J. H. Albert and S. Chib, Bayesian Analysis of Binary and Polychotomous Response Data, Journal of the American Statistical Association, vol.85, issue.422, pp.669-679, 1993.
DOI : 10.1016/0304-4076(84)90007-1

G. [. Andrieu, M. Fort, and . Vihola, Quantitative convergence rates for sub-geometric Markov chains, Adv. Appl. Probab, 2014.
DOI : 10.1017/s0021900200012535

URL : http://arxiv.org/abs/1309.0622

]. C. And+03, N. Andrieu, A. De-freitas, M. I. Doucet, and . Jordan, An introduction to MCMC for machine learning, Machine learning, pp.1-2, 2003.

G. [. Abdulle, K. C. Vilmart, and . Zygalakis, High Order Numerical Approximation of the Invariant Measure of Ergodic SDEs, SIAM Journal on Numerical Analysis, vol.52, issue.4, pp.1600-1622, 2014.
DOI : 10.1137/130935616

URL : https://hal.archives-ouvertes.fr/hal-00858088

]. D. Bak+08, F. Bakry, P. Barthe, A. Cattiaux, and . Guillin, A simple proof of the Poincaré inequality for a large class of probability measures, Electronic Communications in Probability, pp.13-60, 2008.

]. P. Bax05 and . Baxendale, Renewal theory and computable convergence rates for geometrically ergodic Markov chains, Ann. Appl. Probab, vol.15, pp.1-700, 2005.

V. [. Belloni and . Chernozhukov, On the Computational Complexity of MCMC-Based Estimators in Large Samples, SSRN Electronic Journal, pp.2011-2055, 2009.
DOI : 10.2139/ssrn.966345

P. [. Bakry, A. Cattiaux, and . Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincar??, Journal of Functional Analysis, vol.254, issue.3, pp.727-759, 2008.
DOI : 10.1016/j.jfa.2007.11.002

M. [. Bubley, M. Dyer, and . Jerrum, An elementary analysis of a procedure for sampling points in a convex body, In: Random Structures Algorithms, vol.123, pp.213-235, 1998.

]. A. Bes+08, G. Beskos, A. Roberts, J. Stuart, and . Voss, MCMC methods for diffusion bridges, In: Stoch. Dyn, vol.83, pp.319-350, 2008.

]. A. Bes+11, F. J. Beskos, J. M. Pinski, A. M. Sanz-serna, and . Stuart, Hybrid Monte Carlo on Hilbert spaces, pp.2201-2230, 2011.

B. Ii, I. Bolley, A. Gentil, and . Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal, vol.2638, pp.2430-2457, 2012.

I. [. Bakry, M. Gentil, and . Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, vol.348, pp.552-978
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

]. R. Bha78 and . Bhattacharya, Criteria for Recurrence and Existence of Invariant Measures for Multidimensional Diffusions, Ann. Probab, vol.6, issue.4, pp.541-553, 1978.

]. P. Bil95 and . Billingsley, Probability and measure, Third. Wiley Series in Probability and Mathematical Statistics, pp.593-593, 1995.

G. [. Boucheron, P. Lugosi, and . Massart, Concentration inequalities. A nonasymptotic theory of independence, With a foreword by Michel Ledoux, pp.481-978
URL : https://hal.archives-ouvertes.fr/hal-00751496

]. S. Bob99 and . Bobkov, Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures, pp.1903-1921, 1999.

]. V. Bog98 and . Bogachev, Gaussian Measures. Mathematical surveys and monographs, p.9780821810545, 1998.

A. [. Beskos and . Stuart, MCMC methods for sampling function space, ICIAM 07?6th International Congress on Industrial and Applied Mathematics, pp.337-364, 2009.
DOI : 10.4171/056-1/16

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.169.5776

]. G. Btbk, G. C. Box, and . Tiao, Bayesian Inference in Statistical Analysis, 1973.

