussion sur
l’algorithme de Metropolis-Hastings en section 1.3-(B), le noyau de Metropolis-Hastings
P défini par (1.4) associé au noyau @ et au ratio d’acceptation donné pour tout z,y € H
par
a(z,y) = min {1,exp (¢(z) — (y))} ,

est réversible par rapport a 7. [HSV14] ont montré si que le ratio d’acceptation est unifor-
mément minoré, alors le noyau produit par ’algorithme de Metropolis est géométrique-
ment ergodique pour une certaine distance de Wasserstein. Nous affaiblissons cette
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condition et montrons que sous I'’hypothese que ® est Lipschitz, alors le noyau produit
par 'algorithme est sous-géométriquement ergodique.
Ce travail a été accepté pour publication dans les annales de I'THP.

1.7.3 Partie II Chapitre 5

Ce chapitre a pour sujet 1’étude fine de la convergence de I'algorithme ULA présenté en
section 1.4.2 pour échantillonner suivant une loi 7 sur R%, d > 1, de la forme (1.8). Nous
établissons des bornes explicites en variation totale entre les lois marginales de la chaine
de Markov produite et la mesure cible . Nous obtenons des résultats a la fois pour des
algorithmes a pas constants et a pas décroissants.

La méthode de preuve est tres différente des approches classiques, notre objectif étant
d’obtenir des résultats "utilisables”. En effet, pour les diffusions de Langevin, de tres
nombreux résultats ont été établis récemment pour quantifier précisément la distance
en variation totale entre la loi de la diffusion et sa limite. Ces résultats découlent
soit de méthodes fines d’analyse fonctionnelles (inégalités de Poincaré ou de Sobolev
logarithmique), voir par exemple [Bak+08] et [BGL14], soit par des méthodes de couplage
[Ebel5]. Nous obtenons en particulier des résultats originaux de convergence en variation
totale en utilisant le couplage par réflexion [LR86] et les méthodes quantitatives de
contrdle de convergence que nous avons mises en évidence dans [DM15b].

Pour passer des résultats a temps continu & temps discret, nous utilisons une approche
due a [Dall6] basée sur un couplage direct de la diffusion et d’une interpolation continue
du processus discret (la loi de la diffusion est absolument continue par rapport a la loi de
Iinterpolation continue de I’algorithme, ce qui permet d’évaluer la formule de Girsanov
pour évaluer l'entropie relative des deux lois).

A partir de ces résultats, nous comparons différentes stratégies a horizon fini (le
nombre d’itérations de I’algorithme est fixé a I’avance) ou infini (I’algorithme peut étre
interrompu a n’importe quel instant). En particulier, suivant les conditions de courbures
et/ou convexité et de régularité du potentiel associé a 7, nous nous intéressons a la dépen-
dance des bornes par rapport a la dimension de ’espace, ce qui est bien entendu crucial
pour les applications statistiques. Nous considérons de nombreux cas: potentiel super-
exponentiel, convexe, fortement convexe, fortement convexe a l’extérieur d’un ensemble
compact, qui correspondent a des situations d’intérét pratique. Pour chacun de ces cas,
nous obtenons dans certains scénarios des controles dépendant de facon polynomiale de
la dimension.

A pas constant «, sous des conditions faibles sur 7, la chaine de Markov produite
par ULA admet une mesure stationnaire 7,. Nous donnons dans ce chapitre une borne
explicite en V-variation totale entre la mesure cible 7 et 7, d’ordre /7.

Nous montrons que si la suite de pas (yx)r>0 converge vers 0 et ZZS{ vr = 400, alors
la suite des lois marginales de la chaine inhomogene produite converge vers la mesure
cible 7, toujours en variation totale.

Ces résultats completent [Dall6], ou seul le cas des mesures fortement log-concaves
est considéré. Il permet de comprendre dans quelles situations il est préférable d’utiliser
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lalgorithme & pas fixe ou a pas décroissant (il donne dans ce dernier cas des indications
précieuses sur la vitesse a laquelle la suite des pas doit tendre vers 0).
Ce travail a été accepté pour publication & Annals of Applied Probability.

1.7.4 Partie II Chapitre 6

Dans ce chapitre, nous complétons et améliorons les résultats du chapitre précédent dans
le cas de densités fortement log-concaves 7 sur RY, d > 1, de la forme (1.8).

Tout d’abord la convergence en distance de Wasserstein est considérée. Des bornes
explicites sont établies en utilisant le couplage synchrone entre la diffusion de Langevin
et sa discrétisation d’Euler associée & une suite de pas (Vi )ren+. Ce couplage utilise le
méme bruit et est défini pour des conditions initiales données par :

Y, =Y, - fg VU(Y,)ds + 2B¢ pour tout ¢t > 0
Yir1 = Ye — 1 VU (Yi) + \/i(ngH - ng) pour tout k € N* |

pour un mouvement brownien (Bf)tzo d-dimensionnel et ou I'y = Zle ~; pour tout
k € N*. Ces bornes permettent d’établir un taux explicite de convergence en distance de
Wasserstein des lois marginales de la chaine de la Markov inhomogene vers 7, lorsque la
suite des pas tend vers 0 et Z,‘;"l’ Y = +00.

A pas constant v > 0, nous en déduisons une borne explicite de la distance de
Wasserstein entre la mesure invariante ., associée au noyau de la discrétisation d’Euler
. Concernant la dépendance en la dimension, pour une précision ¢ > 0 donnée, nous
montrons que sous deux jeux d’hypotheses différentes (qui se distinguent par la régularité
de U) nous obtenons que le nombre d’itérations est de 1’ordre de=2 ou v/de™! pour que
la distance de Wasserstein entre la loi marginale de l'algorithme et la loi cible 7 soit
inférieure a e.

Nous adaptons ensuite les résultats de [JO10] au cadre des chaines considérées qui
sont inhomogenes pour obtenir des bornes explicites sur ’erreur en moyenne quadratique
et des inégalités exponentielles de déviations pour des estimateurs de Monte Carlo de
Jga f(z)m(x)dz avec f: RY — R, Lipschitz.

Dans un second temps, nous utilisons les bornes en distance de Wasserstein pour
établir des bornes en variation totale. En effet lorsque U est fortement convexe, alors
le semi-groupe a un effet régularisant. Soit f une fonction mesurable bornée. Si on
note (P¢)i>0 le semi-groupe associé a la diffusion de Langevin, pour tout ¢ > 0, P.f
est lipschitzienne avec un coefficient qui est explicite et dépend de t. Cependant, ce
coefficient en temps court est de l'ordre de 1/+/t et c’est pourquoi nous utilisons en
partie la technique de preuve utilisée dans le chapitre 5. Le résultat que 'on déduit
donne des taux de convergence en variation totale vers m, lorsque la suite de pas tend
vers 0 et Z,j;"l’ v = +oo. Ces taux améliorent tres significativement les résultats que
nous obtenons dans le chapitre 5. Lorsque les pas de discrétisation sont constants, les
bornes obtenues impliquent que si U est suffisamment réguliere, un nombre d’itérations
de Pordre de vde™! est suffisant pour que la loi marginale de lalgorithme soit & une
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distance € > 0 de m en variation totale. Encore une fois, ce résultat améliore celui
obtenu dans le chapitre 5 qui donnerait un nombre d’itérations de I’ordre de de 2.

Nous concluons ce travail en établissant des bornes explicites sur ’erreur en moyenne
quadratique et des inégalités exponentielles de déviations pour des estimateurs de [pq f(2)7(x)dx
lorsque f : R — R mesurable bornée. Cependant, nous ne pouvons pas appliquer di-
rectement la technique utilisée lorsque f est lipschitzienne. Nous observons d’abord que
le noyau associé a la discrétisation d’Euler a lui-méme un effet régularisant. Pour cela,
on s’intéressera aux modeles fonctionnels auto-régressifs de la forme:

Wiq1 =h(Wy) + 02341, (1.37)

oit h : R? — R est Lipschitz, o > 0 et (Zk)ken- est une suite de variables aléatoires
gaussiennes centrées réduites d-dimensionnelles. Nous montrons que tout noyau associé
a un tel modele est régularisant en nous inspirant de la construction d’un couplage
donné dans [BDJ98] entre deux variables aléatoires gaussiennes d dimensionnelles de
méme variance mais de moyennes différentes.

Ce travail a été mené en collaboration avec le professeur Eric Moulines.

1.7.5 Partie III Chapitre 7

Le résultat original d’échelonnage optimal pour l’algorithme de Metropolis & marche
aléatoire symétrique de [RGG97] suppose que la mesure cible posseéde une densité pos-
itive par rapport a la mesure de Lebesgue et est trois fois contintiment dérivable, cf
section 1.6.1. Il ne s’applique donc pas aux densités qui sont différentiables en moyenne
quadratique, comme la loi de Laplace par exemple (qui n’est pas différentiable en certains
points). Néanmoins, lorsque 'on analyse le résultat de [RGG97], on se rend aisément
compte que la seule quantité qui apparait dans la limite du taux moyen d’acceptation
dans le régime stationnaire est la matrice d’information de Fisher associée au score
de translation. Cette quantité est bien définie deés que la densité est différentiable en
moyenne quadratique. Une question qui se pose des lors est la possibilité d’obtenir un
résultat d’échelonnage optimal tout en affaiblissant autant que possible les hypotheses.
Une des motivations de ce travail est 'analyse des méthodes bayésiennes utilisant des
lois a priori non régulieres (convexes et lipschitziennes mais pas différentiables): celles-ci
apparaissent trés naturellement en inférence bayésienne en grande dimension (comme
par exemple les normes L' pondérées dans 'analyse bayésienne de I'algorithme LASSO).

Le premier résultat de ce chapitre est I'extension du résultat d’échelonnage optimal
de [RGGI7] a des densités positives sur R et différentiables en moyenne L? pour un p > 2,
donc qui peuvent ne pas étre différentiables en certains points. De plus, nous démontrons
que le taux d’acceptation moyen & la stationnarité admet une limite lorsque o4 = ¢d~1/2,
voir (1.21). Nous montrons aussi que l'algorithme admet une limite diffusive: la diffusion
limite est une diffusion de type Langevin mais qui est en général singuliere (qui peut ne
pas admettre de solutions fortes).

La méthode de preuve est différente de celle de [RGG97]: elle est basée sur une
approche directe de la convergence en loi. Nous montrons la tension d’une interpolation
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continue du processus discret puis nous identifions la distribution limite en utilisant
I’équivalence de 'EDS a un probléeme de martingale. En outre, la preuve s’appuie sur
les méthodes permettant d’établir les conditions LAN pour des densités différentiables
en moyennes quadratiques (et notamment un développement astucieux du rapport de
vraisemblance qui permet de s’affranchir d’une dérivée d’ordre 2). Nous appliquons ce
résultat a I'algorithme du Bayesian LASSO.

Nous étendons aussi ce résultat pour des densités qui possedent un support inclus
dans un intervalle de R tout en restant différentiable en moyenne quadratique.

Ce résultat est alors appliqué a des densités de type Beta et Gamma. Ce résultat
permet de compléter les travaux de [neal:roberts:2012 |.

Ce travail a été soumis a publication dans Advances in Applied Probability

1.7.6 Partie I1I Chapitre 8

Nous avons vu en section 1.6.2 que I’échelonnage optimal de MALA était en d—/3. Une
question naturelle est de savoir si il serait possible d’améliorer cette dépendance en la
dimension en incorporant plus d’informations sur la mesure cible.

Une premiere idée serait d’utiliser un intégrateur d’ordre plus élevé que le schéma
d’Euler comme proposition dans un algorithme de Metropolis-Hastings. Dans ce chapitre,
nous observons que utiliser un meilleur schéma de discrétisation n’améliore pas I’échelonnage
optimal de l'algorithme de Metropolis Hastings induit.

Au lieu de se concentrer sur 'erreur de discrétisation, nous montrons que la quantité
importante a controler est 'ordre du ratio d’acceptation. En effet, expliquons l'idée
principale des preuves d’échelonnage optimal pour des densités de la forme (1.20) et des
propositions associés a des chaines de Markov données pour tout k € N,

1/2 1/2
Wiy = FWo)*) + S(Wi ol 28,1 (1.38)

ol og € RY, F:RIx R — RY ¥ RYx R — My(RY), My(R?) étant I'ensemble
des matrices carrées de dimension d, et (Zj),> est une suite i.i.d. de variables aléatoires
gaussiennes centrées réduites d dimensionnelles. Notons que pour le cas de 'algorithme
de Metropolis a marche aléatoire symétrique

F(m,aall/2) =z, E(:U,Ucll/Q) =./oqld,
et pour MALA
F(x,acl/z) =z —o4VU(2), E(x,a;/Q) =12041d .
La ratio d’acceptation peut alors s’écrire sous la forme pour tout z,y € R?
a(z,y) = min{l, exp(Rq(x,y))} , (1.39)

pour une fonction Ry : RY x R? — R qui dépend de la loi de proposition (1.38). Nous
nous intéressons aussi a la valeur du ratio lorsque y est sous la forme

Y= F(m,aall/2) + E(m,aéﬂ)z .



26 1.7. Plan et contributions

Si on suppose Ry(z,z) = 0 et des conditions de régularité sur F, ¥ et U, alors un
développement de Taylor de Ry peut étre effectué en o4 au voisinage de 0:

Eod
Ra(z,y) = >3 0 *Cilaj, %) + o ™ Ly (w077, 2) (1.40)
i=1j=1

I1 s’avere que I’échelonnage optimal associé a un noyau de proposition de la forme (1.38)
est directement relié au nombre de termes C; qui s’annulent dans (1.40). Si C; = 0, pour
i=1,---,p, p€N*et og = £d/®tD) alors le terme dominant dans (1.40) est

pp+1 zd: ( )
—F Cp+1 Tj,25) -
Vd =
C’est grace a cette étude du taux d’acceptation que 'on peut conclure que

lim Elo(WE, W] €]o,1[,

d—+o0
ot W¢ a pour loi 7¢ et W est donnée par (1.38).

Pour obtenir un nouvel algorithme de type Metropolis-Hastings avec un meilleur éche-
lonnage optimal que MALA, on restreint tout d’abord la classe des noyaux de proposition
associée & (1.38) en imposant la forme suivante pour les fonctions F et ¥ : pour z € R?
et o4 > 0,

F(z,0%) =2+ 04F1(x) + 02Fa(x) , Sz, 00?) = 0}/*S1(2) + 07/ *Sa(z)

ott pour i = 1,2, Fi(z) : R? = R% et 3; : RY — My(R?). On effectue alors un développe-
ment de Taylor de Ry défini par (1.39) en o4 au voisinage de 0 pour de telles fonctions
F et 2. On cherche ensuite des expressions explicites pour les fonctions Fy,Fo, 31,39
de fagon & imposer & ce que les quatre premiers termes C;(-,-), i € {1,2,3,4} dans
(1.40) soient identiquement nuls. On obtient ainsi un systeme de quatre équations a
quatre inconnues qui admet une unique solution. Nous obtenons par cette méthode les
expressions suivantes pour les fonctions F et X

F(z,0%) =2 — %VUd(m) - g—i (VU (@) VUi () — (VU ()}),
S(x,0r?) = 0?1 — (6% )12)V2Ud(a)

ot U4 = log % et A est le laplacien vectoriel. Nous appelons 'algorithme de Metropolis-
Hastings associé & un tel choix de F et X le fast Metropolis Adjusted Langevin Algorithm
(fMALA). On note que les corrections ne coincident pas avec les schémas d’intégration
des EDS d’ordres plus élevés. Dans un second temps, nous montrons que I’échelonnage
optimal de 'algorithme de Metropolis-Hastings associé¢ a la proposition définie par (1.38)
pour F et 3 données par (1.41) est en d=1/% et donc améliore l'ordre de D’échelonnage
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optimal associé & MALA. Nous étudions aussi d’autres formes pour les fonctions F et X
et obtenons ainsi deux nouveaux algorithmes dont I’échelonnage optimal est en d—1/5.

Nous établissons ensuite des résultats de stabilité et d’ergodicité pour ces nouveaux
algorithmes. En particulier, nous montrons que I'un d’entre eux est géométriquement
ergodique pour une classe de densités proche de celle définie par (1.17) en établissant
une inégalité de dérive géométrique (1.14). Nous donnons aussi un critére sur F et ¥
qui implique qu’un algorithme de Metropolis-Hastings dont le noyau de proposition est
associé a (1.38), n’est pas géométriquement ergodique. Ce résultat généralise [RT96a,
Théoreme 4.2]. On utilise ce critere pour établir que fMALA n’est pas géométriquement
ergodique si lim|, 400 VU (2)| /[|2] = +o0.

Enfin nous présentons des simulations numériques pour illustrer nos résultats, ainsi
que des stratégies algorithmiques pour gérer le régime transitoire de ’algorithme. En
effet, notre résultat d’échelonnage optimal ne s’applique uniquement qu’aux chalnes
stationnaires. Il est & noter que le méme probleme se pose pour MALA mais que
I’algorithme de Metropolis-Hastings a marche aléatoire symétrique a un échelonnage
optimal de I'ordre de d~! méme si la chaine n’est pas stationnaire, voir [JLM15]. Nous
proposons alors une stratégie hybride similaire a celle dans [CRR05] pour MALA. Avec
probabilité 1/2, nous utilisons le noyau associé a l'algorithme de Metropolis-Hastings
a marche aléatoire symétrique et le noyau associé a l'algorithme fMALA sinon. Nous
comparons alors empiriquement les deux stratégies hybrides pour MALA et IMALA et
observons que celle utilisant fMALA converge plus rapidement et présente de meilleurs
fonctions d’autocorrélations. Ce travail a été mené en collaboration avec les professeurs

Gareth Roberts, Gilles Vilmart et Konstantinos Zygalakis. Il est en révision majeure a
Annals of App. Prob.
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Chapter 2

Introduction

2.1 DMotivation: a short digression on Bayesian statistics

Sampling from a probability distribution is the main motivation of the work presented
in this thesis. There are of course many different applications of sampling. In particular,
Bayesian inference is based on the exploration of the a posteriori distribution of a model.

Bayesian statistics suppose a probabilistic model on some observed data w which
is assumed to be a sample from a random variable W valued in a measurable space
(W, W). Here, we consider a parametric model for W, (W, W, Pg) where Pg is a set of
probability measure defined by:

Po={K(,)|9e6} .

K is a Markov kernel on (W, W) and (©, F) is a measurable space. In most applications,
O is either discrete or a subset of R% for d > 1. Assume that the model is dominated
by a measure p on (W, W), i.e. K admits a transition density with respect to u: there
exists a measurable function £ : ©® x W — R such that for all 4 € © and w € W,

dK (9, )

n (w) = L(w]I) .

The function ¥ — L(W|¥) is called the likelihood function of the model. Then while in
frequentist statistics, the parameter ¢ would be inferred by maximizing the likelihood
function, Bayesian statistics consider that the parameter 1 is itself a sample from a
random variable 6, whose the distribution is chosen and called the prior distribution.
This law will be denoted by vy. Bayes theorem [Sch95, Theorem 1.31] gives an expression
of the conditional law of § given W depending on the likelihood function and the prior
distribution vy. This conditional law admits a density with respect to vy given for vy-
almost all ¢ and p-almost all w by

pG\W(w”’g) = ) (2.1)

31



32 2.2. Monte Carlo algorithms and Markov Chain Monte Carlo

where py is the marginal density of W with respect to p given for all w € W by
pur(w) = [ L(wld)rp(d). (22)

If w are some observed data, the probability measure associated with density pg‘w(W, )
is called the posterior distribution.

2.2 Monte Carlo algorithms and Markov Chain Monte Carlo

Let 7 be a probability measure on a measurable space (E,€) and f : E — R be an
integrable function with respect to a target distribution 7. We are interested here in
estimating the quantity [ f(x)m(dz). Classical Monte Carlo methods are based on
the strong law of large number for sequences of i.i.d. (independent and identically dis-
tributed) random variables with distribution 7: let (Y;);en be ii.d. random variables
with distribution 7, then [¢ f(z)m(dz) is approximated by the sequence of estimator
defined for all N € N by

. 1 X
IN = N1 gf(Yz) : (2.3)

By the strong law of large numbers fy converges to Jg f(z)m(dz) almost surely, as
N goes to infinity, and if f? is integrable with respect to 7, then the central limit
theorem provides a way to evaluate the asymptotic error. Although this procedure is
quite simple, it requires i.i.d. samples with distribution 7. Many methods are available
for such purpose among which the two most popular ones are the inverse transform
sampling and the accept-reject algorithm, see [RC10, Section 2.1.2] and [RC10, Section
2.3].

However as the dimension of the state space gets large, these methods become in-
efficient. Besides in Bayesian inference, m admits a density with respect to the prior
distribution (2.1), given with the notations of Section 2.1 by:

L(w|z)
pw (W)

)

where w are some observed data. Note that this denisty is known up to a multiplicative
constant. Indeed, except if conjugate distributions are used, the marginal density (2.2)
has no closed form expression. This constraint make all the more difficult the application
of the two methods presented below.

Another class of methods are Markov Chain Monte Carlo methods. The sequence of
random variables (Y;);en is no longer i.i.d., but (Y;);en is a Markov chain with Markov
kernel P, with invariant distribution 7. An estimator of [¢ f(x)dx is still defined by
(2.3). As in the case of i.i.d. samples, under appropriate assumptions on 7 and the
Markov chain (Y;);en, a strong law of large numbers can be established [MT09, Chapter
17], which justifies these methods. Indeed, [MT09, Theorem 17.1.7] shows that if P is
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Harris recurrent' and admits 7 as invariant distribution, then for all = € E,

N-1
N~ Z fYi) = / fy)dy P,-almost surely ,
i=0 E

where P, is the induced law by the Markov kernel P and the initial distribution J, on
(EN, £2N) and (Y;);en is the canonical chain on (EN, %N P,). A first question regarding
these methods is to find a Markov kernel which admits 7 as invariant distribution. We
now present Metropolis-Hastings type algorithms which are generic methods to build
such Markov kernels.

2.3 Metropolis-Hastings type samplers

Metropolis-Hastings type algorithms have been first introduced in [Met+53], and then
generalized in [Has70] and [Tie98]. Consider a Markov kernel P on (E,&) of the form
forallz € Eand A € &,

Pad) = [ale.y)Qdy) + 60 [(1-a@n)Q@dy),  (24)

where @ is a Markov kernel, called the proposal kernel, and o : E X E — [0,1] is a
measurable function, called the acceptance ratio. We can easily sample a Markov chain
with Markov kernel P if it is the case for the kernel Q. Let x € E and W a random
variable distributed according to Q(z,-). Define the random variable Y by

v {W with probability a(x, W)

T otherwise .

Then, we easily get that Y is distributed according to P(x,-). Note that if P is of the
form (2.4) then by definition, it is reversible with respect to the probability distribution
7 if and only if for any bounded and measurable function ¢ : E? — R,

L, st m)n@)P(da.dy) = [ (e, y)n(dy) Ply,da)
E2 E2

which is equivalent to
/EQ 9(@,y)a(z, y)r(dz)Q(z, dy) = /EQ 9@, y)aly, 2)n(dy)Qy, dz) .
Define the two measures on (E?,£%2), i and p? for all A € £%2 by?:
p) = [ Ta(w,2)m(dy)Q(y. d2)

W) = [ Lndn)Q.dz)

see Definition A.14
2gee also Definition-Proposition A.1
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Then, P is reversible with respect to 7 if there exists a symmetric set S € £%2 such that
a is zero on 8¢, u(- N'S) is absolutely continuous with respect to p™ (- N'S) with density
m and p-almost everywhere

a(z,y)m(z,y) = a(y, z) .
Two significant examples which we deal with in this manuscript are the following.
(A) Assume that there is a measure v on (E,&) which dominated 7 and @, i.e. 7

admits a density still denoted by 7 with respect to v and @@ admits a kernel density
denoted by g with respect to v. Then if we define,

s ={(z.y) € E|n(@)q(z,9) > 0, 7(y)aly,z) >0} ,

and
m(y)q(y, v)

min | 1,
a(r,y) = ( m(z)q(z,y)
0 otherwise |,

) pour (z,y) € S (2.5)

the conditions for P to be reversible are satisfied with

m(y)a(y, w))

m(z,y) = min (1, Tz 1)

defined on S.

A simple choice for () is the dominating measure v, if it is a probability measure.
In practice, we need to be able to sample from v because the proposed samples are
i.i.d. random variables with distribution v. In this case, note that the acceptance ratio
is of the form,

a(z,y) =min (1, 7(y)/m(z)) . (2.6)

This algorithm is called the Metropolis independent sampler. Another possibility to
define a Metropolis-Hastings kernel is, when E is a group and v is a translation invariant
measure invariant, to consider the random walk associated with a symmetric probability
measure on (E, &) which admits a density ¢ with respect to v. In this case, the random
variables proposed in the algorithm are of the form

Wis1 =Y + Zpga

where Y}, is the current state of the Markov chain at iteration k and (Z;);>; are i.i.d. ran-
dom variables with density ¢ with respect to v. In addition, the proposal transition
density is given for all z,y € E by ¢(z,y) = §(x —y), since § is assumed to be symmetric,
and the acceptance ratio is of the form (2.6) again. This method is called the symmetric
random walk Metropolis algorithm. An example of such algorithm is the symmetric
random walk Metropolis algorithm defined on R? with the Lebesgue measure and where
the proposal kernel is the Markov kernel associated with the symmetric random walk
with zero-mean Gaussian increments and covariance matrix ¢! 1d, ¢z >0.
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(B) It can be observed that it is essential for the previous algorithms that 7 and @
are dominated by a common measure. We can weaken this condition when 7 admits a
positive density, still denote by 7, with respect to a probability measure v for which @
is reversible. Then setting S = E and for all (z,y) € E2,

a(z,y) = min <1, w) ,

m(x)

(2.4) defines a Metropolis-Hastings kernel P reversible with respect to .

2.4 The overdamped Langevin diffusion

2.4.1 Continuous Markovian dynamics

Instead of considering discrete dynamics, we can think of using continuous Markovian
processes associated with a semi-group (P):>0 on (E,€) and for which 7 is invariant.
For this, assume that E is a locally compact Polish space and that (P):>o is Feller.
The Markov semi-group (P;):>0 is associated with an operator, called its generator and
denoted by 47, which is defined as follows. Denote by Cy(E) the set of functions vanishing
at infinity*. The domain of definition of <7, denoted by Z(7) is the set of all functions
h € Co(E) for which there exists a function g, € Cy(E) such that for all = € E,

gu() = lim ™ {Pyh(z) — h(2)} -

Then define for all h € (), o/h = gp,. The study of the properties of the generator
associated with a Markov semi-group allows to deduce a lot of information on this semi-
group. Let A be an algebra included in Z(</) and dense in Cp(E). In particular if
E = RY we can take for A, the set of k-times differentiable functions with compact
support from R? to R, for k& € NU {oo}. By [RY99, Proposition 1.5, Chapter VII]
and [EK86, Theorem 9.17, Chapter 3], if for all h € A, [ @h(z)dn(x) = 0, then 7 is
invariant for (P;);>0. In addition if 7 is an invariant distribution for (P;);>0 and that
(P¢)s>0 is Harris recurrent®, then a strong law of large numbers holds [RY99, Theorem
3.12, Chapter X]: for all z € E

T
lim T_l/ f(Ys)ds = / flx)dn(zx) , P,-almost surely ,
T—+o00 0 E

where (Yy);>0 is the Markovian canonical process associated with (P;);>¢ and P, is
the probability measure induced by the semi-group and the initial distribution 6,°. We
consider here Markov semi-groups associated with solutions of homogeneous stochastic
differential equation (SDE) on R,

3see Definition A.25
4gee Definition A.24
5see Definition A.30
8see Theorem A.26



36 2.4. The overdamped Langevin diffusion

Let b : RY — R and o be a function from R? to Mg m(R), the set of matrices of
dimension d x m, such that for all 2 € R o(x)o(x)" is definite positive. Assume that
these two functions are locally Lipschitz and consider the SDE:

where (B}") is a m-dimensional standard Brownian motion. By [IW89, Theorem 2.3,
Theorem 3.1, Chapter 4], for all initial condition Yo = x € R? this SDE admits a
unique solution (Y;)ieo on a filtered probability space (€2, F, (F3)¢>0,P) endowed with a
Brownian motion (Bfl)tzo until an explosion time £ which is the stopping time defined
by

E=inf{t>0|Y; =00} .

Assume that almost surely & = +o00. Then by [SV79, Corollary 10.1.5] and [ITW89,
Theorem 6.1, Chapter 4], the distribution of the process (Y¢)ieo defines a Feller Markov
semi-group (P;)i>o by for all A € B(R?) and z € R?, Py(x,A) = P,[Y; € A]. Besides,
[Bha78, Lemma 2.4] shows that this semi-group is irreducible’ for the Lebesgue measure.
Finally, [Bha78, Theorem 3.3] gives a criteria for the diffusion to be Harris recurrent.
When E = R? and 7 admits a positive density with respect to the Lebesgue measure

of the form
m(x) = e_U(x)// e U@y |
R4

where U : R? — R is a continuously differentiable function, the overdamped Langevin
diffusion defined by
dYr = —vU(YL) + v2dB? (2.7)

admits 7 as invariant distribution. Its generator «/" is given for all function h € C2(R9)
and = € R? by
AVh(x) = — (VU (z), Vh(z)) + Ah(z) .

By [MT93b, Theorem 2.1], this process is non explosive if for all 2 € RY,
(VU (x),2) > —a1 [l* — a2 ,

for some constants aj,as € Ry. By a simple change of variable, for any function h €
C?(R%), we have

/]Rd {%Lh} (x)m(z)dx =0,

which shows that 7 is invariant for the Markov semi-group (P});>¢ associated with
(2.7). Therefore, by [MT09, Proposition 10.1.1] and Corollary A.34, (PF);>q is Harris
recurrent.

With a very few exceptions, it does not exist simple methods to sample a solution
of the overdamped Langevin equation. Whereas some exact simulation algorithms have
been proposed, see for example [beskos:roberts:2005 |, their implementation seems to
be very costly.

"see Definition A.28
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2.4.2 Two MCMUC algorithms based on the overdamped Langevin equa-
tion: the ULA and the MALA

We consider in this thesis the Euler-Maruyama discretization associated with (2.7) and
defined for a given initial condition by: for all k£ > 0,

Yir1 =Y, — ’yVU(Yk) + V2V 2541, (2.8)

where v > 0 is the step size of the discretization and (Zj)>1 is a sequence of i.i.d. d
dimensional standard normal random variables. The discretization (Y, ),en can be seen
as a approximate path of (Y¢)¢>o and used to sample from 7. This algorithm has been
first proposed by [Erm75] and [Par81] for molecular dynamics applications. Then it has
been popularized in machine learning by [Gre83], [GM94] and computational statistics
by [Nea93] and [RT96a]. As in [RT96a], this algorithm will be called in this manuscript
the Unadjusted Langevin Algorithm.

The drawback of this method is that even if the Markov chain (Y,),en has a unique
stationary distribution 7, and is ergodic (which is guaranteed under mild assumptions
on U), 7y is most of the time different from 7. Therefore, using this method introduces
a bias in the computation of [pa f(x)dn(z), i.e

. . N—-1
i NS () = | f@dn @ # [ f@dne)

However, [TT90] shows that under appropriate conditions on f, the chain (Y},),en and
the diffusion (Y¢)>0, there exists a constant C' which depends on f and 7 such that for
all v > 0 in a neighborhood of 0,

z)d7. (= / f(x)dn(z) = Cy+ O(?) .

Therefore, taking a step size sufficiently small implies that the error in the computation
of [ga f(z)dm(z) is small as well. To suppress the bias of the method, it has been pro-
posed by [RDF78] and [RT96a] to use the Markov kernel defined by the Euler-Maruyama
discretization (2.8) as a proposal kernel in a Metropolis-Hastings algorithm. Following
[RT96a], this algorithm will be referred to as the Metropolis Adjusted Langevin Algo-
rithm (MALA).

Another method to suppress the bias of ULA is to use a sequence of non-increasing
step sizes (Vx)r>1 satisfying limk — 400y, = 0 and Zk 1Yk = +oo. Then, we define
the inhomogeneous Markov chain (Y),),en associated with this sequence, for a given
initial condition and all £ > 0 by

Yit1 =Y — %+ VU (Yx) + vV2v%+1Zk+1 »
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where (Z)r>1 is a sequence of i.i.d.d-dimensional standard normal random variables. It
has been proved in [LP02, Theorem 6] that under appropriate assumptions on f and U,
for all € R?,

i SN vk f (Ye)
1m N
N—+o0 2 k=1 Vk

In the sequel, this algorithm is still referred to as the ULA algorithm.

= /d f(z)dn(z), P,-almost surely .
R

2.5 Convergence of MCMC methods

Let (Yj)ken be a homogeneous Markov chain, associated with the initial distribution
o and the Markov kernel P, on a Polish space E endowed with a distance d and its
Borel o-field £. Define the sequence of marginal laws (ugP*)ren+ of the chain (Y3)ren
by induction for all £ € N* and A € E by:

poP*(8) = [ 1a(w)poP* 1 (do) (o dy)
E

We are interested in this section in the existence and especially in the uniqueness of an
invariant probability measure for P. In addition, some results on the convergence of the
sequence of probability measures (o P")ren+ to the unique stationary distribution of P,
when it exists, are given.

Some methods have been presented in Section 2.3 and Section 2.4.2 to build some
Markov chains for which 7 is an invariant distribution or is very close to be. The
convergence analysis of the marginal laws of the associated Markov chains is justified by
the study of the convergence of the estimator fy, defined by (1.3) to [pa f(z)dn(z) as
N goes to infinity. Indeed, as (Yj)ren is not i.i.d., a first step is to measure the bias of
the estimation given by

E. [/v] - [ f(a)dn(a)

- |NL+1 io {E. v - [ f(w)dﬂ(w)}‘ -

The convergence of the marginal laws (10P*)zen to 7 has been the subject of numerous
studies [MT09], [Num84], [HMS11]. This convergence is established under different
distance on the set of probability measures on (E, &), denoted by P(E). We consider
in this manuscript two kinds of distances: V-total variations distances and Wasserstein
distances.

2.5.1 Convergence of Markov chains

Distances on the set of probability measures

Let V : E — [1,00) be a measurable function. We define the V-norm of a measurable
function h : E — R by

|l = Sup \h(z)|/V (z) .
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Let 1 be a bounded signed measure on (E,£). The V-total variation of u is given by

lullvy = (1/2) sup h(z)dp(z)

Irllv <1

R4

If V =1, then ||-||v is the total variation of y and is denoted by |- ||rv. For two measures
of probability u, v € P(E), the V-total variation distances between p and v is the V-total
variation of the measure u —v. Similarly, the total variation distance between p and v is
the total variation of the measure p — v. [DMS14, Proposition 6.16] shows that the set
of probability measure {u € P(E)|V € L!(u)} is a Banach space if it is endowed with
the V-total variation distance. Another kind of distance we consider, is the Wasserstein
distance associated with the distance d on E. Let h : E — R be a Lipschitz function
i.e. there exists C' > 0 such that for all z,y € E, |h(z) — h(y)| < Cd(z,y). Let h: E - R
be a Lipschitz function and denote by

sy = sup { B =20

z,yeE d(.%', y)
Define the set P;(E) of probability measure on (E, &) by
Pu(E) = {10 € P(E)| [ d(a,z0)du(x) < +o}

for a fixed element zp € E. The Wasserstein distance is defined for all p, v € P1(E) by

/E h(z)dp(z) — /E h(z)du(z)

Walp,v) = sup
llAllLip<1

By [Vil09, Theorems 6.8 and 6.16], P;(E) is a Polish space if it is endowed with Wy.
The Wasserstein distance and the total variation distance can not be comparable in
general, except when d is bounded. In such a case, for all u,v € P(E),

Wd(:u'ay) < sup {d(l’,y)} ”,U, - VHTV .
z,ycE2

Note that the convergence in one of these distances implies the weak convergence.

By the Monge-Kantorovich Theorem [Vil09, Theorem 5.10], the Wasserstein distance
and the total variation distance between two probability measures p and v on (E, &),
have dual forms in terms of couplings between these p and v. A probability measure
¢ € P(E x E) is a transference plan between p and v if its first marginal (- x E) is equal
to v and its second ((E x -) is equal to v. The set of all transference plan between p and
v is denoted by II(u,v). A coupling between p and v is any couple of random variables
(X,Y) with distribution ¢ € II(x,v). The total variation distance can be written of the
form: for all u,v € P(E)

| —v|Tv = inf / Iag(z,y)¢(dz,dy) = inf PX#Y),
Cell(p,v) JEXE (X,Y)ell(u,v)
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where Ag = {(z,y) € Ex E|x = y}. As regards to the Wasserstein, it can be written of
the form: for all u,v € P(E)

Wa(p,v) = _inf d(z,y)¢(dw,dy) = _inf  E[d(X,Y)].
Cell(pu,v) JEXE (X,Y)el(p,v)

In addition, the infimum in the two equations is reached.

Convergence in V-total variation distances

Historically, the analysis of chains began with the study of chains which have an accessi-
ble atom. A measurable set @ € £ is an atom for the Markov kernel, P on (E,£) if there
exists a probability measure v on (E, ) such that for all x € e, P(x,-) = v. Indeed in
this case, the existence of an invariant measure and the analysis of the convergence to
it, boil down to the study of the return time to this atom, see [MT09, section 10.2, 13.2,
14.1, 15.1].

Consider (Yy)ken and (Fg)ren the canonical chain and filtration associated with P.
For all A € £, the return time of the chain to A is defined by:

oy =inf {k € N*|Y, € A} .

The successive return times to A are the sequence of random variables (agm))meN* defined

(m)

recursively by for m =1, 0, ’ = o, and for m > 2,
o™ =inf {k € N*| Yy, € A} .

Note that for all A € £ and m € N*, Ugm) is a (Fg)ken-stopping time.

Except if the state space E is discrete, the existence of an atom is a very strong
condition which is rarely satisfied. A weaker condition is the existence of a small set for
P. Let n € N*. The set C € £ is (n)-small for P if there exists a o-finite non trivial
measure v on (E,&) such that for all x € C, P*(x,...) > v(-). If C € £ is 1-small for
P, then the splitting technique from [Num?78| allows to build a Markov kernel Pona
extended state space (E x {0,1},€ ® B({0,1})), which admits C x {1} as an atom and
has P for marginal, i.e. for all z € E, a € {0,1} and A € &,

v

P((z,a),A x {0,1}) = P(x,A) .

In addition, the return time to the atom C x {1} of P are closely related to the successive
return time of P to the small set C, and the analysis of P is made through the renewal
process defined by these stopping times. If C C & is just petite ®, it is 1-small for a
sample kernel associated with P and the splitting technique can still be applied. To
summarize, the study of irreducible chains which have a petite set C € £, boils down to
the analysis of successive return times to this set and using the results for atomic chains.

Bounds on moments of successive return times to a measurable set C € £ can be
obtained from Foster-Lyapunov drift inequalities.

8gsee Definition A.8
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(1) The first drift condition which is presented is the following: there exist a proper
measurable function V' : E — R, a € R such that

PV <V-1+4alg, sup V(z) < 4+o00. (2.9)
zeC

By Dynkin’s theorem?, for all = € E,

E,oc] < V(x) + ale(z) , supE, [o¢] < 400 . (2.10)
z€eC
Furthermore, [MT09, p. 13.0.1] shows that if C is a petite set and P is irreducible,
aperiodic and Harris recurrent, then (2.10) is equivalent to the existence of a unique
invariant probability measure 7 for P and for all z € R?,
lim ||0,P" — 7||lry =0.
n—-+o0o
If P is not Harris recurrent but only irreducible, aperiodic and recurrent, then by [MT09,
Theorem 9.1.5]'") P has still a unique invariant probability measure 7 and in addition
there exists a set N € £ such that 7(N) = 0 and for all z € N€,

nll)I_’I_IOO ”(Sxpn — 7T”TV =0.

(2) The second drift inequality presented below implies a convergence in potentially
stronger distance than the total variation distance. Assume that there exist a measurable
proper function V : E — Ry, a measurable function f : E — [1,+00) and a € R4 such
that

PV <V —-f+4+alg, sup V(z) < 400 .
zeC

By Dynkin’s Theorem, we have

< +o0. (2.11)

xzeC

oc—1 oc—1
E, [Z f(Yk)] <V(z)+ale(x), sup E, [Z f(Yx)
k=0 k=0

[MT09, Theorem 14.0.1] shows that if C is a petite set, P is irreducible, aperiodic and
recurrent, (2.11) implies that P admits a unique invariant probability measure 7 and for
all t z € {V < 400},
. n_ _
nEI-iI-loo |0zP™" —|lg =0

(3) We now present a drift condition which implies a geometric rate of convergence
of (0P™)nen to m in V-total variation. Assume that there exist a proper measurable
function V : E — [1,400], A € [0,1) and a € Ry such that

PV <AV +ale, sup V(z) < 400 . (2.12)
zeC

9see Corollary A.20

gee Theorem A.15
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Dynkin’s theorem implies that for all x € (1, )\_1), there exists C' > 0 such that

oc—1 oc—1
E, [Z ﬁkV(Yk)l < C(V(x) +alg(z)) , supE, [Z nkV(Yk) < 4oo. (2.13)
k=0

zeC k=0

[MT09, Theorem 15.4.1] shows that if P is irreducible, aperiodic and (2.13) is satisfied
for a petite set C, then there exists » > 1 and a constant C > 1 such that for all
z e {V < +oo}and n > 1,

|0, P — 7|y < CV(x)r™.

Finally, we mention that there exist two drift conditions proposed in [TT94] and
[Dou+04] respectively, to get sub-geometric convergence rates in total variation distance
and for some V-total variation distances. Roughly speaking, these two conditions imply
sub-geometric moments for the return times to a set and therefore yields to sub-geometric
convergence when this set is petite.

2.5.2 Application to the convergence of MCMC methods

We now deal with convergence of Metropolis-Hastings type kernels on (E, £), as m admits
a density with respect to a dominating measure v, and the proposal kernel admits a
transition density with respect to v as well, see Section 2.3-(A).

Denote by Py a Metropolis-Hastings kernel satisfying these conditions and defined
by (2.4)-(2.5). A significant result is [Tie94, Corollary 2], which shows that if Py is
m-irreducible, then it is Harris recurrent. Moreover, to check that Py is m-irreducible,
a very simple condition is that for all x € E, if w(x) > 0 then ¢(y,x) > 0 for all y € E,
[MT96, Lemma 1.1]. In the case E = R for d > 1 and v is the Lebesgue measure, this
condition is weakened by [RT96b, Theorem 2.2], which establishes that if 7 is positive,
bounded on R?, and there exist 0q, €4 > 0 such that

q(x,y) > €, pour tout z,y € R, |z —yl| <dq, (2.14)

then P is irreducible with respect to the Lebesgue measure and consequently is -
irreducible. In addition, this result shows that under the same conditions, P is strongly
aperiodic and any non-empty compact set is small. Therefore the analysis of conver-
gences rates for Metropololis-Hastings type kernels in the dominated case is divided in
two categories.

If the kernel satisfies a uniform minorization conditions, then it is uniformly ergodic.
For instance, for the Metropolis independent sampler (see Section 2.3-(A)), [MT96, The-
orem 2.1] shows that if there exists 5, > 0 such that for all x € E, q(z)/n(z) > f,, then
Py is uniformly ergodic: for all n > 1,

sup || Py (2) — mflov < (1= Bg)" .
z€E

If the kernel is not uniformly ergodic, then a common approach is to establish a
geometric or sub-geometric drift condition. It is the case for the symmetric random



Chapter 2. Introduction 43

walk Metropolis algorithm, as E = R? and 7 admits a positive, continuous density with
respect to the Lebesgue measure, still denoted by 7. In this context, some conditions
on the geometry of the level sets of m have been proposed in [RT96b] and [JHOO], which
imply a geometric drift condition of the form (2.12). In particular, these conditions are
satisfied for densities of the following form: there exist £ € N*, a positive homogeneous
polynomial p : R¢ — R* of degree /, a polynomial q : R? — R of degree strictly smaller
than ¢, and a positive polynomial r : R% — R?* such that for all z € R4,

() o< r(a) exp(—p() — a(x)) - (2.15)

Then, if the proposal density satisfies (2.14), the symmetric random walk Metropolis
is geometrically ergodic for densities of the form (2.15). Note that for heavy tail dis-
tributions, some drift conditions which imply sub-geometric convergence to m can be
established, see [FMO00], [FM03] and [JRO7].

For applications to MCMC, having explicit bounds on the convergence of the associ-
ated Markov kernels can be important. Derivation of explicit bounds in total variation
has been the object of numerous results. Most of these works rely on a drift condition
again, and a minorization condition by the existence of a small set, see [Ros95], [RT99],
or [Bax05]. These bounds are then established using either the splitting technique of
Nummelin introduced in Section 2.5.1 or coupling techniques. However, it has been
observed in [JHO1] that the bounds derived from these results can not be used for a
detailed analysis of the convergence.

2.5.3 Analysis of ULA and MALA

Regarding the algorithms ULA and MALA presented in Section 2.4.2, [RT96a] studied
the convergence of the produced Markov chains for both algorithms at fixed step size
~v > 0. However, no result is established concerning the convergence of ULA to the target
density m, only to its stationary distribution which, as mentioned earlier, is in general
different from 7. On the other hand, note that since the Markov chain produced by ULA
with fixed step sizes does not have the correct stationary distribution, other techniques
than the one presented in Section 2.5.1 have to be used, as it is done in [Dall6].

Concerning the MALA algorithm, [RT96a] shows that the produced Markov kernel
is geometrically ergodic under the condition that

lim / q(z,y)dy =0,
[[l|—+o0 Ja(z)

where ¢ is the transition density associated with MALA,

A(z) = (B(x) UC(x)) \ (B(z) NC()) ,

B(z) = {y € R!|r(2)q(z,9) < 7(w)a(y.2)} . c(@) = {y e RI||ly] < |all} -
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However this condition is difficult to check in practice.

One of the purpose the work presented in this manuscript is to provide explicit bounds
for the convergence of MCMC methods, in total variation and Wasserstein distance. In
particular, for particular models of target distributions, we have analysed the dependence
of the convergence on the dimension of the state space.

Besides, the results introduced in Section 2.5.1 assume that the chain is irreducible,
which is barely true in infinity dimension. We also address this problem in a part of this
manuscript.

2.6 Optimal scaling for Metropolis-Hastings type algorithms

Another approach to study the Metropolis-Hastings type algorithms in a high dimen-
sional setting is the optimal scaling of these methods.

Consider a target distribution 7 on R%. If we want to apply the symmetric random
walk Metropolis algorithm or MALA, we can observe that a parameter need to be chosen.
For the symmetric random walk Metropolis, it is the size of the increments and for the
MALA algorithm, it is the step size of the disretization. Optimal scaling results aim to
find the best possible choice for this parameter (in some sense) and its dependency on
the dimension d. We give in the two next sections a presentation of these results.

2.6.1 Optimal scaling of the symmetric random walk Metropolis algo-
rithm

The first optimal scaling result for Metropolis-Hastings algorithms has been presented
in the pioneer work of [RGG97] and concerns the symmetric random walk Metropolis
algorithm on R?. Let 7¢ be a positive target density on R? with respect to the Lebesgue
measure (7¢(x) > 0 for all z € RY). Recall that the symmetric random walk Metropo-
lis algorithm with zero-mean Gaussian increments defines a Markov chain (Y%)ien as
follows: for a given initial condition Yod , for all k£ > 0,

Y+ 04Zfl,,  with probability a (Y4, Yid + 042, ,)

v, = (2.16)

ka otherwise |,

where 04 € R, (Z4);>1 is an sequence of i.i.d. d-dimensional standard normal random

variables and for all z,y € R¢

od(z,y) = min (1,7Td(y)/7rd(:v)) . (2.17)

Observe that the choice of the parameter oy is left to the user. Then, we can wonder if
there exists an optimal choice for this parameter and if so what is its dependence on the
dimension d. At first sight, we could think to take o4 as large as possible for the chain
to be able to visit the state space more easily. Nevertheless, we have to ensure that some
moves has to be accepted in a non negligible proportion. This aspect limits the choice
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of the parameter o4, and therefore a first step is to find a parameter o4 such that the
mean acceptance ratio at stationarity admits a limit belonging to (0, 1), i.e.

lim B, o (Ve Yg + 0a2{) | € 0,1) .

d—~+o0

[RGGI7] have been interested in this problem when 7 is of the form:

d
@) =Tlew (<UED)  of=(tad), (2.18)
1=1

where U : R — R is a function which satisfies:
H 1 U is three times continuously differentiable and U’ is Lipschitz.

H2 E[(U(W))® < oo and E[(U"(W))*] < oo where W is a random variable with

distribution wl.

[RGGY7, corollary 1.2] shows that if for all d > 1, o4 = £d~/? for £ € R*, Y is
distributed according to 7%, then

lim B o (Ve Yg' + d122])| = 2®(~£/2VT) , (2.19)

d—~+o00

where ® is the cumulative distribution function of the standard normal distribution and

I— /R (U2 (2)r (z)d . (2.20)

Furthermore, [RGG97, Theorem 1.1] implies that still at stationarity, each component
of the Markov chain (Yid)ieN, properly scaled, weakly converges to the solution of the
overdamped Langevin equation associated with . More precisely, consider the sequence
of Markov chains {(Y;%)x>0; d > 1} defined by (2.16) satisfying for all d > 1, Y{ is
distributed according to 7% and

oq = gdil/ 2
Define the sequence of jump processes {(Y%)i>0; d > 1} from {(Y%)g>0; d > 1} by
forallt>0and d>1, Ygl:Yb‘ft,

where (S;);>0 is a Poisson process with rate d. Denote by Yg 1 is the first component of
Y{. Then if 7% is of the form (2.18) and U satisfies H1 et H2, the sequence (Y{,,¢ > 0)
weakly converges in the Skorokhod space to the solution of the Langevin equation

dY, = \/n(0)dB! — %h(Z)U’(Yt)dt , (2.21)

where (Btl)tzo is a unidimensional Brownian motion, Y is distributed according to 7!,
h(¢) is given for all £ > 0 by

h(0) = 202® (—é ﬁ) : (2.22)
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and I is defined by (2.20).

In addition, this result allows to tune in practice the parameter ¢. Consider the
following Langevin equation

dY§ = —cVU(Y})dt + V2edB}

where ¢ € R% and Y§ = v € R. Under appropriate conditions on U, [Bha78] shows that
for any function f € L2(n!) such that [ f(2)7!(dz) = 0, the process (t~1/2 f f Dds)eo
weakly converges to zero-mean normal random variable with variance E [(foF f (Yl)ds) ]
Then by a simple change of variable, we can observe that the larger ¢ is, the smaller
this variance is. Therefore, we aim to find the constant ¢ which maximizes the function
¢ — h(¢) dans (1.23). However using (1.21), a calculation shows that this function is
maximal for a value of ¢ such that the limit (2.19) is equal to 0.234 (up to 4 digits).

The introduced results are established under the condition that the potential U is at
least three times continuously differentiable on R. We will present some extensions of
this result under weaker assumptions on the potential U.

2.6.2 Optimal scaling of MALA

The same study can be lead for MALA. Let 7¢ be a probability measure on R? with
a positive density of the form (2.18) where U : R — R is continuously differentiable.
Recall that MALA defines the Markov chain (Y;?);ey for a given initial condition Y{ by
for all £ > 0,

ve = Wiy =Y + 03V log n(Vd) + V202, with probability o (Yid, Wi, )
: Y otherwise ,

(2.23)

where o4 € R, (Z%);>1 is a sequence of i.i.d. d-dimensional standard normal random

variables, and for all z,y € RY

7e(y) exp <— H:c —y — 02V log md( y)H2 /(403))

md(x) exp (— ly — 2 — 02V log m¥(x )H2 /(403))

ad(z,y) = min{ 1, (2.24)

As in the case of the symmetric random walk Metropolis, the choice of the parameter
oq is left to the choice of the user. Therefore, we can have the same considerations as
for the symmetric random walk Metropolis on this choice: what is the good dependence
of o4 on the dimension so that E_s[a? (Y, W{)] converges as the dimension d goes to
infinity, to a constant in (0,1). This time the parameter o4 has to scale as 0d=1/6 for
¢ € RY%. Indeed [RR98, Theorem 1] shows that if the potential satisfies:

M 1 U is eight times continuously differentiable on R and there exits a real polynomial
P satisfying for all i € {0,--- ,8} and = € R, )(CE)‘ < P(x)
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M 2 For any p > 1, [ |z|f mi(z)dz < oo
then

lim B |of (Yo, Vi + 2d PV log (V) + VA7 )| = 28(-6 V2))

d—+o0
(2.25)

where ® is still the cumulative distribution function of the standard normal distribution
and

J = (48)71 /R {5(U<3> (z))? —3(U?) (x))3} rH(x)dz > 0. (2.26)

[RR98, Theorem 2] shows that a diffusion limit holds for MALA as well. Consider the
sequence of Markov chains {(Y;%)x>0; d > 1} defined by (2.16) satisfying for all d > 1,

Yod is distributed according to 7% and

oq = ed—1/6

Define the sequence of jump Markov processes {(Y@);>0; d > 1} from {(Y¥)>0; d > 1}
by:
forallt>0and d>1, Yf:YS%,

where (S;);>0 is a Poisson process with rate d'/3. Denote by Yg{l is the first component
of Y{. If n¢ is of the form (2.18) and U satisfies M1 and M2, the sequence of processes
{(Ygl,t > 0); d > 1} weakly converges in the Skorokhod space to the solution of the
Langevin equation:

dY; = \/2g(0)dB} — g()U(Yy)dt , (2.27)

where (B{)i>0 is a unidimensional Brownian motion, Yy is distributed according to 7'
and g(¢) is given for all £ > 0 by

g(0) = 860 (—*v2J) | (2.28)
and J defined by (2.26).

Finally as in the case of the symmetric random walk Metropolis, this diffusion limit
allows to tune the parameter ¢ in practice. By (2.25), a calculation shows that the
function ¢ — g(¢) has a unique minimizer at £* > 0, for which the limit mean acceptance
ratio given in (2.25) has to be about 0.574.

Note that compared to the symmetric random walk Metropolis, MALA allows to
take at stationarity larger step-sizes with respect to the dimension d. In a chapter, we
will investigate if it is possible to improve the optimal scaling of MALA and propose an
alternative to it.
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2.7 Outlines and contributions

This manuscript is divided into three parts according to the different topics we have
investigated. Fach part is split into two chapters. With one exception, these chapters
are accepted or submitted papers.

In the first part, convergence results of Markov chains in Polish space will be estab-
lished, and will be applied to the study of MCMC algorithms.

In a second part, the ULA algorithm will be studied in depth. Explicit bounds
are established in total variation distance and Wasserstein distance, depending on the
assumptions on the potential associated with the target measure.

Finally, the last part consists in new optimal scaling results for the symmetric random
walk Metropolis algorithm and a new Metropolis-Hastings type algorithm.

We present below an outline of each chapter of this thesis.

2.7.1 Part I-Chapter 3

In this first chapter, we establish geometric convergence result in Wasserstein distance for
a Markov kernel P on a Polish space (E,d) endowed with its corresponding Borel o-field
&. This result is obtained by combining a geometric drift condition and a contraction
condition for the kernel P on a subset of E x E in the Wasserstein distance associated
with the metric on E. More precisely, it is assumed that there exist a measurable set
GeE®E, L e N*and e € (0,1] such that P satisfies for all (z,y) € G,

Wa(P(z,-), P(y,) < (1 = )d(z,y) - (2.29)

In addition, it is assumed that there exist a measurable function V' : E — [1,40o0],
b€ Ry and A € [0, 1] such that for all z,y € E,
PV(z)+ PV(y) <AV (z) + V(y) + ble(z,y),  sup {V(2)+V(w)} < +oo.
(z,w)€EXE
(2.30)

This condition is similar to the geometric drift condition (1.14) but must hold on the
product space. The result derived from these two conditions gives a quantitative control
on the convergence of the kernel for (possibly) non irreducible kernels. On the other hand,
even if the kernel is irreducible, our result provides convergence bounds in Wasserstein
distance, which can be more precise than in total variation. This kind of result has been
already established in [HMS11], but the bounds obtained in this chapter depend on the
constants appearing in (2.29) and (2.30) in a simpler way. Furthermore, the technique
of proof is completely different and relies on an appropriate coupling of the chain.

This result is then applied to a MCMC algorithm defined as follows. Let 7w be a
target density on R¢ given for all z € R? by

m(x) = 2~ exp(~U(x) — I'(x)) ,

with Z = [gaexp(=U(z) — ['(z))dz < 0o, I': R? = R and U : R — R. Assume that U
is of the form for all z € R¢,

Ux) = (1/2)a" Qz + Y (x)
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where Q is a positive definite matrix and T : R4 — R is a convex, gradient Lipschitz
function. Then consider the Langevin diffusion associated with U:

dY, = Y, dt — Q" 'VY(Y,)dt + vV2Q /2dB¢
Yo=1yo,

where (Bf)i>o is a d-dimensional Brownian motion. By assumption on U, this SDE
admits a unique strong solution (Y¢):>0. It is an easy task to show that for all ¢ > 0
and ¢ > 0,
t+6 t+0
Yi5=Ye - / e~ =9IV (Y,)ds + \/iQ_l/z/ e~ H=9qB? | (2.31)
t t
Therefore, the Euler scheme for (2.31) with a step size § > 0 defines the Markov chain
(Yx)ken, given for all £ > 0 by

Vig1=Ye = (1 = e )Q VYY) + Ziyr (2.32)

where Y} is the starting point, (Zk)ken+ are i.i.d. zero-mean Gaussian random variables
with covariance matrix (1 —e=29)Q~!. This kind of discretization is called a stochastic
exponential Euler integrator, see [LR04]. The chain associated with the relation (2.32)
defines a Markov kernel which can be used combined with a Metropolis-Hastings accep-
tance step to target m. The algorithm so defined is called the EI-MALA algorithm. It
generalises an algorithm proposed in [Bes+08], setting h = 2(1 — e ? ) and I' = 0. This
algorithm was analyzed in [Ebel4] under some assumptions on @ and Y. We complete
here this analysis and establish under appropriate conditions geometric convergence of
the Markov kernel produced by the algorithm with explicit bounds. In particular, we
show a logarithmic dependence on the dimension when Y = 0 and I' is bounded. More-
over, we check that the assumptions of our result hold for a Bayesian inverse problem.
Finally, some numerical simulations are given to support our findings.
This work has been published in Statistics and Computing [DM15b].

2.7.2 Part I Chapter 4

We complete in this part Chapter 3 on the study of Markov kernels which are poten-
tially non-irreducible, in particular chains defined on functional state space. We aim to
establish

e conditions to get existence and especially uniqueness of an invariant distribution of
Markov kernel P on a Polish space (E,d), with £ the corresponding Borel o-field.

e convergence rate of the chain to its stationary distribution.

As well as in the irreducible case, it is assumed that there exist a measurable function
V :E —[1,400) and a constant b € R such that for all z,y € E,

PV(z)+ PV(y) <V(z)+V(y) — 1+ blg(z,y), ( su)p;G {V(z) + V(w)} < o0,
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where G € £ ®E is a set on which the kernel P satisfied the contraction condition (2.29).
This condition is similar to the condition (2.9) in the irreducible case but is formulated
on the product space E x E.

Besides, we establish quantitative bounds for the convergence in Wasserstein distance.
Such bounds in the geometric case have been obtained in [HMS11] and the work presented
inChapter 3. In this chapter, we establish sub-geometric convergence rates in Wasserstein
distance under sub-geometric drift conditions. These conditions are similar to the one
given in [TT94] and [Dou+04] to establish sub-geometric convergence rates in total
variation. The convergence in Wasserstein distance has been already been considered in
[But14] but the obtained convergence rates do not fit the established one for the total
variation distance. We obtain in this chapter the same convergence rates reported in
[Dou+04] for the total variation distance. Whereas the method of proof used in [But14]
is inspired by [HMS11], our proof is inspired by the method used in the geometric case
presented in Chapter 3, and some ideas from [Dou+04].

We consider two applications of our theoretical contributions. We first apply our
results to a functional auto-regressive model on R? of the form

Yir1 = h(Yg) + &kr1 (2.33)

where h : R? — R? is a measurable function and (&k)ken+ are ii.d. random variables.
Note that if the sequence (§x)gen+ is valued in a discrete denumerable alphabet, then the
Markov chain is not irreducible. It is assumed that h is a strict contraction at the center
of the space, i.e. there exists a function @ : R? x R? —]0,1[ such that for all z,y € RY,

h(z) =h)l <w=(@,y)lz -yl ,

and for all R € Ry, ¢(R) = sup{w(z,y) | [[z]| + lyl| < R} < 1. If supgeg, ¢(R) < 1,
then the model is geometrically ergodic in Wasserstein distance. We are interested in
the case where limsupp_, ., ¢(R) = 1. Depending on the conditions on the rate of this
convergence and moment conditions on the distribution of the sequence (&)ken+, we
establish sub-geometric convergence rate for the Markov kernel associated with (2.33).
The second example deals with the pre-conditioned Crank-Nicolson algorithm [Bes+08].

It is a Metropolis-Hastings algorithm defined on a Hilbert space H endowed with a Gaus-
sian measure Lo, and applied to a target distribution 7 which admits a positive density
x — exp(—®(z)) with respect to pg. The proposal kernel is associated with the auto-
regressive model:

Wi = (1 =) Wi+ 0" Zp41 (2.34)

where n € [0,1] and (Z)ren~ is a sequence of i.i.d. Gaussian random variables with distri-
bution pg. Note that if G; and G5 are two Gaussian random variables with distribution
tto, then for all ) €]0,1[, (G1, (1 —n)"2Gy +1'/2Gy) and ((1—n)/2Gy +n'/2Gq, Gy) are
two Gaussian random variables on H x H with the same covariance operator, therefore
have the same distribution. It follows that the Markov kernel () associated with the
Markov chain defined by (2.34) is reversible with respect to 9. Following the discussion
on the Metropolis-Hastings type algorithms in Section 1.3-(B), the Metropolis-Hastings
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kernel P,cn defined by (1.4), associated with the kernel ) and with the acceptance ratio
given for all z,y € H by

afr,y) = min {1,exp (®(z) — ®(y))} ,

is reversible with respect to m. [HSV14] have shown that if the acceptance ratio is
uniformly lower bounded then P,cy is geometrically ergodic for a particular Wasserstein
distance. We weaken this condition and show that if ® is Lipschitz, then the produced
Markov kernel is sub-geometrically ergodic for a particular Wasserstein distance.

This work has accepted for publication in les Annales de 'THP.

2.7.3 Part II-Chapter 5

This chapter consists in a detailed study of the ULA algorithm presented in Section 1.4.2
to sample from a target distribution = on R?, d > 1, of the form (1.8). We establish
explicit bounds in total variation distance between the marginal laws of the Markov
chain produced by ULA and 7. We obtain results for both fixed and decreasing step size
sequence.

The method of proof is very different from classical approach because our aim is to
get quantitative results. Indeed, for Langevin diffusions, numerous results have been
recently established to quantify the distance in total variation between the law of the
diffusion and its stationary measure. These results follows from either sharp functional
inequalities, such Poincaré or logarithmic Sobolev inequality see [Bak+08] and [BGL14],
or coupling, see [Ebel5]. In particular, we obtain original convergence result for the
Langevin diffusion combining the reflection coupling proposed in [LR86] and quantitative
method of convergence introduced in Chapter 3. These results complete the work of
[Ebelb] which deals with convergence of diffusion processes in Wasserstein distance.

To compare the diffusion and its discretization, we use an approach coming from
[Dall6] based on the Girsanov Theorem which, combined with the Pinsker inequality,
allows to bound the total variation distance between the laws of the diffusion and the
continuous interpolation of its discretization.

Based on these results, two strategies are analyzed: in the first one the number of
iterations of the algorithm is set and the second supposes that the algorithm can be
stopped at any time. In particular, depending on the curvature and the regularity of
the potential associated with 7, we are interested in the dependence of the obtained
bounds on the dimension of the state space, which is important for statistical applica-
tions. Numerous conditions on the potential are considered: super-exponential, convex,
perturbations of a strongly convex function, which correspond to practical situations.
For each case, we obtain explicit bounds, which depend in some scenarios polynomially
on the dimension.

At fixed step size, under mild assumption on the potential associated with 7, the
Markov chain produced by ULA admits a unique invariant distribution . We give in
this chapter an explicit bound in V-total variation between the target measure 7 and 7

of order V-
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We show that if the sequence of step sizes (Vx)x>0 goes to 0 and 3125 v, = +00, then
the sequence of marginal laws of the produced inhomogeneous Markov chain converges
to the target measure m, still in total variation distance.

The results of this chapter complete [Dall6], where only the case of strongly convex
potentials is considered. It is a joint work with the professor Eric Moulines. It has been
accepted for publication in Annals of App. Prob.

2.7.4 Part II-Chapter 6

In this chapter, we complete and improve the results of the previous chapter in the case
the target density r is strongly log-concave on R?, d > 1, and of the form (1.8). First the
convergence in Wasserstein distance is studied. Explicit bounds are established using the
synchronous coupling between the Langevin diffusion and its discretization associated
with a sequence of step sizes (vx)ren+. This coupling uses the same Brownian motion
for the two processes and is given for any initial conditions by:

{Yt =Y, — [; VU(Ys)ds + 2B for all t > 0

Vi1 =Ye = VU(Yy) +V2(BE, | — Bf,) forall k e N*,

where (B{);>o is a d-dimensional Brownian motion and Ty = ¥ | +; for all k € N*.
When the sequence of step sizes goes to 0 and Z,j;"l’ v = 400, we derive using these
bounds, explicit convergence rate in Wasserstein distance between the marginal laws of
the produced inhomogeneous Markov chain and the target distribution .

At fixed step size v > 0, we deduce an explicit bound between 7 and the stationary
distribution 7, of the homogeneous Markov chain produced by the ULA algorithm.
Regarding the dependence on the dimension, for a target precision ¢ > 0, we show that
a number of iterations of order de=2 or d'/?¢~! is sufficient for the Wasserstein distance
between the marginal law of the algorithm and the target measure to be smaller than e.
The difference between these two results comes from different regularity conditions on
U (it is assumed for one of the two that U is three times continuously differentiable).

Then, we adapt results from [JO10] to the considered Markov chain which can be
potentially inhomogeneous to get explicit bounds on the Mean Square Error and ex-
ponential deviation inequalities for estimators of [p4 f(7)7(z)dz when f : R? — R is
Lipschitz.

In a second time, we use the derived bounds in Wasserstein distance to get explicit
bounds in total variation distance. Indeed, as U is convex, then the semi-group associated
with the Langevin diffusion has a regularizing effect. More precisely, let f : R® — R
be a measurable and bounded function. Then for all ¢ > 0, P;f is a Lipschitz function
with a Lipschitz coefficient which is explicit and depends on t. However this coefficient
in short time is of order t~1/2. That is why we in part use the method presented in
Chapter 6 to deal with this problem. The resulting bounds gives convergence rate in
total variation to 7, when the sequence of step sizes goes 0 and Z;;’ol v = 400. These
rates are significantly better than the one obtained in Chapter 6. As the discretization
step sizes are held constant, the derived bounds imply that if U is sufficiently regular
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then a number of iterations of order \/de ! is sufficient for the marginal law of the
algorithm to be in a ball centered at m and with radius ¢ > 0 for the total variation
distance. Again, this result improves the bounds obtained in Chapter 5 which would
give a number of iterations of order de 2.

We conclude this work by establishing explicit bounds on the Mean Square Error and
exponential deviation inequalities for estimators of [za f(2)7(z)dz where f : R? — Ris a
measurable and bounded function. However, we cannot apply directly the method used
when f is Lipschitz. First, we show that the Markov kernel associated with the Euler
discretization has a regularizing effect as well. For this, we are interested in functional
auto-regressive models of the form

Wit =h(Wi) + 02341, (2.35)

where h : R? — R is Lipschitz, o > 0 and (Z;)ren- is a sequence of i.i.d. d dimensional
standard normal random variables. We prove that the Markov kernel K, associated
with this model is regularizing using a generalization of a coupling which was originally
proposed in [BDJ98]. More precisely, let f : R — R be a measurable and bounded
function. Under appropriate conditions on h, K, f is Lipschitz with Lipschitz coefficient
of order o1,

It is a joint work with the professor Eric Moulines.

2.7.5 Part I1I-Chapter 7

The original optimal scaling result for the symmetric random walk Metropolis [RGG97]
assumes that the target distribution has a positive and three times continuously differ-
entiable density with respect to the Lebesgue measure, see Section 2.6.1. Therefore, it
can not be applied if the density is not regular as for example the Laplace distribution
(which is not differentiable at some points). Nevertheless, if we observe the result of
[RGGIT7], the only quantity which appears in the limit of the mean acceptance ratio
at stationarity is the Fisher information matrix associated with the translation model.
This quantity is well defined if the density is differentiable in quadratic mean. Therefore,
the question that arises is if we can use results and techniques for quadratic mean dif-
ferentiable models to weaken the assumptions in [RGG97]. One of the main motivation
of this work is the analysis of Bayesian methods using prior distributions which have
convex, Lipschitz and non-smooth potentials. This kind of prior distributions naturally
appear in high-dimensional Bayesian inference. For example in the Bayesian analysis of
the LASSO algorithm, log prior densities are chosen to be weighted L' norms.

The first result of this chapter is the generalization of the optimal scaling result of
[RGGI7] to positive densities on R and differentiable in L? mean for p > 2. Therefore,
this result can be applied to densities which are not differentiable everywhere. We show
that the mean acceptance ratio at stationarity admits a limit if oq = £d~1/2, see (1.21).
Besides, we show that the algorithm admits a diffusive limit: the limit diffusion is a
Langevin diffusion which can be singular and does not admit strong solutions.

The method of proof is different from [RGG97]. As in [JLM15], we directly show
the weak convergence of the sequence of interpolated processes associated with the al-
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gorithm. For this, we first show that this sequence is tight in the Wiener space. Then
we show that any limit point is solution of a well-posed martingale problem. Finally,
we use the equivalence between this martingale problem and the associated Langevin
diffusion. Besides as already emphasized, the proof relies on methods used to establish
LAN conditions for densities differentiable in quadratic mean. In particular, by this
method, we can make an expansion of the acceptance ratio which does not rely on the
existence of a second derivative of the density.

In a second time, we extend this result to densities which can have a bounded support
on R but are still differentiable in quadratic mean. This result is applied to densities simi-
lar to Beta and Gamma densities. This result completes the work of [neal:roberts:2012
] which considers rougher discontinuous densities.

This work has been submitted for publication.

2.7.6 Part IT1I-Chapter 8

We have seen in Section 2.6.2 that the optimal scaling of MALA was in d~1/3. Tt is
then natural to wonder if it could be possible to improve this scaling and therefore the
dependence on the dimension by using more information on the geometry of the target
distribution.

A first idea would be to use a higher order integrator than the Euler-Maruyama
discretization, as a proposal in a Metropolis-Hastings algorithm. However, we will see in
this chapter that a better discretization scheme for the SDE do not improve the scaling of
the associated Metropolis-Hastings algorithm. Instead of focusing on the discretization
error, it will be shown that it is the order of the acceptance ratio in the parameter oy
which is important to control. Indeed to illustrate this statement, we give the main ideas
for the proofs of the optimal scaling results for the class of densities of the form (2.18)
and proposal kernels associated with Markov chains given for all k£ € N by,

Wi, = FWE. o)*) + SWE. oy )2, (2.36)
where 04 € R%, F: R x R% — RY ¥ RY x RY — My(RH'Y, and (Zg)j> are iid. d-
dimensional standard normal random variables. Note that for the symmetric random
walk Metropolis algorithm, we have

F(z,0/%) =2, S(z,0)%) = oq1d,

and for MALA
F(x,acl/z) =z —04VU(2), X(x,04) =+2041d .
The acceptance ratio can be written of the form for all z,y € R?

a(z,y) = min{1,exp(Ry(z,y))} , (2.37)

M4 (R?) is the set of square matrices of dimension d
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for a function Ry : R? x R® — R which depends on the proposal kernel associated with
(2.36). Besides, we are interested in the value of the ratio as y is of the form

y = F(x,a}/Q) + E(m,a;ﬂ)z .

If we assume that Rj(x,z) = 0 and regularity conditions on F, ¥ and U, then a Taylor

/2

expansion of Ry can be made in power of O'Ull in a neighborhood of 0:

kod o
Ry(x,y) = Z Z 02/2Cl-(xj, 2j) + Uc(lkJrl)/?LkH(x, 061/2, z) . (2.38)
i=1j=1

Also, the optimal scaling associated with proposals of the form (2.36) (1.38) are
crucially linked with the number of terms C; which are zeros in (2.38). If C; = 0, for
i=1,---,p, p € N* and o4 = £d"/®P*D) then the dominating term in (2.38) is

>
Cp+1(z5, 7)) -
vd 5
Following this study of the acceptance ratio, we can conclude up to technicalities that

lim E[a(W, W] €]0,1

d—}r—{loo [a( 0> 1)] ]7 [7

where W is random variable distributed according to ¢ and W¢ is given by (2.36).
To obtain a new Metropolis-Hastings type algorithm with a better optimal scaling

than MALA, we first restrict the class of proposal densities associated with (2.36) by

setting the following form for the functions F and ¥ : for z € R? and oy > 0,

F(z, acl/z) =z +0qF(z) + 03Fs(x) , E(.%',O';/Q) = 0';/221(1') + 02/222(1') ,

where for i = 1,2, F;(z) : R = R% and ¥; : R? — My(R?). Next, we make a Taylor
expansion of R, given by (2.37) in 03/ ? in a neighborhood of 0 for such functions F and
Y. Then, we try to have explicit expressions for the functions Fyq, Fo, 31, 3o to get that
the first fourth terms C;(+,-), i € {1,2,3,4} in (2.38) are identically zeros. Therefore,
we obtain a system of four equations in four unknowns which admits a unique solution.

We obtain by this method the following expression for the functions F and 3

2
F(z,00) = 2 — %VUd(x) - % (VU (@) VU (z) - A(VU)(2)}) ,
S(x,0r?) = 0?1 — (6% /12)V2Ud(a)
where U¢ = log ¢ and A is the vector Laplacian. The Metropolis-Hastings type algo-
rithm associated with this choice of functions F and ¥ will be called the fast Metropolis

Adjusted Langevin Algorithm (fMALA). Note that this proposals does not lead to a
discretization algorithm for SDEs of a higher order then the Euler-Maruyama scheme.
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In a second time, we show that the optimal scaling of the fMALA algorithm is of
order d—1/> and therefore improves the optimal scaling of MALA. Besides, we study other
forms for the functions F and ¥ to obtain two other proposals for which the optimal
scaling of the associated Metropolis-Hastings algorithm is of order d—1/5.

Then, we study the stability and ergodicity of these new Metropolis-Hastings algo-
rithms. In particular, we show that one of them is geometrically ergodic for a class of
densities close to the ones defined in (2.15) by establishing a geometric drift conditions
(2.12). Furthermore, we give a criteria on F and ¥ which implies that a Metropolis-
Hastings algorithm associated with a proposal of the form (2.36), is not geometrically
ergodic. This result completes [RT96a, Théoreme 4.2]. We use this criteria to show that
fMALA is not geometrically ergodic if lim 400 VU (2)| /[|2|| = +o0.

Finally, we present some numerical simulations to support our findings, and besides
some algorithmic strategies to handle the transient phase of the algorithm. Indeed, our
optimal scaling result can be applied only to stationary chains. Note that this problem
also occurs for MALA but for the symmetric random walk Metropolis algorithm, the
optimal scaling is still of order d~! even if the chain is not at stationarity, see [JLM15].

Then, we propose an hybrid strategy, similar to the one in [CRR05] for MALA. With
probability 1/2, the proposal associated with the symmetric random walk Metropolis
algorithm is used and the proposal associated with fMALA otherwise. We empirically
compare the hybrid strategies of MALA and fMALA, and observe that the one associated
with fIMALA converges faster and presents better autocorrelation functions.

