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Abstract

This PhD work presents the implementation of the simulation of two-phase flows in condi-
tions of water-cooled nuclear reactors, at the scale of individual bubbles. To achieve that,
we study several models for Thermal-Hydraulic flows and we focus on a technique for the
capture of the thin interface between liquid and vapour phases. We thus review some
possible techniques for Adaptive Mesh Refinement (AMR) and provide algorithmic and
computational tools adapted to patch-based AMR, which aim is to locally improve the
precision in regions of interest. More precisely, we introduce a patch-covering algorithm
designed with balanced parallel computing in mind. This approach lets us finely capture
changes located at the interface, as we show for advection test cases as well as for models
with hyperbolic-elliptic coupling. The computations we present also include the simula-
tion of the incompressible Navier-Stokes system, which models the shape changes of the
interface between two non-miscible fluids.

Keywords Nuclear Thermal-Hydraulics, two-phase flows, numerical simulation of bubbles,
low-Mach conditions, Adaptive Mesh Refinement (AMR), patch covering algorithms, mul-
tilevel, parallel computing, multiprocessing, numerical schemes, Després-Lagoutière, lim-
ited downwind advection scheme, Navier-Stokes equations, hyperbolic-elliptic coupling,
lid-driven cavity, surface tension.

Résumé

Ce travail de thèse présente l’implémentation de la simulation d’écoulements diphasiques
dans des conditions de réacteurs nucléaires à caloporteur eau, à l’échelle de bulles indivi-
duelles. Pour ce faire, nous étudions plusieurs modèles d’écoulements thermohydrauliques
et nous focalisons sur une technique de capture d’interface mince entre phases liquide et
vapeur. Nous passons ainsi en revue quelques techniques possibles de maillage adaptatif
(AMR) et nous fournissons des outils algorithmiques et informatiques adaptés à l’AMR
par patchs dont l’objectif est d’améliorer localement la précision dans des régions d’inté-
rêt. Plus précisément, nous introduisons un algorithme de génération de patchs conçu dans
l’optique du calcul parallèle équilibré. Cette approche nous permet de capturer finement
des changements situés à l’interface, comme nous le montrons pour des cas tests d’advec-
tion ainsi que pour des modèles avec couplage hyperbolique-elliptique. Les calculs que nous
présentons incluent également la simulation du système de Navier-Stokes incompressible
qui modélise la déformation de l’interface entre deux fluides non-miscibles.

Mots clefs Thermohydraulique nucléaire, écoulements diphasiques, simulation numé-
rique de bulles, conditions bas-Mach, maillage adaptatif (AMR), algorithmes de recou-
vrement par patchs, multi-niveau, calcul parallèle, parallélisme informatique, schémas nu-
mériques, Després-Lagoutière, schéma d’advection à limitateur de flux aval, équations de
Navier-Stokes, couplage hyperbolique-elliptique, cavité entraînée, tension de surface.
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τsurf Surface tension coefficient

θ Coefficient of thermal dilation

Tsurf Surface tension

u Velocity

U Velocity parallel to faces

ũ Predicted velocity

V Volume

x Spatial position

ξ Spatial position in another referential

Y Colour function

⋆□ As a subscript: relative to the local refined area

⋆⃝ As a subscript: relative to the non-refined area
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Chapter 1

Introduction

1.1 Purpose of this research: two-phase flows
in nuclear reactors

To a large extent, producing electricity with a nuclear power plant resembles
a lot how one produces energy with other types of power plants, in particular
fossil fuel plants like the ones using coal or gas. The base principle could be
summarised as follows: using a thermal source, water is heated up, circulates
and transmits its heat to a vapour phase, which then makes a turbine turn.
This is a transmission of thermal energy into kinetic energy; the turbine
creates electricity with a dynamo-effect and the electricity is transported to
the customers. In the case of nuclear power plants, the thermal source takes
its origin in the core of the power plant where the nuclear chain reaction
takes place. In the end, what makes the Nuclear Engineering field a complex
one is the combination of multiple physics fields: nuclear physics, thermal-
dynamics, hydrodynamics, material science, solid mechanics, chemistry (e.g.
for the fission products), electrical engineering and so forth. The engineering
challenge of the scale of the phenomenons comes on top of that: extreme
heat, flow rates and turbine rotation speeds for instance.

The Thermal-Hydraulics study of two-phase flows is a major topic for
Nuclear Engineering because it contributes to improving the safety and the
efficiency of reactors. It is the study of mixtures of liquid water and steam
in nominal regime as well as in accidental regime. The first most common
nuclear power plant design is the Pressurised Water Reactor (PWR). Figure
1.1 represents a commercial PWR nuclear power plant and Figure 1.2 shows
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Figure 1.1 – Representation of a commercial nuclear plant [62]

the components for a second-generation submarine nuclear propulsion sys-
tem. In red, we have the primary loop; the nuclear reaction takes place in
the core and transmits the generated heat to the water. In blue, we have
the secondary loop; including the steam generators where most if not all the
boiling takes place. The two loops are separated with a physical barrier to
avoid any eventual contamination by radioactive material detaching from the
core. In a normal regime, the water flow inside the primary flow of a PWR
is kept liquid thanks to the immense pressure. An eventual vapour phase
may nonetheless appear in some conditions, like accidental ones or in the
case of meta-stable bubbles from a thermal-dynamics point of view. On the
opposite, steam is supposed to appear in the secondary loop, by design. So
for safety reasons, it is important to study when and where the steam may
appear and to analyse its behaviour.

The other most common nuclear power plant design is the Boiling Water
Reactor (BWR). As its name indicates, the flow inside the core of a BWR
is by design made of a mixture of liquid water together with steam. This is
why it is essential to study two-phase flows in the core of PWRs and BWRs.
Similarly, one of the components of PWRs in addition to the nuclear core
is the steam generator. This is the location of the boiling, producing the
steam which will make the turbines turn and hence produce electricity. For
this component the purpose is to understand and predict precisely where the
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Figure 1.2 – Representation of a submarine propulsion system [68]

boiling takes place. In particular, the area called the Departure of Nucleate
Boiling (DNB), where the first bubbles are born, is of foremost importance
[27]. An accurate knowledge of its location would permit to increase effi-
ciency. A finer comprehension of the mechanisms of a production unit and a
better efficiency will lead to an optimisation of the output and thus a more
consequent turnover and profitability, in addition to safety.

Because of the aforementioned stakes, many efforts have been put on the
physical aspect of two-phase flows. This means that research laboratories and
companies lead many physical experiments to gather knowledge. Examples of
those are MISTRA at CEA in Saclay, France [43, 134], and PKL at AREVA
in Erlangen, Germany [11]. The experiments permit to get invaluable data
and know-how for the dimensioning work for future designs. In addition to
experiments, numerical modelling also helps for knowing precisely when and
where phenomenons appear in the different parts of a power generation unit.
It is crucial for the design of new components [144], for the day-to-day opera-
tion of reactors, as well as for the comprehension of past operational regimes,
incidents and accidents [92]. For instance, instead of some ten physical very
expensive and difficult to manufacture physical experiments, we can try to
replace them with hundreds of numerical experiments and just a few physical
ones for calibration and validation.
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System Component Local 3D Local instantaneous (DNS)

Need more effort in physical modeling
Need more power for computation

Figure 1.3 – Successive scales for modelling [83], [62], [30]

1.2 Different numerical simulation scales to
model nuclear Thermal-Hydraulics

The numerical simulation of Thermal-Hydraulics is of primary importance
for Nuclear Engineering for both security and efficiency of nuclear facilities
at all scales [135]. The thermal-hydraulicists who try to represent flows in
a nuclear context work on different modelling scales, represented on Figure
1.3. We can order them from largest to finest [83]:

1. system scale

2. component scale

3. local 3D scale

4. local instantaneous scale (DNS)

The system scale aims at representing the whole energy production unit,
including in particular the reactor, the steam generators and all other pipes.
It is the macro-scale used in well-known nuclear codes, like CATHARE [28],
RELAP [25] or ATHLET [34]. This scale requires a large effort in physical
modelling and that is why Thermal-Hydraulics equations are often used in
their 0D expression.

The component scale aims at representing only a part of the plant: ex-
amples of codes for this scale include GENEPI [109], FLICA [137].

The local 3D scale is much finer and is related to Computational Fluid
Dynamics. It is appropriate for the representation of problems with a size
ranging from a few meters to a few tens of centimetres. For instance, Bieder
et al. used Trio U for the simulation of flows around nuclear fuel bundles [29].

The final scale is Direct Numerical Simulation. It is appropriate for the
representation of problems with a size ranging from a few tens of centimetres

28



to a few millimetres. At this scale, we can represent the interface between
liquid and vapour; it is very applicable to bubble problems [40].

Given the sizes of a nuclear core, most if not all nuclear codes represent
two-phase flows in an averaged manner. This means that the liquid-vapour
interface is not explicitly represented in the models and the codes. Such
averaged models thus require closure laws modelling mass, momentum and
heat transfer between phases. In order to get such laws, physical experi-
ments are of course necessary. Nonetheless, thanks to the improvement of
computation capabilities, we can now hope to take advantage of fine numer-
ical simulation like DNS because they explicitly represent the deformations
of the liquid-vapour interfaces.

1.3 Outline and summary of the thesis

Note: Appendix C contains the translation into French of this section about
the outline and the summary of the thesis.

1.3.1 Models of flows with two separated phases

In this thesis we start in Chapter 2 with explaining a series of existing
thermal-hydraulics models, with a focus on two separated phases. We start
with the common compressible models: Euler and Navier-Stokes systems.
We explain the first one with only one phase in Section 2.1.1, the second one
with two phases in Section 2.1.2. In Section 2.1.3, we then make the hypo-
thesis of incompressibility, to get the incompressible Navier-Stokes model:

∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,

u = uBC on ∂Ω (boundary conditions),

u(t = 0) = u0 on Ω (initial conditions).

(1.1)

Equation (1.1) gives the expression for one phase, with notations thoroughly
defined further in the thesis. The expression for two phases is given by
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Equation (1.2):

∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,

∂tY + u · ∇Y = 0,

ρ = ρgY + ρl(1− Y ),

u = uBC on ∂Ω (boundary conditions),

u(t = 0) = u0 on Ω (initial conditions),

Y (t = 0) = Y0 on Ω (initial conditions).

(1.2)

We go on in Section 2.1.4 with the models used in nuclear codes, the 6-
and 7-equation models, also referred to as mixture models. In Section 2.1.5,
we focus on low-Mach number conditions; when the flows go at low speed
compared to the speed of sound. We review the Diphasic Low Mach Number
model, proposed for nuclear conditions too. Finally we present in Section
2.1.6 the Abstract Bubble Vibration model, a coupling between an hyperbolic
equation and an elliptic equation.

When interested in the DNS of bubbles, we have to get the right tools to
numerically model the interface. We present in Section 2.2 two important
techniques. Front tracking, as explained in Section 2.2.1, is modelling the
flow with a convective (or “Lagrangian”) perspective. On the opposite, as
explained in Section 2.2.2, we relate front capturing to a Eulerian perspective.
We explain why we choose the latter. Our implementation is the transport
of a colour function Y which equals either 1 in the gas phase, or 0 in the
liquid phase. We will have to find the right discretisation scheme to keep the
jump from 1 to 0 as sharp as possible.

1.3.2 Front capturing with AMR: finite differences schemes
and parallelisation

We show in Chapter 3 that Direct Numerical Simulation is the most precise
scale of computation and therefore also the most expensive one. Adaptive
Mesh Refinement is the enrichment of a subset of the computational domain
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Figure 1.4 – 2D Kothe-Rider test, with AMR patches visible

– the area of interest – with more detail. We explain how AMR is beneficial to
DNS by reviewing a part of the mesh refinement literature. In Section 3.1, we
differentiate the following techniques: anisotropic meshing, r-adaptation, p-
adaptation, h-adaptation, s-adaptation. We decide to focus on patch-based
mesh adaptation on Cartesian grids in Section 3.2. This means that we
cover the said area of interest with one or several levels of patches, which
have a finer space discretisation. Figure 1.4 shows a standard test case for
advection equations, the 2D Kothe-Rider test [119]. We used patch-based
AMR with one level of refinement. We show the coarse level (in fact, the
entire computational domain) inside a green square, it is discretised with a
100 × 100 grid. We show the fine level inside the many white rectangles,
which are patches with a refinement coefficient r = 4. They cover the area
we determined of interest: the interface between liquid and gas. We can say
that the simulation has an equivalent discretisation of 400 × 400.

We present multiple ways to define the patches; the Berger-Rigoutsos
algorithm [22], the Livne algorithm [99]. We also propose our own improve-
ment, the nmin – nmax algorithm. It constrains the size of the patches with
a minimum length nmin and a maximum length nmax; a third parameter be-
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ing the minimum efficiency ηmin of the covering. We introduce three quality
functions to compare patch coverings: the average efficiency η, the normal-
ised standard deviation of sizes σ and the average squareness γ. We compare
the three algorithms in a multiprocessing perspective in Section 3.3. For
this we determine the value of the quality functions on a few hundreds of
test coverings using the three algorithms. We settle for nmin – nmax. We
decide to test out our choice in Section 3.4 with a 3D Kothe-Rider advection
simulation. We present different advection schemes, including the upwind
scheme and WENO. We choose the limited downwind scheme introduced by
Després and Lagoutière [51], because it captures and transports the colour
function Y in a very sharp manner. By locating the refinement patches on
the interface between liquid and gas, we get encouraging results as far as
computational speed-up is concerned when we use parallel computing.

1.3.3 Elliptic equations and Abstract Bubble Vibra-
tion model

As we explain in Chapter 4, elliptic equations are more challenging to repres-
ent with patch-based AMR, since they require information from the whole
computational domain. This is why, in Section 4.1, we choose to use the
Local Defect Correction algorithm [74]. As schematically presented on Fig-
ure 1.5, LDC is an iterative process done until we determine that we reached
convergence. At each iteration, the computed solutions of the coarse and the
fine (patch) grids enrich one another. The computed solution on the coarse
grid defines Dirichlet boundary conditions on the borders of the patches. We
then solve the elliptic equation with the said boundary conditions on the
fine grid. The computed solution of the fine grid permits to calculate the
eponymous Local Defect Correction on the refined area: it will replace the
source term of the coarse level, eventually leading to a new coarse resolution
and a new LDC iteration.

In the following section, we recall the proof of its convergence laid out by
Ferket et al. [63] and Anthonissen et al. [10]. We then propose our variant
of LDC, differing from the literature in two ways. First, we use cell-centred
values and not values on nodes of the meshes. Therefore, for the Dirichlet
boundary conditions interpolation step from coarse to fine, we provide the
patches with ghost cells around their border. Second, most of the time,
we deal with multiple patches, often touching each other. So we decide to
consider them as a partition of the fine level: we use the Schwarz iterative
algorithm of domain decomposition to determine an acceptable solution of
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Figure 1.5 – Schematic representation of the LDC algorithm

the fine level, with no discontinuity at the interface between patches. We test
our implementation out with the ABV model in Section 4.2, in 2D as well as
in 3D. We locate the patches on the interface of the bubble. We use a formula
giving the volume of the bubble as a function of time to verify that we get
convincing results. We implemented the AMR tools we used in an open-
source library named CDMATH and conceived to help other computational
scientists and engineers [44, 145]. We present how CDMATH was designed
and how AMR is an extension in Section 4.3. With this toolbox, one can
implement AMR as easily in 2D as in 3D.

1.3.4 Application to incompressible Navier-Stokes

Finally, we apply in Chapter 5 the result of our work on Adaptive Mesh Re-
finement to more realistic simulations. We represent incompressible Navier-
Stokes systems on staggered grids (scalar variables located at the centre of
cells, vectors located at the faces). We use one level of AMR. In Section 5.1,
we fully detail the numerical schemes for a one-phase simulation of Equation
(1.1). In the thesis, we detail the following prediction-correction scheme, in
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the spirit of the work of Chorin [38, 39] and Temam [131, 132]:

ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = fn = g − 1

ρ
∇pn,

ũ = ũBC on ∂Ω,

ũBC · n = uBC · n,

ũBC · t = uBC · t + ∆t

ρ
∇ϕn · t.

(1.3)


−1

ρ
∆ϕn+1 = − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 on ∂Ω.
(1.4)

pn+1 = pn + ϕn+1. (1.5)
un+1 − ũ

∆t
= −1

ρ
∇ϕn+1,

un+1 = uBC on ∂Ω.

(1.6)

As explained later, we use the LDC algorithm to finely compute the incre-
ment of pressure ϕ. We see that it is essential the source term of Equation
(1.4) – namely the divergence of the predicted velocity ∇ · ũ – be linearly
interpolated from the coarse level onto the fine level. We verify our imple-
mentation using the classic literature test case of the lid-driven cavity. A
permanent regime exists and is well known beforehand: depending on the
Reynolds number, several whirlpools are created in the computational do-
main, so we placed one refinement patch on the main whirlpool. Figure 1.6
represents the permanent regime, with the colouring as a function of the ve-
locity ||u|| and the isocontours of ||u|| given as white lines. We represent the
location of the fine level patch by a white square. A video of the transitional
regime can be seen online at https://youtu.be/esOHN--iW4Y.

In Section 5.2, we switch to two-phase situations, represented by Equation
(1.2). We also use staggered grids, with one exception though: we locate the
inverse

(
1
ρ

)
of the volumetric mass at the faces and not at the centre of cells,

although it is a scalar. Here too we use a prediction-correction scheme which
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Figure 1.6 – Lid-driven cavity simulation (isocontours of ||u||)
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equations are fully explained in the thesis:
ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = gn+1 − 1

ρn
∇p,

ũ = uBC on ∂Ω.
(1.7)


−∇ ·

(
1

ρn
∇ϕn+1

)
= − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 on ∂Ω.

(1.8)

pn+1 = pn + ϕn+1. (1.9)
un+1 − ũ

∆t
= − 1

ρn
∇ϕn+1,

un+1 = uBC on ∂Ω.

(1.10)

Y n+1 − Y n

∆t
+ un+1 · ∇Y n = 0. (1.11)

ρn+1 = ρgY
n+1 + ρl(1− Y n+1). (1.12)

As for the one-phase simulation, we use one level of Adaptive Mesh Refine-
ment. We create the patches dynamically at every time step and locate them
such that they follow the interface between gas and liquid, as in Chapters 3
and 4. We propose an original AMR approach that benefits from the work
done earlier. We first decide to compute the increment of pressure ϕ with the
LDC algorithm applied on Equation (1.8), which is elliptic. Then we decide
to compute the hyperbolic advection of Equation (1.11) with AMR precision
too. We explain why it is essential that we interpolate the source term ∇ ·ũ
of Equation (1.8) from the coarse level to the fine level. As a consequence, we
have a precise computation of the variables ϕ, p, Y and ρ at the location of
their discontinuities or jumps of derivative. In addition, in spite of the sharp
jump of the presence Y , we are able to give a satisfying model for surface
tension of bubbles. This lets us obtain realistic evolutions of non-stationary
bubbles due to gravity, viscosity, inertia, surface tension, pressure forces.
Figure 1.7 is a shot of such a simulation, which video can be seen online at
https://youtu.be/zJEjP6JYEYQ. We can see the AMR patches as white
rectangles on the interfaces and the streamlines of the velocity as white little
arrows.
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Figure 1.7 – Simulation of two bubbles, with AMR patches visible as white
rectangles
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Chapter 2

Models of flows with two
separated phases

2.1 Thermal-Hydraulics models adapted for
each scale

In this section we present a few physics models used to represent one-phase
and two-phase flows.

For all models, we will use the same denomination of spatial areas of
the problem, represented on Figure 2.1. We will also use the same initial
conditions.

We name the computational domain Ω and we name its border ∂Ω. The
volume of Ω is written |Ω|. We partition the space into two: Ω = Ωl ∪ Ωg.
The space Ωl represents the domain of Fluid l, typically a liquid. The space
Ωg represents the domain of Fluid g, typically a gas.

Let x be the vector positioning in space and let t be the time. We define
the colour function Y (x, t) as an indicator for the gas phase:

∀(x, t) ∈ Ω× R+, Y (x, t) =
{

1 if x ∈ Ωg (i.e. gas/vapor),
0 if x ∈ Ωl (i.e. liquid). (2.1)

So we can express the initial conditions for Y as follows:

∀x ∈ Ω, Y (x, t = 0) =

{
1 if x ∈ Ωg(t = 0),
0 if x ∈ Ωl(t = 0).

(2.2)
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Figure 2.1 – Ω(t) = Ωl(t) ∪ Ωg(t)

We also define Σ(t) the interface separating liquid and gas. It may evolve
with time, appear in some places or disappear in others.

Let the scalar T (x, t) be the temperature and p(x, t) the local pressure of
the fluid. We call “normal temperature and pressure conditions” the couple
(T, p) where T = 25 ◦C and p = 1.024 bar. Let the scalar ρ(x, t) be the
volumetric mass. For liquid water at normal temperature and pressure con-
ditions, ρwater = 1000 kg m−3. Let the vector u(x, t) be the local velocity of
the fluid. Then ρu represents the local volumetric momentum.

The vector F represents physical volumetric forces. In our case, the forces
include at least pressure forces, gravity and eventually other sources Fothers.
Let f be the expression of these forces divided by the volumetric mass ρ:
f is homogeneous to an acceleration. As an example, the vector g is the
gravitational acceleration, with a norm ||g|| = 9.8 m s−2. Let τ be the stress
tensor, with Stokes’ hypothesis. The scalar µ is the volumetric viscosity and
the scalar ν is the kinematic (i.e. specific or massic) viscosity coefficient;
ν = µ

ρ
. For instance, for liquid water at 25 ◦C, νwater = 10−6m2 s−1. Table

2.1 gives other numerical values for the kinematic viscosity of liquid water.
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Temperature (◦C) Kinematic viscosity (m2 s−1)

10 1.308× 10−6

20 1.002× 10−6

30 0.7978× 10−6

40 0.6531× 10−6

50 0.5471× 10−6

60 0.4658× 10−6

70 0.4044× 10−6

80 0.3550× 10−6

90 0.3150× 10−6

100 0.2822× 10−6

Table 2.1 – Kinematic viscosity of liquid water for different temperatures

Let E be the specific energy, ρE the volumetric energy and e be the
specific internal energy. Let λ be the thermal transfer coefficient.

2.1.1 One-phase compressible Euler system

For two given vectors u and v, let us define u · ∇v as follows:

u · ∇v = (u · ∇) (v) ,
= (ux∂x + uy∂y + uz∂z) (v) .

(2.3)

The one-phase compressible Euler system is given by the following set of
equations (written using a non-conservative formulation):

∂tρ+∇ · (ρu) = 0,

∂tu + u · ∇u = −1

ρ
∇p+ g,

∂te+ u · ∇e+ p

ρ
∇ · u = 0.

(2.4)

The first equation is the conservation of mass, the second one is the transport
of momentum, and the last one is the transport of internal energy. To close
the system of Equations (2.4), we add the equation of state as well: this is
an algebraic equation that establishes the relationship between the pressure
p, the internal energy e and the volumetric mass ρ. Using a determined
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function EOS, the equation of state can take the general formulation:

EOS(p, e, ρ) = 0. (2.5)

For instance, let us consider that the fluid is a Laplace ideal gas. Let us call
γ the ideal gas factor, equal to the heat capacity at constant volume divided
by the heat capacity at constant pressure. The quantity γ is equal to 5

3
if

the Laplace ideal gas is a monoatomic gas (like helium He) and γ = 7
5

if the
gas is diatomic (like nitrogen N2). In this case we can use the ideal gas law
as the equation of state:

EOS(p, e, ρ) = p− ρe(γ − 1) = 0. (2.6)

As far as the boundary conditions are concerned, let Ω be bounded by
immobile walls. The boundary conditions for the Euler system are a little
complicated to write down. In particular, they depend on where and when
the velocity is directed into the domain.

2.1.2 Two-phase compressible Navier-Stokes model

We can represent the two-phase compressible Navier-Stokes equations with
the following set of four equations:

∂tY + u · ∇Y = 0,

ρ = ρgY + ρl(1− Y ),

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu) = −∇p+∇ · τ(u) + ρg,

∂t(ρE) +∇ · [(ρE + p)u]
= ∇ · (λ∇T ) +∇ · [τ(u)u] + ρg · u.

(2.7)

The first equation is the transport of the colour function Y . It is expressed
in a non-conservative way which satisfies a maximum principle for Y . The
second equation gives the volumetric mass ρ as a function of the presence of
the two phases. The third equation is the conservation of said ρ. The fourth
equation is the conservation of the volumetric momentum ρu. The fifth and
last equation is the conservation of volumetric energy ρE. In addition, we
also have the equation of state for the relationship between Y , p, e given by
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e = E − 1
2
u2 and ρ. Let EOSk(p, e, ρk) = 0 be the equation of state of each

phase k = l and k = g. Multiple choices are possible for the equation of state
of the mixture [46, 62]. We may for instance choose the following equation
defining EOS(Y, p, e, ρ):

EOS(Y, p, e, ρ) = (1− Y )EOS l(p, e, ρl) + Y EOSg(p, e, ρg) = 0. (2.8)

We choose the value of all the coefficients depending on the phase, such
as transport and thermodynamic coefficients, as a function of Y . Let ξ be a
coefficient as for instance λ, α, Cp and others:

ξ(Y, T, p) = (1− Y )ξl(T, p) + Y ξg(T, p). (2.9)

For instance, we have the following equality for λ:

λ(Y, T, p) =

{
λl(T, p) if x ∈ Ωl(t) (i.e. Y = 0),
λg(T, p) if x ∈ Ωg(t) (i.e. Y = 1). (2.10)

As far as the boundary conditions are concerned, Ω is bounded by im-
mobile walls. There are many types of possible boundary conditions, as for
instance Neumann or Robin ones. We decide to focus on Dirichlet boundary
conditions. Let uBC be a boundary conditions given for the velocity u:

∀x ∈ ∂Ω,u(x, t) = uBC . (2.11)

We choose to have walls that can only move in the direction they occupy, as
shown on Figure 2.1. In other words, a wall along the x axis can only move in
the x direction. Furthermore, we impose no-slip conditions, so uBC = uwall.
However, if the speed on the walls is not zero, then we have to choose entry
conditions on the boundaries for the advection contributions.

We also choose to have adiabatic conditions:

∀x ∈ ∂Ω,∇T (x, t) · n(x) = 0 (2.12)

where n is the vector normal to the wall ∂Ω.

The compressible Navier-Stokes system is adapted for problems where
acoustic shock waves appear and should be represented correctly. Kokh
presents this particular two-phase compressible Navier-Stokes system – but
also other ways to model the interface – in his PhD thesis [89]. As a final
note, the Euler system (2.4) can be seen as a Navier-Stokes system where we
make the viscosity ν equal to zero.
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2.1.3 Incompressible Navier-Stokes model

The incompressible Navier-Stokes model accounts for the conservation of
(volumetric) momentum ρu in fluids which density (or volumetric mass) ρ
is constant in time and uniform by pieces in space. In particular, ρ only
depends on the species of the fluid. Thus it cannot model large thermal
dilation nor pressure shock waves.

The one-phase incompressible Navier-Stokes model is hence given by the
following set of equations:



∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,

u = uBC on ∂Ω (boundary conditions),

u(t = 0) = u0 on Ω (initial conditions).

(2.13)

The vector u0 is an initial condition given for the velocity u and verifying
∇ · u0 = 0.

We numerically solve an example of this one-phase model in Section 5.1.

