F. Abed-meraim and A. Combescure, SHB8PS??????a new adaptative, assumed-strain continuum mechanics shell element for impact analysis, Computers & Structures, vol.80, issue.9-10, pp.791-803, 2002.
DOI : 10.1016/S0045-7949(02)00047-0

URL : https://hal.archives-ouvertes.fr/hal-00454967

F. Abed-meraim and A. Combescure, An improved assumed strain solid???shell element formulation with physical stabilization for geometric non-linear applications and elastic???plastic stability analysis, International Journal for Numerical Methods in Engineering, vol.74, issue.13, pp.1640-1686, 2009.
DOI : 10.1002/nme.2676

URL : https://hal.archives-ouvertes.fr/hal-00656443

F. Abed-meraim, V. Trinh, and A. Combescure, New quadratic solid?shell elements and their evaluation on linear benchmark problems, Computing, vol.28, issue.5, pp.373-394, 2013.
DOI : 10.1007/s00607-012-0265-1

URL : https://hal.archives-ouvertes.fr/hal-01206680

C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams, Computer Methods in Applied Mechanics and Engineering, vol.279, pp.1-28, 2014.
DOI : 10.1016/j.cma.2014.06.023

URL : https://hal.archives-ouvertes.fr/hal-01214738

C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.106-137, 2015.
DOI : 10.1016/j.cma.2014.07.020

URL : https://hal.archives-ouvertes.fr/hal-01214737

C. Adam, T. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam, Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.732-761, 2015.
DOI : 10.1016/j.cma.2014.11.001

URL : https://hal.archives-ouvertes.fr/hal-01214741

S. Ahmad, B. Irons, and O. Zienkiewicz, Analysis of thick and thin shell structures by curved finite elements, International Journal for Numerical Methods in Engineering, vol.6, issue.3, pp.419-451, 1970.
DOI : 10.1002/nme.1620020310

R. Alves-de-sousa, R. Cardoso, F. Valente, R. Yoon, J. Grácio et al., A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness?part II: nonlinear applications, International Journal for Numerical Methods in Engineering, vol.141, issue.2, pp.952-977, 2005.
DOI : 10.1002/nme.1609

M. Ambati, D. Lorenzis, and L. , Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.351-373, 2016.
DOI : 10.1016/j.cma.2016.02.017

C. Andersen, Evaluation of integrals for a ten-node isoparametric tetrahedral finite element, Computers & Mathematics with Applications, vol.5, issue.4, pp.297-320, 1979.
DOI : 10.1016/0898-1221(79)90090-7

R. Anderson, B. Irons, and O. Zienkiewicz, Vibration and stability of plates using finite elements, International Journal of Solids and Structures, vol.4, issue.10, pp.1031-1055, 1968.
DOI : 10.1016/0020-7683(68)90021-8

L. Andrade, A. Awruch, and I. Morsch, Geometrically nonlinear analysis of laminate composite plates and shells using the eight-node hexahedral element with one-point integration, Composite Structures, vol.79, issue.4, pp.571-580, 2007.
DOI : 10.1016/j.compstruct.2006.02.022

R. Arciniega and J. Reddy, Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.4-6, pp.1048-1073, 2007.
DOI : 10.1016/j.cma.2006.08.014

P. Areias, C. De-sá, J. , C. António, C. Fernandes et al., Analysis of 3D problems using a new enhanced strain hexahedral element, International Journal for Numerical Methods in Engineering, vol.13, issue.1, pp.1637-1682, 2003.
DOI : 10.1108/02644409610111001

P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect, 1966.

H. Balmer and E. Witmer, Theoretical-experimental correlation of large dynamic and permanent deformations of impulsively-loaded simple structures. Air Force Flight Dynamics Laboratory, 1964.

F. Barlat, D. Lege, and J. Brem, A six-component yield function for anisotropic materials, International Journal of Plasticity, vol.7, issue.7, pp.693-712, 1991.
DOI : 10.1016/0749-6419(91)90052-Z

F. Barlat, J. Brem, J. Yoon, K. Chung, R. Dick et al., Plane stress yield function for aluminum alloy sheets?part 1: theory, International Journal of Plasticity, vol.19, issue.9, pp.1297-1319, 2003.
DOI : 10.1016/S0749-6419(02)00019-0

M. Barton, Vibration of rectangular and skew cantilever plates, Journal of Applied Mechanics, vol.18, pp.129-134, 1951.

A. Barut, E. Madenci, and A. Tesslerb, Nonlinear analysis of laminates through a mindlin-type shear deformable shallow shell element, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1-2, pp.155-173, 1997.
DOI : 10.1016/S0045-7825(96)01140-1

K. Bathe and E. Dvorkin, A formulation of general shell elements?the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering, vol.49, issue.3, pp.697-722, 1986.
DOI : 10.1002/nme.1620220312

