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Chapter 1

Introduction

1.1 Introduction

This thesis focuses on the coherent structures in turbulent boundary layers subjected to pressure
gradients and their role in aircraft structure excitation due to wall-pressure fluctuations. Flow-
generated noise has become a non-negligible technological issue for the transport industry since
great efforts have been made in reducing the propulsion generated noise.
This chapter aims at describing the context and motivations of this study by focusing on the flow-
generated noise mechanisms. Due to the smooth curvature of aircraft fuselage, the importance
of developing a precise knowledge of the turbulent properties of the flow when subjected to
pressure gradients will be highlighted. The objectives and outline of this study will also be
presented hereafter.

1.2 Context and motivations

Since the engine noise levels have considerably reduced since the past 60 years, the turbulent
boundary layer (TBL) has become one of the main sources of aircraft interior noise over a
large frequency range (see figure 1.1), driving insulation concept design in the cabin and flight
deck area. As a driver of the crew and passenger comfort it is a subject of interest since years
and several contributions on flight tests data and/or modeling approaches can be found in the
literature (Bhat, 1971; Collery, 2010; Collery et al., 2013; Rackl and Weston, 2005; Rizzi et al.,
2000). In fact, the pressure fluctuations within a turbulent boundary layer are responsible
for structural vibrations (Blake, 1986) that are transmitted through the structure and radiate
into the vehicle as can be seen in the scheme in figure 1.2. The aim of this research field has
always been to increase confidence in excitation models to improve design concepts for aircraft
insulation. Nevertheless, these models are usually not adapted to characterize pressure gradient
areas, such as the flight deck and the wing/fuselage junction, and need strong improvements.
Nowadays, with improvements of numerical capabilities, investigations of turbulent structures
properties and their organization in the vicinity of walls at representative Mach numbers are
accessible.

In fact, the pressure fluctuations which are responsible for the excitation of the aircraft’s
cockpit and fuselage panels are the imprint of the turbulent motions living within the flow.
Therefore it is crucial to investigate these coherent structures in order to understand the mech-
anism of noise generation from flow vibrating panels and build more reliable noise prediction
tools.
Many authors have worked on turbulent boundary layers subjected to zero and non-zero pressure
gradients (Bradshaw, 1967b; Burton, 1973; Clauser, 1954; Dixit and Ramesh, 2010; Hu and Herr,
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CHAPTER 1. INTRODUCTION

Figure 1.1 – Sound pressure levels and noise sources in an A380 cockpit - Airbus document.

2016; Kline et al., 1967; Lee and Sung, 2009; McGrath and Simpson, 1988; Salze et al., 2014;
Schloemer, 1967; Spalart and Watmuff, 1993). Apart from the canonical zero pressure gradient
flow which gathers the majority of the research, focus has been put on adverse pressure gradient
flows, since this type of pressure gradient can be critical in several engineering applications such
as separation of the turbulent boundary layer over the wing when the critical angle of attack is
reached or pumping effect in turbomachinery. Favorable pressure gradient turbulent boundary
layers would come in last position in terms of amount of research papers.
Nevertheless, even though turbulent boundary layer flows have gathered the interest of many
authors, there is little information concerning the coherent turbulent structures when the flow
is subjected to pressure gradients. It is well known that the turbulent eddies play an important
role in turbulence production and mass and momentum transport, but very little is known on
their contribution to wall-pressure fluctuations. In this study, an attempt to correlate these
structures to the wall-pressure fluctuations is undergone.

Figure 1.2 – Flow-generated-noise mechanism.

1.3 Objectives

Aircraft manufacturers show increasing interest in noise generated by the turbulent boundary
layer flow over the fuselage and cockpit. The noise predicting tools which are used in industry
today rely on analytic wall-pressure models which lack precision especially in areas where the
flow is subjected to pressure gradients.

The aims of the thesis are

� From a phenomenological point of view, to understand the effect of pressure gradient on
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the turbulent boundary layer excitation by investigating the turbulent coherent structures
existing within the flow. Many authors have showed that the hairpin vortex, which refers
to hairpin, cane, horseshoe or omega vortex, is one of the most frequently encountered
coherent structure in the turbulent boundary layer flow and it is believed that this type
of vortex has a significant influence on the wall-pressure fluctuations.

� From a modelling point of view, to develop based upon these observations a stochastic
wall-pressure spectrum model. This model is designed to improve the reliability of the
current turbulent boundary layer excitation by explicitly taking into account turbulent
features of the flow. Indeed, the majority of the models used by transport manufacturers
nowadays rely only on averaged quantities since these model are very easy to implement
and require very low computation time.

This work has been conducted in the frame of the SONOBL project (Sources of NOise from
Boundary Layers over vehicules) which was coordinated by the fluid mechanics laboratory Dyn-
Fluid from Ecole Nationale Supérieure des Arts et Métiers located in Paris, and in collaboration
with the Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA) from Ecole Centrale
de Lyon, as well as three industrial partners, Airbus, Renault and Dassault. Among the main
outcomes of SONOBL, an extensive numerical Large Eddy Simulation (LES) database of tur-
bulent boundary layers flows subjected to favorable (FPG), zero (ZPG) and adverse (APG)
pressure gradients has been generated by DynFluid, and compared with wind tunnel measure-
ments from LMFA. The current thesis is built on these roots and greatly acknowledges them.
Therefore, a particular effort will be put on analyzing this database to characterize the features
of the flow, and more specifically quantify hairpin vortices evolution prior to modelling them
as vibroacoustic excitation input. However, the various vibroacoustic approaches themselves
(Analytical, FEM, SEA, ...) and their properties are out of the scope and will not be discussed
in the current manuscript.

1.4 Organization of the thesis

This thesis is divided into five parts.
The first chapter contains the introduction in which the motivations, objectives and organization
of the manuscript are presented.
The second chapter is a literature review of boundary layer flows along with the effects of pressure
gradients. This chapter also provides detailed phenomenology on the coherent structures in
turbulent boundary layer flows with a specific focus on hairpin vortex type. An overview of
the common visualization and identification methods and criteria will also be provided. This
chapter ends with a review of the existing wall-pressure models, and their way to couple the
wall-pressure spectrum with the structure.
The third chapter deals with the instantaneous and statistical analysis of the velocity fields for
turbulent boundary layers subjected to zero and non-zero pressure gradients. The numerical
simulation providing the database used for this study will be presented in this chapter, along
with description of the numerical tools and methods used for the study. The effect of pressure
gradients on the turbulent vortices will be highlighted.
The fourth chapter focuses on the stochastic wall-pressure spectrum model. In this section the
model as well as the methodology of enhancement of the model are described. Results from a
first coupling with an aircraft structure using a vibroacoustic simulation tool will also be shown.
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The conclusions of this study are summarized in the last chapter where perspectives for future
work are also proposed.
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Chapter 2

Turbulent boundary layer :
literature review

The boundary layer is a well known concept in mechanical, aeronautical, naval as well as civil
engineering and has undergone increasing interest from the scientific community as a result of
rapidly growing use of powerful computation methods and tools. This concept came into the
mind of Prandtl (1904) in the beginning of the past century were he build a bridge between
the two major disciplines of fluid dynamics at that moment, hydrodynamics which had devel-
oped from Euler’s theory of inviscid flows and hydraulics which relied on a large amount of
experimental data to tackle practical engineering problems. In his 1904 paper, Prandtl stated
that however small the viscosity of a fluid in motion may be, it cannot be ignored. Over the
years, this had an outstanding impact on the competitiveness-driven industry of transport by
introducing a theoretical background to the concept of drag for fluid-immersed bodies. A simple
definition of the boundary layer would be :

”The boundary layer is a region of the flow with non-negligible effects of viscosity separating
a solid body and a free flow which corresponds to the inviscid limiting solution.”

Due to viscosity effects, the flow within the boundary layer can be considered laminar or turbu-
lent depending on the Reynolds number Rex defined hereafter :

Rex �
Ux

ν
(2.1)

where U and x are respectively a characteristic streamwise velocity and the distance from the
leading edge of the surface and ν is the kinematic viscosity of the fluid. When the Reynolds num-
ber increases, the regime transitions from laminar to turbulent leading to much more complex
flow pattern and a thickening of the boundary layer as shown in figure 2.1.

2.1 Boundary layer : state of the art

2.1.1 Laminar boundary layer

The laminar flow is characterized by smooth streamlines approximately parallel to the wall over
which the boundary layer develops. The boundary layer is likely to be laminar (at least for a
short time before transitioning) in the range 1000   Rex   106 (White, 1991) which is coherent
with the critical Reynolds number defined in the next section. If we consider a flow over a flat
plate with its leading edge at x � 0, the thickness of the boundary layer δ is a monotonically
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Figure 2.1 – Boundary layer representation with free stream velocity U
8

showing transition
between laminar and turbulent regimes.

increasing function of x. The transition from boundary layer flow to outer flow for laminar
regime takes place continuously so that the boundary cannot be given precisely. Thus, the most
straightforward definition of boundary layer thickness is given by the point where the velocity
reaches 99% of the free stream velocity and is therefore often denoted δ99.
A correct and reliable measure for the thickness of the boundary layer is the displacement
thickness δ� (also denoted δ1), which, under hypothesis of incompressible flow, is defined by:

δ�pxq �

» δpxq

0
p1�

U

Ue
qpx, yq dy (2.2)

where Ue is the edge velocity, i.e. the velocity at the outer edge of the boundary layer, U is
the mean flow velocity and y is the wall-normal distance. The displacement thickness tells us
how far the streamlines of the outer flow are displaced by the boundary layer (Schlichting and
Gersten, 2000) as depicted in figure 2.2 and is about 1/3 of the boundary layer thickness for
laminar flow over flat plate.

Figure 2.2 – Velocity defect caused by the presence of the boundary layer in comparison to ideal
fluid - this is quantified by the displacement thickness δ�.

One can also define the following integral quantity referred to as the momentum thickness θ
(also denoted δ2) defined by:

6



2.1. BOUNDARY LAYER : STATE OF THE ART

θpxq �

» δpxq

0

u

Ue
p1�

U

Ue
qpx, yq dy (2.3)

The momentum thickness is a distance indicative of the boundary layer momentum deficit
relative to a mean flow. The displacement and momentum thickness are related through the
shape factor H given by:

H �

δ�

θ
¡ 1 (2.4)

Notice how the shape of the mean velocity profile is flatter away from the wall in the case of a
turbulent boundary layer (see figure 2.3). This ”flatness” is characterized by the shape factor H.
The shape factor is around 5/2 for a laminar boundary layer over a flat plate (White, 1991); for
instance H � 2.6 for the Blasius (1908) profile. In comparison, the shape factor is lower for the
turbulent boundary layer - H � 1.3 for the zero pressure gradient Klebanoff (1954) boundary
layer.

2.1.2 Turbulent boundary layer

As was already mentioned, the boundary layer does not remain laminar and transitions towards
a turbulent regime at a certain critical Reynolds number. The numerical value of the critical
Reynolds number Recrit is strongly dependent on the level of perturbations in the outer flow.
Considering a turbulent boundary layer developing over a flat plate, this number ranges within
3.105   Rex,crit   3.106, where x is the distance from the leading edge of the plate. The turbu-
lent boundary layer (TBL) is characterized, from a very basic point of view, by a great increase
in its thickness and wall-shear stress leading to a change in the shape of the mean velocity profile
as can be seen in figure 2.3.

Figure 2.3 – Typical velocity profiles on a flat plate for laminar and turbulent boundary layers
showing the increase in wall-shear for the turbulent case - after Young (1989).
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Unlike the laminar boundary layer where the entire region of the boundary layer is affected by
viscosity, the first turbulent boundary layer studies (Klebanoff, 1954; Kovasznay, 1967; Laufer,
1954; Townsend, 1951) show that it can be divided into two regions:

� a very thin layer directly at the wall called the viscous sublayer or viscous wall layer where
the effects of viscosity are dominant

� a larger region away from the wall which can be referred to as the frictional layer be-
cause only the ”apparent friction” due to the turbulent fluctuating motions, and which is
unaffected by viscosity, is driving the flow.

Figure 2.4 – Typical velocity profile for a turbulent boundary layer showing the different sub-
layers with respect to the wall-normal distance for different Reynolds numbers. The logarithmic
regions increases as the Reynolds number increases - after Delery (2007), the text in the figure
was translated from french to english.

This leads to the fact that there is no global scaling for the entire turbulent boundary layer.
For instance, the profile of the mean velocity close to the wall is dictated by inner variables
such as the wall-shear τw � µdU{dy (where µ is the dynamic viscosity), the friction velocity
uτ �

a

τw{ρ, and the kinematic viscosity ν, whereas the outer profile can be scaled with outer
variables such as the edge velocity Ue and the TBL thickness δ. A detailed description of the
different layers within the TBL scaled with inner y� � yuτ {ν and outer y{δ variables is given
in figure 2.5.
An important characteristic of the turbulent boundary layer mean velocity profile is the loga-
rithmic law, first introduced by von Kármán (1930), which lays within the logarithmic region as
shown in figures 2.4 and 2.5. This region is believed to play a major role in wall turbulence. In
fact, most of the kinetic energy from the outer flow is contained in large-scale structures and this
energy ”cascades” from these structures to smaller scale structures. This process creates struc-
tures that are small enough that molecular diffusion becomes important and viscous dissipation
of energy takes place; the scale at which this happens is the Kolmogorov scale (Kolmogorov,
1941a,b). The logarithmic region is the bridge between the highly energetic outer structures and
the very small ones near the wall and gathers universal properties. For instance, the production
to dissipation ratio P{ǫ as well as the normalized Reynolds shear stress �xuvy{k are almost
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constant within this region. Consequently, when the Reynolds number increases, disparities of
scales between the larger structures (integral scale, where most of the energy is contained) and
the smallest structures (from Taylor scale down to Kolmogorov scale) increase and thus widens
the logarithmic region of the TBL.

Figure 2.5 – Different layers in the turbulent boundary layer flow - after Pope (2000)

For the remainder of the study, one should keep in mind that the turbulent boundary layer
can be separated into an outer and an inner region, each of which behave with respect to different
scaling properties. Moreover, the flow can be viewed as made of a hierarchy of eddies over a
wide range of length scales with their intensity described by the energy spectrum of velocity
fluctuations for each length scale; these eddies are then convected by a mean flow characterized
by a logarithmic law which is the link between near wall flow and outer flow.

2.1.3 Effect of pressure gradient

Presence of a mean pressure gradient is widely encountered in industrial flows, may they be
outer flows or internal flows and may have a significant impact on the properties of the flow.
Apart from the zero-pressure gradient case, two cases of pressure gradients may exist (here only
streamwise pressure gradients are considered):

� favorable pressure gradient (FPG) dpe{dx   0: corresponds to an acceleration of the flow
(dUe{dx ¡ 0) and a thinner boundary layer. This occurs for example on the forward part
of an airfoil or the major part of a cockpit

� adverse pressure gradient (APG) dpe{dx ¡ 0: corresponds to a decelerating flow (dUe{dx  
0) and a thickening of the boundary layer. This occurs in a diffuser or the aft part of an
airfoil.

In this study, the ”intensity” of the pressure gradient is quantified by the Clauser (1954)
parameter βC :

βC �

δ�

τw

dpe
dx

(2.5)

where δ�, τw and dpe{dx are respectively the TBL displacement thickness, the shear stress at
the wall and the streamwise pressure gradient. This parameter can be interpreted as the ratio
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between the pressure forces and the shear stress. Other pressure gradient parameters can be
found in the literature such as the acceleration parameter K introduced by Kline et al. (1967),
Clauser’s defect shape factor G, Castillo and George (2001) parameter Λ and the viscous-scaled
pressure gradient ∆p:

K �

ν

U2
e

dUe

dx
(2.6a)

G �

H � 1

H
a

Cf{2
(2.6b)

Λ �

δ

ρU2
e pdδ{dxq

dpe
dx

(2.6c)

∆p �
ν

ρu3τ

dpe
dx

(2.6d)

The effect of the pressure gradient on the mean velocity profile is visible in the wake region
(wake law) where departure from the logarithmic behavior is steeper in the case of an adverse
pressure gradient and smoother in the case of a favorable pressure gradient. Regarding turbulent

intensities urms
i �

b

u1i
2, a secondary peak is visible in the outer region for adverse pressure

gradient flows. These effects are visible in figure 2.6 (u� � U{uτ in this figure corresponds to
the mean streamwise velocity expressed in terms of wall units). One can refer to section 3.1 for
details on the pressure gradient cases that are shown here.
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Figure 2.6 – Mean velocity profiles u� � U{uτ (left) and streamwise component of turbulent
intensity urms{Ue (right) for favorable ( ), zero ( ) , adverse weak ( ) and adverse
strong ( ) pressure gradients - after Cohen and Gloerfelt (2015).

2.1.4 Effect of wall curvature

As for the pressure gradient, curved surfaces are encountered in many industrial flows, such as
the flow over an airfoil or in pipes. Usually, an additional dimensionless parameter R{δ, where R
is the radius of the curved surface, is used to characterize the influence of the curvature to which
the flow is subjected. Curvature of the wall generates centrifugal forces which are compensated
by a wall-normal pressure gradient so that:
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Bp

Bn
� KRρu

2 (2.7)

where n denotes the normal coordinate and KR � 1{R is the surface curvature.
According to Muck et al. (1985) and Hoffmann et al. (1985), a convex surface has a stabilizing
effect whereas a concave curvature has a destabilizing effect on boundary layers, and presum-
ably on other shear flows. A mild convex curvature, with a radius of curvature of the order of
100 times the boundary-layer thickness, tends to attenuate the pre-existing turbulence, appar-
ently without producing large changes in statistical-average eddy shape, while concave curvature
results in the quasi-inviscid generation of longitudinal Taylor-Görtler vortices, together with sig-
nificant changes in the turbulence structure induced directly by the curvature and indirectly by
the vortices. For a constant pressure flow over both convex and concave walls, Meroney and
Bradshaw (1975) found that for R{δ � 100, skin friction differs from its corresponding plane-wall
value by as much as 10% while the boundary layer thickness is halved on the convex surface.
The effect of transverse curvature was studied by authors such as Landweber (1949), Eckert
(1952) and Yu (1958). Their main results suggest that transverse curvature involves lower
boundary layer thickness and displacement thickness, higher momentum thickness and local
and mean wall shearing stress. These results were obtained from measurements for flows over
axial cylinders, which is the basic shape of an aircraft. For the latter however, the ratio of
surface radius to boundary layer thickness R{δ is so high that the effects of transverse curvature
can be neglected.