For the two-fluid incompressible Navier-Stokes model, we consider two
fluids: Fluid l and Fluid g. As a consequence, ρ is constant in time and
uniform by pieces in space. The density is attached to the colour function
Y . The scalar ρ equals ρl in areas where Y = 0 and equals ρg in the other
areas, where Y = 1. The colour function Y thus indicates the presence of
Fluid g. The scalar Y is transported by the velocity u (defined on all the
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computational domain), which brings us to the following set of equations:

∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,

∂tY + u · ∇Y = 0,

ρ = ρgY + ρl(1− Y ),

u = uBC on ∂Ω (boundary conditions),

u(t = 0) = u0 on Ω (initial conditions),

Y (t = 0) = Y0 on Ω (initial conditions).

(2.14)

We numerically solve an example of this two-fluid model in Section 5.2.

2.1.4 Mixture models: the 6- and the 7-equation mod-
els

An abundant category of two-phase flow models is mixture models. Those
consider that for every point in space (and every discretisation volume sur-
rounding it), one can define a void fraction α. For an elementary space of a
volume V and containing a volume Vg of gas, the following formula gives the
void fraction:

α =
Vg
V
. (2.15)

Mixture models are thus “homogenised” or “averaged” models where for each
point x in space, both phases coexist. We understand that mixture models
are adapted to larger scale problems.

The 6-equation model, also sometimes named the two-fluid model, is used
for instance in the nuclear code CATHARE. It is based on a set of 6 equations
of conservation [28].

The conservation of mass of each phase reads as follows:
∂

∂t
(αgρg) +∇ · (αgρgug) = 0,

∂

∂t
(αlρl) +∇ · (αlρlul) = 0.

(2.16)
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The conservation of momentum of each phase reads as follows:
∂

∂t
(αgρgug) +∇ · (αgρgug ⊗ ug) + αg∇p = Fg,

∂

∂t
(αlρlul) +∇ · (αlρlul ⊗ ul) + αl∇p = Fl.

(2.17)

Finally, the conservation of momentum of each phase reads as follows:
∂
∂t
(αgEg) +∇ · (αgEgug) + αg∇ · (pug)

= {Net energy exchange with the environment}g
+{Net energy generation}g,

∂
∂t
(αlEl) +∇ · (αlElul) + αl∇ · (pul)
= {Net energy exchange with the environment}l

+{Net energy generation}l.
(2.18)

The system is completed with closure laws. One of the drawbacks of this
model is that it may show non-hyperbolicity problems (see [128] for instance).
Without going into too many details, let us consider the 7-equation model
which unconditionally solves the non-hyperbolicity problems. This model is
called Baer-Nunziato, introduced in [14]. The model is further studied in [67,
45] and schemes specific to the model are presented in [6, 41]. It introduces
an interface pressure pΣ and an interface velocity uΣ. Let k refer to the fluid
g or l. Then the conservation laws rewrite as follows:

∂αk

∂t
+ uΣ · ∇αk = µ(pk − pΣ), (2.19)

∂ (αkρk)

∂t
+∇ · (αkρkuk) = 0, (2.20)

∂ (αkρkuk)

∂t
+∇ · (αkρkuk ⊗ uk) +∇(αkpk) = pΣ∇αk + λ(uk − uΣ), (2.21)

∂ (αkρkEk)

∂t
+∇ ·

(
(αkρkEk + αkpk)uk

)
= pΣuk · ∇αk + λuΣ(uk − uΣ) + µpΣ(pk − pΣ).

(2.22)

We can notice that Equation (2.19) is a transport of the void fraction plus a
relaxation term.

In practical simulations, the relaxation parameters λ and µ are very small
(10−8), the interface pressure pΣ is taken as the largest pressure of the fluids
and the interface velocity uΣ is taken equal to the velocity of the other fluid
(i.e. with the lower pressure).
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Tmatter

Tacoustic · · ·

Figure 2.2 – Characteristic durations

2.1.5 The Diphasic Low-Mach Number model

Low-Mach flow conditions

In most situations, there are two very distinct time scales in thermal-hydrau-
lic flows. The first one is the time scale of pressure shocks and other acoustic
phenomenons. Typically, the order of magnitude of the phenomenons nears
Tacoustic ≃ 10−3s. The second time scale is related to how fast the matter
– the fluid in itself – flows along pipes etc. It is typically of the order of
magnitude of Tmatter ≃ 1 s in nuclear cores.

These two time scales are very different one from another, as represented
on Figure 2.2. This brings specific difficulties:

1. the precision in schemes (e.g. the Godunov scheme has a poor precision
in low-Mach number conditions on Cartesian grids),

2. the robustness of solvers (for instance, inverting matrices with very
different eigenvalues is hard with usual iterative methods, because of
the bad conditioning; this is indeed the case at low Mach number).

We define the Mach number as follows:

M =
||u||
c
. (2.23)

The module ||u|| is the velocity of the fluid matter (or a magnitude thereof).
The quantity c is the speed of sound. In a nuclear reactor in particular, we
are in low-Mach number conditions in the vast majority of cases, be it in
nominal regime or in many accidental regimes like Loss Of Flow Accidents
for example: M = ||u||

c
≃ 10−3.

As a consequence, we can say we can neglect shock waves and other acous-
tic phenomenons.

However thermal phenomenons do remain important: due to thermal dila-
tion, ∇ · u ̸= 0 although M ≪ 1.
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M ≪ 1 M ≪ 1 M = O(1)
||∇ · λ∇T || ≪ 1 ||∇ · λ∇T || = O(1)

Incomp. Navier-Stokes ≤ Low-Mach asymptotic model < Comp. Navier-Stokes

×acoustic ×acoustic ✓acoustic
×thermal ✓thermal ✓thermal

Table 2.2 – Classification of approximations

Table 2.2 summarizes a classification of models. On the far right, we
have the compressible Navier-Stokes model, which takes into account all phe-
nomenons (acoustic and thermal). The Mach number M may be large. See
Section 2.1.2. On the far left, we have the incompressible Navier-Stokes
model, which neglects acoustic as well as thermal phenomenons. See Section
2.1.3. In between, we are searching for a model which neglects acoustic phe-
nomenons but still represents thermal dilation. This would be the low-Mach
asymptotic model presented hereafter.

Low-Mach number approximation: DLMN model

The Diphasic Low-Mach Number (DLMN) model [47, 46] takes its inspir-
ation from previous work about combustion, dating back at least since the
seventies; see for instance [100]. Low-Mach number models have also been
used in many other fields, as for instance in Cosmology [5] or Microfluidics for
electronic systems [118]. It was then proposed for Nuclear Reactors Thermal-
Hydraulics [48, 76]. Penel studied the model from a theoretical and analytic
point of view [113, 114].

We can show that, when the Mach number M is small, we can approxim-
ate the two-phase compressible Navier-Stokes model (as presented in Section
2.1.2) with the DLMN model. Let θ be the coefficient of thermal expansion:

θ(Y, T, p) = −1

ρ

∂ρ

∂T
(Y, T, p). (2.24)

In this model, we keep the transport equation for Y . We replace the energy
equation with the transport equation for internal enthalpy. We have a con-
servation equation for momentum. At last, we have a coupling equation of
constraints with all other equations. This leads us to the following system of
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equations:



∂tY + u · ∇Y = 0,

ρCp(∂tT + u · ∇T ) = θTP ′(t) +∇ · (λ∇T ),

ρ(∂tu + u · ∇u) = −∇Π+∇ · τ(u) + ρg,

∇ · u = G(x, t),

G(x, t) = − P ′(t)

ΓP (t)
+

β

P (t)
∇ · (λ∇T ),

β =
θP

ρCp

,

Γ =
ρc2

P
,

P ′(t) =

∫
Ω

β(Y, T, P )∇ · λ∇Tdx∫
Ω

dx

Γ(Y, T, P )

.

(2.25)

The quantity P is a pressure depending only on time and equations of
state. In this model, P is the “thermodynamic pressure” and does not depend
on the spatial coordinate x. The coefficient of thermal dilation now depends
on P : θ = θ(Y, T, P ). The quantity Π is a perturbation of the pressure, or
a “dynamic pressure”. It is not driven by thermodynamics but rather the
velocity field, gravity, etc.

For the initial conditions, we keep the same as explained before in the
introduction of Section 2.1, with in addition u0(x) matching the right diver-
gence condition:

∇ · u0 = G(x, t = 0). (2.26)

Boundary conditions (external on ∂Ω and internal on Σ(t)) are kept the
same as for compressible Navier-Stokes. Similarly, transport and thermal
coefficients are also kept identical.
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2.1.6 Abstract Bubble Vibration model

The Abstract Bubble Vibration (ABV) model is a simplified model which can
represent a dilating bubble. This model is based on a coupling between a
hyperbolic part and an elliptic part and was introduced in [50] by Dellacherie
and Lafitte. Let Ω be a closed computational domain with a boundary ∂Ω.
We consider three unknown functions: the colour function Y which repres-
ents the presence of void in liquid when it is equal to 1, u a vector field which
represents the velocity of the fluid, and ϕ a potential from which u derives.
We also consider ψ(t) a given function which could represent a pulsation con-
tribution. The ABV model is represented by the following set of equations:

∂tY + u · ∇Y = 0,

∆ϕ = ψ(t)

(
Y − 1

|Ω|

∫
Ω

Y dx

)
,

∇ϕ · n = 0 on ∂Ω,

u = ∇ϕ.

(2.27)

The first equation is an advection equation of Y with velocity u, as we had
in the previous sections. The second one is an elliptic equation. As for the
initial conditions, it is sufficient to only define Y (t = 0) on the computational
domain Ω. We impose ∀x ∈ Ω, Y (x, t = 0) ∈ {0, 1}.

As Y is either equal to 0 (outside the bubble) or 1 (inside the bubble), we
can interpret

∫
Ω
Y dx as the volume V of the bubble and 1

|Ω|

∫
Ω
Y dx as the

void fraction of the computational domain Ω, a real number between 0 and
1. So if we assume the contribution ψ(t) to be positive, then ∆ϕ is positive
in the vapor phase and negative in the liquid phase. The third and fourth
equations show that u is the gradient of the potential ϕ and that the outward
velocity is null on the borders of the problem; no fluid comes in or out of Ω
and crosses ∂Ω.

Penel et al. show in [113, 115] that there exists a unique solution to this
problem with any smooth initial condition. More existence results are given
in [73] by Gittel et al. One result is an analytic expression for the volume V
of the bubble as a function of ψ(t), which is useful for later tests:
Theorem 1. The volume of the area where Y = 0 is the result of the following
formula:

V −1(t) =

(
1

V (0)
− 1

|Ω|

)
exp(−ψ(t)) + 1

|Ω|
. (2.28)
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The first article to present a proof is [50]. The formula is very useful for
verification purposes of numerical simulations, as we will see later in Section
4.2.

2.2 Numerical modelisation of an interface

Bubbles are one of the multiple forms of the repartition of physical and
chemical species in the environment of two- or multi-phase flows. It generally
refers to the volume occupied by the minor phase, that-is-to-say the phase
which volume fraction is the smallest. The common representation of a
bubble has the approximate shape of a convex globe, but it can actually also
have concave parts, have holes, be separated into multiple non-connected
volumes.

The main point is that there exists a sharp separation – the interface
– between the inside of a bubble and the surrounding species. When the
interface is extremely thin or even has a zero thickness, then we talk about
a sharp interface. On the opposite, when the interface is defined with a non-
zero thickness, then we refer to the interface as a diffuse one. The choice
of the scale of the physical model of the two-phase flow determines whether
the interface is sharp or not. At the smallest scale of molecules, the interface
is just the region where the density of molecules is rapidly evolving, so it
is diffuse. At a meso-scale, we can represent this area by a zero-width area
and as such as a sharp interface. On a larger scale, bubbles are represented
through their impact on void fraction so we are more considering diffuse
interfaces between all-liquid regions and all-gas regions. In the present PhD
thesis, we will focus on sharp interfaces and the way to simulate them.

There are diverse techniques to discretise the bubble and the sharp in-
terface, as well as their evolution in time. The two families of numerical
methods we will describe here are the focus of very active current research:
front tracking and front capturing.

2.2.1 Front tracking

As explained in John Dolbow’s course [55], methods for “front-tracking” (FT)
or “interface-tracking” are methods which use a mesh to follow the interface.
As the flow evolves, the interface is updated too. It is a convective (i.e. Lag-
rangian) perspective, initiated by Tryggvason and co-workers [140, 138, 139].
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Figure 2.3 – Front tracking used in Trio U 2.3

In this case, tracking the interface means labelling it with so-called “Lag-
rangian markers” or “convective markers”, as done for instance by Guillaume
Bois using nuclear code Trio U [30] (see Figure 2.3). Those convective mark-
ers evolve and are convected by the surrounding velocity field u determined
with conservative methods (also refered to as “Eulerian” methods). In other
words, the velocity ui of each marker is given by an interpolation based on the
field u. The numerical schemes used are of the kind of Lagrange projection.

The front tracking method is very powerful and adapted when it is es-
sential to know the shape of bubbles. In particular, the method permits
to determine curvatures and surface tension. However difficulties may arise
with higher dimensions and also when dealing with topology breaks, as for
instance the separation of a bubble into two or the creation of a hole in the
bubble giving it the shape of a tore.

2.2.2 Front capturing

As explained in [55], methods for “front-capturing” or “interface-capturing”
are methods which use a function which can be used to locate the interface. In
particular, it can be an interface function marking the corresponding location
of the interface and which is updated as the flow evolves. This is more of an
Eulerian perspective.
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Level-set

The level-set method was introduced by Osher and Sethian in 1988 [110]. As
explained in John Dolbow’s course [56], it is the basic framework for capturing
the geometry of moving boundaries and interfaces. It works well for problems
where the surface geometry evolves in rather complex ways, including with
topology changes. This method is said to be much more successful than any
other to represent such a large class of problems.

Let Σ(t) be an interface between zones, moving due to a surrounding
velocity u(x, t). With the level-set method, we represent the interface as the
zero-isocontour of a scalar function φ defined over the whole space:{

∂tφ+ u · ∇φ = 0,
Σ(t) = {x | φ(x, t) = 0}. (2.29)

The quantity φ is called the level-set function.

We note un the component of u outwardly normal to the interface. If only
un is known, then we can still write the system as follows:{

∂tφ+ un||∇φ|| = 0,
Σ(t) = {x | φ(x, t) = 0}. (2.30)

The variable φ has the property to keep its sign constant in the areas
inside and outside the interface: this means that, for instance, φ(x) could
be positive if and only if x is located inside gas, as explicited by Equation
(2.31):

φ(x, t)


< 0 if x ∈ Ωl(t),
= 0 if x ∈ Σ(t),
> 0 if x ∈ Ωg(t).

(2.31)

So the zero-isocontour indeed defines the interface. Figure 2.4 shows such a
level-set function: its intersection with the φ = 0 plane is represented with
black dashes and has the shape of a circle. So it represents a droplet.

Often, we impose φ to be equal to a signed distance as for initial condi-
tions. In this case, ||∇φ|| = 1. Shortly after the initial conditions, we can
expect ||∇φ|| = O(1). Then the level set method is very powerful for the
calculation of normal vectors n and curvatures κ.

n =
∇φ

||∇φ||
. (2.32)

κ = ∇ · n. (2.33)
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Figure 2.4 – Illustration of the level-set function [61]

Unfortunately, we know from experience that it is hard to maintain the signed
distance. That-is-to-say, as shown by Abgrall et al. in [2], that the level-
set method is bad at conserving mass – and conserving mass positivity in
particular. Depending on the physical model (see Section 2.1), it can also
lead to pressure oscillations. The level-set function has to be recalculated
or reinitialised frequently, for instance with the Fast Marching Method [37].
But even with the reinitialisations, we still may face issues.

Particle level-set methods

Particle level-set methods [60] are a recent improvement to level-set methods.
This is a hybrid approach between level-sets and convective markers particles.
The marker particles are placed on one of the two sides of the interface –
sometimes on both sides – and help reconstructing the level-set function. It is
particularly useful when the interface undergoes stretching and tearing. The
advantage compared to pure particle-based methods is that no connectivity
between markers is stored.

This method requires a lot of work. Indeed, due to the movement of the
interface, particles may sometimes not be uniformly spread any more and
get concentrated in some places. In those conditions, we have to regularly
“reseed” the particles to get a more uniform distribution. Enright et al. [60]
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show how to effectively reseed in the case of a passively advected interface.

Volume Of Fluid

Another family of front capturing methods is the transport of the void frac-
tion. In the case of two-phase flows, let α ∈ [0, 1] be the void fraction. For a
given volume Vtotal, it is equal to the proportion of volume of gas:

α =
Vgas
Vtotal

. (2.34)

The quantity α is a real number and may virtually take all values between
0 and 1. Notice that it is only defined at large model scales where we can
consider elementary volumes to contain (artifical) mixtures of phases: α =
α(x, t).

The Volume Of Fluid (VOF) method consists in considering the void
fraction α and transporting it with an advection equation. For models where
there is only one local velocity of fluids u(x, t), it writes as follows:

∂tα + u · ∇α = 0. (2.35)

When discretised, this leads to a grid representation where each cell is affected
with its αn value, as shown in early work from [108]. At each time step, we
then have to reconstruct the interface from the information we know with
methods called SLIC or PLIC [146]. For PLIC we use Young’s method:
a piecewise linear approximation, where the segments are normal to n =
− ∇α

||∇α|| . We show such a result on Figure 2.5: the numbers indicate the void
fraction in each cell and the interface is reconstructed with red segments.
Lesser known variants of VOF include not using an interface reconstruction,
but rather an interface sharpening scheme [121], or a so-called compression
stage [13]. If we want to represent a small scale problem with a definite
interface, then we have to also refine the grid sufficiently. The VOF method
is also used in Trio U [30] (in combination with front tracking).

This family of methods do present some significant drawbacks, as ex-
plained in [55]. In order to reconstruct a precise enough interface, we often
need a large amount of grid cells. Furthermore, the geometry is fragmented
[94] and it is much more challenging to calculate curvatures, contrary to with
front tracking methods. Abgrall also identifies another issue with pressure
oscillations when shock waves cross the interface in [1].
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Figure 2.5 – VOF scheme interface recontruction with PLIC [82]
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Colour function

Finally, we present here the front capturing method which we will use extens-
ively: it is the transport of what we could call a “colour function”, indicating
the presence of a fluid. At the smaller scales and in particular at the scale of
bubble-liquid interfaces, it is more appropriate to consider a colour function
Y ∈ {0, 1}.

Y (x, t) =
{

0 if the liquid phase covers x,
1 if the gas phase covers x. (2.36)

The quantity Y is sometimes called a step-function, because of its shape
when we represent it in 1D. As a side note, we can notice that for problems
where we have a defined interface and thus where Y is well defined, it is also
possible to define α(x) by taking Vtotal to an infinitesimal limit. In this case,
α(x, t) = Y (x, t). To a larger extent, we can also give a definition of the
colour function in the case of more than two phases: Yphase,species then is the
space indicator function of the domain where a specific species in a specific
phase is.

We also use an advection equation for the colour function:

∂tY + u · ∇Y = 0. (2.37)

For the colour function method, as for the VOF method, we also often need a
large amount of grid cells to represent a precise enough interface. Moreover,
it is also arduous to compute curvatures and normal vectors as well. But
the main challenge here will come from the fact that we want to transport
a sharp interface function; any discretisation cell that exhibits a Y with a
value different from 0 or 1 would be a numerical approximation. That is
why it is necessary to find appropriate numerical schemes to preserve the
sharpness. The technique presented in [90] is to (introduce and) sharpen the
source terms. We present other applicable numerical schemes in Section 3.4.
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Chapter 3

Front capturing with AMR:
finite difference schemes and
parallelisation

Because it is the discipline of non-averaged models, DNS computation is
known to be extremely costly as far as computation time and memory are
concerned. For this reason, it is interesting to alleviate the calculation load.
In particular, one approach is to use locally adapted meshes for sub-domains
of interest. This way, instead of using a mesh that would be fine on all the
studied computational domain, we consider a problem with far less degrees
of freedom. This is what is referred to as Adaptive Mesh Refinement (AMR)
in regions of interest. Typically for bubble simulations, we may choose the
region of interest as the vicinity of the interface between gas and liquid, as
represented in red on Figure 3.1.

As explained in [18], we can distinguish two large categories of AMR:

Figure 3.1 – Area of interest for bubbles; the interface
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• so-called “adaptive methods”, on a unique but complex grid,

• patch-based AMR, on multiple levels of grids.

3.1 Adaptive methods

The first category of AMR refers to the use of a unique mesh with local
enrichment, those are simply called “adaptive techniques”. The enrichment
follows the area of interest, so the mesh is time-dependent.

3.1.1 Anisotropic meshing with adaptive metric field

In the case of anisotropic meshes, it is absolutely possible to adapt the mesh
at each time step. The anistropic has simply a higher density of cells in the
regions of interest. One way to do so is to define a metric field obtained from
an error estimation of the solution, as presented in [105]. Figure 3.2 shows
the anisotropic mesh used for the computation of a swirling bubble in 2D.
We can notice that all the cells are triangle-shaped but of varying surface.

3.1.2 r-adaptive technique

The “r-adaptive methods” are methods using a moving mesh, for dynamic
systems. The mesh is deformed to follow the highest variations and/or the
regions of interest. To quote Cao et al. [35], to discretise an equation with
moving meshes, “we may view the time-dependent mesh over the compu-
tational domain Ω as the image of a fixed mesh over an auxiliary (fixed)
computational domain Ωh ∈ Rn”, where n is the dimension of the problem.
So we consider a function x defined as follows:

x : Ω → Ωh

(ξ, t) 7→ x(ξ, t). (3.1)

Then we can find a partial differential equation on x:

∂x
∂t

= f

(
∂x
∂ξ
,
∂2x
∂ξ2

, . . .

)
. (3.2)
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Figure 3.2 – Adapted anisotropic mesh for a swirling bubble problem [105]

61



Figure 3.3 – r-adaptive mesh after deformation [72]

Figure 3.3 is extracted from [72] which studies the computation of a metal-
forming simulation. It is the representation of a mesh adapted and moved
after a certain deformation and thanks to r-adaptation.

A commonly used technique for r-adaptation is the Arbitrary Lagrangian
Eulerian method (ALE) (see for instance [70]). For this technique, the mesh
moves differently from the Lagrangian referential and the Eulerian referential.
The equivalence with r-adaptive techniques is explained in [58] for example.

3.1.3 p-adaptive technique

The “p-adaptive methods” are mostly applied as an extension of the Finite
Elements Method or one of its derivatives. Instead of using simple basis func-
tions, we represent the studied functions with polynomials of higher degree,
locally in the regions of interest. In other words, we keep the same number
of cells and nodes, and enrich some with potentially more information.

As an example, Barros et al. use this technique to study efforts on a
notched concrete plate represented on Figure 3.4 [19]. The area around and
the area in front of the notch undergo the most mechanical efforts, so they
would benefit from an adapted discretisation. Figure 3.5 shows the mesh
used for the discretisation of the problem, as well as the degree of the basis
polynomials depending on the node: the degree is free to range from p = 1
to p = 6.
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Figure 3.4 – Geometry and applied loading of study by Barros et al. [19]

Figure 3.5 – Discretisation used at the beginning of the computation [19]

63



Figure 3.6 – Illustration of tree-based AMR [65]

3.1.4 h-adaptive technique

For “h-adaptive methods”, we have re-meshing or subdivision: we keep all
the elements at the same order and subdivide them. We can say it is a cell-
based method. As a consequence this increases the degrees of freedom of the
global problem.

One of the versions which is easiest to represent is the h-adaptive method
for Cartesian meshes. This case is sometimes called “tree-based”; for instance
we name the resulting structure a “quadtree” when 2D cells are divided in
2 in every direction, or a “octree” when 3D cells are divided in 2 in every
direction. The term “tree” refers to a sense of hierarchy between coarse
cells and refined cells. Figure 3.6 is extracted from [65] and represents a
2D grid of four coarse cells, out of which two are subdivided into four finer
cells. This can be done recursively, as shown on Figure 3.7 extracted from
[106] and representing a bubble rising through an interface, with tree-based
adaptation.

In most cases, as explained in [26], we want to keep a property of “1-
irregularity”. This applies in cases where we divide cells not once but multiple
times: if the original refinement coefficient r is 2, then in 2D it means we end
up having cells at least 22 = 4 times smaller than the original coarse cells.
And in 3D in means we end up having cells at least 23 = 8 times smaller than
the original coarse cells. In the case of 1-irregularity, for any two neighbouring
cells on the grid, we want them to differ of at most one level of refinement.
We do not want to have a (non-refined) coarse cell neighbouring four little
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Figure 3.7 – Bubble rising through an interface [106]

cells, product of two consecutive divisions by two. This has the consequence
to introduce buffers or margins of refinement.

In fact, h-adaptive methods can easily be combined with other methods
for improved results. For instance, see the r-h adaptive method (e.g. in [12])
and the h-p adaptive method (e.g. in [141]).

We notice that the four latter methods (anisotropic, r, p and h) are all
based on a single mesh. There is no concept of multigrid.

3.1.5 s-adaptive technique

As explained by Fish in [66] – from which Figure 3.8 is extracted –, the
“s-adaptive methods” are methods of superposition of multiple grids. The
superposition is then merged into one composite grid, often resolved at once.
As a consequence, the number of degrees of freedom quickly becomes prob-
lematic. A variant named Arlequin [53] was proposed to treat problems
where domains may have different behaviours (physical or dimensional). The
s-adaptive techniques are mostly used for solid mechanics.

As we will see in Section 3.2, s-adaptive methods are not so far from
patch-based adaptive mesh refinement. The main difference is whether the
superposed grids are solved in one system or rather quite independently.

As a conclusion to all these 5 adaptive methods, we can remember that
they present the property of resulting in one unique grid. This grid is often
complex, because of its number of degrees of freedom, or because of eventual
non-conformities, depending on the method.
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Figure 3.8 – Example of superposition of two grids for a crack problem [66]

3.2 Patch-based mesh adaptation on Carte-
sian grids

The other large category of AMR, on which we will focus from now on, is
the patch-based adaptation. It is sometimes also referred to as block-based
AMR or multi-level AMR. It was introduced in 1984 by Berger and Oliver
in [21] and later improved for shock problems in [20].

This technique is typically applied on 1D, 2D and 3D Cartesian grids.
The first step consists in marking (or “flagging”) some cells of the coarse
grid as meriting a refinement: typically the cells where variations are larger
and/or where an interface between phases is located. This step is similar
to what should be done with the tree-based refinements seen before in Sec-
tion 3.1. Then the flagged cells are bundled together in so-called “patches”
which are areas containing one or several flagged cells. As far as Cartesian
meshes are concerned, those patches are segments in 1D, rectangles in 2D
and parallelepipeds in 3D; in other words, boxes. The union of the patches
is sometimes called a “patchwork” [84] and it should contain all flagged cells
and thus it is common that they also contain non-flagged cells. Although it
is possible to use the patch-based method on non-Cartesian grids, from now
on we will assume to be in a Cartesian environment.

Once the region of interest is covered by patches, the patches are the
definition of the refinement region: we define for each patch a subgrid which
is a regular Cartesian division of the coarse grid contained in the patch. This
defines a finer level of refinement in addition to the original coarse grid. We
will see in Section 3.2.2 that we may apply this logic recursively and create
even finer patches inside the first level patches. This is what is illustrated
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Figure 3.9 – Illustration of patch-based AMR [65]

on Figure 3.9. As each patch is a Cartesian grid too, we can use finite
differences schemes very elegantly and we can opt to keep the same scheme
for all refinement levels.