T. Belytschko, J. Lin, and C. Tsay, Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied Mechanics and Engineering, vol.42, issue.2, pp.225-251, 1984.
DOI : 10.1016/0045-7825(84)90026-4

T. Belytschko and L. Bindeman, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol.88, issue.3, pp.311-340, 1991.
DOI : 10.1016/0045-7825(91)90093-L

T. Belytschko, B. Wong, and H. Chiang, Advances in one-point quadrature shell elements, Computer Methods in Applied Mechanics and Engineering, vol.96, issue.1, pp.93-107, 1992.
DOI : 10.1016/0045-7825(92)90100-X

T. Belytschko and L. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Computer Methods in Applied Mechanics and Engineering, vol.105, issue.2, pp.225-260, 1993.
DOI : 10.1016/0045-7825(93)90124-G

B. Bettaieb, A. Duchêne, L. Zhang, L. Habraken, and A. , New Solid-Shell Finite Element Based on EAS and ANS Concepts for Sheet Metal Forming, 8th International Conference and Workshop on Numerical Simulation of 3D Sheet metal forming processes, 2011.
DOI : 10.1063/1.3623634

B. Bettaieb, A. Sena, J. , A. Sousa, R. Valente et al., On the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and non-linear applications, Finite Elements in Analysis and Design, vol.107, pp.44-59, 2015.
DOI : 10.1016/j.finel.2015.08.005

P. Betsch and E. Stein, Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains, Computer Methods in Applied Mechanics and Engineering, vol.179, issue.3-4, pp.215-245, 1999.
DOI : 10.1016/S0045-7825(99)00063-8

J. Bonet and A. Burton, A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Communications in Numerical Methods in Engineering, vol.14, issue.5, pp.437-449, 1998.
DOI : 10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.3.CO;2-N

R. Bouclier, T. Elguedj, and A. Combescure, Locking free isogeometric formulations of curved thick beams, Computer Methods in Applied Mechanics and Engineering, vol.245, issue.246, pp.144-162, 2012.
DOI : 10.1016/j.cma.2012.06.008

URL : https://hal.archives-ouvertes.fr/hal-00938536

R. Bouclier, T. Elguedj, and A. Combescure, On the development of NURBS-based isogeometric solid shell elements: 2D problems and preliminary extension to 3D, Computational Mechanics, vol.51, issue.246, pp.1085-1112, 2013.
DOI : 10.1007/s00466-013-0865-4

URL : https://hal.archives-ouvertes.fr/hal-00938246

R. Bouclier, T. Elguedj, and A. Combescure, Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and <mml:math altimg="si9.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="true">?</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:math>-method, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.86-110, 2013.
DOI : 10.1016/j.cma.2013.08.002

R. Bouclier, T. Elguedj, and A. Combescure, An isogeometric locking-free NURBS-based solid-shell element for geometrically nonlinear analysis, International Journal for Numerical Methods in Engineering, vol.178, issue.216, pp.774-808, 2015.
DOI : 10.1002/nme.4834

C. Bouffioux, P. Eyckens, C. Henrard, R. Aerens, V. Bael et al., Identification of material parameters to predict Single Point Incremental Forming forces, International Journal of Material Forming, vol.1, issue.S1, pp.1147-1150, 2008.
DOI : 10.1007/s12289-008-0183-0

B. Brank, D. Peric, and F. Damjanic, On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Computational Mechanics, vol.30, issue.5, pp.341-359, 1995.
DOI : 10.1007/BF00350723

D. Briassoulis, On the basics of the shear locking problem of C0 isoparametric plate elements, Computers & Structures, vol.33, issue.1, pp.169-185, 1989.
DOI : 10.1016/0045-7949(89)90139-9

S. Brischetto, O. Polit, and E. Carrera, Refined shell model for the linear analysis of isotropic and composite elastic structures, European Journal of Mechanics - A/Solids, vol.34, pp.102-119, 2012.
DOI : 10.1016/j.euromechsol.2011.08.008

N. Buechter and E. Ramm, Shell theory versus degeneration?a comparison in large rotation finite element analysis, International Journal for Numerical Methods in Engineering, vol.3, issue.1, pp.39-59, 1992.
DOI : 10.1002/nme.1620340105

Q. Bui, L. Papeleux, and J. Ponthot, Numerical simulation of springback using enhanced assumed strain elements, Journal of Materials Processing Technology, vol.153, issue.154, pp.314-318, 2004.
DOI : 10.1016/j.jmatprotec.2004.04.342

Y. Cao, N. Hu, J. Lu, H. Fukunaga, and Z. Yao, A 3D brick element based on Hu-Washizu variational principle for mesh distortion, International Journal for Numerical Methods in Engineering, vol.1, issue.11, pp.2529-2548, 2002.
DOI : 10.1002/nme.409

R. Cardoso, J. Yoon, M. Mahardika, S. Choudhry, A. Sousa et al., Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one?point quadrature solid?shell elements, International Journal for Numerical Methods in Engineering, vol.16, issue.2, pp.156-187, 2008.
DOI : 10.1002/nme.2250