This work has been submitted for publication.
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Chapter 3

Quantitative bounds of
convergence for geometrically
ergodic Markov chain in the
Wasserstein distance with
application to the Metropolis
Adjusted Langevin Algorithm

AvLAIN DUurRMUS!, ERIC MOULINES 2

Abstract

In this paper, we establish explicit convergence rates for Markov chains in Wasserstein
distance. Compared to the more classical total variation bounds, the proposed rate of
convergence leads to useful insights for the analysis of MCMC algorithms, and suggests
ways to construct sampler with good mixing rate even if the dimension of the underlying
sampling space is large. We illustrate these results by analyzing the Exponential Integra-
tor version of the Metropolis Adjusted Langevin Algorithm (EI-MALA). We illustrate
our findings using a Bayesian linear inverse problem.

The derivation of explicit bounds in total variation distance has received much at-
tention in recent years, motivated mainly by control of convergence for Markov chain
Monte Carlo. Most of these bounds are based on a geometric drift condition and an as-
sociated minorization condition for the underlying Markov chain, which together imply

LTCI, Telecom ParisTech 46 rue Barrault, 75634 Paris Cedex 13, France. alain.durmus@telecom-
paristech.fr

2Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
eric.moulines@polytechnique.edu
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geometric ergodicity under weak additional conditions [MT09, Chapters 15, 16]. Once
drift and minorization have been established, the results presented in [Ros95], [RT99],
or [Bax05] can be employed to calculate a bound on the number of iterations needed
to get within a pre-specified (total variation) distance of the target distribution. These
explicit bounds are based either on the Nummelin splitting construction and the renewal
Theorem (see [Bax05] which extends some earlier results by [MT94]), or on the coupling
construction and the Lindvall coupling inequality (see [Ros95], [RT99]). As evidenced in
[JHO1], these bounds are known to be rather pessimistic, especially when the dimension
of the sampling space is large.

In this work, we first provide explicit bound for convergence in Wasserstein distance.
Let P be a Markov transition kernel defined on a Polish space (E,d,). Denote by B(E)
the associated Borel o-algebra and P(E) the set of probability measures on (E, B(E)).

Let p,v € P(E); € is a coupling of p and v if £ is a probability on the product space
(Ex E,B(E x FE)), such that (A x E) = u(A) and £(E x A) = v(A) for all A € B(E).
The set of couplings of p,v € P(F) is denoted by II(u,v). Let d be a distance on E,
topologically equivalent to d,, i.e. d generates the same topology on E than d,. The
Wasserstein distance associated with d is defined by:

Wy, v) = fe%{r(l}fw) /EXEd(m,y)df(x,y) . (3.1)

When d is the trivial metric do(z,y) = 1, the associated Wasserstein metric is, up
to a multiplicative factor, the total variation drv (see ([Vil09, Chapter 6]). When d
is bounded, the Monge-Kantorovich duality Theorem implies (see [Vil09, Remark 6.5])
that the lower bound in (3.1) is reached. In addition, Wy is a metric on P(E) and P(E)
equipped with Wy is a Polish space; see [Vil09, Theorems 6.8 and 6.16]. Finally, the
convergence in Wasserstein distance Wy implies the weak convergence (see e.g., [Vil09,
Corollary 6.11]).

Our goal is to find explicit bounds on rates of convergence of Wy(uP™ vP™) to
zero. In the special case in which P has a stationary distribution 7, this corresponds to
bounding the convergence of P™ to w. Our results extend the nonquantitative results
developed for example by [MT09, Chapters 15 and 16] to Markov chains which are not
necessarily ¢-irreducible. It also complements some of the results presented recently in
[HSV14] and [Cot+13].

The bound on Wy(uP™, vP™) is also based on a drift condition but we replace the
minorization condition by the existence of a coupling set. More precisely, we assume the
existence of a coupling kernel K((x,y),-) of P(z,-) and P(y,-), i.e. K((z,y),A X E) =
P(z,A) and K((z,y), ExA) = P(y, A), for any A € B(E). We assume that this coupling
kernel K((z,y),-) is weakly contracting on the whole state space, i.e. Kd(z,y) < d(z,y)
for all (z,y) € F x E, and strongly contracting when (z,y) belongs to a coupling set
A, ie. Kd(z,y) < (1 —e€)d(x,y), (x,y) € A. This assumption is combined with a drift
condition for the coupling kernel outside the coupling set, which allows to control the
exponential moment of the hitting time of the coupled chain to the coupling set. Under
these assumptions, we prove that the Wasserstein distance between P™(x,-) and P"(y,-)
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decreases at a geometric rate with a rate depending explicitly from the constants in the
drift conditions and in the coupling set. Our results are closely related to the general
form of the Harris Theorem stated in [HMS11, Theorem 1.8] (see also [Butl4]), but the
assumptions are slightly weaker; the techniques of proof are completely different, and
share many similarities with the methods used to establish explicit rate of convergence
in total variation via the coupling construction.

As mentioned above, the rate of convergence obtained for the total variation dis-
tance is practically useless to analyze MCMC algorithm when the dimension of the state
space becomes large. Despite the fact that the bounds are explicit, these results say in
practice little more than ‘the chain converges for large n’; see [JHO1] and [RR04]. On
the contrary, as observed in several recent works in this direction (see [Cot+13] and the
references therein), the Wasserstein bounds are much more informative, at least for ap-
propriately designed MCMC algorithms. One of the key to the success of our approach
for Wasserstein distance (under of course appropriate assumptions on the transition ker-
nel and particular choice of the distance) is the ability to couple MCMC algorithms
“naturally” by simply running two versions of the algorithm with the same random num-
bers. This in contrast with the ”general” coupling construction used for total variation
convergence where an attempt to make the two components equal is made only when the
two versions of the chain meet in a coupling set (the probability meeting in a coupling set
is typically not large and the probability of successfully coupling the chain is on the top
of this vanishingly small in large dimension). We provide an illustration of this fact on a
version of the Metropolis Adjusted Langevin Algorithm using an exponential integrator
(EI-MALA) originally proposed by [Ebel4].

The remainder of this article is organized as follows. In Section 3.1 coupling set and
drift are defined. We derive a contraction inequality, which is the key result for deriving
convergence rate bounds for Markov chains. A theorem that allows one to use drift and
coupling set to get exact upper bounds on the Wasserstein distance to stationarity is
stated. In Section 3.2 we explain how to use these results to compute explicit bounds
for the convergence for the EI-MALA. A limited Monte Carlo experiment on a linear
Bayesian inverse problem is presented in Section 3.3 to support our findings.

3.1 Quantitative bounds for geometric convergence in Wasser-
stein distance

Definition 3.1 (Coupling set). Let A € B(E x E), ¢ € (0,1) and d be a distance
on E topologically equivalent to d. A is a (e,d)-coupling set for the Markov kernel P
on (E,B(E)) if there exists a kernel K on (E x E,B(E x E)) satisfying the following
conditions

(l) fOT’ all T,y € E7 K((.%'7y), ) € H(P(.%'7 )7P(y7 ))
(ii) K is a weak contraction, i.e., for all z,y € FE, Kd(z,y) < d(z,y).

(iii) K is a strict contraction on A, i.e., for all (z,y) € A, Kd(z,y) < (1 —€)d(x,y).
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Remark 3.2. Let d be a distance topologically equivalent to d bounded by 1. If

fO?" all (xay) €E27 Wd(P(ma )7P(y7 )) Sd(l’,y)

fOT' all (m,y) €A, Wd(P(xv ')7P(y7 )) < (1 - E)d(.%',y)
for some e € (0,1), then [Vil09, corollary 5.22] implies that there exists a Markov kernel
K on (E x E,B(E x E)) which is such that A is a (€, d)-coupling set. In this sense, the

existence of the such coupling set is ultimately related to the contraction properties of the
kernel.

We preface the statements of the main results by recalling some properties of the
Wasserstein distance that are repeatedly used in the sequel. For any measurable function
l: Ex E— R, we define the optimal transportation for u,v € P(FE) by:

Wipr)= inf [ iz)deay). (3.2)

Note that we may have Wj(u,v) = 400, and for all z,y € E x E, Wi(03,9y) = l(z,y).
We consider the case when the function [ is a distance-like function (see also [HMS11])

Definition 3.3. A function |l : E x E — R, is said to be a distance-like if
1. For all (x,y) in E?, l(z,y) = 0 if and only if x = y.
2. 1 is lower semicontinuous.
3. For all (z,y) in E?, l(z,y) = l(y,z).

The following lemma establishes the convexity of W), when [ is a distance-like func-
tion.

Lemma 3.4. Let (E,d) be a Polish space. Let P be a Markov kernel on (E,B(E)) and
l: Ex E — Ry be a distance-like function. For any p,v € P(E)

WiluPoP) < _int [ WilP(@. ). Py ) §(dedy)

T gell(py)
Proof. Let £ be a coupling of y and v. We get
uP(dz) :/ P(x,dz)u(dz) = P(z,dz)¢(dx, dy).
E ExE

vP(dz) = /EXEP(y,dz)g(dx,dy) .

Therefore,
WiuPoP) =i ([ Py, [ P dy)
ExXE ExE
Since [ is lower semicontinuous and [ > 0, by [Vil09, Theorem 4.8]
X

The proof is concluded since this inequality holds for all couplings &. O
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Lemma 3.5. Let (E,d) be a Polish space and let P be a Markov kernel on (E,B(E)).
Assume there ezists a Markov kernel K on (E x E,B(E x E) satisfying:

(i) for all z,y € E, K((x,y),-) is a coupling kernel for (P(z,-), P(y,-)).
(ii) for all x,y € E, Kd(z,y) < d(z,y).

Then for all x,y € E, Wy(P(z,-),P(y,)) < d(z,y) and for all probability measures
p,v e P(E),
Wd(:upa VP) < Wd(:u’ V) : (33)

Proof. By assumption and the definition of the Wasserstein distance (3.1), we have for
all z,y € E,

The second statement follows from Lemma 3.4 upon writing

Wy(uP,vP) < inf / Wa(P(x,-), P(y, -))a(dz, dy)
a€ll(p,v) JExE

< nf [ dGy)a(de,dy) = WaGe)
a€ll(p,v) JEXE

O

We provide sufficient conditions for the existence of an invariant probability measure
7 for the Markov kernel P and for geometric ergodicity in Wasserstein distance, based
on a Foster-Lyapounov drift condition on the product space F x E outside a coupling
set. Consider the following assumption:

H1. (a) There exists a measurable function V : E — [1,4+00), A € [0,1) and b € R
such that for all x € F,
PV(z) <AV(x)+b. (3.4)

(b) For some 6 > 0, the subset
A {(z,y) € Ex B V(@) +V(y) < (2b+0)/(1 - N}, (3.5)

is an (€,d)-coupling set for a distance d topologically equivalent to d and bounded
by 1.

The following Lemma shows that the drift condition (3.4) for P implies a drift con-
dition for the coupling kernel K toward the coupling set A.

Lemma 3.6. Assume H1. Then, for all (z,y) € E X E,
PV(x) + PV(y) < MV (2) + V(y)} + 2bLa(z,y) (3.6)
where A is defined in (3.5) and

~ 2b
A‘(%+5)

(1—=XN+A<1. (3.7)
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Proof. Note that A < A < 1. For all (z,y) € E x E,

PV(z)+ PV(y) <
MV(@@) + V()= A =2M{V(@)+V(y)}+2b. (3.8)
For (z,y) € A, V(z) +V(y) > (26 +0)/(1 — A), so that

2 240

ot NI T2

The proof follows. O

A=N{V(@)+V(y)} >

Let K be the coupling kernel under which A is a (¢, d)-coupling set. Note that this
implies that for any n € N* and z,y € FE, K"((x,y),-) is a coupling of the probabilities
(P"(x,-), P"(y,-)). Therefore, by (3.1),

Wa(P™(z,-), P"(y,")) < E%y [d(Xn, Yn)]
where ((Xy,Yy),n > 0) is the canonical Markov chain on the product space (£ x E)N
equipped with the product o-field with Markov kernel K and E, , is the associated
canonical expectation when the initial distribution is the Dirac mass at (z,y). We
denote by {F,, = o((Xk, Y%), k < n)} the associated o-field. Define by T} the first return
time to the coupling set A,

Ty < inf {n > 0|(X,,Y,) € A}, (3.9)
with inf ) = +o00. Define recursively the successive hitting times to A by
Tj=Tiol0r_,+Tj1,j>2, (3.10)

where @ is the shift operator on the canonical space (E x E)N. The following Proposi-
tion, adapted from [JTO01la] relates the contraction of the Markov chain with the strict
contraction coefficient in the coupling set and the number of visits to the coupling set.

Proposition 3.7. Assume H1. Then, for allz,y € E, andn,m e N, m > 1 :
E%y [d( Xy, Yn)] < (1= ﬁ)m_l + ﬁbaf,y [T >n] . (3.11)

Proof. Set Z, = d(Xp,Y,); under H1, for all (z,y) € E x E, I~Em7y (Z1] < d(z,y).
Therefore, {(Zn, Fn) }n>0 is a bounded non-negative supermartingale. Denote by Z its
P, y-a.s limit. By the optional stopping theorem, we have for every m > 0:

R, [ZTm+1

Froii| < Zrp (3.12)

On the other hand, the strong Markov property imply for every m > 0
Eoy [ZTm-H ‘me} <(1-¢€Zr, (3.13)

By (3.12) and (3.13), it yields IEx,y |:ZTm+1 me} <(1—¢€)Zr,,. Under H1, Z,, is upper
bounded by 1 and the proof follows from [JT0la, lemma 3.1]. O
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The drift inequality allows to control the exponential moments of the return time
to the coupling set A; this will allow us to control the number of returns to A of the
coupled chain.

Proposition 3.8. Assume HI1. Then,

~ ~ |4 V
By V7] < () +V(y) (z,9) ¢ (3.14)
(z,y) € A
where 3
M= sup {V(z)+V(y)}+22"1. (3.15)
(z,y)eA
Corollary 3.9. For all (z,y) € E X E, and all m € N,
Epy [A70] < MUV (2) + V(y) + 23718} (3.16)
Proof. See [MT09, Chapter 15]. O

Combining the contraction inequality in Proposition 3.7 with the explicit control of
the moment of the return times to the coupling set given in Proposition 3.8, we obtain
an explicit expression of the contraction of the coupled Markov chain.

Proposition 3.10. Assume H1. Then, for all (z,y) € E X E,

Eyy [d(Xn, Yo)] < OT"{V(2) +V()} |

with
In(r) = In(}) 1n(z\})hﬁn_(1€)— 5 (3.17)
C=1/2+(1—¢)2. (3.18)

Proof. Proposition 3.7 and Corollary 3.9 imply that

Eay [d(Xn, Yn)] < {Pay [T > 0] + (1 - ™}
<{Mm3 4+ (1/2)(1 - V(@) + V() -

The proof is concluded by setting

def —nln(X)
T MM — (1 — ) |

O

Using the contraction property, we may first establish the existence and uniqueness
of a stationary distribution and then obtain an explicit control of convergence of the
iterate of the Markov chain to stationarity.
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Theorem 3.11. Assume H1. Then P admits a unique invariant probability © and for
allx € E
Wy(P"(z,-),m) < CT"V(x), (3.19)

with T given by (3.17) and
C=(1/2+(1—€¢ A +b/(L-N).

Proof. Since d is continuous, according to [Vil09, Corollary 5.22], the function (z,y) —
Wy(P"(x,-), P"(y,-)) is measurable.

We first show the uniqueness of the invariant probability. Assume that there exist
two invariant distributions 7 and v, and let £ be a coupling of 7 and v. According to
Lemma 3.4, we have for every integer n :

Walmv) = WalwP" vP") < [ Wa(P"(@.:), P"(y.)) (do.dy)

By Definition 3.1 and Proposition 3.10, there exist a constant C' and 7 € (0, 1), such
that for all x,y € F and n > 0,

gn(2,y) = Wa(P"(2,-), P"(y,-)) < CT" (V(2) + V(y)) - (3.20)

Eq. (3.20) shows that the sequence of functions (g, )nen converges pointwise to 0 and is
bounded by 1. Therefore, by the Lebesgue dominated convergence theorem, we have:

[ WaP(a, ), Py, ) e, dy) — 0,
ExXE n—-+0o00
showing that Wy(m,v) = 0, or equivalently v = 7 since Wy is a distance on P(FE).

We now establish that under H1, P admits one invariant probability measure. To
that goal, let ¢ € E, let us show that {P™(zo,-),n € N} is a Cauchy sequence for Wj.
By Lemma 3.4, (3.20) and (3.4), for n € N* we have

Wa(P™(x0, ), P""(20,-)) < inf Wa(P"(2,-), P"(t,-))¢(dz, dt)
§€ Co JEXE

T e Co
< CT" (2V (z0) +b) , (3.21)

< inf { crn (V(z)+V(t))§(dz,dt)}
ExXE

where Co & I1(6,,, P(x0,)). Therefore, the series
Z Wd(Pn(an ')’ Pn+1(‘r05 ))
n>1

is convergent which implies that {P"(xo,-),n € N} is a Cauchy sequence in (P(E), Wy).

Since under H1, (P(E), Wy) is Polish, there exists m € P(E) such that lim,,_, oo Wy(P"(x0, ), 7) =

0. The second step is to prove that 7 is invariant. As W is continuous on P(E) x P(E),
Wy(m,mP) = lim Wy(P"(xg,-),7P) .

n—-+4o0o
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By the triangle inequality and Lemma 3.4, it holds
Wd(ﬂ', 7TP) < liIJIrl {Wd(P"(mo, -), 5$0Pnp) + Wd((SxOPnP, 7TP)}

n—-+0oo
< lim {Wg(P™(zo,-), P" " (20,-)) + Wy(dz, P", )} .

n—-+o0o
By definition of 7 and (3.21), the RHS is equals to 0, and therefore 7P = 7.

Finally, let us prove the claimed rate of convergence. Note that, the drift condition

implies that 7(V) < b/(1 — \). Let x € E, since 7 is invariant by Lemma 3.4 and
Proposition 3.10,

Wd(Pn(xf)’ﬂ-) = Wd(Pn(xf)’ﬂ-Pn) < inf Wd(Pn(Z")’Pn(t"))é(dzadt)
§€H(5z,7r) ExE

<C(1+b/(1=N\) V()" .

3.2 Application to the EI-MALA algorithm

The Metropolis-Adjusted Langevin Algorithm (MALA), proposed by [RT96a], is a tech-
nique to sample high dimensional probability distributions. The MALA algorithm is
a special instance of the Metropolis Hastings method. The main idea of MALA is to
construct the proposal moves from the forward Euler discretization of the Langevin dif-
fusion whose invariant measure is the target distribution. Let ) be a full-rank matrix
and T be a gradient-Lipshitz convex function. Set

Uz) = (1/2)2T Qx4+ Y (x) . (3.22)

Let I' : R? — R be a gradient Lipshitz (not necessarily convex) function. Assume that
Z = [gaexp(=U(x) — T'(z))dz < oo and let 7 denote the probability measure on R?
with density proportional to exp(—U —TI'). With a slight abuse in notations, we use the
same letter 7 for the probability and its density, that is,

m(dz) = 7(z)de = 2" exp(~U(z) — T'(z)) dz .

Below, we focus on the case where the potential Consider the over-damped Langevin
stochastic differential equation

{dYt = —Ydt — Q7 IVY(Vy)dt + vV2Q~1/2dB; (3.23)

Yo =wo-

where {B;,t > 0} is the standard Brownian Motion. Because the gradient of U is
locally Lipschitz and is at most of linear growth, (3.23) has a unique strong solution; see
[RW00, Theorem 12.1]. A nice property of the Langevin diffusion making it interesting
as a proposal mechanism for MCMC is that its stationary distribution has a density
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exp(—U) w.r.t. the Lebesgue measure [Ken78, Theorem 10.1]. It is plain to see that, for
any t > 0 and § > 0,

t+6 t+0
Vips = Yie® — / e~ =) Q71U (Y,)ds 4+ vV2Q /2 / =B, . (3.24)
t t

A forward Euler discretization of (3.24) yields to the following equation
Yigs =Yie ' = (1-e")Q7'VI(VY) + Zu5 , (3.25)

where Z, 5 is a Gaussian variable with zero-mean and covariance (1 — e™29)Q~!. This
discretization scheme is referred to as, for stochastic partial differential equation, the
stochastic Euler exponential integrator; see [LR04] and the references therein.

Setting h = 2(1—e~%) and t = 0, Y}, (y) = On(y, Zo) where Zj is a standard Gaussian
random variable and

Op(z,2) =2 — (h/2)Q ' VU(z) + h Q™22 (3.26)

with o = /h — h2 /4 yields to a proposal which can be used in a Metropolis-Hastings
algorithm. This proposal was alluded to in [Bes+08] to sample diffusion bridge and
further investigated in [Ebel4] (in these two works, @ is the identity matrix). The
acceptance ratio is given by ay(x,y) = exp(—Gp(z,y)T) where

Gn(z,y) =Y(y) = Y(z) + I'(y) —T'(@) = ((y —2)/2,VY(2) + VY (y)) (3.27)

" <y+x,vr<y>—vr<x>>+HQ-1/2vr<y>H2—HQ-WVWHQ} -

+8—2h

We denote by P the Markov kernel defined by Algorithm 1. As mentioned in the

Algorithm 1: EI-MALA Algorithm
Data: h € (0,2)
Result: (X,,)nen
begin
Initialize Xg
for n > 0 do
Generate Z,, ~ N (0,14), and set
S, =(1—-h/2)X, +h/2Q7'VY(X,) + hQ 32,
Generate U,, ~ U([0,1])
if U, <ap(X,,S,) then

‘ Xn+1 =S,
else
L Xn+1 =Xy

introduction, for z,y € R?, the basic coupling between P(z,-) and P(y, ) is obtained by
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using the same Gaussian variable Zy and the same uniform Uy to sample

Xy =x+4+ 1(Uy < ap(z, On(x, Zp)))(On(z, Zo) — x)
Y1 =y+ 1(Uo < anly, Only, 20)))(Only, Zo) — )

We denote by Ky the Markov kernel induced by this construction. For Zj a standard
Gaussian random variable, define

Xl(.%') = ﬁh(.%',Zo) and Yl(y) = ﬁh(y, ZO) s (3.28)

which are the two proposals corresponding to Ky;. To apply Theorem 3.11, we want to
find a distance for which X;(z) is closer to Yi(y) than x to y. We could think to use
the canonical euclidean norm. However, even assuming Y is convex, it seems that such
a contraction fails to be established since VY is multiplied by @~! in (3.26). A better
choice is the norm ||-||, associated with the scalar product (z,y)q = (Qz,y), for all

z,y € R% Indeed, Lemma 3.17 establishes a contraction under the following standard
assumptions.

M1. (1) The function Y belongs to C*(R?), is convex and there exists Cy such that
for all z,y € RY,

|@ (VY@ - YW, < Crllz ~ vl - (3.20)

(2) The function T belongs to C*(R?) and there exists Cr such that for all x,y € RY,
|@ 7 (VP@) ~ VE@)||, < Cr = —yllq - (3.30)

Eq. (3.29) and (3.30) are not restrictive since it holds if VY and VT are ||||-Lipschitz
continuous, since in R all the norms are equivalent. Here is the other main assumption
we make to establish our results.

M2. There exists hy € (0,2) such that for all h € (0, hy] there exists three positive real
numbers ayp, Ry, and rj, such that for all x € RY, zllg = R,

inf {ap(z,2) , 2 € Bg (On(z,0),71,)} > ay, . (3.31)
We first establish the drift condition (a) of H1.

Proposition 3.12. Assume M1 and M2, and
let h € (0,hy A (4/(CE+1))). Set ¥(z) =1V |zllg- Then there exist b € Ry and
A € (0,1) such that for all x € R?

P“//(x) < )\7/(.%') + b]l{y/gu}(x) .

Proof. The proof is postponed to Section 3.4. U
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Now, let us deal with the condition (b) of H1. The main difficulty is to control the
probability that one proposal is accepted and the other not. We can see in Lemma 3.19
that this probability is not globally Lipschitz in function of z,y but is locally Lipschitz
continuous with Lipschitz constant which grows linearly with [[z]lo V [lyllo- To get
the contraction of H1-(b), we need to define distances on R? which are in some sense
equivalent to (z,y) — ||z —yllg (1 + [[z]lg V lyllg). That is why in the following we
construct such distances, by adapting arguments first introduced in [HSV14]. For z,y €
R? and T > 0, let us define

7L, = {4 € (0.7, RN, (0) =z, w(T) = u.[ /() o =1 ¥s € [0.7]} .

and for €, >0, dy : R? x R — R, defined for z,y € R? by
1 T T
dye(z,y) =1 Aed x inf ”/o lo(s)lgds + T:T e Ry, e 2L 4. (3.32)

It is proved in Lemma 3.20 that d, is a metric on R?, topologically equivalent to [RIFE
see Section 3.4. The level sets of the function ¥ are the ball associated to ||-|o. We
show in the next proposition that they are coupling sets for some iterate of P.

Proposition 3.13. Assume M1 and M 2.

For all h € (0,hy A (4/(C% + 1)), there exist two constants e,n > 0 satisfying the fol-
lowing property: for all R > 0, one may find n € N*, 7 € (0,1) such that Bg (0, R)2 is
a (7, dy.c)-coupling set for P", with d, . given by (3.32).

Proof. The proof is postponed to Section 3.4. O

By Proposition 3.12 and Proposition 3.13, there exists N € N such that PV satisfies
H1. Therefore we deduce from by Theorem 3.11 the following result.

Theorem 3.14. Assume M1, M2 and let
h € (0,hg A (4/(C% +1))). Then, there exist positive constants e,n and C, p € (0,1)
(whose explicit expressions are given in the proof) such that for all x € R? and n € N*

Wa, (P (z,-),m) < Cp" {¥(x) + ¥ (y)} ,
with ¥ (z) =1V |zl and dy,c is given by (3.32).
Example 3.15 (Bounded perturbations of Gaussian distributions). To illustrate our
bounds, assume that Y =0 and that T is bounded on R by My and gradient Lipschitz.
1t is easily checked that M1 and M2 are satisfied. We can provide an explicit expression

of the constant appearing in Theorem 3.1/4. The constants appearing in the drift condition
Proposition 3.12 might be chosen to be:

A=(1—(1—h/2)e M) and b= hVd
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Figure 3.1: Evolution of the rate of convergence p given by Theorem 3.14 in function of the
dimension d.

So, to apply Theorem 3.11 we need to consider the balls B(0, R) for R = (2b-+6)(1—\)~2
and arbitrary positive 6. Proposition 5.15 gives that B(0, R) is (7,dy, c)-coupling set for
P" with

(2((1 — h/2) + hWd)) ™!
(1—h/2)ACr(p™" + 1+ Vd) ™!

[(log(e/2) — log(2R(2R + 1))/ log((1 — h/2))] V 1
(1/2) M (|| Zo| < R/(nh))"

Finally explicit expressions of C and p Theorem 3.1/ are given by Theorem 3.11. We
can see on Figure 3.1 that log(—log(p)) depends linearly on log(log(d)).

3.3 Simulation

We now illustrate our results with a Monte Carlo experiment. We have considered
for simplicity an ill-conditioned Bayesian linear inverse problem; see [KS05] and the
references therein. The aim is to invert b &~ Az, where A is a linear operator from R? to
RP, assuming that the observations b are contaminated by some additive Gaussian noise,
assumed, for simplicity, to have zero-mean and unit covariance matrix. In this problem,
the dimension d can be very large ' and p << d; see [Stul0], [Cot+13], [Das+13] and
the references therein. For conciseness and simplicity, we study a toy inverse problems
in which the prior distribution wx of the parameter of interest x is given to be a small

'the underlying problem is typically infinite-dimensional; the problem is finite dimensional after
truncation
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pertubation of a exponential power distribution (see [BTbk]):
mx(@) o< exp (—Mi(2Tz +6)7 = (/2)(2"7))

with 8 € (1/2,1), A1, A2,6 € R% . In this setting, the posterior distribution 7 is propor-
tional to exp(—U) on R?, where I' = 0 and the potential U is on the form (3.22),

Q=ATA+ X1 and T(z) = M (zTz 4 6)% — (b, Az) . (3.33)

Lemma 3.16. Let w(x) x exp {—(1/2)xTQm — T(m)}, with @ and Y given by (3.33).
Then M1 and M2 are satisfied.

Proof. First since for z € R?,
VY (z) = M BTz +0) 1z — ATh, (3.34)

it is straightforward to see that T satisfied M1 with C'y = |HQ_1H| BA1/0. To show that
M2 is satisfied, it is enough to show that for h small enough, there exist r,, R > 0 such
that Gp(z,y,), given by (3.27) are bounded from above for

Yo = (1 = h/2)z — (h/2)Q" 'V (2) + hz with z € B (0,72) ,

and z is outside a ball Bg (0, R). To do so, since all the norm are equivalent in finite di-
mension, we prove in fact that for all h small enough lim ) 4o G1 (7, yz) = —00. Indeed
we separately study three terms in the expression of G,. Since lim (4o (2, VY (1)) /(zTx) =

0, we have the following asymptotic relations:

T(yz) = T(@) = (4 — 2)/2, VY (yz) = VY (2))  ~  Mid(h)(@" )’ (3.35)

]| —+00
with
¢(h) = (1= (h/2))* =1+ (h/2)B + (h/2)B(1 — (h/2))* 7" (3.36)
e + 2, V() = VI()) |~ M5 (1= (h/2)" 1) ") (3.37)
o2t - - vt (9
~ B = (7/2)PP 7D = 1)(2T2)* D 2T Q.

llz]|—=+o0

Then the terms (3.37) and (3.38) tends to —oo for all A € (0,2). It remains to show
that for h small enough, it is the case for (3.35). Therefore, we compute the asymptotic
expansion of ¢ given by (3.36),

¢(h) ~ B(28—1)(28 - 2)(8/2 - B/3)(h/2)° .

h—0t

As B € (1/2,1), ¢ is negative for all h small enough, which concludes the proof. O
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Figure 3.3: Trace plot and auto-correlation in function of the dimension on 10000 iterations with
a 10000 burn-in iterations .
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Figure 3.5: Trace plot and auto-correlation in dimension 100 for EI-MALA, pCN and MALA on
50000 iterations with a 10000 burn-in iterations.
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We have displayed in Figure 3.3 the trace plots for the first coordinate for different
dimensions (d = 10, d = 100 and d = 1000). The autocorrelations is monotone decreasing
for reversible Markov chain and its integral determines the asymptotic variance of the
sample average. We can see that the mixing time is not significantly affected by the
dimension, which is consistent with our findings (see Theorem 3.14).

Also, we have compared EI-MALA to the pre conditioned Crank Nicolson algorithm
(pCN) proposed by [Cot+13] and to the naive MALA. It can be seen on Figure 3.5 that
the mixing time of EI-MALA is significantly better than for the two other algorithms.

3.4 Proofs

Lemma 3.17. Assume M 1.
(a) For all x,y,z € R?,
(VX(z) = VT (y),2) < Crllz —yllg =l
|@7vr@)|, < Crllelig + @'V

(VI(2).2 ) < Cx(Cx [l2llg + @9 ) =~ yllg -

(b) For all x,y € R? and h < 4/(C% + 1),
o = /2@ VU@) v - (/2Q VU < vl —slg . (3:39)

where
v=(1-ha—n(1+c3)/m) " . (3.40)

In particular,

|e = /2@ VU @)|, < vzl + /2 [@IVIO)f, . @4y

Proof. (a) is just a consequence of the definition of (-, '>Qv M 1, the Cauchy—Schwarz
inequality and the triangle inequality.
(b) Let h < 4/(C% +1). On M1, since Y is convex and C, for all z,y € R,

|-y - (207 (VU@ - VU@, = 1 - b2 e -yl
I

+ (/4 [Q7H (VY (@) = VI(w)||, — A1 = h/2) (VY (2) = VY (y).2 ~ )

< (1= (1= n(CE+1)/49) == yl3
showing (3.39). Eq. (3.41) follows from (3.39) and the triangle inequality. O

Lemma 3.18. Assume M 1.
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(a) For all x,y € RY,

1X1(2) = Viw)llg < vllz =yl
IX1@)lg < vliallg + (/2 [|QTVYO)|  +h|jQ7 0, .

where (X1(x),Y1(y)) and v are given by (3.28) and (3.40), respectively.
(b) For all z,y € R?
|@ (vrxa@) - vrmw)|, < Crvlle -yl
[ v, < cr (vislo+ (2 | VIO, + RiZ0])
Proof. (a) is just a consequence of Lemma 3.17-(b). Then (b) follows from M1 and
Lemma 3.17-(a). O
Lemma 3.19. Assume M 1. There exists C' such that

Gz, X1(2)) — Gr(y, Y1(y))| < Cllz —yllg

<Al v lsllg + Q5 TO) , + 120l | - (.42

Proof. Let us write

4
Gi(z, X1(x)) — Gu(y, Yi(y)| <DL -
=1

Using M 1, Lemma 3.17 and Lemma 3.18 we have the following inequalities for I;,
1=1---4.

I
=[T(z) = Y(y)| +[T(X1(z)) = T(Y1(¥)| + T'(z) = T(y)| + [T(X1(z)) = T(Yi(y))|

< /01 (VT (tz + (1= t)y),z — y) dt‘

+| [T + - 0¥, X - Vi) i

1
+ / (VI(tz + (1 = t)y),z — y) dt’
0

+| [ orexe + 0 - %), X6 - Vi)

<Cille = ylg {lellg v Il + @7 VIO + 120l |
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I
= (1/2)[(z — X1(z), VY (z) + VY (Xi(z))) —

= (1/2)[(x =y, VY (z) + VT (X1(2))) + (V1(y) —

(y —Y1(y), VY (y) + VY (Yi(y))) |
Xi(x), VY (x) + VY (X1(x)))

—(y —Yi(y), VY (y) = VY (2)) — (y — Yi(y), VI (Y1(y)) — VT (X1(2))) |
< Cullz = ylg {lellg v Il + @ VIO, + 120l }
Denote h = h/(8 — 2h). Then,
I3
— Bl (X1 (2) + 2, VT(X1 () - < ) = (Mily) + 3. VT(Vi(y) - VI () |
= Bl (X1 (2) ~ Yi(@), VY(X1(2) — VY (@) + {2 — 3, VI (X (2) — VT ()
+ (Vi(y) + 3, VI(X1 (1)) = VI(¥i()) + (Yi(y) + 3, V() — VT (2))
< Cahllz =yl { Isllg V Ivllg + @19 X O, + 1Z0l |

w=ille el - Jorerel] o il

“Jerermml)

= h|(Q7H(VY(y) + VT(2)), VI (y) - VY (2))
+(Q7VY(X1(2)), VI (Xu(2)) - VY(Vi(y)))

+(Q7IVT(M(y), VI (X1 (2)) = VI(Yi(y)))|

< Cihllz =l { Isllg v lvllg + [ @9 YO)], + 1Z0l |

O
Proof of Proposition 3.12. Set R =v~!V Ry,. First, by Lemma 3.18-(a) and M1,
sup P7¥(z)< sup E {1 V HxHQ V|1 X (x )HQ}
z€Bg(0,R) z€Bg(0,R)
(3.43)

<1v (R+ (h/2) @~ wr ), +E[HZOH]) < oo

Next, if € Bg (0, R), let X (x) defined by (3.28) and U be a uniform random variable
on [0,1]. Set
A (z) = {an(z, X1(z)) < U}
7 ={n|zoll <} .
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On «/(z), the proposal is accepted and X; = Xj(x). On this complement, X; = x.
Then by Lemma 3.18-(a) and since ||z o > v ||z][g > 1,

PY () <E[[X1(2)llg Luwns | + B [llzllg La@ens] +E [l V [ X1(2)llg Loe|
<vllzllgP(/(2) N.7) + 2] o B ( (2)°N.7) + 2] o B ()
+(h/2) | Q7' VT, + RE [ Zo]]

< Alallg + (/) |Q7'V Y|, +FE[|Zol] | (3.44)

with A =P () (1-(1-v)P (& (x) |5 ))+P(F¢). Since by M2, P(.¥) and P (o (z) |7 )
are positive, A € (0,1). In addition on M1, (h/2) [Q™'VY(0)[|, + RE[||Zo|] is finite.
Therefore, the proof is concluded combining (3.43) and (3.44). O

Lemma 3.20. Let z,y € R, T,e,n € R% and ¢ € ﬁgy. Denote

def

Sl y) 2 e/(nlllallg V lyllg — ) VO +1). (3.45)
(i) T > o —yllg-

(ii) If n [y 1W(s)ods + T < e, then T < dc(x,y) < e.

(iii) dye(w,y) <Lz =ylg (n{lzllg v lylg} +1)

() If dpe(x,y) <1, then
dne(e9) 2 1 o = yllg (rlllellg v Iwllg — 8c(a,)) vO+1)

(v) If dn,e($,y) < 1 then

(X2 (2), Yi () /dy o(,) < ([l = (W/DVU() ~ (4 — (/YT W)l
< {nllz = (h/2)VU (@)l g Vlly — (R/2)VU W)l g +nh | Zollq+1})
% (Il wllg ndll=ll v Iyl — sz} vo+13)
and under M1 for all h < 4/(C% + 1),
e (X1 (2), Y2 (9) o (2, )
< (v{wllizlo v lsllg} +n(h/2) QYY)+ FnZo] +1})
< {2l V Iyl — 6u(x.p)} v O+ 1)

with v given by (3.40).
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Proof of Lemma 3.20. (i) By definition of ﬁg’y,

T
\m—mQ:wmn—ww@gA\wwmwk:T.
(ii) First, it is straightforward to see T' < €. In addition, for all s € [0,7],

16(s)llg > [lzllg = 5| v [lullg = (T = )| = [l=llg Vilylg =€ . (3.46)

Then the result follows from integrating the inequality between 0 and T and using the
assumption.
(iii) It suffices to consider the particular case, T' = [ly — x|, and ) € cgfzgy defined for
s € [0,T] by

U(s) =+ (y—=)s/llz—yllg -
(iv) Let {(Ty,%¥n);n € N} such that

Th
1me1@A mebw+n>=%mw> (3.47)

n—-+4o0o

T,
e <77/ [n(s)llg ds+Tn> <1 Vn
0

Then using (i)-(ii) and (3.46), for all n it holds

1 Tn
‘ @A mebw+n)

>z =yl ((llzllg Vv 1yllg} = del@,y) VO +1) .

The result now follows from (3.47).
(v) The claimed inequalities come from (iii)-(iv) with the definition of the basic coupling
(3.28) for the first one, and using Lemma 3.18-(a) for the second. O

Lemma 3.21. Assume M1 and M2.
Then for all h € (0,he A (4/Cy)), there exists €,m,7 > 0 such that for all z,y € RY,
dye(z,y) <1,

Kudne(z,y) < (1= 7)dpe(z,y) ,

with dy e given by (3.32). In particular, for all x,y € R¢,

KMdn,E(x7y) < dn,E(x7y) .
Proof. For ease of notation, we simply write K for Ky;. Let z,y € R, dye(z,y) < 1.
Then, if [ly|o < R,
zllg < llz—yllg + llyllg < e+ Ra,

where we used Lemma 3.20-(iv). Therefore, as we will choose € small enough we can
assume € < 1, and we end up with two cases: either z,y € Bg (0, Ry, +2) or z,y &
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Bg (0, Rp,). Let (Xy,Y7) be the basic coupling between P(z,-) and P(y,-); let Zy, U be
resp. the Gaussian variable and the uniform variable used for the basic coupling. Let
P(-) and E[-] be the probability and the expectation over Z; and U;. Set

7 ={h|Zoll < ru}
o (w,y) = {an(z, X1(2)) Aan(y, Yi(y)) > U}
%(w,y) = {an(z, X1 (2)) V an(y, Yi(y) < U} .

On the event o7 (x,y), the moves are both accepted so that X; = X;(z) and Y; = Y1(y);
On the event Z(x,y), the moves are both rejected so that X; = x and Y; = y. Then
for all event .#, it holds,

Kdy,e(z,y) < E[dy (X1, Y1)]
<E [de(Xl (x)a le(y))]]-%(x,y)ﬂﬂ} +E [dn,e(x’ y) ]]-‘%’(a:,y)ﬁf} (348)
+E [dn,s(x7 y) v dn,E(Xl (1‘), Yy (y))]lfc] +E Hah(x7 Xl(x)) - Oéh(y, Yl(y))’] ’

where we have used d,, . is bounded by 1. First, by Lemma 3.20-(v) since d¢(z,y) < e <1,
there exist 11,7 > 0 such that for all n < n;

E [dn,é(Xl(x)aYi(y))]]-d(m,y)ﬁf} < (1 - Tl)dmﬁ(x,y)lp (M(xay) N f) .
Let us define 7o = (1 — (1 — P((z,y)|-#))m1). We claim that 7 > 0. Indeed, if
z,y € Bg (0, Ry, + 2), since T and Q~'VY are continuous by assumption, we have by
Lemma 3.18-(a)
P (o (2,y)|S)
> inf {exp(~G(t,2)%) ; t € Bq (0, R +2) , 2 € Bg (0,A(Ry)} >0,

where A(Rp) = Cy((Rp + 2)v + (h/2) “Q_1VT(O)HQ +rp). If 2,y € Bg (0, Ry), by M
2, P(e(x,y)|-#) > a; > 0. Therefore, as P (Z(z,y) N .#) <P (F) —P (I N (z,y))

E [dy e (X1(2), Vi) L@y | +E [dye(2,9) Layns]
<SP(S) (1 —m)dyc(z,y) . (3.49)
By Lemma 3.20-(ii)-(v), since d¢(x,y) < e < 1 and for all a,b,c € Ry, (a+b)/(a+¢c) <
LV (b/e),
.« (Xn (), Ya ()
dn,e(z,y)

Also, by the Dominated Convergence theorem and Lemma 3.20-(v), for all £ > 0 there
exists 12 € (0,71] such that for all n € (0, 2],

E{dy.e(2,y) V do(X1(2),Y1(y))} L]

dn,e (Xl (1’), Yl (y))
{1 T dey) } b

<v {277(1 ) +a(h/2) | QT VYO)| + B | Zol| + 1} :

< dy(@,y)E < dyela,y)(1+ RP(F) . (3.50)
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Therefore since P (.#) > 0, using (3.49)-(3.50) and choosing s small enough, there exists
73,m2 > 0 such that for all € (0,n2]
E |:d77,e (Xl ('I), Yl (y))lﬂ(x,y)ﬁf} +E {dn,e(xa y)l%(x,y)ﬂﬂ}
+E{dye(z,9) Vdye(X1(2), V1(y))} Lre] < (1 = 73)dpe(2,y) . (3.51)
Next, by Lemma 3.19 and Lemma 3.20-(iv), since d.(z,y) < 1, there exists C, such that

E [|an(z, X1 (2)) = an(y, Vi (1))
< Clla = yllg (lzllg Vllsllg = dcle,v) + 1+ | @7 VT©O)| ) +E[IZ0ll)

< O((U/n) +1+ Q7T , +E|Zo]])edye(r.y) - (3.52)
Set
a &/ QC((1/m) + 1+ [ QTVYO)|  +E(1Z0]) - (3.53)
Therefore by (3.48)-(3.51) and (3.52), for 1 < 12 and € < €1, for all 2,y € R?,
Kdy () < (1= 75/2)dyc(2,9) - (3.54)
O

Proof of Proposition 3.15. For ease of notation, we simply write K for Ky. Let {(X,,,Y,,), n €

N} be a Markov chain with Markov kernel K. We denote for all n € N*, Z, and
U, respectively the common gaussian variable and uniform variable, sampled to build
(X, Yy). Let P(+) and E [-] be the probability and the expectation over {Z,,U,,; n € N}.
Note that by definition the variables {Z,,U,; n € N} are independent. Under M1 and
M2, by definition of @ and Lemma 3.21 the condition (i) and (ii) of Definition 3.1 are
satisfied. In addition, there exists €,7,7 > 0 such that for all z,y € R%, d,, (z,y) < 1,

Kd, (z,y) < (1 —71)dp(x,y) (3.55)

Let R > 0, and z,y be in Bg (0, R). Assume first d, (z,y) < 1. Then by (3.55) and
Lemma 4.23, for every n € N*,

K"dy (2, y) <K' Hdpe(a,y) < - < (1= 7)dpe(z,y) - (3.56)

Consider now the case dy (z,y) = 1. Let {(X,,Y,), n € N} be the Markov chain with
Markov kernel K starting in (z,y). Let n € N* and denote for all 1 <i <mn

U(Xi—1,Yi 1, Z) = o (X1, O(Xi—1, Z3)) Ao (Yio1, O(Yi-1, Z;))
i(n) { (h/2)Q 1VT(0)+EQ_1/QZ¢HQ§R/n}

Ai(x,y) W(Xi-1,Yi-1,Z:)}
o (x,y,n) = (f( )N Hj(z,y)) ,

1<5<i
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where & given by (3.26). On the set o7 (z,y,1), foralll1 <j <i, X; = 0(X;-1,7;),Y; =
O(Yi-1,2;) and || X5 V [[Y;llg < 2R. Then, since by Lemma 3.20-(iii),

(X, Yo) <€ X = Yallg (0 {IXanllg V 1 Yullg} +1)
by Lemma 3.18-(a) on &™(z,y,n) it holds
(X, Y0) < e 0" [lz =yl g 2nR+1) .
This inequality and d, . < 1 yield

Kndn,e(x, y) = IAE:z:,y [dn,e(XnaYn)(HJn(%%n) + H(Jn(x7y7n))c)}
< W o= ylg (2R + VP (" (2,y,n)) + P (/" (2,,n))°)
< e YW"2R(2nR + 1)P (JZ??L(%, Y, n)) +P ((J‘(x, Y, n))c)

<1+ (671Vn2R(277R +1)— 1) P (ﬁ(m,y,n)) . (3.57)

As v € (0,1), there exists m such that, e 'v™2R(2nR + 1) < 1. It remains to lower

bound P (sa/ m™(z,y, m)) by a positive constant to conclude, which is done by the following

inequalities, where we use the independence of the random variables {Z;, U;; i € N*}.

P (;27”(3:, y)) =P (&?{mfl(m, y,m) N fm(m))

—~m—1

o [\I/(Xm_l,Ym_l,Zm)\ﬂ (w,y,m)ﬂﬂm(m)} .

For all 1 <7 <m, on the event ,;<; #;(m), it holds

\I/(Xi—17Yi—17 Zz) > exp (— sup G(Z,t)+> =0 s
(2,t)€B(0,2R)

where ¢ € (0,1), since G is continuous by M 1. Therefore, since Z; is independent of
/Y (x,y,m), we have

P (" (2, y,m)) > 6 P (Fy1(2,1)) P (Im(m)) -
An immediate induction leads to
P (™ (@,y)) > P (I3 (m)" ™ .

Plugging this result in (3.57) and (3.56) imply there exists s € (0,1) such that for all
z,y € Bg (0, R), K"d, (x,y) < sdyc(x,y). O



Chapter 4

Subgeometric rates of
convergence in Wasserstein
distance for Markov chains
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Abstract

In this chapter, we provide sufficient conditions for the existence of the invariant dis-
tribution and for subgeometric rates of convergence in Wasserstein distance for general
state-space Markov chains which are (possibly) not irreducible. Compared to [Butl4],
our approach is based on a purely probabilistic coupling construction which allows to
retrieve rates of convergence matching those previously reported for convergence in total
variation in [DMS07].

Our results are applied to establish the subgeometric ergodicity in Wasserstein dis-
tance of non-linear autoregressive models and of the pre-conditioned Crank-Nicolson
Markov chain Monte Carlo algorithm in Hilbert space.

4.1 Introduction

Convergence of general state-space Markov chains in total variation distance (or V-total
variation) has been studied by many authors. There is a wealth of contributions estab-
lishing explicit rates of convergence under conditions implying geometric ergodicity; see
[MT09, Chapter 16], [RR04], [Bax05], [BV13] and the references therein. Subgeometric
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(or Riemanian) convergence has been more scarcely studied; [TT94] characterized sub-
geometric convergence using a sequence of drift conditions, which proved to be difficult
to use in practice. [JR02] have shown that, for polynomial convergence rates, this se-
quence of drift conditions can be replaced by a single drift condition, which shares some
similarities with the classical Foster-Lyapunov approach for the geometric ergodicity.
This result was later extended by [FMO03] and [Dou+04] to general subgeometric rates
of convergence. Explicit convergence rates were obtained in [Ver97; FM03; DGMO08] and
[AFV14].

The classical proofs of convergence in total variation distance are based either on
a regenerative or a pairwise coupling construction, which requires the existence of ac-
cessible small sets and additional assumptions to control the moments of the successive
return time to these sets. The existence of an accessible small set implies that the chain
is irreducible.

In this paper, we establish rates of convergence for general state-space Markov chains
which are (possibly) not irreducible. In such cases, Markov chains might not converge in
total variation distance, but nevertheless may converge in a weaker sense; see for example
[MS10]. We study in this paper the convergence in Wasserstein distance, which also im-
plies the weak convergence. The use of the Wasserstein distance to obtain explicit rates
of convergence has been considered by several authors, most often under conditions im-
plying geometric ergodicity. A significant breakthough in this domain has been achieved
in [HMS11] . The main motivation of [HMS11] was the convergence of the solutions
of stochastic delay differential equations (SDDE) to their invariant measure. Neverthe-
less, the techniques introduced in [HMS11] laid the foundations of several contributions.
[HSV14] used these techniques to prove the convergence of Markov chain Monte Carlo
algorithms in infinite dimensional Hilbert spaces. An application for switched and piece-
wise deterministic Markov processes can be found in [CH14|. The results of [HMS11] were
generalized by [But14] which establishes conditions implying the existence and unique-
ness of the invariant distribution, and the subgeometric ergodicity of Markov chains (in
discrete-time) and Markov processes (in continuous-time). [Butl4] used this result to
establish subgeometric ergodicity of the solutions of SDDE. Nevertheless, when applied
to the context of V-total variation, the rates obtained in [But14] in discrete-time do not
exactly match the rates established in [Dou+04].

In this paper, we complement and sharpen the results presented in [Butl4] in the
discrete-time setting. The approach developed in this paper is based on a coupling
construction, which shares some similarities with the pairwise coupling used to prove
geometric convergence in V-total variation. The arguments are therefore mostly proba-
bilistic whereas [But14] heavily relies on functional analysis techniques and methods. We
provide a sufficient condition couched in terms of a single drift condition for a coupling
kernel outside an appropriately defined coupling set, extending the notion of d-small
set of [HMS11]. We then show how this single drift condition implies a sequence of
drift inequalities from which we deduce an upper bound of some subgeometric moment
of the successive return times to the coupling set. The last step is to show that the
Wasserstein distance between the distribution of the chain and the invariant probability
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measure is controlled by these moments. We apply our results to the convergence of
some Markov chain Monte Carlo samplers with heavy tailed target distribution and to
nonlinear autoregressive models whose the noise distribution can be singular with the
Lebesgue measure. We also study the convergence of the preconditioned Crank-Nicolson
algorithm when the target distribution has a density w.r.t. a Gaussian measure on an
Hilbert space, under conditions which are weaker than [HSV14].

The paper is organized as follows: in Section 4.2, the main results on the convergence
of Markov chains in Wasserstein distance are presented, under different sets of assump-
tions. Section 4.3 is devoted to the applications of these results. The proofs are given in
Section 4.4 and Section 4.5.

Notations

Let (E,d) be a Polish space where d is a distance bounded by 1. We denote by B(E) the
associated Borel o-algebra and P(E) the set of probability measures on (E, B(F)). Let
w,v € P(E); Ais a transference plan of p and v if A is a probability on the product space
(E x E,B(E x E)), such that A(A x E) = u(A) and \(E x A) = v(A) for all A € B(E).
The set of transference plans of p,v € P(E) is denoted II(u, ). We say that a couple of
E-random variables (X,Y") is a coupling of p and v if there exists A € II(u, v) such that
(X,Y) are distributed according to A. Let P be Markov kernel of E x B(E); a Markov
kernel Q on (E x E,B(E x E)) such that, for every z,y € E, Q(z,y,-) is a transference
plan of P(z,-) and P(y,-) is a coupling kernel for P.

The Wasserstein metric associated with d, between two probability measures u,v €

P(E) is defined by:

Walwr) = ot [ day)dy(ay) (4.1)
vEll(p,v) JEXE

When d is the trivial metric do(z,y) = 1,4, the associated Wasserstein metric is the
total variation distance Wy, (11,v) = supacp(p) [#(A) —v(A)|. Since d is bounded, the
Monge-Kantorovich duality Theorem implies (see [Vil09, Remark 6.5]) that the lower
bound in (4.1) is realized. In addition, Wy is a metric on P(E) and P(E) equipped with
W, is a Polish space; see [Vil09, Theorems 6.8 and 6.16]. Finally, the convergence in
Wy implies the weak convergence (see e.g. [Vil09, Corollary 6.11]).

Let Ag be the set of measurable functions ¢ : Ry — [2,400), such that rg is non-
decreasing, z — log(ro(x))/x is non-increasing and lim,_, log(ro(z))/z = 0. Denote
by A the set of positive functions r : Ry — (0,+00), such that there exists 7y € Ay
satisfying:

0 < liminfr(z)/ro(z) < limsupr(z)/ro(z) < +oo . (4.2)
T—+00 x—>+00
Finally, let ' be the set of concave increasing functions ¢ : Ry — R, continuously
differentiable on [1,+00), and satisfying lim,_, y~ ¢(x) = 400 and lim, o ¢'(z) = 0.
For ¢ € F, we denote by ¢* the inverse of ¢.
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4.2 Main results

The key ingredient for the derivation of a Markov kernel P on (E,d) is the existence
of a coupling kernel Q(z,y, ) for P satisfying a strong contraction property when (z,y)
belongs to a set A, referred to as a coupling set. For A € B(E x E), a positive integer ¢
and € > 0, consider the following assumption:

H2 (A, le). (i) Q is a d-weak-contraction: for every x,y € E, Qd(x,y) < d(x,y).

(ii) Q'd(z,y) < (1 — €)d(z,y), for every x,y € A.

A set A satisfying H2(A, ¢, €)-(ii) will be referred to as a (¢, ¢, d)-coupling set. Of
course the definition of this set also depends on the choice of the coupling kernel @, but
this dependence is implicit in the notation. If d = dyp and A is a (1, €)-pseudo small set
(with € > 0) in the sense that

W AP @) APy, )(E) 2 €,

then H2(A, 1, ¢€) is satisfied by the pairwise coupling kernel (see [RRO1b]).

The following theorem shows that, under H2(A, ¢, €) and a condition which essentially
claims that the first moment of the hitting time to the coupling set A is finite, the Markov
kernel P admits a unique invariant distribution.

Theorem 4.1. Assume that there exist

(i) a coupling kernel Q for P, a set A € B(E x E), { € N* and € > 0 such that H
2(A, 4, €) holds,

(ii) a measurable function V : E?> — [1,00) and a constant b < oo such that the
following drift condition is satisfied.

QV(x,y) < V(z,y) —1+bla(z,y), sup QW(x,y) < +oo. (4.3)
(z,y)eA

(iii) an increasing sequence of integers {ny, k € N} and a concave function : Rt — Rt
such that limy_, 4o ¥(v) = +00 and

sup P™ 1) o Vo |(z0) < +00 , PV, (x0) < 400 for some xp € E,  (4.4)
keN

where Vg, = V(z0, ).
Then, P admits a unique invariant distribution.

Proof. See Section 4.4.1. O
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If we now combine H2(A, ¢, ¢) with a condition which implies the control of the tail
probabilities of the successive return times to the coupling sets (more precisely, of the
moments of order larger than one of these return times) then the Wasserstein distance
between P"(x,-) and P"(y,-) may be shown to decrease at a subgeometric rate. To
control these moments, it is quite usual to consider drift conditions. In this paper, we
focus on a class of drift conditions which has been first introduced in [Dou+04]. For
A € B(E x E), a function ¢ € F, a measurable function V' : E — [1,4+00), consider the
following assumption:

H3 (A,¢,V). (i) There exists a constant b < oo such that for all xz,y € E:

PV(z)+ PV(y) <V(z) + V(y) — o(V(z) + V(y)) + bla(z,y) . (4.5)

(i1) sup($7y)eA{V(x) +V(y)} < +oo.

Not surprisingly, this condition implies that the return time to the coupling set A
possesses a first moment. This property combined with Theorem 4.1 yields

Corollary 4.2. Assume that there exist a coupling kernel Q for P, A € B(E x E),
CeN  €>0,¢€FandV : E — [1,00) such that H2(A,l,e)-H3(A,¢,V) are
satisfied. Then, P admits a unique invariant probability measure m and 7 (po V) < co.

Proof. See Section 4.4.2. O

We now derive expressions of the rate of convergence and make explicit the depen-
dence upon the initial condition of the chain. For ¢ € FF, set

Ho(t) = /1 t @ds . (4.6)

Since for t > 1, ¢(t) < ¢(1) + ¢/(1)(t — 1), the function H, is monotone increasing to
infinity, twice continuously differentiable and concave. Its inverse, denoted H;f, is well

defined on R, is twice continuously differentiable and convex (see e.g. [Dou+04, Section
2.1)).

Theorem 4.3. Assume that there exist a coupling kernel Q for P, A € B(E x E),
teN  €>0,¢€FandV : E — [1,00) such that H2(A,l,e)-HS3(A,¢,V) are
satisfied. Let w be the invariant probability of P.

(i) There exist constants {C;}3_, such that for all x € E and alln > 1

Wa(P™(z,-),m) < C1V(z)/Hg (n/2) + Co/$(Hy (n/2))
+Cs/Hy (—log(1 — €) n/{2(log(H (n)) — log(1 — €))}) .

(ii) For all § € (0,1), there exists a constant Cs such that for all x € E and alln > 1

Wa(P"(z,-),7) < Cs V(x)/p({H} (n)}°) .
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The values of the constants C;, for i =1,2,3, and Cy are given explicitly in the proof.
Proof. See Section 4.4.3 U

We summarize in Table 4.1 the rates of convergence obtained (for a given x € E)
from Theorem 4.3 for usual concave functions ¢: logarithmic rates ¢(t) = (1 + logt))”
for some k > 0; polynomial rates ¢(t) = t* for some x € (0,1); subexponential rates
o(t) = t/(1 + logt)® for some k > 0. Note that since ¢ € F, the first term in the RHS
of the bound in (i) is not the leading term (for fixed x, when n — oo). In the case ¢ is
logarithmic or polynomial, the leading term in the RHS is the second one so that the rate
of decay is given by 1/¢(Hj (n/2)). For the logarithmic and polynomial cases, the best
rates are given by Theorem 4.3-(i) and for the subexponential case, by Theorem 4.3-(ii).

Order of the rates | ¢(z) = (1 + log(x))" o(z) =z o(x) =z/(1 4+ log(x))~

of convergence in for k >0 for k € (0,1) for k >0
set set
¢=kr/(1—-kK) ¢=1/(14+k)
Theorem 4.3 1/1og"(n) 1/n¢ exp(—0((1 + K)n)*)
for all § € (0,1)

[Dou+04] 1/log"(n) 1/n® n" exp(—((1+ k)n)°)

[But14] 1/10g% (n) 1/n°% iC >0
for all 6 € (0,1) exp(—Cn®)

Table 4.1: Rates of convergence when ¢ increases at a logarithmic rate, a polynomial rate and a
subexponential rate, obtained from Theorem 4.3 and from [Butl4, Theorem 2.1] and [Dou+04,
Section 2.3.].

In practice, it is often easier to establish a drift inequality on E rather than on £ x E
as in H3(A, ¢, V). Theorem 4.4 relates the following single drift condition to the drift
H3. For a function ¢ € F, a measurable function V' : E — [1,+00) and a constant b > 0,
consider the following assumption

H4 (¢,V,b). ¢(0) =0 and for all x € E,
PV(x)<V(z)—¢oV(x)+b. (4.7)
Theorem 4.4. Let ¢ € F, a measurable function V : E — [1,4+00) and a constant b > 0
such that H/(¢,V,b) holds. Then H3({V < v}? ¢,V ) is satisfied for any v > ¢ (2b)
and with ¢ =1 —2b/¢p(v).
The proof is postponed in Section 4.4.4. Note that we can assume without loss of

generality that ¢ — ¢(t) is concave increasing and continuously differentiable only for
large t; see Lemma 4.21.

Our assumptions and results can be compared to [But14] which also establish con-
vergence in Wasserstein distance at a subgeometric rate under the single drift condition
H4(¢,V,b) and the following assumptions



Chapter 4. Subgeometric rates of convergence 89

B_(l) For all z,y€F, Wd(P(xa )aP(ya )) < d(xay)
B-(ii) There exists n > 0 such that the level set A = {(z,y) : V(x) + V(y) <
¢ (2b) + n} is d-small for P: there exists ¢ > 0 such that for any z,y € A,

Under these conditions, [Butl4, Theorem 2.1] shows the existence and uniqueness of
the stationary distribution 7 and provides rates of convergence to stationarity in the
Wasserstein distance Wy; expressions for these rates are provided in the last row of
Table 4.1 for various choices of functions ¢. It can be seen that our results always
improve the rates of convergence when compared to those of [But14]

Let us compare the assumptions of Theorem 4.3 to (B). It follows from [Vil09, Corol-
lary 5.22] that under B-(i) and B-(ii), there exists a coupling kernel for P (which is the
coupling kernel realizing the lower bound in the Monge-Kantorovitch duality theorem)
such that H2(A, 1, ¢) holds. Since Theorem 4.4 establishes that a single drift condition
of the form H4 implies a drift condition of the form H3, the assumptions of [Butl4,
Theorem 2.1] essentially differ from the assumptions of Theorem 4.3 through the cou-
pling set assumption: [Butl4, Theorem 2.1] only covers coupling sets of order 1 when our
result covers coupling sets of order ¢, for any £ > 1. This is an unnatural and sometimes
annoying restriction since in practical examples the order ¢ is most likely to be large (see
e.g. the examples in Section 4.3). Note that the strategy consisting in applying a result
for a coupling set of order 1 to the f-iterated kernel is not equivalent to applying a result
for a coupling set of order £ to the one iterated kernel; we provide an illustration of this
claim in Section 4.3.1. Checking H2(A,/,¢€) is easier than checking (B) since allowing
the coupling set to be of any order provides far more flexibility.

Our results can also be compared to the explicit rates in [Dou+04] derived for
convergence in total variation distance. In [Dou+04],q it is assumed that P is phi-
irreducible, aperiodic, that the drift condition H4 holds and that the level sets {V < v}
are small in the usual sense, i.e. for some ¢/ € N*, ¢ € (0,1) and a probability v
that may depend upon the level set, P‘(z,A) > ev(A), for all z € {V < v} and
A € B(FE). Under these assumptions, [Dou+04, Proposition 2.5] shows that for any
r € B, limy 00 ¢(HG (n)) W, (P™(z,-),m) = 0, where Wy, is the total variation dis-
tance. Table 4.1 displays the rate r4 obtained in [Dou+04] (see penultimate row) and
the rates given by Theorem 4.3 (row 2): our results coincide with [Dou+04] for the
polynomial and logarithmic cases and the logarithm of the rate differs by a constant
(which can be chosen arbitrarily close to one in our case) in the subexponential case.
Nevertheless, we would like to stress that our conditions do not require ¢-irreducibility
and therefore apply in more general contexts.

4.3 Application

4.3.1 A symmetric random walk Metropolis algorithm

Let B % {k/4;k € Z} endowed with the trivial distance dy, thus (E,dp) is a Polish
space. Consider a symmetric random walk Metropolis (SRWM) algorithm on E for an
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heavy tailed target distribution 7 given by
m(z) o 1/(1 + |z)*h, forallz e E (4.8)

where h € (0,1/2). Starting at « € FE, the Metropolis algorithm proposes at each
iteration, a candidate y from a random walk with a symmetric increment distribution ¢
on E. The move is accepted with probability a(x,y) = 1 A (7(y)/m(x)). The Markov
kernel associated with the SRWM algorithm is given, for all x € £ and A C F, by

Plx,A)= > a@z+y)q@y) +6(A) Y (1 —al,z+y)qy) -
y,x+y€eA yeE

Assume that ¢ is the uniform distribution on {—1/4,0,1/4}. It is easily checked that
P is irreducible and aperiodic. In the following, we prove that [Butl4, Theorem 2.1]
cannot be applied to this case, contrary to Theorem 4.3.

We first prove that P cannot be geometrically ergodic. The proof essentially follows
from [JT03, Theorem 2.2], where the authors established necessary and sufficient con-
ditions for the geometric and the polynomial ergodicity of random walk type Markov
chains on R.

Proposition 4.5. P is not geometrically ergodic.

Proof. The proof is by contradiction: we assume that P is geometrically ergodic. Since
it is also P irreducible and aperiodic, the stationary distribution 7 is unique and ge-
ometrically regular: for any set A such that m(A) > 0, there exists L > 1 such that
E-[L™] = Y cpm(x)Ey[L™] < oo, where 74 is the return time to A. Choose M > 0,
A={zx € E,|z| < M}. Since for |x| > M, 74 > 4(|z| — M) Py-a.s. the regularity of =
claims that there exists L > 1 such that ) ., LIz (z) < co. This clearly yields to a
contradiction. O

We then show that the Markov kernel P satisfies a sub-geometric drift condition.
For s > 0, set Vi(z) =1V |z|°.

Proposition 4.6. For all s € (2,24 h), there exist b,c > 0 such that for all x € E
PV,(x) < Vi(x) — cVi(z) 2/ 4. (4.9)
Proof. We have for all > 5/4,
PVy(x) = Vi(z)
= (@/3) (1= (42)™)* = 1) = (1 = /(5 + 42) (1 = (1 + (42)7)"))
e 257 %5(s — h — 2)/48 + o(x*7?) .

The same expansion remains valid as £ — —oo upon replacing z by —z. O
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Using this result, [Dou+04, Proposition 2.5] shows that for any x € E, P"(x,-)
converges to 7 in total variation norm, at the rates n” for all h € (0,h/2).

We can also apply Theorem 4.4 and Theorem 4.3-(i). For any s € (2,2 + h), H
A(¢ps, Vs, b) is satisfied with ¢g(z) = cx®=2/5 Vi(z) = 1V |z|* and b < 4+00. For z,y € E
and A, B C FE, consider the following kernel:

Q((z,y), (A x B)) = P(x, A)P(y, B) L2y + P(x, AN B) Ly -

Clearly, @ is a coupling kernel for P. Let us prove that for any M > 0 and any £ > 4M,
there exists € > 0 such that H2(A, ¢, ¢) holds with A = {|z| V |y| < M}. We have
Qdo(z,y) < do(z,y) for every x # y € E and by definition of @, Qdy(z,z) = 0 for every
x € E. Let M >0, {>4M. For any z,y € {|z| V |y| < M} such that |z| < |y|

Ppy [Xe =Y, > Py [X4|y\ = Y4|y\}
> [@m,y {TOX = 4dfx|, Xyjgj41 = 0,..., Xy = 0,7’8/ = 4|y|} ,
where 75 = inf{n > 1,X,, = 0} and 70 = inf{n > 1,Y,, = 0}. Since
Bry [ =alal] > (1/3)1 By [1) =lyl] > (1/3)",
Py [Xajai1 = 0, Xypy = 0] > (1/3)400/=lD

it follows that Q'dy(x,y) = 1 — Puy [X =Yy < 1 — (1/3)% < 1 — (1/3)%dy(x,y).
This inequality remains valid when & = y. This concludes the proof of H2(A, /¢, ¢). By
Theorem 4.4, the kernel P is subgeometrically ergodic in total variation distance at the
rates n”, for h € (0,h/2).

In this example, [Butl4, Theorem 2.1] cannot be applied. Indeed, on one hand,
for any M > 0 the set Ay = {|z| V |y| < M} is a (1,¢,dp)-coupling set for P* iff
Il > 4M. This property is a consequence of the above discussion (for the converse
implication) and of the equality W, (P*(z,-), P'(y,-)) = 1 if |z —y| > £/2 (for the direct
implication). On the other hand, in order to check B-(ii) for some /-iterated kernel P*,
we have to prove that there exits 7 > 0 such that A, = {(z,y) € E?; Vi(z) + Vi(y) <
(2b€/¢)*/=2) 4} is a (1,€,dg)-coupling set for P - the constants b,c are given by
Proposition 4.6. Unfortunately, since b/c > 1 (apply the drift inequality 4.9 with z = 0),
and 1/(s —2) > 2, we get

{(z.y) € B |2 V|y| <46} C {w,y € Eslz| v |y| < (2b6/c)/P} C A,

Therefore whatever £, A, is not a (1,¢€,dg) coupling set for P,

4.3.2 Non linear autoregressive model

In this section, we consider the functional autoregressive process (X )neny on E = RP,
given by X,+1 = g(X,) + Zn+1 Denote by ||| the Euclidean norm on E and B(z, M)
the ball of radius M > 0 and centered at x € RP, associated with this norm. Consider
the following assumptions:
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AR 1. (Zy)nen+ is an independent and identically distributed (i.i.d.) zero-mean RP-
valued sequence, independent of Xo, and satisfying [ exp (Bo ||2]|"®) p(dz) < 400, where
W is the distribution of Zy for some By > 0 and ko € (0,1].

AR2. Forall M >0, g : RP — RP is Cys-Lipschitz on B(0, M) with respect to ||| where
Cu € (0,1). Furthermore, there exist positive constants r, My, and p € [0,2), such that
lg(@)ll < llzfl (L=rllz)") if [zl > Mo.

A simple example of function g satisfying AR2 is z — z-max (1/2,1 — 1/ ||z||”) with
p € 10,2). Denote by P the Markov kernel defined by the process (X,,),. Proposition 4.7
establishes H4(¢, V,b) in the case where p > kg, and a geometric drift condition in the
other case.

Proposition 4.7. [Dou+04, Theorem 3.3/ Assume AR1 and AR 2.

(i) If p > ro, there exist 3 € (0,50) and b,c > 0 such that H{(¢,V,b) holds with
o(z) == cx(1+ log(x))lfp/(ﬂoA(%p)) and V(z) := exp(f Hano/\(Q—p))_

(ii) It p < Ko, then there exist b < 400 and ( € (0,1) such that for all v € RP,
PV (z) <V (x)+ b where V(z) = exp(B||z]|*®) with B € (0, Bo).

Proof. The proof of Proposition 4.7 is along the same lines as [Dou+04, Theorem 3.3]
and is omitted ! O

Consider the coupling kernel @ defined for all z,y € E' and A € B(E x E) by

QUe,9). A) = [ Lalge) + 2, 9(0) + ) (410

def

For n > 0, define d,(z,y) = 1 An~1 |z —y].

Proposition 4.8. Assume AR1-ARZ2. For any M > 0, there exists € > 0 such that H
2(Anr, 1,€) is satisfied with Ay = B(0, M) x B(0, M).

Proof. Since d,(z,y) = |z —y| /n for any x,y € B(0,M) and n = 2M, we get under
AR2,

Eldy(9(z) + e, g(y) +e)] < lg(x) — gW) | A1 < Cun™ !z =yl < Cudy(z,y) -

(4.11)
Finally, since AR?2 implies that g is 1-Lipschitz on RP, (4.11) shows that E[d,(g(z) +
€1,9(y) + e1)] < dy(z,y) for all x,y € RP. O

For all n,n" > 0, d, and d,y are Lipschitz equivalent, i.e., there exists C' > 0 such
that for all 2,y € RP, C~1d,(z,y) < dyy(z,y) < Cd,(x,y), which implies (see (4.1)) that
W, and de/ are Lipschitz equivalent.

1 We point out that in [Dou+04], it is additionally required that the distribution of Z; has a nontrivial
absolutely continuous component which is bounded away from zero in a neighborhood of the origin.
However, this condition is only required to establish the ¢-irreducibility of the Markov chain, which is
not needed here.
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Theorem 4.9. Assume AR1 and AR2 hold. Then P admits a unique invariant dis-
tribution .

(i) If p > Ko, there exist two constants Cy and Cy such that for all x € RP and n € N*
Wy, (P"(z,-),7) < C1V(x)exp (—Caon®) ,

where ¢ = (ko A (2 —p))/p-

(ii) If p < ko, then there exist ( € (0,1) and a constant C' such that for all x € RP and
n € N*

Wdl (Pn(x7 ')77T) < 01V(.%')Cn .

Proof. By application of Corollary 4.2, Theorem 4.3 and Theorem 4.4, we deduce (i)
from Proposition 4.7-(i) and Proposition 4.8. By an application of [HMS11, Theorem
4.8, Corollary 4.11], we deduce (ii) from Proposition 4.7-(ii) and Proposition 4.8. O

Perhaps surprisingly, we cannot relax the condition k¢ € (0, 1], to obtain geometric
convergence for 1 < p < kg. Indeed, [RT96a, Theorem 3.2(a)] provides an example
where AR1 and AR?2 are satisfied for k9 = 2 and p € (1,2), but the chain fails to be
geometrically ergodic (for the total variation distance).

4.3.3 The preconditioned Crank-Nicolson algorithm

In this section, we consider the preconditioned Crank-Nicolson algorithm introduced in
[Bes+08] and analyzed in [HSV14] for sampling in a separable Hilbert space (H, ||-||) a
distribution with density m o exp(—g) with respect to a zero-mean Gaussian measure
~ with covariance operator C; see [Bog98]. This algorithm is studied in [HSV14] under
conditions which imply the geometric convergence in Wasserstein distance. We consider

Algorithm 2: Preconditioned Crank-Nicolson Algorithm
Data: p € [0,1)
Result: (X,,)nen
begin
Initialize X
for n > 0 do
Generate Z,4+1 ~ 7.
Generate U, +1 ~ U([0,1])
if Un+1 < a(Xnaan + v 1- pQZn—f—l) =
LA exp(g(Xn) — 9(pXn + V1= p*Zy11)) then
| Xoi1=pXp + V1= 02211
else
L XnJrl =X,
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the convergence of the Crank-Nicolson algorithm under the weaker condition CN1 below
for which the results in [HSV14] cannot be applied. We will show that subgeometric
convergence can nevertheless be obtained.

CN1. The function g : H — R is B-Hoélder for some B € (0,1] i.e., there exists Cy, such
that for all w,y € H, |g(z) = g(y)| < Cy o — yl|”.

Examples of densities satisfying CN 1 are g(z) = — ||z||® with 8 € (0,1]. The
following Theorem implies that under CN1, exp(—g) is y-integrable (see [Bog98, Theo-
rem 2.8.5]).

Theorem 4.10 (Fernique’s theorem). There exist € R* and a constant Cy such that
Juexp(0 [1€]%)d(&) < Co.

The Crank-Nicolson kernel P, has been shown to be geometrically ergodic by [HSV14]
under the assumptions that g is globally Lipschitz and that there exist positive constants
C, My, My such that for z € H with ||z|| > M, inf, 5 exp(g(z) — g(2)) > C (see
[HSV14, Assumption 2.10-2.11]), where we denote by B(z, M) the open ball centered
at * € H and of radius M > 0 associated with ||-||, and by B(z, M) its closure. Such
an assumption implies that the acceptance ratio a(z, pr + /1 — p2£) is bounded from
below as ||z|| — oo uniformly on & € B(0, M2/+/1— p2?). In CN 1, this condition is
weakened in order to address situations in which the acceptance-rejection ratio vanishes
when [|z]| — oo: this happens when lim;40{9(p7) — g(x)} = +oo. We first check
that H4(¢,V,b) is satisfied with

V(x) = exp(s||z]?) (4.12)
where s = (1 — p)20/16 and 6 is given by Theorem 4.10.

Proposition 4.11. Assume CN 1, and let p € [0,1). Then there exist b € Ry and
c € (0,1) such that for all z € H

P,V(z)<V(z)— ¢oV(x)+b,
where ¢ € F and () ~¢_s00 ctexp(—{log(t)/k}*/?), with k = 90;2/5/36.