Patch-based AMR is very powerful because of the rather simple subprob-
lems it creates. Each patch can indeed be considered as its own specific
problem, provided we take care at some point of the communication between
this elementary patch problem, its neighbouring patches, its coarser-level
patch and eventually its finer-level patches. As a consequence, as we will
see in Section 3.3 about the computer implementation, we can distribute the
patches quite individually for computation by several threads.

As a side remark, let us notice that multi-grid approach and the tree-based
one could be made to cohabit, for instance for preconditioning purposes as
shown in Minjeaud [106] or Boyer [32] for example.

3.2.1 Clustering algorithm

Input parameters

In this work, we examine three different methods for the definition of the
patches covering the region of interest. Those are three algorithms to con-
struct the cluster of patches according to some criteria: we will call them
patch creation algorithms, clustering algorithms or even boxing algorithms.

The algorithms take different input parameters, some of which are shown
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Figure 3.10 – Some input parameters for patch creation algorithms

on Figure 3.10. On that figure, we represent a two-dimensional patch of
coarse cells by using a red rectangle. The cells filled in red are the ones for
which the refinement criterion detected that they are of interest. Let us call
that patch P .

The first input parameter of the algorithms is the efficiency goal and will
be noted ηmin. Let us call η(P ) the ratio between number of “flagged” cells
(i.e. of interest) and the number of cells of the patch:

η(P ) =
number of flagged cells of P

number of cells of P . (3.3)

According to our colour scheme on Figure 3.10, it is the ratio between red
cells and the total number of cells of the rectangular patch, so we can compute
η(P ) = 7

20
. Then ηmin is the minimum ratio between flagged area and patch

area that the clustering algorithm may generate, for all patches. In other
words, we want η(P ) ≥ ηmin. It ensures that the refined grid calculation is
concentrated on the areas of interest which are flagged.

The second input parameter is the minimum number of cells a patch has
in any direction (x, y or z), noted nmin. The quantity nmin is an integer and
is counted in number of cells. It is a purely geometrical parameter. Let the
space be discretised with a mesh of elementary space-step ∆x in all directions.
Then we can call Lmin(P ) the minimum length a patch has in any direction
and we can write Lmin(P ) = nmin(P )∆x. In our 2D example of Figure 3.10,
the shortest length is equal to 4 times the elementary length of a cell for this
patch. So we have respected the inequality nmin(P ) = 4 ≥ nmin = 3.
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The third input parameter is simply the maximum number of cells a patch
has in any direction (x, y or z), noted nmax. The quantity nmax is an integer
and is counted in number of cells. It also is a purely geometrical parameter.
Let the mesh have an elementary space-step of ∆x in all directions. Then
we can call Lmax(P ) the maximum length a patch has in any direction and
we can write Lmax(P ) = nmax(P )∆x. In our 2D example of Figure 3.10,
the longest length is equal to 5 times the elementary length of a cell for this
patch. So we have respected the inequality nmax(P ) = 5 ≤ nmax = 6. Of
course, nmax should be greater than or equal to nmin.

The fourth input parameter we consider is the maximum number of cells
of a patch, noted Nmax. The quantity Nmax is an integer and is counted in
number of cells. It can be considered as a maximum surface in 2D and a
maximum volume in 3D. Let the mesh have an elementary space-step of ∆x
in all directions. Then in 2D we can call Smax the maximum allowed surface
and in 3D we can call Vmax the maximum allowed volume. We can then write
respectively Smax = Nmax(∆x)

2 and Vmax = Nmax(∆x)
3. As our Figure 3.10

is in 2D, we will think in terms of surface: for this particular patch P its
number of cells is equal to Nmax(P ) = 20 cells. If we suppose that the patch
respects the Nmax parameter, then we can conclude that Nmax ≥ 20.

Berger-Rigoutsos

The Berger-Rigoutsos clustering algorithm takes its roots in the introduction
of patch-based AMR in [21], followed by [20]. The clustering algorithm was
improved in [22] and has been analysed by Livne in [96]. The idea is to
set a ηmin as the sole constricting goal. As we do not set the three other
geometrical input parameters, there is no constraint on the geometry.

Let P be a 2D patch of dimensions n∆x×m∆y. We number the cells of
P with (i, j) ∈ J0, n− 1K× J0,m− 1K. Let f(i, j) be the flagging function: it
equals 1 if the cell (i, j) is flagged, 0 otherwise. We call ςx be the “signature”
of a (vertical) column and ςy the signature of a (horizontal) row:

ςx(i) =
m∑
j=0

f(i, j), (3.4)

ςy(j) =
n∑

i=0

f(i, j). (3.5)
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Here is how the Berger-Rigoutsos clustering algorithm works, in a recurs-
ive fashion explained in [96]. The initialisation step is to consider the whole
computational domain as one large step. Then, for every iteration and for
every patch, we consider splitting it into two, alternatively in a direction x
or y. For example, in the vertical direction y, we do the following five steps.

1. We test whether the patch contains flagged cells. If not, we drop the
patch (we do not keep it) and we do step 1 again with another patch
candidate. If yes, we continue to step 2.

2. We compute the signature for all i. If there is a coordinate izero at
which ςx(izero) = 0, we make the cut there and go to step 5. Otherwise,
we continue to step 3.

3. We compute a discretised second derivative of ςx. If there is an inflexion
point iinflexion, we make the cut here and go to step 5. Otherwise, we
continue to step 4.

4. We test whether the patch has an associated efficiency greater than
ηmin or not. If not, we cut the patch in the middle. In any case, we
continue to step 5.

5. If we did not cut the patch, we keep it for the final collection of patches
and we proceed to step 1 with another patch candidate. If we did cut
the patch, we proceed to step 1 again for the two resulting subpatches,
but this time in the horizontal direction x.

In the example given in Figure 3.11, we consider a bubble in a liquid
medium. We flag the cells (here coloured in red) which are on or close to
the interface between the two phases. Then, we cover this area of flagged
cells with patches using the Berger-Rigoutsos algorithm. The patches are
displayed as white-bordered rectangles.

We set the input minimal efficiency at ηmin = 0.4. This is a low coefficient
if we compare it to common practices, but it is relevant for the comparisons
we will do in Section 3.3. As only covering efficiency is taken into account,
it is not surprising to see that the patches follow the interface quite closely.

Livne

Livne introduced an improvement of the Berger-Rigoutsos algorithm in [99].
In addition to ηmin, two more parameters are given as inputs: nmin and Nmax.
In fact, the minimum efficiency becomes a second-priority input parameter:

70



Figure 3.11 – Bubble-liquid interface covered by patches with the Berger-
Rigoutsos method

in other words it is essential the algorithm respects the geometric require-
ments that all patches length be longer than nmin cells and that the number
of cells in the patches be smaller than Nmax. If this competes with the ηmin

objective, then the algorithm chooses to respect the geometry input. To take
a practical example, we can have patches with all lengths comprised between
Lmin and 2Lmin and still with an efficiency smaller than ηmin, because cut-
ting this patch into two would result in at least one patch with a minimum
length smaller than the goal Lmin.

The algorithm functions similarly as explained previously for Berger-Rigoutsos
in Section 3.2.1. But in addition, we impose to cut all patches which have
more than Nmax cells and we forbid to cut any patch shorter than nmin in
any direction. This brings comparative advantages discussed later in Section
3.3.4: the patches have more similar sizes when compared to each other.

In the example given in Figure 3.12, we give the input parameters ηmin =
0.4, nmin = 5 and Nmax = 102. Notice that the minimum efficiency goal is
the same as in the example of Figure 3.11 (Berger-Rigoutsos).

nmin – nmax

The third and last algorithm we will analyse here was introduced in [130].
As Livne’s algorithm, it also is a modification of the Berger-Rigoutsos al-
gorithm, based on the same structure. But simply put, instead of using
the input parameters ηmin, nmin and Nmax as with Livne, we suggest to use
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Figure 3.12 – Bubble-liquid interface covered by patches with the Livne
method

the minimum efficiency ηmin, the minimum number of cells in any direction
nmin and the maximum number of cells in any direction nmax. Similarly to
Livne, the geometry parameters nmin and nmax are the priority arguments,
in eventual cases when they may compete with ηmin.

The algorithm functions similarly as explained previously for Berger-Rigoutsos
in Section 3.2.1. But in addition, we impose to cut all patches longer than
nmax in any direction and we forbid to cut any patch shorter than nmin in any
direction. As for the Livne algorithm, this brings comparative advantages
discussed later in Section 3.3.4: the patches are more “square”.

In the example given in Figure 3.13, we give the input parameters ηmin =
0.4, nmin = 5 and nmax = 10. Notice that the minimum efficiency goal is the
same as in the example of Figure 3.11 (Berger-Rigoutsos) and 3.12 (Livne)
and that the minimum number of cells in any direction nmin is the same
as in the example of Figure 3.12 (Livne). Also, we choose nmax such that
(nmax)

d = Nmax where d is the dimension of our problem (here d = 2) and
Nmax is the maximum number of cells of Livne’s algorithm.

For reference, the implementation of the three clustering algorithms we
present is shown in Appendix A.
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Figure 3.13 – Bubble-liquid interface covered by patches with the nmin – nmax

method

Evolution in time

For time-driven problems, the area of interest may evolve and move. In
that case, the flagged area may change and not be covered by patches any
more, which would be an issue. Different solutions can be envisioned, as
explained in [98]. The question is whether it is necessary to recompute the
whole clustering algorithm on each time step, or on the contrary we can use
the patches from time tn for time tn+1.

If the clustering algorithm is very efficient and costs very little in terms of
computation, then the most straightforward method is to recompute a patch-
coverage for each time step. However, if the computation is very costly, then
it may be interesting to save the patches location for a few time steps. One
strategy is to flag some extra cells around the cells of interest, and this way
to cover a larger area with patches. This way we hope that the region of
interest (like the bubble interface for instance), when it moves (because of
advection or dilation for instance), still stays in the patch-covered area for
a few time steps. This can be linked to a regular test to see whether the
patches still sufficiently cover the region of interest.

As far as our computations are concerned, a lot of efficiency progress has
been made on the efficiency of the clustering algorithm. So the clustering
is near instantaneous. This is why we choose to recompute from scratch
the patch distribution for every time step. As a consequence, our clustering
evolves with every time step.
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3.2.2 Multi-level

Patch-based AMR offers the possibility to consider subpatches of patches,
that-is-to-say nested subdomains. This means that if we start with a coarse
grid (level 0), we can define patches in which we define an additional and
finer grid (level 1). Recursively, those level 1 patches can be the hosts for
patches inside them, thus defining a level 2 and so on. Khadra et al. call
this “adaptive ZOOM”, where ZOOM stands for “ZOom Overlapping Multi-
level” [88, 87]. They show this concept can be reused for any multigrid AMR
methode including LDC (see Section 4.1), FAC ([102, 103, 101]) or FIC [8].
Figure 3.9 shows a multigrid configuration with two levels of finer refinement.

The biggest advantage of using nested refinement levels is one of economy,
both of calculation and of memory. The alternative would indeed be to have
a coarse grid and directly a set of patches with an extremely fine grid. Here,
as shown in [97], we want to minimise the number of “too small patches”
by, at the same time, avoiding an imbalance between the extreme levels of
refinement, by going through one or many intermediary levels.

As the levels are supposed to enrich one another, for instance with a defect
correction, we have some liberty as far as this exchange is concerned. Let
us enumerate the levels with the index l, where 0 ≤ l ≤ lmax. For AMR
with only two levels, we always have a simple exchange pattern similar to
what we show on Figure 3.14, that is simply going back and forth between
levels l = 0 and l = lmax = 1. However there is more freedom when we
have more than two levels (lmax ≥ 2). One first pattern of exchange can be
named the “two times V” strategy, shown on Figure 3.15. It means that the
data from the coarsest grid (l = 0) is transmitted to the finer (l + 1) until
the finest (l = lmax) is reached, and then that the data from the finest grid
is transmitted back as rapidly as possible to enrich the data of the coarsest
grid (l = 0), by passing through all the other intermediary grids. The second
pattern of exchange can be named the “W” strategy, shown on Figure 3.16.
It means that the data of a finer grid on level l will not benefit a grid of
level l − 2 unless it has fully enriched the data of the grid directly coarser
(intermediate, l− 1). Some use the terms “V-Cycles” and “W-Cycles”, as in
[8].

Finally, we can notice that the multigrid approach – and even more so
when there are many intermediary grids – can favour the choice of also a
multimodel approach. We can imagine that the models used to represent
phenomenons could be dependent on the characteristic lengths and thus the
grid size, so some levels could get different physical models. This is not the
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Figure 3.14 – Exchange pattern for just two levels

Figure 3.15 – Exchange pattern for more than two levels: “two times V”
strategy

Figure 3.16 – Exchange pattern for more than two levels: “W” strategy
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scope of this research. More details about the coupling of fine models with
coarse models can be found in [123] or [142].

3.2.3 Efficiency of a patch covering and quality func-
tion η

Once we covered the regions of interest of a problem with patches, we may
want to quantify how well it is covered. The covering indeed depends on the
clustering algorithm for instance. In many if not most cases, the patches do
not cover only flagged cells, but also cells not contained in the region marked
as interesting. As a consequence, in the case of Adaptive Mesh Refinement,
we are going to make refined computations on non-interesting cells which
induces a waste of computation power.

Let us index the npatches patches with i and Ni the number of cells of patch
i. Furthermore, if F = {fi}i is a family of real numbers with nF members,
then let us note M({fi}i) the arithmetic average of the family F , such that

M({fi}i) =
1

nF

∑
i

fi. (3.6)

Then, if each patch i has a patch efficiency ηi as defined before in Equation
(3.3), then we can define the quality function η as the “average efficiency”:

η =M({ηi}i). (3.7)

The quantity η is a real number comprised between 0 and 1. To minimise
unnecessary computation, we want η to be as close to 1 as possible.

3.3 Multiprocessing

The computation of rich problems like we have with DNS becomes quickly de-
manding. So it is interesting to search for ways to speed up the computation
time and shrink it from days to hours for instance. It is true that techno-
logical advances lead to the production of faster processors; see Moore’s law
which observes empirically that the density of transistors in microprocessors
doubles every 18 to 24 months [107]. But this can be considered as not suffi-
cient enough. One good way to accelerate computation more is to make use
of new multi-threading architectures.
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There is a wide variety of such machines (see [42] for instance). The
material architecture has a large impact on the best way to program in
order to take advantage of the specificities, as well as a large impact on the
algorithm designs, as we will see in what follows.

The principle of multiprocessing is to find a way such that a large calcula-
tion is divided in smaller problems. We then send each of these problems on
an independent thread, sometimes referred to as “slave-threads”. After the
distributed calculation, results are gathered back to the so-called “master-
thread” and interpreted centrally. In addition, sometimes, the process will
require specific communications between the master-thread and the slave-
threads, or between the slave-threads. This whole masther-slaves structure
can be recursively set and slaves can have what could be considered as slaves
of slaves.

In our case of the simulation of bubbles using patch-based AMR, our
strategy is to distribute the computations of all the patches as independent
problems. Ideally, this means that for n patches, we have n threads and we
distribute the patches among the pool of threads. This way each thread is re-
sponsible for the computation on its own independent patch-limited problem.
Then the results are sent back to the master-thread to generate a complete
picture of the multi-level problem on the whole representation computational
domain.

To be more specific, the strategy that we implement is centred on the
first level of refinement. This means that the computation of the coarse grid
(level 0) is made by the master-thread. Then we distribute the npatches level-1
patches between the nthreads threads that the workstation can generate, as
evenly as possible. If we decided to make a multi-level patch-based AMR
where the number of levels of refinement is greater than or equal to 2, then
we keep the same implementation as explained just before. That-is-to-say,
each thread will be responsible for its assigned level-1 patches, as well as all
all the finer levels patches which are slaves of those level-1 patches. This
is the parallelisation strategy used by Almgren et al. in [4] for a cosmology
simulation powered by block-based AMR on some 50000 cores. In the rest of
this section, we will focus on AMR computation done with only one level of
refinement, with just a coarse grid covered by patches provided a finer grid.
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3.3.1 Load balance and quality function σ

When considering a parallelisation strategy, it is important to correctly bal-
ance the load between the available threads. The goal is that all the threads
have approximately the same quantity of calculations to do, measured in
computation time. This way, all the threads will finish the distributed tasks
at the same time. The opposite situation would be when some faster threads
will have finished their task first and will have to wait for slower threads.
This wait is wasted time for other computation, so we want to minimise it.

In our computations, the load is proportional to the number of cells. This
is independent from the size of the said cells, so it is not directly related to
the space resolution of the finer grid. In order to quantify the disparity of
the load carried by the patches, we introduce a quality function σ. The real
number σ is the “normalised standard deviation ” of the number of cells of
all the patches of the fine grid. Before giving a formula for σ, let us give
some notations.

Similarly as for the quality function η, let us define M(⋆) as the arithmetic
average and let us index the patches with i. Similarly, we will note max({fi}i)
the maximum element of F and min({fi}i) the minimum element of F . As
before, Ni stands for the number of cells in patch i. Then the formula for
the normalised standard deviation of sizes σ reads as follows:

σ =

√
M({N2

i }i)−M({Ni}i)2
max({N2

i }i)− min({Ni}i)2
. (3.8)

The quantity σ is a real number comprised between 0 and 1. For a good load
balance, we want σ as close to 0 as possible.

Limit As a side note, it is possible to find some “pathological” cases where
σ would be small and the distribution of patches would still be ill-balanced.
For instance, let us take the example where we have np patches in total. An
amount of np − 2 patches are of size N , one patch is very small and of size
1 and one is very large and of size 2N − 1. In other words, two patches are
outliers. Then we have the following equalities:

M({Ni}i) = N, (3.9)

M({N2
i }i) =

1

np

(
(np + 2)N2 − 4N + 2

)
, (3.10)
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σ2 =
1

np

2N2 − 4N + 2

4N2 − 4N
=

1

np

1

2N

(N2 − 2N + 1)

N − 1
=

1

np

N − 1

2N
. (3.11)

So if np is large, we may have a small normalised standard deviation, but the
load is very unbalanced.

This pathological condition could be avoided if we compute the deviations
of higher orders. But in what follows, we will assume we are not in extreme
conditions and we will stick to the deviation of second order σ.

3.3.2 Communication minimisation and quality func-
tion γ

For certain technologies of parallelisation, communication between threads
is very time-consuming. This concerns distributed memory parallelisation as
with MPI for instance, as opposed to shared memory parallelisation as with
OpenMP for instance. If we choose to use distributed memory parallelisation,
for example with a view to using a computation cluster, then we should
minimise the communication between the patches of the fine level. In our
case of non-overlapping patches, communication may occur on the borders
of the patches.

From a purely geometry point of view, in 2D we are trying to find the
shape that minimises its perimeter for a given area. In the case of necessarily
rectangular patches on a 2D-Cartesian grid, this shape is not a circle but
a square. On a 3D-Cartesian grid, we are trying to find the shape that
minimises the surface for a given volume; this would be a cube.

For a given 2D or 3D patch, let the shortest side be the one with smallest
length, among respectively the 2 possible sides (x or y) or the 3 possible
edges (x, y or z). Let the longest side be the side or the edge with the largest
length. We can define the “squareness” γi of a patch indexed by i by the
ratio between the length of its shortest side and the length of its longest side:

γi =
length of shortest side

length of longest side
. (3.12)

The quantity γi is equal to exactly 1 for square patches and cubic patches.

As in last subsection, let us define M(⋆) as the arithmetic average. Then
we can define the quality function γ as the “average squareness” of the square-
nesses of the patches:

γ =M

( {
length of shortest side of patch i

length of longest side of patch i

}
i

)
. (3.13)
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The quantity γ is a real number comprised between 0 and 1. For a minimisa-
tion of communication between patches, we want γ as close to 1 as possible.

3.3.3 Calculations speed-up

Let us consider a computation which duration can be measured; we call it the
computation in original set. Let us also consider another computation with
equivalent results, but made within a shorter time; we call it the computation
in modified set. The speed-up of the computation is a quantification of the
improvement of the calculation time. It has been introduced with Amdahl’s
law in [7] and its simplest expression is the following in a very general sense:

su =
computation time in original set

computation time in modified set
=

Toriginal

Tmodified

. (3.14)

The computation in modified set takes a shorter time, so su is a real number
larger than 1.

In our case, we intend to improve the computation time with two main
consecutive contributions: first the Adaptive Mesh Refinement instead of a
fine grid on all the computed space, and then our parallelisation strategy. As
a consequence, we can distinguish several possible speed-ups:

suAMR =
computation time with a fine grid everywhere

computation time with AMR
=

Tfine,seq

TAMR,seq

,

(3.15)
su∥ =

computation time with AMR in sequential set

computation time with AMR and parallelisation
=

TAMR,seq

TAMR,∥
,

(3.16)
suAMR,∥ =

computation time with a fine grid everywhere

computation time with AMR and parallelisation
=

Tfine,seq

TAMR,∥
.

(3.17)
In theory, we have the following formula:

suAMR,∥ = suAMR × su∥. (3.18)

Others like Delage-Santacreu et al. worked on suAMR specifically [54]. How-
ever as for us, we will concentrate our efforts in what follows on the speed-up
which is due to the parallelisation strategy, that-is-to-say su∥.

Intuitively, we want to improve (i.e. diminish) the computation time with
a higher number of threads nthreads. We can say that su is an increasing
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(a) Dilation factor = 1 (b) Dilation factor = 6

Figure 3.17 – Ellipsoidal bubbles covering test cases

function related to the number of threads. Optimally, the speed-up would
be equal to the number of threads; a computation with twice the number of
threads would be twice as fast as the sequential one. However this is rarely
the case and the purpose is to be as close to su(nthreads) = nthreads as possible.

3.3.4 Quantitative comparison of quality functions

In order to compare the quality of the three clustering algorithms, we com-
pare their quality functions η, σ and γ on several test cases. The collection
of test cases we choose is the covering of a thin interface by patches, for
ellipsoidal bubbles which are more or less dilated.

On a 2D grid of 300∆x × 300∆x, we define an ellipsoidal bubble which
has a ratio between its longest radius and shortest radius equal to 𝟋, the
dilation factor, as shown on Figure 3.17. We make 𝟋 vary from 𝟋 = 1
(Figure 3.17a) to 𝟋 = 6 (Figure 3.17b) with a few hundreds steps. For each
step, we redo the computation of each algorithm (Berger-Rigoutsos, Livne
and nmin – nmax) in order to cover the interface between the bubble and its
surroundings. The numerical input parameters for each algorithm are given
in Table 3.1. We choose them identical between algorithms (when it makes
sense), such that the comparison holds.

Figure 3.18 shows the resulting efficiency of the patch covering, as a func-
tion of the dilation factor. The different colours of the graphs stand for each
patch-creation algorithm: red for Berger-Rigoutsos, blue for Livne and green
for nmin – nmax. As a reminder, the closer η is to 1, the better the covering is
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ηmin nmin nmax Nmax

Berger-Rigoutsos 0.4
Livne 0.4 5 102

nmin – nmax 0.4 5 10

Table 3.1 – Input parameters for our ellipsoidal bubble test cases

Figure 3.18 – Resulting efficiency η, as a function of the dilation factor and
of the patch creation algorithm (higher is better)

because it minimises the unnecessary computation. Clearly, the conclusion
for this figure is that the Berger-Rigoutsos algorithm seems to be better for
this aspect.

Figure 3.19 shows the normalised standard deviation of the patch covering,
as a function of the dilation factor. We chose the same colour code as before.
As a reminder, the closer σ is to 0, the better the covering is because it
permits a good load balance. The conclusion of this figure is that nmin –
nmax seems to be better for this aspect.

Figure 3.20 shows the average squareness of the patch covering, as a func-
tion of the dilation factor. Again, we chose the same colour code as before.
As a reminder, the closer γ is to 1, the better the covering is because it
theoretically minimises communication. The conclusion of this figure is that
nmin – nmax seems to be better for this aspect.

Table 3.2 summarises our last statements. Although we have studied only
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Figure 3.19 – Normalised standard deviation σ, as a function of the dilation
factor and of the patch creation algorithm (lower is better)

Figure 3.20 – Average squareness γ, as a function of the dilation factor and
of the patch creation algorithm (higher is better)
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Berger-Rigoutsos Livne nmin – nmax Note
η 0.503 (0.037) 0.454 (0.042) 0.463 (0.043) higher is better
σ 0.270 (0.035) 0.234 (0.038) 0.134 (0.031) lower is better
γ 0.603 (0.093) 0.623 (0.097) 0.778 (0.049) higher is better

Table 3.2 – Comparison of the average of quality functions of each algorithm
on a series of tests (+ standard deviation of quality function)

some particular cases, we can use this study to make a selection of the right
algorithm.

• For sequential programming, efficiency is the foremost priority. So the
Berger-Rigoutsos algorithm seems more appropriate.

• For multiprocessing, we want to balance CPU load and to minimise
CPU communications. So the nmin – nmax algorithm seems more ap-
propriate.

Therefore, we choose nmin – nmax as our patch covering algorithm, which we
will later call A. Our choice remains to be confirmed with a real application,
as we will proceed in Section 3.4.

3.4 Application: pure advection

In order to have some real-life indications of how the different clustering
algorithms perform, we used the canonical Kothe-Rider test introduced in
[119]. It is the simulation of the deformation of a sphere due to a time-
periodical advection velocity field.

Let the space domain be a unit cube [0, 1] × [0, 1] × [0, 1]. We locate a
sphere with the coordinates (x0, y0, z0) for its centre. It represents a bubble
with a radius R. In our example, the numerical values are the following:

• x0 = 0.35,

• y0 = 0.35,

• z0 = 0.35,

• R = 0.15.

The inside of the sphere represents a gas bubble, which void fraction
α(x, y, z, t) or colour index Y (x, y, z, t) is equal to 1. The outside, on the
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contrary, represents the liquid surrounding. So its void fraction or colour
index is equal to 0. As we are reasoning with small DNS scales, we want to
think in terms of sharp interface, theoretically without mixtures. So we will
keep the notation Y ∈ {0, 1} in what follows.

The field Y is advected by a velocity field u:

∂tY + u · ∇Y = 0. (3.19)

Let T be a time period. The velocity field is set to be a periodical function
of time:

ux(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz)cos(2π t
T
),

uy(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz)cos(2π t
T
),

uz(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz)cos(2π
t

T
).

(3.20)

In our example, the numerical value for the time period is the following:

• T = 6.

Therefore, the bubble is transported until time t = T /4. Then the direc-
tion of the flow is reversed and the sphere comes back to its initial position
at time t = T /2. If the simulation were done well – that is if the numerical
scheme were ideal – then the initial and final positions of the sphere should
coincide. As a consequence, it is a good way to assess the quality of an ad-
vection scheme. A similar test case also exists for 2D, but we choose to focus
on the more computationally intensive 3D geometry.

Many use the test case to challenge the quality of their advection scheme,
like by Mekkas [104] or Menier [105].

3.4.1 Advection scheme

As a reminder, we use Cartesian meshes because their multi-level implement-
ation is the easiest. As a consequence, a finite differences approach is the
most intuitive to discretise the space and time. Because it will simplify the
writings greatly, in the following subsubsection, we will write discretisation
schemes for the one-dimensional problem

∂tY + u∂xY = 0 (3.21)

where u is positive, but not necessarily constant in time nor uniform across
space. The case of u negative can be obtained by symmetry. We explain our
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computation of problems with a dimension strictly greater than 1 in Section
3.4.1.