J. Caseiro, R. Valente, A. Reali, J. Kiendl, F. Auricchio et al., On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements, Computational Mechanics, vol.61, issue.49?52, pp.1341-1353, 2014.
DOI : 10.1007/s00466-014-0978-4

J. Caseiro, R. Valente, A. Reali, J. Kiendl, F. Auricchio et al., Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.861-880, 2015.
DOI : 10.1016/j.cma.2014.10.037

J. César-de-sá, R. Jorge, F. Valente, R. Areias, and P. , Development of shear locking-free shell elements using an enhanced assumed strain formulation, International Journal for Numerical Methods in Engineering, vol.61, issue.3, pp.1721-1750, 2002.
DOI : 10.1016/0045-7825(85)90035-0

T. Chang, A. Saleeb, and W. Graf, On the mixed formulation of A 9-node Lagrange shell element, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.3, pp.259-281, 1989.
DOI : 10.1016/0045-7825(89)90068-6

Y. Chen and H. Stolarski, Extrapolated fields in the formulation of the assumed strain elements Part II: Three-dimensional problems, Computer Methods in Applied Mechanics and Engineering, vol.154, issue.1-2, p.29, 1998.
DOI : 10.1016/S0045-7825(97)00084-4

L. Chen, F. Xi, and J. Yang, Elastic?plastic contact force history and response characteristics of circular plate subjected to impact by a projectile, Acta Mechanica Sinica, vol.25, issue.3, pp.415-425, 2007.
DOI : 10.1007/s10409-007-0084-3

C. Cho, H. Park, and S. Lee, Stability analysis using a geometrically nonlinear assumed strain solid shell element model, Finite Elements in Analysis and Design, vol.29, issue.2, pp.121-135, 1998.
DOI : 10.1016/S0168-874X(98)00021-3

C. Choi and J. Paik, An effective four node degenerated shell element for geometrically nonlinear analysis, Thin-Walled Structures, vol.24, issue.3, pp.261-283, 1995.
DOI : 10.1016/0263-8231(95)00037-2

T. Choi and H. Huh, Sheet metal forming analysis of planar anisotropic materials by a modified membrane finite element method with bending effect, Journal of Materials Processing Technology, vol.89, issue.90, pp.58-64, 1999.
DOI : 10.1016/S0924-0136(99)00050-3

J. Davim, Statistical and computational techniques in manufacturing, 2012.
DOI : 10.1007/978-3-642-25859-6

D. Filho, L. Awruch, and A. , Geometrically nonlinear static and dynamic analysis of shells and plates using the eight-node hexahedral element with one-point quadrature, Finite Elements in Analysis and Design, vol.40, issue.11, pp.1297-1315, 2004.
DOI : 10.1016/j.finel.2003.08.012

L. Duchêne, B. Bettaieb, A. Habraken, and A. , Assessment of the enhanced assumed strain (EAS) and the assumed natural strain (ANS) techniques in the mechanical References -177 behavior of the SSH3D solid-shell element, 11th International Conference on Computational Plasticity, COMPLAS XI, pp.7-9, 2011.

E. Dvorkin and K. Bathe, A continuum mechanics based four?node shell element for general non?linear analysis, Engineering Computations, vol.1, issue.1, pp.77-88, 1984.
DOI : 10.1115/1.3161951

I. Edem and P. Gosling, One-point quadrature ANS solid-shell element based on a displacement variational formulation Part I ? Geometrically linear assessment, Computer Methods in Applied Mechanics and Engineering, vol.237, issue.240, pp.177-191, 2012.
DOI : 10.1016/j.cma.2012.04.002

I. Edem and P. Gosling, Physically stabilised displacement-based ANS solid-shell element, Finite Elements in Analysis and Design, vol.74, pp.30-40, 2013.
DOI : 10.1016/j.finel.2013.05.009

T. Elguedj, Y. Bazilevs, V. Calo, and T. Hughes, B-bar an F-bar projection methods for nearly incompressible linear and non linear elasticity and plasticity using higher order NURBS element, Computer Methods in Applied Mechanics and Engineering, vol.197, pp.5257-5296, 2008.
DOI : 10.1016/j.cma.2008.01.012

J. Fish and T. Belytschko, Elements with embedded localization zones for large deformation problems, Computers & Structures, vol.30, issue.1-2, pp.247-256, 1988.
DOI : 10.1016/0045-7949(88)90230-1

D. Flanagan and T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, International Journal for Numerical Methods in Engineering, vol.2, issue.5, pp.679-706, 1981.
DOI : 10.1002/nme.1620170504

F. Flores and E. Oñate, Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.6-8, pp.907-932, 2005.
DOI : 10.1016/j.cma.2003.08.012

F. Flores, A ?Prism? solid element for large strain shell analysis, Computer Methods in Applied Mechanics and Engineering, vol.253, pp.274-286, 2013.
DOI : 10.1016/j.cma.2012.10.001

F. Flores, Development of a non-linear triangular prism solid-shell element using ANS and EAS techniques, Computer Methods in Applied Mechanics and Engineering, vol.266, pp.81-97, 2013.
DOI : 10.1016/j.cma.2013.07.014

F. Flores, A simple reduced integration hexahedral solid-shell element for large strains, Computer Methods in Applied Mechanics and Engineering, vol.303, pp.260-287, 2016.
DOI : 10.1016/j.cma.2016.01.013

F. Valente and R. , Developments on Shell and Solid-shell finite elements technology in nonlinear continuum mechanics, 2004.