2.1.5 Equilibrium and non-equilibrium boundary layers

It is hard to give a unique definition of an equilibrium boundary layer. The most commonly
found in the literature is that provided by Clauser (1954), postulating that a boundary layer is
in equilibrium state if the pressure gradient parameter βC (see equation 2.5) is constant along
the streamwise direction. He concluded that equilibrium flows are very hard to generate and
maintain and that most flows are non-equilibrium flows. In fact, a strict equilibrium can never
be reached except for sink-flows, where the strength of the favorable pressure gradient leads to
the mean velocity profiles approaching the pure wall profile (Dixit and Ramesh, 2010; Jones
et al., 2001). Bradshaw (1967b) showed that a necessary condition for a turbulent boundary
layer to maintain equilibrium was that the contribution of the pressure gradient to the growth
of the momentum deficit should be a constant multiple of the contribution from the surface
shear stress, which was shown to be equivalent to the condition on Clauser’s pressure parameter
βC . A boundary layer is in equilibrium state if the local rates of kinetic energy production and
dissipation are balanced and if the free stream velocity varies as a power of distance downstream
with an exponent greater than -1/3 according to Townsend (1976b). Castillo and George (2001)
showed that an equilibrium boundary layer was found to exist only when the pressure parameter
Λ (see equation 2.6) was constant and surprisingly found that this was the case for most of flows
subjected to pressure gradients and the exceptions were non-equilibrium flows, contrary to what
Clauser postulated. For Kameda et al. (2008), equilibrium is characterized by the local skin
friction coefficient being independent of two parameters, both the streamwise distance and the
Reynolds number based on momentum thickness Reθ, whereas for the non-equilibrium boundary
layer, the skin friction coefficient depends on these parameters.
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2.2 Coherent structures in the turbulent boundary layer flow

2.2.1 General definition

Over half a century ago, it was observed that some kind of organized motions populated the
random turbulent field in wall-bounded flows. The first studies concerned the outer region of
the boundary layer with investigations on intermittency in the turbulent/potential interface at
the edge of turbulent flows (Corrsin, 1943; Corrsin and Kistler, 1954), followed by the large
eddy motions populating the outer layer (Favre et al., 1957; Grant, 1958; Townsend, 1976a). At
the same time, people started looking at the structure of the near-wall region, such as Einstein
and Li (1956) and Kline and Runstadler (1959). Since then, great effort has been undergone
to characterize these coherent regions and this field of study is still a very active research topic
nowadays. This is partly due to the fact that until now, fluid dynamicists still struggle giving
a generally accepted definition of a coherent motion in turbulent flows. For example, Robinson
(1991a) gives the following definition:

”a coherent motion is a three-dimensional region of the flow over which at least one fundamen-
tal flow variable (velocity component, density, temperature, etc.) exhibits significant correlation
with itself or with another variable over a range of space and/or time that is significantly larger
than the smallest local scales of the flow.”

Pope (2000) defines turbulent structures as:

”regions of space and time (significantly larger than the smallest flow or turbulence scales) within
which the flow field has a characteristic coherent pattern”.

Vortices are part of the vast population of coherent motions in turbulent flows but have a specific
property in addition. According to Robinson (1991a):

”A vortex exists when instantaneous streamlines mapped onto a plane normal to the vortex
core exhibit roughly circular or spiral pattern, when viewed from a reference frame moving with
the center of the vortex core.” .

Hussain (1986) postulates that the coherent vorticity is the primary identifier of coherent struc-
tures; coherent vorticity being designated as ”instantaneously space- and phase-correlated vor-
ticity”. The vast majority of turbulent structures investigation has resulted from low Reynolds
numbers experiments since it is more effective for flow visualization and numerical simulation.
Hereafter, a summarized overview of the most known coherent motions present in the turbulent
boundary layer flow is provided. The literature on this topic is extensive and the reader can
refer to reviews by Robinson (1991a), Cantwell (1981), Kline and Falco (1979), Kline (1978),
Townsend (1976b) and Willmarth (1975).

2.2.2 Near-wall structures

In the late 1950s, a series of flow visualization experiments was begun in Stanford to study
boundary layers. The next decade, Kline et al. (1967) revealed new features of the near-wall
region through hydrogen bubble visualization of a low Reynolds-number turbulent boundary
layer. They found that very close to the wall, in the viscous sublayer at y� � 2.7 and up to
y� � 10, the bubbles accumulated in high- and low-speed regions called streaks. They observed
that the streaks interacted with the outer region of the flow though a sequence of four events:

12



2.2. COHERENT STRUCTURES IN THE TURBULENT BOUNDARY LAYER FLOW

gradual outflow, liftup, sudden oscillation and breakup, and defined the sequence of the three
last events as ”bursting”. They could deduce that the average spanwise spacing of streaks λ�z
for smooth walls and all pressure gradients was approximately 100 wall units, e.g. 100δν where
δν � ν{uτ is the viscous lengthscale. Subsequent experiments (Kim et al., 1971) confirmed that
the spanwise spacing is between 80   λ�z   120, independent of the Reynolds number. Smith
and Metzler (1983) observed that this spacing increases away from the wall. In the streamwise
direction, the length of the streaks can exceed λ�x � 1000 (Blackwelder, 1979).

Figure 2.7 – A pair of counter-rotating streamwise vortices with the resulting low-speed streak
(dark region) - after Blackwelder (1979).

Kim et al. (1971) observed near the wall a rotational motion which they interpreted as
streamwise vortices. Later on, Blackwelder (1979) inferred that these streamwise vortices evolve
by counter-rotating pairs, based on hot-film signals. He suggested that the low-speed streaks
come from counter-rotating pairs of streamwise vortices, which lift-up low-momentum fluid from
the wall. This leads to the velocity profiles having an inflection point as shown in figure 2.7.
Another explanation is that the low-speed streaks are the trace of one or several stacked hairpin
vortices (which will be detailed later, see figures 2.11 and 2.12), convecting over the wall and
which lift-up between their legs and heads low-speed fluid. This has been recently supported
by the work of Zhou et al. (1999) who carried out DNS of the evolution of one hairpin vortex
in a turbulent channel flow. They showed that the initial hairpin persists in time and induces,
upstream and downstream, other hairpin vortices associated with ejections. This system of
hairpin vortices generates then progressively a low-speed streak. However, these two proposals
may agree if it is considered that the counter-rotating pairs of streamwise vortices are legs near
the wall of hairpin vortices.

Corino and Brodkey (1969) observed what they called ejections in the region 5   y�   15
consisting of low speed fluid being lifted up away from the wall, and it was noticed that ejections
were followed by a sweep event where an axial movement upstream of the ejection sweeps high-
speed fluid u1 ¡ 0 towards the wall. It has been demonstrated that ejections and sweeps have
a significant role in turbulence production. The pu1, v1q sample space of fluctuating velocities
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is divided in four quadrants as shown in figure 2.8. In quadrants 2 and 4, which correspond
respectively to ejections pu1   0, v1 ¡ 0q and sweeps pu1 ¡ 0, v1   0q, the product uv is negative
and consequently events in this region correspond to positive production P � �xuvyBU{By ¡ 0.
Studies focusing on the contribution of each quadrant to xuvy (Comte-Bellot et al., 1978; Wallace
et al., 1972; Willmarth and Lu, 1972) provided evidence for the importance of ejections and
sweeps to production and that the correlation coefficient Ru1v1 suggests that quadrant-2 and -4
events are twice as likely as quadrant-1 and -3 events irrespective to the turbulence structure.
Wallace et al. (1972) showed that at y� � 15, the contributions of the ejections and sweeps to
the Reynolds stress are equivalent. Ejections dominate in the region y� ¡ 15, while sweeps are
the major contributor close to the wall y�   15.

Figure 2.8 – The quadrant splitting scheme showing the probability density function in the
pu1, v1q plane.

Finally, the existence of shear zones was observed in the near wall region between low-speed
and high-speed streaks. Studies by Johansson et al. (1987) and Johansson et al. (1991) showed
that these structures are inclined by around 5� to the wall in the near wall region y�   10
and 18� above. Intense shear zones develop between the ejected fluid and the low-speed fluid
surrounding it. Results from Johansson et al. (1991) gave evidence that shear regions generate
strong positive pressure fluctuations and are in average located upstream of a very intense
ejection. Instantaneous velocity and vorticity field from DNS (Robinson, 1991b) showed that
for 30   y�   80 shear zones are rolled forming transverse vortices that generate strong ejections.

2.2.3 Outer-region structures

In the outermost part of the boundary layer the flow is intermittent. There is a thin turbulence
front, referred to as the viscous super-layer, separating the turbulent boundary layer from the
irrotational free-stream fluid. Figure 2.9 shows that ”valleys” of non-turbulent fluid penetrate
deep into the boundary layer and that they separate large eddies or bulges that are inclined at a
characteristic angle of 25�. Therefore, shear layers are observed in the ”valleys” since relatively
high velocity fluid impacts the upstream side of the bulges. Kovasznay et al. (1970) showed that
these bulges have a typical length δ to 3δ in the stream direction and are about half as wide
in the spanwise direction. The large eddies and the super-layer also contain smaller structures
referred to as typical eddies by Falco (1977), which appear at the trailing of the large scale
eddies (see figure 2.9). Head and Bandyopadhyay (1981) support that they are tips of hairpin
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Figure 2.9 – Outer region model showing large scale motions and typical eddies - after smoke
visualization by Falco (1977) .

vortices inclined at 45� to the wall.
Since organized motions were also present in the outer layer, a relationship between the inner
events and the outer region received scrutiny. Kovasznay et al. conjectured that the bulges
become inactive and that only the birth of new ejected ”lumps” (presumably from the wall) is
the mechanism that maintains the Reynolds stress of the outer layer. They also suggest that the
bursts observed by Kline et al. (1967) near the wall are responsible for the large-scale motions in
the outer flow. Blackwelder and Kovasznay (1972) found that the intense motions in the near wall
region remained strongly correlated out to y{δ � 0.5. Using turbulent pipe and boundary layer
flow visualizations, Praturi and Brodkey (1978) came up with an elegant model which relates
the coherent motions in the outer region to the near-wall turbulence production as shown on
figure 2.10. In their model, the near-wall transverse vortices are lifted up from the wall due to
the ejection process in the buffer layer and transported in the outer layer where they induce
shear layers and form the large scale bulges. However, the question of mass and momentum
transfer between the inner and outer part of the boundary layer still remains controversial.

2.2.4 Hairpin vortices and hairpin packets

Global definition

The first hairpin model was first introduced by Theodorsen (1952) (see figure 2.11). The common
definition stipulates that hairpin structures can be divided into three parts: legs, neck and head
as shown in figures 2.13 and 2.15. More generally, hairpin vortices refer to hairpin-, horseshoe-,
cane-, arch-, omega-shaped vortices or any deformed version of these, and can be symmetric
or asymmetric. In his conceptual model, since the layer farther from the wall has higher mean
flow velocity in comparison to the layer close to the wall, as the structures move downstream,
as well as experiencing a high degree of stretching, the head (spanwise part) undergoes a lifting
movement from the wall. This motion results in the head of the vortex lifting upward toward the
free stream allowing higher velocities to carry the head downstream faster than the legs. This
action leads to a stretching of the legs as the hairpin vortices are convected downstream. This
motion of vortices transports low-speed fluid away from the wall and produces Reynolds stresses.
Theodorsen (1952) argues that the hairpin structures are the primary element of wall-bounded
turbulence.

Hairpin-like vortices were first observed by Head and Bandyopadhyay (1981) in a zero pres-
sure gradient turbulent boundary layer using flow visualization. It was shown that hairpins are
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Figure 2.10 – Conceptual model of interaction between the near-wall region and the outer flow
motions - after Praturi and Brodkey (1978).
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Figure 2.11 – Theodorsen (1952) hairpin-like vortex.

a major constituent of TBLs over a wide range of Reynolds numbers and that they are produced
in a relatively regular sequence so that the locus of their tips presents a more or less straight line
with a certain angle to the surface which is less than that of the individual hairpin. This last
observation is the evidence of the existence of hairpin packets, which correspond to a sequence
of individual hairpin vortices aligned along the streamwise direction. As can be seen in figure
2.12, hairpin packets exist at different wall-normal distances. They have different length scales
and convection velocities. According to Adrian et al. (2000), hairpin vortices within a same
packet have very low velocity dispersion such that the relative spacing and arrangement of the
hairpins remain coherent for a long time. Figure 2.12 also shows that the packets lay over a
region of low momentum due to the backward induced motion between the legs of the hairpin
sequence. This region is referred to as a Low Momentum Region (LMR) and was also observed
by Lee and Sung (2009), Mayam (2009), Dennis and Nickels (2011), Ganapathisubramani et al.
(2005) and many others.

Figure 2.12 – Hairpin packets organization in the turbulent boundary layer flow - (left) Instanta-
neous velocity field in Galilean frame convecting at Uc � 0.55Ue after Mayam (2009) and (right)
idealized model of nested hairpin packets travelling at different convection velocities after Adrian
et al. (2000).

Figure 2.12 also shows that small newly formed packets exist within larger older packets.
Measurements of convection velocities reveal that the small packets located near the wall prop-
agate more slowly than the older ones. This has two combined reasons:

� the flow surrounding large packets has a higher velocity since they are located in the outer
region of the boundary layer

� in the small young packets, the individual hairpin vortices are closer to each other, therefore
producing higher back-induced velocities and even lower momentum regions.
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Reynolds number effect

Some authors were interested in the effect of the Reynolds number on the coherent motions.
Head and Bandyopadhyay (1981) focused on the hairpin-like vortices in a zero pressure gradient
turbulent boundary layer in a Reynolds number range 500   Reθ   17500. They observed that
at high Reynolds number (Reθ ¡ 2000), the structures consist of elongated hairpin vortices
pairs, originating in the wall region and extending through a large part of the boundary layer
thickness or beyond it. At low Reynolds numbers (Reθ   500) however, the hairpin vortices are
much less elongated and would be better defined as horseshoe vortices or vortex loops. This
Reynolds number effect on the topology of the hairpin-like vortices is illustrated in figure 2.13.
Authors such as Schlatter and Örlü (2010) suggest that at even higher Reynolds number, the
hairpins vortices break and become asymmetric cane-shaped structures.

Figure 2.13 – Effect of Reynolds number on the geometry of hairpin-like eddies - after Head and
Bandyopadhyay (1981).

Adrian et al. (2000) also suggest that packets contain fewer individual hairpins at low
Reynolds numbers than at high Reynolds numbers in the outer region of the boundary layer.
This result is based on the fact that the hairpin packets present in the very outer region define
the instantaneous boundary layer edge which is highly corrugated at low Reynolds numbers and
may therefore be assimilated to bulges. Since the length of the bulges is about 2δ (Kovasznay
et al., 1970), while the distance between hairpins scales roughly with viscous wall variables at
about 100-200 viscous wall units, the number per packet increases with increasing Reynolds
number.

Angle of hairpin vortices

Since the hairpin-like structure can be divided into three parts, it is possible to define the angle
of the hairpin αhp (which is an average angle of the structure), the angle of the legs of the hairpin
αl and the angle of the neck of the hairpin αn as can be seen on the schemes in figures 2.14 and
2.15.

Head and Bandyopadhyay (1981) found an average hairpin angle of 45� � 50� from flow
visualization of a zero-pressure gradient turbulent boundary layer. Mayam (2009) performed
Particle Image Velocimetry (PIV) measurements of a turbulent boundary layer subjected to a
severe adverse pressure gradient for Reynolds numbers ranging within 5300   Reθ   12000
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Figure 2.14 – Sideview of hairpin-vortex - idealized linear representation (left) and ”realistic”
hairpin geometry (right).

Figure 2.15 – Different parts of the hairpin vortex with the corresponding angles to the wall -
after Robinson (1991b) .
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along the streamwise direction and compared his results to a zero pressure gradient flow. He
found that the neck angles of the hairpin vortices are rather close for both flows in the inner
layers whereas the angle is up to 18% higher for the APG case for the upper region of the
boundary layer. Lee and Sung (2009) performed Direct Numerical Simulation (DNS) of ZPG
and APG turbulent boundary layers. For the APG case, βC � 1.68 and Reθ � 1200� 1400 (for
the ZPG flow, only the Reynolds number Reinθ � 1410 at the inlet of the computation domain is
mentioned). Lee and Sung (2009) were able to measure both the leg angle and neck angle of the
hairpin structures based on conditionally averaged velocity fields at y� � 50. They found leg
angles around 9.2� for the APG case and 8.8� for the ZPG flow, and neck angles around 28.8�

and 21.3� respectively for the APG and ZPG cases.

Angle of hairpin packets

Evidence of streamwise aligned hairpin vortices in the turbulent boundary layer flow was shown
at early stages by Head and Bandyopadhyay (1981). They were able to directly visualize tips of
hairpin vortices lying in a line inclined at an angle around αp � 20� to the wall as can be seen
in figure 2.16. Mayam (2009) measured a hairpin packets average growth angle close to 11� for
the adverse pressure gradient case from instantaneous velocity fields visualization. For this flow,
he was also able to observe that the hairpin vortices within the same packet are more closely
spaced along the streamwise direction in comparison to the ZPG flow.

Figure 2.16 – Evidence of streamwise aligned vortices along a line inclined to the wall - flow is
from right to left - after Head and Bandyopadhyay (1981).

Adrian et al. (2000) observed angles ranging from 3� to 35� from instantaneous velocity fields
of a channel flow, with a 12� mean angle which agrees well with the simulations of Zhou et al.
(1999). From the same measurement data, they could also identify packets of hairpins with non
monotonous angles, i.e. a positive ramp angle followed by a negative angle (see figure 2.17). This
was also observed by Mayam (2009) and it is suggested that this could be due to the formation
of hairpins downstream of the primary hairpin (Zhou et al., 1999). However, statistical analyses
reveal that the most common feature consists in packets with a positive angle.

Lee and Sung (2009) reported angles around αp � 13� for the ZPG flow and αp � 18.5�

for the APG by estimating the angle of the packet line from linear stochastic estimation of the
velocity field (see section 2.2.5) with event location at y{δ � 0.2. Similarily, Christensen and
Adrian (2001) measured αp � 13� and αp � 14� growth angles for a turbulent channel flow with
Reτ � 547 (y�ref � 83.6, y{h � 0.16) and Reτ � 1734 (y�ref � 256, y{h � 0.15) respectively,
where Reτ � uτh{ν is the Reynolds number based on the friction velocity uτ and the channel
half height h. Volino et al. (2007) determined angles around 13.2� � 2.5� for 0.2   y{δ   0.7
with angles decreasing above y{δ � 0.7.
It will be shown in section 3.3.2 that the angle of the two-points spatial correlation of the
streamwise velocity Ruu is correlated with the angle of the hairpin packets. Liu et al. (2001)
measured an angle of Ruu around 6� � 8� at reference point y{h � 0.24 in a turbulent channel
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Figure 2.17 – Example of non-monotonically increasing hairpin packet represented by the lower
dashed line - after Adrian et al. (2000) .

flow at Reh � 3 � 104. Similarly, Nakagawa and Hanratty (2001) measured an inclination
angle of the correlation around 9� in a channel flow with wavy boundaries at a reference point
y{h � 0.23 and Reh � 4.6 � 104. Tay et al. (2009) looked at the streamwise extent and
angle of the correlation when studying the effect of surface roughness on turbulent boundary
layers subjected to pressure gradients with Reynolds numbers Reθ � 914 for the ZPG case and
Reθ � 2182 for the APG (deceleration parameter K � �4.45 � 10�7). For the smooth surface
case, they measured inclination angles of 10.1� for the FPG and 17.3� for the APG at reference
point around y{δ � 0.25. Krogstad and Antonia (1994) found an angle around 10� based on the
inclination of the Ruu � 0.3 contour in the range 0.1   y{δ   0.4 from X-wire measurements of
a Reθ � 6030 ZPG turbulent boundary layer.

