
�>���G �A�/�, �i�2�H�@�y�R�8�9�y�N�9�y

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�8�9�y�N�9�y

�a�m�#�K�B�i�i�2�/ �Q�M �R�e �C�m�M �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�*�Q�?�2�`�2�M�i �b�i�`�m�+�i�m�`�2�b ���M�/ �r���H�H�@�T�`�2�b�b�m�`�2 �~�m�+�i�m���i�B�Q�M�b
�K�Q�/�2�H�B�M�; �B�M �i�m�`�#�m�H�2�M�i �#�Q�m�M�/���`�v �H���v�2�`�b �b�m�#�D�2�+�i�2�/ �i�Q

�T�`�2�b�b�m�`�2 �;�`���/�B�2�M�i�b
�J�B�H�Q�m�/ ���H���Q�m�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J�B�H�Q�m�/ ���H���Q�m�B�X �*�Q�?�2�`�2�M�i �b�i�`�m�+�i�m�`�2�b ���M�/ �r���H�H�@�T�`�2�b�b�m�`�2 �~�m�+�i�m���i�B�Q�M�b �K�Q�/�2�H�B�M�; �B�M �i�m�`�#�m�H�2�M�i �#�Q�m�M�/���`�v
�H���v�2�`�b �b�m�#�D�2�+�i�2�/ �i�Q �T�`�2�b�b�m�`�2 �;�`���/�B�2�M�i�b�X �J�2�+�?���M�B�+�b �Q�7 �K���i�2�`�B���H�b �(�T�?�v�b�B�+�b�X�+�H���b�b�@�T�?�)�X �1�+�Q�H�2 �M���i�B�Q�M���H�2
�b�m�T�û�`�B�2�m�`�2 �/�ö���`�i�b �2�i �K�û�i�B�2�`�b �@ �1�L�a���J�- �k�y�R�e�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�e�1�L���J�y�y�d�d���X ���i�2�H�@�y�R�8�9�y�N�9�y��

https://pastel.archives-ouvertes.fr/tel-01540940
https://hal.archives-ouvertes.fr


Arts et Métiers ParisTech – Centre de Paris
Laboratoire DynFluid

2016-ENAM-0077

École doctorale n° 432 : Science des Métiers de l’ingénieur

By

Miloud ALAOUI

December 19th 2016

Coherent structures and wall-pressure fluctuations modeling in 

turbulent boundary layers subjected to pressure gradients

Doctorat ParisTech

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

to

l’École Nationale Supérieure des Arts et Métiers

Spécialité “ Mécanique et Matériaux ”

Advisor : Xavier GLOERFELT

T

H

E

S

I

S

Thesis Committee
Pr. Jean-Marc FOUCAULT , Professor, École Centrale de Lille, France Chairman
Pr. Christophe BAILLY , Professor, LMFA, École Centrale de Lyon, France Examiner
Pr. Jan DELFS , Professor, DLR Braunschweig, Germany Reviewer
Pr. Xavier GLOERFELT , Professor, DynFluid, Art et Métiers ParisTech, Paris, France Thesis Advisor
Pr. William GRAHAM , Professor, Cambridge University, UK Reviewer
Pr. Laurent JOLY , Professor, ISAE Toulouse, France Examiner
Dr. Alois SENGISSEN , Research Engineer, Airbus Operations, Toulouse, France Industrial Advisor





Contents

Contents ii

List of Figures iv

List of Tables ix

Nomenclature xi

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Turbulent boundary layer : literature review 5
2.1 Boundary layer : state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Laminar boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Turbulent boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 E�ect of pressure gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 E�ect of wall curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Equilibrium and non-equilibrium boundary layers . . . . . . . . . . . . . . 11

2.2 Coherent structures in the turbulent boundary layer 
ow . . . . . . . . . . . . . . 12
2.2.1 General de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Near-wall structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Outer-region structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Hairpin vortices and hairpin packets . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Visualization, identi�cation and analysis methods . . . . . . . . . . . . . . 21

2.3 Turbulent boundary layer wall-pressure spectrum . . . . . . . . . . . . . . . . . . 27
2.3.1 Global de�nition and features . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 E�ect of pressure gradient on pressure spectrum . . . . . .. . . . . . . . 32
2.3.3 Fluid-structure coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Wall-pressure spectrum models . . . . . . . . . . . . . . . . . . .. . . . . 38

3 Analysis of turbulent structures in 
ows subjected to zero and non-zero pres-
sure gradients 48
3.1 Numerical database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 48

3.1.1 Equations and numerical methods . . . . . . . . . . . . . . . . . .. . . . 48
3.1.2 Grid design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Flow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Available database summary . . . . . . . . . . . . . . . . . . . . . .. . . 55

ii



CONTENTS

3.1.5 Mean pro�les and equilibrium state validation . . . . . . . . . . . . . . . . 56
3.2 Instantaneous velocity �elds analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Analysis and identi�cation tools in two-dimensional planes . . . . . . . . 57
3.2.2 E�ect of pressure gradient on the coherent structures .. . . . . . . . . . . 59
3.2.3 Analysis of a three-dimensional database . . . . . . . . . .. . . . . . . . . 61

3.3 Statistical analysis of velocity �elds . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Conditionally averaged velocity �elds . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Two-points correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.3 Angle of structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Statistical analysis of three-dimensional database. . . . . . . . . . . . . . 72

4 A stochastic model for wall-pressure spectrum 78
4.1 De�nition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Ahn's horseshoe model . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 78
4.1.2 Introducing large-scale structures . . . . . . . . . . . . . .. . . . . . . . . 88
4.1.3 Introducing pressure gradient e�ect . . . . . . . . . . . . . . . . . . . . . 90
4.1.4 Coupling with autospectrum model and frequency dependency . . . . . . 92

4.2 Comparison with SONOBL database . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Coupling with vibro-acoustics code . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and perspectives 101

Bibliography 104

iii



List of Figures

1.1 Sound pressure levels and noise sources in an A380 cockpit - Airbus document. . . . . . 2
1.2 Flow-generated-noise mechanism. . . . . . . . . . . . . . . . . . .. . . . . . . . . 2

2.1 Boundary layer representation with free stream velocity U
8

showing transition
between laminar and turbulent regimes. . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Velocity defect caused by the presence of the boundary layer in comparison to
ideal 
uid - this is quanti�ed by the displacement thickness � � . . . . . . . . . . . 6

2.3 Typical velocity pro�les on a 
at plate for laminar and tu rbulent boundary layers
showing the increase in wall-shear for the turbulent case - after Young (1989). . 7

2.4 Typical velocity pro�le for a turbulent boundary layer s howing the di�erent sub-
layers with respect to the wall-normal distance for di�erent Reynolds numbers.
The logarithmic regions increases as the Reynolds number increases - after Delery
(2007), the text in the �gure was translated from french to english. . . . . . . . . 8

2.5 Di�erent layers in the turbulent boundary layer 
ow - afte r Pope (2000) . . . . . 9
2.6 Mean velocity pro�les u �

� U { u� (left) and streamwise component of turbulent
intensity urms { Ue (right) for favorable ( ), zero ( ) , adverse weak (

) and adverse strong ( ) pressure gradients - after Cohen and Gloerfelt
(2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 A pair of counter-rotating streamwise vortices with the resulting low-speed streak
(dark region) - after Blackwelder (1979). . . . . . . . . . . . . . . . . . . . . . . 13

2.8 The quadrant splitting scheme showing the probability density function in the
p u 1 ; v 1

q plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Outer region model showing large scale motions and typical eddies - after smoke

visualization by Falco (1977) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Conceptual model of interaction between the near-wallregion and the outer 
ow

motions - after Praturi and Brodkey (1978). . . . . . . . . . . . . . . . . . . . . 16
2.11 Theodorsen (1952) hairpin-like vortex. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Hairpin packets organization in the turbulent boundary layer 
ow - (left) Instan-

taneous velocity �eld in Galilean frame convecting at Uc � 0:55Ue after Mayam
(2009) and (right) idealized model of nested hairpin packets travelling at di�erent
convection velocities after Adrian et al. (2000). . . . . . . . . . . . . . . . . . . . 17

2.13 E�ect of Reynolds number on the geometry of hairpin-like eddies - after Head
and Bandyopadhyay (1981). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Sideview of hairpin-vortex - idealized linear representation (left) and "realistic"
hairpin geometry (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.15 Di�erent parts of the hairpin vortex with the correspond ing angles to the wall -
after Robinson (1991b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.16 Evidence of streamwise aligned vortices along a line inclined to the wall - 
ow is
from right to left - after Head and Bandyopadhyay (1981). . . . . . . . . . . . . . 20

iv



LIST OF FIGURES

2.17 Example of non-monotonically increasing hairpin packet represented by the lower
dashed line - after Adrian et al. (2000) . . . . . . . . . . . . . . . . . . . . . . . 21

2.18 Vorticity contours showing von K�arm�an vortex street behind a cylinder at Re �

3000 - Marine Ecosystem Dynamics Modelling lab. . . . . . . . . . .. . . . . . . 22

2.19 Isosurface ofQ-criterion colored by velocity magnitude showing near-wall struc-
tures in boundary layer transition - Mech. Eng. Dept, Stanford Univ. . . . . . . 23

2.20 LES of spatially developing TBL at Mach 0.5, isosurfaceof � 2 criterion colored
by streamwise velocity - after Gloerfelt and Margnat (2014). . . . . . . . . . . . . 23

2.21 Wavenumber-frequency spectrum �pp p k; ! q for a frequency !� �

{ U
8

=500, where
M

8

=0.1 and � =2 cm. The model of Chase (1987) is used for illustration: �pp p k; ! q �

� 2
0u3

� � 3

rp k
�

� q

2
� 1{ b2

s

5
2

�

CM p k1 � q

2 k2

| k2
� k2

0 |� � 2k2
0

� CT p k� q

2
� F

�

with k2
�

� p ! � Uck1 q

2
{p hu� q

2
� k2,

and F �

p k
�

� q

2
� 1{ b2

p k� q

2
� 1{ b2

�

c1 �

c2 | k2
� k2

0 |

k2 �

c3k2

| k2
� k2

0 |� � 2k2
0

	

. We setCM =0.1553, CT =0.0047,

b=0.75, h=3, c1=2/3, c2=0.005, c3=1/6, and � =0.2. k0 � ! { c0 is the acoustic
wavenumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.22 Wavenumber-frequency spectrum 10 log10 � ppp k ; ! q of wall pressure beneath a
ZPG Mach 0.5 turbulent boundary layer in the p aq kx � kz plane at !� { Ue �

5:9, p bq kx � ! plane at kz � 0 and p cq kz � ! plane at kx � 0 - The white
dashed circle in p aq as well as the plain white lines in p bq and p cq represent the
acoustic domain de�ned by equation 2.31, the dashed line inp bq corresponds to a
theoretical convective velocity Uc � 0:7Ue - after Cohen (2015). . . . . . . . . . 30

2.23 Streamwise pressure gradient over front region of a typical long range aircraft.
Arbitrary units - Airbus document. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.24 One-point frequency spectra for di�erent cases of pressure gradient measured on
a rotatable NACA 0012 airfoil - angles indicate the angle of attack of the airfoil
- after Hu and Herr (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.25 Wavenumber-frequency spectra 10 log10 � pp p k ; ! q for favorable (FPG), zero (ZPG),
adverse weak (APGw) and adverse strong (APGs) pressure gradients in the kx � kz

plane at frequencies!� { Ue � 2:7 (FPG), 3 (ZPG), 4.3 (APGw) and 5.2 (APGs)
after Cohen (2015). Refer to section 3.1 for description of the pressure gradients. 34

2.26 Flat plate model for TBL-structure coupling. . . . . . . . . . . . . . . . . . . . . 35

2.27 � pp p k ; ! q spectra in the kx � ! plane at constant kz and bending wavenumber
for an in�nite plate (black line). The dashed circles show regions of acoustic and
hydrodynamic coincidence between the TBL excitation and the structure. . . . 37

2.28 � pp p k ; ! q spectra at constant frequency with (left) low coupling cb ¡ Uc and
(right) high coupling cb   Uc. Black line shows the bending wavenumber for an
in�nite plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Sketch of the computational domain for the non-zero-pressure-gradient computa-
tions - Mean streamwise velocity �u and streamlines from a 2D simulation with
the backward-facing step of heighth. The mean 
ow a few points after the step
is used as inlet for the 3D domain - from Gloerfelt and Margnat(2014). . . . . . 50

3.2 Top view close to the wall (y �

� 25) of the streamwise velocity for the ZPG case
showing the transition zone. A fully turbulent state is reached after the solid line
for x { h � 900. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



LIST OF FIGURES

3.3 Computation domain in the streamwise/wall-normal plane p x1; x2 q : strong ad-
verse APGs p aq , weak adverse APGw p bq , zero gradient ZPG p cq , and favorable
FPG p dq . The zone of interest for the velocity and wall-pressure analyses is delim-
ited with the dashed rectangle. Parameterh is the height of the backward-facing
step located upstream of the domain involved in the turbulence transition process. 52

3.5 p aq Clauser pressure gradient parameter� C , p bq acceleration parameterK and
p cq viscous scaled pressure parameter �p for FPG ( ), APGw ( ) and
APGs ( ) - after Cohen (2015). . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Instantaneous streamwise velocityu in the streamwise/wall-normal plane for
APGs p aq , APGw p bq , ZPG p cq and FPG p dq . xmin and xmax denote the stream-
wise boundaries of the zone of interest. Black line corresponds to u � 140m/s and
highlights thickening of the boundary layer from FPG to APGs - scale is from 10
m/s (blue) to 260 m/s (red) - Provided by X. Gloerfelt. . . . . . . . . . . . . . . 57

3.7 Single hairpin-like vortex signature in streamwise/wall-normal plane - Velocity
vector �eld in a frame of reference moving with the structure - after Mayam (2009). 58

3.8 Instantaneous views of streamwise/wall-normal vector�elds showing hairpin vor-
tex signatures, viewed in a frame of reference moving atUc � 0:72Ue for the APGs
p aq , APGw p bq , ZPG p cq and FPG p dq con�gurations - Streamwise and wall normal
axes p x; y q are made non-dimensional using the boundary layer thickness � . . . . 58

3.9 Contours of swirling strength � ci for APGs p aq , APGw p bq , ZPG p cq and FPG p dq . 60

3.10 Number of prograde and retrograde spanwise vortices for the four pressure gradi-
ent cases along the TBL thickness. The number of vortices is measured over 8000
snapshots with a treshhold | � ci | ¡ 1:5� rms

ci . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Isosurface of instantaneous streamwise velocityu 1 revealing presence of low speed
streaks u 1

{ Ue � � 0:058 (blue) and high speed streaksu 1

{ Ue � 0:058 (yellow) in
the near-wall region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Isosurface of swirling strength criterion� ci � 4:2� rms
ci colored with 
uctuating

streamwise velocity u 1

{ Ue showing p aq hairpin forest in the outer part of the
boundary layer y { � ¡ 0:39 and isolated hairpin with axes scaled with p bq inner
variables x �

i and p cq outer variables x i { � . . . . . . . . . . . . . . . . . . . . . . . 63
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Chapter 1

Introduction

1.1 Introduction

This thesis focuses on the coherent structures in turbulentboundary layers subjected to pressure
gradients and their role in aircraft structure excitation d ue to wall-pressure 
uctuations. Flow-
generated noise has become a non-negligible technologicalissue for the transport industry since
great e�orts have been made in reducing the propulsion generated noise.
This chapter aims at describing the context and motivationsof this study by focusing on the 
ow-
generated noise mechanisms. Due to the smooth curvature of aircraft fuselage, the importance
of developing a precise knowledge of the turbulent properties of the 
ow when subjected to
pressure gradients will be highlighted. The objectives andoutline of this study will also be
presented hereafter.

1.2 Context and motivations

Since the engine noise levels have considerably reduced since the past 60 years, the turbulent
boundary layer (TBL) has become one of the main sources of aircraft interior noise over a
large frequency range (see �gure 1.1), driving insulation concept design in the cabin and 
ight
deck area. As a driver of the crew and passenger comfort it is asubject of interest since years
and several contributions on 
ight tests data and/or modeli ng approaches can be found in the
literature (Bhat, 1971; Collery, 2010; Collery et al., 2013; Rackl and Weston, 2005; Rizzi et al.,
2000). In fact, the pressure 
uctuations within a turbulent boundary layer are responsible
for structural vibrations (Blake, 1986) that are transmitt ed through the structure and radiate
into the vehicle as can be seen in the scheme in �gure 1.2. The aim of this research �eld has
always been to increase con�dence in excitation models to improve design concepts for aircraft
insulation. Nevertheless, these models are usually not adapted to characterize pressure gradient
areas, such as the 
ight deck and the wing/fuselage junction, and need strong improvements.
Nowadays, with improvements of numerical capabilities, investigations of turbulent structures
properties and their organization in the vicinity of walls at representative Mach numbers are
accessible.