]. O. But14 and . Butkovsky, Subgeometric rates of convergence of Markov processes in the Wasserstein metric, Ann. Appl. Probab, vol.24, issue.2, pp.526-552, 2014.

A. [. Butkovsky, . Yu, and . Veretennikov, On asymptotics for Vaserstein coupling of Markov chains, Stochastic Process, pp.3518-3541, 2013.
DOI : 10.1016/j.spa.2013.04.016

H. [. Cherny and . Engelbert, Singular stochastic differential equations, Lecture Notes in Mathematics, vol.1858, pp.128-131, 2005.
DOI : 10.1007/b104187

E. [. Chen, C. Fox, and . Guestrin, Stochastic Gradient Hamiltonian Monte Carlo, pp.1683-1691, 2014.

A. [. Cattiaux and . Guillin, Trends to equilibrium in total variation distance, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.45, issue.1, pp.117-145, 2009.
DOI : 10.1214/07-AIHP152

URL : https://hal.archives-ouvertes.fr/hal-00136779

. M. Bibliography-iii-[-ch13-]-h, J. P. Choi, and . Hobert, The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic, In: Electron. J. Statist, vol.7, pp.2054-2064, 2013.

M. [. Cloez and . Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, vol.21, issue.1, 2014.
DOI : 10.3150/13-BEJ577

URL : https://hal.archives-ouvertes.fr/hal-00806109

E. Carlen and P. Krée, $L^P$ Estimates on Iterated Stochastic Integrals, The Annals of Probability, vol.19, issue.1, pp.354-368, 1991.
DOI : 10.1214/aop/1176990549

S. [. Chen and . Li, Coupling Methods for Multidimensional Diffusion Processes, The Annals of Probability, vol.17, issue.1, pp.151-177, 1989.
DOI : 10.1214/aop/1176991501

]. S. Cot+13, G. O. Cotter, A. M. Roberts, D. Stuart, and . White, MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster, In: Statist. Sci, vol.28, issue.3, pp.424-446, 2013.

G. [. Christensen, J. S. Roberts, and . Rosenthal, Scaling limits for the transient phase of local Metropolis-Hastings algorithms, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.2, issue.2, pp.253-268, 2005.
DOI : 10.1023/A:1010090512027

[. Cousins and S. Vempala, Bypassing KLS, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC '15, pp.539-548, 2015.
DOI : 10.1145/2746539.2746563

]. A. Dal16 and . Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, In: Journal of the Royal Statistical Society: Series B (Statistical Methodology), pp.1467-9868, 2016.

]. M. Das+13, K. J. Dashti, A. M. Law, J. Stuart, and . Voss, MAP estimators and their consistency in Bayesian nonparametric inverse problems, In: Inverse Problems, vol.299, pp.95017-95044, 2013.

. A. Dfm, G. Durmus, . Fort, and . Moulines, Subgeometric rates of convergence in Wasserstein distance for Markov chains. Accepted for publication in Ann

A. [. Douc, E. Guillin, and . Moulines, Bounds on regeneration times and limit theorems for subgeometric Markov chains, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.44, issue.2, pp.239-257, 2008.
DOI : 10.1214/07-AIHP109

URL : https://hal.archives-ouvertes.fr/hal-00016396

. A. Dm, Durmus andÉand´andÉ. Moulines. Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm. Accepted for publication in Ann, Appl. Probab

]. A. Dm15a, E. Durmus, and . Moulines, Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm. Tech. rep Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis adjusted Langevin algorithm, In: Stat. Comput, vol.251, pp.5-19, 2015.

]. A. Dm15c, . Durmus, and . Moulines, Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis adjusted Langevin algorithm, In: Stat. Comput, vol.251, pp.5-19, 2015.

. [. Durmus and . Moulines, Sampling from strongly log-concave distributions with the Unadjusted Langevin Algorithm. First version, 2016.