Proof. The proof is postponed to Section 4.5.1. U

We now deal with showing H2. To that goal, we introduce the distance d,(z,y) =
LAYz —y||5, for any n > 0, and for z,y € FE the basic coupling Q., between
P.n(x,-) and Pey(y,-): the same Gaussian variable Z and the same uniform variable
U are generated to build X; and Y7, with initial conditions x,y. Define A(,,)(z) =

(px + /1 = p*z, py + /1 — p22) and 7, the pushforward of v by Ay ,y. Then an
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explicit form of @, is given, for A € B(H x H), by:

QCH(('%'7 y)’ A) =

[, @ 0) n a0 @0+ [ (@) = al@.), 1 )y (0.0

+ [ (@) = ay, ). La(e, )Ty (0,1

+ () (A) /HXH(l —a(z,v) VvV a(y,t))d’7($7y) (v,t) (4.13)

where for u € R, (u)4 = max(u,0). The following Proposition shows that H2 is satisfied.

Proposition 4.12. Assume CN 1. There exists n > 0 such that, Qcn is a dy-weak
contraction and for every u > 1, there exist £ > 1 and € > 0 such that {V < u}? is a
(¢, €, dy)-coupling set.

Proof. See Section 4.5.2 U

Note that for all n > 0, d,, is Lipschitz equivalent to dy, therefore Wy, and Wy,
are Lipschitz equivalent. As a consequence of Proposition 4.11, Proposition 4.12, Theo-
rem 4.3 and Theorem 4.4, we have

Theorem 4.13. Let P, be the kernel of the preconditioned Crank-Nicolson algorithm
with target density dm o exp(—g)dy and design parameter p € [0,1). Assume CN 1.
Then P, admits 7 as a unique invariant probability measure and there exist C1, Co such
that for allm € N* and x € H

Way (Pl (w,),m) < C1V () exp (—r(log(n) — Cslog(log(n)))?) |

where V is given by (4.12), di(z,y) = ||z — y|[° A1 and k = 9C’;2/5/36 for 6 given by
Theorem 4.10.

4.4 Proofs of Section 4.2

In this section, C' is a constant which may take different values upon each appearance.

For A € B(E x E), ¢ € N* and a canonical Markov chain on the space ((E X
E)YN,(B(E) ® B(E))®Y), denote by Ty = inf {n > ¢,(X,,,Y,) € A} the first return time
to A after £ — 1 steps. Then, define recursively for j > 1,

7j—1
T;=Tpo 0T +Tj_y =Ty + »_ Tyo o', (4.14)
k=0

where 6 is the shift operator.
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Let @ be a coupling kernel for P. Hereafter, {(X,,Y,),n € N} is the canonical
Markov chain on the space ((E x E)N, (B(E)® B(E))®Y) with Markov kernel Q. We de-
note by [ﬁm,y and I~Em7y the associated canonical probability and expectation, respectively,
when the initial distribution of the Markov chain is the Dirac mass at (z,y).

For any n € N* and z,y € E, the n-iterated kernel Q"((z,y),-) is a coupling of
(P™(x,-), P"(y,)); hence Wy(P"(x,-), P"(y,-)) < IEJW [d(X,,Yy)]. Define the filtration
{Fn,n >0} by F, = o((Xi, Vi), k < n).

Proposition 4.14. Assume that there exists a coupling kernel Q for P, A € B(E x E),
¢ e N* and € > 0 such that H2(A,l,e). Then, for allxz,y € E, andn >0, m >0 :
Epy [d(Xn, V)] < (1 — &)™ +Pyy [Trn > 1]

Proof. Set Z,, = d(Xy,Y,); under H2(A, 4, ¢), {(Zn, F) Y0 is a bounded non-negative
supermartingale and for all (z,y) € A, E; 4 [Z] < (1 —€)d(x,y). Denote by Zy, its Py ,-
Vi Tm+4
Zr,,+¢- On the other hand, by the strong Markov, IEx,y {ZTm—M ‘]?Tm} <(1—-e€)Zr,. By
1 JETm} < (1-¢€)Zr,. Since Z, is
upper bounded by 1, the proof follows from [JT01b, lemma 3.1]. O

IN

a.s limit. By the optional stopping theorem, we have for every m > 0: IEx,y {ZTerl

combining these two relations, we get: E,, [ZTm

4.4.1 Proof of Theorem 4.1

By Proposition 4.14 and the Markov inequality for all m > 0, we get
Epy [d(Xn, V)] < (1= )™ +n By y [T)] - (4.15)

Using (4.14) and the strong Markov property, we obtain IEx,y [Tn] = I~Em7y [To]—HEx,y [ZZL;OI EXTk,YTk [TO]} .
Using [MT09, Proposition 11.3.3] and the Markov property we have that

B,y [To] < Q" V(a,y) +b+0—1,

which implies that I~Em7y [Tin] < msup yyea Q'YW (x, y)+Q "V (x, y)+(m+1) (b + £ — 1),
where the constant b is defined in (4.3). Plugging this inequality into (4.15) and taking
m = [—log(n)/log(1 — €)] implies that there exists C' < oo satisfying

Q"d(x,y) = Exy [d(Xn, Y2)] < Cllog(n)/m)Q " V(@,y) < Cllog(n)/m)V(z,y) , (4.16)
where we have used that Q“~'V(z,y) < V(x,y)+b(¢£ —1) (the constant C takes different
values upon each appearance).

Uniqueness of the invariant probability

The proof is by contradiction. Assume that there exist two invariant distributions = and
v, and let A € II(m,v). According to Lemma 4.23-(i), we have for every integer n,

Walmw) = WaleP" vP") < [ Qd(z,y) Mdedy)
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We prove that the RHS converges to zero by application of the dominated convergence
theorem. It follows from (4.16) that for all 2,y € E and n > 0, gn(z,y) = Q"d(z,y) <
CV(z,y) log(n)/n for some C < oo. Therefore, the sequence of functions (gn)nen
converges pointwise to 0. Since d < 1, g,(z,y) < 1. Hence, by the Lebesgue theorem,
Jex g 9n(z,y) A(dz,dy) el 0 showing that Wy(w,v) = 0, or equivalently v = 7 since

Wy is a distance on P(E).

Existence of an invariant measure

Let g € E. We first show that there exists {my, k € N} such that {P™* (z,-),k € N}
is a Cauchy sequence for Wy. Let n,k € N* and choose M > 1. By Lemma 4.23-(i):

W, (P™(x0,-), P" % (20, ) < inf {/ T " d(z, H)A(dz, db)+
a(P"(x0, ") (@0,)) < | _ 16 o o) Ul T @ d(z, 1) A(dz, dt)

/ n{v(z,tKM}Q"d(z,t)A(dz,dt)}. (4.17)
ExFE

We consider separately the two terms. Set M, = sup, P™* [t o V,](xg). Let A €
I1(6z,, P (x0,-)). Since d is bounded by 1, we get

/ Ly o>y Q@ d(2, ) A (dz, dt)
ExFE

< /E><E ]l{V(z,t)ZM})\(dZ,dt) < P (20, {Vy, > M})
< P (20, {th 0 Vi > $(M)}) < P™[th 0 Vi) (w0) /(M) < My /3(M) | (4.18)

where we have used (4.4) and the Markov inequality. In addition by (4.16), there exists
C > 0 such that:

| 10nan@ (= 00z dt) < Cllogm)/n) [ Lpeaan Vi DAz, )
xE ExE

Furthermore, x +— ¢ (x)/x is non-increasing so that V(z,t) < My (V(z,t))/¥ (M) on
{V(z,t) < M}. This inequality and (4.4) imply

. 10enan@ (= 0M(dz,dt) < Cllog(n)/mMM/6(M) . (419)
Plugging (4.18) and (4.19) in (4.17), we have for every M > 0, n,k € N*
WP (a0, ). P a0,9)) € St Clog(n)/m) (M M/U(D)

Setting M = n/log(n), we get that for all n, k € N*

Wa(P" (zo,-), P" " (x0,-)) < C/¥(n/log(n)) . (4.20)
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Since limg s o0 ¥ (2) = +00 and limy_, 1 o np = +00 there exists {uy, k € N} such that
up = 1 and for k > 1, up = inf{n; | | € N;¢(ny/log(ny)) > 2¥}. Set my = YK u;. Since
for all kK € N, myg11 = my + ug41, by (4.20),

Wa(P™ (g, -), P+ (0,-)) < C27%,

which implies that the series >, Wq (P (z9, -), P"™*+1(x0, -)) converges and (P™* (xo, -))keN
is a Cauchy sequence in (P(E), Wy).
Since (P(E), W) is Polish, there exists 7 € P(FE) such that
lim Wy(P™*(xg,-),7) =0.

k—+o00

The second step is to prove that 7 is invariant. Since limy_, oo Wy(P™* (x0,-),7) = 0,
by the triangular inequality it holds

Wy(m,mP) < klim Wy(P™* (xq, ), 0ge PP™") + klir}: Wi(6go PP, P) . (4.21)
—+00

—+00

By Lemma 4.23-(i) and (4.16) , there exists C such that for any k > 1,

Wy (P™ (g, -), 0y P™ 1) < inf Med(z, t)d\(z, t
a(P"* (20, ), 0z )_AEH(&%P) ExEQ (z,)dA(2, 1)

< C(log(myg)/myg) inf / V(z,t)\(dz, dt) < C(log(my)/my) PV, (o) -
AEM(d2,029 P) JEXE

By definition, limy my = +o0o so that by (4.4), the RHS converges to 0 when k& — +o0.

In addition, by Lemma 4.23-(ii), Wy (0, P™* P, mP) < Wy(P™* (x¢,-),7), and this RHS

converges to 0 by definition of 7. Plugging these results in (4.21) yields Wy(7,7P) = 0,

and therefore 7P = 7.

4.4.2 Proof of Corollary 4.2

We prove that the assumptions of Theorem 4.1 are satisfied. Set V(z,y) =1+ (V(x) +
V(y))/#(2). Since Q is a coupling kernel for P, it holds

I . oy OV (@) + V()
QV(z,y) =1+ 20 ,(PV(z) + PV(y)) < V(z,y) o)

This yields the drift inequality (4.3) upon noting that ¢ is increasing and V' > 1 so that
o(V(z) +V(y))/9(2) > 1. By iterating this inequality, we have for any ¢,

+ b]lA(I',y) .

sup Q" 'W(x,y) <L sup V(z,y)+bl,
(z,y)eA (z,y)EA

and the RHS is finite since by assumption, sup(, ,yea (V(z) + V (y)) < o0.
Under H3(A,¢,V), PV(z) < PV(z) + PV(xg) < V(z) —doV(z)+ b+ V(xg)
where we have used that ¢(V(z) + V(xo)) > #(V(z)). This implies that for every
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ne N, n IS PE(goV)(2) < b+ V(vg) +V(2)/n and w(¢po V) < oo; see [Butld,
lemma 4.1]. For any z, we have PV, (z) < co. Finally, since ¢ € F, we can set 1) = ¢.
Let us define the increasing sequence {nj, k € N}. Set My > b+ V(x¢); there exists an
increasing sequence {ng, k € N} such that limy ny = 400 and

P (poV)(xg) < My, forall k e N. (4.22)

4.4.3 Proof of Theorem 4.3

We preface the proof by some preliminary technical results. By using Proposition 4.14,
for every x,y € E and m > 0, E,,, [d(Xp, Y,)] < (1 — €)™ + Py, [T, > n]. The crux of
the proof is to obtain estimates of tails of the successive return times to A. Following
[TT94], we start by considering a sequence of drift conditions on the product space
E x E. For A € B(E x E), £ € N*, a sequence of measurable functions {V,,n € N},
Vn: Ex E — Ry, afunction r € A and a constant b < 0o, let us consider the following
assumption:

A (AL, V,,rb) Forallz,y € E :

QVny1(z,y) < Vnl(z,y) —r(n) +br(n)la(z,y), and sup Q" Wy(z,y) < 0.
(z,y)eA

Under A (A, 4, Vy,,1,b), we first obtain bounds on the moments I~Em7y [R(Ty)] for z,y €
E (see Proposition 4.15), where

R(t) = 1+ /Otr(s)ds >0, (4.23)

We will then deduce bounds for P, [T}, > n] (see Lemma 4.17). Set

k—1
c1r = sup R(k)/ Z r(i), cor= sup R(m+n)/{R(m)R(n)} . (4.24)
keN* i=0 m,neN

It follows from Lemma 4.24 that these constants are finite.

Proposition 4.15. Assume that there exist a coupling kernel Q for P, A € B(E x E),
¢ € N*, a sequence of measurable functions {V,,n € N}, V, : E x E — R, a function
r € A and a constant b < oo such that A(A,L,V,,r,b) is satisfied. Then, for any
z,y € b, ~

By [R(TH)] < c1pcarR(E— D{QWo(z,y) +br(0)}, (4.25)

and Sup(. pea E. . [R(Ty)] is finite.
Proof. By [MT09, Proposition 11.3.2], IEx,y [Z;Azgl ’I“(]C)} < Vo(z,y) + br(0), where 7o

is the return time to A. Since R(k) < ¢y, Z’;;é r(p), the previous inequality provides a

bound on E, , [R(7a)]. The conclusion follows from the Markov property upon noting
that R(Tp) < co,R({ — 1)R(1A) 0 071, O
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Combining the strong Markov property, (4.14) and Proposition 4.15, it is easily seen
that E, , [T),] < oo for any m > 0 and z,y € E. This yields the following result.

Corollary 4.16. Assume that there exist a coupling kernel Q for P, A € B(E x E),
¢ € N*, a sequence of measurable functions {V,,n € N}, V, : E x E — R4, a function
r € A and a constant b < oo such that A(A, 0, Vy,,r,b) is satisfied. Then, for all j > 0
and (z,y) € Ex E, Py, [Tj < oo] = 1.

For r € A, there exists ro € Ag such that ¢z, = 1 A sup;>q7(t)/ro(t) < oo and
ca,r = 1Vsupsqro(t)/r(t) < oo. Denote 5, = Sup, yer, r(t+u)/{r(t)r(u)} and define
for k > 0, the real M, such that for all t > M,, r(t) < kR(t). M, is well defined by
Lemma 4.24-(iii).

Lemma 4.17. Assume that there exist a coupling kernel Q for P, A € B(EXE), ¢ € N*,
a sequence of measurable functions {Vp,n € N}, V,, : Ex E — R, a functionr € A and
constants € > 0, b < 0o such that H2(A,l,e) and A(A, 0, V,,1,b) are satisfied. Then,

(i) For all z,y € E and for alln € N,m € N*,
Poy [T > n] < {a1Q""Vo(@,y) + az}/R(n/2) + as/R(n/(2m)) .

(i) For all k >0, for all x,y € E and for all n,m € N,
Poy [T > n] < (14 b1k)™ {57 'r(My) + a1Q"Vo(z,y) + b2} /R(n) ,

The constants {a;,b;}3_, can be directly obtained from the proof

Proof. Since r € A, there exists 79 € Ay such that c3, + ¢4, < c0. Denote by Ry the
function (4.23) associated with rg.

pr,y [Tm > n] < ]’IVDJ:,y [TO > 7”[,/2] + pr,y [Tm - TO > 7”[,/2]

< oy [R(T0)] /R(1/2) + By [Ro((Trn — To) /m)] /Ro(n/(2m))

<A{aQVo(z,y) + a2}/ R(n/2) + 1By [Ro((Ton — To) /m)] /R(n/(2m)) ,  (4.26)

where we used Proposition 4.15 in the last inequality, and a; = ¢1,c2,R({ — 1); az =
a1br(0). Since Ry is convex (see Lemma 4.24), we have by (4.14):

m—1
By [Ro((Tn — To)/m)] < (es,m) B [z R(Ty o eTk)] |
k=0

Using Corollary 4.16 and the strong Markov property, for any x,y € F and m > 1,

IEx,y [Ro((Trn, — Tp)/m)] < Ca/esy with Cpa = ( Sl;pA E.y [R(To)] - (4.27)
x,y)e

Plugging (4.27) in (4.26) implies (i) with a3 = ¢4,Ca/c3,. We now consider (ii). Again
by the Markov inequality, since R is increasing,

Py [T > 1] < R (0)Eyy [R(T)] - (4.28)
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If m = 0, the result follows from Proposition 4.15. If m > 1, using the definitions of T,
and R, given respectively in (4.14) and (4.23), and since for all t,u € Ry, R(t + u) <
R(t) + 5, R(u)r(t), we get

Eqy [R(Th)] < Ew,y [R(Tm—1)] + CS,TEM/ {T(Tm—l)R(TO ° eTmfl)} .
Thus, by the strong Markov property

Euy [R(Tn)] < By [R(Tin-1)] + ¢5,CaEay [r(Tin-1)] - (4.29)

Let x > 0. Since by definition, for all t > M, r(t) < kR(t), Bz y [r(Tm-1)] < r(My) +
KEz y [R(Trm—-1)], so that (4.29) becomes

Epy [R(Tm)] < (1+ ¢5,CAR)Eqy [R(Trn_1)] + c5.,Car(M,) .

By a straightforward induction we get,

Eyy [R(Tn)] < (1+ ¢5,Car)™(Epy [R(T0)] + (M) /5) -

Plugging this result in (4.28), using Proposition 4.15 and setting b; = ¢5,Ca and by =
a1(Ca + br(0)) conclude the proof. O

Lemma 4.18. Assume that there exist a coupling kernel Q for P, A € B(ExE), { € N*,
a sequence of measurable functions {V,,n € N}, V,,: EXE — Ry, a functionr € A and
constants € > 0, b < oo such that H2(A,l,e) and A(A,0,V,,r,b) are satisfied. Then,

(i) For allz,y € E and n € N,
Evy [d(X0, Ya)] < 1/R(n) + {a1Q " Vo(z, y) + as}/R(n/2) + azv, ",
where v, = R(—nlog(1 — €)/{2(log(R(n)) — log(1 — ©))}).
(ii) For all § € (0,1), x,y € E and n € N,
Eoy [d(Xn, o)l < (14 (14 bir) {n (M) + a1Q"Vo(,y) + bo}) /R (n) ,

where k = (1 — €)= (1=9/0 _1)/b,.
The constants a;,b; are given by Lemma 4.17.

Proof. By Proposition 4.14 and Lemma 4.17-(i), there exists C' such that for all x,y in
Fandforalln>0and m >0

vay [d( X, Yn)] < (1—€)™ + Iﬁﬂay [T > 7]
< (1= ™ + {01 Q Vol ) + ar}/R(n/2) + as/R(n/(2m)) .

We get the first inequality by choosing m = [—log(R(n))/log(l — €)]. Let us prove
(ii). Fix 6 € (0,1) and choose the smallest integer m such that (1 — €)™ < R(n)™?
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(i.e. m = [=dlog R(n)/log(l — €)]). Apply Lemma 4.17-(ii), with x > 0 such that
(1+b1k) = (1 — €)~((1=9)/9): hence, upon noting that R(n)~% < (1 — €)™, it holds

(1 + blli)m = (1 + bl’f) {(1 _ e)mfl}_((l—(s)/é)

< (14 byr) {R(n)_g}—((l—é)/é) _

(1+bik)R(n)10.
O

We now prove that H3(A, ¢, V) implies A. For a function ¢ € F and a measurable
function V : E — [1,00), set

re(t) = (Hg)'(t) = ¢(Hg (1)) , (4.30)
where Hy is defined in (4.6) and HJ denotes its inverse; and define for k > 0, H, :
[1,00) = Ry and Vi : E x E— Ry by

Hg(u) . .
Hy(u) = / ro(t+ k)dt = B (Hy(u) + k) — H3'(k) (4.31)
0
Vi(z,y) = Hy, (V(z) + V(y)) - (4.32)

Note that Vi is measurable, Hy is twice continuously differentiable on [1,00) and that
Hy(z) <z soVy(z,y) < V(x)+V(y). The proof of the following lemma is adapted from
[Dou+04, Proposition 2.1].

Lemma 4.19. Assume that there exist a coupling kernel Q for P, A € B(E x E), a
function ¢ € F and a measurable function V. : E — [1,00) such that HS3(A, ¢, V) is
satisfied. For any x,y € E and any transference plan X € II(P(x,-), P(y,-)) we have:

/ExEVkH(z’t)d)\(Z’t) <Vi(z,y) — (k) + re(k +1)1a(z,y) ,

7(0)
where r¢ and Vi, are defined in (4.30) and (4.32) respectively.

Proof. Set V(z,y) = V(z) + V(y). This implies that for all v > 1 and ¢ € R such that
t4+u > 1, we have
Higoa(t -+ 1) — Hyga(u) < Hipy ()t (433)

In addition, according to [Dou+04, Proposition 2.1] and its proof, Hy1 is concave and
for every u > 1

Hyg1(u) — ¢(u) Hy 4 (u) < Hi(u) —ro(k) - (4.34)
Therefore, the Jensen inequality and (4.5) imply
/ Vit1(z,t)dA\(z,t) < Hyqq (/ V(z,t)d)\(z,t))
ExXE ExXE
< Hk+1 (V(x,y) - Qb © V(x’y) + b]]-A('Iay)) :
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Using (4.33), (4.34) and the inequality H;_ ,(V(z,y)) < H; (1) we get that

/ Vit1(z, t)dA(z, t)
ExXFE

S Hk+1 (V('Ia y)) - Qb o V(x’ y) Hllc—l—l(v(xa y)) + le/c—l—l(l)]]-A(x’ y)

< Hy, (V(2,y)) = ro(k) + bHyy 1 (1)1a(2,y) -
The proof is concluded upon noting that Hj_ (1) = 74(k 4 1)/r4(0). O
Proposition 4.20. Assume that there exist a coupling kernel Q for P, A € B(E x E),
a function ¢ € F and a measurable function V : E — [1,00) such that H3(A, ¢,V ) is

satisfied. Then for any £ > 0, A(A, €,V 1¢,{sup,>07¢(p+1)/74(p)} b/T4(0)) holds with
Vo(z,y) = Hy(V(2)+V (y)) where ry and Hy, are given by (4.30) and (4.31) respectively.

Proof. By [Dou+04, Lemma 2.3], r, € A. Then, it follows from Lemma 4.19 and
Lemma 4.24-(i) that

QVit1(z,t) < Vi(z,y) —rg(k) + {iglg (P + 1)/%(1?)} ro(k)1a(2,y)/r4(0) .

Finally, since Q° is a coupling kernel for P’, we have by iterating the inequality (4.5)
QVo(,y) < PV (2) + PV(y) < V(x) + V(y) + .
Therefore under H3(A, ¢, V), sup(, y)ea Q" Wy(x,y) < +oo. O

Proof of Theorem /.3-(i). Using Proposition 4.20, Lemma 4.18 applies with R(t) = 1 +
J3rg(s)ds for t € Ry. Note that we have R = HE

Set My > 0 such that 7(V < My) > 1/2; such a constant exists since 7(E) = 1 and
E = Ugen{V < k}. Set M > My and define the probability mas by ma(-) = 7(-N{V <
M}Y)/m({V < M}). Since 7 is invariant for P, Wy(P"(z,-),7) = Wy(P"(z,-),7P"™) and
the triangle inequality implies:

Wy(P"(z,-),m) < Wy(P"(z,-), 7 P") + Wa(mp P",7wP"™), foraln>1. (4.35)
Consider the first term in the RHS of (4.35). By Lemma 4.23-(i), for all z € E and
n>1:

pP" pP" f "d(z,t)d t) .
WaP (@ )omn P < nf [ Qra( ) ar(z)

Let v, = R(—nlog(1 — €)/{2(log(R(n)) — log(1 — €))}). By Lemma 4.18-(i) and since
R= H;f is increasing, for all x € F and n > 1

R(n/2) Wy(P"(x,-), mpr P™)
< R(n/2)/R(n) + a2 + agR(n/2) /v,

+a  inf / (PIV(2) + PV (1) dA(z, )
A€ I(6z,mm) JEXE

< al( )+ / (#)dmar(£) + b(¢ — )) Fas+1+4asR(n/2)/vn,  (4.36)
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where in the last inequality, we used
PV (z) < V(x)+bk/2 . (4.37)

which is obtained by iterating the drift inequality (4.5) and applying it with z = y. Since
x — ¢(x)/x is non-increasing, V(t) < MoV (t))/¢(M) on {V < M}, we have

/ V(#)dmar(t) < 27(é o V)M (M) . (4.38)
E
Note that by Corollary 4.2, My, = 7(¢ o V) < co. Combining (4.36) and (4.38) yield

Wa(P"(x,-), mapr P™)
<A{a1 (V(x) +2MyM/p(M) + bl —1)) +az+ 1}/R(n/2) + a3/v, . (4.39)
Consider the second term in the RHS of (4.35). Since d is bounded by 1, Wy(u,v) <

Wiy, (1, v) (where Wy, is the total variation distance) and Lemma 4.23-(ii) implies Wy(mp P™, mP™) <

Wa(mar, m) < Wy, (mar, m). For every A € B(E), we get
mar(A) = w(A)] = [mar(A) (1 = 7({V < M})) + my (A)m(V < M) — 7(A)]
<2r({V > M},
showing that
Walmat P, wP") < 20({V > MY}) = 22 ({8(V) > 6(M)}) < 2My/o(M) . (4.40)

Since R(n/2) > My for all n large enough, we can now choose M = R(n/2) in (4.39)
and (4.40). This yields

Wy(P"™(z,-), )
< far (V@) + (0 = 1)) + az + 1}/HS (n/2) + 2My(ar + 1)/¢(R(n/2)) + as /v, -

(ii) The proof is along the same lines, using Lemma 4.18-(ii) instead of Lemma 4.18-
(i). Finally, we end up with the following inequality for n large enough:

Wa(P™(x,-),m) < (1 + (14 bir){x  ry(M) + ar(V(z) + b(£ — 1)) + b })/{R°(n)}
+2My((1+ bik)ar + 1)/{8(R° (n))}
where k= ((1 — €)= (1=9/0 _1)/p,. O

4.4.4 Proof of Theorem 4.4

Note that since ¢ = 1 — 2b/¢(v) and v > ¢ (2b), we get ¢ € (0,1). By (4.7),

PV(x)+ PV(y) < V(x) +V(y) —co (V(z) + V(y)) + 2bLexc(z, y) + Q(z,y)
where Q(z,y) = co (V(z) +V(y)) — d(V(2)) — &(V(y)) + 2b1 (cxc)e(w,y). We show that
for every z,y € E, Q(z,y) < 0. Since ¢ is sub-additive (note that #»(0) = 0), for all

x,y el
Qz,y) < =(1 =) (6(V(2)) + ¢(V(y))) + 26T cxcye (2 y) -
On (Cx C), ¢(V(x)) + ¢(V(y)) > ¢(v). The definition of ¢ implies that Q(x,y) < 0.
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4.5 Proofs of Section 4.3.3

Lemma 4.21. Let M > 0. Assume that there exists an increasing continuoulsy differ-
entiable concave function ¢ : [M,00) — Ry, such that lim,_, ¢'(x) = 0 and satisfying,
on {V > M}, PV(z) < V(z) — ¢oV(x)+b. Then, there exist ¢ €F and 13 such that,
PV§V—(50V+I~)0nE d(v) = ¢(v) for all v large enough, and ¢(0) =

Proof. Observe indeed that the function ¢ defined by

30) = (2¢/ (M) — 20y 4 ZW(M);%‘?'(M”\/% for 0 <t< M
N (1) fort > M |

is concave increasing and continuously differentiable on [1, +00), $(0) = 0, limy_y00 G(v) =
oo and lim,_, ¢'(v) = 0. The drift inequality (4.5) implies that for all z € E

PV(x) <V(z) = ¢ (V(2)) +b,

Withl;:b—i—sup{tSM} {qz(t)—qﬁ(t)} O

4.5.1 Proof of Proposition 4.11

For notational simplicity, let P = P,,. By definition of P, V(X1) < V(Xy) V V(pXo +
VI=22). Since |z + y]1? < 2 2] +2 ], we gt

sup PV(z) < sup / exp (25 (l” + (1= o)) [|2]%) ) dv(2) , (4.41)

z€B(0,1) z€B(0,1) /H

and Theorem 4.10 implies that the RHS is finite.
Now, let ¢ B(0,1) and set w(xz) = (1 — p) ||z|| /2. Define the events .# = {||Z;| <

w(X0)/VT=7%}, o = {a(Xo,pXo + V1—g221) > U}, and # = {a(Xo,pXo +
V1—=p2Zy) < U}, where U ~ U([0,1]), Z1 ~ 7, and U and Z; are independent. With

these definitions, we get,
PV(z) =E, [V(X1)lge| + E, [V(X1)1 s (1o + 15)] . (4.42)

For the first term in the RHS, using again V(X1) < V(Xo) V V(pXo + /1 — p2Z;) and
lz +yl* < 2 jal* + 2 ly]%, we get

E, [V(X1)1se] < exp (2s]|z]|” exp (25(1 = p?) |12I|*) d(2)

/\/ﬁ ||z >w(x)
< exp (28 o = (6/20w()?) [ exp ((0/2+29)(1 = ) |2]) d(2)

< / exp((5/8)(1 — p2)6 |12/|*)dv(2) ,
H
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where the definition of s and w are used for the last inequality. Hence by Theorem 4.10,
there exists a constant b < co such that

supE, [V(X1)1ge] <b. (4.43)
xeH

Consider the second term in the RHS of (4.42). On the event &/ N .#, the move is
accepted and || X1 — pXo|| < w(Xp). On Z, the move is rejected and X; = Xj. Hence,

B, [V(X1) 1y (L + 1)) < { e v<z>} P, [# N ]+ V(@)B, [£ N ) .
zeb(px,w(x

For z € B(pz, w(x)), by the triangle inequality, V(z) < exp(s(1+p)? ||z||* /4). Therefore
for any = ¢ B(0,1) since p € [0,1), Sup.cp(pe,w(z) V(2) < (V(z), with ¢ = exp{((1 +
p)?/4 —1)s} < 1. This yields

B [V(X1)1s(1y + 1)) < CV( P [ 0]+ V(2)Py [ N
V(@)Py [Z] = (1 =V (2)Ps [ N.I] .

Since Uy and Z; are independent, we get
P, (& NI = KMeg(l‘ 9lpz++/1-p*Z1) ) ] .

By definition of the set .#" and using the inequality inf g, . . exp(g(z) — g(z)) >
exp(—Cy(1 - p)(3/2)° [[2]%), we set Py [ 1.#] > exp(—{InV (2)/x}?/2)P, 7], with
K= 90;2/5/36. Hence, for any = ¢ B(0,1),

Eo [V(X1)1,(1y 4+ 15)] <V(z) — (1 =) V(z) exp(—210g?2 V().  (4.44)

Combining (4.41), (4.43) and (4.44) in (4.42), it follows that there exists b > 0 such that,
for every z € H,

PV(z)<V(z)— (1= V() exp(—s?10g?2V(2)) +b .

The proof follows from Lemma 4.21.

4.5.2 Proof of Proposition 4.12
We preface the proof of Proposition 4.12 by a Lemma.
Lemma 4.22. Assume CN1. There exists n € (0,1) satisfying the following assertions

(i) For all L > 0, there exists k(Qen,L,n) < 1 such that, for all x,y € B(0,L)
satisfying dy(x,y) <1, Qendy(x,y) < k(Qen, L, n)dy (2, y).

(it) For all x,y € H, Qendy(x,y) < dy(x,y).
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Proof. Let n € (0,1); for ease of notation, we simply write @ for Q¢,. Let L > 0 and
choose x,y € B(0, L) satisfying d,(z,y) < 1. Let (X1,Y7) be the basic coupling between
P(z,-) and P(y,-); let Z1,U; be the Gaussian variable and the uniform variable used

for the basic coupling. Set . = {\/1 —p? || Z1]| < 1}, o = {VA(Xo,Y0,21) > Up},
X = {¥y(Xo, Y0, Z1) < Uy}, where

Ua(2,y,2) = alz, pr + /1 = p*2) Aa(y, py + /1 = p?2) (4.45)
Uy (2,y,2) = afz, pr + /1 = p2) V aly, py + /1 — p2) . (4.46)

On the event ./, the moves are both accepted so that X; = pXy + /1 — p?Z; and
Y1 = pXo + /1 — p2Z1; On the event Z, the moves are both rejected so that X; = X
and Y; = Yp. It holds,

Qdy(w,y) < By [dy(X1,Y1)] < Bay [dy(X1, Y1) Loriz) + Poy [(# UR)] . (4.47)

where we have used d,, is bounded by 1. Since d,(X1,Y:) = p°d,(Xo,Ys), on <7, and
dy(X1,Y1) = dy(Xo,Yo), on Z, we get

Ex,y [dn (X1, Y1) (Luz)] < pﬁdn(x, y)ﬁpx,y (] + dy(z, y)ﬁpx,y [Z] -
Since [ﬁr,y [«/] + [@m,y [#] < 1, we have

Ex,y [dn(Xl,Yl)(]l%U%”)] < dn(:c,y) - (1= PB) dn(5'3ay)P:v,y (]
< dy(z,y) — (1= p7) dy (2, y)Pry [/ 0 5] . (4.48)

Set A(z,y,z) = ‘a(m,px +V1—=p%2) —aly,py + V1 — ,02,2)’. Since Z; and U are inde-
pendent, it follows that P, , [(&/ UZ)°] < [, A(z,y, 2)dy(z) Plugging this identity and
(4.48) in (4.47) yields

Qy(,9) < dyo,) = (1= ")y @ )Py [ 01 7] + [ Al 2)dr(z) . (449)
Let us now define h: H — R by
h(z) = 9(2) — 9(p) (4.50)
We bound from below [ﬁm,y [« N .Z]. Since U; is independent of Z7, it follows that
Puy [ NI] > By [WA(Xo, Yo, Z1)1] .

By CNI1, for all z such that /1 — p?||z|| < 1, it holds for z € H, g(2)—g(pz++/1 — p?z) >
h(z) — Cy4. Then,

U (@,y,2) > 1A (e @) A (e7CoehW)) > e=Co [1 A oMW
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Therefore,
y[Z] . (4.51)

4.49). For x,y € H, define the partition of H,

)

P,y [ NF] > e O {1 A eh(@)AR(y) }
n (

We now upper bound the integral term i

H(z,y) oz, px+\/7p2)—aypy+\/722)=1}
Ha(z,y) (w,px+\/:2)—1>ay,py+\/72 )}
Hs(z,y) ={z €H: (ypy+\/:2)—1>awpx+\/7p22}
Hy(z,y) (ypy+\/:2)<1andaxpx+\/72 )< 1}.
z) =

Since on 1 (z,y), O(x,y, z

4

Z/ it y)@(fﬂ,y,Z)dw(Z)- (4.52)

7j=2

[, 0. 2)d(:) =
H

For any a,b > 0, we have |a —b] = (a vV b)[1 — ((a/b) A (b/a))]. Upon noting that
1 —e t <t for any t > 0, we have

O(z,y,z)
< Uy(z,y,2) |9(y) — g(z) — glpy + /1 = p*2) + g(px + /1 — p*z)

By CN1, this yields, for z,y € H such that d,(z,y) < 1,

Lus_, #i(wy) (2) -

Q(xay, Z) S 209 Hy - 'IHB \I]\/(x’y’ Z) S 2Cg77d77(xay)\ll\/(x’y’ Z) . (453)

On 4 (z,y), g(x) > glpr + /1 — p?2) and, together with the definition (4.50), this
implies that h(x) > g(pz + /1 — p?2) — g(px). Therefore, since under CN 1, h(z) >
—Cy(1 = )P 2P we get

[ o) < 2Cmdyfay) [ anle)
JHa(z,y) Ha(z,y)

< 2Cynd,(x,y) { [eh(m)/ ng(lp2)B/2”Z”Bdfy(z)1 A 1} < Cmd,(x,y) {eh(m) A 1} ,
Ha(z,y)
(4.54)
for a constant C7, which is finite according to Theorem 4.10. By symmetry, on J#3(x,y),
[ 8wy e) < Crdyfawy) {0 a1} (4.55)
3 (,y)
On #;(z,y), using CN1,
alz, pr + /1 — pz) = 9@ 9PrEVI=0*2) A 1 < ( bz )ng(17p2)5/2||Z||ﬁ) Al
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and by symmetry, we obtain a similar upper bound for a(y, py + /1 — p?z). Since

Co(1=p")"72|12|1? > 1, these two inequalities imply ¥ (z,y, 2) < ng(l—p2)5/2||z||*B(eh(x)\/h(y)/\

1). Hence, using again (4.53) and Theorem 4.10, there exists C'1 < 400 such that
/ O(z,y, 2)dv(z) < Cd,(z,y) [eh(m)\/h(y) A 1} . (4.56)
Ha(@y)
Plugging (4.54), (4.55), (4.56) into (4.52), we finally obtain
/ O(x,y, z)dy(z) < 3Cmd,(z,y) {eh(’”)\/h(y) A 1} .
H

Finally, under CN1, for every x,y € Hsuch that d,,(z,y) < 1, |h(z) — h(y)| < 2C, ||z — y|P <
2C,n%. Therefore eM@VhW) A1 < 2Can” {eh(m)/\h(y) A 1} and

/H@(x,y, z)dy(z) < 3¢ 200’ ndy,(x,y) {eh(x)/\h(y) A 1} . (4.57)

Plugging (4.51) and (4.57) in (4.49) yields

Qdy(.y) < dyf,y) (1= {(1 = p*)eBry [#] = 30y} [N 1] )

Note that M = IF’JW [.#] is a positive quantity that does not depend on z,y. Therefore,
we may choose 7 sufficiently small so that, for every x,y € H satisfying d,(z,y) < 1,

Qdy(z,y) < dy(z,y) (1 —(1/2)(1 = pPe % M {eh(gﬁ)/\h(y) A 1}) ) (4.58)

which implies Lemma 4.22-(i) upon noting that, under the stated assumptions, infg(g 1) h >
—00.

We now consider (ii). For every z,y € H, dy(z,y) <
1. For every x,y € H such that dy(z,y) = 1, Qdy(z,y
(4.58) shows that Qd,(z,y) < d (3: Y).

ich 1mphes that Qd,(z,y) <
< 1,

1, wh
) < 1 =dy(z,y). If dy(z, )

D

Proof of Proposition J.12. Let {(X,,Y,), n € N} be a Markov chain with Markov kernel
Q given by (4.13). We denote for all n € N*, Z,, and U, respectively the common
Gaussian variable and uniform variable, used in the definition (X,,Y,). Note that by
definition the variables {Z,, U,; n € N} are independent.

Since {z : V(z) <wu} = {z:||z| <log(u)}, for v > 1, we only prove that for all
L > 0, there exist £ € N* and € > 0 such that B(0,L)? is a (¢, €,d,)-coupling set. By
Lemma 4.22-(i), for any L > 0, there exists k(Q, L,n) € (0,1) such that for any x,y €
B(0, L) satisfying d,(z,y) < 1, Qdy(z,y) < k(Q, L,n)dy(z,y). Then by Lemma 4.22-(ii)
, for every n € N*,

Q"dy(z,y) < Q" dy(x,y) < -+ < k(Q,L,n)dy(z,y) - (4.59)

Consider now the case d,(z,y) = 1. Let n € N* and denote for all 1 < i < n & =

{Us S WA(Xi 1, Vi, Z0)} and (n) = My<je; ({VI= P2 11Z5]1 < L/n} 01 7;) where W,
is defined in (4.45)
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On the event <% (n), X; = pXj1+V1—p?Zj and Y; = pY;_1 + /1 — p?Z; for
all 1 < j <. Then, since dy(z,y) < 77! ||z —y||’, on o,(n) it holds dy(X,, Yn) <
L pP" || Xy — Yo/, This inequality and dy(z,y) <1 yield

Qdy(,y) = By |dy(X, Ya)(1 7 ) + 1

/(1) (a?r;(n))c)}
< "M lle = yl° Puy [ Fa(n)] + Pay |(F(n))°]

< P RLY Bry [n(n)] + Poy [(F(m)] <1+ (57(2L)7 = 1) By [#(n)] -
(4.60)

As p € [0,1), there exists ¢ such that, p?(2L)? < 1. It remains to lower bound
P,y [4273 (6)} by a positive constant to conclude. Since the random variables {(Z;,U;); i € N*}
are independent, we get

oy [0)] = Bay [0 0 (/1 = 2 120] < /1)
< Eay |Un(Xir Vi 20|, O (/1= 22120 < L6} .

For all 1 <i </, on the event (;; {s/l —p?1Z;| < L/@}, it holds

WA (X;o1,Y51,7Z;) >exp|— sup gz)+ inf g(z)] =6,
Moo 1 Z) ( 2€B(0,2L) =) z€B(0,2L) (2)

where 8 € (0,1). Therefore, since Z; is independent of «7_; (), we have
Pry |90(0)] = 0Py [F1(0)] Py [\/1 o L/f} :

~ —_— ~ )4
An immediate induction leads to P , [@7 (f)} > (IP’Ly [\/1 —p? 71| < L/ED §¢. Plug-
ging this result in (4.60) and (4.59) implies there exists ¢ € (0,1) such that for all
.y € B(0,L), Q"dy(w,y) < (dy(z,y). O

4.6 Wasserstein distance: some useful properties

Let (E, d) be a Polish space, with d bounded be 1. Then, for all u,v € P(E): Wy(u,v) <
W, (u,v) since for all z,y € E, d(x,y) < do(z,y). Hence when d is bounded by 1, the

convergence in total variation distance implies the convergence in the Wasserstein metric
Wy.

Lemma 4.23. Let (E,d) be a Polish space, with d bounded by 1, and let P be a Markov
kernel on (E,B(E)). Let Q be a coupling kernel for P.
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(i) Then, for all probability measures p,v € P(E) and n € N*,

Wy(pP",vP"™) < inf Q"d(z,t)dA(z,1) .
)‘GH(H‘J/) ExE

(ii) If in addition Q is a d-weak-contraction, then for all probability measures pu,v €
P(E)7
Wy(pP,vP) < Wy(u,v) .
In particular, for all z,y € E, Wy(P(x,-), P(y,-)) < d(z,y).
Proof. (i) For every A € II(u, ), AQ™ is a transference plan of uP™ and v P™. This yields
the result. Consider now (ii). Using (i), we get

Wy(pP,vP) < inf Qd(z,t)dA(z,1)
Aell(p.v) JEXE

< inf / d(z, )Nz, ) < Walp, v) .
)‘GH(H‘J/) ExFE

O

4.7 Subgeometric functions and sequences

Lemma 4.24. Let r € Ag and R be given by (4.23).
(i) For allt,v € Ry, r(t+v) < r(t)r(v).
(ii) R is differentiable, convex and increasing to +oo.
(111) limy_yo0 7(t)/R(t) =
(iv) There exists a constant C' such that for any t,v € Ry, R(t +v) < CR(t)R(v).

(v) supy R(k)/ 5L 7(i) < oo.
Proof. (i) follows from [SW67, Lemma 1]. Consider now (ii). By definition, r is non-
decreasing, thus is bounded on every compact set; then, R is continuous. Moreover,
it is differentiable and its derivative is r, which is non-decreasing. Then R is convex.
In addition 7(0) > 2, thus R is increasing to +oco. (iii). Set u(t) & log(r(t))/t. Since
r € A, the function u is non increasing, which implies that, for every h € (0, 1),

log (1+{r(t+h) —r(t)}/r(t)) =log (r(t+ h)/r(t))
=t(u(t +h) —u(t)) + hu(t + h) < hu(t + h) .

Since limy oo u(t) = 0, for all € > 0, there exists T' € Ry such that for all t > T
and h € (0,1), (’I“(t—|—h) —1r(t)) < ehr(t). Therefore for all ¢ > T and h € ( ,1),
(R(t 4+ h) — R(t))/(hR(t)) < e+ r(T +1)/R(t). Taking h — 0 it follows r(t)/R(t) <
e+r(T'+1)/R(t), for all t > T. The proof is concluded by (ii). (iv) follows from i) and
(iii). Finally, for (v), the upper bound follows from (iv) and R(k—1) < 1+ r(@). O
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Chapter 5

Non-asymptotic convergence
analysis for the Unadjusted
Langevin Algorithm

AvLAIN DUurRMUS!, ERIC MOULINES 2

Abstract

In this chapter, we study a method to sample from a target distribution 7 over R? having
a positive density with respect to the Lebesgue measure, known up to a normalisation
factor. This method is based on the Euler discretization of the overdamped Langevin
stochastic differential equation associated with 7. For both constant and decreasing step
sizes in the Euler discretization, we obtain non-asymptotic bounds for the convergence
to the target distribution 7 in total variation distance. A particular attention is paid to
the dependency on the dimension d, to demonstrate the applicability of this method in
the high dimensional setting. These bounds improve and extend the results of [Dall6].

5.1 Introduction

Sampling distributions over high-dimensional state-spaces is a problem which has re-
cently attracted a lot of research efforts in computational statistics and machine learning
(see [Cot+13] and [And+03] for details); applications include Bayesian non-parametrics,
Bayesian inverse problems and aggregation of estimators. All these problems boil down
to sample a target distribution 7 having a density w.r.t. the Lebesgue measure on R?,
known up to a normalisation factor z — e~U(@)/ Jra e"U®dy where U is continuously

LTCI, Telecom ParisTech 46 rue Barrault, 75634 Paris Cedex 13, France. alain.durmus@telecom-
paristech.fr

2Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
eric.moulines@polytechnique.edu
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differentiable. We consider a sampling method based on the Euler discretization of the
overdamped Langevin stochastic differential equation (SDE)

dY; = —VU(Y;)dt + vV2dBY, (5.1)

where (Bf);>0 is a d-dimensional Brownian motion. It is well-known that the Markov
semi-group associated with the Langevin diffusion (Y%)¢>¢ is reversible w.r.t. 7. Under
suitable conditions, the convergence to 7 takes place at geometric rate. Precise quanti-
tative estimates of the rate of convergence with explicit dependency on the dimension d
of the state space have been recently obtained using either functional inequalities such
as Poincaré and log-Sobolev inequalities (see [BCGO08; CG09] [BGL14]) or by coupling
techniques (see [Ebel5]). The Euler-Maruyama discretization scheme associated to the
Langevin diffusion yields the discrete time-Markov chain given by

X1 = X — 1 VU (X)) + V29412511 (5.2)

where (Zi)i>1 is an i.i.d. sequence of standard Gaussian d-dimensional random vectors
and (yx)k>1 1s a sequence of step sizes, which can either be held constant or be chosen
to decrease to 0. The idea of using the Markov chain (Xj)i>o to sample approximately
from the target 7 has been first introduced in the physics literature by [Par81] and
popularised in the computational statistics community by [Gre83] and [GM94]. It has
been studied in depth by [RT96a], which proposed to use a Metropolis-Hastings step
at each iteration to enforce reversibility w.r.t. m leading to the Metropolis Adjusted
Langevin Algorithm (MALA). They coin the term unadjusted Langevin algorithm (ULA)
when the Metropolis-Hastings step is skipped.

The purpose of this paper is to study the convergence of the ULA algorithm. The
emphasis is put on non-asymptotic computable bounds; we pay a particular attention
to the way these bounds scale with the dimension d and constants characterizing the
smoothness and curvature of the potential U. Our study covers both constant and
decreasing step sizes and we analyse both the "finite horizon” (where the total number
of simulations is specified before running the algorithm) and ”any-time” settings (where
the algorithm can be stopped after any iteration).

When the step size v = v is constant, under appropriate conditions (see [RT96a]),
the Markov chain (X,,),>0 is V-uniformly geometrically ergodic with a stationary dis-
tribution m,. With few exceptions, the stationary distribution =, is different from the
target 7. If the step size v is small enough, then the stationary distribution of this
chain is in some sense close to m. We provide non-asymptotic bounds of the V-total
variation distance between 7., and 7, with explicit dependence on the step size v and the
dimension d. Our results complete and extend the recent works by [DT12] and [Dall6].

When (7;)r>1 decreases to zero, then (Xj),>0 is a non-homogeneous Markov chain.
If in addition Y 72,79 = oo, we show that the marginal distribution of this non-
homogeneous chain converges, under some mild additional conditions, to the target dis-
tribution 7, and provide explicit bounds for the convergence. Compared to the related
works by [LP02], [LP03], [Lem05] and [LM10], we establish not only the weak conver-
gence of the weighted empirical measure of the path to the target distribution but a
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much stronger convergence in total variation, similarly to [Dall6], where the strongly
log-concave case is considered.

The paper is organized as follows. In Section 5.2, the main convergence results are
stated under abstract assumptions. We then specialize in Section 5.3 these results to
different classes of densities. The proofs are gathered in Section 6.8. Some general
convergence results for diffusions based on reflection coupling, which are of independent
interest, are stated in Section 5.5.

Notations and conventions

B(R%) denotes the Borel o-field of R? and F(R?) the set of all Borel measurable functions
on R For f € F(R?) set ||f|loo = Supgepra | f(x)|. Denote by M(R?) the space of finite
signed measure on (R%, B(R?)) and My(R?) = {u € M(R?) | u(R?) = 0}. For u € M(R9)
and f € F(R?Y) a p-integrable function, denote by pu(f) the integral of f w.r.t. u. Let
V : R — [1,00) be a measurable function. For f € F(R?), the V-norm of f is given
by |fllv = supgera | f(x)]/V (x). For u € M(R?), the V-total variation distance of y is

defined as
[, f@)dnta)
R4

If V =1, then || - ||y is the total variation denoted by || - ||Tv.

For p > 1, denote by LP(7) the set of measurable functions such that 7(|f|P) < oo.
For f € L2(n), the variance of f under 7 is denoted by Var_{f}. For all functions f
such that flog(f) € L(«), the entropy of f with respect to 7 is defined by

lplly = sup
FEF®,JIflv <t

Entr ()= [ f(@)log(f())dr(a)
Let u and v be two probability measures on R?. If y < v, we denote by du/dv the
Radon-Nikodym derivative of y w.r.t. v. Denote for all 2,y € R? by (z,y) the scalar
product of x and y and ||z|| the Euclidean norm of x. For k > 0, denote by C*(R%), the
set of k-times continuously differentiable functions f : R? — R. For f € C?(R?), denote
by Vf the gradient of f and Af the Laplacian of f. For all z € R and M > 0, we
denote by B(z, M), the ball centered at x of radius M. Denote for K > 0, the oscillation
of a function f € C°(R?) in the ball B(0, K) by oscx (f) = supg(o, k) (f) — info,x)(f)-
Denote the oscillation of a bounded function f € C%(R?) on R? by oscga(f) = supga(f)—
infra(f). In the sequel, we take the convention that 37 = 0 and [[;; = 1, for n,p € N,
n < p.

5.2 General conditions for the convergence of ULA

In this section, we derive a bound on the convergence of the ULA to the target distri-

bution m when the Langevin diffusion is geometrically ergodic and the Markov kernel

associated with the EM discretization satisfies a Foster-Lyapunov drift inequality.
Consider the following assumption on the potential U:
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L1. The function U is continuously differentiable on R% and gradient Lipschitz, i.e. there
exists L > 0 such that for all z,y € RY,

IVU(z) = VU@ < Lz -yl -

Under L1, by [ITW89, Theorem 2.4-3.1] for every initial point € RY, there exists a
unique strong solution (Y;(z));>0 to the Langevin SDE (5.1). Define for all ¢ > 0, z € R4
and A € B(R%), Py(z,A) = P (Y;(x) € A). The semigroup (P;)i>0 is reversible w.r.t. ,
and hence admits 7 as its (unique) invariant distribution. In this section, we consider
the case where (P;)i>0 is geometrically ergodic, i.e. there exists x € [0,1) such that for
any initial distribution pg and ¢t > 0,

lo P = 7llpy < Clpo)s’ (5.3)

for some constant C(ug) € [0,+0c]. Denote by &% the generator associated with the
semigroup (P;)i>0, given for all f € C%(R%) by

FVf = —(VU,Vf)+ Af .

A twice continuously differentiable function V : R — [1,00) is a Lyapunov function for
the generator 7" if there exist # > 0, 3 > 0 and £ C B such that,

YV < -0V + Blg . (5.4)

By [RT96a, Theorem 2.2], if £ in (5.4) is a non-empty compact set, then the Langevin
diffusion is geometrically ergodic.

Consider now the EM discretization of the diffusion (5.2). Let (y%)r>1 be a sequence
of positive and nonincreasing step sizes and for 0 < n < p, denote by

P
Fn,p = Z Yk Fn = Fl,n . (55)
k=n
For v > 0, consider the Markov kernel R, given for all A € B(R?) and = € R¢ by

Ry, A) = [ (4m) 2 exp (~(1) " 1y — 2+ 9 VU @)) dy

The discretized Langevin diffusion (X,)n,>0 given in (5.2) is a time-inhomogeneous
Markov chain, for p > n > 1 and f € F,(R?), E/ [f(X,)] = QP f(Xn) where
Fn=0(Xy,0</¢<n)and

1
vahp =Ry, - Ry, , Qrvl = va )

with the convention that for n,p > 0, n < p, Q?;’” is the identity operator. Under L
1, the Markov kernel R, is strongly Feller, irreducible and strongly aperiodic. We will
say that a function V : R — [1, 00) satisfies a Foster-Lyapunov drift condition for R, if
there exist constants ¥ > 0, A € [0,1) and ¢ > 0 such that, for all v € (0,7]

R,V <XV 47c. (5.6)
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The particular form of (5.6) reflects how the mixing rate of the Markov chain depends
upon the step size v > 0. If v = 0, then Ry(z,A) = §,(A) for z € R? and A € B(R?). A
Markov chain with transition kernel Ry is not mixing. Intuitively, as v gets larger, then
it is expected that the mixing of R, increases. If for some v > 0, R, satisfies (5.6), then
R, admits a unique stationary distribution 7,. We use (5.6) to control quantitatively
the moments of the time-inhomogeneous chain. The types of bounds which are needed,
are summarised in the following elementary Lemma.

Lemma 5.1. Let ¥ > 0. Assume that for all x € R? and v € (0,7], (5.6) holds
for some constants A € (0,1) and ¢ > 0. Let (vx)k>1 be a sequence of nonincreasing
step sizes such that v, € (0,7] for all k € N*. Then for all n > 0 and z € RY,
QYV(z) < F(A\ T, c,m, V(x)) where

F(\ a,c,y,w) = \"w 4 (=X log(A)) ™" . (5.7)

Proof. The proof is postponed to Section 5.4.1. O
Note that Lemma 5.1 implies that sukaO{Q,’;'V(x)} < G(\ ¢,m,V(x)) where

G\ ¢, v, w) =w + c(—=\log(A\) L. (5.8)

We give below the main ingredients which are needed to obtain a quantitative bound for
[6:QF — w[|rv for all x € R?. This quantity is decomposed as follows: for all 0 < n < p,

10:Q% — mllrv
< 0.QEQNTP — 6,Q Pr, . v + 110:Q5 Pryyyy, — v - (5.9)

To control the first term on the right hand side, we use a method introduced in [DT12]
and elaborated in [Dall6]. The second term is bounded using the convergence of the
semi-group to , see (5.3).

Proposition 5.2. Assume that L1 and (5.3) hold. Let (7x)k>0 be a sequence of non-
negative step sizes. Then for allz € R4, n>0,p>1, n <p,

10:Q% — 7TV

1/2
p—1
<2712 (Z {(R1/3)A(,2) + d713+1}> +C(0,Q)k 7, (5.10)

k=n

where r, C(0,QY) are defined in (5.3) and

Av) =swp [ VUG @4.dz) (5.11)
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Proof. The proof follows the same lines as [Dall6, Lemma 2] but is given for complete-
ness. For 0 < s < ¢, let C([s,t],R?) be the space of continuous functions on [s, ] taking
values in R?. For all y € RY, denote by iy, and [, the laws on C([I'y, I'p] ,RY) of
the Langevin diffusion (Y;(y))r,<i<r, and of the continuously-interpolated Euler dis-
cretization (Y3(y))r, <t<r,, both started at y at time I',. Denote by (Yi(y),Y+(y))e>1,
the unique strong solution started at (y,y) at time ¢t = I'j, of the time-inhomogeneous
diffusion defined for t > I',, by

dY; = —VU(Y;)dt + v/2d B (5.12)
dy, = VU (Y, t)dt + v2dB{ , '
where for any continuous function w: Ry — R% and t > T,
VU(w,t) = Z VU Wr )L, rp (@) - (5.13)

k=n

Girsanov’s Theorem [KS91, Theorem 5.1, Corollary 5.16, Chapter 3] shows that ., ,
and pj ,, are mutually absolutely continuous and in addition, u -almost surely

duy Ty _ o _
dzgz = exp (%/ (VU(Yy(y)) = VO(Y (), ), dYs(y) )

Trt1 _
<4t g /F e[ [vo ) - vo e w)as
p—1
<Y {0k [ VUG Qi wds) + did - (.19
k=n

By the Pinsker inequality, [|6,Q2""? -4, Pr, ., |ltv < \/i{KL(M%p\ﬁ%’p)}l/z. The proof
is concluded by combining this inequality, (5.15) and (5.3) in (5.9). O

In the sequel, depending on the conditions on the potential U and the techniques of
proof, for any given z € R?, C (533@77‘) can have two kinds of upper bounds, either of the
form — log(v,)W (z), or exp(al',)W (z), for some function W : R? — R and a > 0. In
both cases, as shown in Proposition 5.3, it is possible to choose n as a function of p, so
that lim,, ; « [|0,QF — 7[lTv = 0 under appropriate conditions on the sequence of step

sizes (Vi )k>1-



Chapter 5. Non-asymptotic convergence analysis for the ULA 121

Proposition 5.3. Assume that L1 and (5.3) hold. Let (vx)r>1 be a nonincreasing
sequence satisfying limy_, o T'x = +00 and limg_,oo v = 0. Then, lim,_ H(SxQK; —
7|ty = 0 for any x € R for which one of the two following conditions holds:

(i) A(y,x) < oo and limsup,,_, , C(0,Q%)/(—log(vn)) < 400, where A(y,z) is de-
fined in (5.11).
(i) Y721 7E < +oo, A(y,x) < 0o and limsup,,_, 4 o log{C(6:Q%)}/T'n < +00.
Proof. (i) There exists py > 1 such that for all p > pg, K7 > =, and &l? < 7.
Therefore, we can define for all p > po,
def

n(p) = min {k €{0,---,p—1}|slr+1r > ’Yk+1} . (5.16)

and n(p) > 1. We first show that lim inf,_, n(p) = co. The proof goes by contradiction.
If lim inf, o n(p) < oo we could extract a bounded subsequence (n(py))xg>1. For such
sequence, (’Yn(pk)+1)k21 is bounded away from 0, but limy_, kI ne)+Lp = 0 which

yields to a contradiction. The definition of n(p) implies that KInwr < Yn(p)s showing
that

lim sup C (4, Q"(p)) Loep)p
p—r+00
C(68, "(P))

< limsu 7 lim su (o) (— 1og (7, -0.
B p%Jroop —10g(Yn(p)) IHHXI,) {7 (n) (—log(7 (p)))}

On the other hand, since (y)r>1 is nonincreasing, for any ¢ > 2,

Z 'Yk < ,yﬁzl) n(p)+1,p < r)/szpl)_i_l 10g(7n(p)+1)/10g(’{) :
k=n(p)+1

The proof follows from (5.10) using lim; 0 Yy (p) = 0.

(ii) For all p > 1, define n(p) = max(0, [log(I',)|). Note that since limy_, oo 'y =
+00, we have lim,_, { o n(p) = +00. Using Zzo‘{ 72 < +o0 and (yx)g>1 is a nonincreasing
sequence, we get for all £ > 2,

Jm S =0,
k=n(p)

which shows that the first term in the right side of (5.10) goes to 0 as p goes to infinity.
As for the second term, since limsup,,_, ., log{C(.Q%)} /T, < +00, we get using that
(V& )k>1 is nonincreasing and n(p) < log(T'p),

(5 Q" ) n(p),p
< exp (log(k)T', + [{l0g(C(8,Q4 ™) /Ty b+ — log(x)] D))

< exp <log(ffu) [Sup{log( (02Q%))/Tk }+ — log(k )] m log(Fp)> :
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Using £ < 1 and limy_, 1 'y = +oo, we have lim,_, 4o C((SxQZ(p))/ﬁF"(P)»P = 0, which
concludes the proof.

O

Using (5.10), we can also assess the convergence of the algorithm for constant step
sizes v = v for all £ > 1. Two different kinds of results can be derived. First, for a
given precision € > 0, we can try to optimize the step size ¥ to minimize the number
of iterations p required to achieve [[0,Q5 — 7|[Tv < e. Second if the total number
of iterations is fixed p > 1, we may determine the step size v > 0 which minimizes
102Q% — 7/[v-

Lemma 5.4. Assume that (5.10) holds. Assume that there exists 7 > 0 such that
C(z) = SUP4¢(0,5) SUPp>1 C (02 1RY) < +00 and sup,c(o 5 A(v, ) < A(x), where C (0. 1Y)
and A(vy,z) are defined in (5.3) and (5.11) respectively. Then for all € > 0, we get
[0 RE — 7|lTv < e if

—d+\Jd? + (2/3) A(x)e (L2T) 1
2A(z)/3

p>Ty"

AT, (5.17)

where

T = (log{C(x)} ~log(=/2)) /(~log(x))

Proof. For p > Ty, set n =p — LTfy*IJ. Then using the stated expressions of vy and
T in (5.10) concludes the proof. O

Note that an upper bound for v defined in (5.17) is €2(L?*T'd)~!. The dependency of
T on the dimension d will be addressed in Section 5.3.

Lemma 5.5. Assume that L1 and (5.3) hold. In addition, assume that there exist 7y > 0
and n € N, n >0, such that Cp,(x) = sup,¢ (g 5] C (0 RY) < 400 and sup,¢ 5 A7, ) <
A(z). For allp >n and all x € R?, if v = log(p — n){(p — n)(—log(x))} ' <7, then

|02 RE — m|[Tv

< (p—n)"{Cu(@)(p — )" +log(p — n)(d + A(x) log(p —n)(p —n)~") "/} .
Proof. The proof is a straightforward calculation using (5.10). O

To get quantitative bounds for the total variation distance ||0, Q5 —7||Tv it is therefore
required to get bounds on x, A(y,z) and to control C(6,Q). We will consider in the
sequel two different approaches to get (5.3), one based on functional inequalities, the
other on coupling techniques. We will consider also increasingly stringent assumptions
for the potential U. Whereas we will always obtain the same type of exponential bounds,
the dependency of the constants on the dimension will be markedly different. In the worst
case, the dependency is exponential. It is polynomial when U is convex.
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5.3 Practical conditions for geometric ergodicity of the
Langevin diffusion and their consequences for ULA

5.3.1 Superexponential densities

Assume first that the potential is superexponential outside a ball. This is a rather weak
assumption (we do not assume convexity here).

H5. The potential U is twice continuously differentiable and there exist p > 0, « € (1,2]
and M, > 0 such that for all z € RY, ||z — z*|| > M,, (VU (x),z —2*) > p|lz — z*||*.

The price to pay will be constants which are exponential in the dimension. Under H
5, the potential U is unbounded off compact set. Since U is continuous, it has a global
minimizer z*, which is a point at which VU (2*) = 0. Without loss of generality, it is
assumed that U(z*) = 0.

Lemma 5.6. Assume L1 and H5. Then for all x € R,
Ux) > pllez =2 /(a+1) —aa with aq = pM/(a+1) + MP2L/2 . (5.18)
Proof. The elementary proof is postponed to Section 5.4.2. U

Following [RT96a, Theorem 2.3], we first establish a drift condition for the diffusion.

Proposition 5.7. Assume L1 and H5. For any s € (0,1), the drift condition (5.4)
is satisfied with the Lyapunov function V. (z) = exp(sU(z)), 0. = ¢dL, & = B(z*, K,),
K. = max({2dL/(p(1 — ¢))}/@l=D) M) and B, = sdL supgyee{Ve(y)}. Moreover,
there exist constants C. < oo and ve > 0 such that for allt € Ry and probability measures
po and vy on (R B(RY)), satisfying po(V) + vo(V) < +o0,

o P = voPillv, < Cee™ o — wollv; » o P = llv, < Coe™ o (V5) -

Proof. The proof, adapted from [RT96a, Theorem 2.3] and [MT93a, Theorem 6.1], is
postponed to Section 5.4.3. U

Under H5, explicit expressions for C. and v, have been developed in the literature
but these estimates are in general very conservative. We now turn to establish (5.6) for
the Euler discretization.

Proposition 5.8. Assume L1 and H5. Let~ € (0,L~1). For ally € (0,7] and x € RY,
R, satisfies the drift condition (5.6) with V (x) = exp(U(z)/2), K = max(M,, (8log(\)/p?)1/2la=1)),
c=—2log(\)A™? SUD{yeB(z*, K)} V(y) and X = e—dL/{2(1-LA)}

Proof. The proof is postponed to Section 5.4.4. U
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Theorem 5.9. Assume L1 and H5. Let (y;)g>1 be a nonincreasing sequence with
11 <7, 7€ (0,L7Y). Then, for alln >0, p>1, n <p, and x € R, (5.10) holds with
log(k) = —vy/9 and

a+1 {aa+4(2—a)(a+1)

2/
o + 2log {G()\,C,%,V(x))}])

A(y,z) < L? (

C((SmQ'ryL) < Cl/QF()‘7F1,n7ca 717V($)) ) (519)

where Cy 9, vy are given by Proposition 5.7, F by (5.7), V, A, ¢ in Proposition 5.8, G
by (5.8), aq in (5.18).

Proof. The proof is postponed to Section 5.4.5. U

Equation (5.19) implies that for all z € R?, we have sup,,> C(0:Q%) < G\, e,m, V(2)),
so Proposition 5.3-(i) shows that lim;,, o [|0:Q% — 7|lTv = 0 for all z € R provided
that limg 100 v = 0 and limg_, 4 oo 'y = 400. In addition, for the case of constant step
size v =« for all £ > 1, Lemma 5.4 and Lemma 5.5 can be applied.

Let V : R = R, defined for all z € R? by V(x) = exp(U(z)/2). By Proposition 5.7,
(P;)>0 is a contraction operator on the space of finite signed measure p € My, p(V1?) <
+00, endowed with the norm [| - [|y,1/2. It is therefore possible to control |[0, Q% — 7||y1/2.
To simplify the notations, we limit our discussion to constant step sizes.

Theorem 5.10. Assume L1 and H5. Then, for allp > 1, x € R? and v € (O,L*I), we
have

627 — lly1/2 < Crya??V V2 (2) + B(y, V(2)) (5.20)
where log(k) = —vyis4, Ci/4,01)4,61/2, 8172 are defined in Proposition 5.7, V,\,c in
Proposition 5.8, G in (5.8) and

BQ(’%’U) = L2 Inax(l, C12/4)(1 + 7)(1 - H)_z (QG()‘,Ca’%,U) + 51/2/01/2)
x (143792 GOV e r0))

Moreover, R, has a unique invariant distribution ., and
[m = mylly12 < B(y,1) .

Proof. The proof of (5.20) is postponed to Section 5.4.6. The bound for || — 74||y1/2
is an easy consequence of (5.20): by Proposition 5.13 and [MT09, Theorem 16.0.1], R,
is V1/2-uniformly ergodic: lim,_, o0 [|6:RE — 4 || 1/2 = 0 for all 2 € R Finally, (5.20)
shows that for all z € R,

I =l < tim {182 = e + 15RE = 7y} < B, Vi)

Taking the minimum over z € R? concludes the proof. O
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Note that Theorem 5.10 implies that there exists a constant C' > 0 which does not
depend on v such that |7 — 7, ||ly1/2 < CyY/2.

Remark 5.11. It is shown in [TT90, Theorem 4] that for ¢ € C*°(R?) with polynomial
growth, 7, (¢) — m(¢) = b(d)y + O(v?), for some constant b(¢) € R, provided that
U € C=(RY) satisfies L1 and H5. Our result does not match this bound since B(v,1) =
O(v'/?). However the bound B(v,1) is uniform over the class of measurable functions
¢ satisfying for all x € RY, |¢(x)| < VV/2(z). Obtaining such uniform bounds in total
variation is important in Bayesian inference, for example to compute high posterior
density credible regions. Our result also strengthens and completes [MSH02, Corollary
7.5], which states that under H5 with o = 2, for any measurable functions ¢ : R — R
satisfying for all x,y € RY,

|6(x) = ¢(y)| < Cllz — yll {1 + [ll|* + yll*} ,

for some C >0,k > 1, |m,(¢) — ()| < CyX for some constants C > 0 and x € (0,1/2),
which does not depend on ¢.

The bounds in Theorem 5.9 and Theorem 5.10 depend upon the constants appearing
in Proposition 5.7 which are computable but are known to be pessimistic in general;
see [RT00]. More explicit rates of convergence for the semigroup can be obtained using
Poincaré inequality; see [BCGO08|, [CG09] and [BGL14, Chapter 4] and the references
therein. The probability measure 7 is said to satisfy a Poincaré inequality with the
constant Cp if for every locally Lipschitz function h,

Var_ {h} < Cp /R V()] w(da) (5.21)

This inequality implies by [CG09, Theorem 2.1] that for all ¢ > 0 and any initial distri-
bution ug, such that pg < 7,

loP: = 7ll 1y < exp(—t/Cp) (Var, {dpuo/dn})"/? . (5.22)
[Bak+-08, Theorem 1.4] shows that if the Lyapunov condition (5.4) is satisfied, then the
Poincaré inequality (5.21) holds with an explicit constant. Denote by

—d/2

Dy(y) = (4ﬂ{ﬁ 1 — L) } Z% — L)~ ) : (5.23)

k=1

Theorem 5.12. Assume L1 and H5. Let (yx)r>1 be a non increasing sequence. Then
for alln > 1 and x € RY, Equation (5.3) holds with

osc U -1
log(r) = (—6; 4 {1+ (48, o K7 o )@ T

o (D)) @HD/2(g —1)!
C(6,Q5) < AT (d D)) Dp(7)e

where I' is the Gamma function and the constants B /2,612, K12, aa are given in Propo-
sition 5.7 and (5.18) respectively.

Ao eU(a:)
)
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Proof. The proof is postponed to Section 5.4.7. U

Note that for all z € R?, C (62Q7) satisfies the conditions of Proposition 5.3-(ii).
Therefore using in addition the bound on A(y,z) for all z € R? and v € (0,L71)
given in Theorem 5.9, we get limg o [|0:QF — 7l|ry = 0 if lim;, oo 'y, = +00 and
iy, 400 Do peq Vi < 00

5.3.2 Log-concave densities

We now consider the following additional assumption.

H6. U is conver and admits a minimizer x* for U. Moreover there exist n > 0 and
M, > 0 such that for all x € RY, ||z — o*|| > M,,

U(z) =U@") znllz -2 . (5.24)

It is shown in [Bak+08, Lemma 2.2] that if U satisfies L 1 and is convex, then
(5.24) holds for some constants 7, M,, which depend in an intricate way on U. Since the
constants 7, M, appear explicitly in the bounds we derive, we must assume that these
constants are explicitly computable. We still assume in this section that U(z*) = 0.
Define the function W, : R — [1, +oc) for all x € R? by

We(@) = exp((n/4)(|lz — *[|* + 1)'/?) . (5.25)
We now derive a drift inequality for R, under H6.

Proposition 5.13. Assume L1 and H6. Let 5 € (0,L71]. Then for all v € (0,7], We
satisfies (5.6) with A = "2 @21 po— max(1,2d/n, M,),

¢ = {(n/4)(d + (7/4)) — log()\)}en(R§+1)1/2/4+(77“7/4)(d+(nﬁ/4)) _ (5.26)
Proof. The proof is postponed to Section 5.4.8 U

Corollary 5.14. Assume L1 and H6. Let (;)k>1 be a nonincreasing sequence with
11 <7,7€ (0,L7Y]. Then, for alln>0,p>1,n<p, and x € RY,

2
Ay, ) = L2 (407" 1 +10g {GO\, e, We(@))}]) (5.27)

where A(y,x) is defined by (5.11) and G, W, A, ¢, are given in (5.8), (5.25), Proposi-
tion 5.13 respectively.

Proof. The proof is postponed to Section 5.4.9. O

If U is convex, [Bob99, Theorem 1.2] shows that 7 satisfies a Poincaré inequality
with a constant depending only on the variance of .
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Theorem 5.15. Assume L1 and HG6. Let (vy)r>1 be a nonincreasing sequence with
11 <7, 7€ (0,L7Y]. Then, for alln >0, p>1,n<p, and x € R, (5.10) holds with
A(y,z) given in (5.27),

-1

x—/ ym(dy) W(d.%')) (5.28a)
Rd

(27.[)(d+1)/2(d_ 1)! T[d/QMrC]l
FT(d+1)/2) T2+

2

log(k) = <—432 »

C(6:Q5) = ( ) Dy (v)exp(U(x)) , (5.28b)

where Dy () is given in (5.23).

Proof. The proof is postponed to Section 5.4.10. O

For all z € RY, C (6:Q7) satisfies the conditions of Proposition 5.3-(ii). Therefore, if
limy, 400 L' = +00 and limy, o0 D opeq V7 < +00, We get limg_, 1o 10:Q8 — 7|lTv = 0.

There are two difficulties when applying Theorem 5.15. First the Poincaré constant
(5.28a) is in closed form but is not computable, although it can be bounded by a O(d~2)
. Second, the bound of Var;{dé, Q7 /dr} is likely to be suboptimal. To circumvent these
two issues, we now give new quantitative results on the convergence of (P;);>0 to 7 in
total variation. Instead of using functional inequality, we use in the proof the coupling
by reflection, introduced in [LR86]. Define the function w : (0,1) x R% — Ry for all
e€(0,1) and R > 0, by

2
wie, R) = R/ {287 (1 - ¢/2)} ", (5.29)
where ® is the cumulative distribution function of the standard Gaussian distribution
and @' is the associated quantile function. Before stating the theorem, we first show
that (5.4) holds and provide explicit expressions for the constants which come into play.
These constants will be used to obtain the explicit convergence rate of the semigroup

(P;)t>0 to m which is derived in Theorem 5.17.

Proposition 5.16. Assume L1 and HG6. Then W, satisfies the drift condition (5.4)
with 0 = n*/8, & = B(z*, K), K = max(1, M,,,4d/n) and

8= (n/4) (/K + d)ymax {1,(K? + 1) exp(n(K? + 1)/ /4)} .

Proof. The proof is adapted from [Bak+08, Corollary 1.6] and is postponed to Sec-
tion 5.4.11. O

Theorem 5.17. Assume L1 and HG6. Then for all x € R,

162 P — 7l py < A(Cﬂ)eiet/él + 2w,
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where
log(w) = —log(2)(6/4) (5.30a)
% [log{&flﬁ (3 4 420w (271(8/m) 10g(4€*15)))} n log(2)}_1 ,
Ax) = (1/2)(We(z) + 071 8) + 2071 g0 w(271(8/m log(46725)) (5.30b)

the function W, is defined in (5.25), the constants 6, in Proposition 5.16.

Proof. The proof is postponed to Section 5.5.1. U

Note that the bound, we obtain is a little different from (5.3). The initial condition
is isolated on purpose to get a better bound. A consequence of this result is the following
bound on the convergence of the sequence (596@2)”20 to .

Corollary 5.18. Assume L1 and HG6. Let (v;)k>0 be a sequence of nonnegative step
sizes. Then for allz €e RY, n>0,p>1, n < p,

p—1

1/2
16:@Q% — 7llrv < 2721 (Z {ORa/3)A(,2) + dvzﬂ})

k=n

A Que M/t 4 g

where A(v,x), w are given by (5.27) and (5.30a) respectively and

A(ész) = (1/2)(F()‘? Fna 71, C, WC(QT)) + 0_15)
42071 Bed0 T w2 (8/m log(46715)) (5 37)

the functions F and W, are defined in (5.7) and (5.25), the constants X, c,0, 3 in Propo-
sition 5.13 and Proposition 5.16 respectively.

Proof. By Theorem 5.17, we have for all z € R?,
102 P41, — 7llTv < A((SmQZ)e_GF"“’PM + QWF"“’PA/X(az)e_gr"“”’/4 + 2t
By Proposition 5.13 and Lemma 5.1.
16:Q7Pr,. .y, — Ty < A(6,Q1)e T nrir/d 4 oggTmite
Finally the proof follows the same line as the one of Proposition 5.2. U

Contrary to (5.28b), (5.31) is uniformly bounded in n. By Corollary 5.18 and (5.27),
we can apply Proposition 5.3-(i), which implies the convergence to 0 of [|6,Q5 — 7|lTv
as p goes to infinity, if limg ooy = 0 and limg 4oy = +o00. Since log(f) in
Proposition 5.16 is of order d, we get that the rate of convergence log(x) is of or-
der d=2 as d goes to infinity (note indeed that the leading term when d is large is
201w (271, (8/n) log(46~1/3)) which is of order d?). In the case of constant step sizes
v, = 7y for all £ > 0, we adapt Lemma 5.4 to the bound given by 5.18.
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d € L
Od3) | OE?/log(e™t)) | O(L7?)
p| O@) | O(?log’eh) | O(L?)