Equation (3.21) is an advection equation and it respects the principle of
maximum. In what follows, we will present only three numerical schemes for
this equation:

• the upwind scheme, the most basic scheme,

• WENO, as an example of a widely used high-order scheme,

• the limited downwind scheme, which we will implement.

Of course, many more very important schemes exist (see [120] for instance).

In what follows, we will discretise the time with exponent n and a time
step ∆t, such that ∀n ∈ N, tn = n∆t. Similarly, we will discretise the space
with index j and a grid space ∆x, such that ∀j ∈ J0, nnodes − 1K, xj = j∆x
if x ∈ [0, (nnodes − 1)∆x]. We locate the colour function Y as well as the
velocity u at the centre of cells. Thus we will note Y n

j = Y (xj, t
n).

Upwind

In this subsection we will present the most basic working scheme which is
stable and satisfies the maximum principle; the upwind scheme (see for in-
stance [136]). As far as time discretisation is concerned, the discretisation of
∂tY as the non-centred expression Y n+1−Y n

∆t
is very usual. Depending on what

follows for the space discretisation, the time discretisation can be explicit or
implicit. In what follows we choose the explicit form:

Y n+1 − Y n

∆t
+ (u∂xY )n = 0. (3.22)

As presented for instance in [3], the upwind way to discretise ∂xY is as
follows:

∂xY ≈ Yj − Yj−1

∆x
. (3.23)

since we took u ≥ 0. The upwind scheme is L2 and L∞ stable as long as the
CFL condition is respected:

|u|∆t ≤ ∆x. (3.24)

If u is not uniform, then the CFL condition reads as follows:

max(|u|)∆t ≤ ∆x (3.25)

86



where max(|u|) is the maximum of |u| on the computational domain.

The induced error of the upwind scheme is in O(∆t+∆x). Unfortunately,
the scheme is very diffusive with a diffusivity coefficient of |u|

2
(∆x − |u|∆t).

The diffusion accumulates with time, which makes the scheme not fit for the
study of the advection of bubbles defined by a sharp interface.

Higher order schemes, WENO

The upwind scheme probably is the most simple scheme existing for the
advection. A lot of progress has been made on the topic, in particular to
improve the accuracy. One main way to achieve a higher order of accuracy
is to use larger stencils. For instance, Vila shows in [143] how to construct
a 7-point second-order accurate (TVD) scheme from any 3-point first-order
accurate (TVD) scheme. As another example, we present here one of the
most advanced high order schemes: the Weighted Essentially Non-Oscillatory
Scheme (WENO).

WENO was introduced by Liu, Osher and Chan in [95]. It is an improve-
ment of the ENO (Essentially Non-Oscillatory) schemes [79, 78, 125, 126].
ENO and WENO consist in interpolating the function we want to discretise
by a polynomial of degree r. The schemes introduce a numerical dissipation
in the discontinuity areas to avoid oscillations and still keep a high order of
accuracy in the other areas.

In the case of ENO, the scheme uses the average value of the function on
stencils of r − 1 cells around each considered cell. One of the specificities of
the algorithm is that it picks the “smoothest” stencil – on which the solution
is the least sharp –, depending on the region. Because r can be large (for
instance equal to 5), this method is said to be a high order scheme. In the case
of WENO, it is not one stencil that is picked up, but rather we use a specific
convex combination of all the considered stencils. Each candidate stencil is
taken into account with a relative “weight” proportional to the smoothness
of the discretised function on the stencil. As a consequence, this increases
the order of accuracy by one order. One can prove that the resulting order
of accuracy should be at least r + 1 in shock-free areas and r around the
cells where there is a discontinuity. In practice, the order of accuracy is even
better and it is measured to be closer to r + 2.

As detailed in [93], let us focus on the expression of WENO in a one-
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dimensional case, with an order of 3:

∂Y

∂t
+
∂f(Y )

∂x
= 0 (3.26)

where for instance f(Y ) = uY . The characteristic flux f(Y ) can be decom-
posed in a positive and a negative part:

f(Y ) = f+(Y ) + f−(Y ) (3.27)

with
∂f+

∂Y
≥ 0,

∂f−

∂Y
≤ 0. (3.28)

By focusing on a third-order WENO scheme, we have for each cell i three
possibilities of stencils: 

S(1) = {i− 2, i− 1, i},
S(2) = {i− 1, i, i+ 1},
S(3) = {i, i+ 1, i+ 2}.

(3.29)

On these three support stencils, we define three associated fluxes; in the case
of the positive part f+

i+ 1
2

, we get:

f
(1)+

i+ 1
2

=
11

6
f+
i − 7

6
f+
i−1 +

2

6
f+
i−2,

f
(2)+

i+ 1
2

=
2

6
f+
i+1 +

5

6
f+
i − 1

6
f+
i−1,

f
(3)+

i+ 1
2

= −1

6
f+
i+2 +

5

6
f+
i+1 +

2

6
f+
i .

(3.30)

Now we recontruct the convex combination of f+
i+ 1

2

:

f+
i+ 1

2

=
3∑

k=1

w(k)f
(k)+

i+ 1
2

(3.31)

with
w(k) =

σ(k)

σ(1) + σ(2) + σ(3)
, (3.32)

σ(k) =
W (k)

(ϵ+ IS(k))
p . (3.33)
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The W (k) are the correct weights: W (1) = 1/10, W (2) = 6/10 and W (3) =
3/10. The real numbers IS(k) are the “smoothness indicators” to decrease
the influence of discontinuities:

IS(1) = 13
2
(f+

i−2 − 2f+
i−1 + f+

i )
2 + 1

4
(f+

i−2 − 4f+
i−1 + 3f+

i )
2,

IS(2) = 13
2
(f+

i−1 − 2f+
i + f+

i+1)
2 + 1

4
(f+

i−1 − f+
i+1)

2,

IS(3) = 13
2
(f+

i − 2f+
i+1 + f+

i+2)
2 + 1

4
(3f+

i − 4f+
i+1 + f+

i+2)
2.

(3.34)

Finally, we choose p = 2 and ϵ = 10−6 to avoid divisions by 0.

As an other example of use, the WENO scheme was used in its fifth order
variant in [36], to model (potentially mixing) multi-phase flows. Irrespective
of the order, we have anyway an accumulation of the diffusion error as time
passes. As for the upwind scheme, this is in particular true for step-shaped
functions as the colour function of a bubble. This is what leads us to the
following scheme.

Limited downwind scheme

To quote [51], Després and Lagoutière noted that “a numerical scheme should
ideally respect two points which may be viewed as incompatible: a) a numerical
method must have enough dissipation in order to be stable and to capture
discontinuous solutions when applied to non-linear hyperbolic problems; b)
on the other hand it is important to use a numerical method with as low
numerical dissipation as possible, at least one order of magnitude below the
real physical dissipation”.

This is how they came to designing a numerical scheme that takes the
downwind value as much as possible. Let us consider the 1D problem ∂tY +
u∂xY = 0 where u is uniform on the domain, constant in time and further-
more positive. Let us discretise the space with index j and the time with
exponent n as follows in the finite-volume-like discretisation:

Y n+1
j = Y n

j − u
∆t

∆x
(Y n

j+ 1
2
− Y n

j− 1
2
) (3.35)

with ∆t the time step and ∆x the space step (cell size). We use a simplified
notation as follows:

Y ⋆
j = Yj − u

∆t

∆x
(Yj+ 1

2
− Yj− 1

2
). (3.36)

The velocity u being taken positive, let us define mj and Mj for all j as
follows: {

mj = min(Yj, Yj−1),
Mj = max(Yj, Yj−1).

(3.37)

89



Let us then define bj and Bj for all j as follows:
bj = max(mj+1,Mj +

∆x

u∆t
(Yj −Mj),

Bj = min(Mj+1,mj +
∆x

u∆t
(Yj −mj).

(3.38)

As presented in Lagoutière’s thesis [94], the downwind limiting scheme writes
as follows:

Yj+ 1
2
=


bj if Yj+1 < bj,
Yj+1 if bj ≤ Yj+1 ≤ Bj,
Bj if Bj < Yj+1.

(3.39)

As shown in [51], this limited downwind scheme is equivalent to the
so called Ultra-Bee limiter [120, 136], but here proposed in a constructive
way. The scheme extends for negative values of the velocity u by symmetry.
Moreover, we can also extend the scheme for a non-uniform and non-constant
u: in this case, for the computation of Yj+ 1

2
, we replace the value of u by the

local value uj. This extension of the scheme has been used by many, like by
Bernard Champmartin and De Vuyst for the simulation of free-surface flows
for instance [24]. Kokh and Lagoutière show good results when applying it
for a 5-equation model [91] and Dellacherie achieves a successful simulation
of DLMN in [46].

Després, Lagoutière and coworkers made an extension of the limited down-
wind scheme called “Vofire” [52]. It keeps the same powerful properties and
is extended for unstructured meshes, that is not necessarily Cartesian. It
would be interesting to try Vofire out on our Cartesian grids.

Multidimensional scheme

The schemes we presented in the previous sections were expressed for one-
dimensional spaces. We choose to do the simulation of the 3D Kothe-Rider
test with a directional splitting of the one-dimensional limited downwind
scheme. This means that we do not solve ∂tY +u ·∇Y = 0 directly. Instead,
we rather discretise the following equations one after another:

∂tY + ux∂xY = 0, (3.40)

∂tY + uy∂yY = 0, (3.41)
∂tY + uz∂zY = 0. (3.42)
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We understand that the “composition” of these three equations – which we
might loosely write as (3.42) ◦ (3.41) ◦ (3.40) – is “equivalent” to the 3D
equation (3.19) we want to solve.

Let us semi-discretise this set of equations in time. Let ∆t be the time
step. We compute ∆t beforehand – for instance with a CFL condition based
on max(u) – and we keep it the same for the three directions x, y and z.
This is independent from the choice of an implicit or explicit scheme. Let Y ⋆

and Y ⋆⋆ be intermediary results:

Y ⋆ − Y n

∆t
+ ux∂xY = 0, (3.43)

Y ⋆⋆ − Y ⋆

∆t
+ uy∂yY = 0, (3.44)

Y n+1 − Y ⋆⋆

∆t
+ uz∂zY = 0. (3.45)

The composition (3.45) ◦ (3.44) ◦ (3.43) brings an error of a magnitude of
O(∆t). This is however fortunately not such an issue, since each transport
scheme will already bring an error in O(∆t). So the directional splitting only
marginally affects the order of convergence and the precision.

3.4.2 Multilevel procedure

We now detail the procedure used to solve equations on two AMR levels. Let
Ω be the computational domain. We divide it into two areas which depend
on time:

1. Ω□(t), the area of interest at time t, which is covered by patches,

2. Ω⃝(t), the complementary of Ω□(t) at time t in Ω.

We get the following decomposition:

∀t ∈ R+,Ω = Ω□(t) ∪ Ω⃝(t). (3.46)

We discretise the computational domain with a coarse mesh called ΩH . We
refer to this mesh as the “level 0” and it does not evolve with time. The
mesh ΩH is subdivided into two complementary domains; ΩH

□ (t) and ΩH
⃝(t).

Since the area Ω□(t) is the region of interest, it is covered by the “level 1”
fine mesh Ωh

□(t).

Let itert be an integer noting a time iteration of computation and let
t = t(itert) be the associated time, strictly increasing with itert. We note
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Y (ΩH , itert) the vector of values of one or many variables Y on the mesh ΩH

at time t. Similarly, Y H
0 is a given value for this or these variables Y . We

will use Y H
0 as initial conditions. Let ∆t(itert) ∈ R be a time step depending

on t(itert). Let us define the following discrete iterative problem:

{
Y (ΩH , itert = 0) = Y H

0 ,
∀itert ∈ N, Y (ΩH , itert + 1) = O

(
Y (ΩH , itert),∆t(itert)

)
.

(3.47)

We want to compute this problem on two levels. That means we will deal
with Y discretised on ΩH , Ωh

□(t), ΩH
□ (t) and ΩH

⃝(t). For the sake of simplicity,
we assume that the refinement coefficient r is the same in all directions x, y
and z.

Let us use Figure 3.21 to clarify some notations. The dotted line Σ(0)
represents an interface between bubble and liquid at time iteration 0. The full
line Σ(1) represents the interface at time iteration 1. They are included in the
larger computational domain Ω, not annotated on the figure. At each time
step, around the interface, we define a square area of interest (respectively
Ω□(0) and Ω□(1)) represented by a brown square. We can differentiate three
subareas: we represent Ω□(0) \ Ω□(1) in white, Ω□(0) ∩ Ω□(1) in pink and
Ω□(1) \ Ω□(0) in red.

Let us define some operators.

• Operator F determines the initial conditions for Y (x, t = 0), for all
x ∈ Ω, following an analytic formula. In particular it gives the value
on the coarse mesh (x ∈ ΩH) and on the fine mesh (x ∈ Ωh

□(0)). In
other words, it gives Y (ΩH , 0) and Y (Ωh

□(0), 0).

• Operator A takes a coarsely discretised Y (ΩH , itert) as an argument
and locates the area of interest. It then computes the localisation of
the AMR patches and thus of the fine level Ωh

□(itert). If A is well
designed, then the intersection between patch coverings at successive
time iterations cover the area of interest along its evolution. This is
what we represented on Figure 3.21: Σ(1) ⊂ Ω□(0) ∩ Ω□(1).

• Operator O takes Y (ΩH , itert) and ∆t as arguments and computes
Y ∗(ΩH , itert + 1). The star as exponent ∗ indicates that the result is
intermediary.

• Operator Or takes Y (Ωh
□, itert) and ∆t as arguments and computes

Y ∗(Ωh, itert+1). In fact, as the scripture suggests, Or is a composition
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Σ(0)

Σ(1)

Ω□(0) \ Ω□(1)

Ω□(0) ∩ Ω□(1)

Ω□(1) \ Ω□(0)

Figure 3.21 – Intersection of Ω□(itert = 0) and Ω□(itert = 1)
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of r times O with a time step of ∆t
r

:

Or
(
Y (Ωh

□, itert),∆t
)

= ⃝
i=1...r

O
(
⋆,

∆t

r

)(
Y (Ωh

□, itert)
)
,

= O
(
⋆,

∆t

r

)
O
(
⋆,

∆t

r

)
. . . O

(
Y (Ωh

□, itert),
∆t

r

)
.

(3.48)

Again, the star as exponent ∗ indicates that the result is intermediary.

• Operator 1 expresses the copy of data on a subdomain, or in other
words the multiplication by an indicator function. For instance, we
can write the following definition:

1
(
Y ∗(ΩH , itert + 1),ΩH

⃝
)
= 1ΩH

⃝

(
Y ∗(ΩH , itert + 1)

)
. (3.49)

• Operator RH is the restriction of a fine discretisation Y h
□ onto the coarse

grid ΩH
□ .

• Operator Ih is the interpolation (linear, quadratic, trigonometric...) of
a coarse discretisation Y H

□ onto the fine grid Ωh
□.

Figure 3.22 shows a logical flowchart to compute the initial conditions at
itert = 0, t = 0, as well as to compute the first step at itert = 1, t = ∆t.
The green boxes indicate the data we save and the blue boxes (often with
variables superscripted with an asterisk) indicate intermediary data that we
do not save.

It is important to notice that we made an important assumption for the
computation of the “coarse time step” ∆t and the “fine time step” ∆t

r
. We

determine the coarse step ∆t with a CFL condition which takes a velocity as
an argument; in this case the velocity discretised at the coarse level, noted
uH :

max(||uH ||)∆t ≤ ∆x. (3.50)
If the variations of u are large on short distances, especially in the region of
interest Ω□, then it is possible that we get the following problematic situation:

max(||uH ||) ≤ max(||uh||). (3.51)

In this case, we would need a smaller time step on the fine grid Ωh
□ for stability

purposes: ∆t
r

would already be too large, knowing that the grid size of Ωh
□ is
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equal to ∆x
r

. As a consequence, we choose the following value for ∆t:

∆t = k
∆x

max(||uH ||, ϵCFL)
(3.52)

where k = 0.7 is an extra margin coefficient for CFL stability and ϵCFL is a
small positive real number protecting us from the case uH = 0. Additionally,
we make the assumption that ∆t

r
is now small enough (compared to the

spatial variation of uh) for a good computation on the fine level. In our
work, we did not find counter-example situations.

3.4.3 Results in CPU time speed-up

As explained before, we want to estimate su∥ for the different clustering
algorithms. We realise tests on the Berger-Rigoutsos and the nmin – nmax

algorithms definition of speed-up because, as shown in Section 3.3.4, these
two algorithms are the most promising ones. Our results ([129] and later
work) show that the speed-up is – as expected – a function of the algorithm,
the number of threads and the problem we try to represent and cover with
patches.

1.7 billion cells The first Kothe-Rider test we make is set on a 3D grid
of 200× 200× 200 cells, with a refinement coefficient of 6 in every direction,
on one level only. As a consequence, were the grid refined everywhere, there
would be (200 × 6)3 = 1728000000 fine cells, so more than 1.7 billion. As
we are using the limited downwind scheme on a Y field equal to either 0
or 1, we can conclude that the results we got with local refinement (AMR)
are strictly equal to those we would have had with a fine grid everywhere.
This is why we refer to this problem as strictly equivalent to more than 1.7
billion cells. The results themselves of the simulation do not depend on the
clustering algorithm and are shown on Figure 3.23. An online video is also
available at https://youtu.be/Ixgge4h6eF8.

The input parameters of each algorithm are given in Table 3.3. At the time
step 0, these parameters result in creating 7113 patches for Berger-Rigoutsos,
172 for Livne and 172 as well for nmin – nmax. The reason that Berger-
Rigoutsos creates so many patches is probably that the covering followed the
interface very closely. This is understandable since the algorithm is allowed
to create very small patches, even to the size of 1× 1× 1.
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Figure 3.23 – Advected bubble visualised with its 3D patches

ηmin nmin nmax Nmax

Berger-Rigoutsos 0.8
Livne 0.8 7 122

nmin – nmax 0.8 7 12

Table 3.3 – Input parameters for our 1.7 billion cells Kothe-Rider test
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(a) Berger-Rigoutsos (b) Livne (c) nmin – nmax

Figure 3.24 – Speedup for the 1.7 billion cells test, for all algorithms

Figures 3.24a, 3.24b and 3.24c show the speed-ups for the three algorithms,
for a machine that can activate from 1 to 12 simultaneous threads. As Livne
and nmin – nmax approximately give similar results, we choose to focus on
the comparison between Berger-Rigoutsos and nmin – nmax.

Figure 3.25 shows the results of computation time and speed-up of both
Berger-Rigoutsos (in red) and nmin – nmax (in green). The first thing we
notice is that the computation in a one-thread set – that-is-to-say in sequen-
tial set – is much longer for Berger-Rigoutsos than for nmin – nmax: 10.3
hours compared to 4.5 hours. This is because the workstation used a lot of
memory and had to “swap”, that is to say it used the ROM memory instead
of the faster RAM. It is hard to explain the reason; maybe this could be
explained by the fact that the Berger-Rigoutsos algorithm produced many
more patches, as we saw earlier. We will see this aspect in more detail in the
next section, Section 3.4.4. Second, we see that the speed-up of the Berger-
Rigoutsos algorithm stays approximately constant around 1. In other words,
it barely benefits from our parallelisation strategy. On the contrary, the
nmin – nmax clearly benefits from our parallelisation strategy, as expected.
The speed-up with the 12 threads of our workstation is approximately 2.5,
so that brings the workload from 4.5 h to 1.8 h. It would be fair to remark
that a speed-up of 2.5 for 12 CPUs is far from ideal. But as a first attempt,
it is promising for future developments.

4 billion cells The second Kothe-Rider test we make is set on a 3D grid
of 200 × 200 × 200 cells also, but this time with a refinement coefficient of
8 in every direction, still on one level only. As a consequence, were the grid
refined everywhere, there would be (200 × 8)3 = 4096000000 fine cells, so
more than 4 billion. Again, as we are using the limited downwind scheme
on a Y field equal to either 0 or 1, we can still say that the results we got
with local refinement (AMR) are strictly equal to those we would have had
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Figure 3.25 – Speed-up for the 1.7 billion cells test

with a fine grid everywhere of 4 billion cells. The results themselves of the
simulation are of course similar to what we had before, but more precise.

In other words, when we compare to the 1.7 billion cells case, what we did
is dramatically increase the number of cells on the first level of refinement.
According to our strategy this is the level we make parallel. So we increase
the relative computation subject to parallelisation. We thus expect better
results for speed-up.

This time, it is not possible to compute speed-up results for the Berger-
Rigoutsos algorithm. Again, it is difficult to assert a convincing reason;
perhaps that the calculation is too heavy because of the number of patches,
so the computation did not even finish. On the contrary, the computation
with patches defined with nmin – nmax did give results. So we can measure
speed-ups, which we show in Figure 3.26.

We can say that the results are even better than with the 1.7 billion test
case. Indeed, the 4 billion cells computation takes 28.9 h in a sequential set,
but only 6.3 h with 12 threads activated. This leads to a speed-up su∥ of
approximately 4.6. This is encouraging for future developments.
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Figure 3.26 – Speedup for the 4 billion cells test

3.4.4 Results in memory consumption

In addition to speed improvements with parallelisation, using AMR also is a
way to save on the memory consumption of a computation. The computation
is indeed more precise on the regions of interest, so we save the need to store
the less relevant data of cells out of the regions of interest. This is because
the memory storage is proportional to the number of cells and variables of a
problem. The improvements in terms of memory due to AMR are thoroughly
explained by Delage-Santacreu et al. in [54].

In our case, we have not measured those improvements quantitatively yet.
However we have noticed that we were able to post-process and visualise
information-rich simulations like our 4 billion cells Kothe-Rider test, on a
good but only standard workstation.

Memory challenges will be all the more important when we try to avoid
the swapping if it occurs. It will also be crucial when we will implement
distributed memory parallelisation, for instance with a hybrid configuration
OpenMP together with MPI.
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Chapter 4

Elliptic equations and Abstract
Bubble Vibration model

4.1 Resolution of elliptic equations on patch-
based AMR with LDC

Now that we have determined with what algorithm we will generate patches,
we want to make our model of bubbles more complete with different kinds of
equations. In particular, we will not restrict ourselves with just hyperbolic
equations like ∂tY + u · ∇Y = 0. We want to also be able to use elliptic
equations for instance.

Elliptic partial differential equations – like −∆ϕ = s for example – present
the challenge of making all points in space very linked with all the other
points in space. That is, a small variation at one point will have an influence
on all other points. As a consequence, our patch-based AMR strategy is not
evident any more. In the case of hyperbolic systems, we used to consider
each patch as a nearly independent problem. As this is not the case any
more, we have to adapt our strategy.

Solving an elliptic problem with a patch-based locally refined AMR grid
requires specific techniques. One method could be the Fast Adaptive Com-
posite Grid (FAC) method if we consider the multi-level grids as a single com-
posite grid [102, 103, 101]. Another method is the Flux Interface Correction
(FIC) method introduced by Angot et al. in [8] and adapted to conservative
equations. Nonetheless, in our work, we use a special case of the Local Defect
Correction (LDC) method introduced in [74]. Ferket and Reusken show in
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[64] that the two methods give identical iterative results. The explanation of
LDC that follows is largely based upon the clear explanations given in [64].

4.1.1 Global coarse grid problem

Dirichlet boundary conditions problem Let Ω be the (closed) space
of our problem, with a boundary ∂Ω. Let L be a scalar linear elliptic second-
order differential operator. We want to solve the following Dirichlet boundary
conditions problem: {

Lϕ = s in Ω,
ϕ = g on ∂Ω. (4.1)

We assume that Equation (4.1) admits a solution ϕexact which presents large
variations in a limited volume Ω□ ⊂ Ω and that the solution behaves very
smoothly in the region outside of Ω□, which we note Ω⃝. We have thus
Ω = Ω□ ∪ Ω⃝. The boundary ∂Ω□ can be divided in two parts: one part
that coincides with ∂Ω and one part on the inside of Ω. In this section, we
will call the latter part the exchange area Γ = ∂Ω□ \ ∂Ω between Ω□ and Ω.
We represent these notations on Figure 4.1. In particular, Ω□ is drawn with
a blue rectangle and Γ is drawn with a full blue line. We name Ω⃝ ∪ Γ the
area of Ω which is covered by Ω⃝ or by Γ.

Numerical discretisation We want to use a numerical approximation
based upon a finite differences discretisation since we use Cartesian meshes.
We use two uniform grids: one global (level 0) with a cell size H which covers
Ω, and one local (level 1) with a cell size h which covers only Ω□. We will
name them respectively ΩH and Ωh

□. As the solution to (4.1) evolves very
rapidly (in space) on the region of interest, we want h < H. Let the integer
r = H

h
be the refinement coefficient; r is often taken as smaller than 10.

Figure 4.2 shows ΩH in black (and blue in the Ω□ region) and shows Ωh
□ in

blue, as well as H and h in orange, with r = 2 in every direction of space. We
can also define a coarse exchange area grid ΓH : it is the set of coarse faces
and nodes located on Γ. Similarly, we define the fine exchange area grid Γh.
We name ΩH

⃝ ∪ ΓH the area of ΩH which is either covered by Ω⃝ or by Γ.
We will also consider the composite grid Ωc, which is the union of the global
coarse grid ΩH and the local fine grid Ωh

□. The nodes of Ωc are represented
by green balls on Figure 4.3.

Given these discretisations, in the following demonstrations we choose to
place variables at the nodes of the grids. This brings us a discretised coarse
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Ω⃝

∂Ω

Ω□

Γ

Figure 4.1 – Nomenclature for areas in Ω = Ω□ ∪ Ω⃝

ΩH
⃝

Ωh
□

H

h

Figure 4.2 – Nomenclature for grids in Ω = Ω□ ∪ Ω⃝
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Figure 4.3 – Nodes of Ωc

grid problem in a matrix form:

LHϕH = sH on ΩH . (4.2)

The Dirichlet boundary conditions from the physical walls ∂Ω are incorpor-
ated in the source term sH .

As a remark, we could have chosen h ≪ H. But for robustness and
computational cost reasons, we prefer to use h = H

2
.

4.1.2 Enrichment from local fine grid

When there is only one patch on which the grid H will be refined, the LDC
algorithm is easiest to understand. It is an iterative algorithm initialized at
iterLDC = 0 and iterated for iterLDC ∈ N∗.

Interpolation and restriction Let vH be a grid function defined on the
nodes of ΩH . It could be ϕH for instance, but not necessarily. The pro-
longation of vH on Γh is the interpolation of vH on the fine grid nodes of

104



xa xϑ xb

Figure 4.4 – Localisation of grid nodes, r = 4 and ϑ = 1
4

Γ. In practice this operator Ih will be linear or quadratic, or in rarer cases
trigonometric [10]. For instance, let xa and xb be two nodes of ΓH distant of
only H. They are associated with the values vH(xa) and vH(xb). Now let ϑ
be a real number between 0 and 1. Let us assume xϑ = ϑxa+(1−ϑ)xb ∈ Γh.
Figure 4.4 shows an example with r = 4 and ϑ = 1

4
. We can define the value

of vh(xϑ) with a linear prolongation:

vh(xϑ) = Ih(vH|ΓH )(xϑ) = ϑvH(xa) + (1− ϑ)vH(xb) (4.3)

Similarly, we can define the restriction operator RH from the finer grid to
the coarse one. For instance, let xa be a node of ΓH and xϑ=0 be the node
of Γh superposed to xa. Then, we can use a simple copy as the restriction
operator:

vH(xa) = vh(xϑ=0). (4.4)

We could also have used an arithmetic average of nearby points.