In fact, the pressure 
uctuations which are responsible forthe excitation of the aircraft's
cockpit and fuselage panels are the imprint of the turbulent motions living within the 
ow.
Therefore it is crucial to investigate these coherent structures in order to understand the mech-
anism of noise generation from 
ow vibrating panels and build more reliable noise prediction
tools.
Many authors have worked on turbulent boundary layers subjected to zero and non-zero pressure
gradients (Bradshaw, 1967b; Burton, 1973; Clauser, 1954; Dixit and Ramesh, 2010; Hu and Herr,
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CHAPTER 1. INTRODUCTION

Figure 1.1 { Sound pressure levels and noise sources in an A380 cockpit - Airbus document.

2016; Kline et al., 1967; Lee and Sung, 2009; McGrath and Simpson, 1988; Salze et al., 2014;
Schloemer, 1967; Spalart and Watmu�, 1993). Apart from the canonical zero pressure gradient

ow which gathers the majority of the research, focus has been put on adverse pressure gradient

ows, since this type of pressure gradient can be critical inseveral engineering applications such
as separation of the turbulent boundary layer over the wing when the critical angle of attack is
reached or pumping e�ect in turbomachinery. Favorable pressure gradient turbulent boundary
layers would come in last position in terms of amount of research papers.
Nevertheless, even though turbulent boundary layer 
ows have gathered the interest of many
authors, there is little information concerning the coherent turbulent structures when the 
ow
is subjected to pressure gradients. It is well known that theturbulent eddies play an important
role in turbulence production and mass and momentum transport, but very little is known on
their contribution to wall-pressure 
uctuations. In this s tudy, an attempt to correlate these
structures to the wall-pressure 
uctuations is undergone.

Figure 1.2 { Flow-generated-noise mechanism.

1.3 Objectives

Aircraft manufacturers show increasing interest in noise generated by the turbulent boundary
layer 
ow over the fuselage and cockpit. The noise predicting tools which are used in industry
today rely on analytic wall-pressure models which lack precision especially in areas where the

ow is subjected to pressure gradients.

The aims of the thesis are

ˆ From a phenomenological point of view, to understand the e�ect of pressure gradient on

2
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the turbulent boundary layer excitation by investigating t he turbulent coherent structures
existing within the 
ow. Many authors have showed that the ha irpin vortex, which refers
to hairpin, cane, horseshoe or omega vortex, is one of the most frequently encountered
coherent structure in the turbulent boundary layer 
ow and i t is believed that this type
of vortex has a signi�cant in
uence on the wall-pressure 
uctuations.

ˆ From a modelling point of view, to develop based upon these observations a stochastic
wall-pressure spectrum model. This model is designed to improve the reliability of the
current turbulent boundary layer excitation by explicitly taking into account turbulent
features of the 
ow. Indeed, the majority of the models used by transport manufacturers
nowadays rely only on averaged quantities since these modelare very easy to implement
and require very low computation time.

This work has been conducted in the frame of the SONOBL project (Sources of NOise from
Boundary Layers over vehicules) which was coordinated by the 
uid mechanics laboratory Dyn-
Fluid from Ecole Nationale Sup�erieure des Arts et M�etiers located in Paris, and in collaboration
with the Laboratoire de M�ecanique des Fluides et d'Acoustique (LMFA) from Ecole Centrale
de Lyon, as well as three industrial partners, Airbus, Renault and Dassault. Among the main
outcomes of SONOBL, an extensive numerical Large Eddy Simulation (LES) database of tur-
bulent boundary layers 
ows subjected to favorable (FPG), zero (ZPG) and adverse (APG)
pressure gradients has been generated by DynFluid, and compared with wind tunnel measure-
ments from LMFA. The current thesis is built on these roots and greatly acknowledges them.
Therefore, a particular e�ort will be put on analyzing this da tabase to characterize the features
of the 
ow, and more speci�cally quantify hairpin vortices e volution prior to modelling them
as vibroacoustic excitation input. However, the various vibroacoustic approaches themselves
(Analytical, FEM, SEA, ...) and their properties are out of t he scope and will not be discussed
in the current manuscript.

1.4 Organization of the thesis

This thesis is divided into �ve parts.
The �rst chapter contains the introduction in which the moti vations, objectives and organization
of the manuscript are presented.
The second chapter is a literature review of boundary layer 
ows along with the e�ects of pressure
gradients. This chapter also provides detailed phenomenology on the coherent structures in
turbulent boundary layer 
ows with a speci�c focus on hairpi n vortex type. An overview of
the common visualization and identi�cation methods and criteria will also be provided. This
chapter ends with a review of the existing wall-pressure models, and their way to couple the
wall-pressure spectrum with the structure.
The third chapter deals with the instantaneous and statistical analysis of the velocity �elds for
turbulent boundary layers subjected to zero and non-zero pressure gradients. The numerical
simulation providing the database used for this study will be presented in this chapter, along
with description of the numerical tools and methods used forthe study. The e�ect of pressure
gradients on the turbulent vortices will be highlighted.
The fourth chapter focuses on the stochastic wall-pressurespectrum model. In this section the
model as well as the methodology of enhancement of the model are described. Results from a
�rst coupling with an aircraft structure using a vibroacous tic simulation tool will also be shown.
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The conclusions of this study are summarized in the last chapter where perspectives for future
work are also proposed.

4



Chapter 2

Turbulent boundary layer :
literature review

The boundary layer is a well known concept in mechanical, aeronautical, naval as well as civil
engineering and has undergone increasing interest from thescienti�c community as a result of
rapidly growing use of powerful computation methods and tools. This concept came into the
mind of Prandtl (1904) in the beginning of the past century were he build a bridge between
the two major disciplines of 
uid dynamics at that moment, hy drodynamics which had devel-
oped from Euler's theory of inviscid 
ows and hydraulics which relied on a large amount of
experimental data to tackle practical engineering problems. In his 1904 paper, Prandtl stated
that however small the viscosity of a 
uid in motion may be, it cannot be ignored. Over the
years, this had an outstanding impact on the competitiveness-driven industry of transport by
introducing a theoretical background to the concept of dragfor 
uid-immersed bodies. A simple
de�nition of the boundary layer would be :

"The boundary layer is a region of the 
ow with non-negligible e�ects of viscosity separating
a solid body and a free 
ow which corresponds to the inviscid limiting solution."

Due to viscosity e�ects, the 
ow within the boundary layer can be considered laminar or turbu-
lent depending on the Reynolds numberRex de�ned hereafter :

Rex �

Ux
�

(2.1)

where U and x are respectively a characteristic streamwise velocity andthe distance from the
leading edge of the surface and� is the kinematic viscosity of the 
uid. When the Reynolds num-
ber increases, the regime transitions from laminar to turbulent leading to much more complex

ow pattern and a thickening of the boundary layer as shown in �gure 2.1.

2.1 Boundary layer : state of the art

2.1.1 Laminar boundary layer

The laminar 
ow is characterized by smooth streamlines approximately parallel to the wall over
which the boundary layer develops. The boundary layer is likely to be laminar (at least for a
short time before transitioning) in the range 1000   Rex   106 (White, 1991) which is coherent
with the critical Reynolds number de�ned in the next section. If we consider a 
ow over a 
at
plate with its leading edge at x � 0, the thickness of the boundary layer� is a monotonically
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Figure 2.1 { Boundary layer representation with free stream velocity U
8

showing transition
between laminar and turbulent regimes.

increasing function of x. The transition from boundary layer 
ow to outer 
ow for lami nar
regime takes place continuously so that the boundary cannotbe given precisely. Thus, the most
straightforward de�nition of boundary layer thickness is g iven by the point where the velocity
reaches 99% of the free stream velocity and is therefore often denoted � 99.
A correct and reliable measure for the thickness of the boundary layer is the displacement
thickness � � (also denoted� 1), which, under hypothesis of incompressible 
ow, is de�nedby:

� �

p x q �

» � p x q

0
p 1 �

U
Ue

qp x; y q dy (2.2)

where Ue is the edge velocity, i.e. the velocity at the outer edge of the boundary layer, U is
the mean 
ow velocity and y is the wall-normal distance. The displacement thickness tells us
how far the streamlines of the outer 
ow are displaced by the boundary layer (Schlichting and
Gersten, 2000) as depicted in �gure 2.2 and is about 1/3 of theboundary layer thickness for
laminar 
ow over 
at plate.

Figure 2.2 { Velocity defect caused by the presence of the boundary layer in comparison to ideal

uid - this is quanti�ed by the displacement thickness � � .

One can also de�ne the following integral quantity referred to as the momentum thickness�
(also denoted� 2) de�ned by:
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� p x q �

» � p x q

0

u
Ue

p 1 �

U
Ue

qp x; y q dy (2.3)

The momentum thickness is a distance indicative of the boundary layer momentum de�cit
relative to a mean 
ow. The displacement and momentum thickness are related through the
shape factorH given by:

H �

� �

�
¡ 1 (2.4)

Notice how the shape of the mean velocity pro�le is 
atter away from the wall in the case of a
turbulent boundary layer (see �gure 2.3). This "
atness" is characterized by the shape factorH .
The shape factor is around 5/2 for a laminar boundary layer over a 
at plate (White, 1991); for
instance H � 2:6 for the Blasius (1908) pro�le. In comparison, the shape factor is lower for the
turbulent boundary layer - H � 1:3 for the zero pressure gradient Klebano� (1954) boundary
layer.

2.1.2 Turbulent boundary layer

As was already mentioned, the boundary layer does not remainlaminar and transitions towards
a turbulent regime at a certain critical Reynolds number. The numerical value of the critical
Reynolds number Recrit is strongly dependent on the level of perturbations in the outer 
ow.
Considering a turbulent boundary layer developing over a 
at plate, this number ranges within
3:105

  Rex;crit   3:106, where x is the distance from the leading edge of the plate. The turbu-
lent boundary layer (TBL) is characterized, from a very basic point of view, by a great increase
in its thickness and wall-shear stress leading to a change inthe shape of the mean velocity pro�le
as can be seen in �gure 2.3.

Figure 2.3 { Typical velocity pro�les on a 
at plate for lamin ar and turbulent boundary layers
showing the increase in wall-shear for the turbulent case - after Young (1989).
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Unlike the laminar boundary layer where the entire region ofthe boundary layer is a�ected by
viscosity, the �rst turbulent boundary layer studies (Kleb ano�, 1954; Kovasznay, 1967; Laufer,
1954; Townsend, 1951) show that it can be divided into two regions:

ˆ a very thin layer directly at the wall called the viscous sublayer or viscous wall layer where
the e�ects of viscosity are dominant

ˆ a larger region away from the wall which can be referred to as the frictional layer be-
cause only the "apparent friction" due to the turbulent 
uct uating motions, and which is
una�ected by viscosity, is driving the 
ow.

Figure 2.4 { Typical velocity pro�le for a turbulent boundar y layer showing the di�erent sub-
layers with respect to the wall-normal distance for di�erent Reynolds numbers. The logarithmic
regions increases as the Reynolds number increases - after Delery (2007), the text in the �gure
was translated from french to english.

This leads to the fact that there is no global scaling for the entire turbulent boundary layer.
For instance, the pro�le of the mean velocity close to the wall is dictated by inner variables
such as the wall-shear� w � � dU { dy (where � is the dynamic viscosity), the friction velocity
u� �

a

� w { � , and the kinematic viscosity � , whereas the outer pro�le can be scaled with outer
variables such as the edge velocityUe and the TBL thickness � . A detailed description of the
di�erent layers within the TBL scaled with inner y �

� yu� { � and outer y { � variables is given
in �gure 2.5.
An important characteristic of the turbulent boundary laye r mean velocity pro�le is the loga-
rithmic law, �rst introduced by von K�arm�an (1930), which l ays within the logarithmic region as
shown in �gures 2.4 and 2.5. This region is believed to play a major role in wall turbulence. In
fact, most of the kinetic energy from the outer 
ow is contained in large-scale structures and this
energy "cascades" from these structures to smaller scale structures. This process creates struc-
tures that are small enough that molecular di�usion becomes important and viscous dissipation
of energy takes place; the scale at which this happens is the Kolmogorov scale (Kolmogorov,
1941a,b). The logarithmic region is the bridge between the highly energetic outer structures and
the very small ones near the wall and gathers universal properties. For instance, the production
to dissipation ratio P { � as well as the normalized Reynolds shear stress�x uv y{ k are almost
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constant within this region. Consequently, when the Reynolds number increases, disparities of
scales between the larger structures (integral scale, where most of the energy is contained) and
the smallest structures (from Taylor scale down to Kolmogorov scale) increase and thus widens
the logarithmic region of the TBL.

Figure 2.5 { Di�erent layers in the turbulent boundary layer 
 ow - after Pope (2000)

For the remainder of the study, one should keep in mind that the turbulent boundary layer
can be separated into an outer and an inner region, each of which behave with respect to di�erent
scaling properties. Moreover, the 
ow can be viewed as made of a hierarchy of eddies over a
wide range of length scales with their intensity described by the energy spectrum of velocity

uctuations for each length scale; these eddies are then convected by a mean 
ow characterized
by a logarithmic law which is the link between near wall 
ow and outer 
ow.

2.1.3 E�ect of pressure gradient

Presence of a mean pressure gradient is widely encountered in industrial 
ows, may they be
outer 
ows or internal 
ows and may have a signi�cant impact o n the properties of the 
ow.
Apart from the zero-pressure gradient case, two cases of pressure gradients may exist (here only
streamwise pressure gradients are considered):

ˆ favorable pressure gradient (FPG)dpe{ dx   0: corresponds to an acceleration of the 
ow
(dUe{ dx ¡ 0) and a thinner boundary layer. This occurs for example on the forward part
of an airfoil or the major part of a cockpit

ˆ adverse pressure gradient (APG)dpe{ dx ¡ 0: corresponds to a decelerating 
ow (dUe { dx  

0) and a thickening of the boundary layer. This occurs in a di�user or the aft part of an
airfoil.

In this study, the "intensity" of the pressure gradient is qu anti�ed by the Clauser (1954)
parameter � C :

� C �

� �

� w

dpe

dx
(2.5)

where � � , � w and dpe{ dx are respectively the TBL displacement thickness, the shearstress at
the wall and the streamwise pressure gradient. This parameter can be interpreted as the ratio

9
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between the pressure forces and the shear stress. Other pressure gradient parameters can be
found in the literature such as the acceleration parameterK introduced by Kline et al. (1967),
Clauser's defect shape factorG, Castillo and George (2001) parameter � and the viscous-scaled
pressure gradient � p:

K �

�
U2

e

dUe

dx
(2.6a)

G �

H � 1

H
a

Cf { 2
(2.6b)

� �

�
�U 2

e p d� { dx q

dpe

dx
(2.6c)

� p �

�
�u 3

�

dpe

dx
(2.6d)

The e�ect of the pressure gradient on the mean velocity pro�le is visible in the wake region
(wake law) where departure from the logarithmic behavior issteeper in the case of an adverse
pressure gradient and smoother in the case of a favorable pressure gradient. Regarding turbulent

intensities urms
i �

b

u 1

i
2, a secondary peak is visible in the outer region for adverse pressure

gradient 
ows. These e�ects are visible in �gure 2.6 (u �

� U { u� in this �gure corresponds to
the mean streamwise velocity expressed in terms of wall units). One can refer to section 3.1 for
details on the pressure gradient cases that are shown here.
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Figure 2.6 { Mean velocity pro�les u �

� U { u� (left) and streamwise component of turbulent
intensity urms { Ue (right) for favorable ( ), zero ( ) , adverse weak ( ) and adverse
strong ( ) pressure gradients - after Cohen and Gloerfelt (2015).