)

Table 5.1: For constant step sizes, dependency of v and p in d, € and parameters of U to get
|6 RE — 7||Tv < € using Corollary 5.19

Corollary 5.19. Assume L1 and HG6. Let (7)r>0 be a sequence of nonnegative step
sizes. Then for all € > 0, we get [|0, RY — 7||ry < e if

—d+ /d? + (2/3)A(v,x)e(L2T) 1
2A(y,x)/3

1

p>Ty" and < ALY (5.32)

where

T = max {49*1 log (4671[\($)) ,log(8eil)/(— log(w))}
A@) = (1/2)(G\ 1, 0, We(@)) + 0718) + 2071 get0 ™ w271,(8/m log(46716))

where A(v,x), w are given by (5.27), (5.30a) respectively, the functions G and W, are de-
fined in (5.8) and (5.25), the constants \, ¢, 8, 5 in Proposition 5.13 and Proposition 5.16
respectively.

Proof. The proof follows the same line as the one of Lemma 5.4 using Corollary 5.18
and that sup, 5o A(6Q") < A(z) for all z € R%. O

In particular, with the notation of Corollary 5.19, since max(log(f3),log(c)) and
—(log(ww))~! are of order d and d? as d goes to infinity respectively, T is of order d>.
Therefore, v defined by (5.32) is of order d~3 which implies a number of iteration p of
order d° to get [|6,Q% — |y < e for & > 0; see also Table 5.1.

Corollary 5.19 can be compared with the results which establishes the dependency
on the dimension for two kinds of Metropolis-Hastings algorithms to sample from a log-
concave density: the random walk Metropolis algorithm (RWM) and the hit-and-run
algorithm. It has been shown in [LV07, Theorem 2.1 that for € > 0, the hit-and-run
and the RWM reach a ball centered at 7, of radius ¢ for the total variation distance, in a
number of iteration p of order d* as d goes to infinity. It should be stressed that [LV07,
Theorem 2.1] does not assume any kind of smoothness about the density 7 contrary to
Theorem 5.17. However, this result assumes that the target distribution is near-isotropic,
i.e. there exists C' > 0 which does not depend on the dimension such that for all z € R?,

el < [ (o) w(dy) < C

Note that this condition implies that the variance of w is upper bounded by C'd. With
the same kind of assumption, we can improve the dependence on the dimension in the
bounds given by Corollary 5.19.
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v | 0d?) | O | 0L
p| O@) [ OE®) | OL?)

Table 5.2: For constant step sizes, dependency of v and p in d, € and parameters of U to get
|62 RE — 7||Tv < € using Theorem 5.20

HT7. There exists a constant C € Ry independent of the dimension such that
[y =P w(dy) < 2.
Rd

Theorem 5.20. Assume L1, HG and H7. Let (y;)k>0 be a sequence of nonnegative
step sizes. Then for all € > 0, we get ||6. RE — 7||Tv < € if p and v satisfy (5.32) with

2
T =42t max{”x—x*” ,Cdl/Q} .
Proof. The proof is postponed to Section 5.4.12. O

Since T is of order d, therefore v defined by (5.32) is of order d~2 which implies a
number of iteration p of order d® to get [6:QF — 7llry < € for e > 0. However the
dependence on ¢ is less good than in Corollary 5.19. Indeed since T is of order e2,
7 defined by (5.32) is of order e~* which implies a number of iteration p of order ¢~6
to get [|6:Q% — 7|[Tv < € for ¢ > 0; see also Table 5.2. Therefore, we have a better
dependency on the dimension than [LV07, Theorem 2.1]. Regarding the dependence on
e [LVO7, Theorem 2.1] does not give the order of the bounds and we cannot compare to
this result.

To conclude our study on convex potential, we also mention [BDJ98] which studies
the sampling of the uniform distribution over a convex subset K C R? using coupling
techniques. Let C' > 0. A convex set K C R? is C-well rounded if B(0,1) € K C B(0, Cd).
[BDJ98] shows that a number of iteration of order d” as d goes to infinity is sufficient
to sample uniformly over any C-well rounded convex set. Comparison with our result
is difficult since we assume that 7 is positive on R?, continuously differentiable, while
[BDJ98] studies the case of uniform distributions over a convex body. An adaptation
of our result to non continuously differentiable potentials will appear in a forthcoming
paper [DMP].

5.3.3 Strongly log-concave densities

More precise bounds can be obtained in the case where U is assumed to be strongly
convex outside some ball; this assumption has been considered by [Ebel5] for convergence
in the Wasserstein distance; see also [BGG12].
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HS8 (M,). U is convex and there exist My > 0 and m > 0, such that for all z,y € R?
satisfying ||z — y|| > Ms,

(VU(z) = VU(y),z —y) > m|lz —y||* .

We will see in the sequel that under this assumption the convergence rate in (5.3)
does not depend on the dimension d but only on the constants m and Mj.

Proposition 5.21. Assume L1 and HS(Ms). Let 5 € (0,2mL~2). For all v € (0,7,
V(z) = ||z — a*||* satisfies (5.6) with A = e 27 and ¢ = 2(d + mM?2).

Proof. The proof is postponed to Section 5.4.13. O

Theorem 5.22. Assume L1 and HS(M;s). Let (y)r>1 be a nonincreasing sequence with
1 <79, 7 € (0,2mL~2). Then, for alln >0, p > 1, n < p, and € R, (5.10) holds
with

log(r) = —(m/2)log(2)
X [log { (1 + emw(rl’ma’((l’Ms))/‘l) (1 4+ max(1, Ms))} + log(Q)} -

1/2
C(0,Q0) <3+ (d/m+M2) "~ + F20\ Ty, [l — 2*)
A(’Y’x) < L2 G()\’C’ryl, Hx - $*||2) ’

where F,G,w are defined by (5.7), (5.8), (5.29) respectively, and A, c are given in Propo-
sition 5.21.

Proof. The proof is postponed to Section 5.5.1. U

Note that the conditions of Proposition 5.3-(i) are fulfilled. For constant step sizes
v, = v for all £ > 1, Lemma 5.4 and Lemma 5.5 can be applied. We give in Table 5.3
the dependency of the step size v > 0 and the minimum number of iterations p > 0,
provided in Lemma 5.4, on the dimension d and the other constants related to U, to get
[0:QF — w|lTv < ¢, for a target precision ¢ > 0. We can see that the dependency on the
dimension is milder than for the convex case. The number of iteration requires to reach
a target precision ¢ is just of order O(dlog(d)).

Consider the case where 7 is the d-dimensional standard Gaussian distribution. Then
forallp € N,y € (0,1) and = € R?, 0, RE is the d-dimensional Gaussian distribution with
mean (1 — )Pz and covariance matrix o, Iy, with o, = (1 — (1 —)2P+D)(1 — y/2)~ 1.
Therefore using the Pinsker inequality, we get:

6. B2 — 7y < 2KL (0, R2| 7)
<d[log(oy) =1+ {1+ (1 =) 2] d 1} .
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d € L m M
v O™ | O log(e™h) | O(L7?) | O(m) | O(M;*)
p | O(dlog(d)) | O(e*log’(c7")) | O(L%) [ O(m~?) | O(M)

Table 5.3: For constant step sizes, dependency of v and p in d, € and parameters of U to get
10:Q% — 7||Tv < € using Theorem 5.22

Using the inequalities for all ¢ € (0,1), (1 —¢)"! < 1+¢(1—¢)"2 and for all s € (0,1/2),
—log(1 — s) < 5+ 252, we have:

16, B2 — w3y < d{7?/2+ (1= )2PH) (1 = 5/2)(1 = (1 — 7)2P+1)=2}
+ o1 (1= )% |2

This inequality implies that in order to have [|0, R, — 7|7y < € for € > 0, the step size
~ has to be of order d~/2 and p of order d'/? log(d). Therefore, the dependency on the
dimension reported in Table 5.3 does not match this particular example. However it
does not imply that this dependency can be improved.

5.3.4 Bounded perturbation of strongly log-concave densities

We now consider the case where U is a bounded perturbation of a strongly convex
potential.

HO9. The potential U may be expressed as U = Uy + Uy, where

(a) Uy : RY — R satisfies HS(0) (i.e. is strongly convex) and there exists Ly > 0 such
that for all z,y € R?,

IVUL(z) = VUL()]| < La ||z =yl -

(b) Uy : R — R is continuously differentiable and ||Us||, + ||VUa]|,, < +oo .

The probability measure 7 is said to satisfy a log-Sobolev inequality with constant
Crs > 0 if for all locally Lipschitz function h : R — R, we have

Ent, (h?) < QCLS/HVhHde.

Then [CGO09, Theorem 2.7] shows that for all ¢ > 0 and any probability measure py < 7
satisfying dug/dmlog(du/dr) € L(r), we have

d 1/2
o Ps — wl|ry < e t/Cis {2 Ent, (ﬁ)} . (5.33)



Chapter 5. Non-asymptotic convergence analysis for the ULA 133

Under H9, [BGL14, Corollary 5.7.2] and the Holley-Stroock perturbation principle
[HS87, p. 1184], m satisfies a log-Sobolev inequality with a constant which only de-
pends on the strong convexity constant m of U; and oscga(Uz). Define

Qle
= . 5.34
=T (5.34)

Denote by 7 the minimizer of Uj.

Proposition 5.23. Assume H9. Let (v;)k>1 be a nonincreasing sequence with v <
2/(m + L1). Then for allp > 1 and x € R,

P
LIy = w11 Q2 dy) < TL (1 - @/2) o =
k=1
+20 1 (2d + (11 + 20 ) [ VUR|2) -
Proof. The proof is postponed to Section 6.8.2. O

Theorem 5.24. Assume L1 and HY9. Let (yx)ren+ be a nonincreasing sequence with
y1 <2/(m + Ly). Then, for alln,p>1, n < p, and x € R%, (5.10) holds with

—log(k) = mexp{—oscra(Us2)}
C?(5,Q7) < L1e ™ ™/2 ||z — 2} |)* + L1y (v + 207 1) | VU||2, + 208cpa(Us)  (5.35)
+2Liw (1= @7,)(2d + (1 + 2007 ) [ VU:1%) = d(1 + log(2yum) — 2L17)
Ay, z) <203 {flof = 2** + 207 (24 + (31 + 207 Y) [VOL|12) | + 2 [ V02|,

where w is defined in (5.34).

Proof. The proof is postponed to Section 5.4.15. U

Note that by (5.35), sup,,>1{C(6:Q%)/(—log(vn))} < +o0, therefore Proposition 5.3-
(i) can be applied and limy, o [0, Q8 — 7|7y = 0 if limp oo v = 0 and limy, 4 oo ' =
+o00.
5.4 Proofs

5.4.1 Proof of Lemma 5.1

By a straightforward induction, we get for all n > 0 and z € R%,

QuV(z) < A"V (x +cZMF2+1n. (5.36)
i=1
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Note that for all n > 1, we have since (y%)r>1 is nonincreasing and for all ¢ > 0,

A =14 [3 A% log(N\)ds,

n

Soqfene < a0 I (14 X logny)
i=1

i=1  j=itl
<o ] 1 o i+ x|
i=1 j=i+1 J=i

< (A" log(M) !

The proof is then completed using this inequality in (5.36).

5.4.2 Proof of Lemma 5.6

By L1, H5, the Cauchy-Schwarz inequality and VU (z*) = 0, for all 2 € R?, ||z|| > M,,
we have

1
U(z) — U(z*) = /O (VU@ + t(x — 2%)), 2 — 2*) dt

> /0m (VU (x> +t(x — %)), —a*)dt

1
+ M, <VU(CC* + t(x - :C*)), t(x - :C*)> dt

> —M2L/2+pllo — 2t (a+ 1) 7 {1 = (My/ [lz — [+

On the other hand using again L1, the Cauchy-Schwarz inequality and VU (z*) = 0, for
all x € B(z*, M,),

1
U(z) — U(z*) = / (VU (" + @ — %)),z — 2¥) dt > —M2L/2
0
which concludes the proof.

5.4.3 Proof of Proposition 5.7

For all z € R, we have
AV (2) = (1 =) {~ [VU@)II* + (1 = )" AU(2) } Vi(a) -

If o > 1, by the Cauchy-Schwarz inequality, under L1-H5 for all 2 € R%, AU (z) < dL
and ||[VU (2)|| > p ||z — 2*|** for ||z — a*|| > M,. Then, for all z € &,

V() < o(1= ) {=plla = P70 4+ (1= )L} Vi) < —odIVi(w)

and sup,ee @ Ve (2) < cdLsupg,ee 1 {Vi(y)}-
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5.4.4 Proof of Proposition 5.8
By H5, for all = ¢ B(a*, M,),
IVU @)l = pllz — 27" . (5.37)

Since under L1, for all z,y € RY, U(y) < U(z) + (VU(z),y — z) + (L/2)|ly — z||?, we
have for all y € (0,7) and x € R?,

RV (2)/V ()
= (4m) 2 [ exp ({U) = Ul@)} /2= @9) " ly = 2 +9TU)]) dy
R

< (4m) 2 [ exp (~4 [TV ~ (49)7(1 =Ly — o) ay
R
< (1—9L) 2 exp(—4~ 1y || VU (@)%,

where we used in the last line that v < L™1. Since log(1 — Ly) = —L [/ (1 — Lt)~'dt,
for all v € (0,7], log(1 — Lvy) > —Ly(1 — L¥)~!. Using this inequality, we get

R,V (2)/V(2) < XV exp (-4 |[VU@)|) - (5.38)
By (5.37), for all z € R?, ||z — 2*|| > K, we have
R\ V(z) < NV(x) . (5.39)
Also by (5.38) and since for all £ > 0, ¢ — 1 < te?, we get for all 2 € R?
RV (z) =NV (x) < XA = 1)V (x) < —2ylog(MA TV () .

The proof is completed combining the last inequality and (5.39).

5.4.5 Proof of Theorem 5.9
We first bound A(y,r) for all x € R%. Let x € R% By L1, we have
E[|VU(X0)I?] < LEoll| Xk — 2*|] . (5.40)

Consider now the function ¢, : Ry — R4 defined for all ¢ > 0 by ¢4 (t) = exp(Aqa(t +
By)*?) where Ay = p/(2(a + 1)) and B, = {(2 — oz)/(ozAa)}Q/a. Since ¢, is convex
and invertible on R, we get using the Jensen inequality and Lemma 5.6 for all £ > 0:

Bl — 077 < 65" (Ealda (16— 7IP)]) < 0" (2P B V(X))

where V(z) = exp(U(z)/2). Using that for all t > 0, ¢;1(t) < (A;'log(t))*/® and
Lemma 5.1, we get

Sup B, [[[ X — a2 < (43" [aa/2+ B2 +1og {GO\ e(n), V())}])
k>0

Eq. (5.19) follows from Proposition 5.7, Proposition 5.8 and Lemma 5.1.
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5.4.6 Proof of Theorem 5.10

Lemma 5.25. Let 1 and v be two probability measures on (R? B(R?)) and V : R —
[1,00) be a measurable function. Then

1/2
I = vllvy < V2{u(V?) + u(v?)} KLY (upy) .
Proof. Without losing any generality, we assume that yu < v. For all ¢t € [0, 1], tlog(t) —
t+1= j;l(u—t)ufldu > 271(1—#)?, and on [1, +00), t = 2(1+t)(tlog(t)—t+1)—(1—1)?
is nonincreasing. Therefore, for all ¢ > 0,

11—t < (2(1 + t)(tlog(t) — t + 1))1/2 . (5.41)

Then, we have:

ln=vlv = sup f@duta) - [ fdu(e)
fEFRD),[Ifllv<1 Rd

[ 1@ {1} avw)

Using (5.41) and the Cauchy-Schwarz inequality in the previous inequality concludes the
proof. O

R4

= sup
FEFR),[Iflv<1

< /Rd V() \% - 1‘dy(m) .

Proof of Theorem 5.10. First note that by the triangle inequality and Proposition 5.7,
forallp>1

17— 62QP|ly1/2 < Chyak? VY2 (@) + 1|6, Pr, — 02QP||y1/2 - (5.42)

We now bound the second term of the right hand side. Let k, = H*q and g, and 1 be
respectively the quotient and the remainder of the Euclidean division of p by k,. The
triangle inequality implies [|0; Pr, — 0:Q?|[[y;1/2 < A+ B with

A= “5$Q,(yq"/_1)kwpr — 596@,(;17_1)1{7QS/Qw_l)kw'f‘lvP‘

(ay—Dky,p Vi/2
S (15,060
_ i—1)k ik

b= Z 0z Qy 7Pr(z'—l)kwrl,p — 0205 7PFile,p vi/2

=1
It follows from Proposition 5.7 and k, > 71 that
o k k
» - .

B < 201/4’%% ' 595@&/@ ) VPF(i—l)k—y-Fl,ika, - 5$lew vi/ze © (5.43)

i=1

We now bound each term of the sum in the right hand side. For all initial distribution
vo on (R4, B(R?)) and 4,5 > 1, i < j, it follows from Lemma 5.25, [Kul97, Theorem 4.1,



Chapter 5. Non-asymptotic convergence analysis for the ULA 137

Chapter 2] and (5.15):

@2 — voPr 22 < 2 (0QL (V) + o Pr,, (V) KL(0Q2 v Pr, )
< 217 (I/()Q?y’j(v) + VOPFZ',J' (V))

x (j—1) <72d+(73/3) sup VOQQ”“_l(HVUHQ)> :

Proposition 5.7 implies by the proof of [MT93a, Theorem 6.1] that for all y € R? and
t>0: BV (y) < V(y)+PBi/2/01/2- Then, using Proposition 5.8, Lemma 5.1 and k, > y1
in (5.43), we get

2
Vv1/2

<27'(1+4)L? {2G(>‘a ¢, V(z)) + ﬁ1/2/91/2}
x {3d + 372 VU |0 GO e, V(@) } -

sup

(i—1)k B ik
, 693@7 WPF(ifl)k-yJﬁl,ikq 69362“/ K
16{17"' 7(1'7}

Finally, A can be bounded along the same lines. U

5.4.7 Proof of Theorem 5.12

Denote for v > 0, 7 : R? x R — R? the transition density of R, defined for z,y € R4
by

ry(@,y) = (4r0y) " exp(=(49) " ly — 2 + VU (2)|*) - (5.44)
For all n > 1, denote by ¢ : R? x R — R? the transition density associated with QY
defined by induction by: for all z,y € R?

a(@,y) =1y (@,y), @ ey = /Rd @, 2)r, . (2,y)dz form > 1. (5.45)

Lemma 5.26. Assume L1. Let (v;)k>1 be a nonincreasing sequence with v1 < L. Then
for alln >1 and z,y € R?,

exp (271 (U(x) = UW)) = (200,0) " |y —«|°)
(270 0 TT72q (1 — L) )42 7

gy (2, y) <

where 0., = i 27i(1 — L%’)_l-

Proof. Under L1, we have for all 2,y € R%, U(y) < U(x)+(VU(z),y — x)+(L/2) ||y — z|?,
which implies that for all v € (0, L™1)

ry(z,y) < (4my) P exp (271U @) - Uy)) — A= Ly~ y —2l’) . (5.46)



138 5.4. Proofs

Then, the proof of the claimed inequality is by induction. By (5.46), the inequality holds
for n = 1. Now assume that it holds for n > 1. By induction hypothesis and (5.46)
applied for v = y,41, we have

n —d/2
g5 (2,y) < (470yne1) "7 {2750%11 [1a- L%)} exp (271(U(x) - U(y))
i=1

< [ exp (=@oa) 7z =2l = (= L) ) 12 = yl?) dz

—d/2
< (47Yn41)” {27[07 n H — L) } (050 + (1= Lynt1)/(29n41)) "
x (27)"/2 exp (2*1<U<x> ~U() = (20501) " ly - 2l”) -
Rearranging terms in the last inequality concludes the proof. U
Lemma 5.27. Assume L1 and H5. Then [gae VWdy < 9y where

90 4 e (2m)(@+D/2 (g — 1)!
v niT((d+1)/2) ~’

(5.47)

and aq is given in (5.18).

Proof. By Lemma 5.6, for all z € R? U(x) > pllz — 2*|| /(o + 1) — an. Using the
spherical coordinates, we get

+o00
/ V0 dy < oo { (2m) V2T ((d + 1)/2)) / et/ et ) =1y
Rd 0
Then the proof is concluded by a straightforward calculation. O

Corollary 5.28. Assume L1 and Hb5. Let (7;)k>1 be a nonincreasing sequence with
vi < L. Then for alln > 1 and x € R?,

—d)2
Var,. { dﬂin } (Yy exp(U( ( {H (1- LVk)} Z 1 _PYL,YA> )
k=1 v

i=1

where Iy is given by (5.47).

Proof of Theorem 5.12. We bound the two terms of the right hand side of (5.10). The
first term is dealt with the same reasoning as for the proof of Theorem 5.9. Regarding the

second term, by [Bak+08, Theorem 1.4], 7 satisfies a Poincaré inequality with constant
log™!(k). Then, the claimed bound follows from (5.22) and Corollary 5.28. O
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5.4.8 Proof of Proposition 5.13

Set x = n/4 and for all z € R?, ¢(x) = (||lx — 2*||* + 1)/ . Since ¢ is 1-Lipschitz, we
have by the log-Sobolev inequality [BLM13, Theorem 5.5] for all = € R?,

Rch(x) < exR~,¢(x)+x2“/ < eX\/||J3—’yVU($)—J3*||2+2'yd+1+x2’\/ ] (5.48)

Under L1 since U is convex and x* is a minimizer of U, [Nes04, Theorem 2.1.5 Equation
(2.1.7)] shows that for all z € R?,

(VU(x),x —2*) > L) VU @) + 1 lle = 2| Lja—ezan,) -
which implies that for all € R? and « € (0, L], we have
|z = VU (2) = 2*|* < [l& = 2* [ = 2yn |2 — 2| Lgjmar 501} - (5.49)

Using this inequality and for all u € [0,1], (1 —u)"? —1 < —u/2, we have for all z € RY,
satisfying ||z — 2*|| > R. = max(1,2dn~1, M,),

(o =AVU@) - ") + 20 +1) " - 6(a)
<o) { (1= 29 2@l — o) - ) -1

< 67 @ llz — ¥ — d) < ~(ry/2) |z — 2" 67N (@) < ~2 7y

Combining this inequality and (5.48), we get for all z € R?, ||z — z*| > R.,

—N

Ry W)/ We(r) < 027/ — xo

By (5.49) and the inequality for all a,b > 0, vVa+1+b—+1+0b < a/2, we get for all
z € RY,

Vil =1VU (@) — 242 +29d + 1 - 6(2) < 7d.

)
Then using this inequality in (5.48), we have for all z € R?,
Ry We(w) < NWe(w) + (X100 - 37) en B2/, g ()

Using the inequality for all t > 0, e — 1 < te! concludes the proof.

5.4.9 Proof of Corollary 5.14
We preface the proof by a Lemma.

Lemma 5.29. Assume L 1 and that U is convex. Let (vyk)ken+ be a monincreasing
sequence with v < LY. Foralln>0 and x € Rd,

*|12 An -1 2
Ly =P Qe dy) < {an 7 [+ log (GO e, W) 1)

where We, A, ¢ are given in (5.25) and Proposition 5.13 respectively.
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Proof. Let n > 0 and z € R%. Consider the function ¢ : R — R defined by for all t € R,
o(t) = exp {(77/4)(25 + (4/77)2)1/2}. Since this function is convex on R, we have by the

Jensen inequality and the inequality for all ¢ > 0, ¢(t) < !/ 4)(t+1)1/2,

o ([ Iy=o" I @3] < ' @QAWila)

The proof is then completed using Proposition 5.13, Lemma 5.1 and that ¢ is one-to-one
with for all > 1, ¢~1(¢) < (4L log(t))*. O

Proof of Corollary 5.14. Using VU (z*) = 0, L1 and Lemma 5.29, we have for all k > 0,

[ ITU@I @ dy) < L2 (47! {1+ log {G O 7, W)}

5.4.10 Proof of Theorem 5.15
We preface the proof by a Lemma.

Lemma 5.30. Assume L1 and that U is convexr. Then

_ (2m)@dD/2(g — 1) w2l
/Rde Wy < < AT+ 10/2) T2 +n1)> ' (5:50)

Proof. By (5.24) and U(z*) = 0, we have

—U —n||ly—z*
/Rde (y)dyg/we ly ||dy+/Rd 1{y—sr| <1} 4 -

Then the proof is concluded using the spherical coordinates. O

Proof of Theorem 5.15. By [Bob99, Theorem 1.2], 7 satisfies a Poincaré inequality with
constant log™!(x). Therefore, the second term in (5.10) is dealt as in the proof of
Theorem 5.12 using (5.22), Lemma 5.30 and Lemma 5.27. O

5.4.11 Proof of Proposition 5.16

For all z € R, we have

W)
A We(x) = e
O = = P D7

—(VU@), 2 —2*) = (Jo =P+ 1) lz = 2% + d} .

{0/ =27 + 172 o — 2|

By (5.24), (VU(z),x —2*) > nljz —2*| for all z € RY, |z —2*|| > M,. Then, for
all z, ||z —2*| > K = max(M,,4d/n,1), &"We(z) < —(n?/8)We(x). In addition,
since U is convex and VU (z*) = 0, for all z € R, (VU(x),r —2*) > 0 and we get
SUP{geg) "W, (x) < B.
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5.4.12 Proof of Theorem 5.20

Proposition 5.31. Assume L1, H6 and H'7. Let (;)k>0 be a sequence of nonnegative
step sizes. Then for all x € R n>0,p>1,n<np,

16,Q% = wllrv < (27(p — )2 {|l — 2*|| + Cd}

o1 1/2
+2712L (Z {(72+1/3)A(%35) + d713+1}) )

k=n
where A(y,x) is given by (5.27).

Proof. Note if (Y;)i>0 is a solution of (5.1), then (Y;/2)i>0 is a weak solution of the
rescaled Langevin diffusion:

dY; = —(1/2)VU(Y,)dt + dB¢ . (5.51)

Then by Proposition 5.34 and the inequality for all s > 0, ®(s) — 1/2 < (2r)~1/2s, we
have for all z,y € R% and t > 0

lz —y

0, Py — 6, P, < .
|| t Yy tHTV — (4T[t)1/2

Therefore by the triangle inequality, the Cauchy-Schwarz inequality and H7, we have

|z — | + Cdl/?
(47et)1/2

10, P — m|lrv <

Then the proof follows the same lines as the proof of Proposition 5.2. U

Proof of Theorem 5.20. The proof is a straightforward consequence of Proposition 5.31.
O

5.4.13 Proof of Proposition 5.21
Under L1, using that VU (z*) = 0, we get for all 2 € RY,
/Rd ly = 2*|* Ry (2, dy) = |l& — 2" + (VU (2"*) = VU (2))||* + 27d
< (14 (I9)?) 2 — 2|2 = 29 (VU () — VU ("), — 2%} +29d . (5.52)
Then for all z € R?, ||z — 2*|| > M, we get using for all t >0, 1 —t <e™?
[y = "2 By dg) < A o =2+ 294
R
Using again (5.52) and the convexity of U, it yields for all z € R?, ||z — z*| < M,
=P By dy) < e
R4

which concludes the proof.
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5.4.14 Proof of Theorem 6.2
We preface the proof by a lemma.

Lemma 5.32. Assume HY9. Then, for all z € R?,
lz = VU () = 2i[* < (1 — @7/2) |z — ai[* + (v + 27 ) VT2,

Proof. Using that for all 3,z € RY, |ly + 2| < (1 +@v/2) [lyll* + (1 + 2(=y) 1) |1 2]%,
we get under H9-(b):

le = /YU (@) - I < (1 +@7/2) [l — 79U (@) - 2}
Ty + 2w ) [VORIZ, . (5.53)

By [Nes04, Theorem 2.1.12, Theorem 2.1.9], H9-(b) implies that for all z,y € R%:

1
(VUI(y) = VUL(2),y — 2) = (w/2) ly — | + IVUL(y) = VUL()|*
m+ L4
Using this inequality and VU;(x7) = 0 in (5.53) concludes the proof. O

Proof of Theorem 6.2. For any v € (0,2/(m + Ly)), we have for all z € R%:

[y =il By (@.dy) = [lo = 19U @) = 23 + 29d
< (1-@v/2) o — 21l + 7 {(v + 227 |VUaI[2, + 24}

where we have used Lemma 5.32 for the last inequality. Since 73 < 2/(m + L;) and
(7k)k>1 is nonincreasing, by a straightforward induction, for p > 1 and x € R4,

p
[y =il @5 dy) < 110 - /2 o = il

p p
+((n+20 )VU|Z +2d) Y T[] 0 —@w/2)7 . (5.54)
1=n k=1+1

Consider the second term in the right hand side of ( 54). Since v1 < 2/(m + Ly),
m < Ly and (7x)g>1 is nonincreasing, maxy>; vx < @~ I and therefore:

ST (0= ww/2)w

i=n k=i+1

< w-{z{ I (-=w2 -0 —m/m} <2

k=i+1 k=1
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5.4.15 Proof of Theorem 5.24

We preface the proof of the Theorem by a preliminary lemma.

Lemma 5.33. Assume HY. Let v € (0,2/(m + Ly)), then for all z € RY,

Bty (S22 < (L/2) {(1 = @/2) o = a1 + 20+ 207 VORI }
+ oscra(Uz) — (d/2)(1 + log(2ym) — 2L17) .

Proof. Let v € (0,2/(m + L1)) and r, be the transition density of R, given by (5.44).
Under H9-(a) by [Nes04, Theorems 2.1.8-2.1.9], we have for all = € R?,

Ur(z) < Ur(a}) + (L1/2) lz — 27* . (5.55)
Therefore we have for all z € R?

dé. R,

™

Buty (%57 ) = [ log(r (2, /7)) (. )da

< Ry(x) — (d/2)(1 +log(4my)) , (5.56)

where 9 : R? — R is the function defined for all y € R¢ by
¥ly) = Ualy) + V(o) + (La/2) ly = i +log ([ 70Oz .
By H9-(b) and Lemma 5.32, we get for all 2 € R%:

Rop(x) < (L1/2) ||z = yVU (z) — 2}||* + log (/d eU1<z>+U1<m;>dz)
R
+ oscga(Usz) + dL1vy
< (L1/2) {(1 = =7/2) [l = &> +2(y + 201 | VT2 }
+ OSCRd(UQ) + dLl")/ .

Plugging this bound in (5.56) gives the desired result. O

Proof of Theorem 5.24. We first deal with the second term in the right hand side of
(5.10). Under H9, [BGL14, Corollary 5.7.2] and the Holley-Stroock perturbation prin-
ciple [HS87, p. 1184] show that m satisfies a log-Sobolev inequality with constant
Crs = —log (k). So by (5.33) we have

ds,Q™ 1/2
16:Q7 P, — mllpy < At {2 Ent., ( QV)} .
dr
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We now bound Ent, (démQ:ﬁ/dﬂ) which will imply the upper bound of C(4.Q%). We

proceed by induction. For n =1, it is Lemma 5.33. For n > 2, by (5.45) and the Jensen
inequality applied to the convex function ¢t — tlog(t), we have for all z € R% and n > 1,

Ent, (d5,Q2 /dr)
:/]Rd log {Wl(y) /]Rd qffll(ﬂ%z)?“%(z,y)dz} /Rd qffl(a:,z)r%(z,y)dzdy
= /Rd /Rd log {7y, (%, 9)7 (1) } 44~ (@, 2)rs, (2, y)dzdy (5.57)

Using Fubini’s theorem, Lemma 5.33, Theorem 6.2, and the inequality ¢t > 0, 1 —¢ < e™!
in (5.57) concludes the proof of (5.35).

Finally, A(v, z) is bounded using the inequality for all y, z € R%, ||y + z||* < 2(||y||*+
|2[/*), HY and Theorem 6.2. O

5.5 Quantitative convergence bounds in total variation for
diffusions

In this part, we derived quantitative convergence results in total variation norm for
d-dimensional SDEs of the form

dX; = b(X;)dt + dB? , (5.58)

started at X, where (B{);> is a d-dimensional standard Brownian motion and b : R% —
R? satisfies the following assumptions.

G 1. b is Lipschitz and for all z,y € R, (b(x) — b(y),z —y) < 0.

Under G1, [IW89, Theorems 2.4-3.1-6.1, Chapter IV] imply that there exists a unique
solution (X;);>0 to (5.58) for all initial point € R? which is strongly Markovian.
Denote by (P;);>0 the transition semigroup associated with (5.58). To derive explicit
bound for ||P:(z, ) —P:(y,-)|Tv, we use the coupling by reflection, introduced in [LR86]
to show convergence in total variation norm for solution of SDE, and recently used by
[Ebel5] to obtain exponential convergence in the Wasserstein distance of order 1. This
coupling is defined as (see [CL89, Example 3.7]) the unique strong Markovian process
(X4, Yi)i>0 on R?4, solving the SDE:

— d
{dXt = b(Xs)dt +dB; where ¢; = e(X; —Yy) (5.59)
dY; =b(Y,)dt + (Id —2ee])dB ,

with e(z) = z/ ||z]| for z # 0 and e(0) = 0 otherwise. Define the coupling time

T.=1inf{s >0 | Xs #Ys} . (5.60)
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By construction X; = Yy for ¢t > 7.. We denote in the sequel by I@(m}) and INE($7y) the
probability and the expectation associated with the SDE (5.59) started at (z,y) € R??
on the canonical space of continuous function from R to R??. We denote by (Jt-t)tzo the
canonical filtration. Since Bf = f(f (Id —2e5el)dB? is a d-dimensional Brownian motion,
the marginal processes (X;);>0 and (Y;)i>0 are under P,y weak solutions to (5.58)
started at = and y respectively. The results in [LR86] are derived under less stringent
conditions than 1, but do not provide quantitative estimates.

Proposition 5.34 ([LR86, Example 5]). Assume G1 and let (X¢, Y¢)i>0 be the solution
of (5.59). Then for allt >0 and z,y € RY, we have

P B (X2 Y <2(® ! (202)7 1/2
(o) (Te > 1) = By (Xe # Yi) < (2672) "l —wll p —1/2) -
Proof. For t < 7., Xy — Y; is the solution of the SDE

d{X; = Y} = {b(X;) = b(Y1)} dt + 2¢,dB;

where B} = fg ]l{S<TC}eZng. Using the It6’s formula and G 1, we have for all ¢ < 7,
t
X0 = Yill =l =yl + [ (b(X.) = b(Y.),ec) ds + 2B} < o~y + 25/

Therefore, for all z,y € R? and ¢t > 0, we get

Blaa (7o > 1) < Blay (min, B > o~ o] /2)

= Play) (5‘;?;%3; < |lz —y] /2) =Py (1B < 2 -yl /2) |

where we have used the reflection principle in the last identity. O

Define for R > 0 the set Ag = {z,y € R? | ||z —y| < R}. Proposition 5.34 and
Lindvall’s inequality give that, for all € € (0,1) and t > w(e, R),

sup HPt(x’ ) - Pt(y’ ')HTV < 2(1 - E) ) (561)

where w is defined in (5.29). To obtain quantitative exponential bounds in total variation
for any x,y € RY, it is required to control some exponential moments of the successive
return times to Agr. This is first achieved by using a drift condition for the generator .o/
associated with the SDE (5.58) defined for all f € C%(R?) by

Af =V + (1/2)Af .

Consider the following assumption:
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G2. (i) There exist a twice continuously differentiable function V : R? i+ [1,00) and
constants 0 > 0, B > 0 such that

AV < -0V +B. (5.62)

(ii) There exists 6 > 0 and R > 0 such that © C AR where
0= {(z,y) eR* | V(z)+V(y) <2013 +}. (5.63)

For t > 0, and G a closed subset of R??, define by T?’t the first return time to G
delayed by t:
T —inf{s >t | (X,,Y,s) € G} .

For j > 2, define recursively the j-th return time to G delayed by t by
Gt . Gt Git Gt
T =if{s >T;7 +t| (X5, Ys) €G=T;2 + T 0 STjG_,tl , (5.64)

where S is the shift operator on the canonical space. By [EK86, Proposition 1.5 Chapter

2], the sequence (TJG )j>1 is a sequence of stopping time with respect to (ft)t>0

Proposition 5.35. Assume G 1 and G 2. For all x,y € R, ¢ € (0,1) and j > 1, we
have

F©,w(€e,R)

E(z) {GGTJ" ’ ] < {K(e)} 1 {(1/2)(V(:c) LV (y)) + PR 5}

0=0%028+00)", K(e) =018 (1+e™C0) + 52, (5.65)
where w is defined in (5.29).

O,w(e, R)

Proof. For notational simplicity, set T; = =T, Note that for all z,y € R,

AV (z) + AV (y) < -0(V(x) +V(y)) +261e(z,y) -
Then by the Dynkin formula (see e.g. [MT93b, Eq. (8)]) the process
= (12 TOAY (Xp) £V (Y} ot 2 w(eR),

is a positive supermartingale. Using the optional stopping theorem and the Markov
property, we have, using that for all ¢ > 0 E(wvy) {e‘%V(Xt)} V(z) + B0~ Gt

B [771] < (1/2)(V (@) + V() + P55

The result then follows from this inequality and the strong Markov property. O
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Theorem 5.36. Assume G1 and G2. Then for all € € (0,1), t > 0 and z,y € R?,
IPi(z,) = Poly, iy < e 2 {(1/2)(V (@) + V() + ™G] + 26"
where w is defined in (5.29), 6,K(e) in (5.65) and
log(x) = (6/2) log(1 — €){log(K(e)) — log(1 — €)} .
Proof. Let z,y € R% and t > 0. For all £ > 1 and € € (0,1),

Ploy) (e > ) <Py (e > 8, Te < t) + Pryyy (Ty > 1), (5.66)

where Ty = T?’w(E’R). We now bound the two terms in the right hand side of this
equation. For the first term, since © C Ag, by (5.61), we have conditioning successively

on JFr;, for j =¢,...,1, and using the strong Markov property,
Ploy) (e >t Ty <t) < (1—¢). (5.67)
For the second term, using Proposition 5.35 and the Markov inequality, we get
]f]’(%y) (Tg > t) < ]f»($7y) (T1 > t/2) + ]f»($7y) (Tg — Ty > t/2)
< 2 {(1/2)(V (@) + V() + PG} 4 UK}
The proof is completed combining this inequality and (5.67) in (5.66) and taking ¢ =
2716t /(log (K (e)) — log(1 - €)) . 0

More precise bounds can be obtained under more stringent assumption on the drift
b; see [BGG12] and [Ebel5].

G 3. There exist My > 1 and g > 0, such that for all z,y € R?, ||z — y|| > M,

(b(x) = b(y), = —y) < —ms o —y[* .
Proposition 5.37. Assume G1 and G 3.
(a) For all z,y € R? and € € (0,1)

E(zy) [exp (m? (Tc A TIAMS’W(QMS)))} <1+ o —y|| + (1 4 M )ems( M)/2

(b) For all z,y € RY, e € (0,1) and j > 1

B [eXp ((fns/Q) (Tc A Tf”"S’w(vaa))]
< {D(e)}’ ! {1 +lz -yl + 1+ Ms)emsw(571\zs)/2} ,

D(e) = (1 + ™= M)/2) (1 1 3T (5.68)

where w is given in (5.29).
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stvw(evMS)

A
Proof. In the proof, we set T; = T,

(a) Consider the sequence of increasing stopping time
me=inf{t >0 X, = Yol ¢ [k}, k>1,

and set (; = 7 A T1. We derive a bound on fE(x,y) [exp{(ms/2)(x}] independent on k.
Since limy_ oo T 71 = 7¢ a}most surely, the monotone convergence theorem implies that
the same bound holds for E(, ) [exp{(1s/2)(7. A T1)}]. Set now Ws(z,y) =1+ |z —y].
Since Wy > 1 and 7. < oo a.s by Proposition 5.34, it suffices to give a bound on
E (5 lexp{(ms/2) G }Ws (X, Y¢,)]- By 1td’s formula, we have for all v,t < 7., v <t

~ ~a t T
emst/QWS(Xt,Yt) — emsv/2WS(XU,YU) + ('ﬁ'LS/Q)/ emsu/2WS(XU?YU)du

(2

t b

(2

Using G3(b), we have for all k > 1 and t; = w(e, M) <v <t
e(mS/Q)(Ck/\t)WS(XCk/\hYCk/\t) < e(mS/z)(CkM)Ws(XCkM, Yo n0)

CeAt
+2 /c em/2q ]

kAU

So the process
{exp ((ms/2)(Ck A1) Ws(Xgnts Yeont) by,
is a positive supermartingale and by the optional stopping theorem, we get

Ez,y) {e(ms/kaWS(XCk,Y@)} < fE(W) {e(ms/Q)(Tk/\ts)Ws(XTk/\ts,YTk/\ts)} ’ (5.70)

where we used that (x Ats = 7, A ts. By (5.69), G1 and G3, we have

E(@y) {e(ms/Q)(TkAts)WS(XTk/\ts7Y’Tk/\ts):| S Ws(x7 y) + (1 + Ms)eﬁlsts/Q ,

and (5.70) becomes

Ez,y) {e(ms/”CkWs(ng,ng)} < Wy(z,y) + (1 + My)e™t/2 .

(b) The proof is by induction. The case j = 1 has been established above. Now let
J > 2. Since on the event {7, > T;_1}, we have

T N'T; :Tj_l—l-(Tc/\Tl) oST,

Jj=17

where S is the shift operator, we have conditioning on .7?Tj71, using the strong Markov
property, Proposition 5.34 and the first part,

E(zy) ]1{TC>TJ__1}e(ms/Q)(Tc/\Tj)} < D(e) E(x,y) |:]1{T0>Tj_1}e(ms/2)Tj—1:| )

Then the proof follows since D(e) > 1.
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O
Theorem 5.38. Assume G1 and G 3. Then for all € € (0,1), t > 0 and z,y € R?,
IPu(z,) = Pu(y, v < {0 =)+ 14 o=yl } &
log(k) = (1ms/2)log(1 — €)(log(D(¢)) — log(1 —¢)) ™",
where D(e) is defined in (5.68).
A €, Ms
Proof. The proof is along the same lines as Theorem 5.36. Set T; = T ity (M) for
j>1. Let z,y € R? and ¢t > 0. For all £ > 1 and € € (0, 1),
]f]’(%y) (Tc > t) < ]fp($7y) (Tc >t, T, < t) + ]f]’(%y) (Tg NTe > t) . (5.71)
For the first term, by (5.61) we have conditioning successively on Fr g for g =4, 1,
and using the strong Markov property,
Ploy) (e >t Ty <t) < (1—¢)". (5.72)

For the second term, using Proposition 5.37-(b) and the Markov inequality, we get

. _ st _ ~ msw(e,Ms)
Py (TenTe>t) <e 2 {D(e)}! {1 +llz =yl + 1+ M)e™ > } . (5.73)

Taking ¢ = | (mst/2)/(log(D(e)) — log(1 — €))| and combining (5.72)-(5.73) in (5.71) con-
cludes the proof. O

5.5.1 Proof of Theorem 5.17 and Theorem 5.22

Recall that (P;);>0 is the Markov semigroup of the Langevin equation associated with U
and let &% be the corresponding generator. Since (Py)e>0 is reversible with respect to ,
we deduce from Theorem 5.36 and Theorem 5.38 quantitative bounds for the exponential
convergence of (P;);>o to 7 in total variation noting that if (Y;):>¢ is a solution of (5.1),
then (Y;/2)i>0 is a weak solution of the rescaled Langevin diffusion:

dY; = —(1/2)VU(Y;)dt + dB¢ . (5.74)

Proof of Theorem 5.17. Since the generator associated with the SDE (5.74) is (1/2)./",
Proposition 5.16 shows that (5.62) holds for W, with constants 6/2 and /2. Using
that for all aj,as € R, el®92)/2 < (1/2)(e™ + €%2), G 2-(ii) holds for § = 20~ and
R = (8/1)log(4671B). By Theorem 5.36 with € = 1/2, we get for all z,y € R? and t > 0

1P:(z,) = Pi(y, ) v < 200"
+ e 0L (1/2)(We(z) + We(y)) + 2071 g0 TSm0 (5.75)
where w is defined in (5.30a). By [MT93b, Theorem 4.3-(ii)], (5.62) implies that

Jga We(y)m(dy) < BO~!. The proof is then concluded using this bound, (5.75) and
that 7 is invariant for (P}):>0 O
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Proof of Theorem 5.22. By applying Theorem 5.38 with € = 1/2, the triangle inequality
and using that 7 is invariant for (P;);>0, we have

I1Pw) =l < {3+ o a1+ [y = ol dnly) | o'

It remains to show that [ga ||y — 2*|| dn(y) < (d/m + M2)'/2. For this, we establish a
drift inequality for the generator &7 of the Langevin SDE associated with U. Consider
the function Wi(z) = ||l — 2*||%. For all 2 € R%, we have using VU (z*) = 0,

YW, () < 2(d — (VU(z) — VU(z*),z — *)) .
Therefore by G3, for all x € R?, ||z — 2*|| > Mj, we get
FYW(z) < —2mWi(z) + 2d |
and for all z € R,
VW (z) < —2mWy(z) + 2(d + mM?) .

By [MT93b, Theorem 4.3-(ii)], we get [pa Ws(y)dmr(y) < d/m + MZ2. The bound on
C(0,Q') is a consequence of the Cauchy-Schwarz inequality, Proposition 5.21 and Lemma 5.1.
The bound for A(~, z) similarly follows from L1, Proposition 5.21 and Lemma 5.1.

O
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Chapter 6

Sampling from a strongly
log-concave distribution with the
Unadjusted Langevin Algorithm

ALAIN DURMUS!, ERIC MOULINES 2

Abstract

We consider in this chapter the problem of sampling a probability distribution 7 having
a density w.r.t. the Lebesgue measure on R?, known up to a normalisation factor z —
e U@y Jra e~U®dy. Under the assumption that U is continuously differentiable, VU
is globally Lipschitz and U is strongly convex, we obtain non-asymptotic bounds for
the convergence to stationarity in Wasserstein distances and total variation distance
of the sampling method based on the Euler discretization of the Langevin stochastic
differential equation, for both constant and decreasing step sizes. The dependence on
the dimension of the state space of the obtained bounds is studied to demonstrate the
applicability of this method in the high dimensional setting. The convergence of an
appropriately weighted empirical measure is also investigated and bounds for the mean
square error and exponential deviation inequality are reported for functions which are
either Lipchitz continuous or measurable and bounded. Some numerical results are
presented to illustrate our findings.
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6.1 Introduction

Let 7 be a probability distribution on R%, d > 1, with density z +— e~V(®@)/ [, e VW dy
w.r.t. the Lebesgue measure, where U is continuously differentiable, gradient Lipshitz
and strongly convex. Consider the Langevin stochastic differential equation associated
with

dY; = —VU(Y;)dt + v2dB; , (6.1)

where (By)¢>0 is a d-dimensional Brownian motion defined on the filtered probability
space (Q, F, (Ft)i>0,P), satisfying the usual conditions. Under the stated assumptions
on U, 7 satisfies a log-Sobolev inequalities (see [BCG08; CG09; BGL14]) and the Markov
semi-group associated with the Langevin diffusion (Y;);>¢ converges exponentially fast
to m with a rate independent of the dimension of the state space. We study in this paper
the sampling method based on the Euler-Maruyama discretization scheme associated
to the Langevin diffusion, which defines a (possibly) non-homogeneous, discrete-time
Markov chain given by

X1 = X — 1 VU (X)) + V2%%41 2511 (6.2)

where (Zj)>1 is an i.i.d. sequence of standard Gaussian random variables and (v )x>1
is a sequence of stepsizes, which can either be held constant or be chosen to decrease to
0.

This method was originally proposed in the physics literature by [Par81] and intro-
duced in the computational statistics community by [Gre83] and [GM94]. It has been
studied in depth by [RT96a], which proposed to use a Metropolis-Hastings step at each
iteration to enforce reversibility w.r.t. m leading to the Metropolis Adjusted Langevin
Algorithm (MALA). They coin the term unadjusted Langevin algorithm (ULA) to stress
the fact that the Metropolis-Hastings step is avoided.

We obtain in this paper non-asymptotic and computable bounds between the marginal
laws of the Markov chain (X},), >0 defined by the Euler discretization and the target dis-
tribution 7 in Wasserstein distance and total variation distance for nonincreasing step
sizes. When the sequence of step sizes is constant vy, = ~ for all £ > 0, the Markov
chain (X,)n>0 has a unique stationary distribution 7, (see [RT96a]), which in most of
the cases differs from the distribution 7. Quantitative estimates between 7 and m, is
obtained. When (v;)r>1 decreases to zero and > 72, v, = oo then we show that the
marginal distribution of the non-homogeneous Markov chain (X, ),>0 converges to the
target distribution 7w with explicit expression for the convergence rate.

The paper is organized as follows. In Section 6.2, we study the convergence in the
Wasserstein distance of order 2 of the Euler discretization for constant and decreas-
ing stepsizes. In Section 6.3 we provide non-asymptotic bounds of convergence of the
weighted empirical measure applied to Lipschitz functions. In Section 6.4, we give non
asymptotic bounds in total variation distance between the Euler discretization and 7.
This study is completed in Section 6.5 by non-asymptotic bounds of convergence of the
weighted empirical measure applied to bounded and measurable functions. In Section 6.6
the convergence in the Wasserstein distance of order p, for p > 2 is investegated. Some
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numerical illustrations are given Section 6.7 to support our claims. The proofs are given
in Section 6.8. Finally in Section 6.9, some results of independent interest, used in some
proofs, on functional autoregressive models are gathered. Some technical derivations are
carried out in a supplementary paper. [DM15d].

Notations and conventions

Denote by B(R?) the Borel o-field of R?, F(RY) the set of all Borel measurable functions
on R? and for f € F(RY), ||f]lcc = Supgepa |f(z)]. For p a probability measure on
(R4, B(RY)) and f € F(R?) a p-integrable function, denote by u(f) the integral of f
w.r.t. u. We say that ( is a transference plan of p and v if it is a probability measure
on (R? x R? B(R? x R%)) such that for all measurable set A of R? ((A x R?) = u(A)
and ¢(R? x A) = v(A). We denote by TI(x, ) the set of transference plans of y and v.
Furthermore, we say that a couple of R%random variables (X,Y) is a coupling of x and
v if there exists ¢ € II(u,v) such that (X,Y) are distributed according to ¢. For two
probability measures p and v, we define the Wasserstein distance of order p > 1 as

1/p
WP(M7 V) d:ef ( inf / H.%' - pr dC(x,y)) .
R4 x R4

Cell(p,v)

By [Vil09, Theorem 4.1], for all p,v probability measures on R?, there exists a trans-
ference plan ¢* € II(u, v) such that for any coupling (X,Y") distributed according to ¢*,
Wy (u,v) = E[|| X — Y||P]*/P. This kind of transference plan (respectively coupling) will
be called an optimal transference plan (respectively optimal coupling) associated with
W,. We denote by Pp(Rd) the set of probability measures with finite p-moment: for all
1€ Pp(RY), [ga|lz||P u(dx) < 4+o00. By [Vil09, Theorem 6.16], P,(R%) equipped with the
Wasserstein distance W), of order p is a complete separable metric space.

Let f: RY — R be a Lipschitz function, namely there exists C' > 0 such that for all
z,y € RY |f(z) — f(y)] < C|lz —y||. Then we denote

1 £llip = mE{[ (@) = F@) e =y ™" |2y € RYx #y} .

The Monge-Kantorovich theorem (see [Vil09, Theorem 5.9]) implies that for all pu,v
probabilities measure on R,

Wilno) =sup{ [ @)~ [ jpdn) | RIS RS fly, <1 63)

Denote by Fy(R%) the set of all bounded Borel measurable functions on R%. For f €
Fyp(R?) set ||fllo = SUPyera |f(x)]. For two probability measures u and v on R?, the
total variation distance distance between p and v is defined by

| =vlrv="sup |u(A)—-v(A)|=(1/2) sup |u(f)—v(f)|.
AeB(R) fEF, (RY)
[l flloo <1
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By the Monge-Kantorovich theorem the total variation distance between p and v can be
written on the form:

n=virv=_nt [ o ydcey)
where D = {(z,) € R? x R? |z = y}. By [Vil09, Theorem 4.1], for all y,v probability
measures on RY, there exists a transference plan ¢* € II(x, v) such that for any coupling
(X,Y) distributed according to ¢*, ||u — v||rv = P(X # Y'). This kind of transference
plan (respectively coupling) will be called an optimal transference plan (respectively
optimal coupling) associated with the total variation distance. For all z € R? and
M > 0, we denote by B(z, M), the ball centered at 2 of radius M. For a subset A C R,
denote by A€ the complementary of A. Let n,m € N* and M be a n X n-matrix, then
denote by M™ the transpose of M and ||M]|| the Frobenius associated with M defined
by [[M| = Te(MTM). Let n,m € N* and F : R® — R™ be a twice continuously
differentiable function. Denote by VF and V2?F the Jacobian and the Hessian of F
respectively. Denote also by AF the vectorial Laplacian of F' defined by: for all z € R,
&F(m) is the vector of R™ such that for all i € {1,--- ,m}, the i-th component of AF (z)
is equals to 2?21(82}'}' / Bxf)(m) In the sequel, we take the convention that for n,p € N,
n < pthen 37 =0 and [[; = 1.

6.2 Non-asymptotic bounds in Wasserstein distance of or-
der 2 for ULA

Consider the following assumption on the potential U:

H 10. The function U is continuously differentiable on R% and is gradient Lipschitz,
i.e. there exists L > 0 such that for all z,y € R?,

IVU(z) = VU(y)| < Lz =yl .

Under H 10, if pg is a probability measure satisfying [ ||z||?uo(dz) < oo then by
[KS91, Theorem 2.5, Theorem 2.9 Chapter 5] there exists a unique strong solution (¥;):>0
to (6.1) with initial distribution pg. Denote by (F;)¢>0 the semi-group associated with
(6.1), which is reversible w.r.t. 7, and hence admits 7 as its (unique) invariant measure.

H11. U is strongly convex, i.e. there exists m > 0 such that for all z,y € RY,
Uly) > U(z) + (VU (2),y — z) + (m/2) | — y* .

Under H11, [Nes04, Theorem 2.1.8] shows that U has a unique minimizer 2* € R?.
If in addition H10 holds, then [Nes04, Theorem 2.1.12, Theorem 2.1.9] shows that for
all z,y € R%:

(VU(y) = VU(x),y = 2) = (5/2) [ly — =] + IVU(y) = VU@)I* . (6.4)

m+ L
(VU(y) = VU(z),y —2) >m|ly —z|* , (6.5)
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where ol
m

— . 6.6

K= T (6.6)

Note that H10 and (6.5) imply that L > m. We first obtain the geometric rate of
convergence to stationarity of the semi-group in Wasserstein distance. It is worthwhile
to note that these bounds do not depend on the dimension d.

Theorem 6.1. Assume H10 and HI11.
(i) For all p > 2, probability measures i and v € Py(RY) and t > 0,
Wy (uPy,vPr) < e ™Wy(p,v)
(ii) The stationary distribution 7 satisfies
/Rd |z — 2*| 7 (dz) < d/m . (6.7)
Proof. Most of the statement is well known; see [BGG12] and the references therein.

Nevertheless for completeness, we provide the proof in Section 6.8.1. O

Let (vx)k>1 be a sequence of positive and non-increasing step sizes and for n,p € N,
denote by

P
F”J’ = Z Yk Fn = FLn . (68)
k=n
For v > 0, consider the Markov kernel R, given for all A € B(R?) and = € R¢ by

R, (z,A) :/

[ () P exp (~(4) 7 ly = 2 + 9 VU @)]?) dy (6.9)

Under H10 R, is strongly Feller, irreducible, strongly aperiodic. The sequence (X,)n>0
given in (6.2) is a Markov chain with respect to the sequence of Markov kernels (R, )n>1.
For p,n > 1, p > n, define

QP =Ry, - R, , QY = Q}y’" (6.10)

with the convention that for n,p > 0, n < p, Q5™ is the identity operator. The stability
of the Euler discretization of a one-dimensional Langevin diffusion with constant step size
has been studied in [RT96a, Section 3]; We generalize these results to multidimensional
diffusions and decreasing stepsizes.

Theorem 6.2. Assume H10 and H11. Let (y)r>1 be a nonincreasing sequence with
y1 <2/(m+L). Let x* be the unique minimizer of U. Then for all z € R and n,p € N*

[y =1 @57 dy) < upfe)
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where oy, p(z) is given by

P PP
onp(@) = [T (1= rm) e —a* +24 3 I (1 —rw), (6.11)
k=n k=ni=k+1
and k is defined in (6.6).
Proof. The proof is postponed to Section 6.8.2. U

Theorem 6.3. Assume H10 and H11. For any v € (0,2/(m + L)), R, has a unique
stationary distribution m,. Moreover, for allp > 1, 7, € Pp(Rd) and for all probability
measure p € Pap(R%), we have for all n > 0:

Wop(nRY, my) < (1 = 57)" P Wap (11, 75) - (6.12)
Proof. The proof is postponed to Section 6.8.3. U

We now proceed to establish explicit bounds for Wa(uo@Y, ), with uo € Po(RY).
Since 7 is invariant for P, for all ¢ > 0, it suffices to get some bounds on WQ(MOQTYL, voPr,),
with vy € Pg(Rd) and take vy = w. To do so, we construct a coupling between the
diffusion and the linear interpolation of the Euler discretization. In the strongly convex
case, an obvious candidate is the synchronous coupling (Y;,?t)tzo for all n > 0 and
tc [Fn,PnH) by

{Yt = Yp, — Jp, VU(Ys)ds +v2(B; — Br,) (6.13)

where (I'y),>1 is given in (6.8). Therefore since for all n > 0, WQZ(MOPpn,I/OQZ/‘) <
E[|Yr, — Y1, ||?], where pg and vy are the marginals of (y, we compute an explicit bound
of the Wasserstein distance between the sequence of distributions (p0Q%)n>0 and the
stationary measure 7 of the Langevin diffusion (6.1).

Theorem 6.4. Assume H10 and H11. Let (y)r>1 be a nonincreasing sequence with
y1 <1/(m+ L). Then for all ug € Po(R?) and n > 1,

W3 (0@, ) < uld (VWi (po, ) +u (v)

where .
ulP(y) T = k/2) (6.14)
k=1
and
u@ () L LY 7 {87t i} (2d + dLPy/m+ dL*92/6) T (1= mw/2),  (6.15)
=1 k=i+1

where k is defined in (6.6) .
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Proof. The proof is postponed to Section 6.8.4. U

We now consider stepsizes which goes to 0. Under this additional assumption, we
may establish the convergence of the sequence (MOQZ)nEO to .

Corollary 6.5. Assume H10 and H11. Let (v;)r>1 be a nonincreasing sequence with
v1 < 1/(m+ L). Assume that limg_,oo v = 0 and lim,_, o ', = +o00. Then for all
Mo € PQ(Rd)f
. n .
Jim W (@Y, m) = 0.

Proof. The proof is postponed to Section 6.8.5. O

In the case of constant stepsizes v = v for all £k > 1, we can deduce from Theorem 6.4,
a bound between 7 and the stationary distribution ., of R,.

Corollary 6.6. Assume H10 and H11. Let (y;)k>1 be a constant sequence y =y for
all k > 1 with v <1/(m + L). Then

Wi(m,my) < 25 1Ly {1‘671 + 7} (2d + dL*~/m + dL*~*/6) .
Proof. The proof is postponed to Section 6.8.6. O

We can improve these bound under additional regularity assumptions on the potential

U.

H12. The potential U is three times continuously differentiable and there exists L such
that for all .,y € RY:

|v*U@) - VU < Ele -yl - (6.16)

Note that under H10 and H12, we have that for all z,y € R¢,

—

[v2U@w| < il . |Avv)@)|| <di?. (6.17)

Theorem 6.7. Assume H10, H11 and H12. Let (y)k>1 be a nonincreasing sequence
with v, < 1/(m + L). Then for all py € P2(RY) and n > 1,

W3 (0@, m) < ulD (v)W3 (po, m) +ulP (v)

where ug) is given by (6.14) and

n

D () 23 dy? {202 + 5 L2 /3 4+ Lt + ALY (3m)) + L (/6 +m b T (-rm/2)
i=1 k=i+1
(6.18)
where k is defined in (6.6) .

Proof. The proof is postponed to Section 6.8.7. U
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In the case of constant stepsizes v, = y for all k£ > 1, we can deduce from Theorem 6.7,
a sharper bound between 7 and the stationary distribution =, of R,.

Corollary 6.8. Assume H10 and H11. Let (;)k>1 be a constant sequence v, =y for
all k > 1 withy <1/(m+ L). Then

Wi (m,my) < 26 Ldy? {2L2 + k"N L2 /3 + 4L+ 4L /(3m)) + yLA(v/6 + mfl)} .
Proof. The proof follows the same line as the proof of Corollary 6.6 and is omitted. [

Let * be the unique minimizer of U. Since for all y € R? ||z — y||* < 2(]|z — 2*||* +
|z* — y||?), using (6.7), we get:

W26z, ) < 2(|| — z*||* + d/m) . (6.19)

If jug € Po(RY), we have W2(uo, ) < [ po(dx)W2(d,, ). Hence, the bounds provided
by Theorem 6.4 and Theorem 6.7 scale linearly with the dimension d. When ~; = v for
all k> 1, (6.14), (6.15) (6.18) imply

() = (1= w7/, us?(7) < 2671y {571 4} (2d + dLPy/m + dL?42/6) ,
< 2k~ ldy? {QL2 + kN(L?/3 +~yL* 4+ 4L*/(3m)) + vL*(v/6 + m_l)} .
(6.20)
Using this bound, given € > 0, we may determine the smallest number of iterations and
an associated step-size 7, starting from x, to approach the stationary distribution in the
Wasserstein distance W (8, Q7 , ) with a precision e. Details and further discussions are
included in the supplementary paper [DM15d].

Based on Theorem 6.4 and Theorem 6.7, we can obtain explicit bounds for W3 (6:Q7%, )
for all z € R% For simplicity, we consider sequences (Vk)k>1 defined for all £ > 1 by
Yk = 11k~ for 13 < 1/(m + L) and a € (0,1]. The order of these bounds is given
in Table 6.1 and Table 6.2, see [DM15d, Section 1-2] for details. Two regimes can be
observed as in stochastic approximation in the case of Theorem 6.4.

a€(0,1) a=1
Order of convergence | O(dn=%) | O(dn~!) for 41 > 2! see [DM15d, Section 3]

Table 6.1: Order of convergence of W22(5$QK;, m) for v = 1k~ under H10 and H11

a € (0,1)
Order of convergence | O(dn—2%)

Table 6.2: Order of convergence of W22(5$Q2, m) for v, = vk~ under H10, H11 and H
12

We now consider the fixed horizon setting. Assuming here that the step sizes (7x)r>1
are defined for £k > 1 by 7 = 11k~ for @ € [0,1), we determine the value of v
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Optimal choice of 7; | Bound on W22(5xQK;, )
ael0,1) O(n%1log(n)) O(dn~11og(n))

Table 6.3: Order of the optimal choice of vy for the fixed horizon setting and implied
bound on W;(émQ;‘, m) based on Theorem 6.4

Optimal choice of 7; | Bound on W22(5xQK;, )
ael0,1) O(n%1log(n)) O(dn=2log?(n))

Table 6.4: Order of the optimal choice of vy for the fixed horizon setting and implied
bound on W;(émQ;‘, m) based on Theorem 6.7

minimizing the upper bound ugl)(fy)WQQ(uo, ) + u?) (7). The results are summarized in

Table 6.3, see [DM15d, Section 1-2] for details.
Moreover, these bounds for a fixed number of iterations implies using the doubling

trick (see [HK14]) an anytime algorithm which guarantees for all n > 1 and = € R? that
Wa(6.Q%, ) is O((log(n)n=1)Y2) or O((log(n)n=1).

6.3 Mean square error and concentration for Lipschitz func-
tions

Let f : R? — R be a Lipschitz function and (X,,),>0 the Euler discretization of the
Langevin diffusion. In this section we study the approximation of [za f(y)7(dy) by the
weighted average estimator

N+n

ﬁrjzv(f) = Z w/]c\,fnf(Xk) ) wl]c\,[n = 7k+1F]7\[1+2,N+n+1 . (621)
k=N+1

where N > 0 is the length of the burn-in period, n > 1 is the number of samples, and for
n,p € N, T’ is given by (6.8). In all this section, P, and E, denote the probability and
the expectation respectively, induced on ((R)N, B(R)N) by the Markov chain (X,)n>0
started at z € RY. We first compute an explicit bound for the Mean Squared Error
(MSE) of this estimator defined by:

MSE; (N, n) = E, {

120 =7 | = (Bl () = w0} Var, {52 (1)} (022

We first obtain an elementary bound for the bias. For all k € {N +1,...,N + n}, let
&, be the optimal transference plan between 5IQ,]§ and 7 for Wy. Then by the Jensen
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inequality and because f is Lipschitz, we have:

9 N+n 2
(EolmY () = =) =( > Wi /[R , Rd{f(Z)—f(y)}&(dz,dy))
k=N-+1 x
) N+n N )
<y 3 ol [, Ml vl dn).

Using Theorem 6.4, we end up with the following bound.

Proposition 6.9. Assume H10 and H11. Let (y;)r>1 be a nonincreasing sequence with
v < 1/(m+ L). Let x* be the unique minimizer of U. Let (Xy)n>0 be given by (6.2)
and started at x € RE. Then for all n, N > 0 and Lipschitz function f : R* — R:

9 N+n
{Bulth (1) = 7N} <A, Do wlln {2012 = 1P + d/m)u” () +wr ()}
k=N+1
where usll)(’y) is given in (6.14) and wy(7y) is equal to u?) () defined by (6.15) and to

u,({g’) (7), defined by (6.18), if H12 holds.

Consider now the variance term. To control this term, we adapt the proof of [JO10,
Theorem 2| for homogeneous Markov chain to our inhomogeneous setting, and we have:

Theorem 6.10. Assume H10 and H11. Let (v;)r>1 be a nonincreasing sequence with
1 <2/(m+L). Then for all N >0, n > 1 and Lipschitz functions f : R — R, we get

~ — 2 _
Var, {#Y ()} <8572 £l Taho v n1tvn(Y)

where
def

o) Z {1+ TR g niga (57 +2/(m + L))} (6.23)
Proof. The proof is postponed to Section 6.8.8. O

It is worth to observe that this bound is independent from the dimension. We may
now discuss the bounds on the MSE (obtained by combining the bounds for the squared
bias Proposition 6.9 and the variance Theorem 6.10) for step sizes given for k > 1 by
Yk = 71k~ where a € [0,1] and v1 < 1/(m + L). Details of these calculations are
included in the supplementary paper [DM15d, Section 5]. The order of the bounds (up
to numerical constants) of the MSE are summarized in Table 6.5 as a function of v, n
and N. If the total number of iterations n + N is held fixed (fixed horizon setting),
as in Section 6.2, we may optimize the value of the step size v, but also of the burn-in
period N to minimize the upper bound of the MSE. The order (in n) for different values
of @ € [0,1] are summarized in Table 6.8 and Table 6.7 (we display the order in n but
not the constants, which are quite involved and not overly informative).

We observe two differents bounds based on Theorem 6.4 and Theorem 6.7. Let us
discuss first, the bounds obtained by the last one. It appears that, for any « € [0,1/3),
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Bound for the MSE
a=0 m + (nn)~ exp(=ry N/2)
0 € (0,1/3) [3in "+ (unl %) Tep(—rn N /201 — )
a=1/2 | mlog(m)n~'? + (1n'?) " exp(=km N2 /4)
ae(1/2,1) | no U+ (- NT/(2(1 - a))]
a=1 log(n) ! {1+ N2

Table 6.5: Bound for the MSE for v = vk~ for fixed v; and N under H10 and H11

Bound for the MSE
a=0 7+ (mn) " exp(—K71N/2)
a € (0,1/3) | 1in > + (mn' =) Lexp(=rn N' "/ (2(1 - a)))
a=1/3 11 log(n)n=?3 + (v1n?3) L exp(—ry N'/?/4)
ae(1/31) | no g+ exp(—an N2 /(2(1 - )}
a=1 log(n) " {43 + 47 !N/}

Table 6.6: Bound for the MSE for ~; = vk~ for fixed «; and N under H10, H11 and
HI12

we can always achieved the order n=2/3 by choosing appropriately v, and N (fora=1/3
we have only log'/?(n)n=2/3). The worst case is for o € (1/3,1], where in fact the best
strategy is to take N = 0 and the largest possible value for 4 = 1/(m + L). Finally, we
note that from the explicit expression of the bound in [DM15d, Section 5.2], that constant
step sizes (o = 0) are optimal. Finally, we mention that the bounds for a € [0,1/2) for
a fixed number of iterations implies using the doubling trick (see [HK14]) an anytime
algorithm which guarantees for all n > 1, a MSE of order O(n~2/3).

Optimal choice of v | Optimal choice of N | Bound for the MSE
a=0 n—173 173 n-2/3
a € (O, 1/2) ne—1/3 n(l 3—a)/(1-a) n—2/3
a=1/2 (log(n))~ /3 log!/?(n) log!/3(n)n=2/3
a€ (1/2,1) 1/(m+L) 0 nl-«
a=1 1/(m+ L) 0 log(n)

Table 6.7: Bound for the MSE for v = vk~ for fixed n under H10, H11 and H12

Now let us discuss the bounds based on Theorem 6.4. This time for any « € [0,1/2),

we can always achieved the order n=/2 by choosing appropriately v, and N (fora =1/2

we have only log(n)n—1/2). For a € (1/2,1], the best strategy is to take N = 0 and the
largest possible value for v = 1/(m + L). Finally, we note that from the explicit
expression of the bound in [DM15d], that constant step sizes (o = 0) are again optimal.
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Optimal choice of v; | Optimal choice of N | Bound for the MSE
a—=0 172 /2 172
a € (O, 1/2) no—1/2 n(l 2—a)/(1-«) n—1/2
a=1/2 (log(n))~1/2 log(n log(n)n~—1/2
a € (1/2,1) 1/(m+ L) 0 nl-o
a=1 1/(m+ L) 0 log(n)

Table 6.8: Bound for the MSE for v = vk~ for fixed n under H10 and H11

We can also follow the proof of [JO10, Theorem 5| to establish an exponential devi-
ation inequality for #2 (f) — E,[#) (f)] given by (6.21)

Theorem 6.11. Assume H10 and H11. Let (y;)r>1 be a nonincreasing sequence with
m < 2/(m+ L). Let (Xy)n>0 be given by (6.2) and started at x € R®. Then for all
N >0,n>1,r>0 and Lipschitz functions f : R% — R:

2,2
BN () > BN o [T /<;FN+2,N+n+1> .
AN () = Bl () +7] <e p< 16| £ 115 v (7)

Proof. Using the Markov inequality and Proposition 6.35, for all A > 0, we have:

Py [0 () > Bolih (D] + 7] <exp (<A + 467202 | £IIF 1 Do v pnr¥vn (7)) -

Then the result follows from taking A\ = (r&*I' yio Ntnt1)/(8 Hinip uNn (7)) O

If we apply this result to the sequence (y;)r>1 defined for all £ > 1 by v, = 71k,
for a € [0,1], we end up with a concentration of order exp(—n!'~?%) for a € [0,1) and
n~! for a = 1.

6.4 Quantitative bounds in total variation distance

We deal in this section with quantitative bounds in total variation distance. For Bayesian
inference application, this kinds of bounds are of utmost interest for computing highest
posterior density (HPD) credible regions and intervals. For computing such bounds
we will use the results of Section 6.2 combined with the regularizing property of the
semigroup (P;)>0.

Proposition 6.12 ([LR86, Example 5], [DM15a, Proposition 29]). Assume H10 and H
11. Then for all t > 0, x,y € R? we have

I1P(,) = Py, )lrv <128 (= ||z = y|| /(2v21)) .

Since for all s > 0, 1/2 — ®(—s) < (2m)~1/2s, Proposition 6.12 implies that for all
bounded measurable functions f : R* — R, and for all ¢ > 0, z,y € R% we have

|Pof () = Pof(y)] < (47t) 72| f oo Iz = o] - (6.24)
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Therefore for all t > 0, P,f is a Lipschitz function with ||P;f|lLip < (47tt) 72| f]|co-
We can combine this result and Theorem 6.1 or Theorem 6.7 to get explicit bound in
total variation between the Euler-Maruyama discretization and the target distribution .
For this we will always use the following decomposition, for all nonincreasing sequence
(V&) k>0, initial point z € R? and n > 0,

Im = QYllrv < llm = Pynllry + [[Pyn — Q7 llv - (6.25)
The first term is dealt with the following result.
Theorem 6.13. Assume H10 and H11. Then for all x € R? and t > 0,

Im = & Pilley < {5+ (d/m + 1) + ||z — 2| }exp (—7t) |

where
-1

2
7 =mlog(2) {2 <log {1 + exp {m/ (2q>—1(3/4)) H + 210g(2)) } : (6.26)
Proof. The proof is an application of [DM15a, Theorem 18]. O

It remains to bound the second term in (6.25). Since we will use Theorem 6.1 and
Theorem 6.7, we have two different results depending on the assumptions on U that we
have again. Define for all z € R? and n,p € N,

n

W) = 1230 T (= w2 [{57) e} 2+ dL22/6) + L2603 {1 + )]

i=1 k=i+1
(6.27)
02 (@) =378 T (0 m/2) {d@L? + 45 (L2124 3o L /4) + 2, L1/6)
i=1 k=i+1
(6.28)

+ L*6;(4s /3 + Wn+1)} ;
where
8 = e 2l gy o (x) + (1 — e 21y (d/m)

and gp () is given by (6.11). For n € N_, we take the convention that for all p € N
and z € RY, 79,(}},(@ and 19%22,(35) are equal to 0.

Theorem 6.14. Assume H10 and H11. Let (vy)r>1 be a nonincreasing sequence with
y1 <1/(m+L). Then for all z € R? and p,n € N, p > n,

16, Pr, — 0,QP|lTv < (95 (2)/(4nT i1 ) /2

» 1/2
+23/2L( > {<72L2/3>91,k1<x>+dwz}) . (6:29)

k=n+1
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where p1 () is defined by (6.11), Uy (z) is equal to 19;22)(1') given by (6.28), if H12 holds,
and to 19212)(3:) given by (6.27) otherwise.

)

Proof. The proof is postponed to Section 6.8.10 O

Consider the case of decreasing step sizes defined for & > 1 by v = 11k~ for
a € (0,1]. If H12 holds, choosing n = p — {pa/QJ in the bound given by (6.29) and
using Table 6.2, (6.25) and Theorem 6.13 implies that limy o [|0:Q — 7|[Tv = 0 at
a rate O(d"/?p=3/4*). If H12 does not hold, choosing n = p — |p®] in the bound given
by Theorem 6.14 and using Table 6.1 implies that lim, o |0:Q% — 7Ty = 0 at a

rate O(dp~*/?). Note that for a = 1, this rate is true only for 3 > 2x~!. These
conclusions and the dependency on the dimension are summarized in Table 6.9. At fixed

H10, H11 and H12 | H10, H11 and H12
Order for v = 11k7%, a € (0, 1] O(d2n=a/2) O(d/2n=3a/4)

Table 6.9: Order of convergence of |6, Q7 — ||y for 5 = y1k~* based on Theorem 6.14

step size v, = v € (0,1/(m + L)) for all £ > 1, under H12 choosing n = p — h_l/QJ
in (6.29), and combining this result with Theorem 6.13 in (6.25) implies a bound of
order O(d1/273/4) for all p > h_l/QJ, since there exists C' > 0 independent of d,~v and

x such that 192272)(3:) < Cdvy? ||z — z*||* for all n > 0. If H12 does not hold, choosing
n =p— |y7!| implies a bound of order O((dv)Y/?) for all p > |v~1], since there exists

C' > 0 independent of d,v and z such that 192172)@) < Cdy |z — z*||>. For constant
step sizes, we can improve this bound under H12. Define for all v > 0, the function
n:R%Y — N by

(1) = [log ([v']) /10a(2)] - (6.:30)

Theorem 6.15. Assume H10 and H11. Let v € (0,1/(m + L)). Then for all z € R?
and p € N*,

162 Py = G REllmv < (8y_gn o) /(27 F2)) 12

5 N

+ ) (Dgror ok (2) /(2512 (6.31)
k=1

+ 272 L{(4*L*/3)011(2) + dv? }

where for all ny,ny € N, ¥y, n, is equal to 19%21)7@ given by (6.28), if H12 holds, and to
195111)@2 given by (6.27) otherwise.