Iterative algorithm LDC is an iterative algorithm, for which Figure 4.5
shows a logical flow chart for when there is only one patch. The initialisation
consists in solving the linear system LHϕH = sH on the nodes of the coarse
grid ΩH , with boundary conditions given by the physical problem data. This
gives a solution ϕH

0 . This solution is interpolated from ΓH to get ϕh
iterLDC

=
Ih(ϕH

iterLDC
) on the fine exchange grid Γh, with iterLDC = 0. These values

are considered as the Dirichlet boundary conditions for the linear problem
Lhϕh = sh. This yields a solution ϕh

iterLDC
defined on the whole fine grid Ωh

□.
We restrict this solution to get RH(ϕh

iterLDC
) on ΩH

□ . For a given iterLDC , we
define a Right-Hand Side variable RHSH on ΩH as follows:

RHSH =

{
LHRH(ϕh

iterLDC
) on ΩH

□ ∪ ΓH ,
sH on (Ω⃝ \ Γ)H . (4.5)

The Right-Hand Side variable restricted to ΩH
□ , namely RHSH

□ , is called the
“Local Defect Correction”. Then we solve the coarse linear problem LHϕH =
RHSH to get ϕH

iterLDC+1. Let ϵLDC be a small positive real number. We
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consider that the LDC algorithm has converged if the following comparison
is true:

||ϕH
iterLDC+1 − ϕH

iterLDC
||∞

||ϕH
iterLDC

||∞
≤ ϵLDC . (4.6)

If it did converge, we keep the latest ϕH and ϕh results. If not, we loop back
at the interpolation step on Γh; this adds an iteration to iterLDC . In the
case of a Poisson problem with only one patch, only a few iterations should
suffice (of the order of magnitude of 2 or 3).

4.1.3 Convergence of LDC

According to our bibliography review, the literature authors lay out the proof
of convergence of LDC only with specific hypotheses. Multiple authors have
shown that it is possible to express the iterative step of the LDC algorithm
as a matrix problem. If the LDC algorithm converges, then it means that
this matrix problem has a fixed point.

Results on the convergence to the continuous solution (Ferket)

Ferket [64] obtains convergence results for the multi-grid problem by focusing
on a composite grid approach on the composite grid Ωc. Let us call ϕ̄c the
fixed point of the matrix problem representing the composite grid problem,
if it exists (see Theorem 4 for said matrix form). Let us still call ϕexact the
solution to the original continuous problem (4.1) and let us call ϕc

exact its
projection on the composite grid Ωc. Then Ferket shows convergence results
in [63], pp. 348–358.
Theorem 2. If LDC has a fixed point and uses linear interpolation for Ih,
we have the following global discretisation error:

||ϕ̄c − ϕc
exact||∞ ≤ C(C4⃝H

2 + C4□h
2 + C2ΓH) (4.7)

where the constants C⋆ depend on higher derivatives of ϕ but not on h nor
H. Additionally, C is a constant which does not depend on ϕ, h and H.
Theorem 3. If LDC has a fixed point and uses quadratic interpolation for
Ih, we have the following global discretisation error:

||ϕ̄c − ϕc
exact||∞ ≤ C(CqH

2 + C4□h
2). (4.8)

where the constants C⋆ depend on higher derivatives of ϕ but not on h nor
H. Additionally, C is a constant which does not depend on ϕ, h and H.
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Linear problem Lϕ = s with physical BCs

Initialisation: coarse
resolution of LHϕH

0 =
sH with physical BCs

Matrix for linear
problem on coarse grid

Interpolation Ih
from the coarse
grid ΩH onto Ωh

□

Fine resolution of
Lhϕh

iterLDC
= sh with

Dirichlet BCs on Γh

Matrix for linear
problem on fine grid

Restriction RH

from the fine
grid Ωh

□ onto ΩH

RHSH =
LHRH(ϕh

iterLDC
)

on ΩH
□ ∪ ΓH

Coarse resolution
of LHϕH = RHSH

RHSH = sH

on (Ω⃝ \ Γ)H

LDC convergence?
ϕH
iterLDC+1 ≈
ϕH
iterLDC

ϕH and ϕh

ΩH and Ωh
□

LH

ϕH
0 on ΩH

ϕH
iterLDC

ϕh
iterLDC

on Γh

Lh

ϕh
iterLDC

on Ωh
□

RH(ϕh
iterLDC

)

RHSH

RHSH

ϕH
iterLDC+1

no

iterLDC ++

yes

Figure 4.5 – LDC algorithm on nodes, with one patch
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Let us assume ϕexact ∈ C4(Ω) and for k ∈ N, let us note ϕ(k)
exact the family of

the kth derivatives of ϕexact in all spatial directions. Ferket gives the following
properties:

C4⃝ ∝ max{ϕ(4)
exact(x)|x ∈ Ω⃝}, (4.9)

C4□ ∝ max{ϕ(4)
exact(x)|x ∈ Ω□}, (4.10)

C2Γ ∝ max{ϕ(2)
exact(x)|x ∈ Γ}, (4.11)

C3Γ ∝ max{ϕ(3)
exact(x)|x ∈ Γ}, (4.12)

Cq = C4⃝ + C3Γ. (4.13)

Let us impose that Ω□ is the area where ϕexact knows its largest variations,
hence the name “area of interest”. As a consequence, the constant C4□ is
much larger than the constants C4⃝, C2Γ and Cq. Therefore, and keeping
in mind that H

h
= r is a fixed ratio usually smaller than 10, the global

discretisation error is driven by C4□h
2. It means that refining the area of

interest Ωh
□ indeed increases the precision.

As a conclusion, Ferket proves that if a fixed point exists for the iterative
LDC algorithm, then the problem is equivalent to the one with a composite
grid. He also proves the convergence with an error of H or H2 depending on
the interpolation.

Results on the existence of a fixed point (Anthonissen)

Anthonissen takes a different approach in his thesis [9] and his later published
article [10]. We will here give the outline of the proof.

Matrix expression of the iterative process Let us separate the grids
into four groups; respectively the fine grid on the local area Ωh

□, the coarse
grid on the local area ΩH

□ , the coarse grid on the interface ΓH and the coarse
grid on non-refined area ΩH

⃝ = (Ω \ Ω□)
H .

That way, we write ϕc as follows:

ϕc =


ϕh
□

ϕH
□
ϕH
Γ

ϕH
⃝

 (4.14)
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ϵdef

ϵdef

Figure 4.6 – Nodes of ΩH
def

Similarly, we can define sc for the source term, discretised on the composite
grid. Let us also call ϕc

iterLDC
the value of ϕ as computed at step iterLDC of

the LDC algorithm:

ϕc
iterLDC

=


ϕh
□,iterLDC

ϕH
□,iterLDC

ϕH
Γ,iterLDC

ϕH
⃝,iterLDC

 (4.15)

Anthonissen introduces a region of the space called ΩH
def . This grid is

a subset of ΩH
□ ; it is the inside of ΩH

□ , separated from the interface ΓH by
a “safety region” of width ϵdef . Figure 4.6 shows the nodes of ΩH

def when
ϵdef = H. The space ΩH

def plays a role in the restriction step of the iterative
LDC algorithm: the defect is not calculated in the safety region. For this
demonstration we choose to only restrict the values of ϕh

□,iterLDC−1 onto ΩH
def

and not onto the safety region ΩH
□ \ ΩH

def . This is shown to be beneficial in
previous literature (for instance in [9]).

Let us define the following operators:

• LH is the expression of the elliptic operator discretised on the coarse
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grid ΩH . Similarly, we define the operator Lh
□ as the elliptic operator

discretised on the fine grid Ωh
□. We also define LH

□ and LH
⃝ for the

elliptic operator discretised on the sub-grids of ΩH : respectively ΩH
□

and ΩH
⃝.

• 1
H
□ is the multiplication by the characteristic function of ΩH

def .

(1H
□ϕ

H
□ )(x, y) =

{
ϕH
□ (x, y) (x, y) ∈ ΩH

def ,
0 (x, y) ∈ ΩH

□ \ ΩH
def .

(4.16)

• Ih is the interpolation operator from the coarse grid ΩH onto the fine
grid Ωh

□.

• Bh
□,Γ is the operator expressing a source term as a function of Dirichlet

boundary conditions on Γ, for the area Ω□. This means that solving the
elliptic equation (4.1) on the refined area Ω□ with Dirichlet boundary
conditions equal to the interpolation of ϕH

iterLDC
on the interface Γ is

discretised as follows:

Lh
□ϕ

h
□,iterLDC

= sh□ −Bh
□,ΓIhϕH

Γ,iterLDC
. (4.17)

Similarly, we define the operator BH
□,Γ for the numerical resolution of

the elliptic equation coarsely discretised on only ΩH
□ :

LH
□ϕ

H
□,iterLDC

= sH□ −BH
□,Γϕ

H
Γ,iterLDC

. (4.18)

We define BH
Γ,□ and BH

Γ,⃝ for the resolution on ΩH
Γ :

LH
Γ ϕ

H
Γ,iterLDC

= sHΓ −BH
Γ,□ϕ

H
□,iterLDC

−BH
Γ,⃝ϕ

H
⃝,iterLDC

. (4.19)

We define also the operator BH
⃝,Γ for the resolution on ΩH

⃝:

LH
⃝ϕ

H
⃝,iterLDC

= sH⃝ −BH
⃝,Γϕ

H
Γ,iterLDC

. (4.20)

Theorem 4. We can write the LDC process at a given iteration iterLDC as
a matrix equation for ϕ discretised on the composite grid:

Lcϕc
iterLDC+1 = Scϕc

iterLDC
+ sc. (4.21)

The expressions of Lc and Sc are given by Equation (4.26) and Equation
(4.27) respectively.
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Proof. First, we rewrite Equation (4.17) in a matrix form to get the first line
of the goal matrix equation:

(
Lh

□ 0 Bh
□,ΓIh 0

)
ϕh
□,iterLDC

ϕH
□,iterLDC

ϕH
Γ,iterLDC

ϕH
⃝,iterLDC

 =
(
1 0 0 0

)
sh□
sH□ ,
sHΓ
sH⃝

 . (4.22)

Second, we rewrite Equation (4.18) in a matrix form to get the second line of
the goal matrix equation. We replace the source term sHi by the local defect
correction RHSH

□ of step i− 1 when inside Ω□.

(
0 LH

□ BH
□,Γ 0

)
ϕh
□,iterLDC

ϕH
□,iterLDC

ϕH
Γ,iterLDC

ϕH
⃝,iterLDC



−
(
1
H
□LH

□RH 0 1
H
□B

H
□,Γ 0

)
ϕh
□,iterLDC−1

ϕH
□,iterLDC−1

ϕH
Γ,iterLDC−1

ϕH
⃝,iterLDC−1



=
(
0 1 0 0

)
sh□
sH□ ,
sHΓ
sH⃝

 .

(4.23)

Third, we rewrite Equation (4.19) in a matrix form to get the following line
of the goal matrix equation:

(
0 BH

Γ,□ LH
Γ BH

Γ,⃝
)

ϕh
□,iterLDC

ϕH
□,iterLDC

ϕH
Γ,iterLDC

ϕH
⃝,iterLDC

 =
(
0 0 1 0

)
sh□
sH□ ,
sHΓ
sH⃝

 .

(4.24)
Fourth, we rewrite Equation (4.20) in a matrix form to get the last line of
the goal matrix equation:

(
0 0 BH

⃝,Γ LH
⃝

)
ϕh
□,iterLDC

ϕH
□,iterLDC

ϕH
Γ,iterLDC

ϕH
⃝,iterLDC

 =
(
0 0 0 1

)
sh□
sH□ ,
sHΓ
sH⃝

 . (4.25)
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As a conclusion we can define Lc and Sc with the following equations:

Lc =


Lh

□ 0 Bh
□,ΓIh 0

0 LH
□ BH

□,Γ 0
0 BH

Γ,□ LH
Γ BH

Γ,⃝
0 0 BH

⃝,Γ LH
⃝

 , (4.26)

Sc =


0 0 0 0

1
H
□LH

□RH 0 1
H
□B

H
□,Γ 0

0 0 0 0
0 0 0 0

 . (4.27)

This ensures the desired equation:

Lcϕc
iterLDC

= Scϕc
iterLDC−1 + sc. (4.28)

If we replace iterLDC by iterLDC + 1, we get Equation (4.21) from Theorem
4.

Matrix expression of the iteration error If the LDC algorithm con-
verges, let us note ϕ̄c the fixed point:

ϕ̄c =


ϕ̄h
□

ϕ̄H
□
ϕ̄H
Γ

ϕ̄H
⃝

 . (4.29)

Let us call eHiterLDC
= ϕH

iterLDC
− ϕ̄H the iteration error of the LDC method

on the coarse grid. Let us call eΓ,iterLDC
= ϕΓ,iterLDC

− ϕ̄Γ the iteration error
on the nodes of the interface Γ.

Anthonissen proves the following theorem:
Theorem 5. There exists a matrix M , defined by (4.38), such that

eHΓ,iterLDC+1 =MeHΓ,iterLDC
. (4.30)

Proof. The definition of ϕ̄c is as follows:

Lcϕ̄c = Scϕ̄c + sc. (4.31)

We substract (4.21) and (4.31):

LceciterLDC
= SceciterLDC−1. (4.32)
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This rewrites with developed matrices:
Lh

□ 0 Bh
□,ΓIh 0

0 LH
□ BH

□,Γ 0
0 BH

Γ,□ LH
Γ BH

Γ,⃝
0 0 BH

⃝,Γ LH
⃝




eh□,iterLDC

eH□,iterLDC

eHΓ,iterLDC

eH⃝,iterLDC



=


0

1
H
□LH

□RHeh□,iterLDC−1 + 1
H
□B

H
□,Γe

H
Γ,iterLDC−1

0
0

 .

(4.33)

The first line gives the following equation:

eh□,iterLDC
= −

(
Lh

□
)−1

Bh
□,ΓIheHΓ,iterLDC

(4.34)

which also means, by replacing iterLDC by iterLDC − 1:

eh□,iterLDC−1 = −
(
Lh

□
)−1

Bh
□,ΓIheHΓ,iterLDC−1. (4.35)

We thus rewrite the three last lines of (4.33): LH
□ BH

□,Γ 0
BH

Γ,□ LH
Γ BH

Γ,⃝
0 BH

⃝,Γ LH
⃝

 eH□,iterLDC

eHΓ,iterLDC

eH⃝,iterLDC


=

 −1H
□LH

□RH
(
Lh

□
)−1

Bh
□,ΓIheHΓ,iterLDC−1 + 1

H
□B

H
□,Γe

H
Γ,iterLDC−1

0
0

 .

(4.36)
We simplify it:

LHeHiterLDC
=

 I
0
0

1
H
□

(
BH

□,Γ − LH
□RH

(
Lh

□
)−1

Bh
□,ΓIh

)
eHΓ,iterLDC−1. (4.37)

We now just may to define M as follows:

M =
(
0 I 0

) (
LH

)−1

 I
0
0

1
H
□

(
BH

□,Γ − LH
□RH

(
Lh

□
)−1

Bh
□,ΓIh

)
(4.38)

such that
eHΓ,iterLDC

=MeHΓ,iterLDC−1. (4.39)
If we replace iterLDC by iterLDC + 1, we get Equation (4.30) from Theorem
5.
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Anthonissen also proves the following result:
Theorem 6. Consider the iterative process, where M is defined by Equation
(4.38):

eHΓ,iterLDC+1 =MeHΓ,iterLDC
. (4.40)

Although it is only located on the interface, if it converges, then the LDC
algorithm converges on the whole coarse grid.

Proof. Let us assume that the process (4.40) converges. Then we obviously
have convergence of LDC on ΓH . Furthermore, thanks to (4.34), we get the
convergence on Ωh

□. And thanks to (4.37), we have the convergence of LDC
on ΩH . Hence the convergence on Ωc.

Thanks to Theorem 6, it is sufficient to compute the norm ||M ||∞ of the
matrix M and prove it is strictly smaller than 1. We will express M as the
product of two matrices, namely

M =M1M2 (4.41)

where

M1 = (0 I 0)(LH)−1

 I
0
0

 , (4.42)

M2 = 1
H
□
[
BH

□,Γ − LH
□RH(Lh

□)
−1Bh

□,ΓIh
]
. (4.43)

We note that ||M ||∞ ≤ ||M1||∞||M2||∞.

Particular case of Laplacian problem with trigonometric interpol-
ation Anthonissen focuses on the specific case of a Poisson problem (L =
−∆): {

−∆ϕ = s in Ω,
ϕ = g on ∂Ω. (4.44)

By choosing to use the five-point stencil for the Laplacian operator ∆H ref-
erenced at Equation (B.4) and trigonometric interpolation for the operator
Ih, he obtains the property hereunder.
Theorem 7. The LDC method applied to solve Equation (4.44) converges
to a fixed point when using the classical five-point stencil for the Laplacian
operator ∆H and trigonometric interpolation for the operator Ih.
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Proof. Since ∆H is the five-point stencil Laplacian, as shown for instance in
[75], we have the following equality for ||M1||∞:

||M1||∞ =
1

8
. (4.45)

Because the problem is a Poisson one and Ih is trigonometric, Anthonissen
uses orthogonality arguments to prove that we can compute the exact value
of M2g

H for any vector gH , showing the following majoration for all (x, y) ∈
ΩH

def :
|M2g

H(x, y)| ≤ (C1H
2 +D1h

2)||gH ||∞. (4.46)
Hence

||M2||∞ ≤ (C1H
2 +D1h

2). (4.47)
The result is a majoration of ||M ||∞:

||M ||∞ ≤ CH2 +Dh2 (4.48)

where C and D are independent of H and h. So if we take H (and h)
sufficiently small, then we can impose

||M ||∞ < 1. (4.49)

Since we have eHΓ,iterLDC+1 =MeHΓ,iterLDC
, we also can write an explicit form:

eHΓ,iterLDC
=M iterLDCeHΓ,0 (4.50)

So eHΓ,iterLDC
converges to 0 as iterLDC → ∞. As a consequence, LDC con-

verges to a fixed point ϕ̄c.

As a conclusion of Anthonissen’s contribution, it is now proven that for
the Poisson problem using trigonometric interpolation, if we impose a suf-
ficiently small H (and h) independent of iterLDC , then LDC converges as
iterLDC → ∞. In other words, a fixed point ϕ̄c does exist for the LDC
iterative algorithm. When H → 0, this fixed point converges to ϕc

exact.

4.1.4 Own implementation of LDC

We too implement the LDC method to solve elliptic equations. We solve
equations for which the elliptic operator is a Laplacian ∆ (see Section 4.2
and 5.1) or rather derived from a Laplacian (see Section 5.2). Among the
possible interpolation methods for Ih, we choose the linear interpolation.
Our implementation however differs from the previously detailed works in
two ways:
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Figure 4.7 – Location of the centre of the cells of the coarse grid ΩH

1. the localisation of the discretised values on the grid,

2. the number of patches.

Values at the centre of cells

Ferket and Anthonissen localise the discretised values of ϕ at the nodes of the
grids ΩH , Ωh

□ and Ωc. As for us, we choose to locate the discretised values
of ϕ at the centre of cells because of data structures reasons: we developed
our AMR toolbox with centred data in mind (see Section 4.3.2). Figure 4.7
shows the location of the cell centres for the coarse grid ΩH and Figure 4.8
shows the location of cell centres for the fine grid Ωh

□.

As a consequence, we cannot consider the interface Γ, nor ΓH or Γh.
Instead, we use ghost cells. Let nGC be a small integer; we extend the patches
by nGC coarse cells in all directions around them, as demonstrated on Figure
4.9 in light blue around the patch. We call “ghost cells” the cells which
belong to the extension of the local area □. We note GC the area composed
of the ghost cells: the coarse mesh covering GC is noted GCH and the fine
mesh is noted GCh.
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Figure 4.8 – Location of the centre of the cells of the fine grid Ωh
□

Figure 4.9 – Location of ghost cells, for nGC = 1 and r = 2
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Figure 4.10 shows a logical flow chart explaining the LDC algorithm for
when there is only one patch and when the values are located at the centre
of cells. The initialisation consists in solving the linear system LHϕH = sH

on the centre of cells of the coarse grid ΩH , with boundary conditions given
by the physical problem data. This gives a solution ϕH

0 . This solution is
interpolated from the coarse ghost cells GCH to get ϕh

iterLDC
= Ih(ϕH

iterLDC
)

on the fine ghost cells GCh, with iterLDC = 0. These values are considered
as the Dirichlet boundary conditions for the linear problem Lhϕh = sh in Ωh

□.
This yields a solution ϕh

iterLDC
defined on the whole fine grid Ωh

□. We restrict
this solution to get RH(ϕh

iterLDC
) on ΩH

□ . For a given iterLDC , we define a
Right-Hand Side variable RHSH on ΩH as follows:

RHSH =

{
LHRH(ϕh

iterLDC
) on ΩH

□ ,
sH on ΩH

⃝.
(4.51)

The Right-Hand Side variable restricted to ΩH
□ , namely RHSH

□ , is also called
the “Local Defect Correction”. Then we solve the coarse linear problem
LHϕH = RHSH to get ϕH

iterLDC+1. Let ϵLDC be a small positive real num-
ber. We consider that the LDC algorithm has converged if the following
comparison is true:

||ϕH
iterLDC+1 − ϕH

iterLDC
||∞

||ϕH
iterLDC

||∞
≤ ϵLDC . (4.52)

If it did converge, we keep the latest ϕH and ϕh results. If not, we loop back
at the interpolation step on the ghost cells GCh; this adds an iteration to
iterLDC . In the case of a Poisson problem with only one patch, similarly
as before for the localisation on nodes, only a few iterations iterLDC should
suffice (2 or 3).

As a side note, we can add that we in fact already used ghost cells for
hyperbolic equations; to have values for variables on the fine grid outside of
Ωh

□. Let us consider the example of the advection equation ∂tY +u ·∇Y = 0
where u is constant, uniform and with a positive value in the x direction:

∂tY + ux∂xY = 0. (4.53)

Let us assume we have a 2D rectangular patch covering a desired refined
area: we index the fine cells with (i, j) ∈ J0, nx − 1K× J0, ny − 1K. Let us say
we choose the explicit upwind advection scheme, like in Section 3.4.1:

∀(i, j) ∈ J1, nx − 1K × J0, ny − 1K,
Y h
itert+1(i, j)− Y h

itert(i, j)

∆t
+ ux

Y h
itert(i, j)− Y h

itert(i− 1, j)

∆x
= 0.

(4.54)
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resolution of LHϕH

0 =
sH with physical BCs
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□
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on the area
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iterLDC
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iterLDC+1
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iterLDC ++
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Figure 4.10 – LDC algorithm on cells, with one patch
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This computation is problematic when i = 0; that is to say on the left border
of the patch. So for the value Y h

itert(−1, j), we use the value of Y h
itert in the

fine ghost cell directly to the left of cell (0, j). For schemes with a wider
stencil (WENO for intance), it is necessary to have a sufficient number of
fine ghost cells around the patches.

Multiple patches

In the majority of our computations, we may have multiple patches and more
often than not, the patches touch each other. If this is the case, we follow the
common practice mentioned by Anthonissen [10]. We consider that patches
which touch each other form the decomposition of a domain formed by the
reunion of them.

Figure 4.11 shows an Ωh
□ covered by two patches, P1 in blue and P2 in

red, which touch each other. Therefore the patches have three kinds of ghost
cells:

• ghost cells exterior to Ωh
□ and owned by one patch only, represented in

light blue for P1 and in light red for P2,

• ghost cells exterior to Ωh
□ and owned by the two patches, represented

in light purple,

• ghost cells covered by the neighbouring patch, represented with north-
east lines for P1 and with north-west lines for P2.

We decide to iterate a Schwarz domain decomposition algorithm to obtain
a correct fine solution on the fine grids. It means that for a given LDC
iteration iterLDC , we iterate multiple times with Schwarz iterations numbered
iterSch. After the value in the fine ghost cells is deduced from the coarse
grid, we solve the elliptic problem Lhϕh

iterLDC
= sh with Dirichlet boundary

conditions in the said ghost cells. This gives us ϕh
iterLDC

(iterSch = 0). We
then take the value of ϕh

iterLDC
(iterSch = 0) from the ghost cells that are

covered by another patch (represented by oblique lines on Figure 4.11). They
are the update of the Dirichlet boundary conditions of a new resolution of
Lhϕh

iterLDC
= sh. This gives us ϕh

iterLDC
(iterSch = 1). Let ϵSch be a small

positive real number. We consider that the Schwarz domain decomposition
algorithm has converged if the following comparison is true:

||ϕH
iterLDC

(iterSch + 1)− ϕH
iterLDC

(iterSch)||∞
||ϕH

iterLDC
(iterSch)||∞

≤ ϵSch. (4.55)
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P1

P2

Figure 4.11 – Two patches touching each other

If it did converge, we keep the latest ϕh
iterLDC

results. If not, we loop back at
the update of the value in the ghost cells covered by neighbouring patches;
this adds an iteration to iterSch. Figure 4.12 shows a flowchart of the LDC
algorithm with the values at the centre of cells when we make the Schwarz
algorithm intervene. According to our tests, not using the domain decom-
position technique results in the non-convergence of the LDC algorithm.

4.2 Hyperbolic-elliptic coupling with ABV

4.2.1 ABV model and verification

We wanted to test out a coupling between a hyperbolic part and an elliptic
part thanks to the ABV model, which we presented earlier in Section 2.1.6.
As a reminder, the ABV model is represented by the following set of equa-
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Figure 4.12 – LDC algorithm on cells, with Schwarz domain decomposition
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tions, where ψ(t) is given:
∂tY + u · ∇Y = 0,

∆ϕ = ψ(t)

(
Y − 1

|Ω|

∫
Ω

Y dx

)
,

∇ϕ · n|∂Ω = 0,
u = ∇ϕ.

(4.56)

We also have to choose an initial condition for Y (t = 0) on Ω.

We also remind the analytic expression for the volume V of the bubble as
a function of ψ(t), which is useful for later tests, as introduced in Theorem
1:

V −1 =

(
1

V (0)
− 1

|Ω|

)
exp(−ψ(t)) + 1

|Ω|
. (4.57)

We said this formula was very useful for verification purposes of numerical
simulations. For instance, Mekkas in [104] or Penel et al. in [116] implement
an AMR strategy to represent the ABV model. This is our aim too in what
follows.

4.2.2 Simulation parameters

Our own implementation of LDC permits us to make the simulation of the
ABV model. We choose, for each time step of the model (t = n∆t to t = (n+
1)∆t), to compute first the hyperbolic part to get Yn+1 based on un = ∇ϕn.
Then we use the LDC algorithm to find ϕn+1 with multiple convergence
iterations. Given (Yn, ϕn):

1. compute Yn+1 as a function of ϕn,

2. compute ϕn+1 as a function of Yn+1.

We choose a periodic pulsation function:

ψ(t) =
1

2
cos

(
2πt

12

)
. (4.58)

As for the initial conditions, we choose to draw a complicated case in order
to challenge the robustness of our computation.

1. The bubble (i.e. the domain where Y = 1) is a Zalesak slotted disk in
2D, a slotted sphere in 3D. This is a disk with a sharp notch cut inside
it. This geometrical form is usually used for advection verification tests;
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R/2

R

Figure 4.13 – 2D Zalesak disk

we think its sharp edges might be of interest. We give a representation
of the 2D Zalesak disk at Figure 4.13.