2.1.4 E�ect of wall curvature

As for the pressure gradient, curved surfaces are encountered in many industrial 
ows, such as
the 
ow over an airfoil or in pipes. Usually, an additional di mensionless parameterR { � , whereR
is the radius of the curved surface, is used to characterize the in
uence of the curvature to which
the 
ow is subjected. Curvature of the wall generates centrifugal forces which are compensated
by a wall-normal pressure gradient so that:
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B p
B n

� K R �u 2 (2.7)

where n denotes the normal coordinate andK R � 1{ R is the surface curvature.
According to Muck et al. (1985) and Ho�mann et al. (1985), a convex surface has a stabilizing
e�ect whereas a concave curvature has a destabilizing e�ect onboundary layers, and presum-
ably on other shear 
ows. A mild convex curvature, with a radius of curvature of the order of
100 times the boundary-layer thickness, tends to attenuatethe pre-existing turbulence, appar-
ently without producing large changes in statistical-average eddy shape, while concave curvature
results in the quasi-inviscid generation of longitudinal Taylor-G•ortler vortices, together with sig-
ni�cant changes in the turbulence structure induced directly by the curvature and indirectly by
the vortices. For a constant pressure 
ow over both convex and concave walls, Meroney and
Bradshaw (1975) found that for R { � � 100, skin friction di�ers from its corresponding plane-wall
value by as much as 10% while the boundary layer thickness is halved on the convex surface.
The e�ect of transverse curvature was studied by authors suchas Landweber (1949), Eckert
(1952) and Yu (1958). Their main results suggest that transverse curvature involves lower
boundary layer thickness and displacement thickness, higher momentum thickness and local
and mean wall shearing stress. These results were obtained from measurements for 
ows over
axial cylinders, which is the basic shape of an aircraft. Forthe latter however, the ratio of
surface radius to boundary layer thicknessR { � is so high that the e�ects of transverse curvature
can be neglected.

2.1.5 Equilibrium and non-equilibrium boundary layers

It is hard to give a unique de�nition of an equilibrium bounda ry layer. The most commonly
found in the literature is that provided by Clauser (1954), postulating that a boundary layer is
in equilibrium state if the pressure gradient parameter � C (see equation 2.5) is constant along
the streamwise direction. He concluded that equilibrium 
ows are very hard to generate and
maintain and that most 
ows are non-equilibrium 
ows. In fac t, a strict equilibrium can never
be reached except for sink-
ows, where the strength of the favorable pressure gradient leads to
the mean velocity pro�les approaching the pure wall pro�le ( Dixit and Ramesh, 2010; Jones
et al., 2001). Bradshaw (1967b) showed that a necessary condition for a turbulent boundary
layer to maintain equilibrium was that the contribution of t he pressure gradient to the growth
of the momentum de�cit should be a constant multiple of the contribution from the surface
shear stress, which was shown to be equivalent to the condition on Clauser's pressure parameter
� C . A boundary layer is in equilibrium state if the local rates of kinetic energy production and
dissipation are balanced and if the free stream velocity varies as a power of distance downstream
with an exponent greater than -1/3 according to Townsend (1976b). Castillo and George (2001)
showed that an equilibrium boundary layer was found to existonly when the pressure parameter
� (see equation 2.6) was constant and surprisingly found that this was the case for most of 
ows
subjected to pressure gradients and the exceptions were non-equilibrium 
ows, contrary to what
Clauser postulated. For Kameda et al. (2008), equilibrium is characterized by the local skin
friction coe�cient being independent of two parameters, both the streamwise distance and the
Reynolds number based on momentum thicknessRe� , whereas for the non-equilibrium boundary
layer, the skin friction coe�cient depends on these parameters.
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2.2 Coherent structures in the turbulent boundary layer 
ow

2.2.1 General de�nition

Over half a century ago, it was observed that some kind of organized motions populated the
random turbulent �eld in wall-bounded 
ows. The �rst studie s concerned the outer region of
the boundary layer with investigations on intermittency in the turbulent/potential interface at
the edge of turbulent 
ows (Corrsin, 1943; Corrsin and Kistler, 1954), followed by the large
eddy motions populating the outer layer (Favre et al., 1957;Grant, 1958; Townsend, 1976a). At
the same time, people started looking at the structure of thenear-wall region, such as Einstein
and Li (1956) and Kline and Runstadler (1959). Since then, great e�ort has been undergone
to characterize these coherent regions and this �eld of study is still a very active research topic
nowadays. This is partly due to the fact that until now, 
uid d ynamicists still struggle giving
a generally accepted de�nition of a coherent motion in turbulent 
ows. For example, Robinson
(1991a) gives the following de�nition:

"a coherent motion is a three-dimensional region of the 
ow over which at least one fundamen-
tal 
ow variable (velocity component, density, temperature, etc.) exhibits signi�cant correlation
with itself or with another variable over a range of space and/or time that is signi�cantly larger
than the smallest local scales of the 
ow."

Pope (2000) de�nes turbulent structures as:

"regions of space and time (signi�cantly larger than the smallest 
ow or turbulence scales) within
which the 
ow �eld has a characteristic coherent pattern".

Vortices are part of the vast population of coherent motionsin turbulent 
ows but have a speci�c
property in addition. According to Robinson (1991a):

"A vortex exists when instantaneous streamlines mapped onto a plane normal to the vortex
core exhibit roughly circular or spiral pattern, when viewed from a reference frame moving with
the center of the vortex core." .

Hussain (1986) postulates that the coherent vorticity is the primary identi�er of coherent struc-
tures; coherent vorticity being designated as"instantaneously space- and phase-correlated vor-
ticity" . The vast majority of turbulent structures investigation h as resulted from low Reynolds
numbers experiments since it is more e�ective for 
ow visualization and numerical simulation.
Hereafter, a summarized overview of the most known coherentmotions present in the turbulent
boundary layer 
ow is provided. The literature on this topic is extensive and the reader can
refer to reviews by Robinson (1991a), Cantwell (1981), Kline and Falco (1979), Kline (1978),
Townsend (1976b) and Willmarth (1975).

2.2.2 Near-wall structures

In the late 1950s, a series of 
ow visualization experimentswas begun in Stanford to study
boundary layers. The next decade, Kline et al. (1967) revealed new features of the near-wall
region through hydrogen bubble visualization of a low Reynolds-number turbulent boundary
layer. They found that very close to the wall, in the viscous sublayer at y �

� 2:7 and up to
y �

� 10, the bubbles accumulated in high- and low-speed regions called streaks. They observed
that the streaks interacted with the outer region of the 
ow t hough a sequence of four events:
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gradual out
ow, liftup, sudden oscillation and breakup, and de�ned the sequence of the three
last events as "bursting". They could deduce that the average spanwise spacing of streaks� �

z
for smooth walls and all pressure gradients was approximately 100 wall units, e.g. 100� � where
� � � � { u� is the viscous lengthscale. Subsequent experiments (Kim etal., 1971) con�rmed that
the spanwise spacing is between 80  � �

z   120, independent of the Reynolds number. Smith
and Metzler (1983) observed that this spacing increases away from the wall. In the streamwise
direction, the length of the streaks can exceed� �

x � 1000 (Blackwelder, 1979).

Figure 2.7 { A pair of counter-rotating streamwise vortices with the resulting low-speed streak
(dark region) - after Blackwelder (1979).

Kim et al. (1971) observed near the wall a rotational motion which they interpreted as
streamwise vortices. Later on, Blackwelder (1979) inferred that these streamwise vortices evolve
by counter-rotating pairs, based on hot-�lm signals. He suggested that the low-speed streaks
come from counter-rotating pairs of streamwise vortices, which lift-up low-momentum 
uid from
the wall. This leads to the velocity pro�les having an in
ect ion point as shown in �gure 2.7.
Another explanation is that the low-speed streaks are the trace of one or several stacked hairpin
vortices (which will be detailed later, see �gures 2.11 and 2.12), convecting over the wall and
which lift-up between their legs and heads low-speed 
uid. This has been recently supported
by the work of Zhou et al. (1999) who carried out DNS of the evolution of one hairpin vortex
in a turbulent channel 
ow. They showed that the initial hair pin persists in time and induces,
upstream and downstream, other hairpin vortices associated with ejections. This system of
hairpin vortices generates then progressively a low-speedstreak. However, these two proposals
may agree if it is considered that the counter-rotating pairs of streamwise vortices are legs near
the wall of hairpin vortices.

Corino and Brodkey (1969) observed what they called ejections in the region 5   y �

  15
consisting of low speed 
uid being lifted up away from the wall, and it was noticed that ejections
were followed by a sweep event where an axial movement upstream of the ejection sweeps high-
speed 
uid u 1

¡ 0 towards the wall. It has been demonstrated that ejections and sweeps have
a signi�cant role in turbulence production. The p u 1 ; v 1

q sample space of 
uctuating velocities
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is divided in four quadrants as shown in �gure 2.8. In quadrants 2 and 4, which correspond
respectively to ejections p u 1

  0; v 1

¡ 0q and sweepsp u 1

¡ 0; v 1

  0q , the product uv is negative
and consequently events in this region correspond to positive production P � �x uv yB U {B y ¡ 0.
Studies focusing on the contribution of each quadrant tox uv y (Comte-Bellot et al., 1978; Wallace
et al., 1972; Willmarth and Lu, 1972) provided evidence for the importance of ejections and
sweeps to production and that the correlation coe�cient Ru 1 v 1 suggests that quadrant-2 and -4
events are twice as likely as quadrant-1 and -3 events irrespective to the turbulence structure.
Wallace et al. (1972) showed that aty �

� 15, the contributions of the ejections and sweeps to
the Reynolds stress are equivalent. Ejections dominate in the regiony �

¡ 15, while sweeps are
the major contributor close to the wall y �

  15.

Figure 2.8 { The quadrant splitting scheme showing the probability density function in the
p u 1 ; v 1

q plane.

Finally, the existence of shear zones was observed in the near wall region between low-speed
and high-speed streaks. Studies by Johansson et al. (1987) and Johansson et al. (1991) showed
that these structures are inclined by around 5� to the wall in the near wall region y �

  10
and 18� above. Intense shear zones develop between the ejected 
uidand the low-speed 
uid
surrounding it. Results from Johansson et al. (1991) gave evidence that shear regions generate
strong positive pressure 
uctuations and are in average located upstream of a very intense
ejection. Instantaneous velocity and vorticity �eld from D NS (Robinson, 1991b) showed that
for 30   y �

  80 shear zones are rolled forming transverse vortices that generate strong ejections.

2.2.3 Outer-region structures

In the outermost part of the boundary layer the 
ow is intermi ttent. There is a thin turbulence
front, referred to as the viscous super-layer, separating the turbulent boundary layer from the
irrotational free-stream 
uid. Figure 2.9 shows that "vall eys" of non-turbulent 
uid penetrate
deep into the boundary layer and that they separate large eddies or bulges that are inclined at a
characteristic angle of 25� . Therefore, shear layers are observed in the "valleys" since relatively
high velocity 
uid impacts the upstream side of the bulges. Kovasznay et al. (1970) showed that
these bulges have a typical length� to 3� in the stream direction and are about half as wide
in the spanwise direction. The large eddies and the super-layer also contain smaller structures
referred to as typical eddies by Falco (1977), which appear at the trailing of the large scale
eddies (see �gure 2.9). Head and Bandyopadhyay (1981) support that they are tips of hairpin
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Figure 2.9 { Outer region model showing large scale motions and typical eddies - after smoke
visualization by Falco (1977) .

vortices inclined at 45� to the wall.
Since organized motions were also present in the outer layer, a relationship between the inner
events and the outer region received scrutiny. Kovasznay etal. conjectured that the bulges
become inactive and that only the birth of new ejected "lumps" (presumably from the wall) is
the mechanism that maintains the Reynolds stress of the outer layer. They also suggest that the
bursts observed by Kline et al. (1967) near the wall are responsible for the large-scale motions in
the outer 
ow. Blackwelder and Kovasznay (1972) found that the intense motions in the near wall
region remained strongly correlated out toy { � � 0:5. Using turbulent pipe and boundary layer

ow visualizations, Praturi and Brodkey (1978) came up with an elegant model which relates
the coherent motions in the outer region to the near-wall turbulence production as shown on
�gure 2.10. In their model, the near-wall transverse vortices are lifted up from the wall due to
the ejection process in the bu�er layer and transported in the outer layer where they induce
shear layers and form the large scale bulges. However, the question of mass and momentum
transfer between the inner and outer part of the boundary layer still remains controversial.

2.2.4 Hairpin vortices and hairpin packets

Global de�nition

The �rst hairpin model was �rst introduced by Theodorsen (19 52) (see �gure 2.11). The common
de�nition stipulates that hairpin structures can be divide d into three parts: legs, neck and head
as shown in �gures 2.13 and 2.15. More generally, hairpin vortices refer to hairpin-, horseshoe-,
cane-, arch-, omega-shaped vortices or any deformed version of these, and can be symmetric
or asymmetric. In his conceptual model, since the layer farther from the wall has higher mean

ow velocity in comparison to the layer close to the wall, as the structures move downstream,
as well as experiencing a high degree of stretching, the head(spanwise part) undergoes a lifting
movement from the wall. This motion results in the head of thevortex lifting upward toward the
free stream allowing higher velocities to carry the head downstream faster than the legs. This
action leads to a stretching of the legs as the hairpin vortices are convected downstream. This
motion of vortices transports low-speed 
uid away from the wall and produces Reynolds stresses.
Theodorsen (1952) argues that the hairpin structures are the primary element of wall-bounded
turbulence.

Hairpin-like vortices were �rst observed by Head and Bandyopadhyay (1981) in a zero pres-
sure gradient turbulent boundary layer using 
ow visualization. It was shown that hairpins are
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Figure 2.10 { Conceptual model of interaction between the near-wall region and the outer 
ow
motions - after Praturi and Brodkey (1978).
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Figure 2.11 { Theodorsen (1952) hairpin-like vortex.

a major constituent of TBLs over a wide range of Reynolds numbers and that they are produced
in a relatively regular sequence so that the locus of their tips presents a more or less straight line
with a certain angle to the surface which is less than that of the individual hairpin. This last
observation is the evidence of the existence of hairpin packets, which correspond to a sequence
of individual hairpin vortices aligned along the streamwise direction. As can be seen in �gure
2.12, hairpin packets exist at di�erent wall-normal distances. They have di�erent length scales
and convection velocities. According to Adrian et al. (2000), hairpin vortices within a same
packet have very low velocity dispersion such that the relative spacing and arrangement of the
hairpins remain coherent for a long time. Figure 2.12 also shows that the packets lay over a
region of low momentum due to the backward induced motion between the legs of the hairpin
sequence. This region is referred to as a Low Momentum Region(LMR) and was also observed
by Lee and Sung (2009), Mayam (2009), Dennis and Nickels (2011), Ganapathisubramani et al.
(2005) and many others.

Figure 2.12 { Hairpin packets organization in the turbulent boundary layer 
ow - (left) Instanta-
neous velocity �eld in Galilean frame convecting at Uc � 0:55Ue after Mayam (2009) and (right)
idealized model of nested hairpin packets travelling at di�erent convection velocities after Adrian
et al. (2000).

Figure 2.12 also shows that small newly formed packets existwithin larger older packets.
Measurements of convection velocities reveal that the small packets located near the wall prop-
agate more slowly than the older ones. This has two combined reasons:

ˆ the 
ow surrounding large packets has a higher velocity since they are located in the outer
region of the boundary layer

ˆ in the small young packets, the individual hairpin vortices are closer to each other, therefore
producing higher back-induced velocities and even lower momentum regions.
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Reynolds number e�ect

Some authors were interested in the e�ect of the Reynolds number on the coherent motions.
Head and Bandyopadhyay (1981) focused on the hairpin-like vortices in a zero pressure gradient
turbulent boundary layer in a Reynolds number range 500  Re�   17500. They observed that
at high Reynolds number (Re� ¡ 2000), the structures consist of elongated hairpin vortices
pairs, originating in the wall region and extending through a large part of the boundary layer
thickness or beyond it. At low Reynolds numbers (Re�   500) however, the hairpin vortices are
much less elongated and would be better de�ned as horseshoe vortices or vortex loops. This
Reynolds number e�ect on the topology of the hairpin-like vortices is illustrated in �gure 2.13.
Authors such as Schlatter and •Orl•u (2010) suggest that at even higher Reynolds number, the
hairpins vortices break and become asymmetric cane-shapedstructures.

Figure 2.13 { E�ect of Reynolds number on the geometry of hairpin-like eddies - after Head and
Bandyopadhyay (1981).

Adrian et al. (2000) also suggest that packets contain fewerindividual hairpins at low
Reynolds numbers than at high Reynolds numbers in the outer region of the boundary layer.
This result is based on the fact that the hairpin packets present in the very outer region de�ne
the instantaneous boundary layer edge which is highly corrugated at low Reynolds numbers and
may therefore be assimilated to bulges. Since the length of the bulges is about 2� (Kovasznay
et al., 1970), while the distance between hairpins scales roughly with viscous wall variables at
about 100-200 viscous wall units, the number per packet increases with increasing Reynolds
number.

Angle of hairpin vortices

Since the hairpin-like structure can be divided into three parts, it is possible to de�ne the angle
of the hairpin � hp (which is an average angle of the structure), the angle of thelegs of the hairpin
� l and the angle of the neck of the hairpin� n as can be seen on the schemes in �gures 2.14 and
2.15.