S. Geyer and A. Groenwold, On reduced integration and locking of flat shell finite elements with drilling rotations, Communications in Numerical Methods in Engineering, vol.6, issue.2, pp.85-97, 2003.
DOI : 10.1002/cnm.567

J. Hallquist, Theoretical manual for DYNA3D, 1983.

R. Hauptmann and K. Schweizerhof, A systematic development of ???solid-shell??? element formulations for linear and non-linear analyses employing only displacement degrees of freedom, International Journal for Numerical Methods in Engineering, vol.61, issue.1, pp.49-69, 1998.
DOI : 10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2

R. Hauptmann, K. Schweizerhof, and S. Doll, Extension of the ?solid-shell? concept for application to large elastic and large elastoplastic deformations, International Journal for Numerical Methods in Engineering, vol.11, issue.9, pp.1121-1141, 2000.
DOI : 10.1016/B978-0-12-253250-4.50008-7

T. Hellen, Effective quadrature rules for quadratic solid isopatametric finite elements, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.597-599, 1972.
DOI : 10.1002/nme.1620040414

C. Henrard, C. Bouffioux, P. Eyckens, H. Sol, J. Dufou et al., Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity, Computational Mechanics, vol.48, issue.3, pp.573-590, 2011.
DOI : 10.1007/s00466-010-0563-4

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.193, issue.1033, pp.281-297, 1948.
DOI : 10.1098/rspa.1948.0045

C. Hong and Y. Kim, A partial assumed strain formulation for triangular solid shell element, Finite Elements in Analysis and Design, vol.38, issue.4, pp.375-390, 2002.
DOI : 10.1016/S0168-874X(01)00090-7

K. Hsiao, Nonlinear analysis of general shell structures by flat triangular elements, Computers & Structures, vol.25, pp.665-675, 1987.

H. Huang, Membrane locking and assumed strain shell elements, Computers & Structures, vol.27, pp.671-677, 1987.

T. Hughes, M. Cohen, and M. Haroun, Reduced and selective integration techniques in the finite element analysis of plates, Nuclear Engineering and Design, vol.46, issue.1, pp.203-222, 1978.
DOI : 10.1016/0029-5493(78)90184-X

T. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, International Journal for Numerical Methods in Engineering, vol.3, issue.9, pp.1413-1418, 1980.
DOI : 10.1002/nme.1620150914

T. Hughes and J. Winget, Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, International Journal for Numerical Methods in Engineering, vol.101, issue.12, pp.1862-1867, 1980.
DOI : 10.1002/nme.1620151210

T. Hughes and T. Tezduyar, Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element, Journal of Applied Mechanics, vol.48, issue.3, pp.587-196, 1981.
DOI : 10.1115/1.3157679

T. Hughes, The Finite Element Method, 1987.

T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.39-41, pp.4135-4195, 2005.
DOI : 10.1016/j.cma.2004.10.008

URL : https://hal.archives-ouvertes.fr/hal-01513346

T. Hughes, A. Reali, and G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.49-50, pp.4104-4124, 2008.
DOI : 10.1016/j.cma.2008.04.006

H. Huh and T. Choi, Modified membrane finite element formulation for sheet metal forming analysis of planar anisotropic materials, International Journal of Mechanical Sciences, vol.42, issue.8, pp.1623-1643, 1999.
DOI : 10.1016/S0020-7403(99)00094-6

L. Kaiping, A. Habraken, and H. Bruneel, Simulation of square-cup deep-drawing with different finite elements, Journal of Materials Processing Technology, vol.50, issue.1-4, pp.81-91, 1995.
DOI : 10.1016/0924-0136(94)01371-7

J. Kim and Y. Kim, A three-node C0 ANS element for geometrically non-linear structural analysis, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.37-38, pp.4035-4059, 2002.
DOI : 10.1016/S0045-7825(02)00338-9

K. Kim, G. Liu, and S. Han, A resultant 8-node solid-shell element for geometrically nonlinear analysis, Computational Mechanics, vol.35, issue.5, pp.315-331, 2005.
DOI : 10.1007/s00466-004-0606-9