2. The bubble is near the borders of the Ω domain, to see whether bound-
ary conditions will interfere badly.

3. The bubble is located in a corner of the square domain, in order to
avoid any help of an eventual symmetry.

The resulting initial conditions are represented on Figure 4.14 for the 2D
case and on Figure 4.15 for the 3D case.

The linear solver we use for solving linear equations is the PETSc library
[17, 16, 15].

4.2.3 Numerical results and verification

Figure 4.16 shows 2D results for t = 3.12, at itert = 13. Figure 4.17 shows 3D
results for t = 3.046, at itert = 13. Due to the pulsation, the bubble grows
and shrinks periodically. Online videos are available at https://youtu.be/
XyxfV3w88AQ and https://youtu.be/-V2NmaUWAJM. We show the borders
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Figure 4.14 – Y field at t = 0, 2D case

Figure 4.15 – Y field at t = 0, 3D case: zoom on a corner of Ω
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Figure 4.16 – Y field at t = 3.12, 2D case

of the patches with white lines.

For verification purposes, we use the formula of Equation (4.57) on the
2D simulations in a Ω space of size 1 × 1. This yields |Ω| = 1. Let R = 0.2
be the radius of the Zalesak sphere, as shown on Figure 4.13. Let arccsc be
the inverse function of cosecant, where cosecant is the inverse of sinus:

∀x ∈ R \ πZ, csc(x) = 1

sin(x) , (4.59)

∀x ∈
[
−π
2
,
π

2

]
, arccsc(csc(x)) = x. (4.60)
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Figure 4.17 – Y field at t = 3.046, 3D case: zoom on a corner of Ω

Then we get the initial volume V (0):

V (0) = πR2 − 2

∫ r
4

0

√
r2 − x2dx,

= R2

(
π − 1

16
(
√
15 + 16 arccsc(4))

)
,

≈ 2.64685R2,

≈ 2.64685× 0.22,

≈ 0.105874.

(4.61)

We first run the simulation on a 2D grid with no AMR, divided by 30
× 30 cells. The measurement of the computed volume is given by Figure
4.18. We then run the simulation on a 2D grid with no AMR either and this
time divided by 60 × 60 cells, that-is-to-say twice as fine in every direction.
Figure 4.19 shows that the computation is than – as one could have expected
– closer to the theoretical solution. Finally, we run the simulation on a 30
× 30 2D grid with one level of AMR, which refinement coefficient is 2. The
result shown on Figure 4.20 is very close to the one of the corresponding
60 × 60 grid. This implies that refining is an improvement compared to
computation on the coarse grid only.

Finally, we measured the time needed for the computation with and
without AMR, without enabling any parallelisation:

• without AMR, on a 60 × 60 grid: 1 min 2 s,
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Figure 4.18 – Volume of the bubble as a function of time, for a 30 × 30 grid,
without AMR

Figure 4.19 – Volume of the bubble as a function of time, for a 60 × 60 grid,
without AMR
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Figure 4.20 – Volume of the bubble as a function of time, for a 30 × 30 grid,
with AMR refinement of 2

• with AMR, on a 30 × 30 grid and a refinement coefficient of 2: 41 s.

This means that with adaptive mesh refinement, we get a gain of 30% of
computation time, for a similar precision.

4.3 Reusable implementation with CDMATH

We lay down in Chapter 3 how we proceed for AMR and we explain in
Chapter 4 how we couple the resolution of elliptic and hyperbolic equations.
We want to use our developments for simulations closer to reality, as shown
in Chapter 5. But we also want other numericists, researchers and engineers
to be able to reproduce our results and implement their own problems with
a patch-based AMR. This is why we co-developed and used the CDMATH
library [44, 145].

CDMATH is a new library for easy numerical simulation, developed by an
eponymous workgroup; CDMATH [48, 23, 76, 49]. It is designed to be used
for quick modelling or as a toolbox for students, interns and demonstration
projects in numerical simulation. It takes its roots in a dual context. On
the industrial side, we need 3D, complex domain (e.g. non-connected space),
complex boundary conditions, hybrid meshes, rich physical models, standard
data models... The consequence is that it is difficult for researchers to test

129



new numerical methods on complex industrial codes, and those codes are
not adapted for teaching. On the academic side, new numerical methods are
often tested on “simple” configurations: 1D, 2D, rectangular domains, limited
boundary conditions, one type of cell (e.g. either Cartesian or triangular
cells)... The consequence is that research code is easy to use but often far
from the industrial world applications.

The objective of CDMATH is to reduce the gap between mathematical
research and the industry, as well as to provide easy industrial tools for
teaching and research [81]. This is the reason why our code is open-source
and available for collaboration on https://github.com/PROJECT-CDMATH/
CDMATH.

4.3.1 Description of the CDMATH library

The prerequesites of CDMATH are the following:

• HDF5 a set of file formats designed to store and organise large amounts
of data,

• SWIG (optional) a tool used to connect programs or libraries written
in C or C++ with scripting languages like Python,

• CppUnit (optional) a unit testing framework module for the C++ pro-
gramming language,

• PETSc (optional) a suite of data structures and routines for the scal-
able (parallel) solution of scientific applications modeled by partial dif-
ferential equations [17, 16, 15],

• SALOME products MEDFile, InterpKernel, MEDCoupling are bun-
dled with CDMATH and define the data structures exchanged by codes;
meshes and fields.

The architecture of the library and its dependencies was designed by Anouar
Mekkas and is represented on Figure 4.21. We see that a core component is
the SALOME products including MEDFile, InterpKernel, MEDLoader and
MEDCoupling. SALOME is a platform for numerical simulation developed
by CEA, EDF and OpenCascade [59].

CDMATH comprises a set of toolboxes, including for data, for meshes and
fields, and for linear solvers.
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Figure 4.21 – CDMATH architecture

4.3.2 AMR, an extension of CDMATH

As a way to show how powerful and easy-to-use CDMATH is, we created a
supplementary toolbox based on it. These additional tools aim at creating
the numerical and development environment for Adaptive Mesh Refinement
(AMR). We designed the extension such that a new user can easily benefit
from AMR, just by providing a solver.

As a consequence, thanks to the help of many including Anouar Mekkas
and Anthony Geay, part of our libraries were pushed back “upstream” to the
SALOME platform, in particular to MEDCoupling. We show a fraction of
the implementation in Appendix A.
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Figure 4.22 – Logo of the CDMATH workgroup
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Chapter 5

Application to incompressible
Navier-Stokes

We decide to use our developments to tackle simulations closer to reality,
with the incompressible Navier-Stokes model. We saw in Section 2.1.3 that
the volumetric mass ρ is constant in time and uniform by pieces in space. In
particular, ρ is a constant which depends only on the species on the fluid.

For the computation of both the one-phase and the two-fluid models,
we use a prediction-correction scheme as introduced by Chorin [38, 39] and
Temam [131, 132], which we explain further in this chapter.

Staggered grid discretisation For both models, we consider a 2D mesh
of N2 cells numbered using indices (i, j) ∈ J0, N − 1K2. We choose to use
finite differences on a staggered grid space discretisation, also known as MAC
[77]. It means that scalar fields (for example the pressure p or divergences)
are located at the centre of cells. The vector fields (for instance the velocity
u or gradients) are located on the faces of the meshes. More specifically, they
are located on the faces normal to the direction represented: ux on vertical
faces and uy on horizontal faces. Staggered grid schemes are known to have
good properties to avoid pressure oscillations and chequerboard modes.

Thus we define the values of ux and uy only on the faces normal to
the represented direction. The vertical faces are numbered (i + 1

2
, j) ∈(J−1, N − 1K + 1

2

)
×J0, N−1K. The horizontal faces are numbered (i, j+ 1

2
) ∈J0, N − 1K × (J−1, N − 1K + 1

2

)
.

In total, we count 2N(N + 1) faces. Among those, there are 2N(N − 1)
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Figure 5.1 – Location of coordinates

faces not superposed with the domain boundaries, and thus for which the
value of ux and uy is not given by the boundary conditions. The vertical
interior faces are numbered (i+ 1

2
, j) ∈

(J0, N − 2K + 1
2

)
×J0, N−1K. The ho-

rizontal interior faces are numbered (i, j+ 1
2
) ∈ J0, N−1K×(J0, N − 2K + 1

2

)
.

This is represented on Figure 5.1.

We decide to introduce three ad hoc terms. We will call “staggered vector
field” a vector field which components are known on the faces orthogonal
to the direction of its components. For instance, for the staggered field u,
we know ux on vertical faces and uy on the horizontal faces. We will call
“anti-staggered vector field” a vector field which components are known on
the faces parallel to the direction of its components. For instance, for the
anti-staggered field U, we know Ux on the horizontal faces and Uy on the
vertical faces. Finally, we will call “dense vector field” a vector field which
components are known on all faces. For instance, for the dense field v, we
know both vx and vy on all faces; both horizontal and vertical.

This way, with the knowledge of the staggered field u and the anti-
staggered field U, we can assemble the dense field v. On the vertical faces,
we choose the following components:

v =

(
ux
Uy

)
. (5.1)

On the horizontal faces, we choose the following components:

v =

(
Ux

uy

)
. (5.2)
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As a last remark, as we said earlier, in the context of staggered grid schemes,
for the vector fields we use staggered fields in the vast majority of cases.

5.1 One-phase incompressible Navier-Stokes

As seen before in Section 2.1.3, we solve the following set of equations:
∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,
u = uBC on ∂Ω (boundary conditions),
u(t = 0) = u0 on Ω (initial conditions).

(5.3)

5.1.1 Prediction-correction scheme

We define a 2D computational domain with the shape of a square. Let êx
and êy be the be the elementary unit vectors of the 2D Cartesian coordinate
system and let êx × êy = êz be the cross product in a hypothetical 3D
extension. For a given border, let us call n the unit vector outwardly normal
to the surface. For this same border, let t be the vector tangential to the
surface, such that n × t = êz.

As mentioned before, we decide to use a prediction-correction scheme as
done by Chorin [38, 39] and Temam [131, 132]. The model discretised in
time is expressed as follows, for a time step ∆t and a nth time tn = n∆t.

ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = fn = −1

ρ
∇pn + g,

ũ = ũBC on ∂Ω,

ũBC · n = uBC · n,

ũBC · t = uBC · t + ∆t

ρ
∇ϕn · t.

(5.4)


−1

ρ
∆ϕn+1 = − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 on ∂Ω.
(5.5)
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pn+1 = pn + ϕn+1. (5.6)
un+1 − ũ

∆t
= −1

ρ
∇ϕn+1,

un+1 = uBC on ∂Ω.

(5.7)

The unknown ũ is the predicted velocity, computed at every time step.
The unknown ϕ is the increment in pressure for the nth time step. It permits
to compute the pressure as well as to give a correction to the predicted
velocity, so as to obtain the corrected velocity u. The velocity u is ũ projected
on the set of zero-divergence velocities.
Theorem 8. The semi-discretised scheme (5.4), (5.5), (5.6), (5.7) yields a
zero-divergence velocity, for which the no-slip boundary conditions are en-
sured.

Proof.

un+1 = ũ − ∆t

ρ
∇ϕn+1, (5.8)

∇ · un+1 = ∇ · ũ − ∆t

ρ
∆ϕn+1,

= ∇ · ũ − ∆t

∆t
∇ · ũ,

= 0.

(5.9)

So the velocity field un+1 has zero divergence. Furthermore, we can compute
the no-slip boundary conditions of un+1:

un+1 · n = ũ · n − ∆t

ρ
∇ϕn+1 · n = uBC · n,

un+1 · t = ũ · t − ∆t

ρ
∇ϕn+1 · t = uBC · t.

(5.10)

Finally, in spite of the semi-implicitness, we can lay out what the resulting
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scheme looks like:

un+1 = ũ − ∆t

ρ
∇ϕn+1,

= un −∆t un · ∇ũ +∆t ν∇2ũ +∆t fn − ∆t

ρ
∇ϕn+1,

= un −∆t un · ∇ũ +∆t ν∇2ũ +∆t

(
−1

ρ
∇pn + g

)
−∆t

ρ
∇

(
pn+1 − pn

)
,

= un −∆t un · ∇ũ +∆t ν∇2ũ +∆t fn+1.

(5.11)

This yields the following expression:
un+1 − un

∆t
+ un · ∇ũ − ν∇2ũ = g − 1

ρ
∇pn+1,

∇ · un+1 = 0.

(5.12)

5.1.2 Discretisation and resolution of the prediction
equation (5.4)

We recall that we work with u a staggered field having two components ux
and uy in the x and y dimensions. The convection-diffusion term of Equation
(5.4) is given by the following:

un · ∇ũ =

 unx
∂ũx
∂x

+ uny
∂ũx
∂y

unx
∂ũy
∂x

+ uny
∂ũy
∂y

 . (5.13)

The viscosity term of Equation (5.4) is given as follows:

− ν∇2ũ = −ν
(

∇2ũx
∇2ũy

)
= −ν


∂2ũx
∂x2

+
∂2ũx
∂y2

∂2ũy
∂x2

+
∂2ũy
∂y2

 . (5.14)

Using these expressions we can rewrite Equation (5.4) for each component,
noted z, where z is to be replaced by x or y:

ũz − unz
∆t

+ unx
∂ũz
∂x

+ uny
∂ũz
∂y

− ν

(
∂2ũz
∂x2

+
∂2ũz
∂y2

)
= fn

z . (5.15)
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As a consequence, we can solve ũ component after component, independ-
ently one from another. In what follows, because the directions x and y play
symmetrical roles, we may give expressions for the x direction only. Remem-
ber that this holds true because our computational domain Ω is square and
parallel to the x and y directions. The boundary conditions do not couple
the directions.

Upwind scheme

As explained before, we choose to use a staggered grid scheme on a 2D mesh
of N2 cells numbered using indices (i, j) ∈ J0, N − 1K2. Here, it means that
the scalar fields p, ϕ, divergences and Laplacians are located at the centre of
cells. The vector fields u, ũ, g and gradients are located on the faces of the
meshes.

We choose to use an upwind scheme for advected quantities. This means
that if unx(i+ 1

2
, j) ≥ 0, then we choose the following equality:(

unx
∂ũz
∂x

)
(i+

1

2
, j) = unx(i+

1

2
, j).

ũz(i+
1
2
, j)− ũz(i− 1

2
, j)

∆x
. (5.16)

Let us remember that the ũx and ũy fields are defined on the faces per-
pendicular to their direction, since ũ is a staggered vector field. Let us define
the anti-staggered vector field Un

y located on the faces parallel to y with the
following formula:

Un
y (i+

1
2
, j) = 1

4
( uny (i, j +

1
2
) + uny (i+ 1, j + 1

2
)

+ uny (i, j − 1
2
) + uny (i+ 1, j − 1

2
) ) .

(5.17)

Similarly, for the x direction on horizontal faces, we define Un
x as follows:

Un
x (i, j +

1
2
) = 1

4
( unx(i− 1

2
, j + 1) + unx(i+

1
2
, j + 1)

+ unx(i− 1
2
, j) + unx(i+

1
2
, j) ) .

(5.18)

On the boundaries, when i ∈ {−1, N} and when j ∈ {−1, N}, we use a
linear interpolation from known values (i.e. a barycentre with positive and
negative weights). For instance for i = −1,

Un
x (−

1

2
, j) = 2Un

x (
1

2
, j)− Un

x (
3

2
, j). (5.19)

As u is the velocity field located on the faces perpendicular to the direction
of its component, U is the velocity field located on the faces parallel to the
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direction of its components. We will call the operation of computing U
thanks to u the “densification” of u.

Now let us assume unx(i+ 1
2
, j) ≥ 0 and Un

y (i+
1
2
, j) ≥ 0. Using Equation

(5.16), we discretise the prediction Equation (5.4) as follows, for i ∈ J0, N−2K
and j ∈ J1, N − 2K:
ũx(i+

1
2
, j)− unx(i+

1
2
, j)

∆t
+ unx(i+

1

2
, j)

ũx(i+
1
2
, j)− ũx(i− 1

2
, j)

∆x

+Un
y (i+

1

2
, j)

ũx(i+
1
2
, j)− ũx(i+

1
2
, j − 1)

∆y

+ν
−ũx(i− 1

2
, j) + 2ũx(i+

1
2
, j)− ũx(i+

3
2
, j)

∆x2

+ν
−ũx(i+ 1

2
, j − 1) + 2ũx(i+

1
2
, j)− ũx(i+

1
2
, j + 1)

∆y2

= −1

ρ

pn(i+ 1, j)− pn(i, j)

∆x
+ gnx(i+

1

2
, j),

= fn
x (i+

1

2
, j).

(5.20)

Matrix form of (5.20)

For each component z ∈ {x, y}, we can lay down the matrix form:
An

z ũz = bnz (5.21)
where An

z is a square matrix of N(N − 1) rows and N(N − 1) columns. Let
us write ij = i + j(N − 1) where i ∈ J0, N − 2K and j ∈ J0, N − 1K. Then
ij ∈ J0, N(N − 1) − 1K. Here are the coefficients of An

x on the line ij, for
i ̸∈ {0, N − 2} and j ̸∈ {0, N − 1}:

• for ũx(i+ 1
2
, j):

A(ij, ij) = 1 + unx(i+
1

2
)
∆t

∆x
+ Un

y (i+
1

2
, j)

∆t

∆y
+ 2ν

(
∆t

∆x2
+

∆t

∆y2

)
,

(5.22)

• for ũx(i− 1
2
, j):

A(ij, ij − 1) = −unx(i+
1

2
, j)

∆t

∆x
− ν

∆t

∆x2
, (5.23)
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• for ũx(i+ 3
2
, j):

A(ij, ij + 1) = −ν ∆t

∆x2
, (5.24)

• for ũx(i+ 1
2
, j − 1):

A(ij, ij − (N − 1)) = −Un
y (i+

1

2
, j)

∆t

∆y
− ν

∆t

∆y2
, (5.25)

• for ũx(i+ 1
2
, j + 1):

A(ij, ij + (N − 1)) = −ν ∆t

∆y2
. (5.26)

In the general case, unx may have any value and has not necessarily positive
components. So we can write an upwind advection scheme in a more general
way. Here are the coefficients of An

x on line ij for i ̸∈ {0, N − 2} and j ̸∈
{0, N − 1}:

• for ũx(i+ 1
2
, j):

A(ij, ij) = 1+ |unx(i+
1

2
)|∆t
∆x

+ |Un
y (i+

1

2
, j)|∆t

∆y
+2ν

(
∆t

∆x2
+

∆t

∆y2

)
,

(5.27)

• for ũx(i− 1
2
, j):

A(ij, ij − 1) = −max(0, unx(i+
1

2
, j))

∆t

∆x
− ν

∆t

∆x2
, (5.28)

• for ũx(i+ 3
2
, j):

A(ij, ij + 1) = min(0, unx(i+
1

2
, j))

∆t

∆x
− ν

∆t

∆x2
, (5.29)

• for ũx(i+ 1
2
, j − 1):

A(ij, ij − (N − 1)) = −max(0, Un
y (i+

1

2
, j))

∆t

∆y
− ν

∆t

∆y2
, (5.30)

• for ũx(i+ 1
2
, j + 1):

A(ij, ij + (N − 1)) = min(0, Un
y (i+

1

2
, j))

∆t

∆y
− ν

∆t

∆y2
. (5.31)
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Boundary conditions expression in the right-hand side

When we are located away from the borders, that-is-to-say when i ̸∈ {0, N −
2} and j ̸∈ {0, N − 1}, then the right-hand side bx is given by a simple
expression:

bx(i+
1

2
, j) = ∆t fn

x (i+
1

2
, j) + unx(i+

1

2
, j). (5.32)

As the domain is square, let us refer to the borders as on the West, South,
East and North.

On the West border (x = 0 and i = 0)

fn
x (

1

2
, j) =

ũx(
1
2
, j)− unx(

1
2
, j)

∆t

+max(0, unx(
1

2
, j))

ũx(
1
2
, j)− ũBCx(−1

2
, j)

∆x

+Un
y (

1

2
, j)

ũx(
1
2
, j)− ũx(

1
2
, j − 1)

∆y

+ν
−ũBCx(−1

2
, j) + 2ũx(

1
2
, j)− ũx(

3
2
, j)

∆x2

+ν
−ũx(12 , j − 1) + 2ũx(

1
2
, j)− ũx(

1
2
, j + 1)

∆y2
.

(5.33)

This yields

bnx(
1

2
, j) = ∆t fn

x (
1

2
, j)

+
∆t

∆x
max(0, unx(

1

2
, j))ũBCx(−

1

2
, j)

+ν
∆t

∆x2
ũBCx(−

1

2
, j) + unx(

1

2
, j).

(5.34)
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On the South border (y = 0 and j = 0)

bnx(i+
1

2
, 0) = ∆t fn

x (i+
1

2
, 0)

+
∆t

∆x
max(0, Un

y (i+
1

2
, 0))ũBCx(i+

1

2
,−1)

+ν
∆t

∆y2
ũBCx(i+

1

2
,−1) + unx(i+

1

2
, 0).

(5.35)

On the East border (x = xmax and i = N − 1)

bnx(N − 2 +
1

2
, j) = ∆t fn

x (N − 3

2
, j)

−∆t

∆x
min(0, unx(N − 3

2
, j))ũBCx(N − 1

2
, j)

+ν
∆t

∆x2
ũBCx(N − 1

2
, j) + unx(N − 3

2
, j).

(5.36)

On the North border (y = ymax and j = N − 1)

bnx(i+
1

2
, N − 1) = ∆t fn

x (i+
1

2
, N − 1)

−∆t

∆x
min(0, Un

y (i+
1

2
, N − 1))ũBCx(i+

1

2
, N)

+ν
∆t

∆y2
ũBCx(i+

1

2
, N) + unx(i+

1

2
, N − 1).

(5.37)

ũBC(i+
1
2
, j) on West and East borders As ũBC .n = un

BC · n, we get
ũBCx(−

1

2
, j) = un

BC(−
1

2
, j) · n,

ũBCx(N − 1

2
, j) = un

BC(N − 1

2
, j) · n.

(5.38)
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And as ũBC · t = un
BC · t + ∆t

ρ
∇ϕ.t, we get

ũBCy(−
1

2
, j) = un

BC(−
1

2
, j) · t + ∆t

ρ

(
∂ϕ

∂y

)
(−1

2
, j). (5.39)

We thus have to compute
(

∂ϕ
∂y

)
on borders. We do it by linear interpolation

(barycentric centres with positive and eventually negative weights):

(
∂ϕ

∂y

)
(−1

2
, j) =

ϕ(−1
2
, j + 1)− ϕ(−1

2
, j − 1)

2∆y
,

=
1

2∆y

(
3

2
ϕ(0, j + 1)− 1

2
ϕ(1, j + 1)

)

− 1

2∆y

(
3

2
ϕ(0, j − 1)− 1

2
ϕ(1, j − 1)

)
,

=
1

4∆y
(3ϕ(0, j + 1)− ϕ(1, j + 1)

−3ϕ(0, j − 1) + ϕ(1, j − 1)) .

(5.40)

In the corners of the domain, we are not able to apply the above mentioned
formula. Hence we choose the following expression of linear interpolation:

(
∂ϕ

∂y

)
(−1

2
, 0) = 2

(
∂ϕ

∂y

)
(−1

2
, 1)−

(
∂ϕ

∂y

)
(−1

2
, 2). (5.41)

Value of ũBCx(i +
1
2
, j) beyond the borders South and North Ac-

cording to our discretisation, we need a value for ũBCx(i +
1
2
,−1), which is

located below the South border (numbered j = −1
2
). In theory, we could

say it has little physical meaning. Though we give it the following value by
linear interpolation:

ũBCx(i+
1

2
,−1) = 2ũBCx(i+

1

2
,−1

2
)− unx(i+

1

2
, 0). (5.42)
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5.1.3 Discretisation and resolution of the correction
equations (5.5), (5.6) and (5.7)

Discretisation and resolution of (5.5)

We define the scalar d as d = −ρ∇ · ũ. We rewrite the equation giving the
increment of pressure ϕ as follows:

−∆ϕn+1 = − ρ

∆t
∇ · ũ =

d

∆t
,

∇ϕn+1 · n = 0 on ∂Ω.
(5.43)

The scalar ϕ is located at the centre of cells, so there are N2 unknowns. We
use the well-known five-point stencil for the Laplacian. For (i, j) ∈ J1, N−2K,
this leads to the following equality:

−ϕ(i− 1, j) + 2ϕ(i, j)− ϕ(i+ 1, j)

∆x2
+

−ϕ(i, j − 1) + 2ϕ(i, j)− ϕ(i, j + 1)

∆y2

= −ρ(i, j)
∆t

(
ũx(i+

1
2
, j)− ũx(i− 1

2
, j)

∆x
+
ũy(i, j +

1
2
)− ũy(i, j − 1

2
)

∆y

)
,

=
d(i, j)

∆t
.

(5.44)
So we solve a system Cϕ = d where C ∈ M(N2), where M(N2) is the set of
square matrices withN2 rows andN2 columns. Again, let us note ij = i+jN ,
for (i, j) ∈ J1, N − 2K:

C(ij, ij) = 2

(
∆t

∆x2
+

∆t

∆y2

)
. (5.45)

C(ij, ij − 1) = C(ij, ij + 1) = − ∆t

∆x2
. (5.46)

C(ij, ij −N) = C(ij, ij +N) = − ∆t

∆y2
. (5.47)

For the Neumann boundary conditions, we impose ϕ(−1, j) = ϕ(0, j). Hence
we get the following expressions for components of C when i ∈ {0, N − 1} or
j ∈ {0, N − 1}:

C(0 + jN, 0 + jN) =
∆t

∆x2
+ 2

∆t

∆y2
, (5.48)
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C(N − 1 + jN,N − 1 + jN) =
∆t

∆x2
+ 2

∆t

∆y2
, (5.49)

C(i+ 0N, i+ 0N) = 2
∆t

∆x2
+

∆t

∆y2
, (5.50)

C(i+ (N − 1)N, i+ (N − 1)N) = 2
∆t

∆x2
+

∆t

∆y2
. (5.51)

Discretisation and resolution of (5.7)

We set Equation (5.7) as follows:

un+1 − ũ
∆t

= −1

ρ
∇ϕn−1. (5.52)

We use ∇ϕn+1
x (i + 1

2
, j) = ϕ(i+1,j)−ϕ(i,j)

∆x
and ∇ϕn+1

x (−1
2
, j) = ∇ϕn+1

x (N −
1
2
, j) = 0. Then we get a simple arithmetic equation to compute un+1:

un+1
x (i+

1

2
, j) = ũx(i+

1

2
, j)− ∆t

ρ
∇ϕn+1

x (i+
1

2
, j) (5.53)

for (i, j) ∈ J0, N − 1K2.
We can verify that the divergence of u is zero at time step n+1, according
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to the following development:

(∇ · un+1)(i, j)

=
un+1
x (i+ 1

2
, j)− un+1

x (i− 1
2
, j)

∆x
+
un+1
y (i, j + 1

2
)− un+1

y (i, j − 1
2
)

∆y
,

=
ũn+1
x (i+ 1

2
, j)− ũn+1

x (i− 1
2
, j)

∆x

−∆t

ρ

∇ϕn+1
x (i+ 1

2
, j)−∇ϕn+1

x (i− 1
2
, j)

∆x
+ (. . .)y ,

= (∇ · ũ)(i, j)− ∆t

ρ

ϕ(i+ 1, j)− 2ϕ(i, j) + ϕ(i− 1, j)

∆x2
+ (. . .)y ,

= (∇ · ũ)(i, j)− ∆t

ρ
∆ϕn+1(i, j),

= 0.
(5.54)

Summary of time resolution

Let v be a dense vector field defined on the faces of the mesh. Let us call
“computation of v on perpendicular faces” the computation of the value
of vx on vertical faces and of vy on horizontal faces, in order to obtain a
staggered vector field. Let us call “computation of v on parallel faces” the
computation of the value of vx on horizontal faces and of vy on vertical faces,
in order to obtain an anti-staggered vector field. For instance, once we know
v on perpendicular faces, we can densify v to get its value on parallel faces.
As before, let us call ΩH the computational mesh, with its cells and faces.
This said, we can lay down the necessary steps for the computation of time
step n+ 1 knowing the value of the variables at time step n:

1. compute ∇ϕ · t on parallel faces of (∂Ω)H ,

2. compute ũBC on parallel and perpendicular faces of (∂Ω)H ,

3. compute ∇pn on perpendicular faces of (Ω \ ∂Ω)H ,

4. densify ∇pn on parallel faces of (Ω \ ∂Ω)H ,
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5. compute fn on perpendicular faces of (Ω \ ∂Ω)H ,

6. compute bnz ,

7. compute An
z ,

8. solve An
z ũz = bnz and get staggered field ũ,

9. compute dn on cells of ΩH ,

10. compute Cn,

11. solve Cnϕn+1 = dn,

12. compute ∇ϕn+1 on perpendicular faces of (Ω \ ∂Ω)H ,

13. compute un+1 on perpendicular faces of (Ω \ ∂Ω)H ,

14. densify un+1 on parallel faces of (Ω \ ∂Ω)H ,

15. compute pn+1 = pn + ϕn+1.