Head and Bandyopadhyay (1981) found an average hairpin angle of 45�

� 50� from 
ow
visualization of a zero-pressure gradient turbulent boundary layer. Mayam (2009) performed
Particle Image Velocimetry (PIV) measurements of a turbulent boundary layer subjected to a
severe adverse pressure gradient for Reynolds numbers ranging within 5300   Re�   12000
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Figure 2.14 { Sideview of hairpin-vortex - idealized linear representation (left) and "realistic"
hairpin geometry (right).

Figure 2.15 { Di�erent parts of the hairpin vortex with the cor responding angles to the wall -
after Robinson (1991b) .
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along the streamwise direction and compared his results to azero pressure gradient 
ow. He
found that the neck angles of the hairpin vortices are ratherclose for both 
ows in the inner
layers whereas the angle is up to 18% higher for the APG case for the upper region of the
boundary layer. Lee and Sung (2009) performed Direct Numerical Simulation (DNS) of ZPG
and APG turbulent boundary layers. For the APG case, � C � 1:68 and Re� � 1200� 1400 (for
the ZPG 
ow, only the Reynolds number Rein

� � 1410 at the inlet of the computation domain is
mentioned). Lee and Sung (2009) were able to measure both theleg angle and neck angle of the
hairpin structures based on conditionally averaged velocity �elds at y �

� 50. They found leg
angles around 9:2� for the APG case and 8:8� for the ZPG 
ow, and neck angles around 28:8�

and 21:3� respectively for the APG and ZPG cases.

Angle of hairpin packets

Evidence of streamwise aligned hairpin vortices in the turbulent boundary layer 
ow was shown
at early stages by Head and Bandyopadhyay (1981). They were able to directly visualize tips of
hairpin vortices lying in a line inclined at an angle around � p � 20� to the wall as can be seen
in �gure 2.16. Mayam (2009) measured a hairpin packets average growth angle close to 11� for
the adverse pressure gradient case from instantaneous velocity �elds visualization. For this 
ow,
he was also able to observe that the hairpin vortices within the same packet are more closely
spaced along the streamwise direction in comparison to the ZPG 
ow.

Figure 2.16 { Evidence of streamwise aligned vortices alonga line inclined to the wall - 
ow is
from right to left - after Head and Bandyopadhyay (1981).

Adrian et al. (2000) observed angles ranging from 3� to 35� from instantaneous velocity �elds
of a channel 
ow, with a 12� mean angle which agrees well with the simulations of Zhou et al.
(1999). From the same measurement data, they could also identify packets of hairpins with non
monotonous angles, i.e. a positive ramp angle followed by a negative angle (see �gure 2.17). This
was also observed by Mayam (2009) and it is suggested that this could be due to the formation
of hairpins downstream of the primary hairpin (Zhou et al., 1999). However, statistical analyses
reveal that the most common feature consists in packets witha positive angle.

Lee and Sung (2009) reported angles around� p � 13� for the ZPG 
ow and � p � 18:5�

for the APG by estimating the angle of the packet line from linear stochastic estimation of the
velocity �eld (see section 2.2.5) with event location at y { � � 0:2. Similarily, Christensen and
Adrian (2001) measured� p � 13� and � p � 14� growth angles for a turbulent channel 
ow with
Re� � 547 (y �

ref � 83:6, y { h � 0:16) and Re� � 1734 (y �

ref � 256, y { h � 0:15) respectively,
where Re� � u� h { � is the Reynolds number based on the friction velocityu� and the channel
half height h. Volino et al. (2007) determined angles around 13:2�

� 2:5� for 0:2   y { �   0:7
with angles decreasing abovey { � � 0:7.
It will be shown in section 3.3.2 that the angle of the two-points spatial correlation of the
streamwise velocity Ruu is correlated with the angle of the hairpin packets. Liu et al. (2001)
measured an angle ofRuu around 6�

� 8� at reference point y { h � 0:24 in a turbulent channel
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Figure 2.17 { Example of non-monotonically increasing hairpin packet represented by the lower
dashed line - after Adrian et al. (2000) .


ow at Reh � 3 � 104. Similarly, Nakagawa and Hanratty (2001) measured an inclination
angle of the correlation around 9� in a channel 
ow with wavy boundaries at a reference point
y { h � 0:23 and Reh � 4:6 � 104. Tay et al. (2009) looked at the streamwise extent and
angle of the correlation when studying the e�ect of surface roughness on turbulent boundary
layers subjected to pressure gradients with Reynolds numbers Re� � 914 for the ZPG case and
Re� � 2182 for the APG (deceleration parameterK � � 4:45 � 10� 7). For the smooth surface
case, they measured inclination angles of 10:1� for the FPG and 17:3� for the APG at reference
point around y { � � 0:25. Krogstad and Antonia (1994) found an angle around 10� based on the
inclination of the Ruu � 0:3 contour in the range 0:1   y { �   0:4 from X-wire measurements of
a Re� � 6030 ZPG turbulent boundary layer.

2.2.5 Visualization, identi�cation and analysis methods

As already mentioned, 
uid dynamicists still struggle givi ng a generally accepted de�nition of
coherent motions in turbulent 
ows. Indeed, the de�nition a nd identi�cation of a vortex in un-
steady 
ows is di�cult since streamlines and pathlines are not invariant with respect to Galilean
and rotational transformations as emphasized by Lugt (1979).
Vorticity has long been the most accepted candidate for vortex identi�cation, but Jeong and
Hussain (1995) along with other authors such as Kida and Miura (1998) and Cucitore et al.
(1999) showed that vorticity is not able to distinguish between regions of shear 
ow and real
spinning motions. More complex methods based on invariantsof the velocity gradient tensor r u
have been developed. Chong et al. (1990) propose that a vortex core is a region with complex
eigenvalues ofr u as a complex eigenvalue implies that the local streamline pattern is closed or
spiral in a reference frame moving with the point of calculation. Hunt et al. (1988) de�ned an
eddy as a region with positive second invariant of the velocity gradient tensor. More recently,
an identi�cation method based on the concept of Lagrangian Coherent Structures (LCS) was
proposed (Haller, 2002, 2005; Haller and Beron-Vera, 2013).
Vortex identi�cation criteria still remain a subject of int erest and debate due to their arbitrary
threshold which provides information on presence of a vortex and its boundaries. Authors such
as Cucitore et al. (1999), Chakraborty et al. (2005) and Vollmers (2001) performed a comparison
of some of these criteria. Hereafter, an overview of visualization, identi�cation as well as analysis
methods is provided.

Pressure
Pressure can be used for vortical structures identi�cationsince the center of a vortex is a region
of local minimum of pressure. In this case, the criteria would be:
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p ¤ pthresh (2.8)

This method is based on the idea that centripetal force induces pressure gradient. It is very
simple to implement but the threshold is purely arbitrary an d the pressure can vary greatly
along the vortex.

Vorticity
Vorticity is de�ned as the curl of the velocity �eld and often denoted ! :

! � r � u (2.9)

It describes the local spinning motion of the 
uid near some point as would be seen by an
observer located at that point and travelling along with the 
uid. It is therefore related to the
moment of momentum of a small particle about its own center ofmass, as de�ned in Shapiro
(1969). For example, for rigid body, every line perpendicular to the axis of rotation has the
same angular velocity; therefore vorticity is the same at every point and is twice the angular
velocity.

Figure 2.18 { Vorticity contours showing von K�arm�an vorte x street behind a cylinder at Re �

3000 - Marine Ecosystem Dynamics Modelling lab.

Vorticity can be used to visualize and identify vortical str uctures since the center of a vortex
corresponds to a local maximum of the vorticity modulus. In � gure 2.18, a K�arm�an vortex street
is revealed using vorticity.

Q criterion
The quantity Q used here is the second invariant of the Jacobian of the velocity �eld and can
be de�ned as:

Q �

1
2

p 
 ij 
 ij � Sij Sij q (2.10)

where Sij is the shear stress tensor and 
ij the rotation term of the velocity gradient tensor,
e.g.:

Sij �

1
2

�

B ui

B x j
�

B uj

B x i




(2.11a)


 ij �

1
2

�

B ui

B x j
�

B uj

B x i




(2.11b)

The criterion, introduced by Hunt et al. (1988), consists in looking for regions where this quantity
is positive sinceQ ¡ 0 implies local pressure smaller than the surrounding pressure. This method
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is commonly used in 
ow visualization. Figure 2.19 shows near-wall structure at turbulent
boundary layer trainsition using this method.

Figure 2.19 { Isosurface ofQ-criterion colored by velocity magnitude showing near-wall struc-
tures in boundary layer transition - Mech. Eng. Dept, Stanford Univ.

� 2 criterion
The quantity � 2 is de�ned as the second largest eigenvalue of the tensorS2

� 
 2 (where S and

 are the two tensors introduced in equation 2.11). The criterion was introduced by Jeong and
Hussain (1995) and consists in identifying regions where� 2   0 since they correspond to local
pressure minimum. This criterion is widely used among 
uid dynamicists, but is sensitive to
high shear. Gloerfelt and Margnat (2014) used the� 2 criterion to reveal structures between
transition and fully turbulent 
ow as shown in �gure 2.20.

Figure 2.20 { LES of spatially developing TBL at Mach 0.5, isosurface of � 2 criterion colored
by streamwise velocity - after Gloerfelt and Margnat (2014).

� criterion
Chong et al. (1990) de�ne a vortex core as a region wherer u has complex eigenvalues. The
characteristic equation for r u is given by:

� 3
� P � 2

� Q� � R � 0 (2.12)

where P, Q, and R are the three invariants of the velocity gradient tensor. The discriminant
for eq. (2.12) is (for incompressible case, i.eP � 0):
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� �

�

1
2

R

 2

�

�

1
3

Q

 3

(2.13)

The condition � ¡ 0 implies that r u has complex eigenvalues. From Eq. (2.13) it can be seen
that Q ¡ 0 criterion is more restrictive than the � ¡ 0 criterion. Cucitore et al. (1999) used
this criterion along with an empirical Galilean invariant n on-local criterion. The latter is based
on the intuitive notion that the change in the relative dista nce between particles inside a vortex
structure is small and therefore introduces a ratio to quantify this change.

Kinematic vorticity number
Truesdell (1953) introduced the kinematic vorticity number Nk to measure 'the quality of rota-
tion', instead of the local rotation rate given by || 
 || .

Nk �

�

| ! |

2

2Sij Sij


 1{ 2

�

|| 
 ||

|| S ||

�

�

1 �

2Q
Sij Sij


 1{ 2

(2.14)

Thus, Nk is a pointwise measure of| ! | non-dimensionalized by the norm of the strain rate,
which gives the quality of rotation regardless of the vorticity magnitude. For example, Nk � 8

and Nk � 0 correspond to solid-body rotation and irrotational motion respectively. Melander
and Hussain (1993) used this quantity to identify the core ofan axisymmetric vortex column as
" a maximally connected spatial region withNk ¡ 1". However, the kinematic vorticity number
does not discriminate between vortices with small and largevorticity (or circulation) as long as
the quality of the rotation is the same for both.

Swirling strength � ci

The swirling strength � ci is the imaginary part of the complex eigenvalue of the velocity gradient
tensor which can be expressed as:

r u �

�

vr vcr vci
�

�

�

� r

� cr � ci

� � ci � cr

�




�

vr vcr vci
�

� 1
(2.15)

where p vr ; vcr ; vci q are the eigenvectors of the tensor. This method automatically eliminates
regions having vorticity but no spiralling motion such as shear layers (refer to Zhou et al. (1999)
for more details). For this reason, but also because the� ci criterion has been the last developed
and therefore is believed to be more advanced, this criterion will be used hereafter. Recently,
several authors which use the linear stochastic estimation(LSE) method to investigate vortical
structures in turbulent 
ows use this criterion.

Enhanced swirling strength criterion
The common factors to most of the criteria are that an identi� cation criterion should be Galilean
invariant and that the local 
ow in the frame of reference tra nslating with the vortex should
be swirling. Chakraborty et al. (2005) added a third requirement which is that the separation
between the swirling material points inside the vortex coreshould remain small, i.e. the orbits of
the material points are compact. Therefore, they introduced the spiralling inverse compactness
given by:

� cr

� ci
(2.16)

This ratio measures the spatial extent of the local spiralling motion. A value of � cr { � ci � 0
results in a perfectly circular path, while a positive (or negative) value corresponds to a path
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that spirals outward (or inward) in the plane of the vortex.

� 1 and � 2

These methods have been developed for two-dimensional cases only and therefore can be ap-
plied to PIV plane measurements. They allow to determine both the center and boundaries of
a vortical structure.
Let P be a �xed point in the measurement domain. Graftieaux et al. (2001) de�ne the dimen-
sionless scalar function �1 at P as :

� 1 p P q �

1
S

»

M P S

p P M � u M q :n
|| P M || :|| u M ||

dS (2.17)

where S is a 2D-area surroundingP, M lies in S and n is the unit vector normal to the
measurement plane. �1 is a dimensionless scalar, with �1 bounded by 1. It can be shown that
this bound is reached at the location of the vortex centre if the vortex is axisymmetrical. Thus,
the scalar function � 1 provides a way to quantify the streamline topology of the 
ow in the
vicinity of P and the rotation sign of the vortex.
Graftieaux et al. (2001) improved this method by introducing the quantity � 2 which takes into
account a local convection velocity ~UP around P:

� 2 p P q �

1
S

»

M P S

r P M � p u M � ~u P qs :n
|| P M || :|| u M � ~u P ||

dS (2.18)

where ~u P �

1
S

³

S u dS. Note that in contrast to � 1, � 2 is Galilean invariant.

Proper Orthogonal Decomposition (POD)
The Proper Orthogonal Decomposition (POD) method for vortex identi�cation is based on the
idea that regions of high vorticity correspond to energeticmodes. It identi�es the set of orthog-
onal modes that best reconstruct a dataset. Graftieaux et al. (2001) used this method along
with the � 2 for vortex identi�cation from PIV measurements in a highly t urbulent swirling 
ow.
Lumley (1981), Holmes et al. (1996), Baltzer et al. (2010) and more recently He et al. (2016) also
use POD to identify coherent structures such as low-speed streaks and hairpin-like vortices. Liu
et al. (2001) and Rempfer and Fasel (1994) used also this method to study Large Scale Motions
(LSMs) and structures in turbulence transition respectively. Due to success of the method, it
has spawned a number of variants including double POD (Siegel et al., 2008; Tubino and Solari,
2005), observer-inferred decomposition (OID) (Schlegel et al., 2012), temporal POD (Gordeyev
and Thomas, 2013), spectral POD (Sieber et al., 2016), etc.

Dynamic Mode Decomposition (DMD)
Recently dynamic mode decomposition has gained popularityas a tool for analyzing the dy-
namics of nonlinearity evolving 
uid 
ows and is actually th e only modal decomposition method
developed for this task. For instance, POD can be applied to 
ows with nonlinear dynamics, but
the POD modes are not necessarily optimal for those dynamics. This method was �rst intro-
duced at a conference by Schmid and Sesterhenn (2008) and followed one year later by a paper
published by Rowley et al. (2009). The latter introduces a method based on Koopman theory
(Koopman, 1931) which states that there exists a set of modes, the "Koopman modes", that
completely characterizes the dynamics of a nonlinear system. On the other hand, Schmid and
Sesterhenn (2008) presents the DMD as a method analyzing a "linear tangent approximation"
to the underlying 
ow. They also explored the connections between DMD and POD, leading to
an SVD-based algorithm which has become the standard for DMDusers.
In terms of coherent structures analysis, Zhang et al. (2014) used DMD along with POD to
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identify coherent structures behind a single cylinder and two side-by-side cylinders, Tang and
Jiang (2012) applied DMD for the analysis of hairpin vortices generated by a hemisphere pro-
turberance using PIV measurements in a water channel, Hyhl��k and Netrebsk�a (2016) evaluated
the travelling vortex speed in a synthetic jet 
ow.

Variable Interval Time Average (VITA)
The VITA method introduced by Blackwelder and Kaplan (1976) is a statistical method which
can be seen as a low-pass �lter giving a localized temporal measure of a quantity. The simple
criteria used allow to detect the events associated with thesudden variations of the signal under
study, both in the time and space domains. For a turbulent signal Q p x ; t q the variable interval
time averageQ̂ p x ; t q is de�ned by:

Q̂ p x ; t; T q �

1
T

» t � T { 2

t � T { 2
Q p x ; � q d� (2.19)

where x is the location where the sample has been taken andT is the averaging time. As T
becomes large, the conventional time averaging results:

lim
T Ñ8

Q̂ p x ; t; T q � Q p x q (2.20)

which is independent of t because of stationarity. In order to obtain a local average of some
phenomenon, the average timeT must be of the order of timescale of the phenomenon under
study. Therefore, as already mentioned, the VITA method can be assimilated to a low-pass
�lter with 1 { T representing the cut-o� frequency and gives a localized temporal measure of the
quantity Q.
Blackwelder and Kaplan (1976) could examine the vortex structures associated with the bursting
phenomenon in the near wall region which is characterized bylow-speed 
uid being "pumped"
away from the wall. Morrison et al. (1988) applied the VITA al gorithm to a variety of turbulent
boundary layers where they were able to capture length-scale statistics within the 
ow.