Proof. The proof is postponed to Section 6.8.11. U

If H12 holds, (6.31) implies a bound of order O(dY/?~log(y~1)) for all p € N*, since
there exists C' > 0 independent of d, vy and x such that 19%21),”2 (x) < CdgaStepn, ||z — z*|?
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for all ny,ng > 0. If H12 does not hold, (6.31) implies a bound of order O((dy)'/?log(y~1)),

since there exists C' > 0 independent of d, and x such that 19%11),”2 (r) < Cdy*ni(1 +
|2 — 2*||*). Therefore in this case, the bound provided by Theorem 6.15 does not im-
prove the dependency of the dimension provided by Theorem 6.14 and is even worst.

By the discussion on Theorem 6.14 and Theorem 6.15, we can conclude that there ex-
ists C' > 0 independent of the dimension d and  such that |7 —7 || v < Cd'/?ylog(y~1)
if H12 holds and |7 — 7|ty < C(yd)'/? otherwise. We can also for a precision
target ¢ > 0 say how to choose v > 0 and the number of iterations p > 0 to get
|6 RE — m||ry < e. If H12 holds, the number of iterations has to be of order d'/?1og?(d)
and dlog(d) otherwise. This discussion is summarized in Table 6.10 and Table 6.11.

H10, H11 | H10, H11 and H12
7 —mllrv | O((yd)'?) | O(d*ylog(y 1))

Table 6.10: Order of the bound between m and 7, in total variation function of the step
size v > 0 and the dimension d.

H10, H11 H10, H11 and H12
v | O 1e?) | O(d?log t(d)elog (e 1))
» | OWlog(@) | 0@ log?(@d)e log(= 1)

Table 6.11: Order of the step size v > 0 and the number of iterations p € N* to get
[6:RE — 7|lTv < € for e >0

6.5 Mean square error and concentration for bounded mea-
surable functions

The result of the previous section allows us to study the approximation of [pa f(y)7(dy)
by the weighted average estimator 72 (f) defined by (6.21) for a measurable and bounded
function f : R® — R. In all this section, P, and E, denote the probability and the ex-
pectation respectively, induced on (RN, B(R%)N) by the Markov chain (X,,),>0 started
at x € R?, defined by the Euler discretization (6.2). As in Section 6.3. We first obtain
an elementary bound for the bias term in (6.22). For all k € {N +1,...,N +n}, let &
be the optimal transference plan between 5IQ,]§ and 7 for the total variation distance.
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Then by the Jensen inequality and because f is bounded, we have:

N+n 2
k=N+1 R
N—+n
<4l > wkn/ 0 (2 )6 (dz dy)
k=N-+1
N—+n
<A(fIE Y wnlr — Qe
k=N-+1

where D = {(z,7) € R*xR? |z = y}. Using the decomposition (6.25) and Theorem 6.13,
Theorem 6.14 and Theorem 6.15, we can deduce different bounds for the bias, depending
on the assumptions on U and the sequence of step sizes (7x)r>1.

The following result give a bound on the variance term. Define for all n, ¢ > 1, n </

0
Apog=r"" { H (1 — k)t = 1} , Ap=A1p. (6.32)

j=n

Theorem 6.16. Assume H10 and H11. Let (vg)r>1 be a nonincreasing sequence with
1 <2/(m+L). Then for all N >0, n>1, z € R? and f € Fy(RY), we get

) N+n—1 N+n N 12 2
Var, {70 (1)} < 21 F 12 T o ninss +81FI2 X0 wand D wl/A,
k=N

=42
) N—+n N 1/ 2
—1
8 1 fIl5 E: Win/ANSY1i ¢ -
i=N41

Proof. The proof is postponed to Section 6.8.12. O

We now establish an exponential deviation inequality for #2 (f) — E.[#Y (f)] given
by (6.21) for a bounded measurable function f.

Theorem 6.17. Assume H10 and H11. Let (vg)r>1 be a nonincreasing sequence with
11 < 2/(m+ L). Let (X,)n>0 be given by (6.2) and started at x € RY. Then for all
N >0,n>1,r>0, and functions f € Fy(R?):

. [#7(7) 2 Bl (1) + ) < exp | {7 = 1l Cnszvens) ™} /A6 1A 0]

where
N+n N+n 12 2 N+n 12 2
N —1 N
U’N n Z Ve+1 Z wi7n/A]€+27i + K Z wi7n/AN+17Z- . (633)
k=N-+1 i=k+2 i=N+1

Proof. The proof is postponed to Section 6.8.13. U
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6.6 Convergence in Wasserstein distance of order p

In this section, we extend the results of Section 6.2 to Wasserstein distance of order
p €N, p> 2. In Section 6.2, we needed to bound the second moment of 7. We begin
with giving a bound on the 2p-th moment of 7 for p > 1. For this define for all p > 1
and k € {0,--- ,p},

p
agp = mtP IT {d+26-1}, (6.34)
1=k+1

and ago = 1.

Proposition 6.18. Assume H 10 and H 11 and let 2p € N, p > 1. The stationary
distribution 7 belongs to Pap(RY) and satisfies

/Rd |z — 2% 7(dz) < ao,p - (6.35)
Proof. The proof is postponed to Section 6.8.14. O

For all p > 1, k = 0,1, 2, define by induction the function a, : R? — R, by for all
y € R?

P

i p(x) = (@) [T {i (£2/@2m) |2 = 2*|* +d+ 26 - 1) (k+9)7'} . (6.36)
=2
ao(x) =2d,  ai(e)= (/L% |z —a"*,  ax(z) =dL?/3.

Theorem 6.19. Assume H10 and H11. Let (vy;)r>1 be a nonincreasing sequence with
11 <1/(m+ L) andp €N, p > 1. Then for all pig € Pap(RY) and n > 1,

Wil (0@, m) < ull P (VWP (1o, ) + @ (v) |
where

ullP) (y) & H (1 — Ky /4)P (6.37)

and

ulP () LYLPAT R P R )P S T (= R4 Z Uil +p+1)""}
i=1 k=i+1 =0
(6.38)

Upp & /R Lip(y)dm(y) , (6.39)

K is defined in (6.6), {@;,: R? — R,p > 1,1 € {0,1,2}} in (6.36).

Proof. The proof is postponed to 6.8.15 U
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Note that quantitative bounds on U, defined by (6.39) can be obtained by using
Proposition 6.18. Following the proof of Corollary 6.5, if the sequence (y)r>0 satisfies
limg 1007 = 0, limg1 oo 'y = 400, we get under the assumptions of Theorem 6.19
that limy,— 400 ng(quQ,w) = 0. Another consequence of Theorem 6.19 is that under
the assumptions of these Theorem, we have in the case of constant step size v = ~ for
all £ > 1 with v < 1/(m + L), that W;g(ﬂ"y,ﬂ') < C(dv)P, for some constant C' > 0
independent of the dimension d and the step size 7.

We now give bounds on W;f:(quQ,ﬂ) under H12 for all gy € P(RY), p > 1 and
n > 0 which can be computed by induction on p.

Theorem 6.20. Assume H10, H11 and H12. Let (v;)k>1 be a nonincreasing sequence
with v1 < 1/(m + L) and p € N, p > 1. Then for all pg € Pop(RY) and n > 1,

W;ﬁ(qu" ) < (p)(,uo, v) where {wgp)(,uo,y) | ,n € N,p € N*} is defined for all
n >0, wid) = ug)Wg(,u ) + s for( Daso and (ug’))nzo given by Theorem 6.7 and

for dllp>2, 0> 0, wld (o) < w3 YW (o, m) + ui (1o, ) for ) (7) given
n (6.37),

o n L 23/2p1/2Ld1/2 3
,p) (1105 7) de{ H 1_,1,%/4)1)}(6% 1)p 1 <’Y£/2+1( 1 )P (] (P 1)(,U ,Y))P/(Z(p 1))

k=i+1

2p+1 2 ,p'Yk —1/o,.— 2p—174 2
+7, [21) ZO T +(2p+1)"(2x ){2p Lpaop§alp + (dL )p/2H>,

where k, {d, : R — Ry | p > 1,1 € {0,1,2}}, {ax, € Ry

‘p Z 17k S {07 7p}}7
{U, eRy | p>1,1€{0,1,2}} are given in (6.6)-(6.36)-(6.34)-(6.39)

respectively.
Proof. The proof is postponed to 6.8.16. O

For the case p = 2 and constant step sizes 7, = v € (0,1/(m+ L)) for all k£ > 1
we can see that the bounds obtained in Theorem 6.20 improve the one in Theorem 6.19
since it implies with (6.12) and Corollary 6.8, the bound Wy(m., 7) < Cy3/4d'/2.

6.7 Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) (Y1, ...,Y})
are conditionally independent Bernoulli random variables with success probability o(87 X;),
where g is the logistic function defined for z € R by o(z) = ¢*/(1+¢%) and X; and B are d
dimensional vectors of known covariates and unknown regression coefficient, respectively.
The prior distribution for the parameter B is a zero-mean Gaussian distribution with
covariance matrix Y. The posterior density distribution of B is up to a proportionality
constant given by

ma(BI((Xi, Yi))1<i<p) o exp (Z YiBTX; —log(1 +# %) — (1/2)/3T21ﬂ> .

=1
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Bayesian inference for the logistic regression model has long been recognized as a nu-
merically involved problem, due to the analytically inconvenient form of the model’s
likelihood function. Several algorithms have been proposed, trying to mimick the data-
augmentation (DA) approach of [AC93] for probit regression; see [HHO06], [FF10] and
[GP12]. Recently, a very promising DA algorithm has been proposed in [PSW13], using
the Polya-Gamma distribution in the DA part. This algorithm has been shown to be
uniformly ergodic for the total variation by [CH13, Proposition 1], which provides an ex-
plicit expression for the ergodicity constant. This constant is exponentially small in the
dimension of the parameter space and the number of samples (it is likely however that
this constant is very conservative). Moreover, the complexity of the augmentation step
is cubic in the dimension, which prevents from using this algorithm when the dimension
of the regressor is large.

We apply ULA to sample from the posterior distribution mg(-|(X;,Yi)1<i<p). The
gradient of its log-density may be expressed as

X;

-1
e

p
Vilog{mg(BI(Xi,Yi)i<i<p)} = > ViX; —
i—1

Therefore — log 7g(+|(Xi, Yi)1<i<p) is strongly convex H11 with m = A1, (¥) and satis-

max
fies H10 with L = (1/4) maxy<i<p{ | Xi|| + At (2)}, Where Apin(X) and Apax () are the
minimal and maximal eigenvalues of ¥, respectively. To assess the proposed algorithm,
we first compare the histograms given by ULA and the Polya-Gamma Gibbs sampling
from [PSW13]. For this, we take d = 5, p = 100, generate synthetic data (Y;)i1<i<p
and (X;)1<i<p, and set g = (X0, [|X;?)(dp) " L. We produce 107 samples from the
Polya-Gamma sampler using the R package BayesLogit [WPS13]. Next, we make 103
runs of the Euler approximation scheme with n = 106 effective iterations, with a con-
stant sequence (V)g>1, V& = 10(kn'/2)~! for all k > 0 and a burn-in period N = n!/2,
The plot of the histogram of the Pélya-Gamma Gibbs sampler for one component, the
corresponding mean of the obtained histograms for ULA and the quantiles at 95% can
be found in Figure 6.1. The same procedure is also applied with the decreasing step
size sequence (x)x>1 defined by v; = v1k~ /2, with 41 = 10(rlog(n)*/?)~!, and for the
burn in period N = log(n), see also Figure 6.1. In addition, we also compare the Pdlya-
Gamma Gibbs sampler, MALA and ULA on four real data sets, which are summarized in
Table 6.12. Note that for the Australian credit data set, the ordinal covariates have been
stratified by dummy variables. Furthermore, we normalized the data sets and consider
the Zellner prior setting ! = (ﬂzp/?))E;(l where Xy = p~ 1 3P | X;X]T ; see [SH11],
[HBJ14] and the references therein. Also, we apply a pre-conditioned version of MALA

and ULA, targeting the probability density 7g(-) o Wﬁ(2¥2-). Then, we obtain samples

from 7g by post-multiplying the obtained draws by Ei(/z. For each data sets, 100 runs of
the Polya-Gamma Gibbs sampler (10° iterations per run), and 100 runs of MALA and
ULA (109 iterations per run) have been performed. Despite the fact that longer runs are
carried out, the computational time of ULA is still two orders of magnitude lower than
the Pélya-Gamma simulator. For MALA, the step-size is chosen so that the acceptance
probability in stationarity is approximately equal to 0.5. For ULA, we choose constant
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1.4f ;
[Jquantile at 95% 14 [Jquantie at 95%
—— Mean of ULA
1.2¢ —Mean of ULA
— Polya—Gamma 1.2k
- —Polya-Gamma
1r i+
0.8F 08
0.6 0.6
0.41 0.4r
0.2r 0.2
. . , . . .
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1 12 14 16 18

Figure 6.1: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler and
ULA. Left panel: constant step size v, = 1 for all £ > 1; right panel: decreasing step size
e =71k~ Y2 for all k > 1

Data set Dimensions Observations p | Covariates d
German credit ! 1000 25
Heart disease 2 270 14

Australian credit? 690 35
Prima indian diabetes? 768 9

Table 6.12: Dimension of the data sets

step-sizes v = 5x 1072 for all the data sets. We display the boxplots of the estimators for
the mean of one component of 8 in Figure 6.2. Note that there are some discrepancies
between the posterior mean estimators obtained using either the DA, MALA and ULA.
These differences are of order 1073 and are likely to be due to accumulations of numer-
ical errors. These differences are negligible compared to the posterior variance of these
estimators, which is of order 107!, These results all imply that ULA is a much simpler
and faster alternative to the Polya-Gamma Gibbs sampler and MALA algorithm.
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Figure 6.2: Upper left: German credit data set. Upper right: Australian credit data set. Lower
left: Heart disease data set. Lower right: Prima Indian diabetes data set

6.8 Proofs

Let (_]:t)tzo be the filtration associated with (By)i>0 with Fp, the o-field generated by
(Yo,Y0).
6.8.1 Proof of Theorem 6.1

We preface the proof by a technical Lemma. Denote by z* the unique minimizer of U.
The generator &/ associated with (P,);>o is given, for all f € C%(R%) and = € R?, by:

A f(x) =—(VU(x),Vf(z)) + Af(z) . (6.40)
Lemma 6.21. Assume H10 and H11.
(i) For allt >0 and x € R?,

d
= z* 2 —2mt | “* /4 —2mt
o |1V =] < fl = 2*P e+~ (1 - e

(i) For allt >0 and x € R,

E, ||V: — 2[?] < dt(2+ L22/3) + (3/2)2 L2 v — 2*> .

Proof. (i) Denote for allz € R4 by V(z) = ||z — x*H2 Under H10 sup¢jo, 7 E.[||Y;]%] <
+oo for all ' > 0. Therefore, the process (V(Yt) (z) — fo AV (Y. )ds) - isa (Ft)t>0-

martingale under P,. Since VU (z*) = 0 and using (6.5), we have

AV (zx) =2(—(VU(z) = VU(z"),x —x*) +d) < 2(—mV(z)+d) . (6.41)

Denote for all ¢ > 0 and z € R? by v(t,2) = P;V(x). Then we have, dv(t,z)/0t =
P,/ V (z). Using (6.41), we get
Jv(t, x)
ot

and the proof follows from the Gronwall inequality.

= PV (x) < =2mP,V(z) + 2d = —2mu(t,x) + 2d ,
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_ (ii) Denote for all z,y € R, Vi(y) = |ly — z||>. therefore the process (V,(Y;) —
V() — [§ #Vy(Y,)ds)is0, is a (F;)iso-martingale under P,. Denote for all ¢ > 0 and

x € R by o(t, ) = PV,(x). Then we get,

9i(t, z)
ot

= P V,(z) . (6.42)

By (6.5), we have for all y € R?,

GVy(y) =2(—(VU(y),y —z) +d) <2 (—mvx(y) +d—(VU(z),y — x>) . (6.43)

Using (6.42), this inequality and that V is positive, we get

9i(t, z)
ot

— PV (z) < 2 <d - /R (VU(2).y ) P, dy)) L (644)

By the Cauchy-Schwarz inequality, VU (z*) = 0, (6.1) and the Jensen inequality, we
have,

B [(VU(2),Y; = 2)]| < [[VU(2)| [Ex [Y; — ]|

<IvU@I [ | [ 1900 - Vo) as

t /
< ViIvU@) - vl ([ B 190 - Vo as)

Furthermore, by H10 and Lemma 6.21-(i), we have

L 0@ Pan| < viz e - ([ B -1 as)

_ _ 1/2
1 —e2mt 5  2Am4e 2 —1
< VAL |z — o (—Qm I = a2+ 22 (dfm)

< L |lo — | (tllz — 2*|| + ¢¥2d'?) | (6.45)

where we used for the last line that by the Taylor theorem with remainder term, for
all s > 0, (1 —e2m%)/(2m) < s and (2ms + e 2™ — 1)/(2m) < ms?, and the in-
equality va + b < v/a + v/b. Plugging (6.45) in (6.44), and since 2 ||z — 2*|| t3/2d"/? <
tllz — 2*||> + t2d, we get

9b(t, z)

o <2+ 3L%t ||z — 2*|)* + L?t%d

Since ©(0,z) = 0, the proof is completed by integrating this result.
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Proof of Theorem 6.1. (i) Consider the following SDE in R% x R%:

{dYt = —VU(Y;)dt + /2dB; , (6.46)

dY; = -VU(Y;)dt +v2dB; ,

where (Yo,?o) is some coupling between p and v. Since p and v are in Pp(Rd) and
VU is Lipschitz, then by [KS91, Theorem 2.5, Theorem 2.9, Chapter 5], this SDE has a
unique strong solution (Y3, Y3):>0 associated with (By)i>0. Moreover since (Y7, Y;)i>o is
a solution of (6.46),

Y, - Y,

[yl = [vo =50 = [ o= T 7 (VU — VU, Ve - s
0

which implies using (6.5) and Gronwall’s inequality that

e < o 5l o [

p ~_ ||P
ds < HYO—YOH et

For all ¢ > 0, the law of (Y},fft) is a coupling between pP; and vF;. Therefore by
definition of W,,, W,(uP;,vP;) < E[||Y; — Y;||P]'/? showing (i).

(i) Set V(z) = ||z — z*||*. By Jensen’s inequality and Lemma 6.21-(i), for all ¢ > 0
and t > 0, we get

7(VAe)=nP(V Ac)<a(BV Ac) = /ﬂ(dx) oA {Hw ey S e—2mt)}

d

m
<7(VAc)e 2™+ (1—e?)d/m .

Taking the limit as t — 400, we get m(V A ¢) < d/m. Using the monotone convergence

theorem, taking the limit as ¢ — 400, we finally obtain (6.7).

]

6.8.2 Proof of Theorem 6.2

Note that the proof is trivial if p < n. Therefore we only need to consider the case p > n.
For any v € (0,2/(m + L)), we have for all x € R%:

[y =1 R, dy) = fl2 = 4 VU @) = 2| + 294

Using that VU (z*) = 0, and (6.4), we get from the previous inequality:

2
[y = PRy (o dy)
2
< _ %2 s _ *\ 12
<=l =21+ (7= =22 ) IVU@) - VUG + 29d
< (=) llz = 2*|* + 2vd ,
where we have used for the last inequality that v; < 2/(m + L) and (y%)x>1 is nonin-

creasing. Then by definition (6.10) of Q%* for p,n > 1, p < n, the proof follows from a
straightforward induction.
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6.8.3 Proof of Theorem 6.3

We preface the proof by a Lemma.

Lemma 6.22. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
v <2/(m+ L) andp €N, p>1. Then for all uy,vy € ng(Rd) and £ >n>1,

Y p
WQQ;)(MOQZ7£aVOQZ7£) < {H (1- I-Wk)} W;ﬁ(ﬂo,vo) ;

k=n
Proof. Let (y be an optimal transference plan of o and vy and (Zj)r>1 be a sequence of
i.i.d. d-dimensional Gaussian random variables. We consider the processes (X}, X2)>0
with initial distributions equal to (p and defined for k£ > 0 by

Xhyy = X = VUKD + V2 Zrpn G=1,2. (6.47)
Using (6.47), we get for any p > n > 0. WQQZI;(MOQ?/’K,VOQ?{’K) <E {HX} — XZZH%} and
(6.4) implies for k > n — 1,
2 2 2
[t = k| = [k = X+ s VUKD - UKD

= 2Yntk <X11 - Xl%’ VU(X%) - VU(XI%)> < (1 = FYntks1) HXli - X/?HZ :

Therefore by a straightforward induction we get for all £ > n,
l
xt = xi] < T = w6 - X
k=n

O

Proof of Theorem 6.3. Let u € ng(Rd) and p > 1. It is straightforward that for all
n >0, uRl € Pop(RY). Then, by Lemma 6.22 is a strict contraction in (P, (R?), Way,)
and there is a unique fixed point 7, which is the unique invariant distribution. Equa-
tion (6.12) follows from Lemma 6.22. O

6.8.4 Proof of Theorem 6.4

We preface the proof by a technical Lemma.

Lemma 6.23. Assume H10 and H11. Let ('Yﬁ)kzl be a nonincreasing sequence with
71 < 1/(m+ L). Let ¢y € Pa(RY x RY), (Y3, Y )0 such that (Yo, Yo) is distributed
according to (o and given by (6.13). Then almost surely for alln >0 and e > 0,

2

_ 2 __
HYFn+1 ~Yr || <{1=9n41 (8 —26)} HYFn -Yr, (6.48)
Fn+1
+ @+ 297 [T IVUN) - VU, ds
7 - 2 P
E’Tn {HYF"H - YFn+1 } < {1 - Tn+1 (“ - 26)} Han - YFn (6'49)

L2921 (1/(46) + ) (24 + Lo [V, — 2 + dL*9241/6)
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Proof. Let n >0 and € > 0, and set ©,, = Y, — Yr,. We first show (6.48).
By definition we have:

2

Fn«b»l _ _
€l = u@n||2+|| [ v - U ds| ~29n (00, VU0, - VUTE,)

_ 2/;"“ (O, {VU(Ys) = VU(Ye )P ds . (6.50)

Young’s inequality and Jensen’s inequality imply

Using (6.4), v1 <1/(m + L) and (y%)x>1 is nonincreasing, (6.50) becomes

2

— 2
<292, [VUOR,) - VU(Yr,)

/Fn+1 [VU(Y) - VU (¥r,)} ds

I1n-§—1
2941 / IVU(Y,) — VU(Yr,) |2 ds .

Fn«b»l

1©nr1ll* < {1 = Yns1s} €% + 2%+1/F IVU(Ys) = VU(Yr,)|* ds

n

Tt
—2/F (O, {VU(Ys) = VU(Ye )P ds . (6.51)

Using the inequality | {a,b) | < e||la||?> + (4¢)~1||b]|? concludes the proof of (6.48).
We now prove (6.49). Note that (6.48) implies that

B [|0041]] < {1 = Y1 (k — 26)} O3]

Tht1
+ @+ 297 [T B [IVU) - VUOR,)I?] ds . (652)

n

By H10, the Markov property of (Y;);>0 and Lemma 6.21-(ii), we have

Tyt
[ e 1oy - vuen, )P ds

n

< L2 (dy2y + ALy 12+ (1/2) L2954 Yo, — 2)17)
The proof is then concluded plugging this bound in (6.52) . O

Proof of Theorem 6.4. Let (p be an optimal transference plan of pg and 7. Let (Y, ?t)tzo
with (Yp,Y() distributed according to (o and defined by (6.13). By definition of Ws

— 2
and since for all ¢ > 0, « is invariant for P, W3(uoQ",m) < E, [HYFn -Yr, }

Lemma 6.23-(6.49) with € = /4, a straightforward induction and Lemma 6.21-(i) imply
foralln >0

Ee, [Hypn ~ ¥,

2] < D (7)Eq, [HYO - ?Om +An(v) | (6.53)
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(1)

where (un ' (7))n>1 is given by (6.14), and

n

An(y) Z L2 {571+ 3 (2d + dL

. o 11
i

— KY/2)

n

Pt} TT = m/2)

k=i+1

with 3
5 = e 2By [V — 7] + (1 — e ) (d/m) (6.54)

Then the proof follows since Yj is distributed according to m and by (6.7), which shows
that for all s € {1,--- ,n}, §; < d/m. O

6.8.5 Proof of Corollary 6.5

Lemma 6.24. Let (yx)r>1 be a sequence of nonincreasing real numbers, @w > 0 and
v <@l Then foralln >0,j>1and £ €{1,...,n+ 1},

n+l n+l on+l 1 e
ST O—wy) v < [ —m) Y A + -
i=1 k—=it+1 ) i—1 w

Proof. Let £ € {1,...,n+ 1}. Since (y4)x>1 is non-increasing,

n+1l n+1 {—1 n+1 n+1 n+l1
ST Q== => [ @ —=w) ’YHFZ T Q=)
=1 k=i+1 i=1 k=i+1 i=0 k=i+1
n+1 n+1 n+1
=110 ==n) Z% +7 2 I (- @)
1={ k=i+1
n+1 —1

< H 1—zxﬂyk nyl

O

Proof of Corollary 6.5. By Theorem 6.4, it suffices to show that uﬁﬂ) and u,(f), de-
fined by (6.14) and (6.15) respectively, goes to 0 as n — +oo. Using the bound
1+t <elfort eR,and lim, , I, = +00, we have lim, ug) = 0. Now to
show that lim, 4~ u,(f) = 0, a sufficient condition since (x)r>0 is nonincreasing, is that
limy, s o0 Doreq [Tieiyr (1 — Kv%/2) 72 = 0. But since (7x)g>1 is nonincreasing, there ex-
ists ¢ > 0 such that ¢I';, <n — 1 and by Lemma 6.24 applied with £ = |cI',,| the integer
part of cI'y;:

el ]—1

Z H (1 — ky/2) 72 < 29|er, |/ K+ exp (—/d’n(l —I’#FLCF 1) ) Z vi . (6.55)
i=1 k=i+1
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Since limg_, ;o0 7& = 0, by the Cesaro theorem, lim, o n I, = 0. Therefore since

limy, 400 I’y = +00, limn_>+oo(1“n)*11“tcpn | = 0, and the conclusion follows from com-

bining in (6.55), this limit, limg 100y = 0, lim, 10y = 400 and ZZLS;"J*I v <

Y1 Fn . O

6.8.6 Proof of Corollary 6.6

Since by Theorem 6.3, for all z € R¢, (5xR’3/)n20 converges to 7, as n — 00 in
(P2(R%), W3), the proof then follows from Theorem 6.4 and Lemma 6.24 applied with
0=1.

6.8.7 Proofs of Theorem 6.7

Lemma 6.25. Assume H10, H11 and H12. Let (v;)k>1 be a nonincreasing sequence
with i1 <1/(m+ L). and (o € Po(R x RY). Let (Y, Y¢)i>0 be defined by (6.13) such
that (Yo,Y) is distributed according to (y. Then for alln >0 and € > 0, almost surely

2

E7Tn (6.56)

HYFn+1 - YPn-H

2 —
| <01 = 2 (e = 20} |5, - T,

+ 981 {d@L% + (L2124 1 L4) + 920 D /6) + LA /3 + ) [V, — 21}

Proof. Let n >0 and € > 0, and set ©,, = Y, — Y. Using It0’s formula, we have for
all s € [T, T'pt1),

VU(Y,) = VU(Yy,) = / {V2U(YU)VU(YU) + &(VU)(YU)} du+ /2 : V2U(Y,)dB, .

(6.57)
Since ©, is Fr,-measurable and ( f; VQU(Yu)dBu)se[O7Fn+1] is a (Fs)sefo,r,.,-martingale
under H10, by (6.57) we have:

(B [(©,, VU (Y,) = VU (Y, )|

_ K@n,ﬂzﬁn U {V2U(YU)VU(YU) + &(VU)(YU)} du} >‘
Combining this equality and | {(a,b) | < €||al|? + (4¢)~1||p||* in (6.51) we have

I1n+1
E7en [10n41]1%] < {1 = vns1(s — 26} [On ] + 291 BT VF IVU(Y.) = VU (¥r,)? ds]

_1 I1n+1
+ (2¢) /

n

2
ds .

(6.58)

En [ / {VU)VUN) + (1/2EVU)Y)) du}
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We now separately bound the two last terms of the right hand side. By H10, the Markov
property of (Y;)i>0 and Lemma 6.21-(ii), we have

1—‘n+1
[ e (1o - vU o) ds
< L2 (dy2y + ALy 12+ (1/2) L2954 Yo, = 2*)7) - (6.59)

Also by (6.17), we get using VU (z*) = 0, Jensen’s inequality and Fubini’s theorem,

Ad:ef I1n-§—1
I

< [ s-ra) [ B [[{Tumavm) + 0/ Eeu)m))

2
ds

E/Tn [ : V2U(Y,)VU(Y,) + (1/2)5(VU)(Yu)du}

HQ} duds

) |Avo) )

< Q/F"“(s —T,) / EFrn U‘VQU(YU)VU(YU)

n

2
] duds
Cnt1 s 9 ~
<9 (s — Pn)L4/ E70 [V — 2*]?] duds + 42, ,dL2 /6 (6.60)
Thn I'n
By Lemma 6.21-(i), the Markov property and for all t > 0, 1 — et < ¢, we have for all
ERS [Fnarn+1]a
S
/ B [V — 2% du < (2m) (1 = eI ¥y, — 2** + d(s — Tw)? .
I'n

Using this inequality in (6.60) and for all t >0, 1 —e™! <t , we get

A< (2L%041/3) Ve, — a* | + Lldypia /2 + i1 d L2 6 .
Combining this bound and (6.59) in (6.58) concludes the proof. O
Proof of Theorem 6.7. The proof of the Theorem is the same as the one of Theorem 6.4,
using Lemma 6.25 in place of Lemma 6.23, and is omitted. O

6.8.8 Proof of Theorem 6.10

Our main tool is the Gaussian Poincaré inequality [BLM13, Theorem 3.20] (see also
[BGL14, Theorem 4.1.1]) which states that if Z = (Z1,...,Zy) is a Gaussian vector with
identity covariance matrix, then Var {g(Z)} < || gHiip. The Gaussian Poincaré inequality
may be applied to R, defined by (6.9) noticing that for all y € R, R, (y,-) is a Gaussian
distribution with mean y — yVU (y) and covariance matrix 2 I,.

Lemma 6.26. Assume H10. Let g : R — R be a Lipschitz function. Then for all
v>0,y€R?,

0< Ry {g(-) = Ryg(y)}’ () = /Rw(y,dZ) {9(2) = Ryg(y)}* < 2vlgll3;, -
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To go further, we decompose 72 (f) —E.[#Y (f)] as the sum of martingale increments,
N+n—1
AN (N-Balt (D)= Y {2 ()] — Bge |25 ()] J+EDY [#Y (1) -EalaY ()],
k=N

(6.61)
where (G, )n>0 here is the natural filtration associated with Euler approximation (Xy,)n>0.
This implies that the variance may be expressed as the following sum

N+n—1

var, {#(1} = 3 B, |(B8 [ ()] - B [22())’]

k=N

+E, (8 [V (0] -l ()] - (602

Because 7Y (f) is an additive functional, the martingale increment EJH+1 {fr,]f ( f)} -

Egk {ﬁ'év(f)} has a simple expression. For k=N +n—1,..., N + 1, define backward in
time the function
Ny wp = Wi f (@) + Ry N () (6.63)

where <I>£XN+” P X N4n <I>n7N+n(acN+n) = w]]\\;Jrn?nf(xNjLn). Denote finally
U ran = Ry @0 vy () (6.64)
Note that for k € {N,..., N +n — 1}, by the Markov property,

DN i1 (K1) = Ry, @y (Xe) = B 70 ()] B |7 (1) (6.65)

and UN(Xy) = EI9N [ﬁflv(f) With these notations, (6.62) may be equivalently ex-
pressed as )

Var, {72 (f)} = > E, :RW{@kam-)—RW@%H(X@}Q(X@}
+ Var, {08 (Xn)} . (6.66)

Now for k = N+n—1,..., N, we will use the Gaussian Poincaré inequality (Lemma 6.26)
to the sequence of function (I)g,kﬂ to prove that x — R,, | {(I)g,kntl(')_R%H <I>nN7k+1(x)}2(x)
is uniformly bounded. It is required to bound the Lipschitz constant of @ﬁ g - For
ke {N,...,N+n—1} and for all y,z € R?, we have

N—+n

@V ki1 () = N1 ()] = [l {F @) — F@}+ Y zn{Q§+2’if(y)—Qﬁ*z’if(Z)}‘
1=k+2
(6.67)
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Lemma 6.27. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
1 < 2/(m+ L). Then for all Lipschitz functions f : R =R and £ >n > 1, Qﬁfl’zf is a
Lipschitz function with

|ozts

¢
H (1- "‘VY/lc)I/2 HfHLip :
k

=n

Lip —

Proof. Recall that for all p,v probability measures on R? and p < g, Wy(p,v) <
W(p,v). Hence, for all y,z € R?, the Monge-Kantorovich theorem (6.3):

QA () = QA ()] < 1 iy Wa (8, Q2% 6:Q0) < | Fllsy Wal6,Q5°,8.Q2)

The proof then follows from Lemma 6.22 with p = 1. U

Lemma 6.28. Assume H10 and H11. Let (;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let N >0 and n > 1. Then for all y € R?, Lipschitz function f and
kEe{N,...,N+n—1},

2
2 _
R’Yk+1 {(I)n k+1( ) R’Yk+1 (I)n k—l—l( )} (y) < 87k+1 ”f”Lip (KPN+27N+n+1) 2 5
where @ﬁkH is given by (6.63).

Proof. By (6.67), @ng Ziv Tl W@ Y HQk+2 if ‘ . Using Lemma 6.27, the bound
(1-t)/2<1—t/2forte [0 1] and the definition of w ", given by (6.21), we have

o2 < 16y 3 s TT (1= p2)

i=k+1 j=k+2

N+n ) i+1
< 2| fllpip (RT N2, N4n1) ™ Y { II Q=ry/2)—- I - H’Yj/z)}

i=k+1 | j=k+2 j=k+2

< 2| fllip (KT N42,N4nt1) "
Finally, the proof follows from Lemma 6.26. U

Also to control the last term in right hand side of (6.66), we need to control the

variance of U (Xy) under & QV But similarly to the sequence of functions <I>n s 2
is Lipschitz by Lemma 6.27 since for all y, z € R%, we have
N+4n ] )
() - W) = | S Wl @) - @A)} (6.68)
i=N+1

Therefore it suffices to find some bound for the variance of g under 6,Q%? , for g : R? - R
a Lipschitz function, y € R? and ~ > 0, which is done in the following Lemma.
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Lemma 6.29. Assume H10 and H11. Let (7;)k>1 be a nonincreasing sequence with
v <2/(m+L). Let g : RT — R be a Lipschitz function. Then for alln,p > 1, n < p
and y € R?

0< [ Qa2 {o2) - Qo) < 26 ol

where Q7P is given by (6.10).

. Gr—
Proof. By decomposing ¢(X,) — Eg" [9(Xp)] = i:nﬂ{Egk [9(Xp)] — EylC ' [9(Xp)]}
and using Egk 9(Xp)] = Q’f/+1’pg(Xk), we get

Varg (9%} = 3 B9 (B (B9 lo(x) - B9 ()|

B9 [ R, {@51790) - oy Q5 g ()|

2
Lemma 6.26 implies Varg" {9(Xp)} <2 Zi:yH_l Yk HQ’;JFLPQHL. . The proof follows from
ip
Lemma 6.27 and Lemma 6.24, using the bound (1 —¢)1/2 <1 —¢/2 for t € [0,1]. O

Corollary 6.30. Assume H10 and H11. Let (;)k>1 be a nonincreasing sequence with
y1 <2/(m + L). Then for all Lipschitz function f and x € R,

_ 2 _
Var, {‘I'r]:[(XN)} < 8k7° ||f||Lip FJ\/2+2,N+n+1 )

where WY is given by (6.64).

Proof. By (6.68) and Lemma 6.27, ¥ is Lipschitz function with

N
n

N+n
N || AN+1,
Lip = Z wiﬁ"HQ“er f
PN

Lip )

Using Lemma 6.27, the bound (1 —¢)1/2 < 1 —1t/2 for t € [0, 1] and the definition of w%
given by (6.21), we have

N—+n i
N N
o], <0l > @l T (—=r/2)
P i=N+1 j=N+2

N+n i i+1
< 2| fllp (KON 42N nt1) 0 D { IT Q=ry/2- ] (1—ff7j/2)}

i=N+1 | j=N+2 j=N+2

< 2| fllLip (KT N42,Nng1)

The proof follows from Lemma 6.29. U
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Proof of Theorem 6.10. Plugging the bounds given by Lemma 6.28 and Corollary 6.30
in (6.66), we have
N _ 2 _ P
Var, {3 (£)} < 8572 | f I { TN o v DN N e + KT TR 2 v
—2 ) 1|2 -1 -2 -1
< 85 || fIILip {FN+2,N+n+1 N o v (W41 + K )} :

Using that yn4+1 < 2/(m + L) concludes the proof. O

6.8.9 Proof of Theorem 6.11

Let N >0, n > 1, 2 € R? and f be a Lipschitz function. To prove Theorem 6.11,
we derive an upper bound of the Laplace transform of #Y(f) — E,[#Y(f)]. Using the
decomposition by martingale increments (6.61)

E, [ek{frﬁ (f) =Bl (f)]}]
=E, lexp (A{ng [ﬁjj ( f)} — B[N ()]} + Nin:_l A{EZH Wv ( f)} _ g9 WV ( f)} }ﬂ .
k=N

Now using (6.65) with the sequence of functions (@gk) and VY given by (6.63) and
(6.64), respectively, we have by the Markov property

E, [ A (B O]

N+n—1

N _ N

_E, lemn R R | S (A{@ﬁkﬂ(.)_leqﬁﬂl(xk)})}(xk)]
k=N

(6.69)

where R, is given by (6.9) for v > 0. We use the same strategy to get concentra-
tion inequalities than to bound the variance term in the previous section, replacing the
Gaussian Poincaré inequality by the log-Sobolev inequality to get uniform bound for

R“/lc-o-l{exp()‘
{@T]Xk+1(-) - R%+1<1>7]Xk+1(Xk)})}(Xk) wrt. X, forall k € {N+1,..., N +n}. Indeed

for all € R%, recall that R, (z,-) is a Gaussian distribution with mean z — VU (z) and
covariance matrix 27 1I;. The log-Sobolev inequality provides a bound for the Laplace
transform of Lipschitz function g(Z) — R,g(x) where Z is distributed under R,(z,-).

Lemma 6.31 ([BLM13, Theorem 5.5]). Assume H10. Then for all Lipschitz function
g,v>0, 2R and X > 0,

/Rfy($a dy) {exp (Mg(y) — Ryg(@)D} < exp (112 [lg]3,,) -

where R is given by (6.9).
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We deduced from this lemma, (6.67) and Lemma 6.27, an equivalent of Lemma 6.28
for the Laplace transform of (I>nN7k+1 under 0, R forke {N+1,...,N +n} and all

y € R,

Vk+1

Corollary 6.32. Assume H10 and H11. Let (;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let N >0 and n > 1. Then for allk € {N+1,...,N +n}, y € R?
and X > 0,

Ry, {oxp (M®N1() = Rop N1 ()}) } ) < exp (40002 £ (B0N 2,800m41)72)
where @nN’k is given by (6.63).

It remains to control the Laplace transform of WY under 5$nyv , where 593nyv is
defined by (6.10). For this, using again that by (6.68) and Lemma 6.27, U% is a Lipschitz
function, we iterate Lemma 6.31 to get bounds on the Laplace transform of Lipschitz
function g under ngé(y, ) for all y € R? and n,¢ > 1, since for all n,¢ > 1, Qﬁj’zg is a

Lipschitz function by Lemma 6.27.

Lemma 6.33. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let g : R = R be a Lipschitz function, then for all n,p > 1, n < p,
y € R and X > 0:

Qur {exp (Ma() = Q0Pg()}) } () < exp (5722 |gllFs,) (6.70)
where Q) , is given by (6.10).
Proof. Let (X,)n>0 the Euler approximation given by (6.2) and started at y € RY. By

decomposing g(X,) — Ef" [9(X,)] = Sh_, 1 {EJF [9(X,)] — Egkil [9(X,)]}, and using
Ey* [9(Xp)] = Q51 Pg(Xy), we get

ES [exp (A 9(X,) — ES [9(X,)1})]

G | T B9 [exp (A{ESF [o(X,)] - ES [g(Xpn})}]
| k=n-+1

p
=Ef | T[] Ryoem (M@ 179() = R, Q5 7g(X0-1) ) <Xk1)] .
Lk=n+1

By the Gaussian log-Sobolev inequality Lemma 6.31, we get

Eg” [exp ()\ {Q(Xp) - Eg” [Q(Xp)]})} < exp ()‘2 i Tk HQs—FLp‘q iip) '
k=n+1

The proof follows from Lemma 6.27 and Lemma 6.24, using the bound (1—t)"/2 < 1—t/2
for ¢t € [0,1].
O
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Combining this result with (6.68) and Lemma 6.27, we get an analogue of Corol-
lary 6.30 for the Laplace transform of W)

Corollary 6.34. Assume H10 and H11. Let (v;)k>1 be a nonincreasing sequence with
v <2/(m+L). Let N >0 and n > 1. Then for all X > 0,

E,; {e’\{‘w(){")*h [qzﬁ(xn)]}} < exp (45_3)\2 Hf”iip F]_\/2+2,N+n+1) )

where WY is given by (6.64).

The Laplace transform of 72 (f) can be explicitly bounded using Corollary 6.32 and
Corollary 6.34 in (6.69).

Proposition 6.35. Assume H10 and H11. Let (vy)r>1 be a nonincreasing sequence
with v1 < 2/(m + L). Then for all N >0, n > 1, Lipschitz functions f : R — R and
A>0:

#N(f)—Ee[#] - — 3
E:}: |:e)\{ n (f)—Ez 7, (f)]}} < exp (45 2)\2 ||inlp FN&.Q,N+n+1u§V7)n(7)) ,
where uﬁ)n(*y) is given by and (6.23).
6.8.10 Proof of Theorem 6.14
We preface the proof by the following preliminary result.

Lemma 6.36. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
y1 <1/(m+ L). Then for all z,y € R? and n € N,

W3 (8:Q%, 8y Pur) < ul) [l = ylI* +0n(y)

2

n,

where 9,(y) is equal to ¥
(6.27) otherwise.

)O(y) given by (6.28), if H12 holds, and to ﬂg{%(y) given by

Proof. The proof is a straightforward application of Lemma 6.23 and Lemma 6.25, as
appropriate. ]

Proof of Theorem 6.14. We use the following decomposition
5$PFP - 59:@2 = 5$PFP - 5J:Qf1y7nPFn+17p + 5fo1y7nPFn+1’P + 59:@2 .

By the triangle inequality, we get

i, 0. < P 0.0} s,

5. { Q7 = Pry,

(6.71)
We bound the two terms in (6.71) separately. For the first one, using (6.24), Lemma 6.36
and the Cauchy-Schwarz inequality, we have

[{8ePrsn = 8037} Proa,

+
TV

< (Un(@)/ (4T 1)) "2 (6.72)

TV
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where 9, (x) is equal to 79512)0(1') given by (6.28), if H12 holds, and to 79511)0(35) given by
(6.27) otherwise. For the second term, by [DM15a, Equation 15] (note that we have a
different convention for the total variation distance) and the Pinsker inequality, we have

2 p
6.Qy{Quttr — P, | <270 p3 {mﬁ:/s) [ IVUEIP @ @) + dw?} :
=n+1

By H10 and Theorem 6.2, we get

’ 2

sy {Qutr —pr )

TV
p

<2922 Y {3 [ IVUG) - VUG Qs e d2) + it

k=n-+1

p
<27°0% {(72L2/3)Q1,k—1($)+d71%} :
k=n+1

Combining the last inequality and (6.72) in (6.71) concludes the proof. O

6.8.11 Proof of Theorem 6.15

Let v € (0,1/(m + L)) and p € N*. For ease of notation, let n = n(vy), and assume for
the moment that p > 2". Consider the following decomposition

0 Py — 6, RY = {51P(p72n)7 - 51R?;72n} Pony + 61’R271 {Py — Ry}

ok—1

n
+ >8R  Pyeay = B2 Py
k=1

Therefore using the triangle inequality, we have

5Py — 5xR§HTV < H{(SJCP(,,_W)v - 5xR§_2"} Py,

n
+2.
k=1

_l’_

’TV 5$RIV)_1 Py - RV}HTV

5$]%€_2k {}kaly —-]%%kil}‘Fbkfly

]TV . (6.73)

We bound each term in the inequality above. First by (6.24) and Lemma 6.36, we have

{8 P2y — 6B} P || < G o)/ (2202, (6.74)

v

where ¥,_9n o(z) is equal to 19&2,2)(3:) given by (6.28), if H12 holds, and to 19&1,2)(3:) given by
(6.27) otherwise. Similarly but using in addition Theorem 6.2 and the Cauchy-Schwarz
inequality, we have for all k € {1,--- ,n},

0u R Pycay = B2} Py,

|y < O pon @)/ (22 (6.75)
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where Jgr-1 on () is equal to 9 (x) given by (6.28), if H12 holds, and to oY (x)

2k—1,2n 2k—1,2n
given by (6.27) otherwise. For the last term, by [DM15a, Equation 15] and the Pinsker
inequality, we have

5. R P — R <2302l (33) [ IVUG)12 R @, dz) + a2\
TE Ly Y Y ™V — Y R ¥ ) 8

By H10 and Theorem 6.2, we get

n__ 2 —
5,R¥ (R, — PW}HTV <2732 {(*L2/3)e1 1 (2) + dr?} (6.76)

Combining (6.74),(6.75) and (6.76) in (6.73) concludes the proof. For p < 2" the bound
also holds using the same reasoning and the convention that for ny,n9 € N, ny > no,
Uny mo s equal to 0.

6.8.12 Proof of Theorem 6.16

The strategy is nearly the same as in the proof of Theorem 6.10. However as f is no
longer Lipschitz, we cannot use Lemma 6.27. But using the following result we observe
that QQL’Zf for n,£ > 1, n < £, is still Lipschitz.

Theorem 6.37. Assume H 10 and H 11. Let (y;)rk>1 be a nonincreasing sequence
satisfying v1 < 2/(m + L). Then for all z,y € R* and n,¢ > 1, n < ¢, we have

10.Q0 — 6,0 lrv < 1= 2@ (— [}z — yl| /(8 An0)?)
where Ay, ¢ is given in (6.32).
Proof. By (6.4) for all z,y and for all £ > 1, we have

lz = VU (z) =y + uVU )| < (1= m9)'? o = y]| -

Let n,£ > 1, n < £, then applying Theorem 6.48, we get

16.Q0" = 6,0 lrv <1 - 28 (— [}z =yl /(8 A0 0)?) |

where
l 7

An,Z:Z’Yi{H(l_ﬁ’Yj)} :

i=n j=n
To conclude the proof, we now show that ]Xmg = Ay 0

[ i -t
/~\n7g —— Z (1—=(1—k%)) {H(l — /ﬁ}’)’j)}

j=n

o (i 1y (i !
=x! Z{H(l—/ﬂj)} —Z{H(l—"ﬂj)} =N

i=n | j=n i=n |Jj=n
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Corollary 6.38. Assume H 10 and H 11. Let (y;)k>1 be a nonincreasing sequence
satisfying y1 < 2/(m + L). Then for all f € Fy(RY) and £,n > 1, n < ¢, ny"gf s a
Lipschitz function with

£ 1/2
@ s, < 207 le/AE
where Ay, ¢ is given in (6.32).
Proof. Let f € Fp(R?) and £ > n > 1. For all z,y € R? by definition of the total
variation distance and Theorem 6.37, we have
Q2 F(x) = Q2" ()] < 20 Fllooll0r@i = 0,Q |1y
< 2| flloo {1 =28 (= Iz — yll /8 A 0)?) }

Using that for all s > 0, 1/2 — ®(—s) < (2r1)"'/2s concludes the proof. O

Let N >0, n > 1and f € Fp(R?). We will use again the decomposition of
Var, {fr,ﬁv (f )} given in (6.66). We can not directly apply the Poincaré inequality since
the functions <I>nN7k, for k€ {N+1,--- , N+n} defined in (6.63), have a component which
is not Lipschitz continuous. But by Corollary 6.38 the other components are Lipschitz

continuous and we just need to isolate the non-Lipschitz term to have a counterpart of
Lemma 6.28 for f € Fy(R?).

Lemma 6.39. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
71 < 2/(m+L). Let N >0 andn > 1. Then for all y € RY, f € Fyp(RY), and
ke {N,...,N+n—1},

Ry, {®N1() = Ry, O ) <217 r )~
Vh+1 n,k-+1 ) Vet1 n,k+1(y) (y) < V2T N2 N4nt1
2
N+n 12
+ 8k lf11% Z wzgYn/Ak—f—Z,i 1
i=k+2
where @nN,kH is given by (6.63) and Apio; in (6.32) for alli € {k+2,--- ,N +n}.
Proof. Let k € {N,...,N +n —1}. By definition (6.67), @nN’k = w,]gvﬂmf + @nj\{k, where

énNk = 25\21212 wgynQﬁ‘FQ’if. Using that f is bounded and the Young inequality, we get

N N 2 9
Ry {‘I)n,k+1(‘) - Rw+1‘1>n,k+1(y)} () < 2%k+42 /| f lloo TN 42,8 1n+1)

2
+ 2R, {®N () = Roy @0 (0) ) () -

In addition by Corollary 6.38, we get

N-+n N+n 1/2
z N N || Hk+2,i N
|8 < 3T Wl @] <20fl Y Wl
P ke e =k 42

Finally, the proof follows from Lemma 6.26. U
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It remains to control the variance of ¥ under 51Q]7V , where 5IQ§V is defined by

(6.10) and @Y is given by (6.64). But using again that by (6.68) and Corollary 6.38,
WX is a Lipschitz function and we have the following result, which is the counterpart of

Corollary 6.30.

Lemma 6.40. Assume H10 and H11. Let (;)k>1 be a nonincreasing sequence with
1 <2/(m+L). Let N >0 and n > 1. Then for all x € R? and f € Fy(RY),

2
N+n
_ 1/2
Var, { WX (Xx)} < 8« leHio{ > wfﬁl/AN/H,i} :

i=N+1
where WY is given by (6.64) and Any1,; in (6.32) for alli € {N +1,--- ,N +n}.
Proof. By (6.68) and Corollary 6.38, WX is Lipschitz function with

N+n N—+n 1/2
j N
H‘I’nN L S Z nyn HQ]yVH’Zf ‘Li <2 fllo Z Wi/ AN 1 -
Pi=Nt1 P i=N+1
Finally, the proof follows from Lemma 6.29. U

Proof of Theorem 6.16. The proof follows from combining the bounds given by Lemma 6.39
and Lemma 6.40 in (6.66). O

6.8.13 Proof of Theorem 6.17

For the proof, we will use the decomposition (6.69) again but combined with the decom-
position of @T]:f k1 into a Lipschitz component and a bounded measurable component as
it is done in the proof of Lemma 6.39.

Lemma 6.41. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let N >0 andn > 1. Then for allk € {N +1,...,N +n}, y € R¢,
f € Fy(RY) and X > 0,

Ry, {exp (MO () = By @i )}  0)
) N+n 12 2
< exp ¢ Al flloohr2(Tnt2,N4n+1) " + 491 A% | fIlo Z wi]?;z/Ak-i-Q,i )
i=k+2
where ®, ., is given by (6.63) and Ayyo; in (6.32) for alli € {k+2,--- N +n}.
Proof. Let k € {N,...,N +n —1}. By definition (6.67), <I>7]Xk = w,JCV_FLnf + iﬁ{k, where

énNk = Zf\i}ziz M%Qﬁ‘”’if. Using that f is bounded and the Young inequality, we get

R’Yk+1 {exp ()‘{CI)nN,kJrl(') - R“/lc-o-lq)nN,kJrl(y)})} (y)
< eA||f||OO'Yk+2(FN+2,N+n+1)—QRWCJA {exp ()\{‘i)nN,k+1() _ R’ykﬂ(i)nN,kJrl(y)})} (y)
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In addition by Corollary 6.38, we get

N+ N+n 12
TN k+2 N
| < >0 Wl @] <20fl Y Wl
P _k Lip i=k+2
Finally, Lemma 6.31 concludes the proof. O

It remains to control the Laplace transform of W under (LCQJVV , where 59@@]7\[ is defined
by (6.10). For this, using again that by (6.68) and Corollary 6.38, W) is a Lipschitz
function. Therefore Lemma 6.33 shows the following result which is the analogue of
Corollary 6.34 for measurable bounded function f.

Lemma 6.42. Assume H10 and H11. Let (7;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let N >0 andn > 1. Then for all z € R, f € Fy(RY) and A > 0

2
N+n
E, [N 0Bl OO0 < exp { 47102 ufuio( > inn/A}V/il,i) ,
i=N+1

where WY is given by (6.64) and Any1,; in (6.32) for alli € {N +1,--- N +n}.

The Laplace transform of 7Y (f) can be explicitly bounded using Lemma 6.41 and
Lemma 6.42 in (6.69).

Proposition 6.43. Assume H10 and H11. Let (y)r>1 be a nonincreasing sequence
with y1 < 2/(m 4 L). Then for all N >0, n>1, z € RY, f € Fy(R?) and A > 0:

E, {e/\{ﬁﬁ(f)—lEx[frﬁ(f)}}} < exp ()‘HfHOO(FN—i—Z,N—HH—l) + 4)\2 HfH uNn(PY)) ’

where ux‘})n(fy) is defined in (6.33).

Proof of Theorem 6.17. Using the Markov inequality and Proposition 6.43, for all A > 0,
we have:

Py [7Y(£) > Balitl ()] +7] < exp (=3 + Al flooTnr2nn1) "+ 402 [ FIZ 6l () -

Then the result follows from taking A = (r — || fll.o (CNt2.N1nt1) ")/ 8 FI% uNn( ))-
U

6.8.14 Proof of Proposition 6.18
Lemma 6.44. Assume H10 and H11 and let p € N, p > 1.

(i) For allt > 0 and z € RY, E, {HY} — x*HQp} <SP appe Mt |2 — 2*||** where
for k€ {0,--- ,p}, ar,p is given in (6.34).



190 6.8. Proofs

(i) For allt >0 and v € R, E, {HYt - x\|2p} < 7ok p(@)tFP where for k= 0,1,2,
arp: R — R are defined in (6.36).
Proof. (i) Denote for all z € R? and p > 1, by V,(z) = ||z — 2*[|*’. The proof is by

induction on p > 1. Lemma 6.21-(i) shows that the result holds for p = 1. Assume it is
true for p — 1, p > 2. We have using H11 and VU (z*) = 0,

V() = =2pla = " PPVU ()2 — o) + 2p(d +2(p = D) o — 2" |*F7Y
< —2pm ||z — 2| + 2p ||z — PPV (d 4+ 2(p — 1)) .

By [MT93b, Theorem 1.1], denoting by v,(t,z) = P;V,(x), we have

vp(t,z) < Vp(z) — 2pm /Ot vp(s,z)ds +2p(d +2(p — 1)) /Ot vp—1(s,x)ds .

By Gronwall’s inequality, we get for all z € R% and ¢ > 0,

t

ot2) < V(@) 4 2p(d +2(p — 1)) [ eI, (s, 2)ds

Using the induction hypothesis concludes the proof.

(ii) The proof is made by induction on p. For p = 1, the result holds by Lemma 6.21-
(ii). Assume that it is true for p—1, p > 2. Denote for all z,y € R% V,,(y) = ||y — z|**.
By H11, the inequality for all € > 0, 21,22 € RY, |(21, 20)| < €||z1]|* + (4€) ™" || 22|, H10
and VU (z*) = 0, for all y € R? we have:

A Vyp(y) = =20 ly — 2|?P" (VU (y),y — 2) + 2p (d +2(p — 1)) [ly — =[PP~
—2pm |y — 2| = 2p ||y — 2>V (VU (x),y — 2) + 2p (d + 2(p — 1)) |}y — =] ** V)
< {pL/(2m) llo — |+ 20(d+ 20— 1)}y — 22V

IN

Denote by ¥ p(2,t) = P;Vy,(x). Using [MT93b, Theorem 1.1] and @, ,(z,0) = 0, we
get

Bpl0) < {pL2/2m) = 22 + 20 (@ +2(p — 1)} [ Brpa ()

and the induction hypothesis concludes the proof.
O

Proof of Proposition 6.18. The proof follows the same line as the one of Theorem 6.1-
(6.7) using Lemma 6.44-(i) in place of Lemma 6.21-(i) and is omitted. O



Chapter 6. Sampling from a strongly log-concave distribution with ULA 191

6.8.15 Proof of Theorem 6.19

Lemma 6.45. Assume H10 and H11. Let (y;)k>1 be a nonincreasing sequence with
11 <1/(m+L) andp €N, p > 1. Let (o € Pap(RE x RY), (V3,Y)i>0 such that (Yo,Yo)
is distributed according to (o and given by (6.13). Then almost surely for all n > 0 and
€1,€9 >0,

2p

— 2p —
B7 | [V = Vo] £ 40+ ) = 3 (6= 200 ¥, - T,

2

+ (Lyng1) (14 e P N1/ (der) + Yng1)P DY np(Yr, )k +p+ 1)1k
k=0

Proof. Let n > 0 and €1, e3 > 0, and set ©,, = Y, — Y . By Lemma 6.23-(6.48) and
the inequality for all a,b € R, (a4 b)? < (14 e2)PaP + (1 + e; 1)P~1bP, we have

E7n [[|0041]%] < {1+ €2)(1 = g (s — 261))}? [0,

+ (14 & P IE Tn H(z%+1 + (26)—1)/

b HVU(m—VU(YFn)H?ds}p] . (6.77)

n

By H10, Jensen’s inequality, the Markov property of (Y;)¢>0 and Lemma 6.21-(ii), we
have

n

| Y p | ]
= H/ ) Hw(m—vwmu?ds} <ol [ B [IVU ) - vUn,)|7] ds

2
< LN (Ve ) (k+p+ 1) "Ik
k=0

The proof is then concluded plugging this bound in (6.52) . O

Proof of Theorem 6.19. Let (o be an optimal transference plan of yio and = and n >
0. Let (Y3, Y¢)i>0 with (Yp,Y) distributed according to (y and defined by (6.13).
By definition of Wy, and since for all ¢ > 0, 7 is invariant for F;, WQQ;’ (@™, m) <

— 2
E¢, [Han — YFnH p]. The proof then follows from applying recursively Lemma 6.45

with €; = /4 and €3 = k7v;/2 for i = n,---,1, and using that for all k € N, Yy, is
distributed according to 7. U

6.8.16 Proof of Theorem 6.20

Lemma 6.46. Assume H10, H11 and H12. Let (v;)k>1 be a nonincreasing sequence
withy1 < 1/(m+L) andp €N, p > 1. and (o € Po(R% x RY). Let (Y3, Y¢)i>0 be defined
by (6.13) such that (Yy,Y o) is distributed according to Co. Then for allm > 0 and € > 0,
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almost surely

— 2p
f
E I'n |:HYF"+1 —an+1

|+ e -t - 20y v, - T,

P
+ 3114 eyt ((w?fil/@p +1))(2e1)7? {22“L4p S apy 1Y, — 2 + <dL2>p/2}

k=0
/Z"H <®"’/rn V2U(Y,)dBa >ds pD .

Proof. Let n > 0 and €1, €z > 0, and set ©,, = Yy, — Y, . Using (6.57)-(6.51), H12 and
[ {a,b) | < exflall® + (4er)~H[[b]?, we have

ap,p(Yr )7 +1 omF
+(2 3 12 E ZRPA\TAn/ Intl _|_2P/ E/Tn
( r}/n+1 ) = k+p+ 1

101 ”  (1 st — 20} 1017 + 2301 [ IVU(3,) — VU, ) s
+\f/r"“< n/ v2U dB>ds

It S
+ea) [ [ {vUe)vum) + 1/2A50) ) } du

Therefore by the Holder inequality and the inequality for all a,b > 0, (a + b)P < ((1 +
€2)a)P 4+ (14 ;1 )P~10P, we get

2
ds .

p
E7on [0 7] < {(1 4+ €)(1 = ms1(k = 261)) O]}
+ 3P (1 4+ e NP TIETTR [AY 4 (29,510)P AL 4 (261) P AE] , (6.78)

where

A =

/n+1< n’/ v2 >d8
Fn«b»l
Ay = /

We successively bound E/Tn [AP] for i = 2,3. By H10, Jensen’s inequality, the Markov
property of (Y;);>0 and Lemma 6.44-(ii), we have

Fn«b»l
= [TIVO) = VUG ds

2
ds .

/i{VQU( WVU(Ya) + (1/2)A(VU)(Yy) } du

7 P 2 Tt 7 2
B (5] < 220} [T B (1Y - v, 1] s

2
<Ly app(Ye, ) (k+p+ 1)1k L (6.79)
k=0
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Also by (6.17), we get using VU (x*) = 0, Jensen’s inequality and Fubini’s theorem,

AR < Ap ] /FF”“(s—rn)%—l /F EFrn UHVZU(YU)VU(Y) (1/2)A(VU)(Y, )}HQ”] duds

| R 2
<zt [T st [ e [ vru e vo )|

Lo H&(VU)(YU)

2
p} duds
I'n

Fn«b»l ~
<2y [ s T [T LB (Y, - 0[] duds #0204 (4E2? /2020 + 1)
' ' (6.80)

By Lemma 6.44-(i), the Markov property and for all t > 0, 1 —e™* < t, we have for all
s € [Fnarn—i—l]a

s p
2 - - n 2k
BT (1Y = ot e £ 3 a2 (1= ) 3, — a2
n k=0
Using this inequality in (6.80) and for all t > 0, 1 —e™! <t , we get
p ~
A5 < (151/(2p + 1) {22”1L4p > aky Ve, — 2" + (sz)p/Q} :
k=0

Combining this bound and (6.79) in (6.78) concludes the proof. O

Proof of Theorem 6.20. Let (p be an optimal transference plan of pg and = and n >
0. Let (Y3, Y4)i>0 with (Yp,Y) distributed according to (o and defined by (6.13).
By definition of W5, and since for all ¢ > 0, 7 is invariant for P, WQQ;’ (@™, m) <

— 2
E¢ {HYF" - anH p]_ Applying recursively Lemma 6.46 with € = x/4 and €3 = K7;/2

for i =n,---,1, and using that for all k € N, Y, is distributed according to 7.
Wak (1@, ) < ul P () Wak (1o, m +Z { IT a- ’f%‘/4)p} (65 1y P (A1 Ag+ 43)
k=1 \i=k+1
(6.81)
where
Ay = 2P’E /Fk Yr, , —Y / VU (Y,)dB, )ds ’ Ay = (293 L3P i Uiy
1 I‘k71 Fk,1 Fk717 u u b l+p+1 )

Az = (’yz’p/(2p +1))(267 1P {22p 1L4pa0p2alp dLQ)p/2} )
=0

We now give a bound on A; which will concludes the proof. By Jensen’s inequality, the
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Burkholder-Davis-Gundy inequality [CK91, Theorem 1] and H10, we have

I p
A < 2p/27£_1/ E ds
Tr-1

Tr—1
B B ) p/2
( [ |y, -7, du)
Tp_1

< (23/2p1/272/2Ld1/2)p(p/2 + 1)*1Ep/(2(p71)) |:HYF1¢—1 - ?Fk—l

/S <YI‘1€71 _?Fk,l,VQU(Yu)dBu>

Ty

< 23p/2pp/2,y£—1/ E
| ]

2(p1)]

6.9 Contraction results in total variation for some func-
tional autoregressive models

In this section, we consider functional autoregressive models of the form: for all k > 0

X1 = hk+1(Xk) + 011241 s (6.82)

where (Z)r>1 is a sequence of i.i.d. d dimensional standard Gaussian random variables,
(0k)k>1 is a sequence of positive real numbers and (hy);>1 are a sequence of measurable
map from R? to R? which satisfies the following assumption:

ARS3. For all k > 1, there exists wy, € [0,1] such that hy is 1 — wy-Lipschitz, i.e. for all
2,y € RY, hy(z) = hi(y)ll < (1 — ) [l - y]|.

The sequence (Xg)ren defines an inhomogeneous Markov chain associated with the
sequence of Markov kernel (Pg)>1 on (R, B(R?)) given for all z € R? and A € R by

Peta) = [ exp (lly = hu(a)|? /20D) dy. (6:53)
We denote for all n > 1 by Q™ the marginal laws of the sequence (Xy)r>1 and given by
Q"=Py---Py. (6.84)

In this section we are interested in showing that for all x,y € R%, the sequence {||0,Q™ —
0,Q"|Tv, k € 1} goes to 0 with an explicit rate depending on the assumption on the
sequence (hy)g>1, which in any cases does not depend on the dimension d. In addition
these rates are optimal as we will see. For this we will consider an appropriate coupling
which is based on a coupling for Gaussian random walks proposed in [BDJ98, Section

3.3]. Let x,y € R% We consider for all k& > 1 the following coupling (Xgl),X?)) between
Pi(x,-) and Pk (y, ). Define the function E and e from R? x R? to R? by

) (6.85)
0 otherwise ,

Ei(z,y) = hi(y)—hg(z) , er(z,y) = {
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and let Z be a standard d dimensional Gaussian random variable. If E;(z,y) = 0, then
we set

(1) = hi(z) + orZ
( ) = hi(y) + onZ .
If Ex(x,y) # 0, consider the following coupling
Xgl) = hi(x) + o Z
X = hi(y) + 1t {okZ = Bilw,9)} + Laee {on(1d —2ex (2, y)en(z, 1) )2} |
where

M = {U < min (1, a(z,y,Z))}

o e lEE D] o les(@9).2)
( d ) ‘PO’Q(UIC <ek(x7y) > ’ f e

z,5,2 € RY, (6.86)

U is uniform random variable on [0, 1] independent of Z and ¢,2 is the standard one
dimensional zero-mean Gaussian probability density with variance a,%. In other words,

when Eg(z,y) is not zero then with probability min(1, a(z,y,Z)), Xgl) = Xf), and
XgQ) = hy(y) + or(Id —2ex(z,y)er (2, y)")Z otherwise.

The laws of (Xgl),X?)) for all (z,y) € R? x R? defines the Markov kernel Kj on
(R4 x R, B(RY) @ B(RY)) given for all (z,7) € R? x R? and A € B(RY) @ B(RY) by

K{(w:9). 1) = L), () o)~ [ 1@ 2)e 1 mN CoDaz (o57)
]lAc(hk(.%') ( )) . . z— hk(x) —||Z—hp(@)|?/(202) 14
+ (2n02)d72 i 14(Z, ) min [1,& (m,y, Tﬂ e~ IlE=he@)I7/Cok) gz
Tac(hi(z), hi(y)) _ N . T — hy(x) =R @)1/ (202) 1
+ (27.[0.13)(1/2 RA ]].A(JT,Fk(JT,y,JT)) {1 — min |:1,0é (x’y’ oL >:| } € I w@l"/2 k)d,I )

where Fy, : (R%)? — R? is defined by for all (Z,7, 2), & #

<

Fi(#.7.2) = hi(§) + (1d 24 (&, De(7,9)" ) 2
A={(@9) erR! xR |7 =7} .

The following lemma shows that K is a Markovian coupling for P, in particular for all
z,y € R4, (XM, X)) is a coupling of P(z,-) and P(y, ).

Lemma 6.47. For all z,y € R? and k > 1, Ki((x,9),-) is a transference plan of Py(x,-)
and Pk(y’ )

Proof. The proof is postponed to Section 6.9.1 U
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For all initial distribution o on (R? x R, B(R?%) ® B(R?)), ~ﬂ0 and IE , denote the
probability and the expectation respectively, associated with the sequence of Markov
kernels (Kj,)z>1 defined in (6.87) and pg on the canonical space ((R? x RON (B(R?) ®
B(R%))®N), {(X;,Y:), i € N} denotes the canonical process and (F;)ien the correspond-
ing filtration. Then by Lemma 6.47 if (Xg, Yo) = (z,y) € R? xR?, for all k& > 1 (X, Yi)
is coupling of 6, Q" and §,QF. Therefore to have a bound on ||0,Q" — §,Q"|Tv for n > 1,
it suffices to have a bound on Iﬁ(%y)(Xn # Y,,). It is the content of the proof of the main
result of this section.

Theorem 6.48. Assume AR3. Then for all x,y € R? and n > 1,

[6:Q" = 6,Q"|lTv < Tac((z,)) {1 —29 (‘ i :
where the sequence (E;)i>1 is defined by for all k > 1
k i -1
Ek:ZUZQ H(l—Wj)2 .
i=1 j=1
Proof. The proof is postponed to Section 6.9.1. U

6.9.1 Proofs

Proof of Lemma 6.47. Tt is straightforward that Ki((z,%), - x R?) = Py(z,-) for all z,y €
RZ. In addition, for all A € B(R?), we have for all (z,y) € R? x RY,

i), BY x &) = La (hn(a), (o)) (o) 2 [ 1y(@)e 170Gz (6.88)

L Lac (@), he(y) [ 14(3)min [1 N <M T - hk@))] o lE-hi(@)[?/(202) 47

(2r0} )d/2 o
Lac (i (x) : T = h @\ e @)/ o) g 5
+ @no?) d/2 / 1y(F(z,y, & )){1—m1n [1,a<x,y,T)}}e k R

Therefore for all (x,%), hi(z) = hi(y), we have that K((x,y),R¢x-) = P(y, ). It remains
to treat the case when hy(z) # hi(y). Let z,y € RY, hi(x) # hi(y). By definition of a
(6.86), we have for all # € RY,

a {x y (@ — hk(m))} _ Po? (Uk <ek(m,y), hk§;>f~> o {x y z— hk(y))} .
o oo (1B )] - o0 (on(r,9), 2022 ) g
(6.89)

Since (Id —2e(z,y)e(x,y)T) is an orthogonal matrix, making the change of variable
g = hi(y) + Id—2e(z,y)e(z,y)")(@ — hy(z)) and using that (e(z,y),7 — hi(y)) =
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—(e(z,y), T — hi(z)) we get

[, 12 {1 - min Lo (2.0, 7= _h’“ L]} ol oz
R

-/, ]lA(g){l—min [La (xy hk( ) — y>” ~l-hWI*/ 2o g5 . (6.90)

Ok

In addition using that || — hy(2)||* = ||& — he(y)||* — 2 (hi(y) — &, Ex) + ||Ex |, we get

min {1, ol (x ). lk(y)) } QllE—hi(@)?/(202) _

Ok
min {1, o (x " ik(y)) } la-nlF/2d)  (6.91)

Ok

Combining (6.89)-(6.90) and (6.91) in (6.87) implies that Ky((z,y), R? x A) = P.(y,A).
O

Lemma 6.49. For all z,y € R and k > 1

Ke((z,y), A) = 2& <_M> .

207,

Proof. Let x,y € R If hy(z) = hy(y), then Ky((x,y),A) = 1. We now consider the
case hy(z) # hi(y) By (6.87), we have

—d/2 T — .

Of

For all Z € R%, consider {w;,1 < i < d} the coordinates of & — hj(z) in an orthonormal
basis whose first component is ex(x,y), then we get

Kil(2.), &) = @T%)M/R min [1,exp { (2 — (1B(r )l — w1)?) /(200)}] e Zier /oDt
= (2710,%)71/2 /Rmin {exp {—w%/(2ai)} ,exp {—(HEk(x,y)H — w1)2/(2ai)H dw

—1/2 +oo
=2 (2710,%) / exp {—W%/(QO’,%)} dwy ,
1Bk (z,y)]l/2

which concludes the proof. ]

Lemma 6.50. For allg,a >0 and t € Ry, the following identity holds

oo (S 10 (B0 -0 ()
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Proof. Let ¢,a > 0 and t € R,. Denote by

I:/Rw(y) {1—min (1,%)}{1 _ 2% <2y2;t)}dy.

Then,

t/2 t

1= [ oot —pett—un {120 () gy

- /Ot/2 0.2(y) {2@ (1 - QyQ—;t)}dy - /t:o 0 (y) {1 —2® (%)}dy . (6.92)

where we use a simple change of variable for the last equality. Now to simplify the proof,
we give a probabilistic interpretation of this two integrals. Let X and Y be two real
Gaussian random variables with zero mean and variance a? and ¢? respectively. Since
for all u e Ry, 1 —2®(—u/(2a)) = P[|X| < u], we have by (6.92)

I=P(Y<t/2,X+Y<t/2,Y —X<t/2)-P(Y>t/2, X+ Y >t/2,Y - X >1t/2) .
Using that ¥ and —Y have the same law in the second term, we get
I=P(Y<t/2,X+Y <t/2,)Y — X <t/2)

CP(Y < /2, X~ Y >1/2,Y + X < —1/2) (6.93)
=L +1, (694)

where
L=P(Y<t/2,X+Y <t/2,Y -X<t/2,X >0)

—P(Y < —t/2,X - Y >1/2,Y + X < —1/2,X >0)
=P(X+Y|<t/2,X>0), (6.95)

and
L=P(Y<t/2,X+Y <t/2,Y - X<t/2,X<0)
—P(Y <—t/2,X-Y >t/2, Y + X < —-t/2,X <0) .
Using again that Y and — Y have the same law in the two terms we have

L=P(Y>—t/2,X-Y <t/2,Y +X > —t/2,X <0)
—P(Y>t/2,X+Y>t/2,X—Y < —1/2,X <0)
=P(| X+ Y|<t/2,X<0) . (6.96)

Combining (6.95), (6.96) in (6.94), we have I = P(|X + Y| < ¢/2). The proof follows
from the fact that X+ Y is a real Gaussian random variable with mean zero and variance
a2 + §2, since X and Y are independent. O
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Proof of Theorem 6.48. Recall that by Lemma 6.47, for all k > 1, (Xk, Y) is a coupling
of §,Q* and 6,QF, and therefore ||5,Q* — §,Q"||rv < Py Xk # Yi).
Define for all k1,ko € N, k1, ko > 1, k1 < ko,

ko i
Ekl,k‘z = Z Ui2 { H (1 - wj)_Q} .

i=ky j=k1
Let n > 1. We show by backward induction that for all k € {0,--- ,n — 1},

o = Xp—Y
Py (Xn # Yn) <Eqy) [Mc (Xg, Yi) ll —2® {—”ji’j'/'z}u , (6.97)

2 (Ekt1,n)
Note that the inequality for k£ = 0 will conclude the proof.
Conditionning w.r.t. F,_1, using that X, # Y, implies that X,,_1 # Y,_1, the
Markov property and Lemma 6.49, we get

Plog) (Xn # Yn) = By [1ac(Xn 1, Yo 1)Ex, v [nAC(Xl,Yl)ﬂ

< By | Lae(Xo1, Yorr) [1-2 { S I’Ynl)H}H

Under AR3 and definition of E,, (6.85), |En(Xp—1, Yn—1)|| < (1 — wn) 1Xn—1 — Yo_1ll,
and (6.97) holds for k =n — 1.