2.2.5 Visualization, identification and analysis methods

As already mentioned, fluid dynamicists still struggle giving a generally accepted definition of
coherent motions in turbulent flows. Indeed, the definition and identification of a vortex in un-
steady flows is difficult since streamlines and pathlines are not invariant with respect to Galilean
and rotational transformations as emphasized by Lugt (1979).
Vorticity has long been the most accepted candidate for vortex identification, but Jeong and
Hussain (1995) along with other authors such as Kida and Miura (1998) and Cucitore et al.
(1999) showed that vorticity is not able to distinguish between regions of shear flow and real
spinning motions. More complex methods based on invariants of the velocity gradient tensor ∇u
have been developed. Chong et al. (1990) propose that a vortex core is a region with complex
eigenvalues of ∇u as a complex eigenvalue implies that the local streamline pattern is closed or
spiral in a reference frame moving with the point of calculation. Hunt et al. (1988) defined an
eddy as a region with positive second invariant of the velocity gradient tensor. More recently,
an identification method based on the concept of Lagrangian Coherent Structures (LCS) was
proposed (Haller, 2002, 2005; Haller and Beron-Vera, 2013).
Vortex identification criteria still remain a subject of interest and debate due to their arbitrary
threshold which provides information on presence of a vortex and its boundaries. Authors such
as Cucitore et al. (1999), Chakraborty et al. (2005) and Vollmers (2001) performed a comparison
of some of these criteria. Hereafter, an overview of visualization, identification as well as analysis
methods is provided.

Pressure
Pressure can be used for vortical structures identification since the center of a vortex is a region
of local minimum of pressure. In this case, the criteria would be:
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p ¤ pthresh (2.8)

This method is based on the idea that centripetal force induces pressure gradient. It is very
simple to implement but the threshold is purely arbitrary and the pressure can vary greatly
along the vortex.

Vorticity
Vorticity is defined as the curl of the velocity field and often denoted ω:

ω �∇� u (2.9)

It describes the local spinning motion of the fluid near some point as would be seen by an
observer located at that point and travelling along with the fluid. It is therefore related to the
moment of momentum of a small particle about its own center of mass, as defined in Shapiro
(1969). For example, for rigid body, every line perpendicular to the axis of rotation has the
same angular velocity; therefore vorticity is the same at every point and is twice the angular
velocity.

Figure 2.18 – Vorticity contours showing von Kármán vortex street behind a cylinder at Re �
3000 - Marine Ecosystem Dynamics Modelling lab.

Vorticity can be used to visualize and identify vortical structures since the center of a vortex
corresponds to a local maximum of the vorticity modulus. In figure 2.18, a Kármán vortex street
is revealed using vorticity.

Q criterion
The quantity Q used here is the second invariant of the Jacobian of the velocity field and can
be defined as:

Q �

1

2
pΩijΩij � SijSijq (2.10)

where Sij is the shear stress tensor and Ωij the rotation term of the velocity gradient tensor,
e.g.:
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(2.11b)

The criterion, introduced by Hunt et al. (1988), consists in looking for regions where this quantity
is positive since Q ¡ 0 implies local pressure smaller than the surrounding pressure. This method
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is commonly used in flow visualization. Figure 2.19 shows near-wall structure at turbulent
boundary layer trainsition using this method.

Figure 2.19 – Isosurface of Q-criterion colored by velocity magnitude showing near-wall struc-
tures in boundary layer transition - Mech. Eng. Dept, Stanford Univ.

λ2 criterion
The quantity λ2 is defined as the second largest eigenvalue of the tensor S2

� Ω2 (where S and
Ω are the two tensors introduced in equation 2.11). The criterion was introduced by Jeong and
Hussain (1995) and consists in identifying regions where λ2   0 since they correspond to local
pressure minimum. This criterion is widely used among fluid dynamicists, but is sensitive to
high shear. Gloerfelt and Margnat (2014) used the λ2 criterion to reveal structures between
transition and fully turbulent flow as shown in figure 2.20.

Figure 2.20 – LES of spatially developing TBL at Mach 0.5, isosurface of λ2 criterion colored
by streamwise velocity - after Gloerfelt and Margnat (2014).

∆ criterion
Chong et al. (1990) define a vortex core as a region where ∇u has complex eigenvalues. The
characteristic equation for ∇u is given by:

λ3
� Pλ2

�Qλ�R � 0 (2.12)

where P , Q, and R are the three invariants of the velocity gradient tensor. The discriminant
for eq. (2.12) is (for incompressible case, i.e P � 0):
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The condition ∆ ¡ 0 implies that ∇u has complex eigenvalues. From Eq. (2.13) it can be seen
that Q ¡ 0 criterion is more restrictive than the ∆ ¡ 0 criterion. Cucitore et al. (1999) used
this criterion along with an empirical Galilean invariant non-local criterion. The latter is based
on the intuitive notion that the change in the relative distance between particles inside a vortex
structure is small and therefore introduces a ratio to quantify this change.

Kinematic vorticity number
Truesdell (1953) introduced the kinematic vorticity number Nk to measure ’the quality of rota-
tion’, instead of the local rotation rate given by ||Ω||.

Nk �

�

|ω|2

2SijSij


1{2

�

||Ω||
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2Q
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1{2

(2.14)

Thus, Nk is a pointwise measure of |ω| non-dimensionalized by the norm of the strain rate,
which gives the quality of rotation regardless of the vorticity magnitude. For example, Nk � 8

and Nk � 0 correspond to solid-body rotation and irrotational motion respectively. Melander
and Hussain (1993) used this quantity to identify the core of an axisymmetric vortex column as
”a maximally connected spatial region with Nk ¡ 1”. However, the kinematic vorticity number
does not discriminate between vortices with small and large vorticity (or circulation) as long as
the quality of the rotation is the same for both.

Swirling strength λci

The swirling strength λci is the imaginary part of the complex eigenvalue of the velocity gradient
tensor which can be expressed as:

∇u �
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�
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(2.15)

where pvr,vcr,vciq are the eigenvectors of the tensor. This method automatically eliminates
regions having vorticity but no spiralling motion such as shear layers (refer to Zhou et al. (1999)
for more details). For this reason, but also because the λci criterion has been the last developed
and therefore is believed to be more advanced, this criterion will be used hereafter. Recently,
several authors which use the linear stochastic estimation (LSE) method to investigate vortical
structures in turbulent flows use this criterion.

Enhanced swirling strength criterion
The common factors to most of the criteria are that an identification criterion should be Galilean
invariant and that the local flow in the frame of reference translating with the vortex should
be swirling. Chakraborty et al. (2005) added a third requirement which is that the separation
between the swirling material points inside the vortex core should remain small, i.e. the orbits of
the material points are compact. Therefore, they introduced the spiralling inverse compactness
given by:

λcr

λci
(2.16)

This ratio measures the spatial extent of the local spiralling motion. A value of λcr{λci � 0
results in a perfectly circular path, while a positive (or negative) value corresponds to a path

24



2.2. COHERENT STRUCTURES IN THE TURBULENT BOUNDARY LAYER FLOW

that spirals outward (or inward) in the plane of the vortex.

Γ1 and Γ2

These methods have been developed for two-dimensional cases only and therefore can be ap-
plied to PIV plane measurements. They allow to determine both the center and boundaries of
a vortical structure.
Let P be a fixed point in the measurement domain. Graftieaux et al. (2001) define the dimen-
sionless scalar function Γ1 at P as :

Γ1pP q �
1

S

»

MPS

pPM � uMq.n

||PM ||.||uM||
dS (2.17)

where S is a 2D-area surrounding P , M lies in S and n is the unit vector normal to the
measurement plane. Γ1 is a dimensionless scalar, with Γ1 bounded by 1. It can be shown that
this bound is reached at the location of the vortex centre if the vortex is axisymmetrical. Thus,
the scalar function Γ1 provides a way to quantify the streamline topology of the flow in the
vicinity of P and the rotation sign of the vortex.
Graftieaux et al. (2001) improved this method by introducing the quantity Γ2 which takes into
account a local convection velocity ŨP around P :

Γ2pP q �
1

S

»

MPS

rPM � puM � ũP qs.n

||PM ||.||uM � ũP ||
dS (2.18)

where ũP �

1
S

³

S u dS. Note that in contrast to Γ1, Γ2 is Galilean invariant.

Proper Orthogonal Decomposition (POD)
The Proper Orthogonal Decomposition (POD) method for vortex identification is based on the
idea that regions of high vorticity correspond to energetic modes. It identifies the set of orthog-
onal modes that best reconstruct a dataset. Graftieaux et al. (2001) used this method along
with the Γ2 for vortex identification from PIV measurements in a highly turbulent swirling flow.
Lumley (1981), Holmes et al. (1996), Baltzer et al. (2010) and more recently He et al. (2016) also
use POD to identify coherent structures such as low-speed streaks and hairpin-like vortices. Liu
et al. (2001) and Rempfer and Fasel (1994) used also this method to study Large Scale Motions
(LSMs) and structures in turbulence transition respectively. Due to success of the method, it
has spawned a number of variants including double POD (Siegel et al., 2008; Tubino and Solari,
2005), observer-inferred decomposition (OID) (Schlegel et al., 2012), temporal POD (Gordeyev
and Thomas, 2013), spectral POD (Sieber et al., 2016), etc.

Dynamic Mode Decomposition (DMD)
Recently dynamic mode decomposition has gained popularity as a tool for analyzing the dy-
namics of nonlinearity evolving fluid flows and is actually the only modal decomposition method
developed for this task. For instance, POD can be applied to flows with nonlinear dynamics, but
the POD modes are not necessarily optimal for those dynamics. This method was first intro-
duced at a conference by Schmid and Sesterhenn (2008) and followed one year later by a paper
published by Rowley et al. (2009). The latter introduces a method based on Koopman theory
(Koopman, 1931) which states that there exists a set of modes, the ”Koopman modes”, that
completely characterizes the dynamics of a nonlinear system. On the other hand, Schmid and
Sesterhenn (2008) presents the DMD as a method analyzing a ”linear tangent approximation”
to the underlying flow. They also explored the connections between DMD and POD, leading to
an SVD-based algorithm which has become the standard for DMD users.
In terms of coherent structures analysis, Zhang et al. (2014) used DMD along with POD to
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identify coherent structures behind a single cylinder and two side-by-side cylinders, Tang and
Jiang (2012) applied DMD for the analysis of hairpin vortices generated by a hemisphere pro-
turberance using PIV measurements in a water channel, Hyhĺık and Netrebská (2016) evaluated
the travelling vortex speed in a synthetic jet flow.

Variable Interval Time Average (VITA)
The VITA method introduced by Blackwelder and Kaplan (1976) is a statistical method which
can be seen as a low-pass filter giving a localized temporal measure of a quantity. The simple
criteria used allow to detect the events associated with the sudden variations of the signal under
study, both in the time and space domains. For a turbulent signal Qpx, tq the variable interval
time average Q̂px, tq is defined by:

Q̂px, t, T q �
1

T

» t�T {2

t�T {2
Qpx, τq dτ (2.19)

where x is the location where the sample has been taken and T is the averaging time. As T
becomes large, the conventional time averaging results:

lim
TÑ8

Q̂px, t, T q � Qpxq (2.20)

which is independent of t because of stationarity. In order to obtain a local average of some
phenomenon, the average time T must be of the order of timescale of the phenomenon under
study. Therefore, as already mentioned, the VITA method can be assimilated to a low-pass
filter with 1{T representing the cut-off frequency and gives a localized temporal measure of the
quantity Q.
Blackwelder and Kaplan (1976) could examine the vortex structures associated with the bursting
phenomenon in the near wall region which is characterized by low-speed fluid being ”pumped”
away from the wall. Morrison et al. (1988) applied the VITA algorithm to a variety of turbulent
boundary layers where they were able to capture length-scale statistics within the flow.

Window Average Gradient (WAG)
The window average gradient detection scheme (Antonia and Fulachier, 1989; Antonia et al.,
1990) searches for changes in the average signal level over a certain time interval. This interval
is selected so that the corresponding length scale is comparable to the event of interest. For
instance, if a window of 2τ � 1 samples is moved through the data, the quantity:

WAGi �
sign

2τ

�

i�τ̧

j�i�1

uj �
i�1̧

j�i�τ

uj

�

(2.21)

is computed at every point and the detection begins when WAGi first exceeds a certain thresh-
old. This method was used by Krogstad and Antonia (1994) to study large-scale motions in
turbulent boundary layers on smooth and rough walls since it is well suited to detect disconti-
nuities in the velocity signal which characterizes large-scale motions.

Linear Stochastic Estimation (LSE)
Linear stochastic estimation is a statistical tool first introduced by Adrian (1975). The method
uses a two-point second order correlation in terms of conditional flow pattern. The idea is to
reconstruct a certain quantity, for instance the velocity, based on a chosen condition at one
position of the flow field. In comparison to the previous analysis methods, the LSE method will
be detailed further hereafter since it is often used in the present study. The following equations
and nomenclature are taken from Adrian (1994) review on LSE.
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Let u1

� upx1, t1q be the quantity that we want to estimate for some domain of positions and
times, based on a certain condition or event grouped in an event data vector E. The estimate
of u1 is denoted û1. The best mean square estimate of u1 given the data E is the conditional
average of u1 given E, xu1

|Ey.
The idea is then to expand xu1

|Ey in a Taylor series about E � 0 and truncate at some level.
When the series is truncated at the first term, the method is referred to as linear stochastic
estimation, if it is truncated at the second term, the method is called quadratic stochastic
estimation, and so on. The equations for LSE of the ith component of u1 are:

û1i � xu1i|Ey �
M̧

j�1

LijEj (2.22)

where M is the number of event data and Lij � Lijpx,x
1

q. The estimation coefficients Lij are
chosen so that the mean square error

xrxu1

|Ey �
¸

j

LijEjs
2
y � minimum (2.23)

A necessary condition for minimization is the orthogonality principle which states that the errors
û1

� xu1

|Ey �
°

j LijEj are statistically orthogonal to the data:

xrû1

� xu1

|Ey �
¸

j

LijEjsEky � 0 i � 1, 2, 3 and j, k � 1, ...,M. (2.24)

From here, the problem consists in finding the coefficients Lij by solving an M � M linear
algebraic system whose coefficients are the correlations between each event datum and every
other event datum. The quantity is then estimated by:

¸

j

xEjEkyLij � xEku
1

iy (2.25)

If the data consist of velocity vectors uα � upxα, tαq, then xEjEky involves only the second-
order two-point space-time correlation Rjkpxα, xβ, tα, tβq and xEku

1

iy reduces to Rkipxα, x
1, tα, t

1

q.
Linear stochastic estimation has been widely used over the past years to study coherent strucutres
in turbulent boundary layers (Dennis and Nickels, 2011; Elsinga et al., 2010; Juan et al., 2006;
Kan et al., 2013; Lee and Sung, 2009; Natrajan et al., 2007), channel flows (Christensen and
Adrian, 2001; Moin et al., 1987; Moser, 1990; Zhou et al., 1999), jet and mixing layers (Bonnet
et al., 1994; Gutmark et al., 2006). Druault et al. (2011) used quadratic stochastic estimation
(QSE) along with POD to reconstruct the acoustic pressure field in a flow over a cavity.

2.3 Turbulent boundary layer wall-pressure spectrum

The noise induced by a turbulent boundary layer for aero-moving vehicles is of two natures. For
a turbulent flow over a surface, there will be two acoustic contributions, one referred to as the
direct contribution which corresponds to the acoustic pressure generated within the flow and
which radiates in the same half space as the flow, and an indirect contribution corresponding to
the acoustic field generated by the vibrations of the flow-excited surface and which radiates in the
half-space opposite to the flow (referred to interior domain in figure 2.26). Turbulent boundary
layer noise issues for passenger comfort are related to the indirect contribution. Indeed, the
direct acoustic contribution is of very low energy (Cohen, 2015; Cohen and Gloerfelt, 2015;
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Gloerfelt and Margnat, 2014) and is not of interest in the present study. According to Powell’s
theorem (Powell, 1960), turbulent flow homogeneous in the plane of a flat, rigid infinite surface
can radiate only as quadrupole or higher-order acoustic sources which are acoustically inefficient.
Spatial inhomogeneities of the surface such as stiffeners or ribs or abrupt termination such as
a trailing edge would be needed to generate sources with lower orders and generate additional
radiation (Blake, 1986, Chapter 8).

2.3.1 Global definition and features

According to Lighthill’s theory (Lighthill, 1952, 1954), the instantaneous pressure resulting from
turbulent fluctuating motions obeys the wave equation:

1

c20

B

2p

Bt2
�∇2p �

B

2ρ0puiuj � uiujq

BxiBxj
(2.26)

where uiuj is the temporal average of uiuj. The source term on the right hand side is an approx-
imation including only incompressible Reynolds stresses but still represents both aerodynamic
and acoustic contributions to pressure. If the boundary layer is assumed to exist over a rigid
flat surface, i.e. un � u2 � 0, the pressure field at a wall location xw is given by (Blake, 1986,
Chapter 8):

ppxw, tq �
1

2π

y

V

B

2ρ0puiuj � uiujq

BxiBxj

dV

|xw � x|
�

1

2π

x

S

Bτi2
Bxi

dS

|xw � x|
i � 2 (2.27)

The surface integral is over the entire wall-plane y � 0 as well as a control surface assumed
to be a hemispherical dome at a large distance from the wall. Burton (1974) and Kraichnan
(1956) provide convincing evidence that the surface integral has negligible contribution to the
wall pressure. In fact, using measurements of fluctuating wall-shear stress, Burton (1974) could
show that the contribution of the integral to the total root mean square wall pressure fluctuation
is only on the order of at most 6%. Thus, equation (2.27) reduces to:

ppxw, tq �
y

V

�

B

2ρ0puiuj � uiujq

BxiBxj

�

dV

|xw � x|
(2.28)

where the brackets denote retardation, that is to say source terms are evaluated at the retarded
time t� r{c0, with r � |xw � x|. Let p̃ be the Fourier transform of the pressure at the wall:

p̃pk, ωq �
1

p2πq3

8y

�8

e�ipk�X�ωtqppxw, tq d
2X dt (2.29)

with k being the wave vector and X a space vector in the plane of the wall. The wavenumber-
frequency spectrum of wall-pressure Φpppk, ωq is then given by:

Φpppk, ωqδpk � k1qδpω � ω1q � xp̃pk, ωqp̃pk1, ω1qy (2.30)

where the angle brackets denote the ensemble average and δp�q the Dirac function.