Window Average Gradient (WAG)
The window average gradient detection scheme (Antonia and Fulachier, 1989; Antonia et al.,
1990) searches for changes in the average signal level over acertain time interval. This interval
is selected so that the corresponding length scale is comparable to the event of interest. For
instance, if a window of 2� � 1 samples is moved through the data, the quantity:

WAG i �

sign
2�

�

i � �
¸

j � i � 1

uj �

i � 1
¸

j � i � �

uj

�

(2.21)

is computed at every point and the detection begins when WAGi �rst exceeds a certain thresh-
old. This method was used by Krogstad and Antonia (1994) to study large-scale motions in
turbulent boundary layers on smooth and rough walls since itis well suited to detect disconti-
nuities in the velocity signal which characterizes large-scale motions.

Linear Stochastic Estimation (LSE)
Linear stochastic estimation is a statistical tool �rst int roduced by Adrian (1975). The method
uses a two-point second order correlation in terms of conditional 
ow pattern. The idea is to
reconstruct a certain quantity, for instance the velocity, based on a chosen condition at one
position of the 
ow �eld. In comparison to the previous analy sis methods, the LSE method will
be detailed further hereafter since it is often used in the present study. The following equations
and nomenclature are taken from Adrian (1994) review on LSE.
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Let u 1

� u p x 1 ; t 1

q be the quantity that we want to estimate for some domain of positions and
times, based on a certain condition or event grouped in anevent data vector E. The estimate
of u 1 is denoted û 1 . The best mean square estimate ofu 1 given the data E is the conditional
average ofu 1 given E, x u 1

| E y .
The idea is then to expand x u 1

| E y in a Taylor series about E � 0 and truncate at some level.
When the series is truncated at the �rst term, the method is referred to as linear stochastic
estimation, if it is truncated at the second term, the method is called quadratic stochastic
estimation, and so on. The equations for LSE of thei th component of u 1 are:

û 1

i � x u 1

i | E y �

M
¸

j � 1

L ij E j (2.22)

where M is the number of event data andL ij � L ij p x ; x 1

q . The estimation coe�cients L ij are
chosen so that the mean square error

xrx u 1

| E y �

¸

j

L ij E j s

2
y � minimum (2.23)

A necessary condition for minimization is the orthogonality principle which states that the errors
û 1

� x u 1

| E y �

°

j L ij E j are statistically orthogonal to the data:

xr û 1

� x u 1

| E y �

¸

j

L ij E j s Ek y � 0 i � 1; 2; 3 and j; k � 1; :::; M: (2.24)

From here, the problem consists in �nding the coe�cients L ij by solving an M � M linear
algebraic system whose coe�cients are the correlations between each event datum and every
other event datum. The quantity is then estimated by:

¸

j

x E j Ek y L ij � x Eku 1

i y (2.25)

If the data consist of velocity vectors u � � u p x � ; t � q , then x E j Ek y involves only the second-
order two-point space-time correlationRjk p x � ; x � ; t � ; t � q and x Eku 1

i y reduces toRki p x � ; x 1 ; t � ; t 1

q .
Linear stochastic estimation has been widely used over the past years to study coherent strucutres
in turbulent boundary layers (Dennis and Nickels, 2011; Elsinga et al., 2010; Juan et al., 2006;
Kan et al., 2013; Lee and Sung, 2009; Natrajan et al., 2007), channel 
ows (Christensen and
Adrian, 2001; Moin et al., 1987; Moser, 1990; Zhou et al., 1999), jet and mixing layers (Bonnet
et al., 1994; Gutmark et al., 2006). Druault et al. (2011) used quadratic stochastic estimation
(QSE) along with POD to reconstruct the acoustic pressure �eld in a 
ow over a cavity.

2.3 Turbulent boundary layer wall-pressure spectrum

The noise induced by a turbulent boundary layer for aero-moving vehicles is of two natures. For
a turbulent 
ow over a surface, there will be two acoustic contributions, one referred to as the
direct contribution which corresponds to the acoustic pressure generated within the 
ow and
which radiates in the same half space as the 
ow, and an indirect contribution corresponding to
the acoustic �eld generated by the vibrations of the 
ow-excited surface and which radiates in the
half-space opposite to the 
ow (referred to interior domain in �gure 2.26). Turbulent boundary
layer noise issues for passenger comfort are related to the indirect contribution. Indeed, the
direct acoustic contribution is of very low energy (Cohen, 2015; Cohen and Gloerfelt, 2015;
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Gloerfelt and Margnat, 2014) and is not of interest in the present study. According to Powell's
theorem (Powell, 1960), turbulent 
ow homogeneous in the plane of a 
at, rigid in�nite surface
can radiate only as quadrupole or higher-order acoustic sources which are acoustically ine�cient.
Spatial inhomogeneities of the surface such as sti�eners or ribs or abrupt termination such as
a trailing edge would be needed to generate sources with lower orders and generate additional
radiation (Blake, 1986, Chapter 8).

2.3.1 Global de�nition and features

According to Lighthill's theory (Lighthill, 1952, 1954), t he instantaneous pressure resulting from
turbulent 
uctuating motions obeys the wave equation:

1
c2

0

B

2p
B t2 � r 2p �

B

2� 0 p ui uj � ui uj q

B x i B x j
(2.26)

whereui uj is the temporal average ofui uj . The source term on the right hand side is an approx-
imation including only incompressible Reynolds stresses but still represents both aerodynamic
and acoustic contributions to pressure. If the boundary layer is assumed to exist over a rigid

at surface, i.e. un � u2 � 0, the pressure �eld at a wall location x w is given by (Blake, 1986,
Chapter 8):

pp x w ; t q �

1
2�

y

V

B

2� 0 p ui uj � ui uj q

B x i B x j

dV
| x w � x |

�

1
2�

x

S

B � i 2

B x i

dS
| x w � x |

i � 2 (2.27)

The surface integral is over the entire wall-planey � 0 as well as a control surface assumed
to be a hemispherical dome at a large distance from the wall. Burton (1974) and Kraichnan
(1956) provide convincing evidence that the surface integral has negligible contribution to the
wall pressure. In fact, using measurements of 
uctuating wall-shear stress, Burton (1974) could
show that the contribution of the integral to the total root m ean square wall pressure 
uctuation
is only on the order of at most 6%. Thus, equation (2.27) reduces to:

pp x w ; t q �

y

V

�

B

2� 0 p ui uj � ui uj q

B x i B x j

�

dV
| x w � x |

(2.28)

where the brackets denote retardation, that is to say sourceterms are evaluated at the retarded
time t � r { c0, with r � | x w � x | . Let ~p be the Fourier transform of the pressure at the wall:

~pp k ; ! q �

1
p 2� q

3

8y

�8

e� i p k � X � !t q pp x w ; t q d2X dt (2.29)

with k being the wave vector andX a space vector in the plane of the wall. The wavenumber-
frequency spectrum of wall-pressure �ppp k ; ! q is then given by:

� ppp k ; ! q � p k � k 1

q � p ! � ! 1

q � x ~pp k ; ! q ~pp k 1 ; ! 1

qy (2.30)

where the angle brackets denote the ensemble average and� p�q the Dirac function.
Figure 2.22 provides the reader with information on the shape of the three-dimensional wavenumber-
frequency spectrum � pp p k ; ! q . In the kx � kz plane (�gure 2.22p aq ), which corresponds to the
top illustration in �gure 2.21, the convective ridge and the acoustic domain have respectively
"elliptical" and "circular" shapes. The acoustic domain is the region of supersonic wavenumbers
enclosed in the circle| k |   k0 where k0 is the acoustic wavenumber. In presence of a mean 
ow
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Figure 2.21 { Wavenumber-frequency spectrum �pp p k; ! q for a frequency !� �

{ U
8

=500, where
M

8

=0.1 and � =2 cm. The model of Chase (1987) is used for illustration: �pp p k; ! q �

� 2
0u3

� � 3
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�

� q

2
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�
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� CT p k� q

2
� F

�
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�
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2
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�
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� 1{ b2

p k� q

2
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�

c1 �

c2 | k2
� k2

0 |

k2 �

c3k2

| k2
� k2

0 |� � 2k2
0

	

. We set CM =0.1553, CT =0.0047, b=0.75, h=3,

c1=2/3, c2=0.005, c3=1/6, and � =0.2. k0 � ! { c0 is the acoustic wavenumber.
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p aq

p bq

p cq

Figure 2.22 { Wavenumber-frequency spectrum 10 log10 � ppp k ; ! q of wall pressure beneath a
ZPG Mach 0.5 turbulent boundary layer in the p aq kx � kz plane at !� { Ue � 5:9, p bq kx � !
plane at kz � 0 and p cq kz � ! plane at kx � 0 - The white dashed circle inp aq as well as the plain
white lines in p bq and p cq represent the acoustic domain de�ned by equation 2.31, the dashed
line in p bq corresponds to a theoretical convective velocityUc � 0:7Ue - after Cohen (2015).
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at Mach number M , the acoustic domain is theoretically delimited by an ellipse which equation
is:

p kx � k0M { � 2
p q

2

p k0 { � 2
p q

2 �

k2
z

p k0 { � p q

2 � 1 (2.31)

where k0 � ! { co is the acoustic wavenumber and� p �

?

1 � M 2 is the Prantdl-Glauert pa-
rameter. For low frequencies, the acoustic peak is hardly distinguishable since it overlaps the
convective ridge. As the frequency increases, both acoustic and aerodynamic contributions sep-
arate due to small scale turbulent structures (e.g. high frequency structure) travelling at lower
convection velocities. The elliptic shape of the convective ridge demonstrates the anisotropic
topology of the coherent motions which have a privileged streamwise elongation in average.
In the kx � ! and kz � ! planes, the acoustic domain is delimited by a cone. Thekx � !
representation in �gure 2.22p bq gathers two pieces of information. The �rst one is that the
inclination of the convective ridge provides a measure of the average convective velocity of the
structures. The second result comes from the observation that the acoustic peak is more intense
for positive wavenumberskx ¡ 0 which translates in acoustic pressure preferably radiating in
the same direction as the mean 
ow within the boundary layer, contrary to the exterior acous-
tic radiation which preferably propagates upstream (Cohen, 2015; Gloerfelt and Margnat, 2014).

The early studies on wall-pressure 
uctuations were based on wind tunnel measurements or

ight tests. The measurements techniques consist of microphones or kulites which provide the
pressure time signal at one point in spacepp x 0 ; t q . The auto-correlation of this signal is:

Rx 0 ;pp p � q �

x pp x 0; t q pp x 0 ; t � � y

p2
rms

(2.32)

One can de�ne the one point pressure spectrum �pp p x0; ! q by performing the Fourier transform
of the auto-correlation function:

� pp p x 0 ; ! q �

1
2�

»

8

�8

Rx 0 ;pp p � q e� i !� d� (2.33)

This provides information on the energy of the turbulent boundary layer excitation at one speci�c
point over the surface. If we assume that the convected pressure is a statistically homogeneous
�eld in the plane of the wall, this quantity can be obtained by integrating the wavenumber-
frequency spectrum over the entire range of wavenumbersp kx ; kz q :

� pp p ! q �

»

8

�8

� pp p k ; ! q dk (2.34)

In order to obtain a smoother single point frequency spectrum, it is preferably computed from
equation (2.34) since it corresponds to the averaged autospectrum of a small patch over the
surface. Unlike experimental data, LES computational dataallows this thanks to the su�cient
discretization of the wall.

Consideration of the source term

Considering an incompressible 
ow, the source term in Lighthill's equation (2.27) can be written:

Source� Tij �

B

2
p ui uj � ui uj q

B x i B x j
(2.35)
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Applying the Reynolds decompositionui � Ui � u 1

i to separate the mean and 
uctuating quan-
tities and then subtracting the mean pressure, one obtains:

Tij � TMS
ij � TT T

ij �

�

2
B Ui

B x j

B u 1

j

B x i

�

�

�

B

2
p u 1

i u
1

j � u 1

i u
1

j q

B x i B x j

�

(2.36)

The term TMS
ij is the mean-shear (MS) source term ("linear" or "rapid") whi le TT T

ij is the sum
of turbulent-turbulent (TT) source terms ("non-linear" or "slow"). Assuming that the mean
velocity in the boundary layer 
ow is U1 � U and invoking continuity for the TT term, the two
contributions can be simpli�ed:

TMS
� 2

B U
B y

B v 1

B x
(2.37a)

TT T
ij �

B u 1

i

B x j

B u 1

j

B x i
�

B

2u 1

i u
1

j

B x i B x j
(2.37b)

It is interesting to consider such a decomposition of the source term in order to evaluate the
contribution of each component to wall-pressure 
uctuations. Assuming a Gaussian distribution
for the turbulent statistics, Kraichnan (1956) evaluated t he ratio between the contribution of
mean-shear and turbulent-turbulent terms as pMS

rms { pT T
rms � 4{ 15Cf " 1. Meecham and Travis

(1980) calculated the valuepMS
rms { pT T

rms � 10 for a classical isotropic �eld with a Gaussian prob-
ability distribution. More recently, Hu et al. (2016) calcu lated the contributions of the MS and
TT terms by solving the Poisson equation of pressure. The source term was obtained by a Fast
Random Particle-Mesh method (FRPM, Ewert et al. (2000); Siefert and Ewert (2009)) based
on a RANS calculation. When plotting the one-point spectra of wall-pressure, they found that
most of the energy is contained in the MS term and that the TT term can be neglected, follow-
ing the conclusions of Townsend (1976b). Chang et al. (1999)analyzed a DNS of low Reynolds
number incompressible turbulent channel 
ow to study the relationship between wall-pressure
and velocity �eld sources. Contrary to the results above, it appeared that the mean-shear and
turbulent-turbulent partial pressures are the same order of magnitude close to the wall.

2.3.2 E�ect of pressure gradient on pressure spectrum

Point-frequency spectrum

It is interesting to know the e�ect of the pressure gradient on wall-pressure 
uctuations since the
majority of 
ows in engineering applications are submitted to pressure gradients. On an aircraft
for instance, adverse pressure gradient areas exist at the beginning of the windshield, over the
fuselage/wing junction and on the aft fuselage, whereas favorable pressure gradient areas are
found over the entire cockpit (see �gure 2.23).

Many authors have tackled this particular aspect looking mainly at the one-point frequency
spectrum (Bradshaw, 1967a,b; Burton, 1973; McGrath and Simpson, 1988; Schloemer, 1967) and
two main results emerge: 1) absolute levels of energy increase with an adverse pressure gradient
and 2) the mid-frequency slope becomes steeper as the pressure gradient moves from favorable
to adverse. This is shown in �gure 2.24 which compares the one-point frequency spectra for
di�erent pressure gradient cases and intensities measured over a rotating NACA 0012 airfoil
(Hu and Herr, 2016).
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Figure 2.23 { Streamwise pressure gradient over front region of a typical long range aircraft.
Arbitrary units - Airbus document.

Figure 2.24 { One-point frequency spectra for di�erent casesof pressure gradient measured on
a rotatable NACA 0012 airfoil - angles indicate the angle of attack of the airfoil - after Hu and
Herr (2016).
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Figure 2.25 { Wavenumber-frequency spectra 10 log10 � pp p k ; ! q for favorable (FPG), zero (ZPG),
adverse weak (APGw) and adverse strong (APGs) pressure gradients in the kx � kz plane at
frequencies!� { Ue � 2:7 (FPG), 3 (ZPG), 4.3 (APGw) and 5.2 (APGs) after Cohen (2015).
Refer to section 3.1 for description of the pressure gradients.

Wavenumber-frequency spectrum

Figure 2.25 shows a direct e�ect of the pressure gradient on the wavenumber-frequency spectrum.
By looking at the representation in the kx � kz wavenumber plane for a given frequency, it can be
seen that the convective ridge has a greater extent alongkx for the adverse pressure cases and a
smaller one for the favorable pressure gradient case. This result has also been observed through
experimental measurements of the wall-pressure cross-spectra in wind tunnels by Salze et al.
(2014). This behaviour suggests that, for the adverse pressure gradient case, the wall-pressure
is related to events (or structures) which have a smaller extent in the streamwise direction, and
vice-versa for the favorable case.