Assume that (6.97) holds for £ € {1,---,n — 1}. By definition of the process
{(X;,Y;), i € N}, if Xy # Yg necessarily X1 # Yi_1 and

Xi — Yi = Be(Xp—1, Yro1) + 20%er(Xa—1, Yeo1)ern(Xe—1, Ya1) " Zg

where Zj, is a standard d-dimensional Gaussian random variable independent of fk,l.
Therefore, | X; — Y|l = |[Ex(Xg—1, Ye—1)|| + 20kex(Xp—1, Y—1)TZ) and

e {_uxk —qu}
—1/2
2‘—‘k+1n

1_ 2% {_ Bk (Xp—1, Yeo1) || + 20nex1(Xe—1, Y1) " Zy, }]

LA (X, Y)

< Ia(Xg-1, Yg-1) Y
—“k+1,n

Since Zj, is independent of Fy_1, oper(Xp—1, Ye—1)T Zx is a one dimensional zero mean
Gaussian random variable with variance 7. Therefore by Lemma 6.50, we get

1_2q,{_rrxk—vku} ]
—1/2
2‘—‘k+1n

< Tae(Xg—1, Yi-1) [1 - 29 {—

Efk:—l

(z.y) Tac (Xk, Yk)

|1Ex(Xk—1, Y—1)| H
2 (03 + Epr10)

Using by AR3 that ||Ex(Xk—1, Yir—1)|| < (1 — wg) [|[Xg—1 — Yg—1]| concludes the induc-
tion. O
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Chapter 7

Optimal scaling of the Random
Walk Metropolis algorithm under
LP mean differentiability

AvaIN Durmus!, SYLvAIN LE CORFF?, ERIC MOULINES? AND GARETH O.
ROBERTS*

Abstract

This paper considers the optimal scaling problem for high-dimensional random walk
Metropolis algorithms for densities which are differentiable in LP mean but which may be
irregular at some points (like the Laplace density for example) and / or are supported on
an interval. Our main result is the weak convergence of the Markov chain (appropriately
rescaled in time and space) to a Langevin diffusion process as the dimension d goes to
infinity. Because the log-density might be non-differentiable, the limiting diffusion could
be singular. The scaling limit is established under assumptions which are much weaker
than the one used in the original derivation of [RGG97]. This result has important
practical implications for the use of random walk Metropolis algorithms in Bayesian
frameworks based on sparsity inducing priors.

7.1 Introduction
A wealth of contributions have been devoted to the study of the behaviour of high-

dimensional Markov chains. One of the most powerful approaches for that purpose is
the scaling analysis, introduced by [RGG97]. Assume that the target distribution has a
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density with respect to the d-dimensional Lebesgue measure given by:

d
7 (z?) = H m(zd). (7.1)
i=1

The Random Walk Metropolis-Hastings (RWM) updating scheme was first applied in
[Met+53] and proceeds as follows. Given the current state X,‘j, a new value ka+1 =
(ka+17i)§l:1 is obtained by moving independently each coordinate, i.e. ka+17i = X,ii +
a2z 11 Where £ > 0 is a scaling factor and (Zy),~, is a sequence of independent and
identically distributed (i.i.d.) Gaussian random variables. Here ¢ governs the overall size
of the proposed jump and plays a crucial role in determining the efficiency of the algo-
rithm. The proposal is then accepted or rejected according to the acceptance probability
(X, v ) where oz, y?) = 1 A wd(y?)/m?(a?). If the proposed value is accepted it
becomes the next current value, otherwise the current value is left unchanged:

X, =X+ €d71/2Zg+1]]‘Az+1 ’ (7.2)
d

Ag+1 = {Uk+1 < H W(Xg,z‘ + €d1/2Zg+1,i)/7T(Xg,i)} . (7.3)
=1

where (Uy),~, of 4.4.d. uniform random variables on [0, 1] independent of (Zj);~,-

Under certain regularity assumptions on 7, it has been proved in [RGG97] that if the
Xg is distributed under the stationary distribution 7¢, then each component of (Xg)kzo
appropriately rescaled in time converges weakly to a Langevin diffusion process with
invariant distribution 7 as d — +o0.

This result allows to compute the asymptotic mean acceptance rate and to derive a
practical rule to tune the factor £. It is shown in [RGG97] that the speed of the limiting
diffusion has a function of £ has a unique maximum. The corresponding mean acceptance
rate in stationarity is equal to 0.234.

These results have been derived for target distributions of the form (7.1) where
m(x) < exp(—V(z)) where V is three-times continuously differentiable. Therefore, they
do not cover the cases where the target density is continuous but not smooth, for example
the Laplace distribution which plays a key role as a sparsity-inducing prior in high-
dimensional Bayesian inference.

The aim of this paper is to extend the scaling results for the RWM algorithm in-
troduced in the seminal paper [RGG97, Theorem 7.7] to densities which are absolutely
continuous densities differentiable in L” mean (DLM) for some p > 2 but can be either
non-differentiable at some points or are supported on an interval. As shown in [Le 86,
Section 17.3], differentiability of the square root of the density in L? norm implies a
quadratic approximation property for the log-likelihood known as local asymptotic nor-
mality. As shown below, the DLM permits the quadratic expansion of the log-likelihood
without paying the twice-differentiability price usually demanded by such a Taylor ex-
pansion (such expansion of the log-likelihood plays a key role in [RGG97]).

The paper is organised as follows. In Section 7.2 the target density 7 is assumed to
be positive on R. Theorem 7.4 proves that under the DLM assumption of this paper,
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the average acceptance rate and the expected square jump distance are the same as
in [RGGI7]. Theorem 7.7 shows that under the same assumptions the rescaled in time
Markov chain produced by the RWM algorithm converges weakly to a Langevin diffusion.
We show that these results may be applied to a density of the form m(x) o exp(—A |z| +
U(z)), where A > 0 and U is a smooth function. In Section 7.3, we focus on the case
where 7 is supported only on an open interval of R. Under appropriate assumptions,
Theorem 7.9 and Theorem 7.12 show that the same asymptotic results (limiting average
acceptance rate and limiting Langevin diffusion associated with ) hold. We apply our
results to Gamma and Beta distributions. The proofs are postponed to Section 7.4 and
Section 7.5.

7.2 Positive Target density on the real line

The key of the proof of our main result will be to show that the acceptance ratio and the
expected square jump distance converge to a finite and non trivial limit. In the original
proof of [RGGYI7], the density of the product form (7.1) with

m(x) o exp(—=V(x)) (7.4)

is three-times continuously differentiable and the acceptance ratio is expanded using the
usual pointwise Taylor formula. More precisely, the log-ratio of the density evaluated at
the proposed value and at the current state is given by zgl:l AVid where

(2

AV =V (X]) - v (X + a7 227 (7.5)

and where X is distributed according to 7% and Z¢ is a d-dimensional standard Gaussian
random variable independent of X . Heuristically, the two leading terms are £d—1/2 ?:1 V(de)ZZd
and 2d—' 4, V(X$)(Z4)?/2, where V and V are the first and second derivatives of
V', respectively. By the central limit theorem, this expression converges in distribution

to a zero-mean Gaussian random variable with variance £2 where
I= / V2(z)r(x)dz . (7.6)
R

Note that I is the Fisher information associated with the translation model 6 — 7(x+6)
evaluated at § = 0. Under appropriate technical conditions, the second term converges
almost surely to —¢2I/2. Assuming that these limits exist, the acceptance ratio in the
RWM algorithm converges to E[1 A exp(Z)] where Z is a Gaussian random variable with
mean —¢2/2 and variance ¢*I; elementary computations show that E[l A exp(Z)] =
20(—£/2+/T), where ® stands for the cumulative distribution function of a standard
normal distribution.

For ¢ > 0, denote by Y;? the linear interpolation of the Markov chain (X g)kzo after
time rescaling:

Ve = ([dt] — dt) X[y + (dt = [dt]) Xfy (7.7)
= Xy + (dt — dt])ed 2z Lag, (7.8)
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where |-] and [-] denote the lower and the upper integer part functions. Note that for
all k > 0, ka/d = XZ. Denote by (B,t > 0) the standard Brownian motion.

Theorem 7.1 ([RGGI7]). Suppose that the target ©@ and the proposal distribution are
given by (7.1)-(7.4) and (7.2) respectively. Assume that

(i) V is twice continuously differentiable and V is Lipshitz continuous ;

(ii) B[(V(X))¥] < oo and E[(V(X))*] < co where X is distributed according to .

Then (Y;fll, t > 0), where Y;fll is the first component of the vector Y& defined in (7.7), con-
verges weakly in the Wiener space (equipped with the uniform topology) to the Langevin
diffusion

1 )
dY; = \/h(0)dB; = Sh(O)V (Yt (7.9)
where Yy is distributed according to m, h({) is given by

h(l) = 20°® (—g \/T) : (7.10)

and I is defined in (7.6).

Whereas V is assumed to be twice continuously differentiable, the dual representation

of the Fisher information —E[V(X)] = E[(V(X))?] = I allows us to remove in the
statement of the theorem all mention to the second derivative of V', which hints that
two derivatives might not really be required. For all 8, x € R, define

Eo(x) =/m(z+6), (7.11)
For p > 1, denote || f|[? , = [[f(z)[Pm(x)dz. Consider the following assumptions:

H1. There exists a measurable function V : R — R such that:

(i) There exist p >4, C >0 and > 1 such that for all 0 € R,

V(+0)-v()-ov()

<Cl°.
D

U

< +00.

(ii) The function V satisfies HV .
U

Lemma 7.2. Assume H1. Then, the family of densities 8 — (- + 0) is Differentiable
in Quadratic Mean (DQM) at 0 = 0 with derivative V, i.e. there exists C > 0 such that
for all 8 € R,

([ (8 - aw +ov@e ) a) < cop,

where &y is given by (7.11).
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Proof. The proof is postponed to Section 7.4.1. U

The first step in the proof is to show that the acceptance ratio P (Acf) =E(1A

exp{3_% ; AV#4}), and the expected square jump distance E[(Z{)2{1 Aexp(2%, AV}
both converge to a finite value. To that purpose, we consider

Bl(q) =B [(zf)q

d
1 Aexp (Z AVﬂ) — 1 Aexp(v?)

i=1

where AV is given by (7.5),

vt = —ed V2 Z¢v (x{) + i vi(xd, zd (7.12)
=2
bz, 2) = —2V(2) + B 2¢4xt, 2] - ﬁV%@) (7.13)
) - \/E 1»41 4d ’ .
¢4z, 2) = exp { (V () -V (:c + fdil/Qz)) /2} —1. (7.14)

Proposition 7.3. Assume H1 holds. Let X% be a random variable distributed according
to m® and Z¢ be a zero-mean standard Gaussian random variable, independent of X¢.
Then, for any q > 0, limg_, 4 E4(q) = 0.

Proof. The proof is postponed to Section 7.4.2. O

Proposition 7.3 shows that it is enough to consider v? to analyse the asymptotic be-
haviour of the acceptance ratio and the expected square jump distance as d — 4+o00. By
the central limit theorem, the term —¢ 3% ,(Z4/v/d)V(X®) in (7.12) converges in dis-
tribution to a zero-mean Gaussian random variable with variance ¢21, where I is defined
in (7.6). By Lemma 7.15 (Section 7.4.2), the second term, which is d[E [QCd(Xfl, Z{i)} =
—dE [(Cd(Xf, Zf))ﬂ converges to —¢2I/4. The last term converges in probability to

—(2I /4. Therefore, the two last terms plays a similar role in the expansion of the accep-
tance ratio as the second derivative of V' in the regular case.

Theorem 7.4. Assume H1 holds. Then, limg_, P {Aﬂ = a(l), where a({) = 2®(—/10/2).
Proof. The proof is postponed to Section 7.4.2. O

The second result of this paper is that the sequence {(Yt‘fl)tzo,d € N*} defined
by (7.7) converges weakly to a Langevin diffusion. Let (14)4>1 be the sequence of
distributions of {(Yt‘fl)tzo, d € N*}.

Proposition 7.5. Assume H1 holds. Then, the sequence (,ud)d21 1s tight in W.

Proof. The proof is adapted from [JLM15]; it is postponed to Section 7.4.4. U
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By the Prohorov theorem, the tightness of (u4),~, implies that this sequence has a
weak limit point. We now prove that any limit point is the law of a solution to (7.9).
For that purpose, we use the equivalence between the weak formulation of stochastic dif-
ferential equations and martingale problems. The generator L of the Langevin diffusion
(7.9) is given, for all ¢ € C?(R,R), by

= (V@) + b)) , (7.15)

where for k € N and I an open subset of R, C*(I,R) is the space of k-times differentiable
functions with compact support, endowed with the topology of uniform convergence of
all derivatives up to order k. We set C°(I,R) = N2, C*(I,R) and W = C(R,,R).
The canonical process is denoted by (W})i>0 and (%:)¢>¢ is the associated filtration. For
any probability measure u on W, the expectation with respect to u is denoted by E*.
A probability measure p on W is said to solve the martingale problem associated with
(7.9) if the pushforward of pu by Wy is 7 and if for all ¢ € C>°(R,R), the process

(¢<Wt> — $(Wo) — /0 tqu(Wu)du)

t>0

is a martingale with respect to o and the filtration (%;)¢>0, i.e. if for all s,t € Ry, s <'t,
[ — a.s.

E | o(W:) — o(Wo) —/OtL¢(Wu)du

@s} = 6(W.) — 6(Wo) ~ [ Lo(W,)ds.

H2. The function V is continuous on R except on a Lebesque-negligible set Dy, and is
bounded on all compact sets of R.

If V satisfies H2, [RW00, Lemma 1.9, Theorem 20.1 Chapter 5] show that any solution
to the martingale problem associated with (7.9) coincides with the law of a solution to
the SDE (7.9), and conversely. Therefore, uniqueness in law of weak solutions to (7.9)
implies uniqueness of the solution of the martingale problem.

Proposition 7.6. Assume H2 holds. Assume also that for all p € C*(R,R), m € N*,
g : R™ — R bounded and continuous, and 0 <t1 < --- <t,, < s <t

d—+o00

lim B [<¢(Wt)—¢(Ws)—/:L¢(Wu)du>g(th,...,th) —0.  (7.16)

Then, every limit point of the sequence of probability measures (f1q)g>1 on W is a solution
to the martingale problem associated with (7.9).

Proof. The proof is postponed to Section 7.4.5. U

Theorem 7.7. Assume H1 and H2 hold. Assume also that (7.9) has a unique weak so-
lution. Then, {(Y;fll)tzo, de N*} converges weakly to the solution (Y);~ of the Langevin

equation defined by (7.9). Furthermore, h({) is mazimized at the unique value of ¢ for
which a(f) = 0.234, where a is defined in Theorem 7./.
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Proof. The proof is postponed to Section 7.4.6. U

Example 7.8 (Bayesian Lasso). We apply the results obtained above to a target density
7 on R given by x +— e~V @)/ [ 7V W dy where V is given by

Vie—U(z)+ M|,

where A > 0 and U is twice continuously differentiable with bounded second derivative.
Furthermore, [ |2|®e™V@)dz < 400. Define V : z — U'(x) + Asign(x), with sign(z) =
—1if x <0 and sign(z) = 1 otherwise. We first check that H1(i) holds. Note that for
all z,y € R,

|lz + y| — || = sign(z)y| < 2[y[Lr, (ly| — |z]), (7.17)

which implies that, for any p > 1, there exists C), such that
vero-veo-eve|
<|UC+0)=U(C) = 0UC)ll,, + All-+ 0] = || — Osign(:)]
<U"|| 6% +2 6] M ([—0,6])} /P < C Lo VP v 6]

ﬂ-7p

Assumptions H 1(ii) and H 2 are easy to check. The uniqueness in law of (7.9) is
established in [CE05, Theorem 4.5 (i)]. Therefore, Theorem 7.7 can be applied.

7.3 Target density supported on an interval

We now prove that our results can be applied to densities of the form:
() o exp(=V (2))12(z)

where Z is an open interval of R and V' : Z — R is a measurable function. Note that by
convention V(x) = —oo for all x ¢ Z. Denote by Z the closure of Z in R. The results of
Section 7.2 may be extended to this setting but, as 7 is not positive on R, this requires
the following new assumptions.

G4. There exists a measurable function V : R — R and r > 1 such that:

(i) There exist p >4, C >0 and 8 > 1 such that for all 0 € R,

<cle”’,

7T7p

[V (- +0) = VOIZ(- +10)12(- + (1 =1)0) — 0V ()

with the convention 0 x oo = 0.
. .6
(it) The function V satisfies [, ‘V(w)‘ m(x)dr < 4o0.
(i1i) There exist v > 6 and C > 0 such that, for all 6 € R,

/ Lze(x + 0)m(x)da < C|O[ .
R
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In the examples that we consider = — V(x) is not integrable on Z, and introducing

r > 1 in the assumption allows to circumvent this issue. Besides, note that since Z is an

interval and r > 1, forall 0 e R, ifx € Zand x+r0 € Z, x + 60 € Z and V (z 4 0) is finite

for such an x. As an important consequence of G4(iii), if X is distributed according to

7 and is independent of the standard random variable Z, there exists a constant C' such
that

P(X+0d?Z 1) < Cd2. (7.18)

Theorem 7.9. Assume G/ holds. Then, limg_, ., P [Aﬂ = a(l), where a is defined in
Theorem 7.4.

Proof. The proof is postponed to Section 7.5.1. U

We now established the weak convergence of the sequence {(thll)tzo, d € N*}, follow-
ing the same steps as for the proof of Theorem 7.7. Denote for all d > 1, ug the law of
the process (thll)tzo.

Proposition 7.10. Assume G/ holds. Then, the sequence (,ud)d21 is tight in W.
Proof. The proof is postponed to Section 7.5.2. O

Contrary to the case where 7 is positive on R, we do not assume that V is bounded
on all compact sets of R. Therefore, the martingale problem associated with (7.9) does
not characterize the law of a solution to (7.9). However, we can still consider the local
martingale problem associated with (7.9). Using the same notations as in Section 7.2,
a probability measure p on W is said to solve the local martingale problem associated
with (7.9) if the pushforward of u by Wy is 7 and if for all b € C*°(R,R), the process

t
(W) = wwo) — [ Low)au)
0 >0
is a local martingale with respect to p and the filtration (%;)¢>0. By [CE05, Theorem
1.27], any solution to the local martingale problem associated with (7.9) coincides with
the law of a solution to the SDE (7.9) and conversely. If (7.9) admits a unique solution
in law, this law is the unique solution to the local martingale problem associated with
(7.9). In the following, we first prove that any limit point p of (114)4>1 is a solution to
the local martingale problem associated with (7.9).

G 5. The function V is continuous on I except on a null-set Dy, with respect to the
Lebesgue measure, and is bounded on all compact sets of T.

This condition does not preclude that V remains bounded at the boundary of Z.
Proposition 7.11. Assume G4 and G5 hold. Assume also that for all ¢ € C(Z,R),

m € N*, g : R™ — R bounded and continuous, and 0 <t; < -+ <t,, <s <t

lim [P [(qﬁ(Wt)—(b(Ws)—/:Lqﬁ(Wu)du)g(th,...,th) —0.  (7.19)

d——+o0
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Then, every limit point of the sequence of probability measures (f14)q>1 on W is a solution
to the local martingale problem associated with (7.9).

Proof. The proof is postponed to Section 7.5.3. O

Theorem 7.12. Assume G4 and G5 hold. Assume also that (7.9) has a unique weak so-
lution. Then, {(thll)tzo, de N*} converges weakly to the solution (Y);>( of the Langevin

equation defined by (7.9). Furthermore, h({) is mazimized at the unique value of ¢ for
which a(f) = 0.234, where a is defined in Theorem 7./.

Proof. The proof is postponed to Section 7.5.4. O

The conditions for uniqueness in law of singular one-dimensional stochastic differen-
tial equations are given in [CE05]. These conditions are rather involved and difficult to
summarize in full generality. We rather illustrate Theorem 7.12 by two examples.

7.3.1 Application to the Gamma and the beta distributions

Define the class of the generalized Gamma distributions as the family of densities on R
given by

my s 2™ exp(—a®)Lay @)/ [y exp(—y)dy,
+
with two parameters a; > 6 and as > 0. Note that in this case Z = R*, for all x € Z,
Vy:ixs 2™ —(a; — 1)logz and Vy:z e age® ™t —(a; — 1)/,

We check that our results may be applied to this class of distributions for r = 3/2. First,
we show that G4(i) for p = 5. Write for all § € R and z € Z,

(Viy(z 4 0) — Vy(z)} Iz(z + (1 — 7)) 1z(z 4+ r0) — OV (2) = & + & + &3,
where

&0 {(a1 — 1)/2 — aga™ 1} {1 - 1z(x — 0/2)1z(x + 30/2)} ,

E = (1—ay){log(1+0/x)—0/x}1z(x —0/2)1z(x + 30/2),
E3 L ((x+0)* — 22 — agf0z2 Nlz(x — 0/2)17(x + 360/2) .

It is enough to prove that there exists ¢ > p such that for all ¢ € {1, 2,3}, [ |&]” 7y (z)dx <
C10|1. G4(i) is proved for # < 0 (the proof for § > 0 follows the same lines). For all
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0 € R using a; > 6,

/R* 1% 7y () da

+

< C|9|5/ {1/2% + 222D am 1o~ (15 (24 30/2) + 1n_(z — 0/2)}dz,
Ry
3/61/2 .

< 0\9]5/ {1/x5 —i—wS(”_l)} g e
0

3/2 . 3/2 .
<C (‘0’31 / g0 (010)™2 4 4 |g)P22 2 / pP@2—1)+a1—1,—(|0]x) de> ’
0 0
< C(|o + (9|22 (7.20)

On the other hand, as for all > —1, z/(x + 1) < log(1l + z) < z, for all § < 0, and
v > 300]/2,
161 2, 9
log(l+80/x)—0/x| < ————— < 3|6
los(1+0/a) — 0/s] < %L < 3o

where the last inequality come from |0|/x < 2/3. Then, it yields

+o0

/ |Ex(2))° 7y (2)da < c|9|10/ p—llgma® g,
R 310]/2

1 +o00 o
<C (\0!10/ g e qg 4 \0!10/ g1 lem 2dx> < O(0] +10)19).
316]/2 1

(7.21)

For the last term, for all § < 0 and all > 3|0|/2, using a Taylor expansion of x — z2,
there exists ¢ € [x + 0, z] such that

‘(m +0)2 — 7 — aﬁxaﬂ] < 0211272 < OO |22 .

Then,

—+o0
E(2)|° 7y (z)dz < C|0]1° P22 Fa—1a=2%2 0 < (|g|522 21 1 |9|10) . (7.22
Y
R% 316]/2

Combining (7.20), (7.21),(7.22) and using that a; > 6 concludes the proof of G4(i) for
p = 5. Consider now G4(ii). For all # < 0 (the case 6 > 0 is dealt along the same lines)

. 6 .
z)[°my(x)dz < C agr® 1 4 (ag — 1) /x| ™ le 2 da,
- Vy Ty d

*
+

R}

<C </ g6z gme g g e dx)
— R )

* *
+ RY
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where the right hand side is finite for a; > 6. Distinguishing the cases # < 0 and 6 > 0,
and using a change of variable, we have

/R (Lze(z +30/2) + Lze(z — 0/2)}y (2)d

<Clof™ /R* (L(0,1/2) + Lio,3/2))z™ ~'da < C|6]™

+

and G4(iii) follows with v = a;. Therefore, Theorem 7.9 can be applied. Now consider
the Langevin equation associated with m, given by

dY; = —V,(Y;)dt + v2dB;, (7.23)

with initial distribution 7, . This stochastic differential equation has 0 as singular point,
which has right type 3 according to the terminology of [CE05]. On the other hand co has
type A and the existence and uniqueness in law for (7.23) follows from [CE05, Theorem
4.6 (viii)]. Since G5 is straightforward, Theorem 7.12 can be applied.

Consider now the case of the beta distributions 7p with density x — 2% ~1(1 —
x)“2_1]1(071)(:n) with a1, a2 > 6. Here Z = (0, 1) and the log-density Vj and its derivative
on Z are defined by

Ve : —(a1—1)logxz — (ag —1)log(l—z) and VB cx— —(ap—1)/x—(az—1)/(1—x).

Using the same calculations as for the gamma distributions, it follows that mg satisfies
G4 and Theorem 7.9 can be applied. Note also that G5 is straightforward. It remains
to establish the uniqueness in law for the Langevin equation associated with g defined
by

dY; = —Va(V3)dt + V2d B, (7.24)

with initial distribution 7g. But using again the terminology of [CE05], 0 has right type
3 and 1 has left type 3. Therefore by [CE05, Theorem 2.16 (i), (ii)], (7.24) has a global
unique weak solution.

The remainder of this section presents a toy simulation study to assess our results for
the beta distribution with parameter a; = 10 and as = 10. Define the expected square
distance by

ESIDY () ¥ E [HX? - Xéin] :

where X¢ has distribution Wg and X¢ is the first iterate of the Markov chain defined
by the Random Walk Metropolis algorithm given in (7.2). By Theorem 7.9 and Theo-
rem 7.12, we have limg_, ;o ESJDY(¢) = h(¢) = (%a(f). Figure 7.1 displays an empirical
estimation for the ESJD? for dimensions d = 10, 50,1000 as a function of the empirical
mean acceptance rate. We can observe that as expected, the ESJD? converges to some
limit function as d goes infinity, and this function has a maximum for a mean acceptance
probability around 0.23.
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Figure 7.1: Expected square jumped distance for the beta distribution with parameters a; = 10
and as = 10 as a function of the mean acceptance rate for d = 10, 50, 100.

7.4 Proofs of Section 7.2
For any real random variable Y and any p > 1, let [[Y]|, ER[|Y|P)VP.

7.4.1 Proof of Lemma 7.2
Let ApgV(z) =V (x) — V(x4 0). By definition of & and m,

(¢o(x) — &ole) + 6V (@)E0(2)/2)” < 2 {Ag(x) + By(x)} ()

where
Ag(z) = (exp(AgV(2)/2) — 1 — AgV()/2)°
By(w) = (8oV (@) + 0V (@) /4.
By H1(i), |Ball,, < C|0|®. For Ag, note that for all x € R, (exp(x) — 1 — 2)? <

2x4(exp(2)x) +1). Then,
/ Ag(z)m(z)da < C/ AgV (z)* (1 +eA@v(m)) m(z)da
< C/]R A(;V(x)4 + A,(;V(x)‘l) m(x)dx .
The proof is completed writing (the same inequality holds for A_yV):

/ AV (@) n(z)dz < C [ /]R (AgV (@) — 0V (2)) w(2)da + 0* /R V4(x)ﬂ(x)dx}
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and using H1(i)-(ii).

7.4.2 Proof of Proposition 7.3
Define

T (1. _ u)2
R(z) = du. 7.25
@)= [ Tt (7.25)
R is the remainder term of the Taylor expansion of  — log(1 + x):

log(1+2z) =z —2%/2+ R(x). (7.26)
We preface the proof by the following Lemma.

Lemma 7.13. Assume H1 holds. Then, if X is a random variable distributed according
to m and Z is a standard Gaussian random variable independent of X,

(i) limg oo d ||CU(X, 2) +€ZV(X)/(2\/E)H2 _
(i1) limas oo VA|[V(X) = V(X +02/Vd) +£2V(X)/Vd]| =
(ifi) limg_se0 d HR (Cd(X, Z)) H1 _

where (% is given by (7.14).

Proof. Using the definitions (7.11) and (7.14) of ¢¢ and & ,
C@,2) = Egagmr2(@) o) = 1. (727)
(i) The proof follows from Lemma 7.2 using that § > 1:

[ 2+ ezv(x) V)| < crfaPE 121
(ii) Using H1(i), we get that
|V(X) = V(X +02/v/d) + 02V (X /WH < CePra=PrIPR (|77

and the proof follows since g > 1.

(iii) Note that for all z > 0, u € [0,2], |(x — u)(1 +u)~!| < |z|, and the same
inequality holds for € (—1,0] and u € [z,0]. Then by (7.25) and (7.26), for all z > —1,
|R(z)| < 2? [log(1 + 2)|.

Then by (7.27), setting ¥4(z, 2) = R((%(x, 2))

Wa(z, 2)| < (Ep2q-1/2(2) /&0(x) — 1) ’V x + LzdY/?) ’/2
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Since for all z € R, |exp(z) — 1| < |z|(exp(z) + 1), this yields,
3
|Wg(x, 2)| <471 }V(m +0zd™Y?) — V(x)} (exp (V(x) —V(z+ Ezdil/Q)) + 1) ,
which implies that
3
/ (i, 2)| () < 4*1/ V(@ + 22~ V(@)| {r(e) + lz + LzdV/?)}da
R R

By Hoélder’s inequality and using H1(i),

ot s < (fsa 2 (] o o) s ).

The proof follows from H1(ii) since 5 > 1.
O

For all d > 1, let X? be distributed according to n%, and Z¢ be d-dimensional
Gaussian random variable independent of X%, set

d

> {avt - vixi 2|

=2

J4 =

)

1

where AV? and b? are defined in (7.5) and (7.13), respectively.

Lemma 7.14. limg_, J=0.

Proof. Noting that AV = 2log (1 + ¢4 (Xid, sz)) and using (7.26), we get

Jé < in = i 2¢t (X7, z8) + @V(Xd) - E |2¢4(x{, 78|
B =1 ' 1=2 Y \/8 Z Y 1
w2 - Lo oS m(er (e 2]
=2 1 =2 1

where R is defined by (7.25). By Lemma 7.13(i), the first term goes to 0 as d goes to
~+00 since

VA
I < |2t (X1, 28) + AV (x?)

Vd

Consider now J¢. We use the following decomposition for all 2 < i < d,

At 28— v = (Ut 2 + S )
14 . 14 2 .
- SRt (e 2+ 5z () + 4 {20 - 1y VA,



Chapter 7. Optimal scaling under LP mean differentiability 217

Then,

2
3 < ¢t 2+ SV
2

& £ dV2Xd zZH? -1
o +@§ e {ey -y

Ve zi (C0n ) + =2V ) )

1

Using H1(ii), Lemma 7.13(i) and the Cauchy-Schwarz inequality show that the first and
the last term converge to zero. For the second term note that E [(Zid)2 — 1} = 0 so that

(x{(zh? -1}

Finally, limg o, J4 = 0 by (7.26) and Lemma 7.13(iii). O

< a2 var [V2(xf) { (22 - 1}] 7 = 0.

1

Proof of Proposition 7.3. Let ¢ > 0 and A% = —£d='2Z{V (X{) + X%, AVZ. By the
triangle inequality, E%(¢) < E¢(q) + E4(q) where

d
Ed l(Z ! 1/\exp{ZAVid} —1Aexp {Ad}
i=1
Since t — 1 A el is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

)
Bi0) = B [(2)" [1 nexp A7} ~ 1 nexp {u}]]

El(q HZlH HAV1 +td 1/221V(X1)H

By Lemma 7.13(ii), E¢(q) goes to 0 as d goes to +oo. Consider now E4(q). Using again
that ¢ — 1 A e! is 1-Lipschitz and Lemma 7.14, E4(q) goes to 0. O

7.4.3 Proof of Theorem 7.4
Following [JLM15], we introduce the function G defined on R, x R by:
exp(“ b)@(%—\/a) ifa € (0,+00),
G(a,b)=¢ 0 ifa =400, (7.28)
exp (—g) Lips0y ifa=0,
where ® is the cumulative distribution function of a standard normal variable, and I":
<I>( \/—)—Fexp( )@(ﬁ—\/a) ifa € (0,400),
I'(a,b) =4 3 ifa =400, (7.29)
exp (—%) ifa=0.

Note that G and T" are bounded on @Jr x R. G and I' are used throughout Section 7.4.
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Lemma 7.15. Assume H1 holds. For alld € N*, let X% be a random variable distributed
according to ©@ and Z% be a standard Gaussian random variable in R?, independent of

X. Then,
: d d d £2
Jim_dE 2¢4(xt, 28| = -1

where I is defined in (7.6) and ¢¢ in (7.14).
Proof. By (7.14),

dE [2¢!(X{, 23] = 2dE { /R (@t a1220) 7 (@) 1} ,

— —dE [ /R <\/7T (x +td-12 Z8) — \Jn (:c))de] = —dE [{¢"(xt. z)y] -

The proof is then completed by Lemma 7.13(i). O

Proof of Theorem 7./. By definition of A{, see (7.3),

1 A exp {zd:Av;dH ,

i=1

PlAl] =E

where AV = V(X¢ ) -V (X{, +€d*1/2Zfl’i) and where X¢ is distributed according to 7¢
and independent of the standard d-dimensional Gaussian random variable Z¢. Following
the same steps as in the proof of Proposition 7.3 yields:

lim [P[A]] ~E[tAexp{0?}]| =0, (7.30)

d—~+o0
where
d . d .
Of = —d VY 2L V(X)) — 4 V(XE)?/(ad) +2(d - DE [¢U(XE, 21 )]
i=1 =2

Conditional on Xg, ©? is a one dimensional Gaussian random variable with mean g
and variance 062[, defined by

d
Ha = — 3" V(XE,)?/(4d) +2(d — DE (x5, 21)]
=2
d .
oq=0Cd Y V(X§)?
=1

Therefore, since for any G ~ N'(u,0?), E[1 Aexp(G)] = ®(u/o) +exp(p+ 02 /2)®(—0 —
w/o), taking the expectation conditional on Xg, we have

E [1 A exp {@dH =E [‘I’(Md/gd) +exp(pa +07/2)P(—04 — Md/Ud)}
=E [F(Uﬁa _QMd)} :
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where the function I' is defined in (7.29). By Lemma 7.15 and the law of large numbers,
almost surely, limg_, o0 ftg = —¢21/2 and limg_, o afl = (?I. Thus, as I' is bounded, by
Lebesgue’s dominated convergence theorem:

lim E[1Aexp{07}] =20 (—0v/T/2) .

d——+o00

The proof is then completed by (7.30). O

7.4.4 Proof of Proposition 7.5

By Kolmogorov’s criterion it is enough to prove that there exists a non-decreasing func-
tion v : Ry — R, such that for all d > 1 and all 0 < s <'¢,

4
B| (v - vi) | <0 - 92
The inequality is straightforward for all 0 < s < ¢ such that |ds| = [dt]. For all
0 < s <t such that [ds] < |dt],

dt — |dt| [ds] — ds
Vi =Y = X~ X, + szwﬂ 1 lge szwﬂ 1Lag

Then by the Holder inequality,

E [(YXA - Y;ﬁﬂ <C ((t —5)°+E [(X([idtj,l - X([ids],l)4]) )

where we have used
(dt — |dt])*  ([ds] — ds)?
d? * d?
The proof is completed using Lemma 7.16.

(dt — ds)* + ([ds] — |dt

<

Lemma 7.16. Assume H1. Then, there exists C' > 0 such that, for all 0 < ki < ko,
4 = (kp — k)P
d d 2 1
E {(X,%1 — X{) ] < cz R
p=2
Proof. For all 0 < ky < ko,

4
4 4
]E|:<Xl§:lg71_Xg1,1) :| ( Z Zk;l Z Zk‘ 1]]' _Ad )

k=k1+1 k=k1+1

Therefore by the Holder inequality,

4
41 2404 8¢t
E[(Xg%l_xghl) } < (k=) + B ( Z ZE L gy ) . (7.31)

k=k1+1
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The second term can be written:

)

(Z Zkl]lAd))4 ZE[H 1liag )

k=k1+1

where the sum is over all the quadruplets (m;)}_; satisfying m; € {k; +1,...,k2},
1 =1,...,4. The expectation on the right hand side can be upper bounded depending
on the cardinality of {my,...,my}. For all 1 < j <4, define

Zj = {(ml,...,m4) e {kl —i—l,...,kg} ; #{ml,...,m4} :j} . (7.32)
Let (m1,ma, mg,my) € {k1 +1,...,ko}* and (X{)r>0 be defined as:

- . - 14
X(UJl = X(UJl and leclJrl = Xg + lk¢{m1*17m2*1,m3*17m4*1}ﬁZgJFllAZH ’

with ./le_H = {Uk+1 < exp (Zf’l:1 Af/kcfl)}, where for all £ > 0 and all 1 <7 < d, Af/;m
is defined by

. - - 14
AV =V (Xg,i) -V (X/?,i + ﬁzlgﬂ,i) :
Note that on the event ﬂAf_ { }c the two processes (Xj)r>0 and (Xk)kzo are equal.
Let F be the o-field generated by (Xg)k>0.

(a) #{mi,...,mqy} =4, as the {(Umj,Z,iijJ, . 7Z%j7d) }1§j§4 are independent con-
ditionally to F,
;] |

ol )]

where ¢(z) = (1 —e")_ . Since the function ¢ is 1-Lipschitz, we get

m.;

et )

fomjvl]l(jd])c

-t
i

d d
- { -
@ <Z Avﬁlbjl,z) 4 <—ﬁV(Xd —1,1) ng,l + ZAV%L@) ‘
i=1 i=2
- ¢ . -
< ‘Avnciqu + %V(Xrij—l,l)szzj,l .

Then,

<E

)

[1{%, +B:,}

j=1

§. SR
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where
S
Vid

0 . d
Zij,l (1—eXp {—%V(ngjm)zgw + ZAV$j1,i}> ]:] | .
i—2

By the inequality of arithmetic and geometric means and convex inequalities,

Al =E Uzgw]

m;—11 1 V(ngqu)zd

mj,1

7.

Bl =

m;

E

+

4

L)

4

> (an)'+ (21"

4
By Lemma 7.13(ii) and the Holder inequality, there exists C' > 0 such that E [(Ad ) ] <
Cd~2. On the other hand, by [JLM15, Lemma 6] since Z¢, ;.1 18 independent of F,

<8E

)

( e 4
Bﬁbj = ’E [\/EV(XgLJ1 1)9 (d V(ern]q 1 ,—2;AV$j1,@'> ‘}—]

where the function G is defined in (7.28). By H1(ii) and since G is bounded, E[(Bfnj)‘l] <
Cd~2. Therefore |E| ?:1 Z,Efw L(4g )e]| < Cd™?, showing that
™;

4
C (ke — k1
E Zd 1 c < — . )
) lH it (ag ) || < dz( A ) (7.33)
(m1,ma2,m3,m4)€L4 i=1
(b) #{m1,...,m4} = 3, as the {(UmJ,Z ”"Zglfvd)}lgjg?, are independent

conditionally to F,

3
(fom)z Liag ) jllzij,lﬂ(%)c

<E [(Zﬁbhl)Q‘}‘] 1:[ E

E

f”

i
m]

oo (i,
my

Then, following the same steps as above, and using Holder’s inequality yields

3 3 9 5
E|T] z2 1 || <CE A )+ (BY )| <cd!
jl;lz o1 (A?nj) ;( J) ( J)
and
ko — k
> lH mz,l]l ag )| S %( ’ 3 1) = %(@ — k1)? (7.34)
(ml,mg,mg,m4)613
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(¢) If #{mq,...,my} = 2 two cases have to be considered:

E|(Z0,1) 10ag, ) (Zhar) 10| <B|(Z000) | B[ (20 )1 <L
| (7h01) 1 a2 g, ] < B (2 B [

This yields

>

(m1,m2,m3,m4)€L>

4
E [H Zrmi V(g )¢
i=1 ¢

< (3 +4- %) (ky — k1)(ko — k1 — 1) < C(ka — k1)*.  (7.35)

(d) If #{mq,...,my} =1: E [<Zg”’1]l(¢4g%)“)4] <E {(Zgh,l)ﬂ < 3, then

>

(m1,m2,m3,mq)€l1

< 3(ky — k1) (7.36)

lH 1l (AL)°

The proof is completed by combining (7.31) with (7.33), (7.34), (7.35) and (7.36). O

7.4.5 Proof of Proposition 7.6

We preface the proof by a preliminary lemma.

Lemma 7.17. Assume that H1 holds. Let u be a limit point of the sequence of laws

(a)a>1 of {( ¥ 4 )i>0, d € N*}. Then for all t > 0, the pushforward measure of u by W;
is .

Proof. By (7.7),
lim B[y - Xfy ] =0.

d—+o00

Since (f1q)g>1 converges weakly to p, for all bounded Lipschitz function ¢ : R — R,
EH [ (W) = limg—s 100 E[(Y4)] = limg o0 E[zp(XfldtJ 1)]. The proof is completed upon
noting that for all d € N* and all ¢ > 0, X fldt 11 is distributed according to 7 . O

Proof of Proposition 7.6. Let p be a limit point of (p14)g>1. It is straightforward to show
that p is a solution to the martingale problem associated with L if for all ¢ € C°(R,R),
m € N*, g : R™ — R bounded and continuous, and 0 <t <--- <t, <s<t:

E“[(¢<Wt)—¢<Ws)—/:L¢<Wu>du)g(th,...,th> —0.  (737)
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Let ¢ € C°(R,R), m € N*, g : R™ — R continuous and bounded, 0 <t; <--- <, <
s < tand Wy, = {w € W|w, & Dy, for almost every u € [s,]}. Note first that w € W,
if and only if [ 1p, (wy)du > 0. Therefore, by H2 and Fubini’s theorem:

E~ [/t ]LDV(Wu)du} = /j E* [1p, (Wy)| du =0,

showing that y(W¢,) = 0. We now prove that on Wy,

Uep: wes {(b(wt) — ¢(ws) — /st L¢(wu)du} g(wy, ..., wy,,) (7.38)

is continuous. It is clear that it is enough to show that w + [’ Lo(w,)du is continuous
on Wy,. Solet w € Wy, and (w"),~, be a sequence in W which converges to w in
the uniform topology on compact sets. Then by H?2, for any u such that w, ¢ Dy,
Lo(w]!) converges to L¢(w,) when n goes to infinity and L¢ is bounded. Therefore
by Lebesgue’s dominated convergence theorem, f; Lo(w!')du converges to fst Lo (wy,)du.

Hence, the map defined by (7.38) is continuous on Wy,. Since (uq)g>1 converges weakly
to p, by (7.16):
p(Vsp) = lim p?(U5,) =0,

d—r+o00

which is precisely (7.37). O

7.4.6 Proof of Theorem 7.7

By Proposition 7.6, it is enough to check (7.16) to prove that u is a solution to the
martingale problem. The core of the proof of Theorem 7.7 is Proposition 7.20, for which
we need two technical lemmata.

Lemma 7.18. Let X,Y and U be R-valued random variables and € > 0. Assume that U
is nonnegative and bounded by 1. Let g : R — R be a bounded function on R such that
for all. (z,) € (—00, —e? U [e,+00)2, [g(x) — ()] < Cy |z — .

(i) For all a >0,
E[U]g(X) = g(V)[] < GE[U|X = Y]
+ose(g) {P(X| <)+ a 'EUX = Y[+ P(e < [X| < e+a)}
where osc(g) = sup(g) — inf(g).
(i) If there exist n € R and o,Cx € Ry such that

Sup P(X <z)—@((z —p)/o)| < Cx,
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then
E[Ulg(X) = g(Y)l] < C4E[U X = Y]]

+2050(g) { O+ ZEUIX — V| 2re) 12 + c2mo?) 2}

Proof. (i) Consider the following decomposition

E[U]9(X) = g(¥)[] = E [U1(904) = 90V L {x vy oo Yo xv)lersner®)]
+E {U 19(X) — g(Y)] (H{XE[fe,e}} + ]l({X<fe}ﬂ{Yzfe})U({X>6}ﬂ{Y§e}))} :

In addition, for all a > 0,

(X< =efn{Y>—-€e}))U({X> et n{Y <¢€})
Cle<X|<et+alU{IX|>e+a}n{IX=Y|>a}).

Then using that U € [0,1), we get

E[U]g(X) = g(V)[] < CyE[U|X = Y] + osc(g) (P (IX| < e+ a) + a "B [U[X — Y]]} .

(ii) The result is straightforward if E[U[X —Y|] = 0. Assume E[U|X-Y]|] > 0.
Combining the additional assumption and the previous result,

E[U]g(X) = g(Y)[] < CeE[U[X = Y]]
+ ose(g) {20x + 2(e + a) (270 V2 +a'E[U X — Y]} .

As this result holds for all @ > 0, the proof is concluded by setting a = \/ E[U|X = Y][] (2ra2)1/2/2.
U

Lemma 7.19. Assume H1 holds. Let X¢ be distributed according to ©¢ and Z% be a d-
dimensional standard Gaussian random variable, independent of X®. Then, limg 40 Ed =
0, where

) 2. d 2. d
ot [ o (Gt asians) o (Gvostrasion) |
=2

=2

AVE and b are resp. given by (7.5) and (7.13).

(2

Proof. Set for all d > 1, Yy = Y4, AV and X; = Y%, 6% By (7.28), 8,G(a,b) =
—G(a,b)/2 + exp(—b?/8a)/(2v/2ma). As G is bounded and z + z exp(—x) is bounded

on R, we get SUD e, (b >al/4 G (a,b) < +00. Therefore, there exists C' > 0 such that,

for all a € Ryand (by,b9) € (—OO, —a1/4)2 U <a1/4, +OO)2,

|G(a,b1) = G(a, b2)| < C by — byl . (7.39)
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By definition of bg (7.13), X4 may be expressed as Xy = 04Sq + jtq, where

Ha = 2(d - DE [¢(xt, 2] - 62«27;1)”3 V]
- exfrt] ot -m ]

d
Sa=(Vdog) > pe,
=2
. 2. :
B = —ezV (X)) = 1= (VXD -E [V(xdy?])

By H1(ii) the Berry-Essen Theorem [Pet95, Theorem 5.7] can be applied to S;. Then,
there exists a universal constant C such that for all d > 0,

(7)) -wo

sup |P (X'd < ac) — P((x — ,ud)/&d)‘ < C/Vd,
z€R

<C/Vd.

sup
zeR

It follows that

where 6% = (d—1)02/d. By this result and (7.39), Lemma 7.18 can be applied to obtain
a constant C' > 0, independent of d, such that:

E Hg (PV(x9)?/d,2Yg) — G (C2V(X$)?/d, sz)\ ]Xﬂ

<O (eat a2 4 \2za2ra) 12 4 \JV (XD (2n0253) )

where ¢4 = E HXd - YdH Using this result, we have

E‘<C { <€d +d7 \/25d(2775'3)_1/2) E [[V(x7)]

+O2E [V (XD (2md'/263) 712} . (7.40)

By Lemma 7.14, g4 goes to 0 as d goes to infinity, and by H 1(ii) limg_, 4o 05 =
R {V(X)z} Combining these results with (7.40), it follows that E¢ goes to 0 when
d goes to infinity. O

For all n > 0, define F¢ = o({Xd, k < n}) and for all ¢ € C*(R,R),

¢ el d
iy b 1 vd d  Fl [
My () = Nz ;;fb (Xk1) {Zk+1,1]1,4g+1 Ek [Zkﬂ,l]lAgHH
2= d d 2 Fd d 2
+ 5 ,;o " (XD {(Zha )Ly, — BT (200 1 |} (T41)
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Proposition 7.20. Assume H1 and H2 hold. Then, for all s <t and all p € CX(R,R),

tim_E [[ovh) - ov) — [ Lo(viar = (M (6) - M) | 0.

d—~+o00

Proof. First, since de’ll = E\/EZfldrm]l Al dr,

t
BYih) = (Vi) = 0V | & (V) 2y 1, (7.42)

As ¢ is C3, using (7.7) and a Taylor expansion, for all » € [s,t] there exists y, €
{Xﬁd”’l, Yr‘ﬂ such that:

/
dy_ d d d
(Vi) = &' (X{gp) 1) + %(dr - LdV”J)¢"(XWJ,1)Z(dr1,1]1Agdﬂ
2 2
+ 57 (dr = 1dr])*6® (xo) (Z1) L

far]

Plugging this expression into (7.42) yields:

t
BYh) = G(Yh) = OV [ (Xl V2o 1L, dr

[dr]

t
2 [ ar )0 Oy ) F ), e
6o

o 8<dr—Ler>2¢<3><xr><2?dr171>31w dr.

[dr]

As ¢ is bounded,

t
lim E Hd—w / (dr = 1dr )6 (6, )(Zfr ) Lag_dr

d——+o0

|-o.

On the other hand, I = [! gb”(Xfler,l)(dr - LdTJ)(ZFlerl)Q]]'A‘ridﬂ dr = I + Iy with
I T X e — L] — 122 )Pl d
V= [ 8 Kl = L] = 1/2)(Za )L, O

1 gt
12:5/5 ¢”(X[idrj,1)(Zfldr],1)2]lAd dr.

[dr]

Note that

1
L = ﬁ([d,ﬂ — ds)(ds — LdsJ)¢I/(Xfldsj,1)(zflds1,1)2]1Af[ldﬂ

1 //
+ o ([dt] = dt)(dt — 1dt])¢" (Xay 1) (ZHan ) L,
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showing, as ¢” is bounded, that limg_, ;» E[|I1|] = 0. Therefore,

Jim E (o) = o(vh) - L] = 0,
where
L= / (Va8 (X )20 1 + 00" (X )(Za 2)7/2} g,
Write
st—/ LoV )dr — (Ml (6) - My (9)) = Tf + T§ + T8 — Tf + T,
where

t fd h E .
7y - / ¢ (Xfay1) (M Bl [Zf‘dﬂ L, |+ VO )

@2 h(¢

[dr]

T?fl:/s (L¢( ) — Lqﬁ(YrC,ll)) dr

(([dt] — dt)
Tgb (XLdtJ 1) <Zfldﬂ 1]lA‘ridﬂ

N 2([dt] — dt)

T = -E {Zwﬂ 11 4

[dt]

-E [(Zfldﬂ,1) 1 4a

[dt]

ffdtj])
¢" (X)) | (21 )1 F
2d ldt],1 [dt],1 A? m Ldt] )
(([ds] —ds) ,

d_ d d d
15 = TQS (X{ap0) <Zws1,1]l,4gdﬂ - E {Z[ds],l]lA?ds] ’}-LdsJD

([ds] — ds) d d d
+ =" (X{as1) ((Z(dﬂ )2 Tag, —E [(Z[dﬂ 1 ﬂA?d . “FLdsJ])

It is now proved that for all 1 < i < 5, limg_, o E[|T¢]] = 0. First, as ¢/ and ¢" are
bounded,
E (|| +|13)] < ca12. (7.43)

Denote for all r € [s,t] and d > 1,

AVE =V (Xl o) =V (Xyya + 0472 2804,)

= _ 1 nexp {—ezﬁdﬂ,y<xfm,1>/«a ' zbfd@,i} ,
1=2

d
Y =1Aexp {—fzfldﬂ,lv(X[idrm)/\/a + ZAV&} )

=2
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where for all k,i > 0, bg,i = bd(XgJ,Z,‘jH,i), and for all z,z € R, b%(x,y) is given by
(7.13). By the triangle inequality,

i < |
S

Ay, = ’N& E [Z‘ﬁdﬂ 1 ( - T?) ‘]:fldrj]
Aoy = ’f\/g E [Z([idr] 1 ( Hd) ‘}-drd
Az, = ‘6\/& E { d Ldrj} + V(XLer,l h(f)/Q‘ :

¢/(ng”71)‘ (A, + Ay + As,)dr, (7.44)

where

Since t — 1 Aexp(t) is 1-Lipschitz, by Lemma 7.13(ii) E[‘Air‘] goes to 0 as d — +oo for
almost all . So by the Fubini theorem, the first term in (7.44) goes to 0 as d — +oc.
For A4, by [JLM15, Lemma 6],

. PV(X
} <E £2V(derj,1){g (M 2ZA )

. (zzv( fir1)? me )}“

where G is defined in (7.28). By Lemma 7.19, this expectation goes to zero when d
goes to infinity. Then by the Fubini theorem and the Lebesgue dominated convergence
theorem, the second term of (7.44) goes 0 as d — +o0. For the last term, by [JLM15,
Lemma 6] again:

NEE[ d

E[|3,

fldrj} = _€2V(X[idrj 1)
23

( ZV ) QdZV Xt ) —4(d—1)E[<d(X,Z)D, (7.45)

where X is distributed according to m and Z is a standard Gaussian random variable
independent of X. As G is continuous on Ry x R\ {0,0} (see [JLM15, Lemma 2]), by
H1(ii), Lemma 7.15 and the law of large numbers, almost surely,

d—r+o00

. 2 62 d 62 d d
lim %G ( ZV o) QdZV Xy )2 = 4d = DE ¢ (X,Z)D
= 2 (zZ V(X )2],€2E[V(X)2]):h(£)/2, (7.46)

where h(¢) is defined in (7.10). Therefore by Fubini’s Theorem, (7.45) and Lebesgue’s
dominated convergence theorem, the last term of (7.44) goes to 0 as d goes to infinity.
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The proof for Ty follows the same lines. By the triangle inequality,

78] < | [ 0"ty 0@/ B[ 07 (1, —5) [y |
| [ 6ty ) (@12 B[22 7y | - m02) .

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Proposition 7.3,
the expectation of the first term goes to zero when d goes to infinity. For the second
term, by [JLM15, Lemma 6 (A.5)],

(7.47)

Eder 1y d
(£?/2)E l(zfldﬂg)zl A exp {— \[/EL V(X0 + gbcfdrj,i} ’J:fldrjl

— (Bi+Bs— By)/2, (749)

Avxd N2 (2 4 2 4
ldr],1 d 2 d 2 d
B2 = —g <_ V( dr ) Y 7 V(X dr z) _4(d ) C (X Z) )
d d = Ldr] 2d “= Ldr] { }
AV (XE )2 e
B3 = % <27r£22V Xt ) /d)
i=1

¥ exp d — {—(d — 1)E[2<d(X, Z)] + (52/(4(1)) C'l, V(X(Ljer,i)Q}Q

2023 V(X )%/ d

where I is defined in (7.29). As I is continuous on Ry x R\ {0,0} (see [JLM15, Lemma
2]), by H1(ii), Lemma 7.15 and the law of large numbers, almost surely,

, 2 2L
dgrfooe?r< Zv i) 57 22 V(X)) —4(d = DE [Cd(X,Z)D

=2

= T (CE[V(X)2), CE[V(X)?]) = h(0). (7.49)

By Lemma 7.15, by H1(ii) and the law of large numbers, almost surely,

i [~ (d— DERCUX, 2)] + (E2/(4d) Ty V(X )]
dtee TP T 225, V(X )2/d
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Then, as G is bounded on Ry x R,

lim E H/t ¢" (X 1) (B2 — Bg)dr} =0. (7.50)

d——+o0

Therefore, by Fubini’s Theorem, (7.48), (7.49), (7.50) and Lebesgue’s dominated con-
vergence theorem, the second term of (7.47) goes to 0 as d goes to infinity. Write
T§ = (h(€)/2)(T$, — T4'y) where

= [ {9 () -0 (1) o
Ty = [V (Xfia) & (Xfays) -V (V) & (V) Y.

It is enough to show that E[}Tgfl,l‘] and E[}Tgflg‘] go to 0 when d goes to infinity to

conclude the proof. By (7.7) and the mean value theorem, for all r € [s,¢] there exists
Xr € {XWJ I,YH} such that

O (X 1) = 0" (Vi) = 0 (u) (dr = Ldr (/N D Zfy 11 as,

Since ¢ is bounded, it follows that limg_, | o E[|T:gl|] = 0. On the other hand,

ry = [V (Xty0) =7 (58) b (Xt 1) ar
+ / er 1 — ¢ (Yrc,ll)} v (Yrc,ll) dr.

Since ¢’ has a bounded support, by H2, Fubini’s theorem, and Lebesgue’s dominated
convergence theorem, the expectation of the absolute value of the first term goes to 0
as d goes to infinity. The second term is dealt with following the same steps as for Tg{l
and using H1(ii). O

Proof of Theorem 7.7. By Proposition 7.5, Proposition 7.6 and Proposition 7.20, it is
enough to prove that for all ¢ € C(R,R), p > 1,all 0 <t <--- <¢, < s <t and
g : RP — R bounded and continuous function,

lim E |(Mfy(9) ~ Miyq ()o (Y, ¥i)] =0,

d——+o0

where for n > 1, M%(¢) is defined in (7.41). But this result is straightforward taking
successively the conditional expectations with respect to Fy, for k = [dt],...,[ds]|. O
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7.5 Proofs of Section 7.3

7.5.1 Proof of Theorem 7.9

The proof of this theorem follows the same steps as the the proof of Theorem 7.4. Note
that & and &g, given by (7.11), are well defined on ZN{x € R | x + 10 € Z}. Let the
function v : R? — R be defined for z,6 € R by

v(z,0) = 1z(z +10)1z(x + (1 —1)0). (7.51)

Lemma 7.21. Assume G/ holds. Then, there exists C > 0 such that for all 0 € R,

) 9 1/2
([ (t606e) - @)} vl.0) + 6V (0)0(a)2) o) < Clol’.
Proof. The proof follows as Lemma 7.2 and is omitted. U

Lemma 7.22. Assume that G/ holds. Let X be a random variable distributed according
to m and Z be a standard Gaussian random variable independent of X. Define

Dr={X+1vld?ZeT}n{X+1—-1)d?*ZeT}.
Then,
(i) limg_y o0 d H]lDIC (X, Z) +£ZV(X)/(2\/E)H2 ~0.
(ii) Let p be given by G/(i). Then,

lim V| 1p, {V(X) - V(X +2/Vd)} + fZV(X)NEHp = 0.

d—+o00

(iid) Timgsoo d||Lp; (log(1 + Ga(X, 2)) = ¢U(X. 2) + (12X, 2)/2) |, =0,
where (% is given by (7.14).
Proof. Note by definition of ¢% and & (7.11), for € 7 and = + rfd~'/?z € T,
Uz, 2) = g2 (@) [éo(2) — 1. (7.52)
Using Lemma 7.21,
|1p.ct(x. 2) 4+ 027 (x) 2V

—E | [ (00,287 {€0(0) ~ 60(2)} + L2V (@0 (2)/(2V) " da]
< CP*Pd~PE [IZ|25] ‘
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The proof of (i) is completed using 3 > 1. For (ii), write for all z € Z and z +£2d~'/?z €
T, AV(z,z) = V(z) — V(x4 Lzd~'/?). By G4(i)

|10, AV(X, 2) + 02V(X /IH ~E U (vl 2d" V2 AV (X, Z) + 02V (2)/Vd)" ﬂ(x)dx}
< CrPPq—Br/2R [|Z|Bp}
and the proof of (ii) follows from 8 > 1. For (iii), note that for all x > 0, u € [0, z],
|(z — u)(1 +u)~!| < |z|, and the same inequality holds for x € (—1,0] and u € [z,0].
Then by (7.25) and (7.26), for all z > —1,
‘log 1+x)—x+x2/2‘ (z)] < 2? [log(1 + )| .

Then by (7.52), for € Z and z + ¢d~ /%2 € T,

‘log(l + Gz, 2)) = ¢z, 2) + [CY)P (x, z)/Q‘
< (Epza-12(2) /€0(2) — )2\10g(§zzd 1/2(2) /o ))\7

§o(z)
< (G2 (@) [60(@) = 1? |V (@ + £2d7?) = V(@) /2.

Since for all @ € R, |exp(z) — 1] < |z|(exp(x) + 1), this yields,
flog(1+ Gala, 2)) = (& 2) + [P 2)/2]
< Ve + a7~ V@) (exp (V@) ~ Ve + £2a7)) +1) /4.
Therefore,
/Iv(m,ézd_l/Q) [log (1 + Gaa. 2)) — ¢4z 2) + (¢ (. 2)/2] m(a)de < (I + To)/4,
where

L = /Iv(x,ﬁzdflﬂ) ’V(x +L2d7V?) —V(2)| w(x)da

’3
3
I, = / v(x, Lzd=1?) ‘V(m +lzd7V?) — V(m)‘ m(x + Lzd”Y?)dz .
A
By Hélder’s inequality, a change of variable and using G4(i),

Lih<C (\ezd—l/ﬁf’ (/ ‘V(x)‘47r(x)dx)3/ L ‘Ezd_1/2‘3ﬁ> |

The proof follows from G4(ii) and g > 1.
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For ease of notation, write for all d > 1 and 7,5 € {1,...,d},
DY, = {X{+rtd 2z e T} 0 {X] + (1 —)ea 2] e T},
J
D%,i:j = ﬂ D%,k- (7.53)
k=1
Lemma 7.23. Assume that G/ holds. For all d > 1, let X% be distributed according

to @, and Z% be d-dimensional Gaussian random variable independent of X@. Then,
limg 100 J% = 0 where

J%:|

d d 2
0zg 2.
Ipg, > { (AVﬁ + V(X?)) —2E {lpgind(Xid, Z?)} + @V%Xfl)}

=2

1

Proof. The proof follows the same lines as the proof of Lemma 7.14 and is omitted. [

Define for all d > 1,

El=E l(zf)Q

d
]lD%Ldl A exp {Z AVid}

i=1

d
_1Aexp {—ed—l/QZfV(Xf) + (X, Zﬁ)}H :
1=2

where AV is given by (7.5), for all € Z, z € R,

d bz - d(yd rd ? 9
b7 (z,2) = —%V(m) + 2E []ID%JC (Xl,Zl)} — @V (x), (7.54)

and (¢ is given by (7.14).

Proposition 7.24. Assume G/ holds. Let X® be a random variable distributed according
to @ and Z¢ be a zero-mean standard Gaussian random variable, independent of X.
Then limg_s 4+ oo E% =0.

Proof. Let A® = —¢d='?Z{V (X{) + 24, AVZ By the triangle inequality, E¢ < Ef 4

E¢ + E4 where
d
1 Aexp {ZAVid} —1ANexp {Ad} ] ,
=1

d
1 Nexp {Ad} —1ANexp {—Kd_l/QZfV(Xf) + Zbd(Xz'Cl7 sz)}H )
i=2

Bl — B |(20) 1py

Bl =B |(20) 1y

[ 2 ) d
B =E|(z]) Lipg  yelAexp {—fd—l/QZfV(Xf) + > p(xd, Zﬁ)H ,

Z,2:d N
=2
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Since t — 1 A el is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

2 . .
By <B|(2) 1py [AV+ 0 P20V 0| < 200 1y AV + 22200 (x0)

2

By Lemma 7.13(ii), ECfI goes to 0 as d goes to +oo. Using again that t — 1 A el is

1-Lipschitz and Lemma 7.23, E2 7 goes to 0 as well. Note that, as Z¢ and ]l( ) are
I 2:d
independent, by (7.18),
EBfr <dp ({D§,}") < cat™/?.
Therefore, Egl goes to 0 as d goes to +oo by G4(iii). O

Lemma 7.25. Assume G/ holds. For alld € N*, let X% be a random variable distributed
according to ©@ and Z¢ be a standard Gaussian random variable in R?, independent of

X. Then,
€2

=1,
4

d—+o0

where I is defined in (7.6) and ¢¢ in (7.14).
Proof. Noting that for all § € R,
/ Iz(z +10)1z(z + (1 —1)0)7w(x 4+ 0)dx = / Iz(z+ (r — 1)0)1z(x — r0)mw(x)dz.
z z

the proof follows the same steps as the the proof of Lemma 7.15 and is omitted. O

Proof of Theorem 7.9. The proof follows the same lines as the proof of Theorem 7.4 and
is therefore omitted. O

7.5.2 Proof of Proposition 7.10

As for the proof of Proposition 7.5, the proof follows from Lemma 7.26.

Lemma 7.26. Assume G 4. Then, there exists C' > 0 such that, for all 0 < ki < ko,

E {(X,gg,l - Xf1) ] < CZ

k?g—k?l

Proof. We use the same decomposition of IE[(X,QI%1 —X,?hl)‘l] as in the proof of Lemma 7.16
so that we only need to upper bound the following term:

=1

ko 4 4
o ( 2 Z’il%z)c) B QZE[HZ’%%%JC]’
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where the sum is over all the quadruplets (mp);%:l satisfying m, € {k1 +1,...,kz},
p=1,...,4. Let (m1,ma,mg,my) € {k1 +1,...,ko}* and (Xg)kzo be defined as:

X§=X{ and Xj, =X+ ]ché{ml—1,mg—1,mg,—1,m4—1}561_1/2Z1?+1]ljlg+1
where for all k>0 and all 1 <17 <d,

d
Al = {Uk+1 < exp (Z AVI;{i) }

i=1
AV, =V (Xg,i) -V (chcl,i + M_l/QZ/?H,i) :
Define, for all k1 +1 < k < ko, 1 < 4,5 < d,

~Nd,k o _
Db = { X +rd™ Pz e Thn { X+ (L - vped 22, e T}

j

~d k ~d.k

Drij= ﬂ Dz

=i
Note that by convention V(z) = —oo for all z ¢ Z, .[lgﬂ C @;Czl’,]i:d so that (Agﬂ)c may
b . id \¢ _ (Adk \€ id \¢ ~ R/dk
e written (Ak+1) = (DLM) U ((Ak+1) N Dled)- Let F be the o-field generated by

(Xg)k>0. Consider the case #{m1,...,m4} = 4. The case #{m1,...,my} = 3 is dealt

with sir_nilarly and the two other cases follow the same lines as the proof of Lemma 7.26.
. d . o .
As {(Umj , Z ,ij7 d) }1§j§4 are independent conditionally to F,
f] } |

4
H Zy, 1
j=1 ( I,l:d 1) 7
As U, is independent of (Z4 ,Zg%d) conditionally to F, the second term may
f] |

be written:
b

]:

+E ':]]-,Z-jdﬁnj_l ]l(j‘%])czm],

Z,1:d

R )

ml’”

d
J-“] =FE []1 ;rlnd nylw (1—GXP{Z;AV$J-—1,Z}>
i= +

Since the function = + (1 —e"), is 1-Lipschitz, on szl TZl !

d
(1 —exp{z Av,ﬁjlﬂ-}) —
=1 +

where ©,,, = (1 — exp{—ﬁd*1/2V(Xng,I,I)Z,ifw +34, AV;%J__LZ’})JF. Then,

d
E |:]12~)d,mj1 Z7C7l1j71 (1 - eXp {Z Avgj—lfl})
Z,1:d i=1 +

E

1sdm, IH(A%].)CZ%J

Ild

Om,| < |AVE 1+ ™2V (X )28

F|| <AL +B,
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where

Al =E UZ,?,W\

Loamj Af/rgjq,l + gdil/QV(Xngfl,l)Zd 1
71

mj,
.7-"” .

4
[H{ [ (i) 7

4 4 4
S 1 gy 128l 4 (48,) (32
: Z,1:d

By G4(iii) and Holder’s inequality applied with « = 1/(1 —2/7) > 1, for all 1 < j < 4,

SEI:]l(@;:’lnj—l) mjl\ +ZE[ ( B 1)] g

<E |z, ,[*/0-] TV gl 4 g,

7.

Bd . = ’E |:]1ﬁd,mj1Zng,1®mj

m
J
7,2:d

By Jensen inequality,

)

4
E ]1;[1 Zglj’l]l(A;inj)C:|

+ AL+ B;‘fw}

<CE

)

E

]l(ﬁmd ) e[ Za [t

< Odi-2,

IN

4
By Lemma 7.22(ii) and the Holder’s inequality, there exists C' > 0 such that E {(A%J) ]
Cd~2. On the other hand, by [JLM15, Lemma 6] since fo%l is independent of F,

)

d
Bf,. = ‘El]l dm; ed—l/QV(Xg”_M)g(sz—W(Xglj_m)?,—2;Av,gj_17i>H

I2d

where the function G is defined in (7.28). By G4(ii) and since G is bounded, E[(Bfnj)‘l] <
Cd~2. Since v > 6 in G4(iii), |E[ ?:1 Zng,l Liga el < Cd~2, showing that
™;

_ofk2— k1
< 2 .
< cd ( - )

>

(m1,m2,m3,mq4)€Ty

lH Ad )¢

7.5.3 Proof of Proposition 7.11

Lemma 7.27. Assume that G/ holds. Let p be a limit point of the sequence of laws

(ta)a=1 of {( tl)t>07 de N*}. Then for allt > 0, the pushforward measure of pu by Wy
is .
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Proof. The proof is the same as in Lemma 7.17 and is omitted. U

We preface the proof by a lemma which provides a condition to verify that any limit
point p of (14)g>1 is a solution to the local martingale problem associated with (7.9).

Lemma 7.28. Assume G 4. Let pu be a limit point of the sequence (f1q)a>1- If for all
¢ € OX(Z,R), the process (p(Wy)—d(Wo)— fo Lop(Wy,)du)iso s a martingale with respect
to p and the filtration (%:)i>0, then p solves the local martingale problem associated with
(7.9).

Proof. As for all t > 0 and d > 1, Y}y € T, for all d > 1 p4(C(Ry,Z)) = 1. Since
C(Ry,Z) is closed in W, we have by the Portmanteau theorem, u(C(Ry,Z)) = 1.
Therefore we only need to prove that for all v € C*(Z,R), the process (1(W;) —
fO Lyp(Wy)du)e>o is a local martingale with respect to p and the filtration
(a@t)tzo Let v € COO(Z R).
Suppose first that for all @ € C>°(Z,R), (w(W;) — — JiLw(W,)du)iso is a
martingale. Then, consider the sequence of stopping tlme deﬁned for k: >1bymn =
inf{t > 0| |[W;| >k} and a sequence (wy)r>o in C°(Z, R) satisfying:

1. for all k > 1 and all z € ZN [k, k], wi(z) = ¥(x),
2. limk*)+oo W — 1/} in Coo(j'7 R)

Since for all k > 1,

<w<Wm> — v (W) - [ o L¢(Wu)du>

t>0

= (=1 Wirn) —~m00) — [ L)

>0

and the sequence (Tk)k>1 goes to +o0o as k goes to +oo almost surely, it follows that
(Y(Wy) — — [3Lap(W,)du)i>o is a local martingale with respect to p and the
filtration (%t)t>0 It remains to show that for all @ € C°(Z,R), (w(W;) — w(Wo) —
fo Lw(W,)du)i>o is a martingale under the assumption of the proposition. We only
need to prove that for all @ € C°(Z,R), 0 < s <t, m € N*, g: R™ — R bounded and
continuous, and 0 <t < -+ <t,, <s <t

E+ K (W) — /Lw )g(th,...,th) =0. (7.55)

Let (¢r)r>0 be a sequence of functions in C2°(Z,R) and converging to w in C°(Z,R).
First note that for all u € [s, t], u-almost everywhere,

m (W) = w(Wa). (7.56)

k—+o0

By Lemma 7.27, for all u € [s,t] the pushforward measure of p by W, has density 7
with respect to the Lebesgue measure and p-almost everywhere, limy_, o Logp(W,,) =
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Lo (W,). On the other hand, there exists C' > 0 such that for all k > 0, [Ley(W,)| <
C(1+|V(W,)|). Then,

o [/t (1+ [V (w)) du] < (t—s)+ /: B [V (W] du
<(t—s) (1+/I\V(x)\7r(x)dx) .

Therefore, p-almost everywhere by G 4(ii) and the Lebesgue dominated convergence
theorem, we get

lim /st Loy (W,,)du = /st Lw(W,)du. (7.57)

k—+o00

Therefore, (7.55) follows from (7.56) and (7.57), using again the Lebesgue dominated
convergence theorem and G4(ii). O

Proof of Proposition 7.11. Let p be a limit point of (ug)g>1. By Lemma 7.28, we only
need to prove that for all ¢ € C2°(Z, R), the process (¢(W;) — ¢(Wo) — [ Ld(W,,)du)i>0
is a martingale with respect to p and the filtration (%;);>0. Then, the proof follows the
same line as the proof of Proposition 7.6 and is omitted. ]

7.5.4 Proof of Theorem 7.12

Lemma 7.29. Assume G/ holds. Let X¢ be distributed according to 7% and Z% be a d-
dimensional standard Gaussian random variable, independent of X®. Then, limg 40 Ed =
0, where

E'=E HV(X{l)llpg’M (G (v (X2 /d,2Ya) — G (V(X{)?/d,2X,) }H ,
where Yy = Y4 5 AVA, AVE and D%de are given by (7.5) and (7.53) and Xq = Y0, b%l,’
b = b3(X{, Z{) with b given by (7.54).

Proof. Set for all d > 1, Vg = 320y AV and Xq = 3¢, b4 . By definition of b (7.54),
X, may be expressed as Xg =045+ Wa, where

2 — .
pna =20~ E [1g ct0xt, 2] - S VR [vxey)

o = CE[V(X{)?] + KA [(V(Xff ~E [V(Xf)ﬂ)z] :
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By G4(ii) the Berry-Essen Theorem [Pet95, Theorem 5.7] can be applied to S;. Then,
there exists a universal constant C such that for all d > 0,

P(”dflsdsx> — ®(x)

It follows, with 63 = (d — 1)o3/d, that

<C/Vd.

sup
zeR

sup [P (Xa < @) = (2 — pua) /60)| < C/Vd.
TER

By this result and (7.39), Lemma 7.18 can be applied to obtain a constant C' > 0,
independent of d, such that:

E [JLD%M G (PV(xf)2/d.2%s) — G (PV(xD)?/d.2X,) | X{ ”

<C (E []1@% y ‘Xd - Yd” +dV2 \/QE [JID% y ’Xd - Yd” (2752)=1/2

AV (X rd253))
Using this result, we have

B! < C{0PE [|V(XDP?) (2md'?63) 72 + B [V (XT)]] (7.58)

S I IR POy =y T e e

By Lemma 7.23, E[]lD% 2-d|Xd — Yy|] goes to 0 as d goes to infinity, and by G 4(ii)

limg 100 63 = °E {V(X)ﬂ Combining these results with (7.58), it follows that E4
goes to 0 when d goes to infinity. O

For all n > 0, define F2¢ = o({X{, k < n}) and for all ¢ € CZ(R,R),

/ n—1
M30) = 7= 3 () {Zln Ly, ~ B 2ty ]}

= k1
2= d d 2 Fd d 2
/!
+54 kz_o¢ (Xk1) {(Zk+1,1) Lyg, —E7% {(Zk—f—Ll) ]lAgHH . (7.59)

Proposition 7.30. Assume G4 and G5 hold. Then, for all s <t and all p € C*(R,R),

i
d——+00

w B [loih) - o) - [ Lowrtar - (M (0) - i @)|| = 0.
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Proof. Using the same decomposition as in the proof of Proposition 7.20, we only need
to prove that for all 1 <i < 5, limg_, ;o E[|T¢]] = 0, where

t
fd h g .
T = / ¢ (X{ar1) (5\/3 Bl [Z?dﬂ,l]lft?dﬂ} - %wXﬁdr“)) s

h(£)
ffldrj] _T> dr,

52
T2 / Qb” X[dr] 1) (2 E [(Zfldr],l) ]]_'A([idr]

= (L¢(Yf&” )~ Lo(¥h)) dr.

{([dt] —dt)
Ty = \/3 X1 ( far) 1 Tag, —E [Zfldﬂ 104, ]:fldtJD
([dt] — dt) )
2d ( ldt], 1) ((Zfldtm) ]lA?dﬂ —-E [(Zfldﬂg) lA?dﬂ ]:fldtJD )
a_ Ads] —ds) , d d d
Iy = — i ¢ (Xlas)) ( Zfastalag, —E|Zfasalas, ’]:Ldsj

%([ds] — ds)
+ S () (2 1)L

[ds]

d
-E [(Z[CM 1 ]IA?M ‘}-Ldsj])

First, as ¢/ and ¢” are bounded, E HTf‘ + ’Tg” < Cd~'/2. Denote for all r € [s,t] and
d>1,

AVE =V (Xfiry.i) =V (Xl + 0472 Z045)

Eg:1/\eXp{ gZ[dr]lv( erl/\/——i_ZbIzer}y

where for all k,7 > 0, b%f; = b%(X,?J,Zg_HJ), and for all z,z € R, bd(z,y) is given by
(7.54). For all k > 0, 1 <14,j <d, define

Dyt = {Xk] +rld 2z e Z} {Xg,j +(L—n)d Pz, e Z}

d,k
DI’L] ﬂDIZ
l=i

By the triangle inequality,

|T1| <

I(Xfldrj,l)‘ (A1 + Aoy + Az + Ay p)dr, (7.60)
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where

d
N R AR CTAES o 3
=2

_ d
Al,r - E\/—E { [dr],1 (J]-A?dr] B HD;’,%(ZJ HT>

|
Ao, = (VA E { far] L Ll (Hf,l - E,‘?) ‘Fﬁdrjj|

Az, = (VA E

=d | d
=r f\_dr]]

ey | + V(X DR(O/2]

Hlaria® (o)’
Ayy =|eVaE | 2]

Since t — 1 A exp(t) is 1-Lipschitz,

E[|41,

} SE\/EE ]1 d\_drj

Zfdﬂ 1’ ‘A w1 —Ad” 12 Z[dr] 1V( ldr], 1)” )

Zfdﬂ 1’ ‘A 1_€d 12 Z[d]lv( \_dr],l)” )

|

goes to 0 as d — +oo for almost all by Lemma 7.22(ii). So by the Fubini

< (VdE ]1 p Ldrj

< (VdE \de\

HD;:%MAV = d Pz V(X )

and E| ’Ad
theorem, the first term in (7.60) goes to 0 as d — +oo. For A4 > hote that

Azr_'efﬂ-z[ dalp sl (Hd Eﬁ) ’]—"fer”.