5.1.4 Adaptive Mesh Refinement

Computation of coarse and fine levels

We decide to use only one level of refinement for the AMR. We make the
decision to focus the AMR on the pressure variations ϕ. The reason is that
this is what will be important later when we study two-fluid flows: see Section
5.2.1.

Equation (5.4) gives the predicted velocity ũ. It is solved by resolution of
the linear system (5.21) on the coarse level. For the fine level, we decide to
compute the predicted velocity ũ from a linear interpolation Ih of the coarse
level onto the fine level. This fine ũ is used for the fine version of Equation
(5.7).

From ũ on the coarse grid, we also compute a coarse d
ρ
= ∇ · ũ. This

variable is linearly interpolated to get ∇ · ũ on the fine grid. The divergence
of the predicted velocity is used for the source term of Equation (5.5). Notice
that the linear interpolation and the divergence operators do not commute,
as explained in Section 5.1.4.

Equation (5.5) gives the increment of pressure ϕ. We fully use the AMR
possibilities here by computing it using the LDC algorithm explained in
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Section 4.1. This gives an accurate result on the coarse as well as on the
fine level.

Equation (5.6) is just an addition, be it on the coarse or on the fine level.

Equation (5.7) is also mostly an addition. So on each level it is computed
with the data associated to that level.

Linear interpolation formulas

We think it is important to explain how we proceed for the linear interpol-
ation Ih, for instance used after the coarse resolution of (5.20) to get the
approximation of ũ on the fine grid. We here give an explanation in 1D,
where the coarse grid ΩH follows indices I (capital letters) and the fine grid
Ωh

□ follows indices i (small letters). The refinement coefficient is r ∈ N∗. We
focus on the coarse cell numbered I. We set i = r × I. So the coarse cell I
contains the fine cells i, i+ 1, . . ., i+ r − 1.

Let ϕ be a scalar field, located at the centre of cells: we note Φ(I) its
coarse value on the coarse cell I and ϕ(i) its fine value on the fine cell i. Let
k be one of the r integers such that i ≤ i + k ≤ i + r − 1. If 1

2r
+ k 1

r
≤ r

2
,

then cell i+ k is located in the left half of cell I and

ϕ(i+ k) =
r − 1− 2k

2r
Φ(I − 1) +

r + 1 + 2k

2r
Φ(I). (5.55)

Similarly, if 1
2r

+ k 1
r
≥ r

2
, then cell i + k is located in the right half of cell I

and
ϕ(i+ k) =

3r − 2k − 1

2r
Φ(I) +

2k − r − 1

2r
Φ(I + 1). (5.56)

Let u be a vector field, located on the faces: we note U(I + 1
2
) its coarse

value on the coarse face I+ 1
2

and u(i+ 1
2
) its fine value on the fine face i+ 1

2
.

Let k be one of the r integers such that i+ 1
2
≤ i− 1

2
+ k ≤ i− 1

2
+ r. In all

cases, we are in between face I − 1
2

and face I + 1
2
.

u(i+ k +
1

2
) =

(
1− k

r

)
U(I − 1

2
) +

k

r
U(I +

1

2
). (5.57)

Source term on fine level

Let us note D
ρ

the divergence present in the source term of Equation (5.5)
on the coarse level and d

ρ
the divergence in the source term on the fine level.

148



We saw earlier that we made the implementation choice that d
ρ

be the linear
interpolation of D

ρ
. In this section, we justify this choice.

Theorem 9. For the definition of the divergence d
ρ

in the source term of
Equation (5.5) on the fine level, it is not equivalent to choose the linear
interpolation of D

ρ
or the discreet divergence of the velocity u on the fine

level. The linear interpolation of D
ρ

indeed gives more information.

Proof. For simplification, let us focus on a 1D explanation with a refinement
coefficient of r. The velocity is unidimensional: U = Uxêx and u = uxêx.
Consider a fine cell numbered i + k inside the left half of the coarse cell
numbered I. We saw earlier that we choose the following way to compute d

ρ
:

d

ρ
(i+ k) = Ih

(
D

ρ

)
(i+ k),

=
r − 1− 2k

2r

D

ρ
(I − 1) +

r + 1 + 2k

2r

D

ρ
(I),

=
r − 1− 2k

2r

Ux(I − 1
2
)− Ux(I − 3

2
)

H

+
r + 1 + 2k

2r

Ux(I +
1
2
)− Ux(I − 1

2
)

H
,

=
1

H

−r + 1 + 2k

2r
Ux(I −

3

2
) +

1

H

−2− 4k

2r
Ux(I −

1

2
)

+
1

H

r + 1 + 2k

2r
Ux(I +

1

2
).

(5.58)

To compute d
ρ
, we do not use the divergence of the velocity u on the fine
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level. Indeed, it would lead to the following development:

∇hu(i+ k) =
ux(i+ k + 1

2
)− ux(i+ k − 1

2
)

h
,

=
r

H

((
1− k

r

)
Ux(I −

1

2
) +

k

r
Ux(I +

1

2
)

−
(
1− k − 1

r

)
Ux(I −

1

2
)− k − 1

r
Ux(I +

1

2
)

)
,

=
r

rH

(
Ux(I +

1

2
)− Ux(I −

1

2
)

)
,

= (∇H · U) (I).
(5.59)

In other words, according to Equation (5.59), all the fine cells i+k contained
in the coarse cell I host the same value for ∇hu(i+k): the divergence is equal
to (∇H · U) (I). This is thus less precise than d

ρ
(i + k) shown in Equation

(5.58).

We can reformulate Theorem 9 by saying that from a discrete point of
view, the linear interpolation and the divergence operators do not commute:

∇h ◦ Ih ̸= Ih ◦ ∇H . (5.60)

5.1.5 Numerical results

We choose to use the test case of the lid-driven cavity. It is a well known
benchmark to see whether the implementation of one-phase incompressible
Navier-Stokes is correct. The literature provides us with the data for input
as well as for the end results; see [133], [31]. We took the same data as in
the tutorial for the nuclear code SATURN [122].

We still work with a 2D computational domain with the shape of a square;
we give it dimensions of Llid × Llid = 1 m × 1 m. The upper side is called
“the lid”. The lid moves from left to right with a speed of ulid = 1 m s−1.
The boundary conditions for u are no-slip conditions. It means that for all
borders, uBC · n = 0. However uBC · t = 0 only for the three lower borders;
for the lid we have uBC · t = ulid = 1 m s−1.
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The kinematic viscosity in the standard test is νlid−driven = 10−3m2 s−1.
The density for the standard test is ρlid−driven = 1 kg m−3. We notice that
this data is different from liquid water; νwater = 10−6m2 s−1 and ρwater =
1000 kg m−3. We do not consider gravity effects, so ||g|| = 0.

Since Llid is a characteristic length of the problem, we can compute a
Reynolds R number associated to our simulation:

R =
Llid ulid
νlid−driven

=
1× 1

10−3
= 1000. (5.61)

This benchmark test presents a well-known permanent regime. It is inde-
pendent of initial conditions: we use a initial velocity uniformly equal to zero
and an initial pressure also uniformly equal to zero. The final state depends
on the Reynolds number, though.

We represent our result of the permanent regime on Figure 5.2, with the
colouring as a function of ||u|| and the streamlines given with the white
arrows. Figure 5.3 also gives the permanent regime, with the colouring
as a function of ||u|| and the isocontours of ||u|| given as white lines. A
video of the transitional regime can be seen online at https://youtu.be/
esOHN--iW4Y.

We can see on Figure 5.2 that the lid makes the liquid roll clock-wise in the
square. This creates the principal whirlpool, a little up right to the centre
of the square. The principal whirlpool drives the creation of a secondary
whirlpool in the bottom right corner, and a tertiary one in the bottom left
corner of the square. The number of whirlpools depends on the Reynolds
number.

Because we knew what the final state would look like, we choose to use
only one AMR patch. We position it in the upper right corner of the compu-
tational domain. We show the position on Figure 5.4 with a white rectangle.
We set its position once and for all time steps, such that the centre of the
primary whirlpool would be located inside it.

The best way to compare our result of final state to the benchmarks of
the literature is to represent the velocity on two axis. Figure 5.5 shows ux(y)
on the axis x = 0.5 m, as a function of the ordinate y. Figure 5.6 represents
uy(x) on the axis y = 0.5 m, as a function of the abscissa x. The blue lines
represent the data from our simulations. The green lines represent the data
from Ghia et al. [71], which is often used as a benchmark, as for instance
in [133], [31] or [122]. It is the computation on a single level (i.e. without
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Figure 5.2 – Final state of lid-driven cavity simulation (streamlines of u)

152



Figure 5.3 – Final state of lid-driven cavity simulation (isocontours of ||u||)
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Figure 5.4 – Intermediary state of lid-driven cavity simulation (with white
AMR patch, streamlines of u and isocontours of ||u||)
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Figure 5.5 – ux along vertical axis, as a function of y

AMR) with a 129 × 129 grid. The differences between literature and our
results may come from our own mesh that may not have been fine enough:
we have used a 48 × 48 grid with one level of refinement with a refinement
coefficient r = 2. This is of course less precise than a grid of 96 × 96.

5.2 Two-fluid incompressible Navier-Stokes

For the two-fluid incompressible Navier-Stokes simulation too, we define a
2D computational domain with the shape of a square. As seen earlier in
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Figure 5.6 – uy along horizontal axis, as a function of x

Section 2.1.3, we want to compute the following set of equations:



∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fothers,

∇ · u = 0,

∂tY + u∇Y = 0,

ρ = ρgY + ρl(1− Y ),

u = uBC on ∂Ω (boundary conditions),

u(t = 0) = u0 on Ω (initial conditions),

Y (t = 0) = Y0 on Ω (initial conditions).

(5.62)

As seen before, Y is a function that equals either 0 or 1. Therefore, ρ equals
either ρl or ρg. It is a function constant by pieces.
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5.2.1 Implementation

Prediction-correction scheme

Here too we decide to use a prediction-correction scheme as done by Chorin
and Temam. The model discretised in time is expressed as follows, for a time
step numbered n and for a time incrementation ∆t:

ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = − 1

ρn
∇p+ g + fnothers,

ũ = uBC on ∂Ω.
(5.63)


−∇ ·

(
1

ρn
∇ϕn+1

)
= − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 on ∂Ω.

(5.64)

pn+1 = pn + ϕn+1. (5.65)
un+1 − ũ

∆t
= − 1

ρn
∇ϕn+1,

un+1 = uBC on ∂Ω.

(5.66)

Y n+1 − Y n

∆t
+ un+1 · ∇Y n = 0. (5.67)

ρn+1 = ρgY
n+1 + ρl(1− Y n+1). (5.68)

Like for the one-phase incompressible Navier-Stokes simulation, we recog-
nize ũ the prediction of velocity and ϕ the increment of pressure. We would
like to point out a major difference with the one-phase incompressible model.
Equation (5.64) reads as −∇·

(
1
ρn
∇ϕn+1

)
= − 1

∆t
∇·ũ whereas Equation (5.5)

read as −1
ρ
∆ϕn+1 = − 1

∆t
∇·ũ. This is because 1

ρ
is not uniform any more. Of

course, we can notice that if ρl = ρg, the two equations become equivalent.

Prediction step (5.63)

Similarly as for the one-phase case, we can solve ũ component by component:

∀z ∈ {x, y}, ũz − unz
∆t

+ unx
∂ũz
∂x

+ uny
∂ũz
∂y

− ν

(
∂2ũz
∂x2

+
∂2ũz
∂y2

)
= fn

z . (5.69)
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Space discretisation

Like for the one-phase flow, we use a staggered grid. But here, we also locate
the field 1

ρ
on the faces, although it is a scalar. We compute

(
1
ρ

)n

as follows:(
1

ρ

)n

(i+
1

2
, j) =

1

2

(
1

ρn(i, j)
+

1

ρn(i+ 1, j)

)
, (5.70)

(
1

ρ

)n

(i, j +
1

2
) =

1

2

(
1

ρn(i, j)
+

1

ρn(i, j + 1)

)
. (5.71)

On the borders, we decide to impose Neumann boundary conditions:

(
1
ρ

)n

(−1
2
, j) = 1

ρn(0,j)
,(

1
ρ

)n

(N − 1
2
, j) = 1

ρn(N−1,j)
,(

1
ρ

)n

(i,−1
2
) = 1

ρn(i,0)
,(

1
ρ

)n

(i, N − 1
2
) = 1

ρn(i,N−1)
.

(5.72)

For the advection part, we still choose an upwind scheme. Similarly to
the one-phase computation, here too we need to “densify” u to get U.

Matrix form of (5.63) and boundary conditions

The matrix form of Equation (5.63) is the same as the one for the one-phase
computation (5.20):

An
z ũz = bnz . (5.73)

Boundary conditions are also expressed the same way, so we will not
rewrite them here. Please refer to Sections 5.1.2 and 5.1.2.

Discretisation and resolution of Equation (5.64)

Let us note d = −∇ · ũ. We want to solve the following equation:
−∇ ·

((
1

ρ

)n

∇ϕn+1

)
= − 1

∆t
∇ · ũ =

d

∆t
,

∇ϕn+1 · n = 0 on ∂Ω.

(5.74)
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The variable ϕ is located at the centre of cells, so there are N2 unknowns.

d(i, j) = −
(
ũx(i+

1
2
, j)− ũx(i− 1

2
, j)

∆x
+
ũy(i, j +

1
2
)− ũy(i, j − 1

2
)

∆y

)
.

(5.75)

−∇ · (
(
1

ρ

)
∇ϕ)(i, j)

= − 1

∆x

((
1

ρ
∇ϕ

)
(i+

1

2
, j)−

(
1

ρ
∇ϕ

)
(i− 1

2
, j)

)

− 1

∆y

((
1

ρ
∇ϕ

)
(i, j +

1

2
)−

(
1

ρ
∇ϕ

)
(i, j − 1

2
)

)
,

= − 1

∆x

(
1

ρ

)
(i+

1

2
, j)

ϕ(i+ 1, j)− ϕ(i, j)

∆x

+
1

∆x

(
1

ρ

)
(i− 1

2
, j)

ϕ(i, j)− ϕ(i− 1, j)

∆x

− 1

∆y

(
1

ρ

)
(i, j +

1

2
)
ϕ(i, j + 1)− ϕ(i, j)

∆y

+
1

∆y

(
1

ρ

)
(i, j − 1

2
)
ϕ(i, j)− ϕ(i, j − 1)

∆y
.

(5.76)

We solve a system Cϕ = d where C ∈ M(N2).

C(ij, ij) =
∆t

∆x2

((
1

ρ

)
(i− 1

2
, j) +

(
1

ρ

)
(i+

1

2
, j)

)

+
∆t

∆y2

((
1

ρ

)
(i, j − 1

2
) +

(
1

ρ

)
(i, j +

1

2
)

)
.

(5.77)

C(ij, ij − 1) = − ∆t

∆x2

(
1

ρ

)
(i− 1

2
, j). (5.78)

C(ij, ij + 1) = − ∆t

∆x2

(
1

ρ

)
(i+

1

2
, j). (5.79)

C(ij, ij −N + 1) = − ∆t

∆y2

(
1

ρ

)
(i, j − 1

2
). (5.80)
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C(ij, ij +N − 1) = − ∆t

∆y2

(
1

ρ

)
(i, j +

1

2
). (5.81)

To respect the Neumann boundary conditions, we impose ϕ(−1, j) =
ϕ(0, j), so we get the following expression:

C(0 + jN, 0 + jN) =
∆t

∆x2

(
1

ρ

)
(
1

2
, j)

+
∆t

∆y2

(
1

ρ

)
(0, j − 1

2
)

+
∆t

∆y2

(
1

ρ

)
(0, j +

1

2
).

(5.82)

Resolution of (5.65), (5.66), (5.67), (5.68)

The resolution of Equation (5.65) is trivial:

pn+1(i, j) = pn(i, j) + ϕ(i, j). (5.83)

Equation (5.66) can be computed after the gradient of ϕ is calculated:

un+1
x (i+

1

2
, j) = ũx(i+

1

2
, j)−∆t

(
1

ρ

)n

(i+
1

2
, j) (∇ϕ)n+1 (i+

1

2
, j). (5.84)

The resolution of the advection equation (5.67) is done with the anti-dissi-
pative limited downwind scheme, as shown in earlier parts (see Section 3.4.1
for instance). The resolution of Equation (5.68) is trivial too:

ρn+1(i, j) = ρgY
n+1(i, j) + ρl

(
1− Y n+1(i, j)

)
. (5.85)

Adaptive Mesh Refinement

Like for the one-phase computation, we decide to use only one level of refine-
ment for the AMR. As we will see, we make the decision to focus the AMR
on the pressure variations ϕ, as well on the colour function Y . Because of the
discontinuity of

(
1
ρ

)
, the pressure p may be continuous but its gradient ∇p is

not at the bubble interfaces; it is useful to refine with p in mind. Conversely,
we used a uniform kinematic viscosity ν, so both ũ and ∇·ũ are continuous.
As a consequence, we do not drive our choices of refinement because of ũ.
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Equation (5.63) gives the predicted velocity ũ. It is solved by resolution of
the linear system (5.73) on the coarse level. But for the fine level, we decide
to compute the predicted velocity ũ from a linear interpolation of the coarse
level onto the fine level. This fine ũ is used for the fine version of Equation
(5.66).

From ũ on the coarse grid, we also compute a coarse ∇ · ũ. This variable
is linearly interpolated to get ∇ · ũ on the fine grid. The divergence of the
predicted velocity is used for the source term of Equation (5.64).

Equation (5.64) gives the increment of pressure ϕ. We fully use the AMR
possibilities here by computing it using the LDC algorithm explained in
Section 4.1. This gives an accurate result to the elliptic equation on the
coarse as well as on the fine level.

Equation (5.65) is just an addition, be it on the coarse or on the fine level.

Equation (5.66) is also mostly an addition. So on each level we compute
it with the data associated to that level.

Equation (5.67) is the advection of Y with the newly computed u. We
compute the advection with the limited downwind scheme on the coarse
level as well as on the fine level. In other words we proceed exactly as
explained earlier in Section 3.4 for instance. This gives an accurate result to
the hyperbolic equation on the coarse level as well as on the fine level.

Equation (5.68) is a simple arithmetic operation. So on each level we
compute it with the data associated to that level.

5.2.2 Tension forces

In Equation (5.63), we gather physical forces in the acceleration f. It includes
the gravitational acceleration g and the pressure forces. In order to have a
more physical representation of bubbles, we want to also include tension
forces in the term fothers. Let Tsurf be the acceleration due to the surface
tension of bubbles:

f = −1

ρ
∇p+ g + Tsurf . (5.86)

Let τsurf be a constant acceleration coefficient, with units of m s−2. Let n
be the unit vector normal to the interface and pointing towards the liquid
phase l. Let κ = ∇ · n be the curvature of an interface between two fluids.
From the theoretical point of view, the surface tension is located only on the
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interface itself and it is given by the following expression:

Tsurf = −τκn. (5.87)

As mentioned in Section 2.2.2, calculating the curvature κ = ∇ · n would
have been very easy with a level-set function. Here instead, we have a discret-
ised colour function Y . Because we kept Y intentionally as sharp as possible,
the computation of its gradient is prone to present two issues. It is too much
located on just the interface and none of its surroundings, and its direction
is often either horizontal or vertical (instead of pointing towards the inside
of the bubble). So we have to find some way for a satisfying expression of a
discretised Tsurf .

Such a way is proposed by Brackbill et al. in [33]. We use a “smoothing”
operator S on Y h to get Y h

smooth = S(Y h), a “mollified” colour function. The
operator S is just the average of Y h on the five closest cells:

Y h
smooth(i, j) = S(Y h)(i, j)

=
1

5

(
Y h(i, j) + Y h(i− 1, j) + Y h(i+ 1, j)

+Y h(i, j − 1) + Y h(i, j + 1)
)
.

(5.88)

We notice that when ∆x → 0, Y h
smooth tends to Y , similarly to Y h. We set

N as the gradient of Y h
smooth:

N = ∇Y h
smooth (5.89)

The vector field N is normal to the interface and it points towards the inside
of bubbles. The unit normal is thus given by the following expression:

n = − ∇Y h
smooth

||∇Y h
smooth||

. (5.90)

As a consequence, the surface tension acceleration of Equation (5.87) is given
by the following formula:

Tsurf = −τ ∇ · n N. (5.91)

At some point, we also have to give a value to the curvature on faces:

κ(i+
1

2
, j) =

κ(i, j) + κ(i+ 1, j)

2
, (5.92)
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κ(i, j +
1

2
) =

κ(i, j) + κ(i, j + 1)

2
. (5.93)

In the end, this leads us to the following formulas:

Tsurf ,x(i+
1

2
, j) = τ(∇ · n)(i+ 1

2
, j)∇Y h

smooth(i+
1

2
, j), (5.94)

Tsurf ,y(i, j +
1

2
) = τ(∇ · n)(i, j + 1

2
)∇Y h

smooth(i, j +
1

2
). (5.95)

Also see [127] for more information about surface tension.

5.2.3 Numerical results

We want to make the most complete simulation possible in order to test out
any eventual limit of our computation.

We choose a 2D square domain of dimensions 1 m×1 m. For the boundary
conditions of the velocity, we choose the same ones as for the lid-driven
cavity test case: no-slip conditions, with the upper boundary (the lid) moving
horizontally to the right at a speed of ulid = 1 m s−1.

We give the surrounding fluid, indexed l, a kinematic viscosity of νl =
νwater = 10−6m2 s−1, and a density of ρl = ρwater = 1000 kg m−3. We give
the dispersed fluid, indexed g, the same kinematic viscosity νg = 10−6m2 s−1.
But we choose ρg = ρl/2 = 500 kg m−3.

Gravity ||g|| is set to 9.8 m s−2 in the downwards direction. The surface
tension parameter τsurf is set to 10 m s−2.

For the initial conditions, we choose to consider two bubbles of liquid 1.
We place one in the shape of a circle in the bottom left corner. We place the
other in the shape of an ellipse (to test out the tension forces) in the upper
right corner. Figure 5.7 represents this initial state.

An image of an intermediary state is given at Figure 5.8. A video can
be seen online at https://youtu.be/11_cdEDH-2I. We can see the AMR
patches as white rectangles and the streamlines of the velocity as white little
arrows. The left bubble goes up due to Archimede’s force. After going up a
little, the right bubble is quickly drifted by the lid and stuck in a whirlpool
in the upper right quadrant.
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Figure 5.7 – Initial state for two-fluid incompressible Navier-Stokes simula-
tion, with AMR patches shown as white rectangles
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Figure 5.8 – Intermediary state for two-fluid incompressible Navier-Stokes
simulation, with AMR patches shown as white rectangles
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Chapter 6

Outreach

6.1 Perspectives

In this thesis, we have reviewed a series of models for flows with two separated
phases. As part of our list, the ones we simulated were the incompressible
Navier-Stokes model and the Abstract Bubble Vibration model. We think
that future work should also focus on the Diphasic Low-Mach Number model,
as it is especially adapted for nuclear Thermal-Hydraulics [47]. As far as our
choice of modelisation of an interface, we were highly satisfied by the front
capturing method. In particular, the transport of the colour function Y
showed to be precise enough, thanks to the Després-Lagoutière advection
scheme and Adaptive Mesh Refinement.

Speaking of which, we are convinced that patch-based AMR will carry
further improvements to simulations. It would be interesting to continue
our research efforts to implement the nmin – nmax algorithm with distributed
memory parallelisation technologies, as for instance MPI [147]. Further de-
velopments would then have to be made, in order to get higher speed-ups and
cluster-enabled computation [117]. The patch-based approach seems to be
also very promising for multi-model computations. One could imagine that
we would use a first model for the coarse level computation, and a second
model for the fine level. In this case, a lot remains to be done at least for
the convergence analysis.

The ABV model permitted us to test drive the LDC algorithm and hyper-
bolic-elliptic coupling. We think there is still room for a more complete proof
of LDC with different interpolations, as well as cell-centred data combined
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Figure 6.1 – Mushroom-shaped Rayleigh-Taylor instability

with ghost cells. As we verified ABV with the volume formula, we think it
would be good to make more tests with a wider selection of grids and a more
precise quantification of the error depending on whether we use AMR or not.
Still, we think that our implementation with CDMATH will be useful to be
fully comprehended by anyone who would want to reuse it. Both from a
theoretical point of view and a coding point of view, we made special efforts
for it to be adopted by potential other users.

We applied the tools we designed for one- and two-phase incompressible
Navier-Stokes model simulations. For the lid-driven cavity simulation, we
would have liked to get even more precise results; even closer to the literature
benchmarks. This would likely have been achieved with more precise grids.
The two-fluid simulation seems realistic, but we would have much enjoyed to
test our code with a classic case of Kelvin-Helmholtz [86, 69] or Rayleigh–
Taylor [124] instabilities for example, for benchmark purposes. The latter is
the unstable superposition of two fluids with different densities, the heavier
being on top. Figure 6.1 shows preliminary results and a video can be seen
online at https://youtu.be/l_T0op-prqM.

Further developments may also expand more on phase transition. Of
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course it would depend on the model used for the other phenomenons [80],
but we could for instance try with the Stefan model for phase change [85].
More complete simulations could then be validated with experimental data
at the bubble scale [112, 111], in order to improve knowledge of important
thermal-hydraulic phenomenons occurring in nuclear power plants such as
the Departure of Nuclear Boiling.

6.2 Communications

During the three years, we had many opportunities to present our research
results:

• Poster presented at the CEA-GAMNI seminar in January 2014 at Insti-
tut Henri Poincaré in Paris, on the topic “Analysis of Interfacial Forces
on the Physics of Two-Phase Flow and Hyperbolicity of the Two-Fluid
Model”, which is not linked to the topic of the PhD thesis but rather
stemming from prior work realised during the Masters of Science.