2.3.3 Fluid-structure coupling

In this section, an overview of the theory behind 
uid-structure coupling is given by developing
the example of a 
at plate under the weak coupling assumption. The weak coupling assumption
assumes that the plate is linearly excited by the 
ow and that the in
uence of the motion of
the panel on the 
ow is neglected. In fact, very few experiments tackled this problem; Mercer
(1962) found no in
uence on the mean boundary layer quantities through measurements in a
water channel with a vibrating wall, Izzo (1969) measured enhanced streamwise velocity 
uc-
tuations at frequencies of vibration for which du� { � ¡ 3, where d is the amplitude of the wall
motion.
Moreover, it has been demonstrated (Junger and Feit, 1986; Timoshenko and Woinowsky-
Krieger, 1959) that curved plates may be approximated as vibrating 
at plates as long as the
condition

kbR "

4
?

12
a

R { h (2.38)

holds, where R is the radius of the curvature, h the thickness of the plate and kb the plate
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bending wavenumber. For a classical aircraft panel withR � 1:94m, h � 1:4mm, equation
(2.38) is satis�ed for the range of frequencies of the TBL excitation. The 
at plate is then a
simple example for 
uid-structure coupling for aircraft pa nels.
This being said, consider a simply supported thin elastic plate of length a and breath b set in an
in�nite rigid ba�e. The 
at plate has bending sti�ness B , membrane tensionsNx and Nz and
mass per unit areaM . The plate is bounded by a turbulent boundary layer 
ow of density and
sound speed� 0 and c0 on one side and a 
uid at rest characterized by� 1 and c1, as illustrated
in �gure 2.26. Under the weak coupling assumption, the driving pressures consist of the perfect
rigid wall boundary layer pressurept and the acoustic pressure 
uctuations induced by the plate
motion.

Figure 2.26 { Flat plate model for TBL-structure coupling.

Before going into the theoretical expressions, keep in mindthat in the following equations, i
refers to the index of the medium (0=turbulent boundary layer and 1=
uid at rest) whereas i
is the imaginay number de�ned by i2 � � 1.

Let St be the power input from the TBL, S0 and S1 the powers radiated respectively to the
exterior half space and interior half space andSd the dissipated power. Therefore, the power
balance writes:

St p ! q � S0 p ! q � S1 p ! q � Sd p ! q (2.39)

The quantity of interest here is the power input St p ! q . The harmonic normal velocity component
for the plate vp p x; z; ! q e� i!t

{ 2� satis�es

B r 4vp � Nx
B

2vp

B x2 � Nz
B

2vp

B z2 � M! 2vp � i! r pt � p0 � p1 s x � 0 (2.40)

The acoustic pressuresp1 and p0 obey the Helmholtz equation

p r 2
� k2

i q pi � 0 (2.41)

whereki � ! { ci is the acoustic wavenumber and are linked to the plate velocity via the boundary
condition

1
� i

B pi

B x
� i!v p i � 0; 1 (2.42)

which guarantees equal displacement for the 
uid and the plate in the normal direction. It
remains to include structural damping which shall be represented as a small imaginary compo-
nent:
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B � B r p 1 � i� s q Nx � Nxr p 1 � i� s q Nz � Nzr p 1 � i� s q (2.43)

The plate velocity can now be expressed as a sum of modal components:

vp p x; z; ! q �

¸

mn

vp;mn p ! q 	 mn p x; z q (2.44)

where 	 mn p x; z q is the mode shape for a simply supported plate, i.e.:

	 mn p x; z q �

2
?

ab
sin

� m�x
a

	

sin
� n�z

b

	

(2.45)

Let Smn p k q be the Fourier transform of the mode shape 	mn p y; zq . Therefore, the modal exci-
tation term � mn can be written as the weighted contributions of the wall-pressure wavenumber-
frequency spectrum � ppp k ; ! q over the spatial components of modep m; n q :

� mn �

1
p 2� q

2

»

8

�8

� pp p k ; ! q| Smn p k q|

2 d2k (2.46)

It is now possible to calculate the normalized boundary layer input power ~St p ! q such as:

~St p ! q � 2
¸

m;n

Rep dmn q

~� mn

| dmn |

2 (2.47a)

~� mn �

! 2u�

� 2
w �U 2

c
� mn (2.47b)

dmn � i
�

B r | k |

2
� Nxr k2

m � Nzr k2
n

M! 2 p 1 � i� s q � 1
�

� � f 0Z 0f
mnmn � � f 1Z 1f

mnmn (2.47c)

� f i �

� i ci

M!
i � 0; 1 (2.47d)

Z if
mnmn �

ki

2� 2

»

8

�8

S �

mn Smn

p k2
i � | k |

2
q

1{ 2
d2k i � 0; 1 (2.47e)

where ~� mn is the normalized modal excitation term and Z if
mnmn and dmn are dimensionless

impedances.S �

mn denotes the complex conjugate ofSmn .

It is important to keep in mind that the noise levels in an aero-moving vehicle are highly
linked to the degree of coupling, i.e. the degree of power reception by the structure. This was
found to be dependent on how well the structure �lters the excitation wavenumbers. Boundary
layer induced vibration is complicated because the wavenumber spectrum of wall-pressure is
not independent of the wavenumber: high pressure levels areconcentrated in a region near
the convective wavenumberkc � ! { Uc and the acoustic domain | k |   k0 � ! { c0 as shown in
�gures 2.21 and 2.22. In �gure 2.28p aq , the speed of free bending waves of the plate is greater
than the convective wavenumbercb ¡ Uc, so that the shape function and maximum of pressure
spectrum do not overlap and leads to low coupling. This situation is more common in underwater
applications. In the aeronautical �eld, the convective velocity increases and becomes greater than
the phase speed of bending waves so thatkm � kc and 
uid-structure coupling becomes e�cient,
as can be seen in �gure 2.28p bq . Finally, acoustic coincidence occurs when the convectionvelocity
approaches the speed of soundc0; this is shown in �gure 2.27.

36



2.3. TURBULENT BOUNDARY LAYER WALL-PRESSURE SPECTRUM

Figure 2.27 { � pp p k ; ! q spectra in the kx � ! plane at constant kz and bending wavenumber
for an in�nite plate (black line). The dashed circles show regions of acoustic and hydrodynamic
coincidence between the TBL excitation and the structure.

p aq

p bq

Figure 2.28 { � pp p k ; ! q spectra at constant frequency with (left) low coupling cb ¡ Uc and (right)
high coupling cb   Uc. Black line shows the bending wavenumber for an in�nite plate.
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2.3.4 Wall-pressure spectrum models

A compendium of the main existing models is given. The list isexhaustive enough to provide
a picture of the current state of the art concerning wall-pressure modeling and the underlying
parameters.

Auto-correlation empirical models

ESDU
ESDU (1975) is a power spectrum model based on analysis and curve �tting of 
ight measure-
ments.

Robertson
Robertson (1971) based his model on Lowson (1968) work and data from supersonic NASA-Ames
measurements.

� p ! q �

pms

! 0

�

1 �

�

!
! 0

	 0:9
� 0:2 (2.48)

with ! 0 � 0:5Ue { � � and using the de�nition of the mean square pressure 
uctuations from
Lowson (1968)

pms �

�

0:006q
1 � 0:14M 2


 2

where q � � 0U2
e { 2 is the dynamic pressure andM the Mach number.

Willmarth-Amiet-Roos
Amiet (1976) proposed the following expression for the pressure spectrum underneath a turbulent
boundary layer based on measurements by Willmarth and Roos (1965) over a 
at plate.

� p ! q �

q2� �

Ue

2 � 10� 5

1 � �! � 0:217�! 2
� 0:00562�! 4 (2.49)

valid for 0:1   �! � !� �

{ Ue   20 and whereq � � 0U2
e { 2 is the dynamic pressure.

Chase

� p ! q �

� 2
w

!

�

2�C M � � 3
p 1 � � 2� 2

q � 3�C T � � 1
p 1 � � � 2

qq

�

(2.50)

with

� �

hu �
Uc

� 2
� 1 �

�

b!�
Uc

� 2
	

Chase recommends to use the valuesh � 3, CM � 0:466{ h, CT � 0:014{ h and b � 0:75.

Chase-Howe
Howe (1998) builds a simple model based on the Chase (1980) model. This model does not
include the ! � 5 decay that is sometimes measured at high frequencies.
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� p ! q � 2
�

� �

Ue


 3
p !� w q

2

�

�

!� �

Ue

	 2
� 0:0144

� 3{ 2
(2.51)

Goody
The Goody (2004) model is a modi�ed Chase-Howe model based on19 di�erent experimental
studies which cover a range of Reynolds numbers 1400  Re�   23400. These modi�cations give
higher levels at low frequencies and make high frequencies decay more rapidly. The somewhat
Reynolds numberRT in the denominator ensures a control on the mid frequencies bandwidth.

� p ! q �

� 2
w �
Ue

3:0
�

!�
Ue

	 2

�

�

!�
Ue

	 0:75
� 0:5

� 3:7

�

�

1:1R � 0:57
T

�

!�
Ue

	� 7
(2.52)

with

RT �

u2
� �

Ue�

Smol'yakov
Smol'yakov (2000) built his model to take into account the fact that the single point pressure
spectra scales with di�erent variables depending on the frequency band.

� p ! q �

1:49� 10� 5 � 2
w �Re 2:74

� ! 2
�

u2
�

p 1 � 0:117Re0:44
� ! 1{ 2

� q ! �   ! �

� p ! q �

2:75� 2
w �

u2
� ! 1:11

�
r 1 � 0:82 expp� 0:51p

! �
! �

� 1qs ! �   ! �   0:2

� p ! q �

� 2
w �
u2

�
p 38:9e� 8:35! �

� 18:6e� 3:58! �
� 0:31e� 2:14! �

qr 1 � 0:82 expp� 0:51p

! �
! �

� 1qs ! � ¡ 0:2

where ! � �

!�
u2

�
and ! � � 49:35Re0:88

� .

E�mtsov 1
E�mtsov 1 model (E�mtsov, 1982) is based on multiple wall pressure measurements on aircraft
fuselage during 
ight tests. The results cover Mach and Reynolds numbers domains ranging
within 0 :41   M   2:1 and 0:5 � 108

  Rex   4:85 � 108.

� p ! q �

0:01� 2
w �

u�

�

1:0 � 0:02
�

!�
u �

	 2{ 3
� (2.53)

E�mtsov 2
E�mtsov 2 model (E�mtsov et al., 1999) is an updated model using data from TsAGI wind
tunnel and 
ight measurements on supersonic aircraft TU-144LL.

� p ! q �

2��u 3
� � 2

8

��
�

1 � 8� 3
�

!�
u �

	 2
� 1{ 3

� ��Re �

��

!�
u �

	

Re� 1
�

� 10{ 3
(2.54)
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where

Re� �

�u �
� w


 � 0:905
Re� 0 � 3000 Tw � T

8

�

1 � r � � 1
2 M 2

�

� �

�

1 �

�

Re� 0
Re�

	 3
� 1{ 3

r � 0:89

� � 0:01 � � 1:4
� w � �

8

�
8

� w

� Tw
T 8

� 

� w � � Tw

T
8

Rackl and Weston
Rackl and Weston (2005) used two functions to adjust E�mtsov 2 model in order to take into
account the broadband spectral peak that appears near Strouhal number Sh � 2�f � �

{ Ue � 0:6
and the lower high frequency negative slope compared to other models and measurements on
the TU-144LL test data.

factor 1 � 2:5 exp

�

�

�

ln
�

2�f � �

Ue




� ln p 0:6q


 2
�

factor 2 �

1
4

�

tanh
�

log10

�

f
1000





� 1
�

p M � 1:65q log10 p f q

In order to do this properly, one has to convert the E�mtsov model to decibles, then add the
Rackl and Weston factors, and �nally convert the corrected model back into the original units.

Laganelli
Laganelli and Wolfe (1993) model is derived from experimental studies from AFWAL Mach3
facility, Blake, Laganelli, Raman, Coe and Bull and 
uid dyn amics principles. This model is an
expansion of Robertson's model which takes into account compressibility e�ects.

� p ! q � 2:293
q2� �

Ue

10� 5F � 0:5733
C

1 � F 2:867
C

�

!� �

Ue

	 2 (2.55)

where FC is a transformation from compressible to incompressible 
ow states :

FC �

Cf i

Cf c

�

h �

he
� 0:5 �

hw

haw

�

0:5 � r

 � 1

2
M 2

e




� 0:22r

 � 1

2
M 2

e

with M e, r � 0:896 and
 � 1:4 being respectively the Mach number at the edge of the boundary
layer, the recovery factor and the ratio of constant heat capacity for air. hw { haw is the ratio of
enthalpy between normal and adiabatic wall conditions.

Goodwin
Goodwin (1994) built a model using 
ight test data on three supersonic aircraft: XB-70, A3J
and Concorde. However only a few amount of data collected on the two �rst aircraft was usable
and the measurement on Concorde seemed suspect due to the sensitivity of the Kulites to the

ushness of the sensor's surface relatively to the surrounding surface.

� p ! q �

2
�

�

prms

qe


 2 �

� w p Tw ; pw q

� e


 3 1:2 � 0:1
�

n � 7
7

� 0:45

1 �

�

1:2�!
Ue

	 2 (2.56)
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where

n � 4:0 � 2:5 log10

�

Rex
6:31� 105

	

p2
rms �

2
�

A
B

Ue
� � p 0q

A �

�

� e
� w p Tw ;pe q

	 3
�

� �

�

1 � 0:08
�

n � 7
7

� 0:45
	

B � 1:2

Kim-George (airfoil model)
Kim and George (2005) built a model by curve-�tting experimental data from Brooks and
Hodgson (1981) and Yu and Joshi (1979) on a NACA0012 airfoil.Since they were interested in
trailing edge noise for rotor application, the measurements they used were from a 
ow subjected
to an adverse pressure gradient.

� p ! q �

q2� �

2Ue

1:732 � 10� 3 �!
1 � 5:489�! � 36:7�! 2

� 0:1505�! 5 �!   0:06 (2.57a)

� p ! q �

q2� �

2Ue

1:4216 � 10� 3 �!
0:3261 � 4:1837�! � 22:818�! 2

� 0:0013�! 3
� 0:0028�! 5 0:06   �!   20 (2.57b)

where q � 1{ 2� 0U2
e is the dynamic pressure and �! � !� �

{ Ue.

Rozenberg
Rozenberg (2007) based his model on Goody's model with a Strouhal number including the
displacement thickness� � rather than the boundary layer thickness and �tting new para meters
based on six di�erent cases of adverse pressure gradient 
ows.

� p ! q �

� 2
max � �

Ue

�

2:82� 2
p 6:13� � 0:75

� F1 q

A 1
� �

4:2
�

�
�

�

� 1
�

~!

r 4:7~! 0:75
� F1 s

A 1
� r C3~! s

A 2
(2.58)

where the maximum shear stress along the wall-normal� max is preferred to the shear stress� w

as suggested by Simpson et al. (1987) and:

F1 � 4:76
�

1:4
�

� 0:75
r 0:375A1 � 1s A1 � 3:7 � 1:5� C

A2 � min
�

3; 19{

?

RT
�

� 7 � �

�
� �

C3 � 8:8R � 0:57
T ~! �

!� �

Ue

Catlett
Catlett et al. (2014) developed an empirical spectral modelfor wall-pressure beneath turbulent
boundary layer subjected to an adverse pressure gradient. This model is derived version of the
Goody model where the constants were calibrated based on wind tunnel measurements over
the trailing edge region of an airfoil model with three interchangeable, symmetric trailing edge
sections to obtain di�erent intensities for the pressure gradient.

� p ! q �

� 2
w �
Ue

a
�

!�
Ue

	 b

��

!�
Ue

	 c
� d

� e
�

�

fR g
T

�

!�
Ue

	� h (2.59)

41



CHAPTER 2. TURBULENT BOUNDARY LAYER : LITERATURE REVIEW

with the deviations from Goody's standard model parametersare given by:

ln p a � aG q � 4:735p � � Re0:35
� q

0:162
� 5:379 b � 2

c � cG � 2:210p � � q

0:559
� 0:069 d � dG � 0:072p � � Re0:35

� q

0:552
� 0:069

e � eG � � 0:138p � � Re0:35
� q

0:310
� 0:155 f � f G � 8:862p HRe0:1

� q

� 1:414
� 1:241

g � gG � 1:103p � � q

0:690
� 0:038 h � hG � 0:959p � � Re0:35

� q

0:052
� 0:207

where � � and � � are Clauser parameters de�ned respectively with the lengthscales� and �,
Re� is the Reynolds number based on � and H the shape factor. The length scale � is the
Rotta-Clauser parameter introduced by Rotta (1950) and Clauser (1954). These parameters are
de�ned by:

� � �

�
q

dp
dx � � �

�
q

dp
dx Re� �

� Ue
� H � � �

{ � � � � �

b

2
Cf

Klabes
Similarly to Catlett et al. (2014), Klabes et al. (2016) buil ds a variation of the Goody model
using 
ight measurement data over the fuselage of the DLR's (Deutsches Zentrum f•ur Luft- und
Raumfahrt) A320 Advanced Technology Research Aircraft (ATRA) at di�erent 
ight levels and
Mach numbers. Therefore he was able to reevaluate the constants and exponents of the Goody
model and proposed a new normalization based on the local value of the kinetic energy.