Then, by [JLM15, Lemma 6],
. EQV( dr 1
| <E BV (X{y 1) {g ( o QZA

evxd )rod
_g( deJl JZb%ZEer

=2

E[|43,

|

where G is defined in (7.28). By Lemma 7.29, this expectation goes to zero when d
goes to infinity. Then by the Fubini theorem and the Lebesgue dominated convergence
theorem, the second term of (7.60) goes 0 as d — +o00. On the other hand, by G4(iii)
and Holder’s inequality applied with « =1/(1 —2/7) > 1, for all 1 < j <4,

| <evi (E +§;E 1(D;:£drj)c]) ,

< Vi (E ( (123, 4o/ @)V g o g 2) < Cd¥2r?

E[|4d,

‘Z(fidﬂ o1 ‘ L (D;:%dTJ ) ¢
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and E[‘Agr

| goes to 0 as d — +oo for almost all 7. Define

d
Vig=>_ V(dem)2 and Vo= Vg — V(deﬂ,l)2 .
i=1
For the last term, by [JLM15, Lemma 6]:

(AR |Z, =

ffldrj} = _KQV(Xiier,l)

e[ J
X G (= Va1, | 57 Vaz —4(d = DE |1p,¢Y(X. 2)] v |, (7.61)

where D7 = {X +0d V27 I}, X is distributed according to w and Z is a standard

Gaussian random variable independent of X. As G is continuous on Ry x R\ {0,0}
(see [JLM15, Lemma 2]), by G4(ii), Lemma 7.25 and the law of large numbers, almost
surely,

lim ¢2G (eQm Jd, >V /(2d) — 4(d — 1)E [nngd(x, Z)D

d—+o00

= (G (PE[V(X)?], PRV (X)?]) = h(0)/2, (7.62)

where h(¢) is defined in (7.10). Therefore by Fubini’s Theorem, (7.61) and Lebesgue’s
dominated convergence theorem, the last term of (7.60) goes to 0 as d goes to infinity.
The proof for Ty follows the same lines. By the triangle inequality,

78] <[ [ 6"ty 0212 B (2 )2 (1, — 5 |7y |

far]

+| [ oty 0 (€2 B (28,72

(7.63)

fﬁdﬂ} - h(e)/z) dr| .

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Proposition 7.24,
the expectation of the first term goes to zero when d goes to infinity. For the second
term, by [JLM15, Lemma 6 (A.5)],

€der 1 d d,|dr
(2/2)E [(Z?dﬂ,nzmexp{— v v<xﬁdrj,1>+2‘§bf,£ J}!m]

= (By + Ba — B3)/2, (7.64)
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where

By = T (Vg1 /d, V5 /(2d) — 4(d — VE [1p,¢Y(X, 2)] ) ,

£4V(Xfldrj 1)2 27 275 d
By = LG (20, /d, V5 (2d) — 4(d — 1E [10,¢%(X, 2)])
_ OV Xy )?

y 2 (27 2V /d)_l/ i

Bs

[~2(d — DE[1p,¢*(X, 2)] + (2/(4d)) V2]
202V, /d ’

X exp

where I' is defined in (7.29). As I' is continuous on Ry x R\ {0,0} (see [JLM15, Lemma
2]), by G4(ii), Lemma 7.25 and the law of large numbers, almost surely,

lim (27 (Vg1 /d, {2Vy/(2d) — 4(d - DE [1p,¢*(X, 2)| })

d——+o00

= T (CE[V(X)2), PE[V (X)) = h(0). (7.65)

By Lemma 7.25, by G4(ii) and the law of large numbers, almost surely,

_ 12
[2(d — DE[1p,¢4(X, 2)] + (£2/(4d))Vas] e
lim exp< — — =expy ——E[V(X)]; .
d—+00 2€2Vd71/d 8
Then, as G is bounded on Ry x R,
t
lim E H/ ¢" (Xt 1) (Bs — Bg)dr} =0. (7.66)
d—+o00 s ’

Therefore, by Fubini’s Theorem, (7.64), (7.65), (7.66) and Lebesgue’s dominated con-
vergence theorem, the second term of (7.63) goes to 0 as d goes to infinity. The proof
for T§ follows exactly the same lines as the proof of Proposition 7.20. O

Proof of Theorem 7.12. Using Proposition 7.10, Proposition 7.11 and Proposition 7.30,
the proof follows the same lines as the proof of Theorem 7.7. U



244 7.5. Proofs of Section 7.3




Chapter 8

Fast Langevin based algorithm for
MCMC in high dimensions

AvLAIN DURMUS!, GARETH O. ROBERTS 2, GILLES VILMART? AND KONSTANTI-
NOS C. ZYGALAKIS?

Abstract

We introduce new Gaussian proposals to improve the efficiency of the standard Hastings-
Metropolis algorithm in Markov chain Monte Carlo (MCMC) methods, used for the
sampling from a target distribution in large dimension d. The improved complexity is
O(d*/®) compared to the complexity O(d'/3) of the standard approach. We prove an
asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm
can be characterised by its overall acceptance rate (with asymptotical value 0.704),
independently of the target distribution. Numerical experiments confirm our theoretical
findings.

8.1 Introduction

Consider a probability measure 7 on R? with density again denoted by 7 with respect
to the Lebesgue measure. The Langevin diffusion {z;, t > 0} associated with 7 is the
solution of the following stochastic differential equation:

1
dxy = §EV log 7(xy)dt + 21/2th , (8.1)

'LTCI, Telecom ParisTech 46 rue Barrault, 75634 Paris Cedex 13, France. alain.durmus@telecom-
paristech.fr

2Dept of Statistics University of Warwick, Coventry, CV4 7AL, UK. Gareth.O.Roberts@warwick.ac.uk
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land. Gilles.Vilmart@unige.ch

“School of Mathematics and Maxwell Institute of Mathematical Sciences, University of Ed-
inburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
K.Zygalakis@ed.ac.uk
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246 8.1. Introduction

where {W}, t > 0} is a standard d-dimensional Brownian motion, and X is a given posi-
tive definite self-adjoint matrix. Under appropriate assumptions [Kha80] on 7, it can be
shown that the dynamic generated by (8.1) is ergodic with unique invariant distribution
7. This is a key property of (8.1) and taking advantage of it permits to sample from
the invariant distribution 7. In particular, if one could solve (8.1) analytically and then
take time t to infinity then it would be possible to generate samples from 7. However,
there exists a limited number of cases [KP92] where such an analytical formula exists. A
standard approach is to discretise (8.1) using a one step integrator. The drawback of this
approach is that it introduces a bias, because in general 7 is not invariant with respect
to the Markov chain defined by the discretization, [TT90; MST10; AVZ14]. In addition,
the discretization might fail to be ergodic [RT96a], even though (8.1) is geometrically
ergodic.

An alternative way of sampling from 7, which does not face the bias issue introduced
by discretizing (8.1), is by using the Metropolis-Hastings algorithm [Has70]. The idea
is to construct a Markov chain {z;, j € N}, where at each step j € N, given z;, a
new candidate y;41 is generated from a proposal density ¢(x;,-). This candidate is then
accepted (241 = yj4+1) with probability a(x;,y;+1) given by

7T(’y)(z(y,sﬂ)>

(@)az,y) (8.2)

a(z,y) = min <1,
and rejected (z;41 = x;) otherwise. The resulting Markov chain (z;),en is reversible
with respect to 7 and under mild assumptions is ergodic [Liu08; RC10].

The simplest proposals are random walks for which ¢ is the transition kernel associ-
ated with the proposal

y=1x+ \/521/25 , (8.3)

where ¢ is a standard Gaussian random variable in R?, and leads to the well known
Random Walk Metropolis Algorithm (RMW). This proposal is very simple to implement,
but it suffers from (relatively) high rejection rate, due to the fact that it does not use
information about 7 to construct appropriate candidate moves.

Another family of proposals commonly used, is based on the Euler-Maruyama dis-
cretization of (8.1), for which ¢ is the transition kernel associated with the proposal

y =+ (h/2)SVlog n(x) + VAE2¢ (8.4)

where € is again a standard Gaussian random variable in R%. This algorithm is also
known as the Metropolis Adjusted Langevin Algorithm (MALA), and it is well-established
that it has better convergence properties than the RWM algorithm in general. This
method directs the proposed moves towards areas of high probability for the distribu-
tion 7, using the gradient of log w. There is now a growing literature on gradient-based
MCMC algorithms, as exemplified through the two papers [GC11; Cot+13] and the
references therein. We also mention here function space MCMC methods [Cot+13]. As-
suming that the target measure has a density w.r.t. a Gaussian measure on a Hilbert
space, these algorithms are defined in infinite dimension and avoid completely the de-
pendence on the dimension d faced by standard MCMC algorithms.
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A natural question is if one can improve on the behaviour of MALA by incorporating
more information about the properties of 7 in their proposal. A first attempt would be
to use as proposal a one-step integrator with high weak order for (8.1), as suggested in
the discussion of [GC11]. Although this turns out to not be sufficient, we shall show
that, by slightly modifying this approach and not focusing on the weak order itself, we
are able to construct a new proposal with better convergence properties than MALA. We
mention that an analogous proposal is presented independently in [FS15] in a different
context to improve the strong order of convergence of MALA.

Thus our main contribution in this paper is the introduction and theoretical analysis
of the fMALA algorithm (fast MALA), and its cousins which will be introduced in
Section 8.3. These algorithms provide for the first time, implementable gradient-based
MCMC algorithms which can achieve convergence in O(dl/ %) iterations, thus improving
on the O(d'/3) of MALA and many related methods. These results are demonstrated
as a result of high-dimensional diffusion approximation results. As well as giving these
order of magnitude results for high-dimensional problems, we shall also give stochastic
stability results, specifically results about the geometric ergodicity of the algorithms we
introduce under appropriate regularity conditions.

Whilst the algorithms we describe have clear practical relevance for MCMC use, it is
important to recognise the limitations of this initial study of these methodologies, and
we shall note and comment on two which are particularly important. In order to obtain
the diffusion limit results we give, it is necessary to make strong assumptions about
the structure of the sequence of target distributions as d increases. In our analysis we
assume that the target distribution consists of d i.i.d. components as in the initial studies
of both high-dimensional RWM and MALA algorithms [RGG97; RR98|. Those analyses
were subsequently extended (see for example [RR01a]) and supported by considerable
empirical evidence from applied MCMC use. We also expect that in the context of this
paper, our conclusions should provide practical guidance for MCMC practitioners well
beyond the cases where rigorous results can be demonstrated, and we provide an example
to illustrate this in Section 8.5.

Secondly, our diffusion limit results depend on the initial distribution of the Markov
chain being the target distribution 7, clearly impractical in real MCMC contexts. The
works [CRRO05; JLM14] study the case of MCMC algorithms (specifically RWM and
MALA algorithms) started away from stationarity. On the one hand, it turns out that
MALA algorithms are less robust than RWM when starting at under-dispersed val-
ues in that scaling strategies. Indeed, optimising mixing in stationarity can be highly
suboptimal in the transient phase, often with initial moves having exponentially small
acceptance probabilities (in d). On the other hand, a slightly more conservative strategy
for MALA still achieves O(d'/?) compared to O(d) for RWM. It is natural to expect
the story for fMALA to be at least as involved as that for MALA, and we give some
empirical evidence to support this in the simulations study of Section 8.5. Future work
will underpin these investigations with theoretical results analogous to those of [CRR05;
JLM14]. From a practical MCMC perspective however, it should be noted that strate-
gies which mix MALA-transient optimal scaling with fMALA-stationary optimal scaling



248 8.2. Preliminaries

will perform in a robust manner, both in the transient and stationary phases. Two of
these effective strategies are illustrated in Section 8.5.

The paper is organised as follows. In Section 8.2 we provide a heuristic for the choice
of the parameter h used in the proposal as a function of the dimension d of the target
and present three different proposals that have better complexity scaling properties than
RWM and MALA. In Section 8.3, we present fMALA and its variants, and prove our
main results for the introduced methods. Section 8.4 investigates the ergodic properties
of the different proposals for a wide variety of target densities 7. Finally, in Section 8.5
we present numerical results that illustrate our theoretical findings.

8.2 Preliminaries

In this section we discuss some key issues regarding the convergence of MCMC algo-
rithms. In particular, in Section 8.2.1 we discuss some issues related to the computational
complexity of MCMC methods in high dimensions, while in Section 8.2.2 we present a
useful heuristic for understanding the optimal scaling of a given MCMC proposal, and
based on this heuristic formally derive a new proposal with desirable scaling properties.

8.2.1 Computational Complexity

Here we discuss a heuristic approach for selecting the parameter h in all proposals men-
tioned above as the dimension of the space d goes to infinity. In particular, we choose h
proportional to an inverse power of the dimension d such that

hocd™. (8.5)

This implies that the proposal y is now a function of: (i) the current state z; (i7) the
parameter v through the scaling above; and (iii) the random variable & which appears
in all the considered proposals. Thus y = y(x,&;). Ideally v should be as small as
possible so the chain makes large steps and samples are correlated as little as possible.
At the same time, the acceptance probability should not degenerate to 0 as d — oo, also
to prevent high correlation amongst samples. This naturally leads to the definition of a
critical exponent g given by

Yo = inf {'yc liminf E [o(z,y)] >0, Vye [’YC,OO)} . (8.6)
Ye>0 d—o0

The expectation here is with respect to x distributed according to m and y chosen from
the proposal distribution. In other words, we take the largest possible value for h, as
function of d, constrained by asking that the average acceptance probability is bounded
away from zero, uniformly in d. The time-step restriction (8.5) can be interpreted as a
kind of Courant-Friedrichs-Lewy restriction arising in the numerical time-integration of
PDEs.

If h is of the form (8.5), with v > =, the acceptance probability does not degenerate,
and the Markov chain arising from the Metropolis-Hastings method can be thought of as
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an approximation of the Langevin SDE (8.1). This Markov chain travels with time-steps
h on the paths of this SDE, and therefore requires a minimal number of steps to reach
timescales of O(1) given by

M(d)=d" . (8.7)

If it takes O(1) for the limiting SDE to reach stationarity, then we obtain that M (d)
gives the computational complexity of the algorithm.!
If we now consider the case of a product measure where

d
m(z) = ma(x) = Zg [[ 7", (8.8)
i=1

and Zj is the normalizing constant, then it is well known [RGG97] that for the RWM
it holds 7o = 1, while for MALA it holds 79 = 1/3 [RR98]. In the next subsection,
we recall the main ideas that allows one to obtain these scalings (valid also for some
non-product cases), and derive a new proposal which we will call the fast Metropolis
Adjusted Langevin algorithm (fMALA) and which satisfies 79 = 1/5 in the product
case, i.e. it has a better convergence scaling.

8.2.2 Formal derivation

Here we explain the main idea that is used for proving the scaling of a Gaussian? proposal
in high dimensions. In particular, the proposal y is now of the form

y = p(z,h) + Sz, h)E , (8.9)

where £ ~ N (0,14) is a standard d dimensional Gaussian random variable. Note that in
the case of the RWM,
w(z, h) =z, S(z,h) = VhS'/?,

while in the case of MALA
w(z, h) =z + (h/2)EV log m(z), S(x,h) = VhE'?.
The acceptance probability can be written in the form
a(z,y) = min{l, exp(Rq(z,y))} ,

for some function R4(x,y) which depends on the Gaussian proposal (8.9). Now using
the fact that y is related to z according to (8.9), R4(x,x) = 0, together with appropriate
smoothness properties on the function g(z), one can expand R, in powers of V'h using
a Taylor expansion

k d
=ZZ W2, €) + WLy (2, 7€) (8.10)

In this definition of the cost one does not take into account the cost of generating a proposal. This
is discussed in Remark 8.2.
2We point out that Gaussianity here is not necessary but it greatly simplifies the calculations.
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It turns out [BS09] that the scaling associated with each proposal relates directly with
how many of the Cj; terms are zero in (8.10). This simplifies if we further assume
that ¥ = I; in (8.1) and that 7 satisfies (8.8), because we get for all i € {1,--- ,k},
je{l,---,j}, Cij(z,&) = Ci(z;,€&;) and (8.10) can be written as

hi
Cixj, &) + VL (2, %, €) (8.11)

d
Rd(x7y) = Z Z

i=1j=1

We then see that if C; = 0, for ¢ = 1,--- ,m, then this implies that vy = 1/(m + 1).
Indeed, this value of g yields A™*1d = 1 and the leading order term in (8.10) becomes

d
Z m+1 x]?gj

To understand the behaviour for large d, we typically assume conditions to ensure that
the above term has an appropriate (weak) limit. It turns out that m + 1 is generally an
odd integer for known proposals, and the above expression is frequently approximated by
a central limit theorem. The second dominant term in (8.10) turns out to be Cy(p 1),
although to turn this into a rigorous proof one also needs to be able to control the
appropriate number of higher order terms, from m + 1 to 2(m + 1), as well as the
remainder term in the above Taylor expansion.

8.2.3 Classes of proposals with 7, = 1/5

We introduce new Gaussian proposals for which 79 = 1/5 in (8.7). We start by presenting
the simplest method, and then give two variations of it, motivated by the desire to obtain
robust and stable ergodic properties (geometric ergodicity). The underlying calculations
that show C; = 0,7 = 1,...,m with m = 4 and v = 1/5 for these methods are
contained in the supplementary materials in the form of a Mathematica file. Recall that
f(x) = XV logm(z). In the sequel, we denote by D f and D?f the Jacobian (d x d-matrix)

and the Hessian (d x d?-matrix) of f respectively. Thus (D f(z));; = %x(jx) and

D2f($) =[Hy(z) --- Hg(x)] , where {Hz(x)}m = 8851(832]

Finally for all x € RY, {¥: D?f(x)} € R? is defined by for i = 1,...,d:
{E : D2f(m)} = trace (ETH,(QU)) .

Notice that for ¥ = Iy, the above quantity reduces to the Laplacian and we have
{2:D*f(x)}, = Afi
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Fast Metropolis-Adjusted Langevin Algorithm (fMALA)

We first give a natural proposal for which 7y = 1/5 based on the discussion of Sec-
tion 8.2.2. We restrict the class of proposal defined by (8.9) by setting for all z € R?
and h > 0,

p(a,h) = @+ by () + B2s(e) , S(a,h) = B8 (2) + h¥2Sy(x)

By a formal calculation (see the supplementary materials), explicit expressions for the
functions p1, pa, S1, S2 have to be imposed for the four first term Cj(z,§), i € {1,2, 3,4},
in (8.11) to be zero. This result implies the following definition for p and S:

2
pM () = o+ 3 (@)~ 57 (DS @)+ {25 D2 @)}) (8.120)
S™M(z, h) = (h1/2 1, +(h*2/12)D f(x)) »1/2 (8.12b)

We will refer to (8.9) when p, S are given by (8.12) as the fast Unadjusted Langevin Algo-
rithm (fULA) when viewed as a numerical method for (8.1) and as the fast Metropolis-
Adjusted Langevin Algorithm (fMALA) when used as a proposal in the Metropolis-
Hastings framework.

Remark 8.1. [t is interesting to note that compared with Unadjusted Langevin Algorithm
(ULA), fULA has the same order of weak convergence one, if applied as a one-step
integrator for (8.1). One could obtain a second order weak method by changing the
constants in front of the higher order coefficients, but in fact the corresponding method
would not have better scaling properties than MALA when used in the Metropolis-Hastings
framework. This observation answers megatively in part one of the questions in the
discussion of [GC11] about the potential use of higher order integrators for the Langevin
equation within the Metropolis-Hastings framework.

Remark 8.2. The proposal given by equation (8.12) contains higher order derivatives
of the vector field f(x), resulting in higher computational cost than the standard MALA
proposal. This additional cost might offset the benefits of the improved scaling, since the
corresponding Jacobian and Hessian can be full matrices in general. However, there exist
cases of interest® where due to the structure of the Jacobian and Hessian the computa-
tional cost of the fMALA proposal is of the same order with respect to the dimension d as
for the MALA proposal. Furthermore, we note that one possible way to avoid derivatives
is by using finite differences or Runge-Kutta type approzimations of the proposal (8.12).
This, however, is out of the scope of the present paper.

Modified Ozaki-Metropolis algorithm (mOMA)

One of the problems related to the MALA proposal is that it fails to be geometrically
ergodic for a wide range of targets m [RT96a]. This issue was addressed in [RS02] where

3We study one of those in Section 8.5.
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a modification of MALA based on the Ozaki discretization [Oza92] of (8.1) was proposed
and studied. In the same spirit as in [RS02] we propose here a modification of fMALA,
defined by

pO(x,h) =z + Fi(Df(x),h, 1) f(z) — (h*/6)Df(x)f (x) (8.13a)
— (B*/24){S : D*f(x)}
™0 (a,h) = (A(DF(x),2h,1) — (B2/3)Df(x)) " £V/2. (8.13D)
where
Ti(M, h,a) = (aM) " (el@/2M _ 1)) (8.14)

for all* M € R4 h >0, acR.

The Markov chain defined by (8.13) will be referred to as the modified unadjusted
Ozaki algorithm (mUOA), whereas when it is used in a Hastings-Metropolis algorithm,
it will be referred to as the modified Ozaki Metropolis algorithm (mOMA). Note that
t > (M — 1)/t — (1/3)h?t is positive on R for all h > 0, therefore .7 (D f(x),2h,1) —
(h?/3)Df(x) is a semi-positive matrix and S™©(x, h) is well defined for all x € R? and
h > 0.

Remark 8.3. In regions where ||V log 7w(x)|| is much greater than ||z||, we need in prac-
tice to take h very small (of order ||z||/||V1ogn(z)||) for MALA to exit these regions.
However such a choice of h depends on x and cannot be used directly. Such a value of h
can therefore be hard to find theoretically as well as computationally. This issue can be
tackled by multiplying f = Vlognw(x) by FA(Df(x),h,a) in (8.13a). Indeed under some
mild conditions, in that case, we can obtain an algorithm with good mixing properties
for all h > 0 ; see [RS02, Theorem 4.1]. mOMA faces similar problems due to the term

Df(x)f(z).

Generalised Boosted Ozaki-Metropolis Algorithm (gbOMA)

Having discussed the possible limitations of mOMA in Remark 8.3 we generalise here the
approach in [RS02] to deal with the complexities arising to the presence of the D f(x) f(x)
term. In particular we now define

102, h) = ¢ + 7D (x), h,ar) f (z)
— (1/3) (D f (), hyag){S : D* ()}

+((a1/2) + (1/6)) Za(Df (x), h,as) f(x) , (8.15a)
5820 (2 h) = (F1(Df(x),2h, ay)
+((as/2) — (1/6)) Za(D f(x), 2h, a5))"* £1/2 | (8.15b)

*Notice that the matrix functionals in (8.14),(8.16),(8.17) remain valid if matrix aM is not invertible,
using the appropriate power series for the matrix exponentials.
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where a;, i = 1,--- ,5 are positive parameters, 7] is given by (8.14) and
T(M, h,a) = (aM) ™! (e~ (@*/HM* _ 7)) (8.16)
F5(M, h,a) = (aM) (e ™/2M — T, —(ah/2)M) (8.17)

with M € R4 1 > 0, a € R and I is the identity matrix. The Markov chain defined
by (8.15) will be referred to as the generalised boosted unadjusted Ozaki algorithm
(gbUOA), whereas when it is used in a Hastings-Metropolis algorithm, it will be referred
to as the generalised boosted Ozaki Metropolis algorithm (gbOMA).

Note that S&P© in (8.15b) is not always well defined in general and so the following
condition on the constants a4, as is imposed to guarantee it.

H13. The function t — (%' —1)/(agt) + (as/2 — (1/6))(e~%*" —1)/(ast) is positive on
R.

However for ay = a5 = 1, this assumption is satisfied, and choosing a; = 1 for all
i=1,...,5, (8.15) leads to a well defined proposal, which will be referred to as the
boosted Unadjusted Ozaki Algorithm (bUOA), whereas when it is used in a Hastings-
Metropolis algorithm, it will be referred to as the boosted Ozaki Metropolis Algorithm
(bOMA). We will see in Section 8.4 that bOMA has nicer ergodic properties than fMALA.

8.3 Main scaling results

In this section, we present the optimal scaling results for IMALA and gbOMA introduced
in Section 8.2. We recall from the discussion in Section 8.2 that the parameter h depends
on the dimension and is given as hg = £2d~1/5, with ¢ > 0. Finally, we prove our results
for the case of target distributions of the product form given by (8.8), we take 3 = I,
and make the following assumptions on g.

H14. We assume
(i) g € C1°(R) and g" is bounded on R.

(ii) The derivatives of g up to order 10 have at most a polynomial growth, i.e. there
exists constants C, k such that

19D ()] < O + [t]7), teR,i=1,...,10.

(iii) for all k € N,
/ tFed®dt < 400 .
R
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8.3.1 Optimal scaling of f/MALA

The Markov chain produced by fMALA, with target density 74 and started at stationar-
ity, will be denoted by {XZ’fM , k € N}. Let ¢ be the transition density associated with
the proposal of IMALA relatively to m4. In a similar manner, we denote by ozgw the accep-
tance probability. Now we introduce the jump process based on {XZ’fM, k € N}, which
allows us to compare this Markov chain to a continuous-time process. Let {J;, t € R}
be a Poisson process with rate d'/®, and let 1™ = {Ff’fM, t € Ry} be the d-dimensional
jump process defined by I’?’ﬂv{ = Xi’fM. We denote by

a0 = [, [ mal@)g ol (@, )dedy
Rd JRd
the mean under 74 of the acceptance rate.

Theorem 8.4. Assume Assumption 14. Then

. fM _ M
Jim_af(0) = a™(0),
where a™ (0) = 20(—K™¢°/2) with ®(t) = (1/(2m)) [* e~**/2ds and the expression of
K™ s given in Appendiz C.

Theorem 8.5. Assume Assumption 1. Let {Ytd’fM = I’g’{M, t € Ry} be the process

corresponding to the first component of T%™. Then, {Y&™M d € N*} converges weakly
(in the Skorokhod topology), as d — oo, to the solution {Y™, t € R} of the Langevin
equation defined by:

dy™ = (\™(0) M2 dB; + (1/2)0™ () V log m (;™)dt (8.18)

where h™M(0) = 2020(—K™/(5/2) is the speed of the limiting diffusion. Furthermore,
h™M(¢) is mazimised at the unique value of £ for which a™ (£) = 0.704343.

Proof. The proof of these two theorems are in Appendix 8.6. U

Remark 8.6. The above analysis shows that for fMALA, the optimal exponent defined
in (8.6) is given by vo = 1/5 as discussed in Section 8.2.2. Indeed, if hy has the form
02d=1/5%€  then an adaptation of the proof of Theorem 8.4 implies that for all £ > 0, if
€ € (0,1/5), limg_, 400 a™(£) = 0. In contrast, if € < 0 then limgy_, ;o a™(¢) = 1.

8.3.2 Scaling results for gbOMA

As in the case of fMALA, we assume 7, is of the form (8.8) and we take ¥ = I,
hq = 2d~'/®. The Metropolis-adjusted Markov chain based on ghOMA, with target
density 7, and started at stationarity, is denoted by {Xg’gbo, k € N}. We will denote
by ngo the transition density associated with the proposals defined by gbhOMA with

respect to my. In a similar manner, the acceptance probability relatively to 74 and
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gbOMA will be denoted by aibo. Let {J;, t € Ry} be a Poisson process with rate
dY/5. and let ['%gbO — {I’f’gbo, t € Ry} be the d-dimensional jump process defined by
rdeb0 — Xi’gbo. Denote also by

bO bO bO
a0 = [ | ma@)ai @ )ad (. y)dady
Rd JR4
the mean under 74 of the acceptance rate of the algorithm.
Theorem 8.7. Assume Assumptions 13 and 1. Then

. gbO _ gbO
dggloo ag (6) a (f) )
where a8PO () = 2®(— K005 /2) with ®(t) = (1/(2n)) [* e**2ds and K&° are given
i Appendixz C.

Theorem 8.8. Assume Assumptions 13 and 1. Let {Gf’gbo = FZ’lgbo, t € Ry} be

the process corresponding to the first component of I'%&O  Then, {Gd’gbo, de N*}
converges weakly (in the Skorokhod topology) to the solution {G2°, t € Ry} of the
Langevin equation defined by:

dGEP0 = (2P0 (0))1/2dB, + (1/2)h#° (0)V log 7.(GE*)dt |

where h8PO(£) = 2020 (—KPC(°/2) is the speed of the limiting diffusion. Furthermore,
hebO(¢) is mazimised at the unique value of £ for which a®PC(£) = 0.704343.

Proof. Note that under Assumption 14-(i), at fixed a > 0, using the regularity properties
of (z,h) — Zi(z,h,a) on R? for i = 1,...,3, there exists an open interval I, which
contains 0, and My > 0 such that forall z e R, k=1,--- ,11,andi=1,---,3

o* (Zi(g" ()., a))
Ohk

<My Yhel.

Using in addition Assumption 13 there exists mg > 0 such that for all A € I and for all
x € R,

Zi(9" (), 2h, a1) + ((as/2) — (1/6)) Za(g" (x), 2h, a5) = mo .
Using these two results, the proof of both theorems follows the same lines as Theorems 8.4
and 8.5, which can be found in Appendix 8.6. U

8.4 Geometric ergodicity results for high order Langevin
schemes

Having established the scaling behaviour of the different proposals in the previous sec-
tion, we now proceed with establishing geometric ergodicity results for our new Metropo-
lis algorithms. Furthermore, for completeness, we study the behaviour of the correspond-
ing unadjusted proposal. For simplicity, we will take in the following ¥ = I; and we
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limit our study of ghOMA to the one of bBOMA, which is given by:

PO = p*O(z, h) + 5"O(x,h) €, (8.19)
PO (@, h) = o+ ZA(Df(x), h,1) f () + (2/3) (D f(x), h, 1) f(z)
— (1/3)Z5(Df (), h, 1){S : D*f(x)},
S*O(x, h) = (Z(Df(x),2h,1) + (1/3) % (D (x), 2h,1))/*

where 71, 5 and 3 are respectively defined by (8.14), (8.16) and (8.17). First, let us
begin with some definitions. For a signed measure v on R?, we define the total variation
norm of v by
ey = sup [(A)] .
AeB(R?)
where B(RY) is the Borel o-algebra of R Let P be a Markov kernel with invariant
measure m. For a given measurable function V : R? — [1,400), we will say that P is
V-geometrically ergodic if there exist C > 0 and p € [0,1) such that for all z € R? and
n>0
1P"(,) =l < Co"V(a) |

where for v a signed measure on R?, the V-norm |-||;, is defined by

Ivl= sup [ faw(da).
{f 5 IfI<v}/RY

We refer the reader to [MTO09] for the definitions of small sets, p-irreducibility and
transience. Let P be a Markov kernel on R%, Leb%-irreducible, where Leb® is the Lebesgue
measure on R?, and aperiodic and V : R? — [1,4+00) be a measurable function. In order
to establish that P is V-geometric ergodicity, a sufficient and necessary condition is given
by a geometrical drift (see [MT09, Theorem 15.0.1]), namely for some small set C, there
exist A < 1 and b < +oo such that for all z € R%:

PV(z) < AV(z)+ble(z) . (8.20)

Note that the different considered proposals belong to the class of Gaussian Markov
kernels. Namely, let @ be a Markov kernel on R?. We say that Q is a Gaussian Markov
kernel if for all z € RY, Q(z,-) is a Gaussian measure, with mean u(z) and covariance
matrix S(x)ST (x), where 2 — pu(x) and 2 — S(x) are measurable functions from R? to
respectively R% and St (RY), the set of symmetric positive definite matrices of dimension
d. These two functions will be referred to as the mean value map and the the variance
map respectively. The Markov kernel ) has transition density ¢ given by:

1 _
a(@.9) = gy @ (C/D (5@ 2w - u@), (v —p@))) . B2)

where for M € R?*? |M| denotes the determinant of M. Geometric ergodicity of Markov
Chains with Gaussian Markov kernels and the corresponding Metropolis-Hastings al-
gorithms was the subject of study of [RT96a; Han03]. But contrary to [Han03], we
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assume for simplicity the following assumption on the functions p : R — R? and

S:R?— S*(RY):
H15. The functions x — p(xz) and x — S(z) are continuous.

Note that if 7, a target probability measure on R?, is absolutely continuous with
respect to the Lebesgue measure with density still denoted by 7, the following assumption
ensures that the various different proposals introduced in this paper satisfy Assumption
15:

H16. The log-density g of ™ belongs to C3(R?).

We proceed in Section 8.4.1 with presenting and extending where necessary the main
results about geometric ergodicity of Metropolis-Hasting algorithms using Gaussian pro-
posals. In Section 8.4.2, we then introduce two different potential classes on which we
apply our result in Section 8.4.3. Finally in Section 8.4.4, for completeness, we make the
same kind of study but for unadjusted Gaussian Markov kernels on R.

8.4.1 Geometric ergodicity of Hastings-Metropolis algorithm based on
Gaussian Markov kernel

We first present an extension of the result given in in [Han03] for geometric ergodicity
of Metropolis-Hastings algorithms based on Gaussian proposal kernels. In particular,
let @ be a Gaussian Markov kernel with mean value map and variance map satisfying
Assumption 15. We use such proposal in a Metropolis algorithm with target density =
satisfying Assumption 16. Then, the produced Markov kernel P is given by

Pla,dy) = ale,paley)dy + 0y [ (1-al@ )@ pdy, (22

where ¢ and « are resp. given by (8.21) and (8.2).
H17. We assume liminf), 4 [ra a(2,y)q(z,y)dy > 0.

Note that this condition is necessary to obtain the geometric ergodicity of a Metropolis-
Hastings algorithm by [RT96a, Theorem 5.1]. We shall follow a well-known technique in
MCMC theory in demonstrating that Assumption 17 allows us to ensure that geometric
ergodicity of the algorithm is inherited from that of the proposal Markov chain itself.
Thus, in the following lemma we combine the conditions given by [Han03], which imply
geometric ergodicity of Gaussian Markov kernels, with Assumption 17 to get geometric
ergodicity of the resultant Metropolis-Hastings Markov kernels.

Lemma 8.9. Assume Assumptions 15, 17, and there ezists T € (0,1) such that
limsup [|u(@)||/ ||#]] = 7, and limsup [|S(z)|/[lz]| =0 (8.23)

llz]|—=+o0 ll[| =00

Then, the Markov kernel P given by (8.22) are V-geometrically ergodic, where V (x) =
1+ ||z,

Proof. The proof is postponed to Appendix 8.7.1. U
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We now provide some conditions which imply that P is not geometrically ergodic.

Theorem 8.10. Assume Assumptions 15,16, that w is bounded and there exists € > 0
such that

lim inf HS(&U)_l,u(x)H |zt > et liminf inf ||S(z)y| > €, (8.24)
]| =00 ]| =00 [ly[|=1
and
lim log (1S@))) / 2l = 0. (5.25)
llzf| =00

Then, P is not geometrically ergodic.

Proof. The proof is postponed to Appendix 8.7.2. O

8.4.2 Exponential potentials

We illustrate our results on the following classes of density.

The one-dimensional class &(5,7)

Let w be a probability density on R with respect to the Lebesgue measure. We will say
that © € £(B,~) if 7 is positive, belongs to C3(R) and there exist R, > 0 such that
for all z € R, |z| > R,

m(x) e Nal”
Then for |z| > Ry, log(n(z)) = —vBz |z’ 72, log(n(2))" = —yB8(8 — 1) ||’ /22 and
log(m(x))®) = —yB(8 = 1)(8 — 2) [=|” /«*.

The multidimensional exponential class &,

Let 7 be a probability density on R? with respect to the Lebesgue measure. We will say
that ™ € &, if it is positive, belongs to C3(R?) and there exists R, > 0 such that for
all z € R, ||z|| > Ry,

m(z) ox e~ |
where q is a function of the following form. There exists a homogeneous polynomial p
of degree m and a three-times continuously differentiable function r on R? satisfying

[preon@| = ol (8.26)

and for all x € RY

q(z) = p(z) +r(z) .

Recall that p is an homogeneous polynomial of degree m if for all t € R and = € R¢,
p(tz) = t™p(z). Finally we define 22}, the set of density m € £, such that the Hessian
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of p at =, V2p(x) is positive definite for all 2 # 0.
When p is an homogeneous polynomial of degree m, it can be written as

p(a)= Y @,

[k|=m

where k € N%, [k| = 3, k; and z¥ = 2. --mfld. Then denoting by 7, = z/ ||z||, it is
ecasy to see that the following relations holds for all z € R9.

From (8.29), it follows that V?p(z) is definite positive for all 2 € R?\ 0 if and only if
V2p(#i) is positive definite for all 77, with ||7i|| = 1. Then, p belongs to Z;% only if m > 2.

8.4.3 Geometric ergodicity of the proposals: the case of Metropolis-
Hastings algorithms

In this section we study the behaviour of our proposals within the Metropolis-Hastings
framework. We will split our investigations in two parts: in the first we study fMALA
and mOMA; while in the second we have a more detailed look in the properties of bLOMA
not only for the class &(f3,~), but also for the polynomial class Z2;}.

Geometric ergodicity of fMALA, mOMA for the class &(53,7)

In the case g € (0,2), fMALA and mOMA have their mean map behaving like x —
Byx |£C|5 -2 /2 at infinity and their variance map bounded from above. This is exactly
the behaviour that MALA [RT96a] has for the same values of 3, thus one would expect
them to behave in the same way. This is indeed the case and thus using the same
reasoning as in the proof [RT96a, Theorem 4.3] we deduce that the two algorithms are
not geometrically ergodic for § € (0,1). Similarly, the proof in [RT96a, Theorem 4.1]
can be used to show that the two algorithms are geometrically ergodic for g € [1,2).
Furthermore, for values of 8 > 2 we have the following cases

(a) For =2,

e fMALA is geometrically ergodic if hy(1 + hvy/6) € (0,2) by [RT96a, Theorem
4.1], and not geometrically ergodic if hy(1+4hvy/6) > 2 by Theorem 8.10, since
p™ is equivalent at infinity to (1 — hy(1 + hvy/6))z and S™(z) is constant
for |x| > R,.
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e Since u™© is equivalent at infinity to (e™"® — 2(hv)?/3)x, we observe that
mOMA is geometrically ergodic if hy € (0,1.22) by [RT96a, Theorem 4.1],
and not geometrically ergodic if hy > 1.23 by Theorem [RT96a, Theorem
5.1].

(b) For g > 2, fMALA and mOMA are not geometrically ergodic by Theorem 8.10
since the mean value maps of their proposal kernels are equivalent at infinity to
—C1 |#)*7? /z, their variance map to Cy |z|?~2 for some constants C1,Cy > 0, and
the variance maps are bounded from below.

Geometric ergodicity of bOMA

In this section, we give some conditions under which bOMA is geometrically ergodic
and some examples of density which satisfy such conditions. For a matrix M € R4, we
denote Apin (M) = min Sp(M) and Apax (M) = max Sp(M), where Sp(M) is the spectrum
of M. We can observe three different behaviours of the proposal given by (8.19) when x
is large, which are implied by the behaviour of Ay (D f(2))) and Apax (D f(2)).

If lim inf) 35400 Amin (D f (7)) = 0. Then, g(z) = o(||lz||*) as ||lz|| = oo, and yPO
tends to be as the MALA proposal at infinity, and we can show that bOMA is geomet-
rically ergodic with the same conditions introduced in [RT96a] for this one.

Example 8.11. By [RT96a, Theorem 4.1] bOMA is geometrically ergodic for m €
8(v, B) with B € [1,2).

Now, we focus on the case where lim sup ||, ;.00 Amax (D f(2)) < 0. For instance, this
condition holds for m € &(v, ) when 5 > 2. We give conditions similar to the one for
geometric convergence of the Ozaki discretization, given in [Han03], to check conditions of
Lemma 8.9. Although these conditions does not cover all the cases, they seem to apply to
interesting ones. Here are our assumptions where we denote by S% = {x € R?, ||z| = 1},
the sphere in R? and 71, = /|||

H18. We assume:
1. lim sup”m”HjLoo Amax (Df(x)) < 0,'

2. limyjp| 400 Df ()" *{Ig : D f(2)} = 0;

3. Df(x)~'f(x) is asymptotically homogeneous to x when ||| — +oo, i.e. there
ezists a function ¢ : ST — R such that

Df(z)~f(x)

—0.
| =400 ]|

— (Tly) Ty

The condition 1 in Assumption 18 implies that for all z € RY, Apax (Df(z)) < My,
and garantees that SP©(z, h) is bounded for all 2 € R,



Chapter 8. Fast Langevin based algorithm for MCMC 261

Lemma 8.12. Assume Assumptions 16 and 18. There exists My > 0 such that for all
z € RY HSbo(az,h)H < M.

Proof. Since SO (z, h) is symmetric for all z € R%, and ¢ — (M — 1)/t + (1/3)(e~("* —
1)/t is bounded on (—oo, M] for all M € R, we just need to show that there exists
My > 0 such that for all z, Amax (Df(x)) < My. First, by Assumption 18-(1), there
exists R > 0, such that for all z, ||z|| > R, Sp(Df(z)) C R_. In addition by Assumption
16 x — Df(z) is continuous, and there exists M > 0 such that for all z,||z|| < R,
IDF ()] < M. .

Theorem 8.13. Assume Assumptions 16, 17 and 18. If

0 < inf ¢(n) < sup ¢(n) <6/5, (8.34)
nesSd neSa

then bOMA is geometrically ergodic.

Proof. We check that the conditions of Lemma 8.9 hold. By Assumption 16 and (8.19),
Assumption 15 holds, thus it remains to check (8.23). First, Lemma 8.12 implies that
the second equality of (8.23) is satisfied, and we just need to prove the first equality. By
[Han03, Lemma 3.4], it suffices to prove that

lim sup <@ nlz) + 2ﬁm> <0, (8.35)

lzl—+o00 \ 2] 7 2]l

where n(x) = puP°(z,h) — . Since lim SUD) (2| +o00 Amax (D f (2)) < 0 we can write ¢ (z) =
B(x)Df(x)"Lf(z), where

B(a) = (MIPIE) 1) 4 (23 WSO 1)
and z — %(z) is bounded on R?. Since 4 is bounded on RY, by Assumption 18-(2)-(3)
and (8.34),

z) n(z . . . Loy o

lim ’<M UGN 2nm> B |2 i) + 2 (B(x)t, f1a) e(ila)| = 0. (8.36)
lel=>+oo [\ [l * [|]

In addition, if we denote the eigenvalues of B(x) by {\;(z), i = 1,...,d} and {e;(z), i =

1,...,d} an orthonormal basis of eigenvectors, we have

| B(2)])? c(i)? + 2 (B()its 7o) i)
d
= 3 (i) (@) (e(@), 1) (el )hi(@) +2) (8:37)
=1

Since imsup|g)—400 Df(z) < 0, for all i and ||z large enough, Ai(z) € [-5/3,0).
Therefore using (8.34) we get from (8.37):

| B ()7 ||? c(e)? + 2 (B(x)y, Tig) c(ity) <O .

The proof is concluded using this result in (8.36). O



262 8.4. Ergodicity

Application to the convergence of bOMA for 7 € &}
For the proof of the main result of this section, we need the following lemma.

Lemma 8.14 ([Han03, Proof of Theorem 4.10]). Let m € 2} for m > 2, then m satisfies
Assumption 18-(3) with c¢(ii) = 1/(m — 1) € (0,6/5) for all i € S?.

Proposition 8.15. Let 1 € P} for m > 2, then bOMA is V -geometrically ergodic,
- 2
with V(z) = ||z||” + 1.

Proof. Let us denote 7 o exp(—p(x) —r(z)), with p and r satisfying the conditions from
the definition in Section 8.4.2. We prove that if 7 € 92" Theorem 8.13 can be applied.
First, by definition of £, Assumption 16 is satisfied. Furthermore, Assumption 18-(1)-
(2) follows from (8.26), (8.29), (8.30) and the condition that V?p(7) is positive definite
for all 77 € S?. Also by Lemma 8.14, Assumption 18-(3) is satisfied.

Now we focus on Assumption 17. For ease of notation, in the following we denote ;”©
and SP© by p and S , and do not mention the dependence in the parameter h of y and
S when it does not play any role. Note that

[ e dy = 02 [ {1 nepd o) ew(- g 24, (339
R4 Rd
where

w) —p(() + S(2)8) + p(x) — r(u(x)
S(@)) + r(x) — log(|S(u() + S(2)€)]) +log(IS(@)]) + (1/2) ||¢]|”
—<1/2><<s< ) Mo — plu(@) + S@)E)},w — p(p(x) + S(2)€)) ,  (8.39)

and S(z,€) = S(u(z)+S(x)E)S (u(x) + S(x)€)T . First, we consider m > 3, then we have
the following estimate of the terms in (8.39) by (8.26)-(8.30) and Lemma 8.14:

plw) | = 1= 5/(3m = 1)}w + of u) (5.0
(SS@N™ = Jmlm =1 el V() +oul ") (841
log(|S(u)l) | = ol (542

Then by (8.40)-(8.42), if we define ¥ : [3,4+00) — R by

m»—)l—{l—ﬁ}m

a(z,§) = lz|™ p(iiz)¥(m) + o([z[™) -

ll[| =00

we get
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Since V¥ is positive on [3,+00), for all £ € R? hm”x”_H_oo a(z,&) = +oo. This result,
(8.38) and Fatou’s Lemma imply that Assumption 17 is satisfied.

For m = 2, we can assume p(z) = (Az,z) with A € S*(R?Y). Let us denote for M an
invertible matrix of dimension p > 1,

o(M) = (e™ —1,) + (2/3)(e™ —1,)
G(M) = (7™M — 1) + (1/3)(e™ ™M —1,) .

Then we have the following estimates:

@& = (Al(hA) " {(20(hA) + o(hA)?) 2}, (20(hA) + o(hA)?) )

|z —=-+oc

+(Az, @) — (A{(Lg +o(hA))z}, (Lo +o(hA))z) + o |z|*) (8.43)

If we denote the eigenvalues of A by {\;,i = 1...d} and {z;,7 = 1,...,d} the coordinates
of z in an orthonormal basis of eigenvectors for A, (8.43) becomes

d
ST E(h A)ad + o([|z]]) - (8.44)

) ol oo P

where for h, A > 0,
Z(h,A) = A (1= (o(hA) + 1) + s(h0) 7! (40(hA)? + 40(hN)* + o(hN)'))
Using that for any h, A > 0, Z(h, \) > 0 and (8.44), we have for all £ € R?, lim 5400 @(7,§) =
]

400, and as in the first case Assumption 17 is satisfied.

Remark 8.16. Using the same reasoning as in Proposition 8.15, one can show that
bOMA is geometrically ergodic for m € &(B,~) with 8 > 2.

We now summarise the behaviour for all the different algorithms for the one dimen-
sional class &(/3,7) in Table 8.1

| Method | B€[1,2) [ B=2 | B>2 \
fMALA (8.12) | geometrically | geometrically er- | not geometri-
ergodic godic or not cally ergodic
mOMA (8.13) | geometrically geometrically er- | not geometri-
ergodic godic or not cally ergodic
bOMA (8.19) geometrically geometrically er- | geometrically
ergodic godic ergodic

Table 8.1: Summary of ergodicity results for the Metropolis-Hastings algorithms for the class
&(B,7)
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8.4.4 Convergence of Gaussian Markov kernel on R

We now present precise results for the ergodicity of the unadjusted proposals, by ex-
tending the results of [RT96a] for the ULA to Gaussian Markov kernels on R. Under
Assumption 15, it is straightforward to see that Q is Leb®-irreducible, where Leb? is the
Lebesgue measure, aperiodic and all compact set of R? are small; see [Han03, Theorem
3.1]. We now state our main theorems, which essentially complete [RT96a, Theorem
3.1-3.2]. Since their proof are very similar, they are omitted.

Theorem 8.17. Assume Assumption 15, and there exist sy, uy,u_ € R and x € R
such that:
limsup S(z) < sp ,

|z| =400

. _ -X — _ . . —-X —
Jim {u(z) —ate wg, and lim {p(r) —a} o] =u-.

(i) If x € [0,1), then Q is geometrically ergodic.
(i) If x =1 and (1 —uq)(1 —u_) < 1, then Q is geometrically ergodic.
(iii) If x € (—1,0), then Q is ergodic but not geometrically ergodic.

Proof. See the proof of [RT96a, Theorem 3.1]. O

Theorem 8.18. Assume Assumption 15, and there exist sy,uy,u_ € R and x € R
such that:

liminf S(z) > sy ,

|x| =400

. —1 7X—_ . —1 —X:
im S() (o) = —uy s and lim S() ") 2 X =

(i) If x > 1, then Q is transient.
(ii) If x =1 and (uy Au_)sy > 1, then Q is transient.

Proof. See the proof of [RT96a, Theorem 3.2]. O

Ergodicity of the unadjusted proposals for the class &(f,7)

We now apply Theorems 8.17 and 8.18 in order to study the ergodicity of the differ-
ent unadjusted proposals applied to 7 € &(8,7). In the case g € (0,2) all the three
algorithms (fULA,mUOA bUOA) have their mean map behaving like  — Syz 2|72 /2
at infinity and their variance map bounded from above. This is exactly the behaviour
that ULA [RT96a] has for the same values of g, thus it should not be a surprise that
Theorem 8.17 implies that all the three algorithms behaved as the ULA does for the
corresponding values, namely being ergodic for 5 € (0,1) and geometrically ergodic for
B € [1,2). Furthermore, for values of 5 > 2 we have the following cases.
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(a) For B = 2,

e fULA is geometrically ergodic if hy(1 + hvy/6) € (0,2) by Theorem 8.17-
((ii)), and is transcient if Ay(1 + h7y/6) > 2 by Theorem 8.18-((ii)), since p™
is equivalent at infinity to (1 — hy(1 4 hy/6))xz and S™(z) is constant for
|z| > Rx.

e mUOA is geometrically ergodic if 1 + 2(hv)?/3 — e~ € (0,2) by Theorem
8.17-((ii)), and is transcient if 1 + 2(hy)?/3 — e™" > 2 by Theorem 8.18-
((ii)), since u™© is equivalent at infinity to (e™7" — 2(hy)?/3)x and S™°(x)
is constant for |z| > R.

e bUOA is geometrically ergodic by Theorem 8.17-((ii)), since uP© is equivalent
at infinity to —2x/3 and SP°(z) is constant for |z| > R,.

(b) For 8> 2,

e fULA and mUOA are transcient by Theorem 8.18-((i)) since their mean value
map is equivalent at infinity to —C; 2|’ 72 /x, and their variance map to
Cy |x|5 =2 for some constants C1,C5 > 0, and their variance map are bounded
from below.

e bUOA is geometrically ergodic by Theorem 8.17-((i)) since its mean value
map is equivalent at infinity to {1 —5/(3(8 — 1))} « and its variance map is
bounded from above.

The summary of our findings can be found in Table 8.2.

| Method [B€(0,1) [Be[l,2) [B=2 EEP
fULA ergodic geometrically| geometrically | transient
(8.12) ergodic er-
godic/transient
mUOA ergodic geometrically| geometrically | transient
(8.13) ergodic er-
godic/transient
bUOA ergodic geometrically| geometrically | geometrically]
(8.19) ergodic ergodic ergodic

Table 8.2: Summary of ergodicity results for the unadjusted proposals for the class &(3,7).

8.5 Numerical illustration of the improved efficiency

In this section, we illustrate our analysis (Section 8.3.1) of the asymptotic behaviour of
fMALA as the dimension d tends to infinity, and we demonstrate its gain of efficiency
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Figure 8.1: First-order efficiency of the new fMALA and the standard MALA for the double
well potential g(z) = —ix‘l + %x2, as a function of the overall acceptance rates in dimensions

d = 10,100, 500, 1000. The solid line is the reference asymptotic curve of efficiency for the new
fMALA, normalised to have the same maximum value as the finite dimensional fMALA.

as d increases compared to the standard MALA. Following [RR98], we define the first-
order efficiency of a multidimensional Markov chain {Xj, k € N} with first component

denoted Xlgl) as IE[(X/&L)1 - Xlgl))Q]. In Figure 8.1, we consider as a test problem the
product case (8.8) using the double well potential with g(z) = —ix‘l + %xQ in dimensions
d = 10,100,500,1000, respectively. We consider many time stepsizes h = ¢2d~1/5,
plotting the first order efficiency (multiplied by d'/® because this is the scale which is
asymptotically constant for fMALA as d — oo) as a function of the acceptance rate
for the standard MALA (white bullets) and the acceptance rate aM(¢) of the improved
version fMALA (black bullets), respectively. For simplicity, each chain is started from the
origin. The expectations are approximated as the average over 2 x 10° iterations of the
algorithms and we use the same sets of generated random numbers for both methods. For
comparison, we also include (as solid lines) the asymptotic efficiency curve of fMALA as
d goes to infinity, normalised to have the same maximum as fMALA in finite dimension d.
This corresponds to the (rescaled) limiting diffusion speed h™(¢) as a function of af™(¢)
(quantities given respectively in Theorems 8.4 and 8.5). We observe excellent agreement
of the numerical first order efficiency compared to the asymptotic one, especially as d
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Figure 8.2: Trace plots of || X||? for the Gaussian target density in dimension d = 1000 when
starting at the origin. Comparison of fMALA with h ~ d=/5 (solid lines), MALA with h ~ d—1/3
(dashed lines), RWM with h ~ d~! (dotted lines).

increases, which corroborates the scaling results of fMALA. In addition, we observe for
the considered dimensions d that the optimal acceptance rate maximizing the first-order
efficiency remains very close to the limiting value of 0.704 predicted in Theorem 8.5.
This numerical experiment shows that the efficiency improvement of fIMALA compared
to MALA is significant and indeed increases as the dimension d increases, which confirms
the analysis of Section 8.3.1.

For our next experiments, we consider the d-dimensional zero-mean Gaussian dis-
tribution with covariance matrix I for d = 1000, as target distribution. We aim to
numerically study the transient behaviour of fMALA and propose some solutions to
overcome this issue. In Figure 8.2, we plot the squared norm of 10* samples generated
by the RWM, MALA, fMALA and some hybrid strategies for MALA and fMALA, all
started from the origin. We also include a zoom on the first 100 steps. In Figure 8.2a,
we use standard implementations of the schemes. The time step h for each algorithm
is chosen as the optimal parameter based on the optimal scaling results of all the al-
gorithms at stationarity: for the RWM h = 2.382d~!, for MALA h = 1.652d~/3 and
for IMALA h = 1.792d-1/5. Tt can observed that MALA exhibits many rejected steps
in contrast to RWM. This is a known issue of MALA in the transient phase [CRRO5;
JLM14] due to a tiny acceptance probability at first steps, and the same behaviour can
be observed for IMALA, with zero accepted step in the present simulation. To circum-
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Figure 8.3: Auto-correlation versus LAG for the Gaussian target density in dimension d = 1000.
Comparison of fMALA with h ~ d=/5 (black), MALA with h ~ d='/3 (white), RWM with
h~d~! (gray).

vent this issue, the following hybrid MALA scheme was presented in [CRR05]. The
idea is to combine MALA with RWM at each step: with probability 1/2, we apply the
MALA proposal (8.4) with step size h = 1.652d~'/3, the optimal parameter for MALA
at stationarity. Otherwise, the RWM proposal (8.3) is used with step size h = 2.382d ",
the optimal parameter for the RWM at stationarity. Indeed, [CRRO05] and [JLM14] have
shown that the optimal scaling in the transient phase and at stationarity is the same
and scales as d~!. In Figure 8.2b, the plots for this hybrid MALA are presented, the
same methodology is also applied for the hybrid fMALA scheme, showing a behaviour
similar to hybrid MALA. In Figure 8.2c, the RWM proposal is replaced by the MALA
proposal (8.4) with a different step size h = 2d~1/2, which is the optimal parameter for
MALA in the transient phase according to [CRRO05]. Again, hybrid fMALA exhibits a
behaviour similar to hybrid MALA.

In Figure 8.3, we consider again the same schemes and hybrid versions as in Fig-
ure 8.2, with the same step sizes, and we compare their autocorrelation function. We
consider for each algorithms 2 - 10° iterations started at stationarity, where the first
103 iterations were discarded as burn-in. In Figure 8.3a, it can be observed that the
autocorrelation associated with fMALA goes to 0 quicker than the RWM and MALA.
In Figure 8.3b, and Figure 8.3c, we observe that by using hybrid strategies which are
designed to robustify convergence from the transient phase, fMALA still comfortably
outperforms MALA in terms of expected square efficiency (which is a stationary quan-
tity).

Although our analysis applies only to product measure densities of the form (8.8),
we next consider the following non-product density in R?, defined using a normalization
constant Z; and for Xg =0 as

d
1
T(-(Xla s aXd) = Zdlzl_ll 1+ (Xz _ a(Xi—l))2’ (845)

where we consider the scalar functions a(x) = x/2 and «a(x) = sin(z), respectively.
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Figure 8.4: First-order efficiency of the new fMALA and the standard MALA as a function of
the overall acceptance rates for the dimensions d = 100 (white points), d = 500 (gray points),
d = 1000 (dark points), respectively, for the non product density (8.45) with a(z) = x/2 (top
pictures) and a(x) = sin(x) (bottom pictures).

Notice that the density (8.45) is associated with the AR(1) process X; = a(X;—1) +
Zy, with non Gaussian (Cauchy) increments Z,,. Furthermore, we observe that in this
case the Jacobian in (8.12) is a symmetric tridiagonal matrix, which implies that the
computational cost of the fMALA proposal is of the same order O(d) as the standard
MALA proposal.

In Figure 8.4, we compare for many timesteps the standard MALA (left pictures) and
the new fMALA (right pictures), and plot the (scaled) first order efficiency E[|| Xp11 —
X}1||?/d] as a function of the overall acceptance rates, using the averages over 2 x 10*
iterations of the algorithms. The initial condition for both algorithms is the same and
is obtained after running 10% steps of the RWM algorithm to get close to the target
probability measure. Analogously to the product case studied in Figure 8.1, we observe
in both cases a(x) = z/2 and a(x) = sin(z) that the first-order efficiency of fMALA
converges to a non-zero limiting curve with maximum close to the value 0.704. In
contrast, the efficiency of the standard MALA drops to zero in this scaling where the
first-order efficiency is multiplied with d'/®. This numerical experiment suggests that
our analysis in the product measure setting persists in the non product measure case.
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8.6 Proof of Theorems 8.4 and 8.5

We provide here the proofs of Theorem 8.4 and Theorem 8.5 for the analysis of the
optimal scaling properties of fMALA. We use tools analogous to that of [RGG97] and
[RR98]. Consider the generator of the jump process I'*™  defined for ¢¢ € C2(R?), and
z € R? by

ANy () = AR [ (7(y) - v (2)al (@, y)]

where y follows the distribution defined by qcflM(x, -). Also, consider the generator of the
process {G,t > 0}, solution of (8.18), defined for v € C2(R), and z € R¢ by

AMy(a) = (0(0)/2) (@' (1) f (1) + 9" (21)) -

We check that the assumptions of [EK86, Corollary 8.7, Chapter 4] are satisfied, which
will imply Theorem 8.5. These assumptions consist in showing there exists a sequence
of set {Fy € RY d € N*} such that for all T > 0:

. d,fM _
dgrfoop(rs €Fy, ¥s€[0,T]) =1

lim sup
d—+o0 xeFd

AP () — AMyp(a)| =0,

for all functions v in a core of A™ which strongly separates points. Since A™ is an
operator on the set of function only depending on the first component, we restrict our
study on this class of functions, which belong to C2°(R), since by [EK86, Theorem
2.1, Chapter 8], this set of functions is a core for A™ which strongly separates points.
The following lemma is the proper result which was introduced in Section 8.2.2. For the
sequel, let {&;,7 € N*} be a sequence of i.i.d. standard one-dimensional Gaussian random
variables and X be a random variable distributed according to m;. Also, for all z € R,
denote by y™ the proposal of fMALA, defined by (8.9), (8.12a) and (8.12b), started at
z € R with parameter hg and associated with the d-dimensionnal Gaussian random

variable {&;,i=1,--- ,d}.

Lemma 8.19. Assume Assumption 14. The following Taylor expansion in v/hg holds:
for allz e R and i € {1,--- ,d},

7(y™M) g™ (y™ | 2, _ _ _
lOg ( (yl )%\/[ (yl M )> - Cg\d(mz’gl)d 1/2 + Cgv[(xz’gl)d 3/5 + C'?v[(xlaél)d 7/10
(@) g™ (@, ;)

+ CM (24, &)d % + CM (4, &)d™10 + CfyH (w4, &)d ™ + C (2, &, ha) . (8.46)

where CM (21, €&1) is given in Appendiz C. Furthermore, for j = 6,--- 10, C;M(xz,gl)
are polynomials in & and derivatives of g at x; and

E|[CM(X,&)] =0 forj=5,---,9, (8.47)

E [(E [CM(X, &) yX)]ﬂ = 0(K™)? = —2F [C] (X, &) . (8.48)



Chapter 8. Fast Langevin based algorithm for MCMC 271

In addition, there exists a sequence of sets {F} C R, d € N*} such that limg_, oo d/°7q((F1)°) =
0 and for j =6,---,10

d
iy d-3/5 (od ey _m[e™Mx enlll —
Jim_d sellg)lE[ZC](xz,fl) E[C] (X,gz)}H 0, (8.49)
el y =2
and
d d
li E Ci(zd, &, ha)|| = 0. 8.50
dirfoof;% l; (2, & d)] (8.50)
Finally,
. a1 _
dgrfoo:;%E ISIELE (8.51)
with

(=3 log <”(y%qm(y?w’xi)> - ((dlﬂics,(x?,&)) —elo(KfM)?/2> _
1=2

i=2 W(xi)qu(xiayzﬂVI)

Proof. The Taylor expansion was computed using the computational software Mathe-
matica [Woll4]. Then, since just odd powers of & occur in C5,C7 and Cy, we deduce
(8.47) for j = 5,7,9. Furthermore by explicit calculation, the anti-derivative in z; of

e9=E {C’;M(xl,&)}, for j = 6,8, and e9@VE [CgM(xl,&)Q + ZC%/I(xl,fl)} are on the

form of some polynomials in the derivatives of ¢ in z; times e9(*1). Therefore, Assump-

tion 14-(iii) implies (8.47) for j = 6,8 and (8.48). We now build the sequence of sets F}},

which satisfies the claimed properties.

Denote for j =6,--- ,10 and z; € R, C~'JfM(xz) =E [C]ﬂv[(:vi, 51)} and VgM(:cl) = Var [C]ﬂv[(:vi, 51)},
which are bounded by a polynomial Py in x; by Assumption 14-(ii) since ij»M(mi, &) are
polynomials in & and the derivatives of g at x;. Therefore for all k£ € N*,

E Ué}M(X)\’“] +E U\@M(X)\k] <6400, (8.52)

Consider for all j = 6,---,10, the sequence of sets Fi ; € R? defined by Fi ;= Fi j1 N
F dl, 2 where

d

Fiji= {x eR'; Y OMa) —E[CMX))| < d23/4°} (8.53)
1=2
d

Fijo= {x eR'; Y VM) -E[VMX)]| < d23/2°} . (8.54)
1=2

Note that limg_, 4 o d1/57rd((FC%7j)c) =0forall j =6---10, is implied by limg_, d1/57rd((Fij71)c) =
0 and limg_, 4 d1/57rd((Fj,j72)C) = 0. Let {X;,7 > 2} be a sequence of i.i.d.random vari-
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ables with distribution m;. By definition of F dl i the Markov inequality and indepen-
dence, we get

d1/57rd((Fc%,j,1)c) < d /g

(i CM(X;) K [@“(X)})
=2

d 2 /. ~ 2
< 3 E[(een) s [ere])’ (@ e o))

i1,i9=2

<d Vg {(é]f.M(X) ~E [éf“(xﬂ)‘l] , (8.55)

where we have used the Young inequality for the last line. On another hand, using the
Chebyshev and Holder inequality, we get

2
d1/577d((Fc%,j,2)c) < d~H/10g

d
(Z VM(X)) —E [ng(X)D
=2

< gV {(vﬁM(X) ~E [vﬁM(X)DT . (8.56)

Therefore (8.52), (8.55) and (8.56) imply that limg d1/57rd((FC%7j)c) =0 for all j =
6,---,10. In addition, for all z € F dl > by the triangle inequality and the Cauchy-Schwarz
inequality we have for all j =6,---,10

d d 1/2
E [ S CM(2i, &) - E {C]fM(X, 5i):| H <> VM@) - E [V;M(X)}
= i=2
+dVPE [V?VI(X)} V2 i CM(z;) —E [Cj.M(X, gi)} | .
=2

Therefore by this inequality, (8.53) and (8.54), there exists a constant M; such that

d
> Mz, &) —E [CjM(X,gi)} H < d~op

d3/5 sup IE[
i=2

1
zeFd’j

and (8.49) follows. It remains to show (8.50). By definition, Cy; is the remainder in
the eleventh order expansion in o4 := \/hg given by (8.46) of the function © defined
by O(zi,&i,04) = log(m (y™M)gM(y™, 2;)) — log(my (z;) g™ (s, y™M)). Therefore, by the
mean-value form of the remainder, there exists uq € [0, 04] such that

1 | 811@
Cr1(xi, &, ha) = (0g (11-))W(xia§iaud) :
d

By Assumption 14-(i) which implies that ¢” is bounded, and Assumption 14-(ii), for all
ug € [0,04], the eleventh derivative of © with respect to o4, taken in (x;,&;,uq), can
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be bounded by a positive polynomial in (x;,§;) on the form Ps(z;)P3(&;). Hence, there
exists a constant My such that

E [|C11 (24, &, ha)|] < Mo d=H/10 Py(ay) . (8.57)

)

then we have by the Chebychev inequality, this definition and (8.57)

And if we define

d

> Pa(z;) — E[Py(X))]

Fdl,n = {CU eR?;
=2

d'Pry((F)11)°) < Var [Py(X)]d 4/
d
sup ZEHCn(xi,gi,hd)\] < My(E [Po(z)] + 1)d*1/10 .

mGF(}’H =2

These results, combined with Assumption 14-(iii), imply limg_, oo d"/®mg((F, 111,11)0) =0
and (8.50). Finally, F, dl = ﬂ}lzG Fi j satisfies the claimed properties of the Lemma, and
(8.51) directly follows from all the previous results. O

Fd,fM

To isolate the first component of the process , we consider the modified gener-

ators defined for ¢ € C2(R?) and z € R? by
AMy(x) = d PR [(p(y™) - v (@) 4z, y™)]

where for all z,y € R?,

d
M m1(vi)q1,mv(Yi, i)
(02 z,Yy)= .
14(®9) ,:HQ 1 () g1, (i vi)

The next lemma shows that we can approximate Agv[ by ;15\4’ and thus, in essence, the
first component becomes “asymptotically independent” from the others.

Theorem 8.20. There exists a sequence of sets {F3 C R% d € N*} such that limg_, o d"/°mq((F3)) =
0 and for all ¢ € CX(R) (seen as function of R? for all d which only depends on the
first component):

AMy(z) — AMyp(a)| = 0.

lim sup
— 400 xng
In addition,
lim sup d'PE [|aM z,y™) — o™ (z,y™)|| =0. 8.58
d 1,d

d—+o0 xng
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Proof. Using that ¢ is bounded and the Jensen inequality, there exists a constant M;
such that

AN y(2) — Ap(a)| < Mid R ([ (2,y™) — a2 4w, y™)]]

Thus it suffices to show (8.58). Set o4 = \/hq. Since ¢ — 1 A exp(t) is 1-Lipschtz on R
and, by definition we have

AR [[af! (@, y™) = a2 4(z,9™)|] < dPE[O(1, 61 00)) . (859)

where O(z1, &1, 04) = log(my (y™M)gM (yIM, z1))—log(m (z1)gM (21, yiM)). By a fifth order
Taylor expansion of © in o4, and since by (8.46) 870 (z1,£1,0)/(d07) =0for j =0---4,
we have
9°0 5 /ry
O(z1,61,04) = W($1,§1,ud)(0d/5-) :
%4

for some uq € [0,04). Using Assumption 14-(i)-(ii), and an explicit expression of
910(x1,&1,uq)/(007), there exists two positive polynomials Py and P such that

0(1,&1,04)| < (0/5)P1(21)Pa(&1) -
Plugging this result in (8.59) and since o = 052412 we get
dY R Hadﬂv[(x,ym) - aflvid(x,ym)u < ES/Qd_g/loPl(xl) .
Setting F7 = {x € R?; Py(z1) < d/1°}, we have

sup d'/°E (o (™) = o y(z,y™)|] < 520717,
S d

and (8.58) follows. Finally, F7 satisfied limg_, 1 o d'/°m4((F2)¢) = 0 since by the Markov
inequality
A Pomg(F3)7) < d™1OR [Py(X)?]

where E [P1(X)?] is finite by Assumption 14-(iii). O

Lemma 8.21. For all ¢ € C°(R),

tim sup [d"°E [o(u) —w(en)] = (/2@ (@) @) + 4" (@) =0

d—+o0o 1 cR

Proof. Consider g = /hq and W (x1,&1,04) = ¥(yiM). Note that W (zy,£1,0) = ¥(zy).
Then using that ¢ € C2°(R), a third order Taylor expansion of this function in o4 implies
there exists ug € [0, hy] and My > 0 such that

E[W(x1,&1,04) — ¥(z1)] = (2d P /2) (4 (21) f (1) + ¢ (21)) + Myd 310

PW
+ T‘g@h&’ud%fﬁ :
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Moreover since ¢ € C2°(R), the third partial derivative of W in o4 are bounded for all
x1, &1 and o4. Therefore there exists My > 0 such that for all 1 € R,

(7R [p(u™) = )| = (/)@ (01) f (1) + 0" (1)) < MptP/2d 7110,

which concludes the proof. O

As proceed in [RR98], we prove a uniform central limit theorem for the sequence of
random variables defined for ¢ > 2 and z; € R by Cgf)l\/[(xi, &;). Define now for d > 2 and
z € R?,

d
Ma(z) = n 12>~ CM (24, &) |

i=2
and the characteristic function of My for t € R by
palz,t) = E[d™M@)]

Finally define the characteristic function of the zero-mean Gaussian distribution with
standard deviation K™ given in Lemma 8.19, by: for t € R,

@(t) _ e—(KfM)Qt/Z .

Lemma 8.22. There exists a sequence of set {F3 C R, d € N*}, satisfying limg_, , oo d"/°1q((F3)°) =
0 and we have the following properties:

(i) for allt € R, limg o sup,cps lpala,t) — o(t)] = 0,

(i) for all bounded continuous function b : R — R,

lim sup =0.

d—r+o00 xng

E {b (Md(:c))} . (QT[flo(KfM)z)_l/z/Rb(u)e_UQ/(%lo(KfM)Q)du

In particular, we have

lim sup |E {1 A eMd(x)_gm(KfM)Q/z} — 2<I>(€5KfM/2)‘ =0.

d—+o0 xeFj’

Proof. We first define for all d > 1, F3 = FCZZ 1 NF, 5’72 where

d
Fii= () {xeRd; AV Y B[O (@i, )] - B [CM(X4, 1) gd—1/4} . (8.60)
Jj=24 i=2
Fiy={zeR?; B[CPM(2;,&)?| <d** Vie {2, d}} . (8.61)

It follows from (8.52), and the Chebychev and Markov inequalities that there exists a con-
stant M such that Wd((ngl)c)—l—wd((FiﬁC) < Md~1/2. Therefore limg_, o d*/°74((F3)°) =
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0.
(i). Let t € R and @ € F; and denote

V(z;) = Var[CM (2, &)] = E [CM (a7, €)?]

where the second equality follows from Lemma 8.19. By the triangle inequality

d 10/ ()42
ey (1- 0208

=2
d 10 42
H 1_ V4 V(wz)t B 67510(KfM)2t2/2
=2 2d

lpa(z,t) — ()] <

+ (8.62)

We bound the two terms of the right hand side separately. Note that by independence
for all d, @q(x,t) = [1%y @1z, t/V/d). Since z € F3, by (8.61), for d large enough
OV (x;)t?/(2d) < 1 for all i € {2,--- ,d}. Thus, by [Bil95, Eq. 26.5], we have for such

large d, all i € {2,--- ,d} and all § > 0:
S <1 ) #>| =" l<| | ‘CEEI\A(CU@',&) Mg CM(z;, )2

3

]]-{’CéM($i7fi)‘§5d1/2}

2d 6d3/2

[t 5 e
SN ’05 (i, &)

t2€10 M 9
+E d Cy " (3, &) ]1{]C§V1(x,-,§,-)]>5d1/2}
8 [¢)> oo
<
- 6d

1042
62d?
In addition, by [Bil95, Lemma 1, Section 27] and using this result we get:

E {Cél\/[(x“&)ﬂ + E [CEEM(%aSz)ﬂ )

d 10 2 d 3 p15

0OV ()t olt|° ¢

@d(x7t)—H<1—72(d ) )‘SZ ’lid E[ng(xi,&)z}
P i—2

glOtQ
+ WE [Cgf)l\/[(.%'l,fz)ﬂ

< (E[C(X1,€0)%] +d %) %5 |t /6
+ (B [CM(Xy, &) +d~1/1) 1082 (5%d)
where the last inequality follows from z € F and (8.60) Let now € > 0, and choose §

small enough such that the fist term is smaller than €¢/2. Then there exists dy € N* such
that for all d > dy, the second term is smaller than /2 as well. Therefore, for d > dy we

get
d 10V/ (. )#2
@d(x,t)_n<1_m>

1=2

sup
mng
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Consider now the second term of (8.62), by the triangle inequality,

ﬁ (1 _ @10V($i)t2> B e_glo(KfM)2t2/2

<
s 2d

d 10 2 d
COV (@)t 010V ()2 /(2d)

=2 1=2

d
H 67510\/(337;)252/(26[) _ efflo(KfM)QtQ/Q
1=2

n (8.63)

We deal with the two terms separatly. First since for all z;, V(z;) > 0, we have

ZIOtQ

]1 — V()04 ) (2d) — e~ V@t/ <2d>\ < V(2)2620¢* (8d2) .