. A. Dmp, ´. E. Durmus, M. Moulines, and . Pereyra, Sampling from convex non continuously differentiable functions, when Moreau meets Langevin

´. [. Douc, P. Moulines, and . Soulier, Computable convergence rates for sub-geometric ergodic Markov chains, Bernoulli, vol.13, issue.3, pp.831-848, 2007.
DOI : 10.3150/07-BEJ5162

URL : http://arxiv.org/pdf/math/0511273v1.pdf

E. [. Douc, D. Moulines, and . Stoffer, Nonlinear Time Series: Theory, Methods and Applications with R Examples, Chapman & Hall/CRC Texts in Statistical Science, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01263245

R. Douc, G. Fort, ´. E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab, vol.143, pp.1353-1377, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00147616

A. [. Dalalyan and . Tsybakov, Sparse regression learning by aggregation and Langevin Monte-Carlo, Journal of Computer and System Sciences, vol.78, issue.5, pp.1423-1443, 2012.
DOI : 10.1016/j.jcss.2011.12.023

URL : https://hal.archives-ouvertes.fr/hal-00362471

]. A. Dur+15, G. Durmus, G. Roberts, K. Vilmart, and . Zygalakis, Fast Langevin based algorithm for MCMC in high dimensions

]. A. Dur+16a, S. L. Durmus, ´. Corff, G. O. Moulines, and . Roberts, Optimal scaling of the Random Walk Metropolis algorithm under Lp mean differentiability, 2016.

]. A. Dur+16b, U. Durmus, ´. E. Simsekli, R. Moulines, G. Badeau et al., Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo, Thirtieth Annual Conference on Neural Information Processing Systems (NIPS)

]. A. Ebe14 and . Eberle, Error bounds for Metropolis?Hastings algorithms applied to perturbations of Gaussian measures in high dimensions, The Annals of Applied Probability, vol.24, issue.1, pp.337-377, 2014.

B. Ebe15 and ]. A. English, Reflection couplings and contraction rates for diffusions, Probab. Theory Related Fields, pp.1-36, 2015.

T. [. Ethier and . Kurtz, Markov processes Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Characterization and convergence, pp.534-534, 1986.

]. D. Erm75 and . Ermak, A computer simulation of charged particles in solution. I. Technique and equilibrium properties, The Journal of Chemical Physics, vol.6210, pp.4189-4196, 1975.

R. [. Frühwirth-schnatter and . Frühwirth, Data Augmentation and MCMC for Binary and Multinomial Logit Models Statistical Modelling and Regression Structures In: Statistical Modelling and Regression Structures, pp.111-132, 2010.

[. Fort and E. Moulines, V-Subgeometric ergodicity for a Hastings???Metropolis algorithm, Statistics & Probability Letters, vol.49, issue.4, pp.401-410, 2000.
DOI : 10.1016/S0167-7152(00)00074-2

E. [. Fort and . Moulines, Polynomial ergodicity of Markov transition kernels, Stochastic Processes and their Applications 103, pp.57-99, 2003.
DOI : 10.1016/S0304-4149(02)00182-5

URL : http://doi.org/10.1016/s0304-4149(02)00182-5

G. [. Fathi and . Stoltz, Improving dynamical properties of stabilized discretizations of overdamped Langevin dynamics, p.preprint, 2015.

]. Z. Gan+15, R. Gan, D. E. Henao, L. Carlson, and . Carin, Learning Deep Sigmoid Belief Networks with Data Augmentation, In: AISTATS, 2015.

B. [. Girolami and . Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods With discussion and a reply by the authors, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.732, pp.123-214, 2011.

M. [. Grenander and . Miller, Representations of knowledge in complex systems With discussion and a reply by the authors, J. Roy. Statist. Soc. Ser. B, vol.564, pp.549-603, 1994.