S. Klinkel, F. Gruttmann, and W. Wagner, A continuum based three-dimensional shell element for laminated structures, Computers & Structures, vol.71, issue.1, pp.43-62, 1999.
DOI : 10.1016/S0045-7949(98)00222-3

S. Klinkel, F. Gruttmann, and W. Wagner, A robust non-linear solid shell element based on a mixed variational formulation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.179-201, 2006.
DOI : 10.1016/j.cma.2005.01.013

F. Koschnick, M. Bischoff, N. Camprubí, and K. Bletzinger, The discrete strain gap method and membrane locking, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.21-24, pp.2444-2463, 2005.
DOI : 10.1016/j.cma.2004.07.040

F. Kpeky, H. Boudaoud, F. Abed-meraim, and E. Daya, Modeling of viscoelastic sandwich beams using solid?shell finite elements, Composite Structures, vol.133, pp.105-116, 2015.
DOI : 10.1016/j.compstruct.2015.07.055

URL : https://hal.archives-ouvertes.fr/hal-01207115

I. Kreja and R. Schmidt, Large rotations in first-order shear deformation FE analysis of laminated shells, International Journal of Non-Linear Mechanics, vol.41, issue.1, pp.101-123, 2006.
DOI : 10.1016/j.ijnonlinmec.2005.06.009

L. Kui, G. Liu, and O. Zienkiewicz, A generalized displacement method for the finite element analysis of thin shells, International Journal for Numerical Methods in Engineering, vol.I, issue.12, pp.2145-2155, 1985.
DOI : 10.1002/nme.1620211203

G. Kulikov and S. Plotnikova, Geometrically exact assumed stress???strain multilayered solid-shell elements based on the 3D analytical integration, Computers & Structures, vol.84, issue.19-20, pp.1275-1287, 2006.
DOI : 10.1016/j.compstruc.2006.01.034

H. Laurent, Etude en grandes transformations d'une nouvelle famille d'éléments finis coque triangulaire à trois degrés de liberté par noeud. Application à la simulation numérique de l'emboutissage, 1996.

S. Lee, B. Cho, H. Park, K. Yoon, and N. Goo, Analysis of multi-layered actuators using an assumed strain solid element, Materials Chemistry and Physics, vol.75, issue.1-3, pp.174-177, 2002.
DOI : 10.1016/S0254-0584(02)00050-0

S. Lee, Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain, Journal of Sound and Vibration, vol.278, issue.3, pp.657-684, 2004.
DOI : 10.1016/j.jsv.2003.10.018

A. Leissa, Vibration of Plates. Scientific and Technical Information Division, 1969.

K. Li and S. Cescotto, An 8-node brick element with mixed formulation for large deformation analyses, Computer Methods in Applied Mechanics and Engineering, vol.141, issue.1-2, pp.157-204, 1997.
DOI : 10.1016/S0045-7825(96)01071-7

L. Li, Y. Peng, and D. Li, A stabilized underintegrated enhanced assumed strain solid-shell element for geometrically nonlinear plate/shell analysis, Finite Elements in Analysis and Design, vol.47, issue.5, pp.511-518, 2011.
DOI : 10.1016/j.finel.2011.01.001

R. Macneal and R. Harder, A proposed standard set of problems to test finite element accuracy, Finite Elements in Analysis and Design, vol.1, issue.1, pp.3-20, 1985.
DOI : 10.1016/0168-874X(85)90003-4

A. Makinouchi, E. Nakamachi, E. Oñate, and R. Wagoner, NUMISHEET'93, Proceedings of the 2nd International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes -Verification of Simulation with Experiment, 1993.

J. Mars, M. Wali, A. Jarraya, F. Dammak, and A. Dhiab, Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations. Thin- Walled Structures 89, pp.93-100, 2015.

C. Militello and C. Felippa, A variational justification of the assumed natural strain formulation of finite elements???I. Variational principles, Computers & Structures, vol.34, issue.3, pp.431-438, 1990.
DOI : 10.1016/0045-7949(90)90267-6

C. Militello and C. Felippa, A variational justification of the assumed natural strain formulation of finite elements?II. The C0 four-node plate element, Computers & Structures, vol.34, issue.3, pp.439-444, 1990.
DOI : 10.1016/0045-7949(90)90268-7

P. Mohan and R. Kapania, Updated Lagrangian Formulation of a Flat Triangular Element for Thin Laminated Shells, AIAA Journal, vol.2, issue.2, pp.273-281, 1998.
DOI : 10.1016/0045-7949(91)90433-M

D. Mondkar and G. Powell, Finite element analysis of non-linear static and dynamic response, International Journal for Numerical Methods in Engineering, vol.98, issue.3, pp.499-520, 1977.
DOI : 10.1002/nme.1620110309

R. Moreira, A. Sousa, R. Valente, and R. , A solid-shell layerwise finite element for non-linear geometric and material analysis, Composite Structures, vol.92, issue.6, pp.1517-1523, 2010.
DOI : 10.1016/j.compstruct.2009.10.032

H. Naceur, S. Shiri, D. Coutellier, and J. Batoz, On the modeling and design of composite multilayered structures using solid-shell finite element model. Finite Elements in Analysis and Design 70?71, pp.1-14, 2013.