� p ! q �

� p �k q

2

Ue

a
�

!�
Ue

	 b

� �

!�
Ue

	 c
� d

� e
�

�

fR g
T

�

!�
Ue

	 � h (2.60)

a �

�

kmax
kref

	 

b � 0:5

c � 1:35 � 3� � d � Re0:174
� � 6:7

e � � 0:11428� � � � 1:55 f � 1:1

g � � 0:57 h � 7:0

with

� � �

�
q

dp
dx � � � �

� �
q

dp
dx

Re� � �

� � Ue
� � � � �

b

2
Cf


 � r� 592:71Cf � 1:74s Re0:01
� �

s

Hu
Hu and Herr (2016) measured wall-pressure 
uctuations beneath a zero, favorable and adverse
pressure gradient turbulent boundary layer in a wind tunnel. Various intensities of adverse
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pressure gradient were obtained using a rotated NACA 0012 airfoil with incidence over a 
at
plate. Results from one-point spectra measurements showedthat for both pressure gradient
cases, fairly good collapse for the spectral maxima is foundby scaling with outer variables
u� {p q2� q and !� { Ue. Once again, the Goody model was a good candidate with the newscaling
parameters:

� p ! q �

q2�
u�

ap !� { Ueq

b

rp !� q{ Ueq

c
� ds

e
r f p !� q{ Ues

g (2.61)

and the constants are adjusted based on the APG measurements:

a � p 81:004d � 2:154q � 10� 7 b � 1:0

c � 1:5h1:6 d � 10� 5:8� 10� 5Re� H � 0:35

e � 1:13{ h0:6 f � 7:645Re� 0:411
�

g � 6 h � 1:169 lnp H q � 0:642

where H is the shape factor

Cross-correlation empirical models

Corcos
Corcos (1964) assumed that the loss of coherence between twospatially separated points is
equal to the loss of coherence in the streamwise direction multiplied by the loss of coherence in
the spanwise direction. From a curve �t for the narrow-band spatial correlation between wall
pressures, Corcos obtained:

	 p x; z; ! q � � p ! q exp p ik cx � | � !x x | � | � !z z |q

Corcos model in the wavenumber-frequency domain is found byapplying the Fourier transform:

	 p kx ; kz; ! q � � p ! q 	 p kx q 	 p kz q �

2� p ! q

�
� !x � !z

p � 2
!x � p kx � kc q

2
q p � 2

!z � k2
z q

Mellen (1990) gives a slightly modi�ed version of the previous expression by dividing it by the
area 2� :

	 p kx ; kz ; ! q � � p ! q 	 p kx q 	 p kz q �

� p ! q

� 2

� !x � !z

p � 2
!x � p kx � kc q

2
q p � 2

!z � k2
z q

with:

� !x � kc� x �

!
Uc

� x � !z � kc� z �

!
Uc

� z

Graham (1997) normalizes the Corcos model:

� p kx ; kz ; ! q � 	 p kx ; kz; ! q

p 2� q

2! 2

U2
c � p ! q

(2.62)

and gives the following expression:

� p kx ; kz ; ! q �

4� x � z
�

� 2
z �

� Uckz
!

� 2
� �

� 2
x �

� Uckx
! � 1

� 2
� (2.63)
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where � x � 0:10 and � z � 0:77 based on measurement by Willmarth and Woolridge (1962).
Blake (1986) recommends� x � 0:116 and � z � 0:70 for smooth walls. More recently, authors
have observed that the correlation length coe�cients are not constant over the entire frequency
range (Cohen, 2015; E�mtsov, 1982; Finnveden et al., 2005; Hu and Herr, 2016).

Cockburn-Jolly
Cockburn and Jolly (1968) introduced a factor � � � to the Corcos model in order to take into
account the limited thickness of the boundary layer:

� � �

�

a

1 � p 3kc� �

q

� 2 (2.64)

After applying the Graham normalization, the Cockburn-Jol ly model is given by:

� p kx ; kz; ! q �

� x � z� � �

�

� 2
z� 2

� �

� p kx � kc q

2
� �

� 2
z� 2

� �

� k2
z

� (2.65)

E�mtsov
E�mtsov cross-correlation model (E�mtsov, 1982) is based on Corcos model but uses di�erent
correlation lengths � x and � z introducing boundary layer thickness dependence. E�mtsov's
results are derived from an extensive series of measurements on aircraft, over a Mach number
range 0:41   M   2:1.

� x
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�
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� z

�
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 2

� a2
7

�

� 1{ 2

M
8

¡ 0:9 (2.66c)

where the Strouhal number is de�ned asSh � !� { u� and:

a1 � 0:1 a2 � 72:8

a3 � 1:54 a4 � 0:77

a5 � 548 a6 � 13:5 a7 � 5:66

Chase
Chase (1980) developed his �rst model which gives better prediction for low wavenumbers com-
pared to the Corcos model. Hereafter Graham's form of Chase's most popular wavenumber-
frequency model is presented.

� p kx ; kz; ! q �

p 2� q

3� 2! 2u2
�

U2
c � p ! q

�

CM k2
x

�

K 2
�

� p bM � q

� 2
� 5{ 2

�

CT | k |

2
|

�

K 2
�

� p bT � q

� 2
� 5{ 2

�

(2.67)
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with:

K 2
�

�

p ! � Uckx q

2
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�
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p 2� q

2h� 2u4
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� 2

T � 1 �

�

Uc
bT !�

	 2
� �

hu �
Uc

CM � 0:0745

CT � 0:0475 bM � 0:756 bT � 0:378 h � 3:0

Chase attempted an extension of his model to the lower wavenumber regions in order to take
into account the acoustic domain (Chase, 1987). A modi�ed version of the Chase model was
developed by Finnveden et al. (2005) by studying the vibration response of a structure excited
by a turbulent boundary layer.

Smol'yakov and Tkachenko
Smol'Yakov et al. (1991) based their model on measured spatial correlations and �tted expo-
nential curves to their experimental results.

	 p kx ; kz ; ! q � 0:974A p ! q h p ! qr F p k ; ! q � � F p k ; ! qs (2.68)
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Mellen
Mellen (1990) built an elliptical model for wall pressure cross-spectrum derived from the Corcos
model. Hereafter is the expression of the model as given by Miller (2002).

� p kx ; kz ; ! q �

2� p � x � z q

2k3
c

rp � x � zkc q

2
� p � xkz q

2
� � 2

z p kx � kc q

2
s

3{ 2
(2.69)

with � x � 0:10 and � z � 0:77.

Statistical models

In statistical models, the focus is the modelling of turbulent velocity cross-spectra across the
TBL. Wall-pressure 
uctuations are then computed from the velocity 
uctuations through a
Poisson equation in the incompressible limit, or a wave equation to include the acoustic part.
Panton and Linebarger
Panton and Linebarger (1974) reconstruct the 
ow direction wavenumber spectrum of wall-
pressure 
uctuations by solving the 
uctuating pressure Poisson equation. A law of the wall
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plus Coles (1956) wake function represents the mean velocity pro�le and a scale-anisotropic
model was built (based on a curve-�tting process from Grant (1958) zero-pressure gradient
boundary layer) to retrieve the normal velocity correlation R22. They were able to compute
wavenumber spectra for various Reynolds numbers and adverse pressure gradients.

Peltier and Hambric
Peltier and Hambric (2007) built a statistical model based on data from Reynolds-Averaged
Navier-Stokes (RANS) solutions. The authors use Gavin (2002) Simpli�ed Anisotropic Model
(SAM) to reproduce the velocity correlations needed for the
uctuating pressure Poisson equa-
tion. Tuning the parameters of the velocity correlation model, Peltier and Hambric (2007) could
predict wall-pressure spectrum for favorable, zero and adverse pressure gradient 
ows.

Monte
Monte (2013) studied the surface pressure 
uctuations for cylinders with a high length to radius
ration. This work can �nd applications in the �eld of linear u nderwater sonar antennas where
the hydrodynamic noise due to the boundary layer developingover the antenna is a major issue.
Here again the pressure is obtained by solving the Poisson equation for an incompressible 
ow.
The mean 
ow, the Reynolds stress tensor and the kinetic energy for an axisymmetric 
ow over
a cylinder are obtained from a RANS calculation. The velocity correlations were obtained using
the elliptic model of He and Zhang (2006) adapted to curved geometries.

Stochastic models

Another way of obtaining the pressure spectrum is to developa model based on a synthesized
turbulent velocity �eld. A stochastic model is then obtaine d by using this spatio-temporal real-
ization of the TBL velocity �eld as an input for the Poisson equation for instance.

Ahn's horseshoe vortex model
Ahn et al. (2010) built a stochastic model where horseshoe/hairpin-like vortices are subjected
to a mean 
ow to reproduce a standard instantaneous turbulent velocity �eld. As for the statis-
tical models, a Poisson equation is solved in order to retrieve the induced pressure �eld at the
wall. One is then able to compute the wavenumber wall-pressure spectrum using a Fast Fourier
Transform (FFT) procedure. This model will be detailed in section 4.1.1.

Dhanak's streamwise vortex model
Dhanak et al. (1997) developed a coherent structure model topredict the wall-pressure 
uctu-
ations induced by the vortices in the near-wall region. Comparing the model predictions with
exact solutions of the Navier-Stockes equations, they determined that the best candidates were
pairs of counter-rotating streamwise vortices. The model could predict the high frequency and
high spanwise wavenumber range quite well, as well as the probability density function of the
surface pressure.

Hu model for frequency-wavenumber spectrum
Hu et al. (2016) developed a model for wall-pressure spectrum based on the Fast Random
Particle-Mesh Method (FRPM) introduced by Ewert et al. (201 1). The principle of this method
is to generate a synthetic turbulent velocity �eld by using averaged turbulence statistics and
mean 
ow description from RANS computations. This is then fed into the Poisson equation for
pressure where both the mean-shear and turbulence-turbulence terms are considered. Compar-
ing their results with experimental results for a ZPG and APG 
ow, they were able to obtain
satisfactory results for the one-point spectra at low frequencies but faced considerable attenu-
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ation in the high frequency range since the FRPM was unable toreconstruct the correct levels
of kinetic energy in the near-wall region. The cross spectraand the convective velocities were
well determined and consistent with the measurements.
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Chapter 3

Analysis of turbulent structures in

ows subjected to zero and non-zero
pressure gradients

3.1 Numerical database

Direct noise calculations consist in computing both the turbulent aerodynamic �eld and the as-
sociated acoustic 
uctuations by solving the compressible
ow equations (Gloerfelt and Berland,
2013). Such simulations are carried out for turbulent boundary layers at Mach 0.5 subjected
to four di�erent pressure gradients: a strong adverse pressure gradient (APGs), a weak adverse
pressure gradient (APGw), a zero pressure gradient (ZPG) and a favorable pressure gradient
(FPG). Inclined plates with di�erent slopes are used to set the pressure gradients, which requires
a curvilinear version of the 
ow solver as described hereafter.

3.1.1 Equations and numerical methods

The governing equations are the compressible Navier-Stokes equations written for a curvilinear
domain by using a coordinate transform. The physical space (x1,x2) is mapped into a Cartesian
regular computational space (� 1,� 2), and the third direction, which corresponds to the spanwise
direction z, is left unchanged. By noting � the density, ui the velocity components (u3 � w
in the following) and E the total speci�c energy, the set of equations for the unknown vector
U � p �; �u 1; �u 2; �u 3; �E q

T writes:

B U
B t

�

B F c

B � 1
�

B G c

B � 2
�

B H
B z

� 0 (3.1)

where the curvilinear 
uxes are de�ned by:
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 (3.2)

with J � x1;� 1 x2;� 2 � x1;� 2 x2;� 1 the Jacobian of the coordinate transformation. The 
uxes
F � Fe � F v , G � G e � G v and H � H e � H v are the sum of the inviscid (subscripte) and
visco-thermal 
uxes (subscript v ) given by:
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Fe �

�

�u 1; �u 2
1 � p; �u 1u2; �u 1u3; p �E � pq u1

� T
(3.3a)

G e �

�

�u 2; �u 1u2; �u 2
2 � p; �u 2u3; p �E � pq u2

� T
(3.3b)

H e �

�

�u 3; �u 1u3; �u 2u3; �u 2
3 � p; p �E � pq u3

� T
(3.3c)

F v � p 0; � 11; � 12; � 13; u1� 11 � u2� 12 � u3� 13 � q1 q

T (3.3d)

G v � p 0; � 12; � 22; � 23; u1� 12 � u2� 22 � u3� 23 � q2 q

T (3.3e)

H v � p 0; � 13; � 23; � 33; u1� 13 � u2� 23 � u3� 33 � q3 q

T (3.3f)

The speci�c total energy is E � p{rp 
 � 1q � s � u2
i { 2 for an ideal gas satisfyingp � �rT ,

wherep is the pressure,T the temperature, r the gas constant, and
 the ratio of speci�c heats.
The viscous stress tensor� ij is modelled as a Newtonian 
uid � ij � 2�S ij � p 2{ 3q �S kk � ij , where
Sij � p ui;j � uj;i q{ 2 is the strain rate tensor and � is the dynamic molecular viscosity. The
dynamic viscosity is approximated with Sutherland's law and the heat 
ux components qi are
modelled with Fourier's law as in Gloerfelt and Berland (2013).

Dispersion-relation preserving �nite di�erences on an eleven-point stencil optimized by Bogey
and Bailly (2004) are used for the derivatives of the convective 
uxes, whereas standard fourth-
order �nite di�erences are used for the viscous-thermal 
uxes. The equations are integrated in
time using an explicit low-storage six-step Runge-Kutta scheme optimized in the wavenumber
space by Bogey and Bailly (2004). At the last substep, a selective �ltering on an eleven-point
stencil (Bogey and Bailly, 2004) is applied in each direction with an amplitude of 0.2 to eliminate
grid-to-grid unresolved oscillations. Since large enoughcomputational domains are required for
the wavenumber-frequency analysis, the grid resolutions correspond to wall-resolved large-eddy
simulations (LES). The e�ects of unresolved scales are takenimplicitly into account by the
regularization term provided by the selective �lter. The e� ciency of this LES strategy has been
previously demonstrated for TBL 
ows (Aubard et al., 2013; Gloerfelt and Berland, 2013).

Periodic boundary conditions are used in the spanwise direction. On the solid wall, the no-
slip conditions ui � 0 are imposed, with B p{B n � 0 for the inviscid part, where n is the direction
normal to the solid surface. The �nite-di�erence stencil for the convective terms is progressively
reduced down to the second order. At the wall, the temperature is calculated with the adiabatic
condition, and the density can be deduced using the ideal gaslaw. The viscous stress terms are
evaluated from the interior points by using fourth-order backward di�erences.

Since the weak acoustic radiation from the TBLs is directly computed in the simulations,
great care is required to select appropriate boundary conditions. At the upstream and upper
boundaries of the computational domain, the radiation boundary conditions of Tam and Dong
(1996), using a far-�eld solution of the sound waves, are applied. A large sponge zone (Gloerfelt
and Lafon, 2008) is furthermore added at the downstream end of the domain so that unhindered
passage of aerodynamic perturbations is possible without the generation of spurious acoustic
waves.

A critical point is to design a silent in
ow technique to intr oduce perturbations necessary to
trigger laminar-to-turbulent transition of the boundary l ayer 
ows, without introducing spurious
noise. To that aim, a strategy based on a controlled transition has been developed in Gloerfelt
and Robinet (2013). A preliminary steady two-dimensional simulation with the same code is
performed for the 
ow over a backward-facing step (see �gure3.1). At the inlet, a laminar Blasius
boundary layer with a Reynolds number based on displacementthicknessRe� �

in
� 400 is imposed

ahead of the backward-facing step, whose heighth yields a Reynolds numberReh � 462. A base

ow is de�ned by extracting 
ow variables in a vertical plane located few points downstream
of the step and a compressible linear stability analysis is conducted to �nd a resonant triad of
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ZERO AND NON-ZERO PRESSURE GRADIENTS

Figure 3.1 { Sketch of the computational domain for the non-zero-pressure-gradient computa-
tions - Mean streamwise velocity �u and streamlines from a 2D simulation with the backward-
facing step of height h. The mean 
ow a few points after the step is used as inlet for the 3D
domain - from Gloerfelt and Margnat (2014).