N. [. Gramacy and . Polson, Simulation-based Regularized Logistic Regression, Bayesian Analysis, vol.7, issue.3, pp.567-590, 2012.
DOI : 10.1214/12-BA719

URL : http://arxiv.org/abs/1005.3430

]. U. Gre83 and . Grenander, Tutorial in pattern theory, Division of Applied Mathematics, 1983.

]. M. Hai16 and . Hairer, Convergence of Markov Processes Lecture notes: http://www, 2016.

]. N. Han03, W. K. Hansen, and . Hastings, Geometric ergodicity of discrete-time approximations to multivariate diffusions Monte Carlo sampling methods using Markov chains and their application, Bernoulli 9, pp.725-743, 1970.

A. [. Hanson, W. O. Branscum, and . Johnson, Informative $g$ -Priors for Logistic Regression, Bayesian Analysis, vol.9, issue.3, pp.597-611, 2014.
DOI : 10.1214/14-BA868

L. [. Holmes and . Held, Bayesian auxiliary variable models for binary and multinomial regression, Bayesian Analysis, vol.1, issue.1, pp.145-168, 2006.
DOI : 10.1214/06-BA105

URL : http://ba.stat.cmu.edu/journal/2006/vol01/issue01/held.pdf

S. [. Hazan and . Kale, Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization, Journal of Machine Learning Research, vol.151, pp.2489-2512, 2014.

J. [. Hairer, M. Mattingly, and . Scheutzow, Asymptotic coupling and a general form of Harris??? theorem with applications to stochastic delay equations, Probability Theory and Related Fields, vol.15, issue.5, pp.223-259, 2011.
DOI : 10.1007/s00440-009-0250-6

D. [. Holley and . Stroock, Logarithmic Sobolev inequalities and stochastic Ising models, Journal of Statistical Physics, vol.42, issue.5-6, pp.1159-1194, 1987.
DOI : 10.1007/BF01011161

URL : http://dspace.mit.edu/bitstream/1721.1/2921/1/P-1540-16294636.pdf

A. [. Hairer, S. J. Stuart, and . Vollmer, Spectral gaps for a Metropolis???Hastings algorithm in infinite dimensions, The Annals of Applied Probability, vol.24, issue.6, pp.2455-290, 2014.
DOI : 10.1214/13-AAP982

S. [. Ikeda and . Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, 1989.

S. Fiig, J. , and E. Hansen, Geometric ergodicity of Metropolis algorithms " . In: Stochastic processes and their applications 85, pp.341-361, 2000.

J. [. Jones and . Hobert, Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo, Statistical Science, vol.16, issue.4, pp.312-334, 2001.
DOI : 10.1214/ss/1015346317

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.7623

. [. Jourdain, B. Tlelì, and . Miasojedow, Optimal scaling for the transient phase of Metropolis Hastings algorithms: The longtime behavior, Bernoulli, vol.20, issue.4, pp.1930-1978, 2014.
DOI : 10.3150/13-BEJ546

URL : https://hal.archives-ouvertes.fr/hal-00768855

T. [. Jourdain, B. Lelì, and . Miasojedow, Optimal scaling for the transient phase of the random walk Metropolis algorithm: The mean-field limit, The Annals of Applied Probability, vol.25, issue.4, pp.2263-2300, 2015.
DOI : 10.1214/14-AAP1048

URL : https://hal.archives-ouvertes.fr/hal-00748055

Y. [. Joulin and . Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo, The Annals of Probability, vol.38, issue.6, pp.2418-2442, 2010.
DOI : 10.1214/10-AOP541

URL : http://arxiv.org/abs/0904.1312

G. [. Jarner and . Roberts, Polynomial Convergence Rates of Markov Chains, The Annals of Applied Probability, vol.12, issue.1, pp.224-247, 2002.
DOI : 10.1214/aoap/1015961162

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.3311

. F. Bibliography-vii-[-jr07-]-s, G. O. Jarner, and . Roberts, Convergence of heavy-tailed Monte Carlo Markov chain algorithms, In: Scandinavian Journal of Statistics, vol.344, pp.781-815, 2007.