N. Nguyen, V. Pham, M. Hogge, and J. Ponthot, An assumed natural strain technique for 2D solid-shell elements, Fourth international conference on advanced computational methods in engineering, pp.26-28, 2008.

N. Nguyen, Development of solid-shell elements for large deformation simulation and springback prediction, 2009.

P. Norachan, S. Suthasupradit, and K. Kim, A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain, Finite Elements in Analysis and Design, vol.50, pp.70-85, 2012.
DOI : 10.1016/j.finel.2011.08.023

L. Olovsson, M. Unosson, and K. Simonsson, Selective mass scaling for thin walled structures modeled with tri-linear solid elements, Computational Mechanics, vol.34, issue.2, pp.134-136, 2004.
DOI : 10.1007/s00466-004-0560-6

M. Pagani, S. Reese, and U. Perego, Computationally efficient explicit nonlinear analyses using reduced integration-based solid-shell finite elements, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.141-159, 2014.
DOI : 10.1016/j.cma.2013.09.005

M. Parente, F. Valente, R. Jorge, R. Cardoso, R. et al., Sheet metal forming simulation using EAS solid-shell finite elements, Finite Elements in Analysis and Design, vol.42, issue.13, pp.1137-1149, 2006.
DOI : 10.1016/j.finel.2006.04.005

D. Park and S. Oh, A four-node shell element with enhanced bending performance for springback analysis, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.23-26, pp.2105-2138, 2004.
DOI : 10.1016/j.cma.2004.01.031

G. Payette and J. Reddy, A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures, Computer Methods in Applied Mechanics and Engineering, vol.278, pp.664-704, 2014.
DOI : 10.1016/j.cma.2014.06.021

A. Petchsasithon and P. Gosling, A locking-free hexahedral element for the geometrically non-linear analysis of arbitrary shells, Computational Mechanics, vol.35, issue.2, pp.94-114, 2005.
DOI : 10.1007/s00466-004-0604-y

G. Pimpinelli, An assumed strain quadrilateral element with drilling degrees of freedom, Finite Elements in Analysis and Design, vol.41, issue.3, pp.267-283, 2004.
DOI : 10.1016/j.finel.2004.05.004

O. Polit and M. Touratier, eight node finite element based on a shell theory, Revue Europ??enne des ??l??ments Finis, vol.35, issue.4, pp.111-134, 1999.
DOI : 10.1016/0045-7825(89)90098-4

O. Polit and M. Touratier, High-order triangular sandwich plate finite element for linear and non-linear analyses, Computer Methods in Applied Mechanics and Engineering, vol.185, issue.2-4, pp.305-324, 2000.
DOI : 10.1016/S0045-7825(99)00264-9

URL : https://hal.archives-ouvertes.fr/hal-01366943

J. Ponthot, L. Papeleux, S. Gohy, and X. Collard, Numerical simulation of springback in sheet metal forming, European Congress on Computational Methods in Applied Sciences and Engineering, 2000.

G. Prathap, The poor bending response of the four-node plane stress quadrilateral, International Journal for Numerical Methods in Engineering, vol.35, issue.5, pp.825-835, 1985.
DOI : 10.1002/nme.1620210505

M. Puso, A highly efficient enhanced assumed strain physically stabilized hexahedral element, International Journal for Numerical Methods in Engineering, vol.13, issue.8, pp.1029-1064, 2000.
DOI : 10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3

M. Puso and J. Solberg, A stabilized nodally integrated tetrahedral, International Journal for Numerical Methods in Engineering, vol.20, issue.6, pp.841-867, 2006.
DOI : 10.1002/nme.1651

S. Reese, A large deformation solid-shell concept based on reduced integration with hourglass stabilization, International Journal for Numerical Methods in Engineering, vol.10, issue.8, pp.1671-1716, 2007.
DOI : 10.1002/nme.1827

J. Rhiu and S. Lee, A new efficient mixed formulation for thin shell finite element models, International Journal for Numerical Methods in Engineering, vol.21, issue.3, pp.581-604, 1987.
DOI : 10.1002/nme.1620240309

S. Saigal and T. Yang, Nonlinear dynamic analysis with a 48 d.o.f. curved thin shell element, International Journal for Numerical Methods in Engineering, vol.20, issue.6, pp.1115-1128, 1985.
DOI : 10.1002/nme.1620210611

A. Salahouelhadj, F. Abed-meraim, H. Chalal, and T. Balan, Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic???plastic formulation, Archive of Applied Mechanics, vol.3, issue.3, pp.1269-1290, 2012.
DOI : 10.1007/s00419-012-0620-x