Figure 2.22 provides the reader with information on the shape of the three-dimensional wavenumber-
frequency spectrum Φpppk, ωq. In the kx � kz plane (figure 2.22paq), which corresponds to the
top illustration in figure 2.21, the convective ridge and the acoustic domain have respectively
”elliptical” and ”circular” shapes. The acoustic domain is the region of supersonic wavenumbers
enclosed in the circle |k|   k0 where k0 is the acoustic wavenumber. In presence of a mean flow
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Figure 2.21 – Wavenumber-frequency spectrum Φpppk, ωq for a frequency ωδ�{U
8

=500, where
M

8

=0.1 and δ=2 cm. The model of Chase (1987) is used for illustration: Φpppk, ωq �

ρ20u
3
τδ

3

rpk
�

δq2�1{b2s
5
2

�

CM pk1δq2k2

|k2�k20|�ǫ2k20
� CT pkδq

2
� F

�

with k2
�

� pω � Uck1q
2
{phuτ q

2
� k2, and F �

pk
�

δq2�1{b2

pkδq2�1{b2

�

c1 �
c2|k2�k20|

k2 �

c3k2

|k2�k20|�ǫ2k20

	

. We set CM=0.1553, CT=0.0047, b=0.75, h=3,

c1=2/3, c2=0.005, c3=1/6, and ǫ=0.2. k0 � ω{c0 is the acoustic wavenumber.
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paq
pbq

pcq

Figure 2.22 – Wavenumber-frequency spectrum 10 log10 Φpppk, ωq of wall pressure beneath a
ZPG Mach 0.5 turbulent boundary layer in the paq kx � kz plane at ωδ{Ue � 5.9, pbq kx � ω
plane at kz � 0 and pcq kz�ω plane at kx � 0 - The white dashed circle in paq as well as the plain
white lines in pbq and pcq represent the acoustic domain defined by equation 2.31, the dashed
line in pbq corresponds to a theoretical convective velocity Uc � 0.7Ue - after Cohen (2015).
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at Mach number M , the acoustic domain is theoretically delimited by an ellipse which equation
is:

pkx � k0M{β2
pq

2

pk0{β2
pq

2
�

k2z
pk0{βpq2

� 1 (2.31)

where k0 � ω{co is the acoustic wavenumber and βp �
?

1�M2 is the Prantdl-Glauert pa-
rameter. For low frequencies, the acoustic peak is hardly distinguishable since it overlaps the
convective ridge. As the frequency increases, both acoustic and aerodynamic contributions sep-
arate due to small scale turbulent structures (e.g. high frequency structure) travelling at lower
convection velocities. The elliptic shape of the convective ridge demonstrates the anisotropic
topology of the coherent motions which have a privileged streamwise elongation in average.
In the kx � ω and kz � ω planes, the acoustic domain is delimited by a cone. The kx � ω
representation in figure 2.22pbq gathers two pieces of information. The first one is that the
inclination of the convective ridge provides a measure of the average convective velocity of the
structures. The second result comes from the observation that the acoustic peak is more intense
for positive wavenumbers kx ¡ 0 which translates in acoustic pressure preferably radiating in
the same direction as the mean flow within the boundary layer, contrary to the exterior acous-
tic radiation which preferably propagates upstream (Cohen, 2015; Gloerfelt and Margnat, 2014).

The early studies on wall-pressure fluctuations were based on wind tunnel measurements or
flight tests. The measurements techniques consist of microphones or kulites which provide the
pressure time signal at one point in space ppx0, tq. The auto-correlation of this signal is:

Rx0,pppτq �
xppx0, tqppx0, t� τy

p2rms

(2.32)

One can define the one point pressure spectrum Φpppx0, ωq by performing the Fourier transform
of the auto-correlation function:

Φpppx0, ωq �
1

2π

»

8

�8

Rx0,pppτqe
�iωτ dτ (2.33)

This provides information on the energy of the turbulent boundary layer excitation at one specific
point over the surface. If we assume that the convected pressure is a statistically homogeneous
field in the plane of the wall, this quantity can be obtained by integrating the wavenumber-
frequency spectrum over the entire range of wavenumbers pkx, kzq:

Φpppωq �

»

8

�8

Φpppk, ωq dk (2.34)

In order to obtain a smoother single point frequency spectrum, it is preferably computed from
equation (2.34) since it corresponds to the averaged autospectrum of a small patch over the
surface. Unlike experimental data, LES computational data allows this thanks to the sufficient
discretization of the wall.

Consideration of the source term

Considering an incompressible flow, the source term in Lighthill’s equation (2.27) can be written:

Source � Tij �
B

2
puiuj � uiujq

BxiBxj
(2.35)
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Applying the Reynolds decomposition ui � Ui � u1i to separate the mean and fluctuating quan-
tities and then subtracting the mean pressure, one obtains:

Tij � TMS
ij � T TT

ij �

�

2
BUi

Bxj

Bu1j
Bxi

�

�

�

B

2
pu1iu

1

j � u1iu
1

jq

BxiBxj

�

(2.36)

The term TMS
ij is the mean-shear (MS) source term (”linear” or ”rapid”) while T TT

ij is the sum
of turbulent-turbulent (TT) source terms (”non-linear” or ”slow”). Assuming that the mean
velocity in the boundary layer flow is U1 � U and invoking continuity for the TT term, the two
contributions can be simplified:

TMS
� 2

BU

By

Bv1

Bx
(2.37a)

T TT
ij �

Bu1i
Bxj

Bu1j
Bxi

�

B

2u1iu
1

j

BxiBxj
(2.37b)

It is interesting to consider such a decomposition of the source term in order to evaluate the
contribution of each component to wall-pressure fluctuations. Assuming a Gaussian distribution
for the turbulent statistics, Kraichnan (1956) evaluated the ratio between the contribution of
mean-shear and turbulent-turbulent terms as pMS

rms{p
TT
rms � 4{15Cf " 1. Meecham and Travis

(1980) calculated the value pMS
rms{p

TT
rms � 10 for a classical isotropic field with a Gaussian prob-

ability distribution. More recently, Hu et al. (2016) calculated the contributions of the MS and
TT terms by solving the Poisson equation of pressure. The source term was obtained by a Fast
Random Particle-Mesh method (FRPM, Ewert et al. (2000); Siefert and Ewert (2009)) based
on a RANS calculation. When plotting the one-point spectra of wall-pressure, they found that
most of the energy is contained in the MS term and that the TT term can be neglected, follow-
ing the conclusions of Townsend (1976b). Chang et al. (1999) analyzed a DNS of low Reynolds
number incompressible turbulent channel flow to study the relationship between wall-pressure
and velocity field sources. Contrary to the results above, it appeared that the mean-shear and
turbulent-turbulent partial pressures are the same order of magnitude close to the wall.

2.3.2 Effect of pressure gradient on pressure spectrum

Point-frequency spectrum

It is interesting to know the effect of the pressure gradient on wall-pressure fluctuations since the
majority of flows in engineering applications are submitted to pressure gradients. On an aircraft
for instance, adverse pressure gradient areas exist at the beginning of the windshield, over the
fuselage/wing junction and on the aft fuselage, whereas favorable pressure gradient areas are
found over the entire cockpit (see figure 2.23).

Many authors have tackled this particular aspect looking mainly at the one-point frequency
spectrum (Bradshaw, 1967a,b; Burton, 1973; McGrath and Simpson, 1988; Schloemer, 1967) and
two main results emerge: 1) absolute levels of energy increase with an adverse pressure gradient
and 2) the mid-frequency slope becomes steeper as the pressure gradient moves from favorable
to adverse. This is shown in figure 2.24 which compares the one-point frequency spectra for
different pressure gradient cases and intensities measured over a rotating NACA 0012 airfoil
(Hu and Herr, 2016).
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Figure 2.23 – Streamwise pressure gradient over front region of a typical long range aircraft.
Arbitrary units - Airbus document.

Figure 2.24 – One-point frequency spectra for different cases of pressure gradient measured on
a rotatable NACA 0012 airfoil - angles indicate the angle of attack of the airfoil - after Hu and
Herr (2016).
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Figure 2.25 – Wavenumber-frequency spectra 10 log10 Φpppk, ωq for favorable (FPG), zero (ZPG),
adverse weak (APGw) and adverse strong (APGs) pressure gradients in the kx � kz plane at
frequencies ωδ{Ue � 2.7 (FPG), 3 (ZPG), 4.3 (APGw) and 5.2 (APGs) after Cohen (2015).
Refer to section 3.1 for description of the pressure gradients.

Wavenumber-frequency spectrum

Figure 2.25 shows a direct effect of the pressure gradient on the wavenumber-frequency spectrum.
By looking at the representation in the kx�kz wavenumber plane for a given frequency, it can be
seen that the convective ridge has a greater extent along kx for the adverse pressure cases and a
smaller one for the favorable pressure gradient case. This result has also been observed through
experimental measurements of the wall-pressure cross-spectra in wind tunnels by Salze et al.
(2014). This behaviour suggests that, for the adverse pressure gradient case, the wall-pressure
is related to events (or structures) which have a smaller extent in the streamwise direction, and
vice-versa for the favorable case.

2.3.3 Fluid-structure coupling

In this section, an overview of the theory behind fluid-structure coupling is given by developing
the example of a flat plate under the weak coupling assumption. The weak coupling assumption
assumes that the plate is linearly excited by the flow and that the influence of the motion of
the panel on the flow is neglected. In fact, very few experiments tackled this problem; Mercer
(1962) found no influence on the mean boundary layer quantities through measurements in a
water channel with a vibrating wall, Izzo (1969) measured enhanced streamwise velocity fluc-
tuations at frequencies of vibration for which duτ {ν ¡ 3, where d is the amplitude of the wall
motion.
Moreover, it has been demonstrated (Junger and Feit, 1986; Timoshenko and Woinowsky-
Krieger, 1959) that curved plates may be approximated as vibrating flat plates as long as the
condition

kbR "

4
?

12
a

R{h (2.38)

holds, where R is the radius of the curvature, h the thickness of the plate and kb the plate
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bending wavenumber. For a classical aircraft panel with R � 1.94m, h � 1.4mm, equation
(2.38) is satisfied for the range of frequencies of the TBL excitation. The flat plate is then a
simple example for fluid-structure coupling for aircraft panels.
This being said, consider a simply supported thin elastic plate of length a and breath b set in an
infinite rigid baffle. The flat plate has bending stiffness B, membrane tensions Nx and Nz and
mass per unit area M . The plate is bounded by a turbulent boundary layer flow of density and
sound speed ρ0 and c0 on one side and a fluid at rest characterized by ρ1 and c1, as illustrated
in figure 2.26. Under the weak coupling assumption, the driving pressures consist of the perfect
rigid wall boundary layer pressure pt and the acoustic pressure fluctuations induced by the plate
motion.

Figure 2.26 – Flat plate model for TBL-structure coupling.

Before going into the theoretical expressions, keep in mind that in the following equations, i
refers to the index of the medium (0=turbulent boundary layer and 1=fluid at rest) whereas i
is the imaginay number defined by i2 � �1.

Let St be the power input from the TBL, S0 and S1 the powers radiated respectively to the
exterior half space and interior half space and Sd the dissipated power. Therefore, the power
balance writes:

Stpωq � S0pωq � S1pωq � Sdpωq (2.39)

The quantity of interest here is the power input Stpωq. The harmonic normal velocity component
for the plate vppx, z, ωqe

�iωt
{2π satisfies

B∇4vp �Nx
B

2vp
Bx2

�Nz
B

2vp
Bz2

�Mω2vp � iωrpt � p0 � p1sx�0 (2.40)

The acoustic pressures p1 and p0 obey the Helmholtz equation

p∇2
� k2i qpi � 0 (2.41)

where ki � ω{ci is the acoustic wavenumber and are linked to the plate velocity via the boundary
condition

1

ρi

Bpi
Bx

� iωvp i � 0, 1 (2.42)

which guarantees equal displacement for the fluid and the plate in the normal direction. It
remains to include structural damping which shall be represented as a small imaginary compo-
nent:
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B � Brp1� iǫsq Nx � Nxrp1� iǫsq Nz � Nzrp1� iǫsq (2.43)

The plate velocity can now be expressed as a sum of modal components:

vppx, z, ωq �
¸

mn

vp,mnpωqΨmnpx, zq (2.44)

where Ψmnpx, zq is the mode shape for a simply supported plate, i.e.:

Ψmnpx, zq �
2

?

ab
sin
�mπx

a

	

sin
�nπz

b

	

(2.45)

Let Smnpkq be the Fourier transform of the mode shape Ψmnpy, zq. Therefore, the modal exci-
tation term Φmn can be written as the weighted contributions of the wall-pressure wavenumber-
frequency spectrum Φpppk, ωq over the spatial components of mode pm,nq:

Φmn �
1

p2πq2

»

8

�8

Φpppk, ωq|Smnpkq|
2 d2k (2.46)

It is now possible to calculate the normalized boundary layer input power S̃tpωq such as:

S̃tpωq � 2
¸

m,n

Repdmnq
Φ̃mn

|dmn|
2

(2.47a)

Φ̃mn �
ω2uτ
τ2wδU

2
c

Φmn (2.47b)

dmn � i

�

Br|k|
2
�Nxrk

2
m �Nzrk

2
n

Mω2
p1� iǫsq � 1

�

� ǫf0Z
0f
mnmn � ǫf1Z

1f
mnmn (2.47c)

ǫfi �
ρici
Mω

i � 0, 1 (2.47d)

Zif
mnmn �

ki
2π2

»

8

�8

S�mnSmn

pk2i � |k|2q1{2
d2k i � 0, 1 (2.47e)

where Φ̃mn is the normalized modal excitation term and Zif
mnmn and dmn are dimensionless

impedances. S�mn denotes the complex conjugate of Smn.

It is important to keep in mind that the noise levels in an aero-moving vehicle are highly
linked to the degree of coupling, i.e. the degree of power reception by the structure. This was
found to be dependent on how well the structure filters the excitation wavenumbers. Boundary
layer induced vibration is complicated because the wavenumber spectrum of wall-pressure is
not independent of the wavenumber: high pressure levels are concentrated in a region near
the convective wavenumber kc � ω{Uc and the acoustic domain |k|   k0 � ω{c0 as shown in
figures 2.21 and 2.22. In figure 2.28paq, the speed of free bending waves of the plate is greater
than the convective wavenumber cb ¡ Uc, so that the shape function and maximum of pressure
spectrum do not overlap and leads to low coupling. This situation is more common in underwater
applications. In the aeronautical field, the convective velocity increases and becomes greater than
the phase speed of bending waves so that km � kc and fluid-structure coupling becomes efficient,
as can be seen in figure 2.28pbq. Finally, acoustic coincidence occurs when the convection velocity
approaches the speed of sound c0; this is shown in figure 2.27.
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Figure 2.27 – Φpppk, ωq spectra in the kx � ω plane at constant kz and bending wavenumber
for an infinite plate (black line). The dashed circles show regions of acoustic and hydrodynamic
coincidence between the TBL excitation and the structure.

paq

pbq

Figure 2.28 – Φpppk, ωq spectra at constant frequency with (left) low coupling cb ¡ Uc and (right)
high coupling cb   Uc. Black line shows the bending wavenumber for an infinite plate.

37



CHAPTER 2. TURBULENT BOUNDARY LAYER : LITERATURE REVIEW

2.3.4 Wall-pressure spectrum models

A compendium of the main existing models is given. The list is exhaustive enough to provide
a picture of the current state of the art concerning wall-pressure modeling and the underlying
parameters.

Auto-correlation empirical models

ESDU
ESDU (1975) is a power spectrum model based on analysis and curve fitting of flight measure-
ments.

Robertson
Robertson (1971) based his model on Lowson (1968) work and data from supersonic NASA-Ames
measurements.

Φpωq �
pms

ω0

�

1�
�

ω
ω0

	0.9
�0.2 (2.48)

with ω0 � 0.5Ue{δ
� and using the definition of the mean square pressure fluctuations from

Lowson (1968)

pms �

�

0.006q

1� 0.14M2


2

where q � ρ0U
2
e {2 is the dynamic pressure and M the Mach number.

Willmarth-Amiet-Roos
Amiet (1976) proposed the following expression for the pressure spectrum underneath a turbulent
boundary layer based on measurements by Willmarth and Roos (1965) over a flat plate.

Φpωq �
q2δ�

Ue

2� 10�5

1� ω̄ � 0.217ω̄2
� 0.00562ω̄4

(2.49)

valid for 0.1   ω̄ � ωδ�{Ue   20 and where q � ρ0U
2
e {2 is the dynamic pressure.

Chase

Φpωq �
τ2w
ω

�

2πCMα�3
p1� µ2α2

q � 3πCTα
�1
p1� α�2

qq

�

(2.50)

with

µ � huτ
Uc

α2
� 1�

�

bωδ
Uc

�2
	

Chase recommends to use the values h � 3, CM � 0.466{h, CT � 0.014{h and b � 0.75.

Chase-Howe
Howe (1998) builds a simple model based on the Chase (1980) model. This model does not
include the ω�5 decay that is sometimes measured at high frequencies.
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Φpωq � 2

�

δ�

Ue


3
pωτwq

2

�

�

ωδ�

Ue

	2
� 0.0144

�3{2
(2.51)

Goody
The Goody (2004) model is a modified Chase-Howe model based on 19 different experimental
studies which cover a range of Reynolds numbers 1400   Reθ   23400. These modifications give
higher levels at low frequencies and make high frequencies decay more rapidly. The somewhat
Reynolds number RT in the denominator ensures a control on the mid frequencies bandwidth.

Φpωq �
τ2wδ

Ue

3.0
�

ωδ
Ue

	2

�

�

ωδ
Ue

	0.75
� 0.5

�3.7

�

�

1.1R�0.57
T

�

ωδ
Ue

	�7
(2.52)

with

RT �
u2τ δ

Ueν

Smol’yakov
Smol’yakov (2000) built his model to take into account the fact that the single point pressure
spectra scales with different variables depending on the frequency band.

Φpωq �
1.49�10�5τ2wνRe2.74θ ω2

ν

u2
τ

p1� 0.117Re0.44θ ω
1{2
ν q ων   ωθ

Φpωq � 2.75τ2wν
u2
τω

1.11
ν

r1� 0.82 expp�0.51pων
ωθ
� 1qs ωθ   ων   0.2

Φpωq � τ2wν
u2
τ
p38.9e�8.35ων

� 18.6e�3.58ων
� 0.31e�2.14ων

qr1� 0.82 expp�0.51pων
ωθ
� 1qs ων ¡ 0.2

where ων �
ων
u2
τ
and ωθ � 49.35Re0.88θ .

Efimtsov 1
Efimtsov 1 model (Efimtsov, 1982) is based on multiple wall pressure measurements on aircraft
fuselage during flight tests. The results cover Mach and Reynolds numbers domains ranging
within 0.41  M   2.1 and 0.5� 108   Rex   4.85� 108.

Φpωq �
0.01τ2wδ

uτ

�

1.0 � 0.02
�

ωδ
uτ

	2{3
� (2.53)

Efimtsov 2
Efimtsov 2 model (Efimtsov et al., 1999) is an updated model using data from TsAGI wind
tunnel and flight measurements on supersonic aircraft TU-144LL.