]. S. Jt01a, R. L. Jarner, and . Tweedie, Locally contracting iterated functions and stability of Markov chains, J. Appl. Probab, vol.38, issue.2, pp.494-507, 2001.

]. S. Jt01b, R. L. Jarner, and . Tweedie, Locally contracting iterated functions and stability of Markov chains, English. In: J. Appl. Probab, vol.38, issue.2, pp.494-507, 2001.

R. [. Jarner and . Tweedie, Necessary conditions for geometric and polynomial ergodicity of random-walk-type, Bernoulli, vol.9, issue.4, pp.559-578, 2003.
DOI : 10.3150/bj/1066223269

J. Kent, Time-reversible diffusions, Advances in Applied Probability, vol.6, issue.04, pp.819-835, 1978.
DOI : 10.1007/BF01571664

]. R. Kha80 and . Khasminskii, Stochastic stability of differential equations Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, pp.344-90, 1980.

L. [. Kannan, M. Lovász, and . Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete & Computational Geometry, vol.32, issue.312, pp.3-4, 1995.
DOI : 10.1007/BF02574061

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9957

L. [. Kannan, M. Lovász, and . Simonovits, Random walks and anO*(n5) volume algorithm for convex bodies, Random Structures and Algorithms, vol.11, issue.1, pp.1-50, 1997.
DOI : 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO;2-X

E. [. Kloeden and . Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, vol.23, pp.632-635, 1992.

E. [. Kaipio and . Somersalo, Statistical and computational inverse problems Applied Mathematical Sciences, pp.339-339, 2005.

S. [. Karatzas and . Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, p.9780387976556, 1991.

]. S. Kul97 and . Kullback, Information theory and statistics. Reprint of the second (1968) edition, pp.399-399, 1997.

]. Cam, Asymptotic Methods in Statistical Decision Theory. Springer Series in Statistics, 1986.
DOI : 10.1007/978-1-4612-4946-7

]. V. Lem05 and . Lemaire, Estimation de la mesure invariante d'un processus de diffusion Monte Carlo strategies in scientific computing, 2005.

S. [. Lemaire and . Menozzi, On some non asymptotic bounds for the Euler scheme, In: Electron. J. Probab, vol.15, issue.53, pp.1645-1681, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00445494

G. [. Lamberton and . Pagès, Recursive computation of the invariant distribution of a diffusion, In: Bernoulli, vol.83, pp.367-405, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00104799

G. [. Lamberton and . Pagès, RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT, Stochastics and Dynamics, vol.8, issue.04, pp.435-451, 2003.
DOI : 10.1080/17442509008833606

URL : https://hal.archives-ouvertes.fr/hal-00104799

J. [. Lord and . Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA Journal of Numerical Analysis, vol.24, issue.4, pp.587-604, 2004.
DOI : 10.1093/imanum/24.4.587

L. [. Lindvall and . Rogers, Coupling of Multidimensional Diffusions by Reflection, The Annals of Probability, vol.14, issue.3, pp.860-872, 1986.
DOI : 10.1214/aop/1176992442

S. [. Lovász and . Vempala, The geometry of logconcave functions and sampling algorithms, Random Structures and Algorithms, vol.3, issue.3, pp.307-358, 2007.
DOI : 10.1002/rsa.20135

]. N. Met+53, A. W. Metropolis, M. N. Rosenbluth, A. H. Rosenbluth, E. Teller et al., Equations of state calculations by fast computing machines, Journal of Chemical Physics, vol.23, issue.2, pp.1087-1092, 1953.