URL : https://hal.archives-ouvertes.fr/hal-00800281

M. Schwarze and S. Reese, A reduced integration solid-shell finite element based on the EAS and the ANS concept-Geometrically linear problems, International Journal for Numerical Methods in Engineering, vol.5, issue.10, pp.1322-1355, 2009.
DOI : 10.1002/nme.2653

M. Schwarze, I. Vladimirov, and S. Reese, A new continuum shell finite element for sheet metal forming applications, International Journal of Material Forming, vol.20, issue.S1, pp.919-922, 2010.
DOI : 10.1007/s12289-010-0918-6

M. Schwarze, I. Vladimirov, and S. Reese, Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.5-8, pp.454-476, 2011.
DOI : 10.1016/j.cma.2010.07.020

J. Sena, A. Sousa, R. Valente, and R. , Single point incremental forming simulation with an enhanced assumed strain solid-shell finite element formulation, International Journal of Material Forming, vol.23, issue.154, pp.963-966, 2010.
DOI : 10.1007/s12289-010-0929-3

J. Sena, A. Sousa, R. Valente, and R. , On the use of EAS solid?shell formulations in the numerical simulation of incremental forming processes, Engineering Computations, vol.28, issue.3, pp.287-313, 2011.
DOI : 10.1016/j.jmatprotec.2007.05.053

J. Sena, C. Lequesne, L. Duchêne, A. Habraken, R. Valente et al., Single point incremental forming simulation with adaptive remeshing technique using solid-shell elements, Engineering Computations, vol.33, issue.5, pp.1388-1421, 2016.
DOI : 10.1016/j.jmatprotec.2007.07.037

URL : http://orbi.ulg.ac.be/bitstream/2268/200932/2/Article%20adaptive%20remeshing%20with%20RESS_Draft_Update_Aveiro.pdf

J. Simo, R. Taylor, and K. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Computer Methods in Applied Mechanics and Engineering, vol.51, issue.1-3, pp.177-208, 1985.
DOI : 10.1016/0045-7825(85)90033-7

J. Simo and T. Hughes, On the Variational Foundations of Assumed Strain Methods, Journal of Applied Mechanics, vol.53, issue.1, pp.51-54, 1986.
DOI : 10.1115/1.3171737

J. Simo and M. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, vol.1, issue.8, pp.1595-1638, 1990.
DOI : 10.1002/nme.1620290802

J. Simo and F. Armero, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, vol.29, issue.7, pp.1413-1449, 1992.
DOI : 10.1002/nme.1620330705

N. Stander, A. Matzenmiller, and E. Ramm, An assessment of assumed strain methods in finite rotation shell analysis, Engineering Computations, vol.1, issue.1, pp.58-66, 1989.
DOI : 10.1016/0045-7949(87)90063-0

H. Stolarski and T. Belytschko, Membrane Locking and Reduced Integration for Curved Elements, Journal of Applied Mechanics, vol.49, issue.1, pp.172-176, 1982.
DOI : 10.1115/1.3161961

H. Stolarski and T. Belytschko, Shear and membrane locking in curved C0 elements, Computer Methods in Applied Mechanics and Engineering, vol.41, issue.3, pp.279-296, 1983.
DOI : 10.1016/0045-7825(83)90010-5

H. Stolarski and Y. Chen, Extrapolated fields in the formulation of the assumed strain elements Part 1: Two-dimensional problems, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.247-262, 1995.
DOI : 10.1016/0045-7825(94)00722-Y

K. Sze and D. Zhu, A quadratic assumed natural strain curved triangular shell element, Computer Methods in Applied Mechanics and Engineering, vol.174, issue.1-2, pp.57-71, 1999.
DOI : 10.1016/S0045-7825(98)00277-1

K. Sze and L. Yao, A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I?solid-shell element formulation, International Journal for Numerical Methods in Engineering, vol.28, issue.4, pp.545-564, 2000.
DOI : 10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6

K. Sze and W. Chan, A six-node pentagonal assumed natural strain solid?shell element, Finite Elements in Analysis and Design, vol.37, issue.8, pp.639-655, 2001.
DOI : 10.1016/S0168-874X(00)00066-4

K. Sze, X. Liu, and S. Lo, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements in Analysis and Design, vol.40, issue.11, pp.1551-1569, 2004.
DOI : 10.1016/j.finel.2003.11.001

A. Tessler and L. Spiridigliozzi, Resolving membrane and shear locking phenomena in curved shear-deformable axisymmetric shell elements, International Journal for Numerical Methods in Engineering, vol.4, issue.5, pp.1071-1086, 1988.
DOI : 10.1002/nme.1620260506

S. Timoshenko, Strength of materials. Part I: Elementary theory and problems, 1955.

V. Trinh, F. Abed-meraim, and A. Combescure, A new assumed strain solid-shell formulation ?SHB6? for the six-node prismatic finite element, Journal of Mechanical Science and Technology, vol.25, issue.9, pp.2345-2364, 2011.
DOI : 10.1007/s12206-011-0710-7