Φpωq �
2παu3τρ

2
8

δβ
�

1� 8α3
�

ωδ
uτ

	2
�1{3

� αβReτ

��

ωδ
uτ

	

Re�1
τ

�10{3
(2.54)
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where

Reτ �
δuτ
νw

γ � 0.905

Reτ0 � 3000 Tw � T
8

�

1� rκ�1
2 M2

�

β �

�

1�
�

Reτ0
Reτ

	3
�1{3

r � 0.89

α � 0.01 κ � 1.4

νw � ν
8

ρ
8

ρw

�

Tw
T8

�γ
ρw � ρ Tw

T
8

Rackl and Weston
Rackl and Weston (2005) used two functions to adjust Efimtsov 2 model in order to take into
account the broadband spectral peak that appears near Strouhal number Sh � 2πfδ�{Ue � 0.6
and the lower high frequency negative slope compared to other models and measurements on
the TU-144LL test data.

factor1 � 2.5 exp

�

�

�

ln

�

2πfδ�

Ue




� lnp0.6q


2
�

factor2 �
1

4

�

tanh

�

log10

�

f

1000





� 1

�

pM � 1.65q log10pf q

In order to do this properly, one has to convert the Efimtsov model to decibles, then add the
Rackl and Weston factors, and finally convert the corrected model back into the original units.

Laganelli
Laganelli and Wolfe (1993) model is derived from experimental studies from AFWAL Mach3
facility, Blake, Laganelli, Raman, Coe and Bull and fluid dynamics principles. This model is an
expansion of Robertson’s model which takes into account compressibility effects.

Φpωq � 2.293
q2δ�

Ue

10�5F�0.5733
C

1� F 2.867
C

�

ωδ�

Ue

	2 (2.55)

where FC is a transformation from compressible to incompressible flow states :

FC �

Cfi

Cfc

�

h�

he
� 0.5�

hw
haw

�

0.5 � r
γ � 1

2
M2

e




� 0.22r
γ � 1

2
M2

e

with Me, r � 0.896 and γ � 1.4 being respectively the Mach number at the edge of the boundary
layer, the recovery factor and the ratio of constant heat capacity for air. hw{haw is the ratio of
enthalpy between normal and adiabatic wall conditions.

Goodwin
Goodwin (1994) built a model using flight test data on three supersonic aircraft: XB-70, A3J
and Concorde. However only a few amount of data collected on the two first aircraft was usable
and the measurement on Concorde seemed suspect due to the sensitivity of the Kulites to the
flushness of the sensor’s surface relatively to the surrounding surface.

Φpωq �
2

π

�

prms

qe


2�ρwpTw, pwq

ρe


3 1.2� 0.1
�

n�7
7

�0.45

1�
�

1.2θω
Ue

	2 (2.56)
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where

n � 4.0� 2.5 log10

�

Rex
6.31�105

	

p2rms �
2
π
A
B

Ue
θ Φp0q

A �

�

ρe
ρwpTw,peq

	3
θ
δ�

�

1� 0.08
�

n�7
7

�0.45
	

B � 1.2

Kim-George (airfoil model)
Kim and George (2005) built a model by curve-fitting experimental data from Brooks and
Hodgson (1981) and Yu and Joshi (1979) on a NACA0012 airfoil. Since they were interested in
trailing edge noise for rotor application, the measurements they used were from a flow subjected
to an adverse pressure gradient.

Φpωq �
q2δ�

2Ue

1.732 � 10�3ω̄

1� 5.489ω̄ � 36.7ω̄2
� 0.1505ω̄5

ω̄   0.06 (2.57a)

Φpωq �
q2δ�

2Ue

1.4216 � 10�3ω̄

0.3261 � 4.1837ω̄ � 22.818ω̄2
� 0.0013ω̄3

� 0.0028ω̄5
0.06   ω̄   20 (2.57b)

where q � 1{2ρ0U
2
e is the dynamic pressure and ω̄ � ωδ�{Ue.

Rozenberg
Rozenberg (2007) based his model on Goody’s model with a Strouhal number including the
displacement thickness δ� rather than the boundary layer thickness and fitting new parameters
based on six different cases of adverse pressure gradient flows.

Φpωq �
τ2maxδ

�

Ue

�

2.82∆2
p6.13∆�0.75

� F1q
A1
� �

4.2
�

Π
∆

�

� 1
�

ω̃

r4.7ω̃0.75
� F1s

A1
� rC3ω̃s

A2
(2.58)

where the maximum shear stress along the wall-normal τmax is preferred to the shear stress τw
as suggested by Simpson et al. (1987) and:

F1 � 4.76
�

1.4
∆

�0.75
r0.375A1 � 1s A1 � 3.7� 1.5βC

A2 � min
�

3, 19{
?

RT

�

� 7 ∆ �

δ
δ�

C3 � 8.8R�0.57
T ω̃ �

ωδ�

Ue

Catlett
Catlett et al. (2014) developed an empirical spectral model for wall-pressure beneath turbulent
boundary layer subjected to an adverse pressure gradient. This model is derived version of the
Goody model where the constants were calibrated based on wind tunnel measurements over
the trailing edge region of an airfoil model with three interchangeable, symmetric trailing edge
sections to obtain different intensities for the pressure gradient.

Φpωq �
τ2wδ

Ue

a
�

ωδ
Ue

	b

��

ωδ
Ue

	c
� d

�e
�

�

fRg
T

�

ωδ
Ue

	�h
(2.59)
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with the deviations from Goody’s standard model parameters are given by:

lnpa� aGq � 4.735pβ∆Re0.35∆ q

0.162
� 5.379 b � 2

c� cG � 2.210pβδq
0.559

� 0.069 d� dG � 0.072pβ∆Re0.35∆ q

0.552
� 0.069

e� eG � �0.138pβδRe0.35∆ q

0.310
� 0.155 f � fG � 8.862pHRe0.1∆ q

�1.414
� 1.241

g � gG � 1.103pβδq
0.690

� 0.038 h� hG � 0.959pβ∆Re0.35∆ q

0.052
� 0.207

where βδ and β∆ are Clauser parameters defined respectively with the length scales δ and ∆,
Re∆ is the Reynolds number based on ∆ and H the shape factor. The length scale ∆ is the
Rotta-Clauser parameter introduced by Rotta (1950) and Clauser (1954). These parameters are
defined by:

βδ �
δ
q
dp
dx β∆ �

∆
q

dp
dx Re∆ �

∆Ue
ν H � δ�{θ ∆ � δ�

b

2
Cf

Klabes
Similarly to Catlett et al. (2014), Klabes et al. (2016) builds a variation of the Goody model
using flight measurement data over the fuselage of the DLR’s (Deutsches Zentrum für Luft- und
Raumfahrt) A320 Advanced Technology Research Aircraft (ATRA) at different flight levels and
Mach numbers. Therefore he was able to reevaluate the constants and exponents of the Goody
model and proposed a new normalization based on the local value of the kinetic energy.

Φpωq �
δpρkq2

Ue

a
�

ωδ
Ue

	b

��

ωδ
Ue

	c
� d

�e
�

�

fRg
T

�

ωδ
Ue

	�h
(2.60)

a �
�

kmax
kref

	γ
b � 0.5

c � 1.35 � 3βδ d � Re0.174δ � 6.7

e � �0.11428β∆δ � 1.55 f � 1.1

g � �0.57 h � 7.0

with

βδ �
δ
q
dp
dx β∆δ

�

∆δ
q

dp
dx

Re∆δ
�

∆δUe

ν ∆δ � δ
b

2
Cf

γ � r�592.71Cf � 1.74sRe0.01∆δ
s

Hu
Hu and Herr (2016) measured wall-pressure fluctuations beneath a zero, favorable and adverse
pressure gradient turbulent boundary layer in a wind tunnel. Various intensities of adverse
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pressure gradient were obtained using a rotated NACA 0012 airfoil with incidence over a flat
plate. Results from one-point spectra measurements showed that for both pressure gradient
cases, fairly good collapse for the spectral maxima is found by scaling with outer variables
uτ {pq

2θq and ωθ{Ue. Once again, the Goody model was a good candidate with the new scaling
parameters:

Φpωq �
q2θ

uτ

apωθ{Ueq
b

rpωθq{Ueq
c
� dse rf pωθq{Ues

g
(2.61)

and the constants are adjusted based on the APG measurements:

a � p81.004d � 2.154q � 10�7 b � 1.0

c � 1.5h1.6 d � 10�5.8�10�5ReθH�0.35

e � 1.13{h0.6 f � 7.645Re�0.411
τ

g � 6 h � 1.169 lnpHq � 0.642

where H is the shape factor

Cross-correlation empirical models

Corcos
Corcos (1964) assumed that the loss of coherence between two spatially separated points is
equal to the loss of coherence in the streamwise direction multiplied by the loss of coherence in
the spanwise direction. From a curve fit for the narrow-band spatial correlation between wall
pressures, Corcos obtained:

Ψpx, z, ωq � Φpωq exp pikcx� |αωxx| � |αωzz|q

Corcos model in the wavenumber-frequency domain is found by applying the Fourier transform:

Ψpkx, kz, ωq � ΓpωqΨpkxqΨpkzq �
2Φpωq

π

αωxαωz

pα2
ωx � pkx � kcq2q pα2

ωz � k2zq

Mellen (1990) gives a slightly modified version of the previous expression by dividing it by the
area 2π:

Ψpkx, kz , ωq � ΓpωqΨpkxqΨpkzq �
Φpωq

π2

αωxαωz

pα2
ωx � pkx � kcq2q pα2

ωz � k2zq

with:

αωx � kcαx �
ω
Uc
αx αωz � kcαz �

ω
Uc
αz

Graham (1997) normalizes the Corcos model:

Φpkx, kz , ωq � Ψpkx, kz, ωq
p2πq2ω2

U2
cΦpωq

(2.62)

and gives the following expression:

Φpkx, kz , ωq �
4αxαz

�

α2
z �

�

Uckz
ω

�2
� �

α2
x �

�

Uckx
ω � 1

�2
� (2.63)
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where αx � 0.10 and αz � 0.77 based on measurement by Willmarth and Woolridge (1962).
Blake (1986) recommends αx � 0.116 and αz � 0.70 for smooth walls. More recently, authors
have observed that the correlation length coefficients are not constant over the entire frequency
range (Cohen, 2015; Efimtsov, 1982; Finnveden et al., 2005; Hu and Herr, 2016).

Cockburn-Jolly
Cockburn and Jolly (1968) introduced a factor ǫδ� to the Corcos model in order to take into
account the limited thickness of the boundary layer:

ǫδ� �
a

1� p3kcδ�q�2 (2.64)

After applying the Graham normalization, the Cockburn-Jolly model is given by:

Φpkx, kz, ωq �
αxαzǫδ�

�

α2
zǫ

2
δ� � pkx � kcq2

� �

α2
zǫ

2
δ� � k2z

� (2.65)

Efimtsov
Efimtsov cross-correlation model (Efimtsov, 1982) is based on Corcos model but uses different
correlation lengths αx and αz introducing boundary layer thickness dependence. Efimtsov’s
results are derived from an extensive series of measurements on aircraft, over a Mach number
range 0.41  M   2.1.

Λx

δ
�

�

�

a1Sh

Uc{uτ


2

�

a22
Sh2 � pa2{a3q2

�

�1{2

(2.66a)

Λz

δ
�
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a4Sh

Uc{uτ
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a25
Sh2 � pa5{a6q2
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�1{2

M
8

  0.75 (2.66b)

Λz

δ
�

�

�

a4Sh

Uc{uτ


2

� a27

�

�1{2

M
8

¡ 0.9 (2.66c)

where the Strouhal number is defined as Sh � ωδ{uτ and:

a1 � 0.1 a2 � 72.8

a3 � 1.54 a4 � 0.77

a5 � 548 a6 � 13.5 a7 � 5.66

Chase
Chase (1980) developed his first model which gives better prediction for low wavenumbers com-
pared to the Corcos model. Hereafter Graham’s form of Chase’s most popular wavenumber-
frequency model is presented.

Φpkx, kz, ωq �
p2πq3ρ2ω2u2τ

U2
cΦpωq

�

CMk2x
�

K2
�

� pbMδq�2
�5{2

�

CT |k|
2
|

�

K2
�

� pbT δq�2
�5{2

�

(2.67)

44



2.3. TURBULENT BOUNDARY LAYER WALL-PRESSURE SPECTRUM

with:

K2
�
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	2
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�

Uc
bTωδ

	2
µ � huτ

Uc
CM � 0.0745

CT � 0.0475 bM � 0.756 bT � 0.378 h � 3.0

Chase attempted an extension of his model to the lower wavenumber regions in order to take
into account the acoustic domain (Chase, 1987). A modified version of the Chase model was
developed by Finnveden et al. (2005) by studying the vibration response of a structure excited
by a turbulent boundary layer.

Smol’yakov and Tkachenko
Smol’Yakov et al. (1991) based their model on measured spatial correlations and fitted expo-
nential curves to their experimental results.

Ψpkx, kz , ωq � 0.974ApωqhpωqrF pk, ωq �∆F pk, ωqs (2.68)

where
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Mellen
Mellen (1990) built an elliptical model for wall pressure cross-spectrum derived from the Corcos
model. Hereafter is the expression of the model as given by Miller (2002).

Φpkx, kz , ωq �
2πpαxαzq

2k3c

rpαxαzkcq2 � pαxkzq2 � α2
zpkx � kcq2s

3{2
(2.69)

with αx � 0.10 and αz � 0.77.

Statistical models

In statistical models, the focus is the modelling of turbulent velocity cross-spectra across the
TBL. Wall-pressure fluctuations are then computed from the velocity fluctuations through a
Poisson equation in the incompressible limit, or a wave equation to include the acoustic part.
Panton and Linebarger
Panton and Linebarger (1974) reconstruct the flow direction wavenumber spectrum of wall-
pressure fluctuations by solving the fluctuating pressure Poisson equation. A law of the wall
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plus Coles (1956) wake function represents the mean velocity profile and a scale-anisotropic
model was built (based on a curve-fitting process from Grant (1958) zero-pressure gradient
boundary layer) to retrieve the normal velocity correlation R22. They were able to compute
wavenumber spectra for various Reynolds numbers and adverse pressure gradients.

Peltier and Hambric
Peltier and Hambric (2007) built a statistical model based on data from Reynolds-Averaged
Navier-Stokes (RANS) solutions. The authors use Gavin (2002) Simplified Anisotropic Model
(SAM) to reproduce the velocity correlations needed for the fluctuating pressure Poisson equa-
tion. Tuning the parameters of the velocity correlation model, Peltier and Hambric (2007) could
predict wall-pressure spectrum for favorable, zero and adverse pressure gradient flows.

Monte
Monte (2013) studied the surface pressure fluctuations for cylinders with a high length to radius
ration. This work can find applications in the field of linear underwater sonar antennas where
the hydrodynamic noise due to the boundary layer developing over the antenna is a major issue.
Here again the pressure is obtained by solving the Poisson equation for an incompressible flow.
The mean flow, the Reynolds stress tensor and the kinetic energy for an axisymmetric flow over
a cylinder are obtained from a RANS calculation. The velocity correlations were obtained using
the elliptic model of He and Zhang (2006) adapted to curved geometries.

Stochastic models

Another way of obtaining the pressure spectrum is to develop a model based on a synthesized
turbulent velocity field. A stochastic model is then obtained by using this spatio-temporal real-
ization of the TBL velocity field as an input for the Poisson equation for instance.

Ahn’s horseshoe vortex model
Ahn et al. (2010) built a stochastic model where horseshoe/hairpin-like vortices are subjected
to a mean flow to reproduce a standard instantaneous turbulent velocity field. As for the statis-
tical models, a Poisson equation is solved in order to retrieve the induced pressure field at the
wall. One is then able to compute the wavenumber wall-pressure spectrum using a Fast Fourier
Transform (FFT) procedure. This model will be detailed in section 4.1.1.

Dhanak’s streamwise vortex model
Dhanak et al. (1997) developed a coherent structure model to predict the wall-pressure fluctu-
ations induced by the vortices in the near-wall region. Comparing the model predictions with
exact solutions of the Navier-Stockes equations, they determined that the best candidates were
pairs of counter-rotating streamwise vortices. The model could predict the high frequency and
high spanwise wavenumber range quite well, as well as the probability density function of the
surface pressure.

Hu model for frequency-wavenumber spectrum
Hu et al. (2016) developed a model for wall-pressure spectrum based on the Fast Random
Particle-Mesh Method (FRPM) introduced by Ewert et al. (2011). The principle of this method
is to generate a synthetic turbulent velocity field by using averaged turbulence statistics and
mean flow description from RANS computations. This is then fed into the Poisson equation for
pressure where both the mean-shear and turbulence-turbulence terms are considered. Compar-
ing their results with experimental results for a ZPG and APG flow, they were able to obtain
satisfactory results for the one-point spectra at low frequencies but faced considerable attenu-
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ation in the high frequency range since the FRPM was unable to reconstruct the correct levels
of kinetic energy in the near-wall region. The cross spectra and the convective velocities were
well determined and consistent with the measurements.
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Chapter 3

Analysis of turbulent structures in
flows subjected to zero and non-zero
pressure gradients

3.1 Numerical database

Direct noise calculations consist in computing both the turbulent aerodynamic field and the as-
sociated acoustic fluctuations by solving the compressible flow equations (Gloerfelt and Berland,
2013). Such simulations are carried out for turbulent boundary layers at Mach 0.5 subjected
to four different pressure gradients: a strong adverse pressure gradient (APGs), a weak adverse
pressure gradient (APGw), a zero pressure gradient (ZPG) and a favorable pressure gradient
(FPG). Inclined plates with different slopes are used to set the pressure gradients, which requires
a curvilinear version of the flow solver as described hereafter.

3.1.1 Equations and numerical methods

The governing equations are the compressible Navier-Stokes equations written for a curvilinear
domain by using a coordinate transform. The physical space (x1,x2) is mapped into a Cartesian
regular computational space (ξ1,ξ2), and the third direction, which corresponds to the spanwise
direction z, is left unchanged. By noting ρ the density, ui the velocity components (u3 � w
in the following) and E the total specific energy, the set of equations for the unknown vector
U � pρ, ρu1, ρu2, ρu3, ρEq

T writes:

BU

Bt
�

BFc

Bξ1
�

BGc

Bξ2
�

BH

Bz
� 0 (3.1)

where the curvilinear fluxes are defined by:
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 (3.2)

with J � x1,ξ1x2,ξ2 � x1,ξ2x2,ξ1 the Jacobian of the coordinate transformation. The fluxes
F � Fe � Fv, G � Ge �Gv and H � He �Hv are the sum of the inviscid (subscript e) and
visco-thermal fluxes (subscript v) given by:
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Fe �
�

ρu1, ρu
2
1 � p, ρu1u2, ρu1u3, pρE � pqu1

�T
(3.3a)

Ge �
�

ρu2, ρu1u2, ρu
2
2 � p, ρu2u3, pρE � pqu2

�T
(3.3b)

He �
�

ρu3, ρu1u3, ρu2u3, ρu
2
3 � p, pρE � pqu3

�T
(3.3c)

Fv � p0, τ11, τ12, τ13, u1τ11 � u2τ12 � u3τ13 � q1q
T (3.3d)

Gv � p0, τ12, τ22, τ23, u1τ12 � u2τ22 � u3τ23 � q2q
T (3.3e)

Hv � p0, τ13, τ23, τ33, u1τ13 � u2τ23 � u3τ33 � q3q
T (3.3f)

The specific total energy is E � p{rpγ � 1qρs � u2i {2 for an ideal gas satisfying p � ρrT ,
where p is the pressure, T the temperature, r the gas constant, and γ the ratio of specific heats.
The viscous stress tensor τij is modelled as a Newtonian fluid τij � 2µSij �p2{3qµSkkδij , where
Sij � pui,j � uj,iq{2 is the strain rate tensor and µ is the dynamic molecular viscosity. The
dynamic viscosity is approximated with Sutherland’s law and the heat flux components qi are
modelled with Fourier’s law as in Gloerfelt and Berland (2013).