• Poster presented at the Congrès National d’Analyse Numérique (CANUM
2014) in April 2014 in Carry-le-Rouet, on the topic “Analysis of the ef-
ficiency and relevance of patch creation algorithms in the case of AMR
of thin flagged areas” which is linked to the topic of this thesis.

• Participation to “Ma Thèse en 180 secondes” (MT180) in April 2014. It
consists in an international competition which purpose is to popularise
one’s PhD topic in three minutes.

• Poster presented at the CEA-GAMNI seminar in January 2015 at Insti-
tut Henri Poincaré in Paris, on the topic “Direct Numerical Simulation
of bubbles using Adaptive Mesh Refinement on parallel architecture”.

• Presentation at the LRC-MANON workgshop in February 2015 at the
Jacques-Louis Lions laboratory in Paris VI, on the topic “Direct Nu-
merical Simulation of bubbles using Adaptive Mesh Refinement on par-
allel architecture”.
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• Presentation at the European Nuclear Young Generation Forum (EN-
YGF) in June 2015 at the Cité des Sciences et de l’Industrie, on the
topic “Direct Numerical Simulation of bubbles using Adaptive Mesh
Refinement on parallel architecture”.

• Presentation at the “Multiphase Flows” congress in September 2015
at the Institut d’Études Scientifiques de Cargèse, on the topic “Direct
Numerical Simulation of bubbles using Adaptive Mesh Refinement on
parallel architecture”.

• Presentation at the “Low Velocity Flows” congress in November 2015 at
Université Paris Descartes, on the topic “Direct Numerical Simulation
of bubbles using Adaptive Mesh Refinement on parallel architecture”.

• Presentation at the Congrès National d’Analyse Numérique (CANUM
2016) in May 2016 at Obernai, on the topic “Direct Numerical Simu-
lation of bubbles using Adaptive Mesh Refinement on parallel architec-
ture”.

We also presented our work multiple times internally; to the laboratory,
to the department, to the wider CEA Saclay audience, to the DGA R&D
policy makers…

6.3 Supervision and funding

We realised this work under supervision from the French national laborat-
ory CEA and from École Polytechnique, both belonging to Université Paris
Saclay. We received joint financial support from CEA and from the Research
and Development service of the French Ministry of Defence; DGA.
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Appendix A

Implementation of the
clustering algorithms

For factorisation and hence readability purposes, we implemented the three
algorithms together in a single program. Hereunder follows a simplified ex-
pression of a part of MEDCoupling, the library in which we did the imple-
mentation. The syntax is inspired from C++.

/*!
* This generic algorithm can be degenerated into 3 child ones,
* depending on the arguments given; in particular depending
* on whether they are equal to 0 or not.
* 1/ If minimumPatchLength nmin = 0,
* maximumPatchLength nmax = infinite,
* and maximumPatchVolume Nmax = 0,
* then we have the Berger-Rigoutsos algorithm.
* This algorithm was developed in 1991 and seems appropriate
* for sequential programming.
* 2/ If maximumPatchLength nmax = infinite,
* then we have the Livne algorithm.
* This algorithm was developed in 2004 and is an improvement
* of the Berger-Rigoutsos algorithm.
* 3/ If maximumPatchVolume Nmax = infinite,
* then we have the nmin-nmax algorithm.
* This algorithm was developed by Arthur TALPAERT in 2014
* and is an improvement of the Livne algorithm.
* It is especially appropriate for parallel computing,
* where one patch would be given to one CPU.
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* See Arthur TALPAERT's 2014 CANUM poster for more information.
*/

vector<Patch>
createPatchesFromCriterion(BoxSplittingOptions bso,

vector<int> factors)
{
/*
* Here initialisation of refinement criteria:
* - eta_goal
* - eta_threshold
* - nmin_goal
* - nmax_goal
* - Nmax_goal
*/
vector<Patch> listOfPatches;
vector<Patch> listOfPatchesOK;

while (not listOfPatches.empty())
{
vector<Patch> listOfPatchesTmp;
for(Iterator it=listOfPatches.begin();

it!=listOfPatches.end();
it++)

{
/*
* Here initialisation of local patch characteristics:
* - eta_local
* - nmin_local
* - nmax_local
* - widestAxis
* - Nmax_local
*/

int cutPlace;
if ( eta_local >= eta_threshold
and (N_local > Nmax_goal or nmax_local > nmax_goal)
and (DissectBigPatch(bso,it,widestAxis,
lmax_local,cutPlace)) )

// Action 1
{
DealWithCut(nmin_goal, it, widestAxis,
cutPlace, listOfPatchesTmp);
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continue;
}
if ( FindHole(bso,it,widestAxis,cutPlace) )
// Action 2
{

DealWithCut(lmin_goal, it, widestAxis,
cutPlace, listOfPatchesTmp);

continue;
}
if ( FindInflection(bso,it,cutPlace,widestAxis) )
// Action 3
{

DealWithCut(nmin_goal, it, widestAxis,
cutPlace, listOfPatchesTmp);

continue;
}
if ( RespectEtaLmaxNmax(bso,it,widestAxis,

nmax_local,cutPlace) )
// Action 4
{

DealWithCut(nmin_goal, it, widestAxis,
cutPlace, listOfPatchesTmp);

continue;
}
else

listOfPatchesOK.push_back(DealWithNoCut(it));
}
listOfPatches = listOfPatchesTmp;

}
return listOfPatchesOK;

}

bool
RespectEtaLmaxNmax(BoxSplittingOptions bso,

Patch patchToBeSplit,
int widestAxis,
int nmax_local,
int cutPlace)

{
if ( eta_local <= eta_goal )
{
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if ( nmax_local >= 2*nmin_goal )
cutPlace = nmax_local/2 + patchToBeSplit.firstCoord() -1;

else
return false;

}
else
{

if ( N_local > Nmax_goal or nmax_local > nmax_goal )
return DissectBigPatch(bso,

patchToBeSplit,
widestAxis,
nmax_local,
cutPlace);

else
return false;

}
return true;

}

176



Appendix B

Poisson problem

The purpose is to numerically solve the 2D Poisson problem, respectively
with periodic, Neumann and Dirichlet boundary conditions:

−∆ϕ = s on Ω,
∀(x, y), ϕ(x+ Lx, y) = ϕ(x, y),
∀(x, y), ϕ(x, y + Ly) = ϕ(x, y).

(B.1)

{
−∆ϕ = s on Ω,
∇ϕ · n = 0 on ∂Ω. (B.2)

{
−∆ϕ = s on Ω,
ϕ = ϕBC on ∂Ω. (B.3)

where Lx × Ly are the dimensions of the computational domain, and ϕBC

is given. We use an analytic form of s such that we know the theoretical
solution ϕexact. This way, we can verify our computation methods.

To discretise the Laplacian operator −∆, we use a very commonly used
technique centred on cells. Let (i, j) ∈ J0, nx − 1K × J0, ny − 1K be discrete
coordinates for the mesh attached to the computational domain Ω. Let ∆x
be the elementary space step in the x direction and ∆y be the elementary
space step in the y direction. For all (i, j) ∈ J1, nx − 2K× J1, ny − 2K, we use
the following formula:

−∆ϕ(i, j) =
−ϕ(i− 1, j) + 2ϕ(i, j)− ϕ(i+ 1, j)

∆x

+
−ϕ(i, j − 1) + 2ϕ(i, j)− ϕ(i, j − 1)

∆y
.

(B.4)
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For the cells near the boundaries, it depends on the chosen boundary condi-
tions. The scheme is classically called the finite differences “five-point stencil”
because the evaluation of −∆ϕ(i, j) uses the value of ϕ on the cell numbered
(i, j) plus on its four neighbouring cells.

Let us assume we have found an approximation (ϕapprox,i)i, where i ∈J1, ncellsK. We define (ϕexact,i)i = ϕexact(xi) where (xi)i are the centres of all
the cells. Let us also define vi the elementary volume of cell i. We measure
the L2 error with the following formula:

L2error = ∥ϕexact − ϕapprox∥L2 ,

= (
∑

i vi(ϕexact,i − ϕapprox,i)
2)

1
2 .

(B.5)

The error is a function of the elementary grid size. We expect it to decrease
with refinement of the grids.

We made successful tests with periodic and Neumann boundary conditions
for the Poisson problem. We detail here similar success for non-homogeneous
Dirichlet conditions (B.3). We use the example from [57], where the source
term is the addition of a “gentle” trigonometric function and an exponential
spike located in the centre. Let us note ϱ =

√
x2 + y2 + z2 the distance to

the centre and χ(ϱ) = 1ϱ≤ϵ an indicator function. Then the source term is
given by the following formula:
s(x, y, z) = 2k2π2 cos(kπx) cos(kπy)

−4ηχ(ϱ) exp
(
1

ϵ2

)
exp

(
−1

ϵ2 − ϱ2

)
ϱ2 + ϱ4 − ϵ4

(ϵ2 − ϱ2)4
.

(B.6)

The analytic solution is thus given by the following:

ϕexact = cos(kπx) cos(kπy) + ηχ(ϱ) exp
(
1

ϵ2

)
exp

(
−1

ϵ2 − ϱ2

)
. (B.7)

As for numerical values, we use k = 1/2, η = 10 and ϵ = 1/4. We use a
2D computational domain of size [0, 1]× [0, 1]. We take a series of Cartesian
meshes where ∆x = ∆y and hence nx = ny. We use one patch, not centred
but we ensure that it still covered the exponential spike. The refinement
coefficient r is equal to 2.

The plot of log(L2error) as a function of log(∆x∆y) is shown in Figure
B.1. The numbers (4, 5, 6) indicate the number of LDC iterations needed
before convergence of the algorithm.

As the red dotted line is nearly parallel to the green one, we can conclude
we are close to a second order convergence of the LDC method.

178



Figure B.1 – log(L2error) as a function of log(∆x∆y)
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Appendix C

Structure et résumé de la thèse

C.1 Introduction

Le manuscrit issu du travail de thèse a été rédigé en anglais. Cette annexe C
en un résumé substantiel en français. Le chapitre 1 est une introduction gé-
nérale au sujet. Nous expliquons le contexte et les objectifs de nos recherches
dans la section 1.1 ; l’étude des écoulements diphasiques dans les réacteurs
nucléaires. Les écoulements de ce type sont en effet présents dans le cœur
des réacteurs à eau bouillante et dans les générateurs de vapeur. Leur simu-
lation fine permet d’augmenter encore la sûreté et l’efficacité de ces systèmes
industriels.

Nous consacrons ensuite la section 1.2 à la différentiation des échelles de
simulation numérique faite pour la discipline de la thermohydraulique nu-
cléaire. Dans l’ordre de la plus grande échelle à la plus petite, nous avons
l’échelle système, l’échelle composant, l’échelle de la 3D locale et la simu-
lation numérique directe (SND). Plus l’échelle est grande, plus l’effort de
modélisation est grand. Plus l’échelle est petite, plus le calcul informatique
est lourd mais aussi plus il peut représenter des phénomènes précis. Le tra-
vail de thèse porte sur la simulation des bulles, à l’échelle du centimètre (en
espace) et de la seconde (en temps).

La section 1.3 est l’exposition de la structure et du résumé de la thèse en
anglais, c’est-à-dire la traduction de cette présente annexe C.
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C.2 Modèles d’écoulements à deux phase sé-
parées

Le chapitre 2 présente un ensemble de modèles thermohydrauliques existants,
avec un accent tout particulier pour les problèmes à deux phases séparées.
Nous commençons avec les modèles compressibles communs : les systèmes
d’Euler ainsi que de Navier-Stokes. Nous expliquons le premier avec uni-
quement une expression monophasique dans la section 2.1.1 et le deuxième
avec une expression diphasique dans la section 2.1.2. Dans la section 2.1.3,
nous prenons l’hypothèse de l’incompressibilité, afin d’obtenir le modèles de
Navier-Stokes incompressible :

∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fautres,

∇ · u = 0,

u = uCL sur ∂Ω (conditions aux limites),

u(t = 0) = u0 sur Ω (conditions initiales).

(C.1)

L’équation (C.1) donne l’expression monophasique, avec des notations qui
sont définies précisément dans le manuscrit. L’expression diphasique est don-
née par l’équation (C.2) :

∂tu + u · ∇u − ν∇2u = f = −1

ρ
∇p+ g + fautres,

∇ · u = 0,

∂tY + u · ∇Y = 0,

ρ = ρgY + ρl(1− Y ),

u = uCL sur ∂Ω (conditions aux limites),

u(t = 0) = u0 sur Ω (conditions initiales),

Y (t = 0) = Y0 sur Ω (conditions initiales).

(C.2)

Nous poursuivons dans la section 2.1.4 avec les modèles utilisés dans les codes
nucléaires ; les modèles respectivements à 6 et 7 équations, aussi connus sous
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le nom de modèles de mélange. Dans la section 2.1.5, nous nous attardons
sur les conditions bas-Mach ; quand les écoulements se font à vitesse faible
comparé à la vitesse du son. Nous passons en revue le modèle diphasique
à bas nombre de Mach (DLMN), proposé lui aussi pour les conditions du
nucléaire. Nous présentons enfin dans la section 2.1.6 le modèle de vibration
de bulle abstraite (ABV) qui est un couplage entre une équation hyperbolique
et une équation elliptique.

Puisque nous sommes intéressés par la SND des bulles, nous nous devons
de choisir les bons outils pour modéliser leur interface numériquement. Nous
présentons deux techniques importantes dans la section 2.2. Le suivi de front,
comme expliqué dans la section 2.2.1, revient à modéliser l’écoulement avec
une perspective de convection (ou « lagrangienne »). Au contraire, comme
expliqué dans la section 2.2.2, nous faisons correspondre la capture d’interface
à une perspective eulérienne. Nous expliquons pourquoi nous choisissons cette
dernière. Notre implémentation est le transport d’une fonction couleur Y qui
vaut soit 1 dans la phase gazeuse, soit 0 dans la phase liquide. Nous aurons
à trouver le bon schéma de discrétisation afin de faire en sorte que le saut de
1 à 0 reste le plus abrupt possible.

C.3 Capture de front avec maillage adapta-
tif : schémas aux différences finies et pa-
rallélisation

Nous montrons dans le chapitre 3 que la Simulation Numérique Directe est
l’échelle de calcul la plus précise et par corrolaire la plus chère. Le maillage
adaptatif (AMR) est l’enrichissement d’un sous-ensemble du domaine de cal-
cul – la région d’intérêt – avec plus de détail. Nous expliquons comment
l’AMR est bénéfique à la SND en passant en revue la littérature sur le raf-
finement de maillage. Dans la section 3.1, nous différencions les techniques
suivantes : le maillage anisotrope, l’adaptation r, l’adaptation p, l’adaptation
h, l’adaptation s. Nous décidons de nous focaliser sur l’adaptation de maillage
par patchs sur grilles cartésiennes dans la section 3.2. Cela signifie que nous
recouvrons la dite zone d’intérêt avec un ou plusieurs niveaux de patchs,
qui sont dotés d’une discrétisation spatiale plus fine. La figure C.1 montre un
test standard pour les équations d’advection, le test 2D de Kothe-Rider [119].
Nous avons ici utilisé l’AMR par patchs avec un seul niveau de rafinement.
Nous montrons le niveau grossier (en réalité, le domaine de calcul dans sa to-
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Figure C.1 – Test 2D de Kothe-Rider, avec patchs AMR visibles

talité) à l’intérieur d’un carré vert, il est discrétisé avec un maillage de taille
100 × 100. Nous montrons le niveau fin à l’intérieur de nombreux rectangles
blancs, qui sont les patchs avec un coefficient de rafinement de r = 4. Ils
recouvrent une surface que nous avons déterminée comme étant d’intérêt :
l’interface entre le liquide et le gaz. Nous pouvons dire que la simulation a
une discrétisation équivalente de 400 × 400.

Nous présentons plusieurs façons de définir les patchs ; l’algorithme de
Berger-Rigoutsos [22], l’algorithme de Livne [99]. Nous proposons aussi notre
propre amélioration, l’algorithme nmin – nmax. Il contrant la taille des patchs
avec une longueur minimale nmin et une longueur maximale nmax ; un troi-
sième paramètre étant l’efficacité minimale ηmin du recouvrement. Nous in-
troduisons trois fonctions de qualité destinées à comparer les recouvrements
par patchs : l’efficacité moyenne η, l’écart-type normalisé des tailles σ et la
quadrature moyenne γ. Nous comparons les trois algorithmes dans la pers-
pective du calcul sur de multiples processeurs dans la section 3.3. Pour cela
nous déterminons la valeur des fonctions de qualité sur quelques centaines
de recouvrements qui utilisent les trois algorithmes. Nous nous déciderons
pour nmin – nmax. Nous décidons de tester notre choix dans la section 3.4
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avec une simultion d’advection 3D dite de Kothe-Rider. Nous présentons
différents schémas d’advection, dont le schéma décentré amont et WENO.
Nous choisissons le schéma limiteur à décentrement aval introduit Després
et Lagoutière [51], car il capture et transporte la fonction couleur Y avec
une diffusion minime sur un très faible nombre de mailles. En localisant les
patchs de raffinement sur l’interface entre le liquide et le gaz, nous obte-
nons des résultalts encourgeants en ce qui concerne l’accélération de temps
de calcul quand nous utilisons le calcul parralèle.

C.4 Équations elliptiques et modèle de Vibra-
tion de Bulle Abstraite

Comme nous l’expliquons dans le chapitre 4, les équations elliptiques pré-
sentent un défi supplémentaire si on cherche à les représenter avec l’AMR par
patchs, puisqu’elles requièrent de l’information du domaine de calcul entier.
C’est pourquoi, dans la section 4.1, nous choisissons d’utiliser l’algorithme
de Correction de Défaut Local (LDC) [74]. Comme présenté schématique-
ment sur la figure C.2, LDC est un processus itératif qu’on réalise jusqu’à ce
qu’on détermine qu’on a atteint la convergence. À chaque itération, les so-
lutions calculées sur le maillage grossier et sur les maillages fins (les patchs)
s’enrichissent les unes les autres. La solution calculée sur le maillage grossier
définit des conditions aux limites de Dirichlet sur les bords des patchs. Nous
résolvons ensuite l’équation elliptique sur le maillage fin avec les susnommées
conditions aux limites. La solution calculée sur le maillage fin permet alors
de déduire l’éponyme Correction de Défaut Local sur la zone raffinée : elle
remplacera le terme source au niveau grossier, ce qui amène à une nouvelle
résolution grossière et une nouvelle itération LDC.

Dans la section suivante, nous rappelons la preuve de sa convergence éta-
blie par Ferket et al. ferketreusken1996methodoncompositegrid et Anthonis-
sen et al. [10]. Nous proposons ensuite notre variante de LDC, qui se différen-
cie de la littérature de deux façons. Premièrement, nous utilisons des valeurs
au centre des mailles et non des valeurs aux nœuds des maillages. C’est pour-
quoi, pour l’étape d’interpolation des conditions aux limites de Dirichlet du
niveau grossier au fin, nous équipons les patchs de cellules fantômes autour
de leurs bords. Deuxièmement, la plupart du temps, nous avons une situa-
tion où le recouvrement est constitué de nombreux patchs, qui souvent se
touchent les uns les autres. Donc nous décidons de les considérer comme une
partition du niveau fin : nous utilisons l’algorithme itératif de Schwarz de
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Figure C.2 – Schéma simplifié de l’algorithme LDC

décomposition de domaine pour déterminer une solution acceptable sur le
niveau fin, sans discontinuité à l’interface entre patchs. Nous testons notre
implémentation avec le modèle ABV dans la section 4.2, en 2D ainsi qu’en
3D. Nous localisons les patchs sur l’interface de la bulle. Nous utilisons une
formule qui donne le volume de la bulle en fonction du temps pour vérifier que
nous obtenons des résultats convaincants. Nous avons implémenté les outils
AMR que nous avons utilisés dans une bibliothèque au code source libre ap-
pelée CDMATH et conçue pour aider d’autres numériciens et ingénieurs [44,
145]. Nous présentons comment CDMATH a été conçu et comment l’AMR
en est une extension dans la section 4.3. Avec cette boîte à outils, chacune
peut implémenter l’AMR aussi facilement en 2D et en 3D.

C.5 Application à Navier-Stokes incompres-
sible

Enfin, nous appliquons dans le chapitre 5 le résultat de notre travail sur
le maillage adaptatif à des simulations plus réalistes. Nous représentons les
systèmes de Navier-Stokes incompressibles sur des maillages décallés (les va-
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riables scalaires au centre des mailles, les vecteurs sur les faces). Nous utili-
sons un niveau d’AMR. Dans la section 5.1, nous détaillons de façon complète
les schémas numériques pour une simulation monophasique de l’équation
(C.1). Dans la thèse, nous détaillons le schéma prédicteur-correcteur suivant,
dans l’esprit du travail de Chorin [38, 39] et Temam [131, 132] :

ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = fn = g − 1

ρ
∇pn,

ũ = ũCL sur ∂Ω,

ũCL · n = uCL · n,

ũCL · t = uCL · t + ∆t

ρ
∇ϕn · t.

(C.3)


−1

ρ
∆ϕn+1 = − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 sur ∂Ω.
(C.4)

pn+1 = pn + ϕn+1. (C.5)
un+1 − ũ

∆t
= −1

ρ
∇ϕn+1,

un+1 = uCL sur ∂Ω.

(C.6)

Comme expliqué plus tard, nous utilisons l’algorithme LDC pour calculer
finement l’incrément de pression ϕ. Nous voyons qu’il est essentiel que le
terme source de l’équation (C.4) – c’est-à-dire la divergence de la vitesse
prédite ∇ · ũ – soit interpolée linéairement du niveau grossier sur le niveau
fin. Nous vérifions notre implémentation en utilisant le cas test classique dans
la littérature de la cavité entraînée. Un régime permanent existe et est bien
décrit : en fonction du nombre de Reynolds, plusieurs tourbillons sont créés
dans le domaine de calcul, donc nous avons placé un patch de raffinement sur
le tourbillon principal. La figure C.3 représente le régime permanent, avec la
coloration comme fonction de la vitesse ||u|| et les isocontours de ||u|| tracés
par des lignes blanches. Nous représentons la localisation du patch du niveau
fin par un carré blanc. Une vidéo du régime transitoire est accessible en ligne
sur https://youtu.be/esOHN--iW4Y.

Dans la section 5.2, nous passons à des situations diphasiques, représentées
par l’équation (C.2). Nous utilisons aussi des maillages décallées, avec cepen-
dant une exception : nous localisons l’inverse

(
1
ρ

)
de la masse volumique au
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Figure C.3 – Simulation de la cavité entraînée (isocontours de ||u||)
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centre des faces et non au centre des mailles, bien qu’elle soit un scalaire. Ici
aussi nous utilisons un schéma prédicteur-correcteur dont les équations sont
expliquées en détail dans la thèse :

ũ − un

∆t
+ un · ∇ũ − ν∇2ũ = gn+1 − 1

ρn
∇p,

ũ = uCL sur ∂Ω.
(C.7)


−∇ ·

(
1

ρn
∇ϕn+1

)
= − 1

∆t
∇ · ũ,

∇ϕn+1 · n = 0 sur ∂Ω.

(C.8)

pn+1 = pn + ϕn+1. (C.9)
un+1 − ũ

∆t
= − 1

ρn
∇ϕn+1,

un+1 = uCL sur ∂Ω.

(C.10)

Y n+1 − Y n

∆t
+ un+1 · ∇Y n = 0. (C.11)

ρn+1 = ρgY
n+1 + ρl(1− Y n+1). (C.12)

Similairement à ce que nous avons fait pour la simulation monophasique,
nous utilisons un niveau de rafinement adaptatif. Nous créons les patchs dy-
namiquement à chaque étape en temps et nous les plaçons de telle façon à
ce qu’ils suivent l’interface entre le gas et le liquide, comme dans les chap-
tires 3 et 4. Nous proposons une approche AMR originale qui tire bénéfice
du travail accompli auparavant. Nous décidons d’abord de calculer l’incré-
ment de pression ϕ avec l’algorithme LDC appliqué à l’équation (C.8), qui
est elliptique. Puis nous décidons de calculer l’advection hyperbolique de
l’équation (C.11) aussi avec la précision de l’AMR. Nous expliquoins pour-
quoi il est essentiel que nous interpolions le terme source ∇ · ũ de l’équation
(C.8) du niveau grossier au niveau fin. Par conséquent, nous avons un cal-
cul précis des variables ϕ, p, Y et ρ à la localisation de leurs discontinuités
ou des sauts de leurs dérivées. En outre, en dépit de l’incrément brutal de
la présence Y , nous sommes capables de donner un modèle satisfaisant de
la tension de surface des bulles. Cela nous permet d’obtenir des évolutions
réalistiques de bulles non-stationnaires en raison de la gravité, de la visco-
sité, de l’inertie, de la tension de surface et des forces de pression. La figure
C.4 est une capture d’une telle simulation, dont la video peut être visionnée
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Figure C.4 – Simulation de deux bulles, avec les patchs AMR affichés en
rectangles blancs

en ligne sur https://youtu.be/zJEjP6JYEYQ. Nous pouvons voir les patchs
AMR comme des rectangles blancs sur les interfaces et les lignes de courant
de la vitesse comme de petites flèches blanches.

C.6 Communication

Le dernier chapitre, chapitre 6 est simplement la liste de nos communications
réalisées durant le doctorat, ainsi que les institutions encadrant et finançant
le travail de thèse.
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Résumé : Ce travail de thèse présente
l’implémentation de la simulation d’écoulements
diphasiques dans des conditions de réacteurs
nucléaires à caloporteur eau, à l’échelle de bulles
individuelles. Pour ce faire, nous étudions plu-
sieurs modèles d’écoulements thermohydrauliques
et nous focalisons sur une technique de capture
d’interface mince entre phases liquide et vapeur.
Nous passons ainsi en revue quelques techniques
possibles de maillage adaptatif (AMR) et nous
fournissons des outils algorithmiques et informa-
tiques adaptés à l’AMR par patchs dont l’objectif

est d’améliorer localement la précision dans des
régions d’intérêt. Plus précisément, nous intro-
duisons un algorithme de génération de patchs
conçu dans l’optique du calcul parallèle équilibré.
Cette approche nous permet de capturer finement
des changements situés à l’interface, comme nous
le montrons pour des cas tests d’advection ainsi
que pour des modèles avec couplage hyperbolique-
elliptique. Les calculs que nous présentons incluent
également la simulation du système de Navier-
Stokes incompressible qui modélise la déformation
de l’interface entre deux fluides non-miscibles.
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Abstract: This PhD work presents the imple-
mentation of the simulation of two-phase flows
in conditions of water-cooled nuclear reactors, at
the scale of individual bubbles. To achieve that,
we study several models for Thermal-Hydraulic
flows and we focus on a technique for the cap-
ture of the thin interface between liquid and vapour
phases. We thus review some possible techniques
for Adaptive Mesh Refinement (AMR) and provide
algorithmic and computational tools adapted to
patch-based AMR, which aim is to locally improve

the precision in regions of interest. More precisely,
we introduce a patch-covering algorithm designed
with balanced parallel computing in mind. This
approach lets us finely capture changes located at
the interface, as we show for advection test cases
as well as for models with hyperbolic-elliptic coup-
ling. The computations we present also include
the simulation of the incompressible Navier-Stokes
system, which models the shape changes of the in-
terface between two non-miscible fluids.
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