D. [. Madras and . Sezer, Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances, Bernoulli, vol.16, issue.3, pp.882-908, 2010.
DOI : 10.3150/09-BEJ238

URL : http://arxiv.org/abs/1102.5245

A. [. Mattingly, D. J. Stuart, and . Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101, pp.185-232, 2002.
DOI : 10.1016/S0304-4149(02)00150-3

URL : http://doi.org/10.1016/s0304-4149(02)00150-3

A. [. Mattingly, M. V. Stuart, and . Tretyakov, Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations, SIAM Journal on Numerical Analysis, vol.48, issue.2, pp.552-577, 2010.
DOI : 10.1137/090770527

R. [. Meyn and . Tweedie, Markov Chains and Stochastic Stability. 2nd, pp.521731828-9780521731829, 2009.

]. S. Mt93a, R. L. Meyn, and . Tweedie, Stability of Markovian Processes III: Foster- Lyapunov Criteria for Continuous-Time Processes, In: Advances in Applied Probability, vol.253, 1993.

]. S. Mt93b, R. L. Meyn, and . Tweedie, Stability of Markovian processes. III. Foster- Lyapunov criteria for continuous-time processes, In: Adv. in Appl. Probab, vol.253, pp.518-548, 1993.

. P. Bibliography-ix-[-mt94-]-s, R. L. Meyn, and . Tweedie, Computable Bounds for Convergence Rates of Markov Chains, In: Annals of Applied Probability, vol.4, pp.981-1011, 1994.

R. [. Mengersen and . Tweedie, Rates of convergence of the Hastings and Metropolis algorithms, The Annals of Statistics, vol.24, issue.1, pp.101-121, 1996.
DOI : 10.1214/aos/1033066201

]. R. Nea93 and . Neal, Bayesian Learning via Stochastic Dynamics, Advances in Neural Information Processing Systems, pp.475-482, 1993.

]. E. Num78 and . Nummelin, A splitting technique for Harris recurrent Markov chains, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43, pp.309-318, 1978.

]. E. Num84 and . Nummelin, General irreducible Markov chains and non-negative operators . Cambridge tracts in mathematics. Includes index, pp.0-521, 1984.

]. T. Oza92 and . Ozaki, A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach, In: Statist. Sinica, vol.2, issue.1, pp.113-135, 1992.

]. G. Par81 and . Parisi, Correlation functions and computer simulations, Nuclear Physics B, vol.180, pp.378-384, 1981.

M. English, Proximal Markov chain Monte Carlo algorithms, Statistics and Computing, pp.1-16, 2015.

]. V. Pet95 and . Petrov, Limit theorems of probability theory Oxford Studies in Probability. Sequences of independent random variables, pp.292-292, 1995.

J. [. Polson, J. Scott, and . Windle, Bayesian Inference for Logistic Models Using P??lya???Gamma Latent Variables, Journal of the American Statistical Association, vol.100, issue.504, pp.1339-1349, 2013.
DOI : 10.1080/01621459.1993.10476321

URL : http://arxiv.org/abs/1205.0310

G. [. Robert and . Casella, Monte Carlo Statistical Methods. Springer Texts in Statistics, p.9781441919397, 2010.

J. [. Rossky, H. L. Doll, and . Friedman, Brownian dynamics as smart Monte Carlo simulation, The Journal of Chemical Physics, vol.69, issue.10, pp.4628-4633, 1978.
DOI : 10.1063/1.435856

A. [. Roberts, W. R. Gelman, and . Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms, BIBLIOGRAPHY [Rob06] C. Robert. Le choix bayésien: Principes et pratique. Statistique et probabilités appliquées, pp.110-120, 1997.
DOI : 10.1214/aoap/1034625254

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.6598

]. J. [-ros95 and . Rosenthal, Rates of Convergence for Gibbs Sampling for Variance Component Models, Ann. Statist, vol.233, pp.740-761, 1995.

]. G. Rr01a, J. Roberts, and . Rosenthal, Optimal scaling for various Metropolis- Hastings algorithms, Statistical science 16, pp.351-367, 2001.