Dispersion-relation preserving finite differences on an eleven-point stencil optimized by Bogey
and Bailly (2004) are used for the derivatives of the convective fluxes, whereas standard fourth-
order finite differences are used for the viscous-thermal fluxes. The equations are integrated in
time using an explicit low-storage six-step Runge-Kutta scheme optimized in the wavenumber
space by Bogey and Bailly (2004). At the last substep, a selective filtering on an eleven-point
stencil (Bogey and Bailly, 2004) is applied in each direction with an amplitude of 0.2 to eliminate
grid-to-grid unresolved oscillations. Since large enough computational domains are required for
the wavenumber-frequency analysis, the grid resolutions correspond to wall-resolved large-eddy
simulations (LES). The effects of unresolved scales are taken implicitly into account by the
regularization term provided by the selective filter. The efficiency of this LES strategy has been
previously demonstrated for TBL flows (Aubard et al., 2013; Gloerfelt and Berland, 2013).

Periodic boundary conditions are used in the spanwise direction. On the solid wall, the no-
slip conditions ui � 0 are imposed, with Bp{Bn � 0 for the inviscid part, where n is the direction
normal to the solid surface. The finite-difference stencil for the convective terms is progressively
reduced down to the second order. At the wall, the temperature is calculated with the adiabatic
condition, and the density can be deduced using the ideal gas law. The viscous stress terms are
evaluated from the interior points by using fourth-order backward differences.

Since the weak acoustic radiation from the TBLs is directly computed in the simulations,
great care is required to select appropriate boundary conditions. At the upstream and upper
boundaries of the computational domain, the radiation boundary conditions of Tam and Dong
(1996), using a far-field solution of the sound waves, are applied. A large sponge zone (Gloerfelt
and Lafon, 2008) is furthermore added at the downstream end of the domain so that unhindered
passage of aerodynamic perturbations is possible without the generation of spurious acoustic
waves.

A critical point is to design a silent inflow technique to introduce perturbations necessary to
trigger laminar-to-turbulent transition of the boundary layer flows, without introducing spurious
noise. To that aim, a strategy based on a controlled transition has been developed in Gloerfelt
and Robinet (2013). A preliminary steady two-dimensional simulation with the same code is
performed for the flow over a backward-facing step (see figure 3.1). At the inlet, a laminar Blasius
boundary layer with a Reynolds number based on displacement thickness Reδ�in � 400 is imposed
ahead of the backward-facing step, whose height h yields a Reynolds number Reh � 462. A base
flow is defined by extracting flow variables in a vertical plane located few points downstream
of the step and a compressible linear stability analysis is conducted to find a resonant triad of
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Figure 3.1 – Sketch of the computational domain for the non-zero-pressure-gradient computa-
tions - Mean streamwise velocity ū and streamlines from a 2D simulation with the backward-
facing step of height h. The mean flow a few points after the step is used as inlet for the 3D
domain - from Gloerfelt and Margnat (2014).

Figure 3.2 – Top view close to the wall (y� � 25) of the streamwise velocity for the ZPG case
showing the transition zone. A fully turbulent state is reached after the solid line for x{h � 900.

unstable modes. Using the inlet freestream velocity U
8

and step height h as reference velocity
and length respectively, the triad is made up of one two-dimensional wave of frequency 0.2U

8

{h
and two oblique subharmonic waves of frequency 0.1U

8

{h with opposite phase angles satisfying
the resonant condition of Craik (1971). These values are close to those used in the work of
Craik (1971) but here the velocity profile exhibits an inflexion point, leading to unstable modes
with a greater amplification factor, which is favorable for developing instability waves from a
low initial amplitude. The triad of unstable modes is superimposed on the base flow at the inlet
of the three-dimensional simulations with equal amplitude of 6�10�4U

8

{h for the fundamental
and subharmonic waves. Details on the characteristics (frequency, wavenumber, amplitude) of
the resonant triad are given in Gloerfelt and Robinet (2013), where it has been checked that
the transition toward a turbulent state is smooth and acoustically quiet. Figure 3.2 illustrates
the transition pattern for the ZPG case. A fully turbulent state with no trace of the initial
disturbances is reached for x{h Á 900 and the zone of interest for the wall-pressure analyses
starts dowstream of this limit. As a consequence, details of the transition are not influential for
the present study. The important point is that the strategy adopted to trigger turbulence is
sufficiently silent so that the direct acoustic radiation can be investigated (Cohen, 2015; Cohen
and Gloerfelt, 2015; Gloerfelt and Margnat, 2014).

3.1.2 Grid design

The data analyzed in the paper are obtained from a series of simulations, whose main parameters
are summarized in table 3.2. Four values of the pressure gradient are considered by keeping a
horizontal freestream and changing the angle α of the plate.

Side views of the grids are presented in figure 3.3. The ZPG mesh is the same as the
simulations of Gloerfelt and Margnat (2014); Gloerfelt and Robinet (2013) and is discretized
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with 1440 � 400� 400 points. Grid points are equally spaced in the spanwise direction and are
clustered near the wall using a geometric progression of 2% for the 25 first points, then with
a rate of 2.5% for the following 155 points. The distribution is then uniform for the next 120
points and a stretching is finally applied to the last 100 points up to the top boundary (visible in
figure 3.3pcq for y2{h Á 600). In the streamwise direction, the grid points are clustered near the
inlet over a range of 200 points, so that small grid sizes are used for properly entering unstables
modes. The grid spacing is then regular up to the exit zone where a grid stretching with a
geometric progression of 3% is applied over the last 100 points to create a large sponge zone
where the flow variables are progressively filtered with a Laplacian operator at each time step
to minimize numerical reflections from the outlet.

α ∆x� ∆y�w ∆y�e ∆z� Nx1 Nx2 Nx3

APGs -11.49� 27.5 0.7 20.2 8.4 1600 400 400
APGw -6.05� 32.3 0.8 23.7 9.9 1600 400 400
ZPG 0� 37.8 1.0 27.7 12.6 1440 400 400
FPG 10.19� 46.0 1.2 33.7 14.2 1600 400 400

Table 3.1 – Summary of meshes parameters for the simulated cases at Mach 0.5 with pressure
gradients. The two values for ∆y� indicate the mesh spacing at the wall (subscript w) and at
the boundary layer edge (subscript e).

For the non-zero pressure-gradient cases, a curvilinear domain of 1600�400 points is defined
and extruded in the third direction on nz � 400 points. Along the x1-direction parallel to the
external freestream, a first region of horizontal plate is defined in order to have the same inlet
condition as the ZPG case. Note that the grid spacing is also refined on the 150 first points
near the inlet boundary and is maintained constant for the 200 next points with a spacing
slightly greater than in the zone of interest above the ramp. This second region corresponds
to an inclined plate with an angle α from the horizontal, which is negative for the adverse-
pressure-gradient cases and positive for the favorable-pressure-gradient cases. The values of α
are reported in table 3.1 and are chosen to set the strength of the pressure gradient. The points
are equally spaced on the ramp region with the nominal streamwise spacing. The third part of
the mesh represents the exit zone where a horizontal plate is recovered with a severe stretching
on the last 100 points. Note that the two transitions between the ramp and the flat portions are
progressive and corresponds to a low radius of curvature set on approximately 30 grid points.
The distribution of points in the wall-normal direction is the same as the ZPG case and the
mesh is also regular in the spanwise direction.

The velocity fields and wall-pressure analyses are restricted to a zone of interest where a
nearly equilibrium TBL flow is obtained. This area is defined between curvilinear absissae
xmin and xmax and is delimited with thick dashed lines in figure 3.3. These zones of interest
for each cases exclude the transitional development zone, the exit sponge zone and the upper
buffer region. For the non-zero pressure-gradient cases, the domain of interest in the px1, x2q-
plane in which the plate is inclined is transformed into a Cartesian px, yq-plane where the plate
is horizontal using a rotation and an interpolation of the variables. In the subsequent flow
analyses, u � cospαqu1 � sinpαqu2 and v � � sinpαqu1 � cospαqu2 are the x-component parallel
to the wall and y-component normal to the wall of the velocity respectively, where u1, u2 are
the components defined in the px1, x2q-plane and used in the governing equations (3.1). For the
analyses of the database, the coordinate system px, y, zq is used and the velocity components
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Figure 3.3 – Computation domain in the streamwise/wall-normal plane px1, x2q : strong adverse
APGs paq, weak adverse APGw pbq, zero gradient ZPG pcq, and favorable FPG pdq. The zone
of interest for the velocity and wall-pressure analyses is delimited with the dashed rectangle.
Parameter h is the height of the backward-facing step located upstream of the domain involved
in the turbulence transition process.
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are denoted pu, v, wq. It is noteworthy that the grid spacing in this region is regular in the
x- and z-directions, and that the physical values of the spacings ∆x, ∆z and ∆ymin are the
same for all simulations. They are given in table 3.1 in terms of wall units evaluated at the
middle of the domain of interest (based on the friction velocity uτ and the viscous length scale
δv � νw{uτ ). The subscript w is used to denote quantities evaluated at the wall and the subscript
e quantities evaluated at the edge of the boundary layer. In the tables 3.3 and 3.4 the quantities
representative of the different configurations are taken at the middle of the domain of interest
pxmax � xminq{2, which are very close to the values averaged over rxmin, xmaxs.

The time step for all simulations is ∆t � CFL∆ymin{pU8

� c
8

q � 0.025h{U
8

, corre-
sponding to CFL=1.5. The total simulation time is roughly the same for the different cases,
t � 20 000h{U

8

. Statistical quantities are averaged over time and the spanwise direction. Wall-
pressure planes are stored every 30∆t during the last 240 000 iterations, corresponding to 8000
samples and a non-dimensional time of approximately 6 000h{U

8

or 4.9pxmax � xminq{U8

.

3.1.3 Flow parameters

Computations are performed for a Mach 0.5 turbulent boundary layer subjected to zero (ZPG),
adverse (APGw and APGs) and favorable (FPG) pressure gradients. The intensity of the
pressure gradient is characterized by Clauser (1954) parameter βC defined as:

βC �

δ�

τw

dpe
dx

(3.4)

where δ�, τw and dp{dx are respectively the TBL displacement thickness, the shear stress at the
wall and the streamwise pressure gradient.

All parameters given in this section are measured at the middle of the zone of interest used for
the study, which corresponds to a zone of 720 (ZPG) to 800 (pressure gradient cases) points in
the streamwise direction centered around the middle of the inclined planes.

The 0.5 Mach number is lower than what is encountered in the field of aeronautics where the
Mach numbers vary around Mach 0.8 in cruise flight conditions. It is believed that Mach
number and compressibility (for flows ranging from Mach 0.5 to 0.9) have very low effect on
the structure of turbulence as noticed by Gloerfelt and Margnat (2014). Calculations for the
zero-pressure-gradient case were performed by Gloerfelt and Margnat (2014) and the non-zero-
pressure-gradient cases were computed by Cohen and Gloerfelt (2015).

The general parameters of the fluid and the turbulent boundary layer flows are given in Tables
3.2 and 3.3 respectively.

M
8

p
8

(Pa) T
8

(K) ν
8

(m2.s�1)

0.5 101300 298.15 1.5 x 10�5

Table 3.2 – Free flow properties for the LES computation

One can notice the same value of Reθ for both ZPG and FPG cases. This is due to the
fact that the boundary layers thickens at the starting curvature of the inclined plane for the
FPG case. Therefore, the initial TBL thickness δ0 at the beginning of the inclined plane is
greater than that of the ZPG case. Finally, table 3.4 provides the parameters characterizing the
pressure gradient for each flow, i.e the inclination angle α of the wall, the Clauser parameter βC ,
Clauser’s defect shape factor G, the acceleration/deceleration parameter K, the viscous-scaled
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δref � 103pmq δ�ref � 104pmq θref � 104pmq Reθref Re�ref Ueref pm{sq uτref pm{sq

APGs 1.83 4.53 2.77 3125 690 159 5.23
APGw 1.57 3.22 2.10 2462 694 166 6.09
ZPG 1.13 1.98 1.35 1693 610 173 7.17
FPG 1.24 1.62 1.17 1618 783 195 8.42

Table 3.3 – Boundary layer properties for the four pressure gradient cases. Subscript ref denotes
values taken at the middle of the domain of interest.

x

y

z

U
8

Figure 3.4 – Sketch of the computational setup and of the coordinate system (figure not to scale)
for the 3D database. A small step lying in the spanwise direction is introduced downstream of
the inlet boundary condition in order to ignite the transition to turbulence of the boundary layer
flow - after Gloerfelt and Berland (2013)

pressure gradient ∆p, Castillo and George (2001) parameter Λ, the shape factor H and Coles
(1956) wake parameter Π.

α βC G K � 107 ∆p � 103 Λ H Π

APGs -11.49� 1.6 11.5 -3.4 9.8 0.24 1.63 1.8
APGw -6.05� 0.51 9.2 -1.7 3.8 0.18 1.53 1.1
ZPG 0� 0 7.4 0 0 0 1.47 0.6
FPG 10.19� -0.36 6.2 2.4 -3.8 -0.92 1.39 0.17

Table 3.4 – Parameters quantifying the pressure gradient for the different cases (α is the angle
of the slanted wall used to impose a prescribed pressure gradient.

3D database

For the four other databases mentioned above, only two-dimensional planes were able to be
saved due to data storage issues. Nonetheless, there is one three-dimensional database (ZPG3D)
available from a previous computation of a Mach 0.5 zero pressure gradient turbulent boundary
layer over a flat plate (see Gloerfelt and Berland (2013)). The free flow parameters are similar
to those given in table 3.2. The grid and boundary layer parameters are given in tables 3.5 and
3.6 and a sketch of the computational domain is provided in figure 3.4. The main difference
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with the 2D databases is that the step used for the laminar-turbulent transition is within the
computation domain. However, this difference has no impact on the fully turbulent velocity
field.

∆x� ∆y�w ∆y�e ∆z� Nx1 Nx2 Nx3

ZPG3D 37 0.98 27 14.7 1372 300 131

Table 3.5 – Summary of mesh parameters for the Mach 0.5 ZPG 3D database. The two values
for ∆y� indicate the mesh spacing at the wall (subscript w) and at the boundary layer edge
(subscript e).

δref � 103pmq δ�ref � 104pmq θref � 104pmq Reθref Re�ref Ueref pm{sq uτref pm{sq

ZPG3D 1.13 1.97 1.36 1500 556 173 7.38

Table 3.6 – Boundary layer properties for the zero pressure gradient 3D database. Subscript
ref denotes values taken at the middle of the domain of interest.

3.1.4 Available database summary

For the 2D databases, the following data is available:

� 8000 timesteps

� the three components of the velocity field pu, v, wq

� 8 regularly spaced streamwise/wall-normal px, yq planes spanning the entire spanwise ex-
tent of the computational domain

� 11 wall-parallel px, zq planes spanning the entire TBL thickness

� wall-pressure field ppx, z, tq

� wall-pressure frequency-wavenumber spectra Φpppkx, kz, ωq.

For the ZPG3D database, the following data is available for the four pressure gradient cases:

� 4500 timesteps

� the three components of the velocity field pu, v, wq on 3D volume.

Table 3.7 summarizes which database is used for each step of the present study.
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FPG ZPG APGw APGs ZPG3D

Velocity field 3D analysis X

Velocity field 2D analysis X X X X

Pressure spectra analysis X X X X

Table 3.7 – Use of the different databases for each step of the analysis.

3.1.5 Mean profiles and equilibrium state validation

The mean velocity profiles as well as the turbulent intensity urms are shown in figure 2.6.
Concerning equilibrium of the different flows, the streamwise evolutions of the pressure gradient
parameters mentioned in section 2.1.3 are plotted in figure 3.5. A constant character is more or
less observed in the region of interest, however discrepancies are visible for the APGs case at
the end of the domain.
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Figure 3.5 – paq Clauser pressure gradient parameter βC , pbq acceleration parameter K and pcq
viscous scaled pressure parameter ∆p for FPG ( ), APGw ( ) and APGs ( ) -
after Cohen (2015).

3.2 Instantaneous velocity fields analysis

In this part, instantaneous views of the flow field are presented. Velocity vector fields visualiza-
tion as well as coherent structures identification are performed. The 3D structures identification
is based on the old zero pressure gradient computation referred to as ZPG3D (Gloerfelt and
Berland, 2013) since this is the only three-dimensional database available.
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Figure 3.6 – Instantaneous streamwise velocity u in the streamwise/wall-normal plane for APGs
paq, APGw pbq, ZPG pcq and FPG pdq. xmin and xmax denote the streamwise boundaries of
the zone of interest. Black line corresponds to u � 140m/s and highlights thickening of the
boundary layer from FPG to APGs - scale is from 10 m/s (blue) to 260 m/s (red) - Provided
by X. Gloerfelt.

3.2.1 Analysis and identification tools in two-dimensional planes

As it has been said in section 3.1.4, only two-dimensional planes were available due to storage
issues. For this reason, a method is required to identify and analyse three-dimensional coherent
structures out of two-dimensional velocity fields.
The hairpin-like vortex is the main structures in which we are interested. Mayam (2009) and
Adrian et al. (2000) suggest identifying hairpin heads in streamwise/wall-normal planes by
viewing the velocity-vector field in a reference frame moving with the structure. In this case,
the following characteristics (illustrated in figure 3.7) are the signature of a hairpin-like vortex:

� a circular streamlines pattern is visible in the velocity-vector field rotating in the same
direction as the mean velocity circulation (hairpin head)

� a second quadrant Q2 region pu1   0, v1 ¡ 0q located beneath and upstream of the head

� a fourth quadrant Q4 region pu1 ¡ 0, v1   0q facing the Q2 region, inducing a stagnation
point at the frontier of the two events

� an inclined shear layer (ISL) between the Q2 and Q4 regions.

This method was applied to instantaneous velocity vector fields for the four pressure gradient
cases as can be seen in figure 3.8. In this figure, the vector fields are represented in a reference
frame moving at Uc � 0.72Ue and the arrows and circles indicate the loci of stagnation points
and hairpin heads. Multiple hairpins are aligned in the streamwise direction along a line with
varying slope. This particular organization is the signature of hairpin packets.
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Figure 3.7 – Single hairpin-like vortex signature in streamwise/wall-normal plane - Velocity
vector field in a frame of reference moving with the structure - after Mayam (2009).
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Figure 3.8 – Instantaneous views of streamwise/wall-normal vector fields showing hairpin vortex
signatures, viewed in a frame of reference moving at Uc � 0.72Ue for the APGs paq, APGw
pbq, ZPG pcq and FPG pdq configurations - Streamwise and wall normal axes px, yq are made
non-dimensional using the boundary layer thickness δ.
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For the remainder of the study, the swirling strength criteria λci (see equation (2.15)) will
be used at multiple times for the coherent structures visualization and analyses. In order to
eliminate background noise, which is of great importance for the statistical study of the velocity
fields, the following threshold will be used:

|λci| ¡ 1.5λrms
ci (3.5)

The root mean square value λrms
ci is computed as follows:

� 2D databases: since the hypothesis of equilibrium is well verified (see section 3.1.5), it
is assumed that the root mean square of the swirling strength is only a function of the
wall-normal coordinate λrms

ci � λrms
ci pyq. Therefore, for each case of pressure gradient,

λrms
ci is computed at the middle of the domain of interest for all wall-normal positions and

for each px, yq plane. The final λrms
ci is the average over the 8 px, yq planes.