Using this result, [Bil95, Lemma 1, Section 27] and the Cauchy-Schwarz inequality, it
follows:

ﬁ L OVE)P ﬁ 0OV (@) (2d)
=2 2d

=2

<

M&

‘1 — V(z;)0"t/(2d) — e—V(xi)fmt?/(zd)‘

N
[|
N

<

[UR

I
[N}

V(@) 202 /(8d%) < (B [CM(Xy,&0)"] +d711) 2% /(8d) (8.64)

where the last inequality is implied by (8.60). Finally since on R_, u + e" is 1-Lipschitz
and using (8.60), we get

d
> dV(x;) — (K™M)?
=2
< 20104142 (8.65)

d
H e—€10V(xi)t2/(2d) _ e—ﬁlo(KfM)QtQ/Z < (t2€10/2)

1=2

Therefore, combining (8.64) and (8.65) in (8.63), we get:

lim sup =0,

d—+o0 :BEF;’

2d

d
<1 B flOV(xi)t2> B 67510(KfM)2t2/2
2

1=

which concludes the proof of (i).
(ii) follows now from (i) by the continuity theorem applied to an appropriate sequence

{z?, d e N*}. O

proof of Theorem 8.J. The theorem follows from Lemma 8.19, (8.58) in Theorem 8.20
and the last statement in Lemma 8.22. ]
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proof of Theorem 8.5. Consider Fy = (=123 FC{, where the sets FC{ are given resp. in
Lemma 8.19 Theorem 8.20 and Lemma 8.22. We then obtain limg_, | o d’1/57rd((Fd)C) =
0 and by the union bound, for all T' > 0,

lim P (™M ey, vse[0,7]) =1,

d—+o00

Furthermore, combining the former results with Lemma 8.21, we have for all 1) € C>°(R)
(seen as a function of the first component):

lim sup |[AM(z) — Aqub(a:)’ =0.
d—+o00 zEF,
Then, the weak convergence follows from [EK86, Corollary 8.7, Chapter 4]. O

8.7 Postponed proofs

8.7.1 Proof of Lemma 8.9

By Assumption 15-16, m and ¢ are positive and continuous. It follows from [MT96,
Lemma 1.2] that P is Leb®-irreducible aperiodic, where Leb® is the Lebesgue measure
on R?. In addition, all compact set C such that Leb?(C) > 0 are small for P. Now by
[MT09, Theorem 15.0.1], we just need to check the drift condition (8.20). But by a simple
calculation, using a(z,y) < 1 for all z,y € R?, and the Cauchy-Schwarz inequality, we
get

PV(@) < 1+ Jal* + (la@)]* = al®) [ ate.y)ate.p)dy
+ @R @) IS@) + 1S@)?) [ max(le)?, et e

By (8.23), im supjg 400 (2 (@) [|S ()| + 15(2)||?) |||~ = 0. Therefore, using again
the first inequality of (8.23) and Assumption 17:

limsup PV (z)/V(z) <1— (1 —7?) liminf a(z,y)q(z,y)dy < 1.

llz]|—=+o0 [|z]|—+oc JRE

This concludes the proof of Lemma 8.9. U

8.7.2 Proof of Theorem 8.10

We prove this result by contradiction. The strategy of the proof is the following: first,
under our assumptions, most of the proposed moves by the algorithm has a norm which
is greater than the current point. However, if P is geometrically ergodic, then it implies
a upper bound on the rejection probability of the algorithm by some constant strictly
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smaller than 1. But combining these facts, we can exhibit a sequence of point {x,,n €
N}, such that lim,, o m(x,) = +00. Since we assume that 7 is bounded, we have our
contradiction.

If P is geometrically ergodic, then by [RT96a, Theorem 5.1], there exists n > 0 such
that for almost every z € RY,

/Rd oz, y)g(z,y)dy > 1, (8.66)

and let M > 0 such that
Pl > M] <n/2, (8.67)

where ¢ is a standard d-dimensional Gaussian random variable. By (8.24), there exist
R¢, 6 > 0 such that

inf S(x -1 T T -1 > 671 +6 .68
{||$||ZR€}‘ ()" ()| 2l > .

inf  inf ||S(x)z| > e(1+ de/2)7 . 860
{llz[>Re} ||z||:1H (@)z] ( /2) ( )

Note that we can assume R, is large enough so that
€0R. /2> M . (8.70)
Now define for z € R, ||z|| > R.
B(z)={yeR!| |S(2)" (y - u(x))| < M} . (8.71)

Note if y € B(z), we have by definition and the triangle inequality ||S(z) 'yl >
|S(x)"tu(z)|| — M. Therefore by (8.68)-(8.69) and (8.70)

Iyl = [[S@)S @)ty > et +de/2)7" ||S(2) "y
> e(1+8¢/2)7 {7+ 0) ol = M} > Jla]] - (8:72)
We then show that this inequality implies

liminf inf a(y, )
||| —++oo yeB(z) q(x,Y)

=0. (8.73)

Let x € RY, ||z]| > R, y € B(x). First, it is straightforward by (8.71), that |S(z)| q(x, y)
is uniformly bounded away from 0, and it suffices to consider |S(z)|q(y,z). By (8.69)-
(8.72), we have ||y|| > R, and for all z € R?, ||S(y)z|| > (1 + de/2)~1 ||z||, which implies
for all z € R, e 1(1 + 6¢/2) ||z > ||S(y)~12||. By this inequality and (8.68), we have

s 1uw)] - |s@ ]| = [|s@) " uw)] - |Sw s
> (e +0)llyll — e (1 +de/2) l2ll = (5/2) [yl (8.74)
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where the last inequality follows from (8.72). Using this result, the triangle inequality,
(8.74)-(8.69) and (8.72), we get

aly,@) = (2m) " exp {—(1/2) [EC )] = log<|s<y>|>}
< (20 exp {~(1/2) ([[s) )] - [00) ] - x5}

< (2m) % exp { = (6%/8) [ly]]* — log(1S(v)])}
< (2m) 2 exp {~(6%/8) |||” — dlog(e(1 + d¢/2) 1)} .

Using this inequality and (8.25) imply lim|, 100 infyep) [S(2)] ¢(y,2) = 0 and then
(8.73). Therefore there exists R, > 0 such that for all z € Rd llz]| > R,

~—

.. gy,
inf
yeB(z) q(z,y

<n/4. (8.75)

~—

Now we are able to build the sequence {z,,n € N} such that for all n € N, ||zp41] >
max (R, R,) and lim,,_, { oo 7(%,) = +00. Indeed let xg € R? such that ||zo|| > max (R, R,).
Assume, we have built the sequence up to the nth term and such that for all £ =
0,....,n =1, ||zpt1|| > max(R., Ry) and m(xk4+1) > (3/2)m(xr). Now we choose xy,41
depending on x,, satisfying m(zp41) > (3/2)m(xy) and [|z,41] > max(Re, Ry). Since
|zyn| > max(R., Ry), by (8.66)-(8.67) and (8.75)

n < /Rd (2, y)q(@n, y)dy < n/2 + /B(m min (17 M) q(xn, y)dy

(2 )q(Tn, y)
<ozl [ T

B(wn) T(Tn)

q(zn,y)dy .

This inequality implies that [ Blan) %q(wn, y)dy > 2 and therefore there exists x, 41 €
B(xz,,) such that 7(z,41) > (3/2)7(zy,), and since x, 11 € B(zy,) by (8.72), ||zp41| =
max(R¢, R;). Therefore, we have a sequence {z,,n € N} such that for all n € N,
m(Tpy1) > (3/2)m(zy). Since by assumption w(xg) > 0, we get limy, oo m(Ty) =
400, which contradicts the assumption that 7 is bounded. This concludes the proof of
Theorem 8.10. ]



Conclusion et perspectives

Il est temps de conclure notre voyage a travers les trois ans de recherche que j’ai menés
conjointement avec mes co-auteurs. Nous proposons ici différents axes de recherches en
cours qui compléteraient ou améliorerait les résultats présentés dans ce manuscrit.

Partie I

Nous avons tout d’abord fourni des bornes explicites de convergence pour la convergence
de chaines de Markov et appliqué ces bornes a ’analyse de méthodes MCMC. Nous avons
en particulier obtenu des bornes explicites pour une variante de MALA, EI-MALA,
et un taux de convergence sous-géométrique pour ’algorithme de Crank-Nicolson pré-
conditionné.

Des travaux qui pourraient compléter ces résultats sont ’analyse de la convergence de
la variante de ’algorithme de Monte Carlo Hamiltonien (HMC) proposée par [Bes+11].
Cette analyse devrait en outre déterminer si ’algorithme HMC est vraiment plus efficace
que l'algorithme MALA et aussi permettre de déduire les valeurs des parametres qui
optimisent la convergence de ’algorithme, en particulier le nombre d’intégration de Verlet
utilisé au cours de l'algorithme.

Un autre axe de recherche serait d’utiliser la stratégie de preuve des analyses de
lalgorithme de Metropolis & marche aléatoire et hit-and-run utilisée dans [KLS97] et
[LVO7] pour analyser I'algorithme MALA.

Nous avons aussi établi des résultats de convergence sous-géométrique pour des
chaines de Markov a valeurs dans un espace polonais qui améliorent les bornes don-
nées par [Butl4]. Un travail en cours généralise ce résultat aux processus de Markov a
temps continu a valeurs toujours dans un espace polonais. Pour cela, nous combinons la
stratégie employée dans le Chapitre 4 avec un résultat de [Hail6] qui est un pendant con-
tinu du résultat principal de [Dou+04]. Ce travail permet d’améliorer les taux obtenus
dans le cas continu par [Butl4] sans passer par ailleurs par le résultat sur les chaines
discretes.

Un nouvel algorithme de Crank-Nicolson pré-conditionné a récemment été proposé
par [RS15]. Ce nouvel algorithme est adaptatif dans le sens ou l'opérateur de covari-
ance de la loi de proposition gaussienne change d’une itération a l'autre. Les résul-
tats théoriques concernant l’algorithme dans [RS15] ne montre pas que l'algorithme
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est géométriquement ergodique ou méme sous géométrique. Il serait alors intéres-
sant d’observer sous quelles conditions cet algorithme admet des taux de convergence
d’identifier ces taux.

Partie 11

Dans une seconde partie, nous avons analysé I'algorithme ULA et donné des garanties de
convergence de I'algorithme en variation totale et distance de Wasserstein. Cependant,
nous supposons pour ces résultats que la densité cible est positive sur R% et au moins une
fois contintiment différentiable sur I’ensemble de I’espace. Dans des travaux en cours avec
le maitre de conférence Marcelo Pereyra et le professeur Eric Moulines, en nous inspirant
de techniques d’optimisation proximales, nous proposons une adaptation de ULA pour
échantillonner une densité log-concave non-différentiable ou a support borné.

De plus nous combinons cet algorithme a une adaptation de la méthode proposée
par [CV15], afin de calculer des constantes de normalisations de densités log-concaves
(non normalisées). Notons que ce probleme couvre en particulier le calcul du volume
d’un corps convexe. Cette recherche est menée en collaboration avec le doctorant Nicolas
Brosse et le professeur Eric Moulines.

Une autre idée sur laquelle nous travaillons est d’utiliser ULA & lintérieur d’un
algorithme de Gibbs pour échantillonner approximativement des lois conditionnelles qui
ne sont connues qu’a une constante pres a la maniere de I’algorithme de Metropolis-Gibbs
(Metropolis within Gibbs). Plus précisément considérons une densité cible continiment
différentiable sur RY, 7, et considérons un algorithme de Gibbs pour échantillonner 7 &
partir de différentes lois conditionnelles associées a cette distribution. Il est possible que
certaines densités conditionnelles ne soient connues qu’a une constante pres. Pour avoir
des échantillons approchant ces lois, il est alors possible d’utiliser ULA. En particulier si
7 est log-concave alors toute loi conditionnelle associée sachant un bloc de coordonnées
reste alors log-concave et nous pouvons utiliser les bornes que nous avons obtenues dans
la partie II. L’analyse de ce type d’algorithme n’est pas anodin car c’est déja ce type
d’algorithme qui est utilisé en pratique dans la communauté du machine learning pour
échantillonner des modeles complexes [Gan+15], [CFG14].

Une autre motivation vient de ’analyse de I'algorithme d’optimisation de descente
par coordonnées ou bloc de coordonnées. En effet, on peut observer que ULA est tres
sensible au parametre de la densité cible comme la constante de Lipschitz du gradient
ou si elle existe la constante de convexité forte. D’autre part si la densité cible est
log-concave, les densités conditionnelles sachant une ou des coordonnées, restent log-
concaves et avec des parametres qui peuvent étre bien meilleurs du point de vue des
bornes que nous avons obtenus. L’idée est alors d’utiliser un algorithme de Gibbs pour
échantillonner une loi cible log-concave & partir de ces lois conditionnelles sachant un
bloc de coordonnées, et d’utiliser ULA pour avoir des échantillons approchées de ces lois.
Une premiere étape est d’analyser la convergence de I'algorithme de Gibbs sous-jacent.
Ensuite, nous devons donner le nombre d’itérations nécessaire & ULA pour chaque lois
conditionnelles. Ces deux résultats donnent alors le nombre total d’itérations nécessaire
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a lalgorithme pour étre & une certaine distance de la distribution cible. Le but final de
cette étude est de trouver dans quels cas il est plus intéressant d’utiliser cet algorithme
par rapport a l'algorithme ULA appliqué a toute la densité. Ce projet est mené avec les
maitres de conférence Umut Simsekli et Sebastian Vollmer.

En inférence bayésienne, sous des hypotheses appropriées et lorsque le nombre d’observations
tend vers l'infini, la loi a posteriori converge vers une loi gaussienne centrée en le vrai
parametre et avec une certaine variance. De plus des vitesses de convergence avec des
bornes explicites peuvent étre établies. Ce résultat est montré par [BC09] qui s’en sert
pour étudier la convergence de 'algorithme de Metropolis a marche aléatoire. En par-
ticulier ils en déduisent des bornes de convergence qui sont d’autant plus bonnes que
le nombre d’observation croit. Il serait tres intéressant d’observer ce méme phénomene

pour ULA.

Partie I11

Dans une troisieme partie, nous nous sommes intéressés a ’étude d’échelonnage optimal
d’algorithme de type Metropolis-Hastings. Nous avons tout d’abord établi que sous une
hypothese de différentiabilité en moyenne LP, p > 2, les résultats pionniers de [RGGI7]
sur ’échelonnage optimal de l'algorithme de Metropolis Hastings a marche aléatoire
restaient vrais. Des travaux en cours portent sur la généralisation des résultats de [RR98]
concernant ’échelonnage optimal de MALA pour des densités qui peuvent ne pas étre
différentiables en certains points. Les premiers résultats de cette étude montrent que
sous certaines conditions (vérifiés par la loi de Laplace par exemple), 1’échelonnage de
MALA n’est plus en d~'/% mais en d=2/3. Une question alors qui se pose est de savoir si
I'utilisation d’operateurs proximales, comme proposée par [Perl5], permet de retrouver
I’échelonnage optimal en d—1/3 de MALA pour des densités assez régulicres. Cette étude
est menée en collaboration avec le chargé de recherche Sylvain Le Corff et les professeurs
Eric Moulines et Gareth Roberts.

Dans un second chapitre, nous avons proposé des nouveaux algorithmes de type
Metropolis-Hastings présentant sous certaines conditions un meilleurs échelonnage op-
timal que MALA. Cependant ces méthodes peuvent étre cotiteuses d’un point de vue
computationnel car elles exigent le calcul de la hessienne et de la dérivée troisieme de la
densité cible. On peut alors se demander s’il ne serait pas possible de se passer du calcul
de ces dérivées en les approchant par différences finies comme c’est le cas pour les méth-
odes de Runge-Kutta. En fait, cette méthodologie serait aussi intéressante pour MALA.
Plus précisément, nous cherchons actuellement a approcher le gradient du potentiel par
différences finies directement sur la densité cible. Cette recherche en cours est menée
en collaboration avec les professeurs Gareth Roberts, Gilles Vilmart et Konstantinos
Zygalakis.
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Conclusion and perspectives

To conclude this manuscript, we give here different ongoing works and ideas which could
complete or improve the results presented in this manuscript.

Part I

We have first provided explicit convergence bounds for Markov chains on a Polish space
in Wasserstein distance. Applying these results, we got explicit bounds for an alternative
to the MALA algorithm and sub-geometric convergence rates for the pre-conditionned
Crank-Nicolson algorithm.

These results could be completed by studying the alternative to the Hamiltonian
Monte Carlo method (HMC) presented in [Bes+11]. This analysis should indicate if
the HMC algorithm is indeed more efficient than the MALA algorithm, and allows to
deduce parameters values which optimise the convergence of the algorithm. In particular,
a very interesting question is the optimal number (if it exists) of leapfrog steps used by
the proposal during the algorithm.

The proof strategy of [KLS97] and [LV07] to study the convergence of the random
walk Metropolis is completely different from the methods presented in this thesis. The
main ingredient is to lower bound the conductance of a Markov kernel very closed to
the Metropolis kernel and use one of the Cheeger’s inequalities. Furthermore, the lower
bound on the conductance are obtained using functional inequalities and the Localization
Lemma of [KLS95]. It would be very interesting to adapt this strategy to the study of
MALA.

We have established sub-geometric convergence rates for Markov chains valued in a
Polish space, which improve the rates given by [But14]. An ongoing work is to generalized
this result to Markov processes in continuous time. The proof combines the method
used in Chapter 4 with a result of [Hail6] which is the counterpart of the main result
of [Dou+04]. This work improves the obtained rates in the continuous time setting
obtained by [Butl4] without using the results on discrete time chains.

A generalized pre-conditioned Crank-Nicolson algorithm has been recently proposed
by [RS15]. This new algorithm is adaptive in the sense that the covariance operator of
the Gaussian distribution associated with the proposal changes during the algorithm.
The results concerning this algorithm in [RS15] do not show that it is geometrically
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or even sub-geometrically ergodic. It would be interesting to find if there exist some
conditions under which the algorithm admits some convergence rates.

Part 11

In a second part, we have analyzed the ULA algorithm and given some theoretical
guarantees on the convergence of the algorithm in total variation norm and Wasserstein
distance. However, it is assumed that the target density is positive on R% and at least
continuously differentiable. In an ongoing work with the research fellow Marcelo Pereyra
and the professeur Eric Moulines, based on non-smooth optimization method, we propose
an adaptation of the ULA algorithm, called the P-ULA, to sample from a log-concave
density which can be non differentiable or with bounded support.

Furthermore combining P-ULA and a method proposed by [CV15], we have defined
a new algorithm to compute normalizing constant of log-concave (non-normalized) den-
sities. Note that this problem covers in particular the problem of computing the volume
of a convex body included in R%. This research is joint with the phd student Nicolas
Brosse and the professor Eric Moulines.

Another idea on which we focus on is to use ULA inside a Gibbs algorithm to get
approximate samples from conditional densities which are known up to a multiplicative
constant, as in the Metropolis within Gibbs algorithm. More precisely, let 7 be a contin-
uously differentiable on R?, and consider a Gibbs algorithm to sample from 7 based on
condition distributions associated with m. It is possible that some conditional densities
are known up to a multiplicative constant. Then, the UIA algorithm is applied to get ap-
proximate samples from these conditional distributions. In particular if 7 is log-concave
then any conditional distribution given a block-coordinate is still log-concave and we can
use the bounds obtained in Part II. Moreover, the analysis of this kind of algorithm is
not insignificant because it is already used in the machine learning community to sample
from complex models [Gan+15], [CFG14].

Another motivation comes from the analysis of the coordinate descent algorithms.
Indeed, we can observe that ULA is very sensitive to target density parameters such that
the Lipschitz constant of the gradient or the strong convexity constant, if it exists. On
the other hand, if the target density is log-concave, the conditional densities given some
coordinates are also log-concave with parameters which can be better for the convergence
of ULA. The idea is then to consider a Gibbs algorithm to sample from a log-concave
target density based on the conditional laws given some coordinates, and to use ULA
to get approximate samples from each conditional distribution. The first part of the
analysis has to study the underlying Gibbs samplers. Second, the necessary number
of iterations to be close to each conditional distribution have to be found. These two
results gives the total number of iterations of the algorithm to be at some distance from
w. The main purpose of this study is to show in which cases it is more efficient to use
this Langevin-within-Gibbs algorithm than ULA applied to the complete target density.
This project is lead with the lecturers Umut Simsekli and Sebastian Vollmer.
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In Bayesian inference, under appropriate conditions and as the number of observation
converges to infinity, the posterior distribution converges to a Gaussian distribution with
mean the true parameter. In addition for some distances, convergence rates with explicit
bounds have been obtained. This result is shown by [BC09], who use it to study the
convergence of the random walk Metropolis algorithm. More precisely, they deduce some
bounds on the convergence which are all the better as the number of iterations increases.
It would be interesting to show the same behaviour for the ULA algorithm.

Part I11

In the third part, we have been interested in the study of Metropolis-Hastings algorithms
by their optimal scaling. First, we have established that under a condition of differen-
tiability in L” mean, p > 2, on the target density, the original results of [RGG97] on the
optimal scaling of the random walk Metropolis algorithm, still hold. An ongoing work
tries to generalize the optimal scaling results obtained by [RR98] for the MALA algo-
rithm, to non-differentiable target densities. The first results of this study show that
under some conditions (satisfied by the Laplace distribution), the optimal scaling of
MALA is not of order d~1/3 anymore but of order d—2/3. It raised the question whether
the use of proximal operators as suggested in [Perl15], allows to recover the optimal scal-
ing of MALA of order d~'/3. It is a joint work with the research fellow Sylvain Le Corff
and the professors Eric Moulines and Gareth Roberts.

In a second chapter, we have proposed new Metropoli-Hastings type algorithms which
have under appropriate conditions a better optimal scaling than MALA. Nevertheless,
these methods can be computationally expansive since they require the calculation of
the Hessian matrix and the third derivative of the target density. We might wonder
if it would be possible to approach these derivatives by finite differences as in Runge-
Kutta methods. In fact, this methodology would be interesting for MALA as well. More
precisely, we currently aim to approach the gradient of the potentiel by finite differences
of the target density. It is a joint work with the professors Gareth Roberts, Gilles Vilmart
and Konstantinos Zygalakis.
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Appendix A

Markov processes

In this section, we give some definitions and fundamental results on Markov processes
and related objects. However, basic knowledge and definition is assumed to be known.

A.1 Markov chains

Let P be a Markov kernel on a state space (E,£). For all initial distribution g on (E, &),
P,, and E,, denote the probability and the expectation respectively, associated with P
and pp on the canonical space (EN,E¥N), and (Y;);en denotes the canonical process.

Tensor product of Markov kernels

Definition-Proposition A.1 ([DMS14, Proposition 5.8]). Let (E, &), (F,F) and (G, G)
be measurable spaces. Let P and Q be two Markov kernels on ExX F and F x G respectively.

(a) There exists a Markov kernel P @ QQ on E x (F ® G) such that for all x € E and
Ae F®G:

P& Q) = [ Pa.dy) [ 1y 2)Qs.dz)

In particular, if P is simply a measure p on (E, &), then it yields that p ® Q is a
measure on (F x G, F ® G).

(b) There exists a Markov kernel P ®T Q on E x (G ® F) such that for all z € E and
AegGRF:

P&t Q) = [ Pla.dy) [ (=9 d2)

In particular, if P is simply a measure p on (E, &), then it yields that ;n ®T Q is a
measure on (G x F,G® F).
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Irreducibility

Definition A.2. 1. Let p be a non-trivial o-finite measure on (E,E). P is said u-
irreducible if for all A € €, u(A) > 0, for all x € E, there exists n € N* such that
P"(x,A) > 0.

2. P is said to be irreducible is there exists u, a non-trivial o-finite measure on (E, &),
such that P is p-irreducible.

Definition A.3. A set A € £ is said accessible for P if for all x € E, there exists n € N*
such that P"(xz,A) > 0.

Definition A.4. We say that a o-finite measure p € P(E) is a mazimal irreducibility
measure for P if P is p-irreducible and A is accessible if and only if pu(A) > 0.

Definition A.5. Let (ag)ren+ be a sequence of nonnegative real numbers such that
Z;‘;’B ar = 1. Then the sampled kernel associated with (ag)ren+ is the Markov kernel
defined for all x € E and A € £ by

400
Ky(z,A) = Z apP*(z,A) .
k=0

Let € € (0,1), we denote by K. the sample chain associated with the geometric
sequence a, = €"/(1 —¢) for all n > 0.

Theorem A.6 ([MT09, Proposition 4.2.2]). Let P be an irreducible chain, with irre-
ducibility measure p. Then puK. is a mazximal irreducibility measure for all € € (0,1).
In addition if p1 is a mazimal irreducibility measure, for any irreducibility measure po
satisfies po << p1.

Petite and small sets

Definition A.7. C est un n-small set pour P si ils existent n € N*, ¢ > 0 et une mesure
de probabilité v sur (E,E) tels que pour tout x € C, P*(x,...) > ev(-).

Definition A.8. A set C € £ is said to be a petite set for P if there exist a sequence of

nonnegative real numbers (ay)xen+ such that Z;i:% ar = 1, a non trivial o-finite positive
measure fi on (E, &) such that for all x € C

Ko(z,A) > u(hd), forallAe &,

where K, is the sample kernel associated with P and (ay)ken+. If such relation holds
then C is said to be a ({1, a)-petite set.
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Recurrence and transience
Define for all A € £ .
Ng=> 14(Y;) ,U(z,A) =E, [N4] .
i=0

Definition A.9. a) A setA € & is said to be recurrent if for all x € A, U(z,A) = +00.
b) P is recurrent if all accessible sets are recurrent.

Definition A.10. a) A set A € £ is said to be uniformly transient if for all x € A,
U(z,A) < +o0.

b) A set A € £ is transient if there exists a countable sequence (Ap)nen of uniformly
transient sets such that A = bigcup;ﬁ%An.

¢) P is transient if E is transient.

Theorem A.11 ([MT09, Theorem 8.3.4]). If P is irreducible. Then it is either transient
or recurrent.

Proposition A.12 ([MTO09, Proposition 10.1.1]). Assume that P is irreducible and
admits a invariant distribution w. Then it is recurrent.

Define for all A € £, the following stopping time:

Theorem A.13 ([MT09, Theorem 10.4.9, Theorem 10.4.10]). Let P be an irreducible
and recurrent Markov kernel on (E,€).

1. Then there exists a unique (up to multiplicative constant) invariant measure T
on (E,&) for P, which is a maximal irreducibility measure and satisfies for any
accessible set A € £ and any measurable set B € &,

#(e) = [ E, [Z mm] #(dy)
k=1

2. 7(E) < 400 if there exists an accessible petite set C such that

supE; [o¢] < 00 .
zeC

In addition, P is Harris recurrent if for all x € E,

E, [Uc] < 4o0.

Definition A.14. a) A set A € £ is said to be Harris recurrent if for all x € A,
Py [Nao = +o0] = 1.
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b) P is Harris recurrent if all accessible sets are Harris recurrent.

Theorem A.15 ([MT09, Theorem 9.1.5]). Let P be irreducible with mazimal irreducible
measure , and recurrent on (E,E). Then there exists a partition of E = HUN such that

(i) H € £ is a non-empty absorbing set and P restricted to H is Harris recurrent.

(ii) N € & is transient and p(N) = 0.

Periodicity and aperiodicity

Definition A.16. a) P is said to be periodic with period d € N*, if there exists a
partition of E, {A; € £]1 < i < N}, N € N*, such that Ay = Ay, and for all
ie{l,--- ,N =1}, for all x € A;, P(x,A;11) = 1. P is said to be aperiodic if it is
periodic with period 1.

b) P is said to be strongly aperiodic if there exists a small set (1,)-C for P such that
wu(C) > 0.

Theorem A.17 ([MTO09, Theorem 5.5.7]). If P is irreducible and aperiodic, then all
petite sets are small.

Dynkin’s formula and consequences

Theorem A.18 (Dynkin’s formula, [MT09, Theorem 11.3.1]). Let (2, F, (Fi)ken, P)
be a filtered probability space. Let (Xi)ren be a bounded and (Fy)ren-adapted sequence
of random wvariables and let T be a bounded stopping time. Then, the following identity

holds i
E[X;]-E[Xo] =E lz {E [ Xk [Fr-1] — Xkl}‘| :
k=1
Corollary A.19. Let P be a Markov kernel on (E,&) and (Yy)ren be the corresponding

canonical chain. Then for all bounded measurable function f : E — R and bounded
stopping time T,

E[f(¥7)]+E

3 fml)] _E[f(Y) +E
k=1

in(Y“)] |

k=1

Corollary A.20. Assume there exist a measurable function V : E — R,, b € Ry and
C € & such that for all x € E,

PV(z) <V(x)—1+ble(z) .

Then for all x € E,
E,oc] < V(z)+ ble(x) .

In particular in the case where C is petite and P is irreducible and recurrent, we have

(1) If sup,cc V(x) < +00, P has a unique invariant distribution.

(i) If in addition for all x € E, V(x) < 400, P is Harris recurrent.
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Feller chains
We assume here that E is a locally compact metric space and £ is its Borel o-field.

Definition A.21. P is said to be Feller if for all f € Cy(E), then Pf € Cy(E) as well.

Proposition A.22. Let P be a Feller irreducible chain on (E,E). Let u be a maximal
wrreducibility measure for P. If the support of i has non empty interior then all compact
sets of E are petite sets.

A.2 Markov processes in continuous time

Let E be a locally compact Polish space, and £ = B(E) its Borel o-algebra.

Definition A.23. (P;);>¢ is a Markov semi-group (or transition function) on (E,&) if
it is a family of Markov kernels such that for all s,t > 0, P,Py = P4,.

Definition A.24. A function f € C(E) is said to vanish at infinity if for all a > 0,
there exists a compact set IC C E such that for allx & K, |f(z)| < a. The set of functions
vanishing at infinity is denoted by Cy(E).

Definition A.25. Let (P;);>0 be a Markov semi-group on (E,&). P is said to be a Feller
semi-group if for all f € Cy(E), for allt > 0 Pyf € Co(E), and for all x € E,
lim Py f () = f(z)

Theorem A.26 ([RY99, Theorem 1.5, Theorem 2.7, Chapter III]). Let (P¢)i>0 be a
Markov semi-group on (E, &) and v € P(E), then there exists a unique probability measure
P, on the canonical space (EX+, E®+) such that the canonical process (Y3)i>o is a Markov
process associated with (Py);>o and initial distribution v, with respect to (F} )ico the
corresponding filtration defined by for allt >0 FY = o(Ys, s € [0,1]).

In addition if (Py)i>o is Feller, then (Yi)i>0 admits a cadlag modification.

Definition A.27. A measurable set A € £ is said to be accessible for the Markov semi-
group (Py)i>o if for all x € E, there exists t > 0 such that Py(x,A) > 0.

Definition A.28. Let (P;);>¢ be a Markov semi-group on (E,€&).

(a) A non-trivial o-finite measure v on (E,E) is said to be an v-irreducibility measure
for (P)e>o if for all A € € satisfying v(A) > 0 is accessible for (Pt)i>o.

(b) (Pi)i>o is irreducible is there exists a non-trivial o-finite measure v on (E, &) such
that (Py)>o is v irreducible.

Define for all A € &,

Na= /;Oo LA(Yo)ds,  Ua(z) = Es[Na] .
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Definition A.29. Let (Pt)i>¢ be a Markov semi-group on (E,£). A set A € £ is said
to be recurrent if for all x € A, Uy(z) = +o0o. (Py)i>0 is said to be recurrent if any
accessible set is recurrent.

Definition A.30. Let (Pt)i>0 be a Markov semi-group on (E,£). A set A € £ is said
to be Harris recurrent if for all x € A, Py [Na = +00] = 1. (P¢)i>0 is said to be Harris
recurrent if any accessible set A is Harris recurrent.

A.3 Results on diffusions

Let b : R? — R and o be a function from R? to &% (R?). We assume that these two
functions are locally Lipschitz. The the associated SDE is defined by:

AdY; = b(Yy)dt + o(Y,)dBE . (A1)

By [IW89, Theorem 2.3, Theorem 3.1, Chapter 4], for all initial condition z € R?, this
SDE admits a unique solution (Y¢):co defined on a filtered probability space (€2, F, (Ft)t>0, Pz)
up to the time & which is the stopping time defined by

E=inf{t>0|Y; =00} .

We assume that almost surely £ = +o0o0. We denote by (P)ico the associated Markov
semi-group.

Definition A.31. (a) We say that a point x € R? is recurrent if for all ¢ > 0,
IED1[]\[]3(90,6) = +OO] =1

(b) We say that a point x € R? is transient if Py[lim s oo || Y]] = +o0] = 1.

Proposition A.32 ([Bha78, Proposition 3.1]). (P;)ico is Harris recurrent if and only
if any point x € R? is recurrent.

Theorem A.33 ([Bha78, Theorem 3.2]). (i) If there exists a recurrent point for (Py)ico,
then (Py)ico is Harris recurrent.

(ii) If no recurrent point exists, then any point x € R? is transient. We say that the
diffusion is transient.

Corollary A.34. If (Py)co is recurrent' then it is Harris recurrent.

'Definition A.29
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B.1 Discussion of Theorem 6.4

Note that
u@ () <Y A+ A} TT (- mu/2)., (B.1)
i=1 k=i+1

where « is given by (6.4), and

Ao E 2Lk, (B.2)
AL 22k d(m + L) 4 dLA (kT 4+ (m+ L)) (mT 467 (m+ L)Y . (B.3)
If (y&)k>1 is a constant step size ,y, = v for all k£ > 1, then a straightforward consequence
of Theorem 6.4 and (B.1) if the following result, which gives the minimal number of

iterations n and a step-size v to get Wa(d,+Q7, 7) smaller than e > 0.

Corollary B.1 (of Theorem 6.4). Assume L1 and H11. Let x* be the unique minimizer
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X B.1. Discussion of theorem 6.4

of U. Let x € R? and € > 0. Set for all k € N, v, = v with

B —2Apk 1 + (4L (AZRTL + 62A1))1/2
N 4A1/€71

= [ (ky)~t {—log( 2/4) + log 2d/m)H .
Then Wy (6,+Q,m) < e

Note that if 7 is given by (B.4), and is different from 1/(m+L), then v < e(4A;x~1)~1/2
and 2571 (Agy + A17?) = €2/2. Therefore,

v > (6/4) { Ao+ e(Ar/(4)) 2}

It is shown in [Dall6, Corollary 1] that under H11, for constant step size for any € > 0,
we can choose v and n > 1 such that if for all k& > 1, v = =, then [*Q) — 7|lpy < €
where v* is the Gaussian measure on R? with mean z* and covariance matrix L~!1,.
We stress that the results in [Dall6, corollary 1] hold only for a particular choice of
the initial distribution v*, (which might seem a rather artificial assumption) whereas
Theorem 6.4 hold for any initial distribution in Py(R%).

We compare the optimal value of v and n obtained from Corollary B.1 with those
given in [Dall6, Corollary 1]. This comparison is summarized in Table B.1 and Ta-
ble B.2; for simplicity, we provide only the dependencies of the optimal stepsize v and
minimal number of simulations n as a function of the dimension d, the precision ¢ and
the constants m, L. It can be seen that the dependency on the dimension is significantly
better than those in [Dall6, Corollary 1].

Am+ L), (B.4)

Parameter d € L
Theorem 6.4 and (6.20) | d=1 | €2 | L2 2
[Dal16, Corollary 1] d2 | e | L2

3

3

3

Table B.1: Dependencies of

Parameter d € L m
Theorem 6.4 and (6.20) | dlog(d) | e 2|log(e)| | L? | [log(m)|m—3
[Dal16, Corollary 1] d? e ?|log(e)| | L? | [log(m)|m—2

Table B.2: Dependencies of n

B.1.1 Explicit bounds for ~;, = v1k* with « € (0, 1]

We give here a bound on the sequences (un (7))n>0 and (u,(f) (7))n>0 for (%)k>1 defined
by 71 < 1/(m + L) and v, = 1k~ for a € (0,1]. Also for that purpose we introduce
for t € R% |

(t" — 1)/ for B#0

log(t) for 5=0. (B:5)

Ys(t) = {
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We easily get for ¢ > 0 that forall n,p> 1, n <p

P
Yia(p+1) —P10(n) <D kT <P1a(p) —¥1-a(n) +1, (B.6)
k=n
and for ¢ € R )
k<Y p+1) —ra(n)+1. (B.7)
k=n

1. For a = 1, using that for all t € R, (1 +t) < e’ and by (B.6) and (B.7), we have
1
uM () < (n+ )72 P () < (n+ )TN A @y a1 (n 1) 1)
=0

2. For a € (0,1), by (B.6) and Lemma 6.24 applied with £ = [n/2], where |-] is the
ceiling function, we have

u () < exp (—rm¥1_a(n + 1)/2)
1
u@(y) < Z A (25_17{+1(n/2)_a(j+1) A (¢1—a(j+2)([n/21) + 1)
=0
x exp {—(k71/2)(%1-a(n + 1) —P1-a([n/2]))}) (B.8)

B.1.2 Optimal strategy with a fixed number of iterations

Corollary B.2. Let n € N* be a fired number of iteration. Assume L1, H11, and
(Vk)k>1 1s a constant sequence, v =y for all k > 1. Set

7+ £ 2(kn) ! (log(kn/2) + log 2|l — #*|* + d/m)) — log(2x~A))
- 2 2(kn) (log (. /2) + log (2| — a*]]* + d/m)) — log(2x ™ (Ag + 21 (m + L)™1).

Assume vt € (0, (m + L)_l).Then, the optimal choice of v to minimize the bound on
W2 (0,Q7, ) given by Theorem 6.4 belongs to [y—,y"]. Moreover if v = ~, then the
bound on W3(6,Q).,m) is equivalent to 4A¢(k?n)~log(kn/2) as n — +oo.

Similarly, we have the following result.

Corollary B.3. Assume L1 and H11. Let (y;)k>1 be the decreasing sequence, defined
by Yk = Yok ™%, with a € (0,1). Let n > 1 and set

Yo Z2(1 = a)r™H(2/n) " log(kn/(2(1 — @))) .

Assume v € (0,(m + L)~Y). Then the bound on W(5,Q3,, ) given by Theorem 6./ is
smaller for large n than 8(1 — a)Ag(k%n)~tlog(kn/(2(1 — ))).

Proof. Follows from (B.1), (B.8) and the choice of 7,. O
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B.2 Discussion of Theorem 6.7

Based on Theorem 6.7, we can follow the same discussion than for Theorem 6.4. Note
that

WP () <3 {B? + Bt} T (1= /), (B.9)
i=1 k=i+1

where k is given by (6.4), and

def

Bo = d (212 + k1 (L2/3 + 4L*/(3m))) (B.10)
B = d (k7' L + LY(1/(6(m + L)) +m ™)) . (B.11)

The following result gives the minimal number of iterations n and a step-size v to get
Wa(6,+QY, m) smaller than € > 0, when (y4)x>1 is a constant step size, q; = v for all
k> 1.

Corollary B.4 (of Theorem 6.7). Assume L1, H11 and H12. Let x* be the unique
manimizer of U. Let x € R® and € > 0. Set for all k € N, v, = v with

v =(e/2)k 1 (Bo+By(m+L)"")"V/2, (B.12)
n = [2(/47)*1 {— log(€?/4) + log(2d/m)}] . (B.13)
Then Wa(6,+Q7,m) < €.

We provide only the dependencies of the optimal stepsize v and minimal number of
simulations n as a function of the dimension d, the precision € and the constants m, L, L
in Table B.3 and Table B.4.

Parameter d € L m
Theorem 6.7 and (6.20) | d=1/2 | e | L77/2 | m?
Table B.3: Dependencies of ~y
Parameter d € L m

Theorem 6.7 and (6.20) | d'/?log(d) | e *[log(e)| | LY? | |log(m)| m~3

Table B.4: Dependencies of n

B.2.1 Explicit bounds for v, = v1k* with « € (0, 1]

We give here a bound on the sequence (%(13) (7))n>o0 for (v )g>1 defined by v < 1/(m+L)

and v, = mk™® for @ € (0,1]. Bounds for (u,(ll)(*y))nzo have already been given in
Appendix B.1.1. Recall that the function 9 is defined by (B.5).
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1. For a = 1, using that for all t € R, (1 +¢) < €' and by (B.6) and (B.7), we have

2
uP(v) < (n+1)7n/2 Z Bj—1(¥ryj2—1—j(n+1)+1).
j=1

2. For o € (0,1), by (B.6) and Lemma 6.24 applied with ¢ = [n/2], where [-] is the
ceiling function, we have

2
uP (y) < Z B,_1 (25_17{+1(n/2)_a(j+1) + it (‘l’l—a(ﬁg)([n/ﬂ) + 1)
=1
x exp{—(k71/2)W1-a(n +1) —¥1-a([n/2]))}) . (B.14)

B.2.2 Optimal strategy with a fixed number of iterations

Corollary B.5. Letn € N* be a fized number of iteration. Assume L1, H11, H12 and
(Vk)k>1 1s a constant sequence, vy, = v* for all k > 1, with

7" = ()" {log(wn/2) +log(2[lz —2*|* + d/m)) } .

Assume v* € (0,(m + L)~1). Then the bound on W3(5,Q),w) given by Theorem 6.7 is
of order O(By(k*n)"2log?(n)) as n — +oc.

Similarly, we have the following result.

Corollary B.6. Assume L1, H11 and H12. Let (v)r>1 be the decreasing sequence,
defined by v = vo k™, with a € (0,1). Let n > 1 and set

Yo Z2(1 = @)™ H(2/n) " log(kn/(2(1 — ))) .

Assume v € (0,(m + L)™Y). Then the bound on W3(5,Q3, ) given by Theorem 6./ is
smaller for large n than O(Bg(k*n)~2log?(n)).

Proof. Follows from (B.9), (B.14) and the choice of 7,. O

B.3 Generalization of Theorem 6.4

In this section, we weaken the assumption 73 < 1/(m + L) of Theorem 6.4. We assume
now:

G 6. The sequence (Vi)k>1 s non-increasing, and there exists p > 0 and ny such that
(1+p)yn, <2/(m+ L).
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Under G6, we denote by
no < min {k € N | v, < 2/(m + L)} (B.15)

We first give an extension of Theorem 6.2. Denote in the sequel (-)4 = max(-,0). Recall
that under H11, 2* is the unique minimizer of U, and & is defined in (6.6)

Theorem B.7. Assume L1, H11 and G6. Then for alln,p e N*, n<p

[l =2 10Qi(de) < Buplpo. )

where

no—1

E,p(po,v) = exp < Z ek + Z L2’m> /]Rd |z — x*HQ,uo(dx)

nog—1 D no—1
+2dk™ + Qd{ 11 (g1 L?)~? (1 + LQ'y,%) } exp (— S Emt Y 'y,%mL> . (B.16)

k=n

k=n k=n

Proof. For any v > 0, we have for all € R%:
/Rd ly — 2*||” Ry(z,dy) = ||lz — yVU(z) — 2*||* + 27d .

Using that VU (2*) =0, (6.4) and L1, we get from the previous inequality:

k|2
[y =12, (. dy)
* 2 *
<= lo =o' lP 4y (v - =2 ) IVUG) = VU + 24
<) e — a7+ 204

where n(vy) = (1 — ky +~vL(y —2/(m + L))4). Denote for all & > 1, n = n(yx). By a
straightforward induction, we have by definition of QP for p,n € N, p < n,

p p
[ llz = I mo@h(da) < an [z =) + @)Y T mai, (817
k= i=n k=1+1

with the convention that for n,p € N, n < p, [[; = 1. For the first term of the right
hand side, we simply use the bound, for all x € R, (1 + z) < e”, and we get by G6

p p no—1
T 7 < exp (— Srvt > LQ%?) : (B.18)
k=n

k=n k=n
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where ng is defined in (B.15). Consider now the second term in the right hand side of
(B.17).

p p p p ng—1 p
ST mevi <> I Q=wmw)vi+ > T mew
i=n k=1+1 i=ng k=1+1 i=n k=i+1
p p p
<k YT =mm) =TT (1= k)
i=ng \ k=i+1 k=1

no—1 no—1 P
+ { > I (1 + Lz%%) %’} IT (t = k) (B.19)

i=n k=i+1 k=ng

Since (y)g>1 is nonincreasing, we have

no—1 no—1 no—1 no—1 no—1
I (+2) %=X (uld)™ { [T (+2%3)- I (1 +L27;3)}

i=n k=i+1 i=n k=i k=i+1
ng—1
< 2 (1 1290)
k=n

Furthermore for k < ng vy, > 2/(m + L). This implies with the bound (1 + z) < e” on
R:

H (1 — k) <exp (— Z Ii’)/k) exp ("02—: Ii’)/k)

k=ng k=n k=n
p no—1

< exp <— Z KVk) exp < Z 7,%mL> .
k=n k=n

Using the two previous inequalities in (B.19), we get
p P no—1 P no—1
Z H myi < kL4 { H (’yno_lLQ)_1 (1 + LQV,%) } exp (— Z KYg + Z 'y,%mL) .
i=n k=i+1 k=n k=n k=n
(B.20)

Combining (B.18) and (B.20) in (B.17) concluded the proof. O

We now deal with bounds on WQ(MOQZ,W) under G6. But before we preface our
result by some techincal lemmas.

Lemma B.8. Assume L1 and H11. Let (o € P2(RYxRY), (Y;,Y)i>0 such that (Yo, Y o)
is distributed according to (o and given by (5.12). Let (Fi)i>0 be the filtration associated
with (By)i>0 with Fo, the o-field generated by (Yo, Y o). Then for alln >0, ¢ > 0 and
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€2 > 0,

n+1

— 2

EFrn [HYW Yy ]
< {1 = s (5= 260) + 31 L1+ €)1 — 2/(m + D)3} Yo, = Y,

+ 79201/ 2e) + (14 &) (A2 + (L41/2) [ Vi, — 2*|° + dL*92,,/12)

2

Proof. Let n >0 and ¢; > 0, and set A, = Y, — Vpn by definition we have:

2

Jr 2 2 Fr Tr1 X
B [18nnl] = 802 + B || [ {YU(¥) - VU (Tr,)} ds

— 241 (A0, VU(VR,) = VU(Yr,)) =2 /FF"“ EFn [(An, (VU (Ys) — VU (YR, )} ds]

Using the two inequalities | (a,b) | < e1]|al|? + (4e1)71||b||? and (6.4), we get

F 2 2 — 2
B [|Ans1 ] < {1 = i1 (s = 260 }H|AI = 2911/ (m + L) | VU (Y1) = VU (Yr,)

2

1 (Tt 2
B toc [T E VUM - VUL, )] ds.

2¢1 Jr

H/FF”H{VUQ@) VUV, )}ds

n

(B.21)

Using [|a + b|]> < (1 + e2) [la]|* + (1 + ;1) ||b]|* and the Jensen’s inequality, we have

E/Tn

/F"“ [VU(Y) - VU(¥r,) ) ds

2
— 2
] < (I + @i ||VUOT,) - VU (Tr,)

F 1—‘n+1 2
Bun B | [V - VU )P ds
This result and L1 imply,

E7n [[|An 1 *] < {1 = ns1(k = 260) + 31 (1 + €)vmr1 — 2/(m + L)1} | Anll”

+ (14 e Dyt + (261)1)/;”“ E7Tn [HVU(YS) — VU(an)Hﬂ ds. (B.22)

n

By L1, the Markov property of (Y;);>0 and ((ii)), we have

Tyt
| e o) - vu e, )P ds

n

< L2 (dy2yy +dLPp 0 12+ (E293,1/2) Y, — 2*7) -

Plugging this bound in (B.22) concludes the proof. O
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Lemma B.9. Let (y;)r>1 be a nonincreasing sequence of positive numbers. Let w, 5 > 0

be positive constants satisfying w? < 483 and T > 0. Assume there exists N > 1, ynv < T
and yyw < 1. Then for alln >0, j > 2

(i)
n+1 n+1 n+l n+4l
S Il G—ww+ B -7 <> I @-nw)y
=1 k=i+1 i=N k=i+1
B j72N71 , n+1 -
+987 A IT (1+928) p IT (1 =) -
k=1 k=N

(ii) For all ¢ € {N,...,n},

ntl ntl n+1 T B B |
Z H (1 —yw) J<exp< Zw7k>z Z]_|_W_

=N k=i+1 =N w

Proof. By definition of N we have

n+1l n+1 )

ST = wmw +wBlk — 7))

=1 k=i+1
n+1l n+1 N—1 N-1 ) n+1

<3 I1 G=me +9> I1 (t+8)r p [T 0 —mw) - (B23)
i=N k=i+1 =1 k=i+1 k=N

Using that (yx)r>1 is nonincreasing, we have

N—-1 N-1 N N—1
> I (1+7§5)w3 {H (1+928) - 11 (1+w35)}
i=1 k=i+1 k= k=i+1

N—l
o 1 +’Ykﬂ)

| /\

Plugging this inequality in (B.23) concludes the proof of (i). Let £ € {N,...,n+ 1}.
Since (V)g>1 is nonincreasing and for every z € R, (1 + z) < €%, we get

n+1 n+1 {—1 n+1 n+1 n+l1
S II a=w) ! = I G=wo)/+> [ @ -n=)y
=N k=i+1 =N k=i+1 =0 k=i+1
—1 n+1 ) ) 1n—|—1 n+1
<N exp| = > ww |+ >, I Q—ww)
=N k=i+1 i={ k=i+1

n+1 jfl
Sexp( wa) Z% :
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Lemma B.10. Let (vx)r>1 be a nonincreasing sequence of positive numbers, w, 5,7 > 0
be positive real numbers, and N > 1 satisfying the assumptions of Lemma B.9. Let
PeN C;>0,i=0,...,P be positive constants and (u,)n>0 be a sequence of real
numbers with ug > 0 satisfying for alln >0

P
2
Upt1 < (1 — Yn+1@ + B'Yn+1(7n+1 - T)+)un + Z CJ%j@il

Then for all n > 1,

N-1 n
unS{H(l—i-ﬂ’yz)}H (1 — yw) uo—l—ZC Z H (1 =)y ]+2
k=N

k=1 = i=N k=i+1

n

+ {Z C;57 1] 1:[ (1 + 713/3)} I Q== -
=0 1

k=N

Proof. This is a consequence of a straightforward induction and Lemma B.9-(i). U

Proposition B.11. Assume L1, H11 and G6. Let x* be the unique minimizer of U.
Let ¢y € Po(R x RY), (Y, Y )0 such that (Yo,Yo) is distributed according to ¢y and
given by (5.12). Then for alln >0 and t € [I'y,['pqq]:

[HYt Y| } < [HYO—YOH } +al® +af)
where _— .
i) (v) déf{ IT (1+z% +p)7§)} [T 0 =rw/2), (B.24)
k=1 k=n1

aM(y) & i) I (= ww/2)
i—n1 k=it1

+ () (L*(1+p))~ {H (1+7; 1+p)L2)} IT (= rvw/2),

k=n,

where for v > 0,
f(7) = {2671+ (L4 p7)} (L2 + 0Ly /2 + AL /12)
d = max;>1 {e‘QmFi—lE [HYO — x*HQ} + (1 - e_QmFi—l)(d/m)} ,

and

~ gm~+L [ (t—T,)3L2
i) ™ (< )

El,n(MO,V) + (t - Fn)2d> )

where Ey »(po,7) is given by (B.16) and po is the initial distribution of Y.
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Proof. Lemma B.8 with ¢; = k/4 and €2 = p, G6, Lemma B.9, ((i)) imply for all n >0

E [Hypn ~Yr, ] <) (7)E [HYo - YOHQ] + i (y) . (B.25)

Now let n > 0 and ¢t € [I',,['41]. By (5.12),

t

HYt - EH2 - Han - 7rnH2 - 2/ (VU(Y;) = VU(V1,),Ys = Vy)ds.  (B.26)

I

Moreover for all s € [I',,, T, 41], by (6.4) we get

(VU(Y,) = VU(Yr,), Y, = Y,) = (VU(Y,) = VU (Yr,), Yy = Vi, + V1, = V,)
> (m+ L) [V - VUE) | + (YUY - VU(Tr,). Vr, -V

(B.27)

Since |(a,b)| < (m + L)~ ||a||* + (m + L) ||b]|* /4, we have

<VU(Ys) -VU(Yr,),Yr, —78> > —(m+L)"! HVU(YS) _VU(Yr,) 2—(m+L) H?s B anHQ n

Using this inequality in (B.27), we get
_ _ - 2
(VU(Y,) = VU(Yr,),Ys = V) > —(m+ L) ||V = Vo, | /4,

and (B.26) becomes

2

|vi - ?tH2 <|vr. - Ve, ds (B.28)

4 ((m+L0)/2) /Ft [v. -7,

2
Therefore, by the previous inequality, it remains to bound the expectation of HYS —-Yr, H .
By (5.12) and using VU (z*) = 0,

2

|72 = Ve = |~ - T)(VUTr,) - VUEH) + VBB, - Br,)

Then taking the expectation, using the Markov property of (Bt)¢>o and L1, we have

E U]? - Yan < (s —T,)2L%E U]?pn —z*

2
] + s —Th)d. (B.29)

The proof follows from taking the expectation in (B.28), combining (B.25)-(B.29), and
using Theorem B.7. U
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Theorem B.12. Assume L1, H11 and G6. Then for all g € Po(R?) and n > 1,
W3 (0@5, m) < @) (VW3 (o, ) + P (7) (B.30)

where (aﬁﬂ))nzo is given by (B.24) and

i@ S o) T (= rmf2)
=n1 k=i+1
ni—1 n
T o) (20 +p>>1{ T 0 +-20 +p>L2>} 10—/, (B3
k

k=1 =n1

where
6(v) = {2671+ (14 p~ )y} (AL + dLYy/(2m) + dLi9?/12) .

Proof. Let (o be an optimal transference plan of ug and . Let (Y3, Y¢)i>0 with (Yp, Vo)
distributed according to (p and defined by (5.12). By definition of W5 and since for all
t >0, 7 is invariant for P, W(uoQ™, ) < E[||Yr, — Xr, ||*]. Then the proof follows
from Proposition B.11 since Yj is distributed according to 7 and by (6.7), which shows
that § < d/m. O

B.3.1 Explicit bound based on Theorem B.12 for v, = 11k* with o €
(0,1]

We give here a bound on the sequences (&511)(7)),121 and (12512) (7))n>1 for (v%)k>1 defined

by v1 > 0 and 7, = 71k~ for a € (0,1]. Recall that 94 is given by (B.5). First note,
since (7x)k>1 is nonincreasing, for all n > 1, we have

1 n n
aP) <SG AT (- wm/2)
j=0  i=ny k=i+1

1 ni—1 n
+3°CGLA1+p) { T a+xa+ p)Lz)} II @ —=rw/2), (B.32)
k

j=0 k=1 =n1
where
Cy = bdL? ,Cy = b(dL*/(2m) + v1dL*/12) ;b =271 + (1 4+ p D)y .
1. For « =1 and ny =1, by (B.6) and (B.7), we have

i) < (n+ 1)

n

1 ) A
aP () < 4+ )73 G Wy o1y (n+ D)+ 1) + (L4 p) ' |
j=0



Appendix B. Supp. to “Sampling from a strong. log-conc. dist. with ULA” XXI

For ny > 1, since (vx)x>0 is non increasing, using again (B.6), (B.7), and the bound
fort e R, (1+1) <et

@) (7) < (n+1)” ml/?exp{mbow)m+L2<1+pm<¢ 1 = 1)+ 1)}

=4

() < (n+ 1)/ Z Cj (’7{+2("/’fw1/2—1—j(n +1) = Py j2-1-5(n1) + 1)
=0

+(1 /(L2 (1 + p)) exp {mitpo(m) /2 + L2 (1 + p)r -1 (m = 1) +1)}) -
Thus, for v; > /2, we get a bound in O(n~1).

2. For a € (0,1) and n; = 1, by (B.6) and Lemma B.9-(ii) applied with ¢ = [n/2],
we have

WD (y) < exp (— (k1 /2)%a-1(n + 1))

<3¢ (772 (102 (T1/21) + 1) exp {— (591 /D @1-a(n + 1) — p1_a([n/2])))

=<

+25 7 (n)2) 70D 44 exp {— (,471/2)1/;@_1(71—1—1)}} :

For ny > 1 and [n/2] > ny, since (V4)x>0 is non increasing, using again (B. ) and
Lemma B.9-(ii) applied with £ = [n/2], and the bound for t € R, (1 +t) < €', we
get

22,(11)(7) < exp {—H%("/)a—l(n +1) = 9Y1-o(n1))/2 + L2(1 + p)’Y%("/’lfﬁx(nl —1)+ 1)}
z] i {2/-{ 17]+1 (n/2)” a(j+1)

+* (wl,aw)(m/zw —¥1 a2y () + 1) exp{=(571/2) $1-a(n + 1) =91 -a([n/2]))}
+(A /(LA + p)) exp { =k @a1(n +1) = 1-a(m1))/2 + L1+ p)r @1 2a(m — 1) + 1)} }

B.4 Explicit bounds on the MSE

def

Without loss of generality, assume that || f[|;;, = 1. In the following, denote by Q(z) =

|z — 2*||* + d/m and C a constant (which may take different values upon each appear-
ance), which does not depend on m, L, 7y, a and ||z — z*||.

B.5 Explicit bounds based on Theorem 6.4
1. First for a = 0, recall by (B.1), (6.19) and (6.20) we have for all p > 1,

ug (VW3 (60 m) + uf (1) < 20(2)(1 = w3 /2)P + 267 (Agm + Aii)
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where Ag and A; are given by (B.2) and (B.3) respectively. So by Proposition 6.9
and Lemma 6.24, we have the following bound for the bias

K~ exp(=kN71/2)Q(x)
7n

(el )= ) < ExAm)

Therefore plugging this inequality and the one given by Theorem 6.10 in (6.22)
implies:

(B.33)

24 g lexp(—kN71 /2)Q
MSEf(N,n)gc<ﬁ—1Aoyl+“ + 57 exp(—kNm1/2) (w)>.

nvy

So with fixed 7; this bound is of order v;. If we fix the number of iterations n, we
can optimize the choice of v;. Set

Yeo(n) = (57 Ag) "1 (Cuse0/n)? , where Cysgo = £ *Ao |
and (B.33) becomes if v < 7y, 0(n),
MSE(N,n) < C(Cusg,on) /> (/{_1 exp(—kN.0(n)/2)Q(x) + CMSE,O) .
Setting No(n) = 2(kyx0(n)) ! log(Q(z)), we end up with
MSE(No(n),n) < C(Cnsgo/n)Y? .
Note that No(n) is of order n'/2.

2. For a € (0,1/2), recall by (B.1), (6.19) and (6.20) we have for all p > 1,

P
ul) (1) W3 (80, m) < 20(2) [T (1 = w7:/2) - (B.34)
i=1
So by Proposition 6.9, Lemma 6.24, (B.6) and (B.8), we have the following bound
for the bias

(B () (0} < C ( Ao, w7 exp e V@0 — o))} QW)) .

(1 —2a)ne ynt-o
Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

kAo klexp {—rm N1=2/(2(1 — a))} Q(z) + 2
+ -
(1 —2a)n ynl—e

MSE(N,n) < C(

(B.35)
At fixed 7, this bound is of order n™%, and is better than (B.33) for (vx)r>1
constant. If we fix the number of iterations n, we can optimize the choice of ~;
again. Set

Ve (n) = (k7 A0/ (1-200)) " H(Crisp.a/n' 722 | where Cyspa & £ 2A0/(1-20a) |
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(B.35) becomes with 71 < Y. (n),

MSE (N, n)
< C(CMSE,an)_l/Q (n_l exp {—/le_O"y*@(n)/(Q(l — a))} Qx) + CMSE,a) .

Setting Ny (n) = {2(1 — a)(kx.a(n)) " og(Q(x)) /0= we end up with

MSE (N, (n),n) < C(Crsg.a/n)? .

It is worthwhile to note that the order of N, (n) in n is n(1-20)/2(1=a)) "and CMSE, o
goes to infinity as o — 1/2 .

3. If « = 1/2, (B.34) still holds. By Lemma 6.24, (B.6) and (B.8), we have the
following bound for the bias

o1 oo(n) K rexpd—ry NY2/41 Q(x)
{Ex[ﬁév(f)]—w(f)}QSC( P el dl o } ) -

Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

k1 Aoy log(n) K exp {—n71N1/2/4} Qz) + K2
/2 + /2

MSE(N,n) < C (

(B.36)
At fixed 1, the order of this bound is log(n)n~/2, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of v;. Set

Yer/a(n) = (57 Ag) " (Crnisp1/2/ log(n)) /2 | where Cysg 10 = kAo

and (B.36) becomes with v1 < 7, 1/2(n),
MSE; (N, n)

1/2
<C _log(n) / <,{—1 exp {_,{Nl/%* 1/2(n)/4} Q(z) + M) .
nCOMSE,1/2 ' log(n)

Setting Ny /2(n) = (4(k7,1/2(n)) ! log(Q(z)))?, we end up with

10g(”)CMSE,1/2> 12

n

MSEf(Nl/Q(n),n) <C <

We can see that we obtain a worse bound than for &« = 0 and « € (0,1/2).
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4. For o € (1/2,1], (B.34) still holds. By Lemma 6.24, (B.6) and (B.8), we have the
following bound for the bias

k1A Kk lexp {—ky i N1=2/(2(1 — o))} Q(z
{Ex[ﬁ,ﬁv(f)]—w(f)}2§0< n1—(c]71 4 P{ 28! %nl/tg( )} )) '

Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

A -1 kN2 /(2(1 — 0 -2
MSE;(N, n) gc(’f Ao F exp {—rm /(1£ )} Qz) + ) |

For fixed 71, the MSE is of order n'~?, and is worse than for o = 1/2. For a fixed
number of iteration n, optimizing v, would imply to choose v — +00 as n — +oo.
Therefore, in that case, the best choice of 7 is the largest possible value 1/(m+L).

5. For a = 1, (B.34) still holds. By Lemma 6.24, (B.6) and (B.8), the bias is upper
bounded by

{Ex[ﬁN(f)] — 71'(‘;‘“)}2 <C (“_1A071 I{_lN_"Wl/QQ(x)> |

log(n) 71 log(n)

Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

71A 71N7}£’\/1/29 —2
MSEf(N,n)g(J(” om | 5 (””)Jr“)

log(n) 1 log(n)

For fixed 71, the order of the MSE is (log(n))~!. For a fixed number of iterations,
the conclusions are the same than for a € (1/2,1).

B.5.1 Explicit bound based on Theorem 6.7
1. First for a = 0, recall by (B.9), (6.19) and (6.20) we have for all p > 1,
ug) (W3 (8, m) +u?) () < 222)(1 = m71/2) + 267" (Bomn +Bind)

where By and B; are given by (B.10) and (B.11) respectively. So by Proposition 6.9
and Lemma 6.24, we have the following bound for the bias

k' exp(=kN71/2)Q(x)
mn

{Ef) (5] -n(5)} <C ( " ﬂlBo’Y%> .

Therefore plugging this inequality and the one given by Theorem 6.10 in (6.22)
implies:

(B.37)

-2 -1 _
MSE(N,n) < C (/@1807% LB + k7 exp( HN71/2)9($)> ‘

nvyi
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So with fixed v; this bound is of order ~;. If we fix the number of iterations n, we
can optimize the choice of ;. Set

Yeo(n) = (KBon) V3,

and (B.33) becomes if 71 < 7,0(n),
MSE;(N,n) < C(By/*n) =2/ (k73 exp(— kN0 (n) /2)2) + 577/%) .
Setting No(n) = 2(kyx0(n)) " log(Q(z)), we end up with
MSE (No(n),n) < C(Bg */*k5/2n)~2/3 .

Note that Ny(n) is of order n'/3.

2. For a € (0,1/3), recall by (B.9), (6.19) and (6.20) we have for all p > 1,

u) () W3 (85, ) < 2Q(2 1 (1—r7/2) . (B.38)

1 ::]@

So by Proposition 6.9, Lemma 6.24, (B.6) and (B.14), we have the following bound
for the bias

{Ex[ﬁN(f)]—w(f)}2§C< < Buot ”lexp{‘WNla/@(l‘“))}Q@)) .

(1 = 3a)n2 ynl—a
Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

Kk~ 'Boy? K lexp {—kmN172/(2(1 — a))} Q(z) + 2
1 —3a)n2 mnt—a

MSEf(N,n) < C <(
(B.39)

If we fix the number of iterations n, we can optimize the choice of v; again. Set

Yea(n) = (n' KBy /(1 — 3a)) /%,

(B.39) becomes with 71 < Y. (n),

MSE;(N, 1) < C(By/*n) =23 (=43 exp(— kN0 (n)/(2(1 — 0))Qx) + 5~3(1 = 30)1/3) .

Setting Ny (n) = {(k7x.a(n)) " log(Q(z))}/1=%) we end up with
MSE(No(n),n) < C(By /?k5/2n)~2/3 .

It is worthwhile to note that the order of N,(n) in n is n(1=3®)/(31-)),
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3. If @ = 1/3, (B.38) still holds. By Lemma 6.24, (B.6) and (B.14), we have the
following bound for the bias

K™ oo(n) K lexpd—ry N?/3/44 Q(x
{Em[ﬁ,ﬁv(f)]—w(f)}zgc( 15(;;%/; 8(n) p{—mn N3/} o )) |

y1n?/3
Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

K 1BoyZlog(n) K 'exp {—fvlez/?’/él} Qx) + k2
23 + in2/3

(B.40)
At fixed 71, the order of this bound is log(n)n_2/3, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of ~;. Set

Yer/a(n) = (£Bolog(n)) /3,

and (B.40) becomes with v < 7, 1/2(n),

log(n)Bo\V/? / _
MSEf(N,n) < C (g(T)O) (Iﬁ: 4/3 exp{—nN1/27*71/2(n)/4} Qz) + kK 5/3) )

Setting Ny /o(n) = (4(k7s,1/2 (n)) "' log(Q(z)))3/?, we end up with

log(n)Bg\
MSEf(Nl/Q(n),n)§C<%> .

We can see that we obtain a worse bound than for a = 0 and « € (0,1/3).

4. For a € (1/3,1], (B.38) still holds. By Lemma 6.24, (B.6) and (B.14), we have the
following bound for the bias

k1 Kk lexp {—k l—a -« x
() -} < o (%2 y el /L)l o)

Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

MSE;(N,n) < C (“_150% LR { R NTT/(2(1 - @)} Q) + ,-@—2> |

nl—a fylnl—a

For fixed 71, the MSE is of order n'~?, and is worse than for o = 1/2. For a fixed
number of iteration n, optimizing v, would imply to choose v — +00 as n — +oo.
Therefore, in that case, the best choice of 7 is the largest possible value 1/(m+L).
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5. For a = 1, (B.34) still holds. By Lemma 6.24, (B.6) and (B.8), the bias is upper
bounded by

v > (5 By T NTE20()
{Ex[ﬂ-n (f)] - W(f)} S c ( log(n) 71 IOg(n) )

Plugging this inequality and the one given by Theorem 6.10 in (6.22) implies:

K 1Boyr  KTINTM2Q(z) + K2
MSE;(N,n) < C
f(>m) ( log(n) 1 1og(n)

For fixed 71, the order of the MSE is (log(n))~!. For a fixed number of iterations,
the conclusions are the same than for a € (1/2,1).
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Appendix C

Appendix of Chapter 8

Expressions of C2(x1,&)

5
Ol (a1, &) = % (6297 @1) + 5689 (21) + 15¢89™ (21)g (1)
+ 15619 (21)g (21) + 3065 g®) (21)g" (21)
+10&19®) (21)g" (1) + 30£19®) (1) g/ (21)? + 35519'(901)9"(901)2)

1 1 1
C8Oan, 1) = £ (735600 n) + 17607 @)+ 56000 wn)g (o)

720 144
619D (a1)g (1) + 2D (@1)g" (1) — 19 (1) (21)
48 14451 48

+ 2—2619(3)($1)g/(x1)2 + é&g,(wl)g”(m)Q) .

1 1 1
CEO(an,&1) = € (=gl o1) + 1800 (@) + 1589 (@1)g (@)

720 144
1 29 19
+ 5519(4) (351)9/(351) + mgi’g(g) (951)9”(951) - m§19(3) (951)9”(951)

+%§1g(3) (21)g' (x1)* + é&g,(wl)g”(m)Q) .

XXIX
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1 1 1
€80 (a1,60) = £ (56000 1) + 16007 (@) + 55 €80 Y () ()

1 1 1
+ 156190 (@) (@1) + 503619 (21)g" (@1) + Gaielg® (@1)g" (1)

1 5 1

- 50421519(3) (z1)g" (x1) + mﬁsg@) (z1)g" (x1) + @519(3) (z1)g" (x1)
1 1 1

+ ﬂ&g(?’) (z1)g'(21)* — ﬂa%&gl(ﬁﬂl)g"(ﬂ?lf + gai&g'(ﬁﬂl)g"(ﬂ?l)Q

+org @) (@1)?) |

Expressions of K*

We provide here the expressions of the quantities K*® involved in Theorems 8.4, 8.5, 8.7,
8.8. Let X be a random variable distributed according to 7.

799 (X)?  11gW(X)%¢'(X)? | 779 (X)%¢"(X)? | 1

M 3) 4

_E — B (X)2(X

K 17280 1152 2592 t 5769 X9 (X)
499/ X)*¢"(X)t | T

19
W (xX)g® (X)) (X) 2= —2
20736 T pre? KX (X)+ g

1 799 (X)g' (X)g" (X)?
(3) (5) 1(x0\2 9 9 9
+ 559" (X (X)g'(X)” + 1798

1 7 7(3)X/X3I/X2
+ g (0 (g (07 + g (X)g/ (X2 (x)2 4 T ST

144
5 3593 (X)g' (X)g"(X)3 29
B3) (N2, ()2, 9 g g (3) @ XV (X)a" (X
+tgp9 X9 (X)7g(X) + 5500 + 5619 X9 (X)g (X)g™(X)

9P (X)g®(X)g" (X)

Km0 _ 799(5) (X)2 . 119(4) (X)Qg’(X)Z . 15679(3) (X)Zg”(X)Z
- 17280 1152 3456

1 1 7
B2 (X 27X - i@ (x)6® (X)) (X
+ 29 (X)*¢'(X) +36g( )°g"(X) + 559 (X)g"(X)g'(X)
17 1
A3y 5) (x) 3 1 5) () (X2
1959 (X)9' (X)g (X)+288g (X)g" (X)g'(X)
1 1
+ 59(5) (X)g'(X)g"(X)? + mg(?’) (X)gW(X)g'(X)*+
1 1
%9(4) (X)g' (X)?q"(X)* + 59(3) (X)g' (X)*g"(X)?
11

11
+ @9(3) (X)%g'(X)%g"(X) + 59(3) (X)d'(X)g" (X)*+
73

=97 (X)gW (X)g' (X)g" (X)

_|_
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XXXI

1
K80 = | =g/ (X9 (X)"a} +

36 18

1

1
+ -9 (X)g" (X)9® (X)ai — =salg' (X)%g"(X)'a] +

72

9
1L 2 322 1 L 2 (3) 2.2
+ 70 (X)7g 7 (X) a; + {gasg” (X)7g (X) ay

1 1
+ -0 (X)%"(X)g® (X)%a} — —=ald (X)g" (X)*9™) (X)a

36 36

5 1
72

L1
729

6
36

t 7

E " (3) (5) 2 L 4.1 2 1 4
+ 59 (X)g7 (X)g™” (X)ag + —za1g' (X)°g"(X)

1 2/ 2.1 4
— —a2d(X)2¢"(X

288@19( )79 (X) T

ajg’(X)?g¥(X)? 1 2 (3)

- " X X2
ST 535939 (X)"g™ (X)

799”(X)29(3) (X)2 + ig/(X)Zg//(X)g(S) (X)2

3456 96
1 / 2 1 (3) 2 119I(X)29(4)(X)2
— X X X
+ 557939 (X)°g"(X)g™ (X)" + 1159

799(5)(X)2 Ly, " 3 _(3)
17980 %%g (X)g"(X)°g (X)

+ 56 (09" (X)) (X)

D76

864

T ——a3g (X)g" (X)*g @ (X) — adg/(X)*¢" (X)2g®) (X)

864 288

1

+ g (%)% (X020 (X) — ——a2¢(X)2" (X)%9 ) (X)

144
1 /

L 2 1 2 (4)
+ 79 (0% ()29 (X) + 79

5
—=9"(X)?¢¥ (X)%aj

X)g

5
g (X)g"(X)3g®) (X)a3 + fasg’(X)g”(X)‘gg(?’) (X)aj

(X" (X)29 D (X)ad + g (X)2" (X)% D (X)a?

1 1
— g (X)%¢"(X)* + —¢

1
atazg' (X)g"(X)?g®) (X)

(X)*¢®(X)gW (X)

2 1

59/ (09" ()9 (X)g D (X)ad + g (X)g (%)% (X)a}

(X)*

(X)'a

+ 2L (X)g" (X)) (X)g D (X) + ——asg/ (X)g" (X)g® (X)g® (X)

576 432

_ Ly, " 2 _(5)
59519 (X)g"(X)"g™ (X) +
1 ! 2 (3 11
= (X208 (x)6®) (X)) -
5559 (X)707(X)g” (X) +
1 i 3
— X)o®) (X)g® (X
+ogr9 (X)g (X)g™ (X) +

288

576

Lo (X)g" (X)) (X) +
9" (X)g® (X)) (X)

T (%)g® ()9 (X)

2
4
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Abstract

The subject of this thesis is the analysis of Markov Chain Monte Carlo (MCMC) methods
and the development of new methodologies to sample from a high dimensional distribu-
tion. Our work is divided into three main topics.

The first problem addressed in this manuscript is the convergence of Markov chains
in Wasserstein distance. Geometric and sub-geometric convergence with explicit con-
stants, are derived under appropriate conditions. These results are then applied to the
study of MCMC algorithms. The first analyzed algorithm is an alternative scheme to
the Metropolis Adjusted Langevin algorithm for which explicit geometric convergence
bounds are established. The second method is the pre-Conditioned Crank-Nicolson al-
gorithm. It is shown that under mild assumption, the Markov chain associated with this
algorithm is sub-geometrically ergodic in an appropriated Wasserstein distance.

The second topic of this thesis is the study of the Unadjusted Langevin algorithm (ULA).
We are first interested in explicit convergence bounds in total variation under different
kinds of assumption on the potential associated with the target distribution. In partic-
ular, we pay attention to the dependence of the algorithm on the dimension of the state
space. The case of fixed step sizes as well as the case of nonincreasing sequences of step
sizes are dealt with. When the target density is strongly log-concave, explicit bounds in
Wasserstein distance are established. These results are then used to derived new bounds
in the total variation distance which improve the one previously derived under weaker
conditions on the target density.

The last part tackles new optimal scaling results for Metropolis-Hastings type algorithms.
First, we extend the pioneer result on the optimal scaling of the random walk Metropolis
algorithm to target densities which are differentiable in LP mean for p > 2. Then, we
derive new Metropolis-Hastings type algorithms which have a better optimal scaling
compared the MALA algorithm. Finally, the stability and the convergence in total
variation of these new algorithms are studied.



Résumé

L’objet de cette these est I'analyse fine de méthodes de Monte Carlo par chaines de
Markov (MCMC) et la proposition de méthodologies nouvelles pour échantillonner une
mesure de probabilité en grande dimension. Nos travaux s’articulent autour de trois
grands sujets.

Le premier theme que nous abordons est la convergence de chaines de Markov en distance
de Wasserstein. Nous établissons des bornes explicites de convergence géométrique et
sous-géométrique. Nous appliquons ensuite ces résultats a I’étude d’algorithmes MCMC.
Nous nous intéressons a une variante de l'algorithme de Metropolis-Langevin ajusté
(MALA) pour lequel nous donnons des bornes explicites de convergence. Le deuxieme al-
gorithme MCMC que nous analysons est I’algorithme de Crank-Nicolson pré-conditionné,
pour lequel nous montrerons une convergence sous-géométrique.

Le second objet de cette these est I'étude de Ialgorithme de Langevin unajusté (ULA).
Nous nous intéressons tout d’abord a des bornes explicites en variation totale suivant
différentes hypotheses sur le potentiel associé a la distribution cible. Notre étude traite
le cas ou le pas de discrétisation est maintenu constant mais aussi du cas d’une suite
de pas tendant vers 0. Nous prétons dans cette étude une attention toute particuliere
a la dépendance de l'algorithme en la dimension de l’espace d’état. Dans le cas ou la
densité est fortement convexe, nous établissons des bornes de convergence en distance de
Wasserstein. Ces bornes nous permettent ensuite de déduire des bornes de convergence
en variation totale qui sont plus précises que celles reportés précédemment sous des
conditions plus faibles sur le potentiel.

Le dernier sujet de cette these est I’étude des algorithmes de de type Metropolis-Hastings
par échelonnage optimal. Tout d’abord, nous étendons le résultat pionnier sur I’échelonnage
optimal de 'algorithme de Metropolis & marche aléatoire aux densités cibles dérivables
en moyenne LP pour p > 2. Ensuite, nous proposons de nouveaux algorithmes de type
Metropolis-Hastings qui présentent un échelonnage optimal plus avantageux que celui
de l'algorithme MALA. Enfin, nous analysons la stabilité et la convergence en variation
totale de ces nouveaux algorithmes.
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