]. G. Rr01b, J. S. Roberts, and . Rosenthal, Small and pseudo-small sets for Markov chains, In: Stoch. Models, vol.172, pp.121-145, 2001.

J. [. Roberts and . Rosenthal, General state space Markov chains and MCMC algorithms, Probability Surveys, vol.1, issue.0, pp.20-71, 2004.
DOI : 10.1214/154957804100000024

URL : http://arxiv.org/abs/math/0404033

J. [. Roberts and . Rosenthal, Optimal scaling of discrete approximations to Langevin diffusions, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.60, issue.1, pp.255-268, 1998.
DOI : 10.1111/1467-9868.00123

O. [. Roberts and . Stramer, Langevin diffusions and Metropolis-Hastings algorithms, International Workshop in Applied Probability, pp.337-357, 2002.
DOI : 10.1023/A:1023562417138

R. Rudolf and B. Sprungk, On a Generalization of the Preconditioned Crank???Nicolson Metropolis Algorithm, Foundations of Computational Mathematics, vol.8, issue.1, 2015.
DOI : 10.1007/s10208-016-9340-x

R. [. Roberts and . Tweedie, Rates of convergence of stochastically monotone and continuous time Markov models, Journal of Applied Probability, vol.1, issue.02, pp.359-373, 2000.
DOI : 10.1214/aoap/1177004900

]. G. Rt96a, R. L. Roberts, and . Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, pp.341-363, 1996.

]. G. Rt96b, R. L. Roberts, and . Tweedie, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, In: Biometrika, vol.831, pp.95-110, 1996.

R. [. Roberts and . Tweedie, Corrigendum to ???Bounds on regeneration times and convergence rates for Markov chains???, Stochastic Processes and Their Applications, pp.211-229, 1999.
DOI : 10.1016/S0304-4149(00)00074-0

URL : http://doi.org/10.1016/s0304-4149(00)00074-0

D. [. Rogers and . Williams, Diffusions, Markov processes and martingales, 2000.
DOI : 10.1017/cbo9780511805141

M. [. Revuz and . Yor, Continuous martingales and Brownian motion. Third, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, pp.602-605, 1999.

M. J. Schervish, Theory of statistics Springer series in statistics Corrected second printing : 1997, pp.0-387, 1995.

B. Bové and L. Held, Hyper-g priors for generalized linear models, Bayesian Anal, vol.63, pp.387-410, 2011.

]. A. Stu10 and . Stuart, Inverse problems: a Bayesian perspective, Acta Numer, vol.19, pp.451-559, 2010.

S. [. Stroock and . Varadhan, Multidimensional diffusion processes. Die Grundlehren der mathematischen Wissenschaften, pp.0-387, 1979.
DOI : 10.1007/3-540-28999-2

S. [. Stone and . Wainger, One-sided error estimates in renewal theory, Journal d'Analyse Math??matique, vol.37, issue.1, pp.325-352, 1967.
DOI : 10.1007/BF02786679

]. L. Tie94 and . Tierney, Markov chains for exploring posterior disiributions (with discussion ), Ann. Statist, vol.224, pp.1701-1762, 1994.

]. L. Tie98 and . Tierney, A note on Metropolis-Hastings kernels for general state spaces, Ann. Appl. Probab, vol.8, pp.1-9, 1998.

L. [. Talay and . Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.483-509, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

R. [. Tuominen and . Tweedie, Subgeometric Rates of Convergence of f-Ergodic Markov Chains, In: Advances in Applied Probability, vol.263, pp.775-798, 1994.

]. A. Ver97, . Yu, and . Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stochastic Process, pp.115-127, 1997.

]. C. Vil09 and . Villani, Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften, pp.978-981, 2009.

N. [. Windle, J. G. Polson, and . Scott, BayesLogit: Bayesian logistic regression

?. Xii-b, X B.2 Dependencies of n, Dependencies of n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII xvi