URL : https://hal.archives-ouvertes.fr/hal-01206008

R. Valente, A. Sousa, R. Jorge, and R. , An enhanced strain 3D element for large deformation elastoplastic thin-shell applications, Computational Mechanics, vol.34, issue.1, pp.38-52, 2004.
DOI : 10.1007/s00466-004-0551-7

S. Vlachoutsis, Shear correction factors for plates and shells, International Journal for Numerical Methods in Engineering, vol.29, issue.7, pp.1537-1552, 1992.
DOI : 10.1002/nme.1620330712

L. Vu-quoc and X. Tan, Optimal solid shells for non-linear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.9-10, pp.975-1016, 2003.
DOI : 10.1016/S0045-7825(02)00435-8

W. Wagner, S. Klinkel, and F. Gruttmann, Elastic and plastic analysis of thin-walled structures using improved hexahedral elements, Computers & Structures, vol.80, issue.9-10, pp.857-869, 2002.
DOI : 10.1016/S0045-7949(02)00052-4

P. Wang, H. Chalal, and F. Abed-meraim, Efficient solid?shell finite elements for quasistatic and dynamic analyses and their application to sheet metal forming simulation, Key Engineering Materials, vol.651, issue.653, pp.344-349, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198780

P. Wang, H. Chalal, and F. Abed-meraim, Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid???shell elements combined with advanced anisotropic behavior models, 12th International Conference on Numerical Methods in Industrial Forming Processes, pp.4-7, 2016.
DOI : 10.1051/matecconf/20168007001

P. Wang and H. Chalal, Linear and Quadratic Solid-Shell Elements for Quasi-Static and Dynamic Simulations of Thin 3D Structures: Application to a Deep Drawing Process, Strojni??ki vestnik - Journal of Mechanical Engineering, vol.63, issue.1, pp.25-34
DOI : 10.5545/sv-jme.2016.3526

P. Wang, H. Chalal, and F. Abed-meraim, Quadratic solid?shell elements for nonlinear structural analysis and sheet metal forming simulation, Computational Mechanics, vol.19, issue.240, pp.161-186, 2017.
DOI : 10.1007/s00466-016-1341-8

P. Wang, H. Chalal, and F. Abed-meraim, Quadratic prismatic and hexahedral solid?shell elements for geometric nonlinear analysis of laminated composite structures, Composite Structures, vol.172, pp.282-296, 2017.
DOI : 10.1016/j.compstruct.2017.03.091

R. Winkler, Comments on Membrane Locking, PAMM, vol.10, issue.1, pp.229-230, 2010.
DOI : 10.1002/pamm.201010107

K. Wisniewski, W. Wagner, E. Turska, and F. Gruttmann, Four-node Hu?Washizu elements based on skew coordinates and contravariant assumed strain, Computers & Structures, vol.88, issue.21-22, pp.1278-1284, 2010.
DOI : 10.1016/j.compstruc.2010.07.008

P. Wriggers, Computational contact mechanics, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00466790

T. Wu, Dynamic nonlinear analysis of shell structures using a vector form intrinsic finite element, Engineering Structures, vol.56, pp.2028-2040, 2013.
DOI : 10.1016/j.engstruct.2013.08.009

H. Xu, Y. Liu, and W. Zhong, Three-dimensional finite element simulation of medium thick plate metal forming and springback, Finite Elements in Analysis and Design, vol.51, pp.49-58, 2012.
DOI : 10.1016/j.finel.2011.10.008

J. Yoon, F. Barlat, R. Dick, and M. Karabin, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, International Journal of Plasticity, vol.22, issue.1, pp.174-193, 2006.
DOI : 10.1016/j.ijplas.2005.03.013

Q. Zeng and A. Combescure, A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization, International Journal for Numerical Methods in Engineering, vol.38, issue.7, pp.1307-1338, 1998.
DOI : 10.1115/1.3408793

D. Zhang, Z. Cui, X. Ruan, and Y. Li, An analytical model for predicting springback and side wall curl of sheet after U-bending, Computational Materials Science, vol.38, issue.4, pp.707-715, 2007.
DOI : 10.1016/j.commatsci.2006.05.001

Y. Zhu and S. Cescotto, Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method, Computer Methods in Applied Mechanics and Engineering, vol.129, issue.1-2, pp.177-209, 1996.
DOI : 10.1016/0045-7825(95)00835-7

O. Zienkiewicz, R. Taylor, and J. Too, Reduced integration technique in general analysis of plates and shells, International Journal for Numerical Methods in Engineering, vol.4, issue.2, pp.275-290, 1971.
DOI : 10.1002/nme.1620030211

O. Zienkiewicz and R. Taylor, The finite element method Solid mechanics, 2000.

O. Zienkiewicz, R. Taylor, and J. Zhu, The finite element method, 2006.