Figure 3.2 { Top view close to the wall (y �

� 25) of the streamwise velocity for the ZPG case
showing the transition zone. A fully turbulent state is reached after the solid line for x { h � 900.

unstable modes. Using the inlet freestream velocityU
8

and step height h as reference velocity
and length respectively, the triad is made up of one two-dimensional wave of frequency 0:2U

8

{ h
and two oblique subharmonic waves of frequency 0:1U

8

{ h with opposite phase angles satisfying
the resonant condition of Craik (1971). These values are close to those used in the work of
Craik (1971) but here the velocity pro�le exhibits an in
exi on point, leading to unstable modes
with a greater ampli�cation factor, which is favorable for d eveloping instability waves from a
low initial amplitude. The triad of unstable modes is superimposed on the base 
ow at the inlet
of the three-dimensional simulations with equal amplitudeof 6 � 10� 4U

8

{ h for the fundamental
and subharmonic waves. Details on the characteristics (frequency, wavenumber, amplitude) of
the resonant triad are given in Gloerfelt and Robinet (2013), where it has been checked that
the transition toward a turbulent state is smooth and acoustically quiet. Figure 3.2 illustrates
the transition pattern for the ZPG case. A fully turbulent st ate with no trace of the initial
disturbances is reached forx { h Á 900 and the zone of interest for the wall-pressure analyses
starts dowstream of this limit. As a consequence, details ofthe transition are not in
uential for
the present study. The important point is that the strategy a dopted to trigger turbulence is
su�ciently silent so that the direct acoustic radiation can be investigated (Cohen, 2015; Cohen
and Gloerfelt, 2015; Gloerfelt and Margnat, 2014).

3.1.2 Grid design

The data analyzed in the paper are obtained from a series of simulations, whose main parameters
are summarized in table 3.2. Four values of the pressure gradient are considered by keeping a
horizontal freestream and changing the angle� of the plate.

Side views of the grids are presented in �gure 3.3. The ZPG mesh is the same as the
simulations of Gloerfelt and Margnat (2014); Gloerfelt and Robinet (2013) and is discretized
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with 1440 � 400 � 400 points. Grid points are equally spaced in the spanwise direction and are
clustered near the wall using a geometric progression of 2% for the 25 �rst points, then with
a rate of 2.5% for the following 155 points. The distribution is then uniform for the next 120
points and a stretching is �nally applied to the last 100 points up to the top boundary (visible in
�gure 3.3 p cq for y2 { h Á 600). In the streamwise direction, the grid points are clustered near the
inlet over a range of 200 points, so that small grid sizes are used for properly entering unstables
modes. The grid spacing is then regular up to the exit zone where a grid stretching with a
geometric progression of 3% is applied over the last 100 points to create a large sponge zone
where the 
ow variables are progressively �ltered with a Laplacian operator at each time step
to minimize numerical re
ections from the outlet.

� � x � � y �

w � y �

e � z � Nx1 Nx2 Nx3

APGs -11.49� 27.5 0.7 20.2 8.4 1600 400 400
APGw -6.05� 32.3 0.8 23.7 9.9 1600 400 400
ZPG 0� 37.8 1.0 27.7 12.6 1440 400 400
FPG 10.19� 46.0 1.2 33.7 14.2 1600 400 400

Table 3.1 { Summary of meshes parameters for the simulated cases at Mach 0.5 with pressure
gradients. The two values for � y � indicate the mesh spacing at the wall (subscriptw) and at
the boundary layer edge (subscripte).

For the non-zero pressure-gradient cases, a curvilinear domain of 1600� 400 points is de�ned
and extruded in the third direction on nz � 400 points. Along the x1-direction parallel to the
external freestream, a �rst region of horizontal plate is de�ned in order to have the same inlet
condition as the ZPG case. Note that the grid spacing is also re�ned on the 150 �rst points
near the inlet boundary and is maintained constant for the 200 next points with a spacing
slightly greater than in the zone of interest above the ramp. This second region corresponds
to an inclined plate with an angle � from the horizontal, which is negative for the adverse-
pressure-gradient cases and positive for the favorable-pressure-gradient cases. The values of�
are reported in table 3.1 and are chosen to set the strength ofthe pressure gradient. The points
are equally spaced on the ramp region with the nominal streamwise spacing. The third part of
the mesh represents the exit zone where a horizontal plate isrecovered with a severe stretching
on the last 100 points. Note that the two transitions betweenthe ramp and the 
at portions are
progressive and corresponds to a low radius of curvature seton approximately 30 grid points.
The distribution of points in the wall-normal direction is t he same as the ZPG case and the
mesh is also regular in the spanwise direction.

The velocity �elds and wall-pressure analyses are restricted to a zone of interest where a
nearly equilibrium TBL 
ow is obtained. This area is de�ned b etween curvilinear absissae
xmin and xmax and is delimited with thick dashed lines in �gure 3.3. These zones of interest
for each cases exclude the transitional development zone, the exit sponge zone and the upper
bu�er region. For the non-zero pressure-gradient cases, thedomain of interest in the p x1; x2 q -
plane in which the plate is inclined is transformed into a Cartesian p x; y q -plane where the plate
is horizontal using a rotation and an interpolation of the variables. In the subsequent 
ow
analyses,u � cosp � q u1 � sinp � q u2 and v � � sinp � q u1 � cosp � q u2 are the x-component parallel
to the wall and y-component normal to the wall of the velocity respectively, where u1; u2 are
the components de�ned in the p x1; x2 q -plane and used in the governing equations (3.1). For the
analyses of the database, the coordinate systemp x; y; z q is used and the velocity components
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Figure 3.3 { Computation domain in the streamwise/wall-nor mal plane p x1; x2 q : strong adverse
APGs p aq , weak adverse APGw p bq , zero gradient ZPG p cq , and favorable FPG p dq . The zone
of interest for the velocity and wall-pressure analyses is delimited with the dashed rectangle.
Parameter h is the height of the backward-facing step located upstream of the domain involved
in the turbulence transition process.
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are denoted p u; v; w q . It is noteworthy that the grid spacing in this region is regular in the
x- and z-directions, and that the physical values of the spacings �x, � z and � ymin are the
same for all simulations. They are given in table 3.1 in termsof wall units evaluated at the
middle of the domain of interest (based on the friction velocity u� and the viscous length scale
� v � � w { u� ). The subscript w is used to denote quantities evaluated at the wall and the subscript
e quantities evaluated at the edge of the boundary layer. In the tables 3.3 and 3.4 the quantities
representative of the di�erent con�gurations are taken at th e middle of the domain of interest
p xmax � xmin q{ 2, which are very close to the values averaged overr xmin ; xmax s .

The time step for all simulations is � t � CFL� ymin {p U
8

� c
8

q � 0:025h { U
8

, corre-
sponding to CFL=1.5. The total simulation time is roughly th e same for the di�erent cases,
t � 20 000h { U

8

. Statistical quantities are averaged over time and the spanwise direction. Wall-
pressure planes are stored every 30�t during the last 240 000 iterations, corresponding to 8000
samples and a non-dimensional time of approximately 6 000h { U

8

or 4:9p xmax � xmin q{ U
8

.

3.1.3 Flow parameters

Computations are performed for a Mach 0.5 turbulent boundary layer subjected to zero (ZPG),
adverse (APGw and APGs) and favorable (FPG) pressure gradients. The intensity of the
pressure gradient is characterized by Clauser (1954) parameter � C de�ned as:

� C �

� �

� w

dpe

dx
(3.4)

where � � , � w and dp{ dx are respectively the TBL displacement thickness, the shearstress at the
wall and the streamwise pressure gradient.
All parameters given in this section are measured at the middle of the zone of interest used for
the study, which corresponds to a zone of 720 (ZPG) to 800 (pressure gradient cases) points in
the streamwise direction centered around the middle of the inclined planes.
The 0.5 Mach number is lower than what is encountered in the �eld of aeronautics where the
Mach numbers vary around Mach 0.8 in cruise 
ight conditions. It is believed that Mach
number and compressibility (for 
ows ranging from Mach 0.5 to 0.9) have very low e�ect on
the structure of turbulence as noticed by Gloerfelt and Margnat (2014). Calculations for the
zero-pressure-gradient case were performed by Gloerfelt and Margnat (2014) and the non-zero-
pressure-gradient cases were computed by Cohen and Gloerfelt (2015).
The general parameters of the 
uid and the turbulent boundary layer 
ows are given in Tables
3.2 and 3.3 respectively.

M
8

p
8

(Pa) T
8

(K) �
8

(m2.s� 1)

0.5 101300 298.15 1.5 x 10� 5

Table 3.2 { Free 
ow properties for the LES computation

One can notice the same value ofRe� for both ZPG and FPG cases. This is due to the
fact that the boundary layers thickens at the starting curvature of the inclined plane for the
FPG case. Therefore, the initial TBL thickness � 0 at the beginning of the inclined plane is
greater than that of the ZPG case. Finally, table 3.4 provides the parameters characterizing the
pressure gradient for each 
ow, i.e the inclination angle� of the wall, the Clauser parameter� C ,
Clauser's defect shape factorG, the acceleration/deceleration parameterK , the viscous-scaled
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CHAPTER 3. ANALYSIS OF TURBULENT STRUCTURES IN FLOWS SUBJEC TED TO
ZERO AND NON-ZERO PRESSURE GRADIENTS

� ref � 103
p m q � �

ref � 104
p m q � ref � 104

p m q Re� ref Re�

ref Ueref p m { sq u� ref p m { sq

APGs 1.83 4.53 2.77 3125 690 159 5.23
APGw 1.57 3.22 2.10 2462 694 166 6.09
ZPG 1.13 1.98 1.35 1693 610 173 7.17
FPG 1.24 1.62 1.17 1618 783 195 8.42

Table 3.3 { Boundary layer properties for the four pressure gradient cases. Subscriptref denotes
values taken at the middle of the domain of interest.

x

y

z

U
8

Figure 3.4 { Sketch of the computational setup and of the coordinate system (�gure not to scale)
for the 3D database. A small step lying in the spanwise direction is introduced downstream of
the inlet boundary condition in order to ignite the transiti on to turbulence of the boundary layer

ow - after Gloerfelt and Berland (2013)

pressure gradient � p, Castillo and George (2001) parameter �, the shape factorH and Coles
(1956) wake parameter �.

� � C G K � 107 � p � 103 � H �

APGs -11.49� 1.6 11.5 -3.4 9.8 0.24 1.63 1.8
APGw -6.05� 0.51 9.2 -1.7 3.8 0.18 1.53 1.1
ZPG 0� 0 7.4 0 0 0 1.47 0.6
FPG 10.19� -0.36 6.2 2.4 -3.8 -0.92 1.39 0.17

Table 3.4 { Parameters quantifying the pressure gradient for the di�erent cases (� is the angle
of the slanted wall used to impose a prescribed pressure gradient.

3D database

For the four other databases mentioned above, only two-dimensional planes were able to be
saved due to data storage issues. Nonetheless, there is one three-dimensional database (ZPG3D)
available from a previous computation of a Mach 0.5 zero pressure gradient turbulent boundary
layer over a 
at plate (see Gloerfelt and Berland (2013)). The free 
ow parameters are similar
to those given in table 3.2. The grid and boundary layer parameters are given in tables 3.5 and
3.6 and a sketch of the computational domain is provided in �gure 3.4. The main di�erence
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3.1. NUMERICAL DATABASE

with the 2D databases is that the step used for the laminar-turbulent transition is within the
computation domain. However, this di�erence has no impact on the fully turbulent velocity
�eld.

� x � � y �

w � y �

e � z � Nx1 Nx2 Nx3

ZPG3D 37 0.98 27 14.7 1372 300 131

Table 3.5 { Summary of mesh parameters for the Mach 0.5 ZPG 3D database. The two values
for � y � indicate the mesh spacing at the wall (subscriptw) and at the boundary layer edge
(subscript e).

� ref � 103
p m q � �

ref � 104
p m q � ref � 104

p m q Re� ref Re�

ref Ueref p m { sq u� ref p m { sq

ZPG3D 1.13 1.97 1.36 1500 556 173 7.38

Table 3.6 { Boundary layer properties for the zero pressure gradient 3D database. Subscript
ref denotes values taken at the middle of the domain of interest.

3.1.4 Available database summary

For the 2D databases, the following data is available:

ˆ 8000 timesteps

ˆ the three components of the velocity �eld p u; v; w q

ˆ 8 regularly spaced streamwise/wall-normal p x; y q planes spanning the entire spanwise ex-
tent of the computational domain

ˆ 11 wall-parallel p x; z q planes spanning the entire TBL thickness

ˆ wall-pressure �eld pp x; z; t q

ˆ wall-pressure frequency-wavenumber spectra �ppp kx ; kz; ! q .

For the ZPG3D database, the following data is available for the four pressure gradient cases:

ˆ 4500 timesteps

ˆ the three components of the velocity �eld p u; v; w q on 3D volume.

Table 3.7 summarizes which database is used for each step of the present study.
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CHAPTER 3. ANALYSIS OF TURBULENT STRUCTURES IN FLOWS SUBJEC TED TO
ZERO AND NON-ZERO PRESSURE GRADIENTS

FPG ZPG APGw APGs ZPG3D
Velocity �eld 3D analysis X
Velocity �eld 2D analysis X X X X
Pressure spectra analysis X X X X

Table 3.7 { Use of the di�erent databases for each step of the analysis.

3.1.5 Mean pro�les and equilibrium state validation

The mean velocity pro�les as well as the turbulent intensity urms are shown in �gure 2.6.
Concerning equilibrium of the di�erent 
ows, the streamwise evolutions of the pressure gradient
parameters mentioned in section 2.1.3 are plotted in �gure 3.5. A constant character is more or
less observed in the region of interest, however discrepancies are visible for the APGs case at
the end of the domain.
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Figure 3.5 { p aq Clauser pressure gradient parameter� C , p bq acceleration parameterK and p cq

viscous scaled pressure parameter �p for FPG ( ), APGw ( ) and APGs ( ) -
after Cohen (2015).

3.2 Instantaneous velocity �elds analysis

In this part, instantaneous views of the 
ow �eld are presented. Velocity vector �elds visualiza-
tion as well as coherent structures identi�cation are performed. The 3D structures identi�cation
is based on the old zero pressure gradient computation referred to as ZPG3D (Gloerfelt and
Berland, 2013) since this is the only three-dimensional database available.
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3.2. INSTANTANEOUS VELOCITY FIELDS ANALYSIS
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Figure 3.6 { Instantaneous streamwise velocityu in the streamwise/wall-normal plane for APGs
p aq , APGw p bq , ZPG p cq and FPG p dq . xmin and xmax denote the streamwise boundaries of
the zone of interest. Black line corresponds tou � 140m/s and highlights thickening of the
boundary layer from FPG to APGs - scale is from 10 m/s (blue) to 260 m/s (red) - Provided
by X. Gloerfelt.

3.2.1 Analysis and identi�cation tools in two-dimensional planes

As it has been said in section 3.1.4, only two-dimensional planes were available due to storage
issues. For this reason, a method is required to identify andanalyse three-dimensional coherent
structures out of two-dimensional velocity �elds.
The hairpin-like vortex is the main structures in which we are interested. Mayam (2009) and
Adrian et al. (2000) suggest identifying hairpin heads in streamwise/wall-normal planes by
viewing the velocity-vector �eld in a reference frame moving with the structure. In this case,
the following characteristics (illustrated in �gure 3.7) a re the signature of a hairpin-like vortex:

ˆ a circular streamlines pattern is visible in the velocity-vector �eld rotating in the same
direction as the mean velocity circulation (hairpin head)

ˆ a second quadrantQ2 region p u 1

  0; v 1

¡ 0q located beneath and upstream of the head

ˆ a fourth quadrant Q4 region p u 1

¡ 0; v 1

  0q facing the Q2 region, inducing a stagnation
point at the frontier of the two events

ˆ an inclined shear layer (ISL) between theQ2 and Q4 regions.

This method was applied to instantaneous velocity vector �elds for the four pressure gradient
cases as can be seen in �gure 3.8. In this �gure, the vector �elds are represented in a reference
frame moving at Uc � 0:72Ue and the arrows and circles indicate the loci of stagnation points
and hairpin heads. Multiple hairpins are aligned in the streamwise direction along a line with
varying slope. This particular organization is the signature of hairpin packets.
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