� ZPG3D database: the method is the same as for the 2D cases but differs in the averaging
process: the averaging is performed over the entire spanwise direction, i.e. 131 px, yq
planes.

The threshold based on the root mean square was depicted as a universal threshold by Wu and
Christensen (2006), independent of the Reynolds number. The criterion |λci| ¡ 1.5λrms

ci was
found to effectively define the boundaries of vortex cores while minimizing the influence of the
noise associated with the calculation of the velocity gradients. Natrajan et al. (2007) use the
same threshold for PIV analysis of spanwise retrograde vortices. Mayam (2009) compares three
thresholds: one based on the maximum value of |λci|max, one based on the number of mesh
points within the λci cluster and one based on the root mean square λrms

ci . He finally found
that the threshold based on the root mean square was the best and chose |λci| ¡ 1.45λrms

ci for
his study. To compute the convection velocities of hairpin vortices and packets, Adrian et al.
(2000) used a threshold based on the average value of the swirling strength |λci| ¡ 30λavg

ci .

3.2.2 Effect of pressure gradient on the coherent structures

Instantaneous views of the vortical motions in all flows are shown in Figure 3.9. Contours of the
swirling strength λci show that there are more vortical motions in the outer layer and that their
size is greater in the case of the adverse pressure gradient. Indeed it has been demonstrated
that the large scale structures emerge more predominently in the outer region when the flow is
subjected to an adverse pressure gradient (Bradshaw, 1967b; Harun et al., 2013; Lee and Sung,
2009).
In order to know in which a vortex is spinning, the following quantity is introduced:

λ̃ci � λci
ωz

||ω||
(3.6)

Therefore,

� prograde vortex λ̃ci   0: vortex spinning in the same direction as the mean circulation

� retrograde vortex λ̃ci ¡ 0: vortex spinning in the direction opposite to the mean circulation.

For the remainder of the thesis, λci � λ̃ci. Figure 3.10 provides the number of prograde and
retrograde spanwise vortices through the entire thickness of the boundary layer for the four
pressure gradient cases. The method to do so consists in setting a probe in the middle of
the domain (along the streamwise direction) which captures a spanwise vortex each time it
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Figure 3.9 – Contours of swirling strength λci for APGs paq, APGw pbq, ZPG pcq and FPG pdq.
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encounters a value |λci| ¡ 1.5λrms
ci . This operation is performed over the 8000 available timesteps

at 19 wall-normal locations spanning from the inner layer to the edge of the boundary layer.
The absolute number of vortices is not what is of interest here but rather the differences between
the pressure gradient cases and the evolution along the wall-normal direction.

Figure 3.10 – Number of prograde and retrograde spanwise vortices for the four pressure gradient
cases along the TBL thickness. The number of vortices is measured over 8000 snapshots with a
treshhold |λci| ¡ 1.5λrms

ci .

Looking at the prograde vortices distribution, the first remarkable result is that the number
of spanwise vortices is higher for the ZPG flow through the entire TBL thickness with the highest
values very close to the wall. In the inner layer, the favorable case shows the lowest values. There
is a zone of convergence for all pressure gradient cases around y{δ � 0.1 which seems to be a
local minimum. Beyond this point, the number of prograde vortices are quite similar for the
non-zero pressure gradients with noticeable differences between APG and FPG for y{δ ¡ 0.5,
confirming what has been said concerning the predominance of structures in the outer region
for flows subjected to adverse pressure gradients.
For the retrograde vortices, the maximum is located near the end of the logarithmic region
around 0.1   y{δ   0.2. Unlike the prograde case, there is not clear distinction for the ZPG
case. The FPG flow shows the lowest number of retrograde vortices as the edge of the boundary
layer is approached.
Comparing both prograde and retrograde vortices repartitions, it can be said that prograde
vortices are encountered much more often throughout the boundary layer thickness (up to 14
times more often at some wall-normal locations than retrograde vortices). There seems to be
a hierarchy for prograde vortices such as Np

FPG   Np
APG   Np

ZPG once again over the entire
TBL whereas there are changing orders depending on the wall-normal distance for retrograde
vortices. Finally, the evolution of prograde vortices looks very similar to the velocity intensities
urms
i confirming the fact that these vortices, and particularly hairpin vortices, are correlated to

the production of turbulent kinetic energy in the near-wall region.

3.2.3 Analysis of a three-dimensional database

The three-dimensional zero pressure gradient data base is analyzed in this section. The 3D
velocity field is processed in order to visualize and provide some features of the three-dimensional
characteristics of the turbulent structures.
Figure 3.11 reveals the presence of low-speed and high-speed streaks in the near-wall region up
to y� � 20. The spanwise spacing between the streaks is around λ�z � 100 � 200 expressed
in wall units, following the results in the literature whereas the streamwise extent goes up to
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λ�x � 2000 � 4000 (λx � 3.5 � 7δ). Figure 3.12paq shows the isosurface of swirling strength λci

and highlights the presence of numerous hairpin-like vortices in the outer region of the turbulent
boundary layer. In some regions, hairpin vortices very close to each other and relatively arranged
along a quasi-streamwise line reveal the hairpin packets organization. Figures 3.12pbq and 3.12pcq
show an isolated hairpin-like structure with axes expressed in inner x�i and outer xi{δ variables
respectively. As suggested by the literature, the hairpin vortices are most likely asymmetric.
Here only the head and right leg are clearly distinguishable. The three parts of the structures,
i.e. leg, neck and angle (refer to figures 2.14 and 2.15), are clearly visible. The neck angle is
estimated at αn � 53� and the leg angle at αl � 24�.

Figure 3.11 – Isosurface of instantaneous streamwise velocity u1 revealing presence of low speed
streaks u1{Ue � �0.058 (blue) and high speed streaks u1{Ue � 0.058 (yellow) in the near-wall
region.

3.3 Statistical analysis of velocity fields

3.3.1 Conditionally averaged velocity fields

The conditionally averaged velocity field using the linear stochastic estimation method based on
the swirling strength condition λci is given by:

ûjpx� rq � Ljλcipxq, Lj �
xλ1cipxqu

1

jpx� rqy

xλ1cipxq
2
y

(3.7)

where x.y denotes both time average and spatial average over the spanwise direction.

Figure 3.13 shows the estimated velocity vector fields from equation (3.7) for the four pressure
gradient configurations. The vectors ûi were set to unit in order to reveal more clearly the weak
motions correlated to the event located at px{δ � 0, y{δ � 0.2q; this wall normal distance is
chosen for comparison with results from the literature. It can be seen that prograde vortices
(indicated with black circles) align in the streamwise direction with a certain angle to the wall
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paq

pbq pcq

Figure 3.12 – Isosurface of swirling strength criterion λci � 4.2λrms
ci colored with fluctuating

streamwise velocity u1{Ue showing paq hairpin forest in the outer part of the boundary layer
y{δ ¡ 0.39 and isolated hairpin with axes scaled with pbq inner variables x�i and pcq outer
variables xi{δ.
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Figure 3.13 – Estimated velocity field ûi using a negative swirling strength condition λci   0
for the APGs paq, APGw pbq, ZPG pcq and FPG pdq configurations with reference point at
y{δ � 0.2 - Black circles indicate positions of prograde vortices (biggest circle indicates vortex
at the reference point) - Streamwise and wall-normal axes px, yq are made non-dimensional using
δ.
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(Adrian et al., 2000; Christensen and Adrian, 2001; Head and Bandyopadhyay, 1981; Lee and
Sung, 2009; Mayam, 2009). These vortices gather the characteristics of hairpins as described in
the previous section (upstream Q2 event, stagnation point, ISL, ...). Once again, this reveals that
hairpin packets are dominant features of the turbulent boundary layer flow with and without
presence of a pressure gradient. Streamwise separation distances between two successive vortices
∆vx are (from left to right):

APGs ∆vx
�

� r434, 126, 112s ∆vx{δ � r0.68, 0.20, 0.18s

APGw ∆vx
�

� r130, 163, 146, 130, 680s ∆vx{δ � r0.20, 0.26, 0.23, 0.20, 1.02s

ZPG ∆vx
�

� r171, 201, 201s ∆vx{δ � r0.32, 0.37, 0.37s

FPG ∆vx
�

� r180, 157, 225, 202s ∆vx{δ � r0.26, 0.23, 0.323, 0.29s

where ∆vx
�

� ∆vxuτ {ν is the separation expressed in viscous wall units. It can be noticed
that the secondary vortices surrounding the event vortex are closer to it for both adverse cases.
Lee and Sung (2009) and Adrian et al. (2000) respectively reported ∆vx

�

� 150 (0.23δ) and
∆vx

�

� 100 � 200 streamwise separations for vortices near the event location.
When the estimated velocity fields are computed with event location at y{δ � 0.15 (figure

3.14), a secondary inner packet configuration is revealed. It seems that subpackets of hairpin
eddies exist within a same packet. This has been observed by Lee and Sung (2009) and Chris-
tensen and Adrian (2001) who suggest that the separation distance between vortices within a
subpacket scales with inner variables whereas the separation between subpackets scales with
outer variables. Moreover, it can be seen that the separation between eddies of the outer sub-
packet is greater than that of the near wall subpacket. These observations have also been noticed
for the FPG, ZPG and APG cases with reference points at y{δ � 0.1 and up to y{δ � 0.3, but
not at every wall-normal positions. Moreover it seems to vanish as the event locations are taken
higher in the boundary layer.

Figure 3.15 shows the conditionally averaged velocity vector field based on the event λci   0
for all pressure gradient cases in planes px, zq parallel to the wall around y{δ � 0.10 � 0.16. A
clockwise vortex is visible at the event location px{δ, z{δq � p0, 0q, which indicates the presence
of a vortical motion spinning positively along the wall-normal direction. Moreover, a second
vortex spinning in the opposite direction is present approximately in the same transverse plane
as the main vortex and a low-speed region u1   0 is visible between the vortices. These velocity
field characteristics are the signature, in the streamwise/transverse plane, of a hairpin-like struc-
tures, the two counter-rotating vortices corresponding to the imprints of the legs of the hairpin
structure. Since the event has been chosen so that λci   0, the main vortex (at the event location
indicated by the big circle) is the left leg of the hairpin and the secondary vortex (small circle)
is the right leg of the vortex. The plain lines on figure 3.15 indicate the loci of zero velocity
u1 � 0. As for the linear stochastic estimated velocity fields in the streamwise/wall-normal
plane px, yq, these lines correspond to the locations of the hairpin vortices legs. Therefore, this
provides evidence of the hairpin-packets average organization in the px, zq plane. Looking at
other planes, it can be noticed that the distance between the two u1 � 0 contours increases
downstream of the event location (this is visible on figure 3.15paq). The conclusion is then that
a hairpin packet grows in the spanwise direction, i.e. hairpin vortices at the ”end” of a packet
have a bigger extent in the transverse direction compared to those located at the ”beginning”
of the same packet.

Estimated velocity fields similar to those presented in figure 3.15 have been computed for all
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Figure 3.14 – Estimated velocity field using a negative swirling strength condition λci   0 for
paq APGs, pbq APGw and pcq ZPG configurations with reference point at y{δ � 0.15 - Black
circles indicate positions of prograde vortices. Horizontal lines are plotted to highlight hairpin
structures within a same subpacket. Streamwise and wall-normal axes px, yq are made non-
dimensional using δ.
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paq pbq

pcq pdq

Figure 3.15 – Estimated velocity field in the streamwise/spanwise px, zq plane using a negative
swirling strength condition λci   0 for the paq APGs y{δ � 0.10, pbq APGw y{δ � 0.11, pcq
ZPG y{δ � 0.16 and pdq FPG y{δ � 0.14 - Circles indicate positions of vortices (biggest circle
indicates vortex at the reference point) - Red line is the loci of ū � 0.

Figure 3.16 – Spanwise separation of hairpin vortices legs λhp
z,δ with respect to wall-normal

distance.
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pressure gradients and for the 11 wall-parallel planes available, except for the APGw case where
some issues occurred on the first 4 planes closest to the wall. Based, on these velocity fields
the average spanwise separation of hairpin legs λhp

z,δ, i.e. hairpin spanwise length-scale could be
measured. This result is shown in figure 3.16. The hairpin size increases when moving away
from the wall, according to the attached-eddies hypothesis by Townsend (1976b), which states
that the coherent structures grow proportionally to their distance from the wall. This behaviour
is explicitly observable later in section 3.3.4 where the linear stochastic estimation method is
applied to the three dimensional database ZPG3D. Obviously, this growth is not linear and tends
towards an asymptote since the size of the structures is limited by the thickness of the boundary
layer. All pressure gradient cases show a similar evolution, even though a sudden increase is
visible for the APGs between 0.1   y{δ   0.3. This can be correlated with the beginning of the
secondary peak of turbulent intensities which appears for the adverse pressure gradient flows
(see figure 2.6). Surprisingly, the APGw shows values very similar to the favorable and zero

pressure gradient flows, and is even lower for some wall-normal distances. Finally, the λhp
z,δ values

in the very outer region of the turbulent boundary layer have to be looked at carefully since
hairpin packets are believed to be absent this far from the wall. This point will be detailed in
the next section with the analysis of two-point correlations of the streamwise velocity.

3.3.2 Two-points correlations

The two-point correlation of the streamwise velocity u is defined as:

Ruu �
xu1pxqu1px� rqy

urmspxqurmspx� rq
(3.8)

where x.y denotes both time average and spatial average over the spanwise direction. The Ruu

correlations are plotted in figure 3.17 along with the estimated velocity fields from Figure 3.13
for the three pressure gradients with reference point located at y{δ � 0.2. The first observation
that can be made is that the correlation has an elliptical shape elongated in the streamwise
direction with a certain angle to the wall following that of the vortex packet.

Tay et al. (2009) looked at the streamwise extent of the correlation when studying the
effect of surface roughness on turbulent boundary layers subjected to pressure gradients with
Reynolds numbers Reθ � 914 for the ZPG case and Reθ � 2182 for the APG (deceleration
parameter K � �4.45�10�7 stronger than the LES computation presented here). Their results
are compared with those of the LES computation along with measurements by Volino et al.
(2007) in figure 3.18. It can be seen that the levels are within a range varying from 0.1 to
1.15. For the present LES, both FPG and ZPG results exhibit a maximum correlation length
around y{δ � 0.7 and around y{δ � 0.6 for the APG flows, whereas results from Tay et al.
(2009) show maximum at y{δ � 0.43 for both ZPG and APG cases. Ganapathisubramani et al.
(2005) performed PIV measurements on a ZPG turbulent boundary layer at Reτ � 1100 and
observed an increase in the correlation length through the log region between y� � 92 and
y� � 150 and then a decreasing trend in the outer region between y{δ � 0.2 and y{δ � 0.5. For
the LES, the favorable gradient provides the highest amplitude variation between Lxuu{δ � 0.4
and Lxuu{δ � 0.9 whereas the APG configurations provide the lowest amplitude variations.
The streamwise extent of the correlation Lxuu is estimated by measuring the distance between
the most upstream and most downstream points of the ellipse. One can also notice that the
results are quite similar to each other for all cases up to y{δ � 0.3. Beyond this position, the
favorable case shows a different trend. Results between ZPG and both APG flows separate
around y{δ � 0.7. Finally, it can be seen that both APG cases are very close to each other, with
slightly higher correlation lengths for the APGw configuration. The results from Volino et al.
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Figure 3.17 – Contours of Ruu correlation superimposed to estimated velocity field with reference
point at y{δ � 0.2 for the APGs paq, APGw pbq, ZPG pcq and FPG pdq configurations - Contour
levels range from 0.2 to 1.0 with a step of 0.2 - Streamwise and wall-normal axes px, yq are made
non-dimensional using δ.
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(2007), who performed measurements in a water tunnel at Reθ � 6069, provide a more constant
evolution between Lxuu{δ � 0.6� 0.7.
When considering Ruu � 0.6 contour levels, the streamwise extent of the correlation is reduced
by 20% to 36% compared to Lxuu based on the Ruu � 0.5 contour. This value decreases as
the reference point is located higher in boundary layer and the highest values correspond to the
APG cases. Tay et al. (2009) observe a 50% reduction of the streamwise extent when doing so
for the ZPG case.

Figure 3.18 – Comparison of correlation Ruu streamwise extent Lxuu - Based on Ruu � 0.5
contour level (top) and comparison between Lxuu based on Ruu � 0.5 vs Ruu � 0.6 (bottom).

The elliptical shape of the correlation becomes more vague as the reference point is located
higher in the boundary layer. This has also been observed by Tay et al. (2009) and Volino et al.
(2007) who suggest that the reference point from which the correlation is calculated is above the
hairpin packets producing the inclination (the LSE velocity fields also showed that the packet
organization vanishes above a certain distance from the wall). This is shown in figure 3.19 where
it can be seen that the elliptical shape vanishes at the upper limits of the outer region.

Figure 3.19 provides also an important information: the organization of hairpin-like eddies
into packets remains higher in the boundary layer for the adverse pressure gradient cases. Indeed
it can be seen that the correlation still follows a clear angle and an elliptical behaviour up to
y{δ � 0.7 for both APG cases, whereas these characteristics become unclear above y{δ � 0.6 for
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Figure 3.19 – Contours of Ruu � 0.2 correlation at all reference points y{δ �

0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 for the APGs paq, APGw pbq, ZPG pcq and FPG pdq
configurations - Streamwise and wall-normal axes px, yq are made non-dimensional using δ.

ZPG and FPG configurations. This result is consistent with what has been said in section 3.2.2
concerning large scale structures more likely to be present in the outer region when the flow is
subjected to an adverse pressure gradient.

3.3.3 Angle of structures

Angle of hairpin packets

As it has also been mentioned, the correlation is aligned along the packet revealed by the
conditional estimation (see figure 3.19), meaning that the correlation provides information on
the hairpin packet angle, also referred to as the packet growth angle, given in figure 3.20. Before
discussing the results, recall that the elliptical shape of the Ruu correlation vanishes far from
the wall. Consequently it is more difficult to estimate the angle of the correlation for points
near the edge of the boundary layer and therefore angles reported in figure 3.20 near the edge
of the TBL should not be considered as growth angles.

The results from the LES show a clear hierarchy in levels depending on the pressure gradient:
the favorable pressure gradient case provides the lowest angles whereas the adverse cases provide
the highest levels throught the entire boundary layer, with the strong adverse case APGs pro-
viding maximum values of the growth angle. It can also be seen that the evolution of the angles
follows the same behaviour for the three pressure gradients with a maximum around y{δ � 0.4
for the APG configurations and y{δ � 0.5 for FPG and ZPG, whereas the results from Tay
et al. (2009) exhibit a more ”complex” evolution: indeed the ZPG case shows two maxima at
y{δ � 0.08 and y{δ � 0.61 and the APG case shows a peak around y{δ � 0.26. The results
from the LES provide angles in the range αp � r�2.1�, 11.1�s for FPG, αp � r5.6�, 14.5�] for
ZPG, αp � r7.8�, 18.6�] for APGw and αp � r9.6�, 18.7�] for APGs. The angles are estimated
by measuring the angle of the line passing by the most upstream and most downstream points
of the correlation Ruu � 0.5.
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Figure 3.20 – Growth angle of hairpin packets given by the streamwise velocity correlation Ruu.

3.3.4 Statistical analysis of three-dimensional database

The linear stochastic estimation has been applied to the 3D zero pressure gradient database.
In figure 3.21, the event λxy

ci   0 is located at y{δ � 0.2 and corresponds to a prograde vortex.
Here, λxy

ci corresponds to the swirling strength based on the 2D velocity gradient tensor in
the streamwise/wall-normal px, yq plane. It is important to consider only the two-dimensional
tensor in order to define the prograde vortex condition, even though it is a 3D velocity field. In
other words, the 3D velocity field is estimated based on a 2D condition. The result provides a
hairpin-like structure laying over a region of low momentum, with legs, neck and head clearly
distinguishable. At this point, it is important recalling that this is a rather low Reynolds number
turbulent boundary layer (Reθ � 1500). Therefore the shape of the estimated structures is a
hairpin/horseshoe, rather than asymmetric cane-shaped structures which are abundant in higher
Reynolds number flows. From a sideview of the estimated hairpin-like vortex, one can evaluate
the leg angle αl � 8.3�, the neck angle αl � 50.7� and the average hairpin angle αhp � 20.9�.
Figure 3.22 shows the corresponding velocity vector field in the px, yq and px, zq planes. In the
side view 3.22paq, a strong hairpin head is visible surrounded by an upstream and a downstream
vortex, which are the heads of the two secondary vortices shown in the 3D representation in
figure 3.21. In the top view 3.22pbq, two counter-rotating vortices are located slightly upstream
of the hairpin head, and are the signature of the legs of the main hairpin structure. A clockwise
rotating vortex (indicated by the small circle) is visible downstream of the reference point and
corresponds to the left leg of the downstream secondary hairpin structure shown in the 3D
representation (the λci of the right leg as well as that of the upstream secondary hairpin legs
are too low to be visible here).

A secondary hairpin vortex is visible downstream and the head of an upstream hairpin
vortex is also distinguishable. Therefore, as for the 2D estimated velocity fields, the hairpin
packet organization is retrieved here. The secondary vortices become less and less visible as the
event location is taken further from the wall. This has been observed by Dennis and Nickels
(2011) and is illustrated in figure 3.23. In this figure, event locations span wall-normal distances
0.2   y{δ   0.9 with a step of 0.1. The streamwise position of the event has no significance
on the figure: it is simply translated towards higher streamwise positions in order to make the
vortices distinguishable one from another. The first structure on the left (y{δ � 0.2, green)
exhibits a secondary vortex located downstream of the main one, as shown in figure 3.21, and
this is the only structure showing this feature. As the reference point goes up, the leg/neck

72



3.3. STATISTICAL ANALYSIS OF VELOCITY FIELDS

Figure 3.21 – Linear stochastic estimation of 3D velocity field reveals hairpin-like structure over
a low momentum region - Isosurfaces of λci colored with u1 and isosurface of negative fluctuating
velocity u1 (blue) - condition location is y{δ � 0.2.

paq

pbq

Figure 3.22 – Vector field of estimated velocity field shown in figure 3.21 in paq the
streamwise/wall-normal plane and pbq the streamwise/spanwise plane. Condition location is
y{δ � 0.2, big circles indicate vortices corresponding to the main hairpin structure and the
small circles to the secondary structures.
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geometry tends to vanish and the leg angle seems to increase. From this point, two options can
be proposed:

� The hairpin-structures far from the wall are generated in the near wall region. As they
are convected downstream, they rise away from the wall with a neck/leg geometry. Since
the legs are bounded by the wall, their angle is much lower than that of the neck. At some
point, the head of the hairpin is located so high in the boundary layer that the legs lift up
from the wall. Since there is no limit beneath them anymore, the neck disappears.

� The hairpin-structures far from the wall are generated directly in the outer layer where
the heads are so far from the wall that legs are free to develop without limitation from the
wall. Under this hypothesis, the hairpin vortices do not develop the neck/leg geometry.

The front view (bottom figure) confirms that the structures have a larger transverse size
the further they are located from the wall. The hairpin-structure for even at y{δ � 0.7 is 1.5
times larger that for event at y{δ � 0.2. Very far from the wall, prograde vortex events located
at y{δ � 0.8 and y{δ � 0.9 still generate hairpin-like structures but with very short legs and
a rather asymmetric geometry (left leg is more developed than the right one). This suggests
that even though hairpin packets are not likely to be found near the edge of the boundary layer
(see two-points correlation analyses in section 3.3.2), individual hairpin vortices are still present.
This is consistent with the typical eddy model by Falco (1977) and the hairpin vortex tips by
Head and Bandyopadhyay (1981) observed at the upstream side of the large scale bulges.
In the 3D visualization, even though the threshold |λci| ¡ 1.5λrms

ci was used, still a lot of
background noise remained for the swirling strength field. In order to enhance the visualization
of the coherent structures, a linear stochastic estimation (LSE) was performed based on the
normalized velocity field u{||u||. The result is compared to the ”regular” LSE in figure 3.24.
It was observed that the normalized version of the LSE does not reduce the background noise
but provides a finer resolution for the vortex motions. Therefore, this method might be more
adequate to measure the angle of the structures for instance, however the angles remain the
same compared to the classical LSE method.

Finally, the conditionally averaged velocity field was viewed in a transverse plane py, zq. In
figure 3.25, a pair of counter-rotating vortices spinning ”inwards” are clearly visible downstream
and above the head of hairpin-like structure located at y{δ � 0.3. This feature has also been
observed for other wall-normal distance in the outer region of the boundary layer. By changing
the value of the isosurface level λci, an ”inverse hairpin” was revealed, even though it is not sure
whether the head of this structure exists or not. On the right view of figure 3.25, the two inward
counter-rotating vortices seem to merge to form a head. The fact that this head is nearly visible
can be simply explained by the fact that most of the swirling strength is concentrated around
the event chosen for the estimation, i.e the main hairpin structure. It is then assumed that this
inverse hairpin, with opposite spinning motions than that of the classical hairpin structure is a
consequence of the conservation of local circulation in the flow.

The inverse hairpin lays at angle to the wall estimated between 30� and 40�. A model for the
generation of such a structure is proposed in figure 3.26. In this concept, an inverse hairpin can
exist only in presence of at least two streamwise aligned hairpin vortices (hairpins within a same
packet for instance). The heads of both hairpins are rotating in the same direction, therefore
they induce inverse vorticity in between them, which forms the head of the inverse hairpin. The
head of the upstream hairpin generates a sweep event pu1 ¡ 0, v1   0q whereas the legs and neck
of the downstream hairpin generate an ejection pu1 ¡ 0, v1 ¡ 0q. Since the downstream hairpin
is larger than the upstream one (based on the analyses of LSE velocity field in wall-parallel
planes, figure 3.15), the collision between sweep and ejection leads to the two inward-spinning
quasi-streamwise vortices.
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Figure 3.23 – Linear stochastic estimation of 3D velocity field with events locations between
0.2   y{δ   0.9 with a step of 0.1 - axes are made non-dimensional using δ.
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ZERO AND NON-ZERO PRESSURE GRADIENTS

Figure 3.24 – Linear stochastic estimation of 3D velocity field with event located at y{δ �

0.3 - Estimation based on (left) velocity field u and (right) normalized velocity field u{||u|| -
Isocontours of swirling strength λci colored with streamwise velocity and negative streamwise
velocity u1   0.

Figure 3.25 – Linear stochastic estimation of 3D velocity field with event located at y{δ � 0.3 -
Velocity vector field in plane py, zq shows two counter-rotating vortices downstream and above
main hairpin structure - Isocontours of λci are different between left and right representations.
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Figure 3.26 – Conceptual model for the generation of the inverse hairpin structure - side, front
and 3D views.
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Chapter 4

A stochastic model for wall-pressure
spectrum

4.1 Definition of the model

4.1.1 Ahn’s horseshoe model

Model’s principle

Ahn et al. (2010) hairpin model is chosen as base model for this study. Hairpin vortices are
represented by rectangular horseshoes at an angle of 45� to the wall (for the results presented
in this chapter, the angle of the structure is 45� if nothing is mentioned). The hairpin legs and
head have respective lengths L and λ and are modeled by a cylinder with a uniform vorticity
distribution ω � Γ{πr2cel along its axis, where Γ is the corresponding circulation as shown in
Figure 4.1.

Figure 4.1 – Ahn’s horseshoe-vortex representation. Each straight-line element has a constant
circulation Γ and is modeled by a cylinder - after Ahn et al. (2010).

Figure 4.2 shows the steps to obtain the wall-pressure field. First the velocity field is cal-
culated using a Biot-Savart integral, then the pressure field is obtained through a Poisson’s
equation.
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Figure 4.2 – Methodology to obtain the eddy pressure field - Figure 3 is extracted from Ahn
et al. (2010).

Induced velocity field

The coordinate system is x � px, y, zq and the components of the overall velocity field are
pU � u, v, wq, where U is the mean streamwise velocity. The velocity field u � pu, v, wq induced
by a horseshoe eddy is obtained from the vorticity field ω using the Biot-Savart integral defined
as:

upxq �
1

4π

»

ωpxq � px� x1q

|x� x1|3
d3x1 (4.1)

The computation of such an integral is not straightforward since it is singular at the corners of
the hairpin. Therefore, each linear element of the eddy is modeled using a method based on the
exact two-dimensional Rankine vortex field given by:

u2D �

Γeθ
2π

r

maxpr2, r2c q
(4.2)

where r is the radial coordinate in the cylindrical base per,eθ,elq and rc is the vortex radius
(see Figure 4.1). This expression is combined with a line element of length h as in Ahn et al.
(2010) leading to the following expression of the 2D velocity field induced by a cylinder vortex:

upxq �
u2D

2

�

h� l
a

ph� lq2 �maxpr2, r2c q
�

h� l
a

ph� lq2 �maxpr2, r2c q

�

(4.3)

where parameters h, l and r are introduced in figure 4.1. Ahn et al. (2010) calculate the induced
velocity field for a cylinder aligned with the streamwise direction and adds a wall-normal velocity
based on the fact that the eddies form an angle of 45� to the wall. In the present work, the
induced velocity field is directly computed within the frame linked to the inclined eddy, so that
the angle of the hairpins can be modified. To do so, distances r and l need to be calculated in
the reference frame related to the hairpin structure as shown in figure 4.3, defined by:
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Figure 4.3 – Definition of local coordinate system attached to the hairpin structure. .

Once the velocity has been computed in this frame, it needs to be written in the original
coordinate system aligned with the mean flow for the two legs of the hairpin vortex:

�
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�

�

�
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�

 (4.5)

The velocity induced by the hairpin puleg, vleg, wlegq and puhead, vhead, wheadq are calculated in
the frame attached to the structure, so that uleg � 0 and whead � 0. Figure 4.4 shows the
streamlines around a single hairpin-like structure subjected to a uniform mean flow. Since the
legs of a hairpin are rotating outwards, the flow is accelerated around the eddy and decelerated
between its legs. It is worth noting at this point that unlike the model from Ahn et al. (2010),
the mirror image of the horseshoe vortex is not considered. The idea here is to use a hairpin-like
vortex to provide a basic form of the wavenumber spectrum.

This preliminary calculation with a uniform mean flow has been undergone to verify that the
velocity field induced by a single hairpin-like vortex is correctly computed.

Mean flow profile

There are several ways to introduce the mean velocity profile. One can retrieve profiles from LES
or RANS computations and use these data as input for the eddy-based model. The most conve-
nient way however (for industrialization and parametric study) is to work with analytical mean
velocity models from the literature. Therefore, a composite profile that consists of Reichardt
(1951) inner layer profile and Fernholz and Finley (1980) wake function given by equation (4.6)
was implemented:
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Figure 4.4 – Streamlines around a single hairpin in a uniform streamwise mean flow.
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with

C1 �
�1

κ
lnpκq � C

where Π is the wake parameter, κ the von Kármán constant and δ the TBL thickness. To
evaluate the wake parameter Π according to the pressure gradient, three possibilities exist:

� by curve-fitting the wake-law to a mean velocity profile obtained from numerical compu-
tations or measurement data

� by solving the equation proposed by Coles (1956):

2Π� lnp1�Πq � κ
Ue

uτ
� ln

�

δ�Ue

ν




� κC � lnκ (4.7)

where C � 5.1 is Coles (1956) notation for the logarithmic law constant.

� by using the following empirical formula proposed by Durbin and Reif (2002):

Π � 0.8pβC � 0.5q3{4 (4.8)

In order to know if the choice of the mean velocity profile has no influence on the final result,
a second profile was tested. The inner part of the boundary layer profile was computed using
Musker (1979) law given by:

U�

inner � 5.424 tan�1

�

p2y� � 8.15q

16.7

�

� log10

�

py� � 10.6q
9.6

�

y�2
� 8.15y� � 86

�2

�

� 3.52 (4.9)

and the wake region was modeled using Coles (1956) law:
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W pηq � sin2
�ηπ

2

	

(4.10)

leading to the overall mean velocity profile given by:

U�

� U�

inner �
2Π

κ
W
�y

δ

	

(4.11)

No difference was observed on the wall-pressure spectra induced using both velocity profiles
and the Reichardt-Fernholz-Finley model was retained.

Pressure field

The equation governing the pressure is obtained by taking the divergence of the Navier-Stokes
equations for incompressible flow. Under the assumption that the mean shear dominates as
postulated by Townsend (1976b), the source term in the Poisson equation can be linearized:

∇2p � �2ρ
dU

dy

Bv

Bx
(4.12)

The Green’s function approach is used to find the solution for the wall-pressure, leading to:

ppxq � �2ρ

»

y1¡0
Gpx1;xq

dUpy1q

dy1
Bvpx1q

Bx1
d3x1 (4.13)

with Gpx1;xq being the Green’s function defined by:

Gpx1;xq � �

1

4π

�

1

|x1 � x|
�

1

|x1 � xl|




(4.14)

where xl � px,�y, zq is the image of x associated with the wall plane. By restricting the
calculation only to points on the wall located at xw, integrating equation (4.13) by part gives
the final expression of the wall-pressure field:

ppxwq �
ρ

π

»

y1¡0

x1 � xw
|x1 � xw|

3

dUpy1q

dy1
vpx1q d3x1 (4.15)

For more details on the procedure to obtain equation (4.15), one can refer to Ahn et al. (2010).
The results presented hereafter then correspond to the non-dimensional wall-pressure field p̃pxwq

given by:

p̃pxwq �
ppxwq

1
2ρuτ

Γ
λ

(4.16)

where uτ is the friction velocity, Γ the eddy circulation and λ the width of an eddy.
The objective is to build a model for the spectrum of surface-pressure fluctuations. The
wavenumber spectrum is given by the scale integral:

Spkx, kzq �

» λmax

λmin

nepλqP̃ pkx, kz, λqP̃
�

pkx, kz, λq dλ (4.17)

with P̃ pkx, kz, λq being the Fourier transform of the pressure field induced by the eddy having a
breadth λ, which determines its lengthscale, and P̃ �

pkx, kz , λq is complex conjugate. λmin and
λmax are the lengthscales of the smallest and largest hairpin eddy. The function nepλq is the

density number such as the number of eddies in the size range λ1   λ   λ2 is
³λ2

λ1
nepλq dλ
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per unit of wall area. Ahn et al. (2010) determine the expression of this function using circu-
lation conservation and the shape of the velocity profile in the logarithmic region. The final
wavenumber spectrum (non-dimensional) is given by:

Spkx, kzq �

» λmax

λmin

λ|P̃ pkxλ, kzλq|
2 dλ (4.18)

For more details on this procedure, refer to Ahn et al. (2010). In the absence of self-similarity
of the eddies, this integral needs to be evaluated for every value of lengthscale λ, through the
entire thickness of the boundary layer, which is numerically very costly. Therefore, the boundary
layer is divided into six sublayers within which the pressure spectrum can be considered quasi-
universal. This way, only six velocity fields induced by hairpin vortices having their heads in the
middle of each sublayer need to be computed. The lower limit of the near-wall sublayer is chosen
so that it matches the beginning of the logarithmic region y� � 30. For the upper limit, Ahn
et al. (2010) chose y{δ � 0.4 based on the fact that experiments by Hutchins et al. (2005) and
Hambleton et al. (2006) support that above this distance the structures are detached, whereas
here, only attached eddies are considered. Moreover, the largest observed convection velocities
correspond to the mean velocity at about 0.4δ.

Figure 4.5 – Scheme of the integration of the wavenumber spectrum method through each
sublayer to model a continuous distribution of hairpin eddies.

By summing the six spectra from the six sublayers, one obtains a wavenumber spectrum with
interference lobes in the spanwise direction. These are the consequence of the spacing between
the legs of the hairpins of discrete sizes. Therefore, for each sublayer, the corresponding spectrum
is interpolated over the entire range of eddy lengthscales within that sublayer in order to take into
account a continuous distribution of horseshoe structures (this procedure is illustrated in figure
4.5). By doing so, the interference lobes are smoothened as shown in figure 4.6 were the pkx, kzq
is plotted for the lowest sublayer which corresponds to the logarithmic region. In this figure,
and for the rest of the manuscript, the calculated spectrum is not the raw spectrum provided by
equation 4.18 as this provides a wavenumber spectrum which is not continuous around kx � 0
(see figures 6 and 8 in Ahn et al. (2010)). As the wall-pressure model described here will
be implemented for fluid-structure coupling, the wavenumber spectrum is made continuous by
”shifting” the spectrum peak to kx � 0.

The outer region of the boundary layer is divided into 5 regions. Following Ahn et al.
(2010), the spacing for these regions follows an exponential law so that their boundaries are
set to y{δ � 0.1, 0.132, 0.174, 0.230, 0.303 and 0.4. As a reminder, the lower limit of the first
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paq pbq

Figure 4.6 – Wavenumber spectrum in the pkx, kzq plane paq without continuous distribution and
pbq with continuous distribution of hairpin eddies - only the first sublayer (logarithmic region)
is considered here.

sublayer corresponds to the beginning of the logarithmic layer y� � 30. The heads of each
hairpin structure lays in the middle of each sublayer which determines the length of the hairpin
legs. The breadth λ of each eddy is then set to L{λ �

?

2, 1.412, 1.391, 1.330, 1.203 and 0.992.
Ahn et al. (2010) have demonstrated that only the aspect ratio of the structure L{λ has an
influence on the wavenumber spectrum. Under the hypothesis that the radius rc of the vortices
is proportional to the scale of the structure, they chose rc � 0.05λ.
Figure 4.7 shows the streamwise wavenumber spectra for each of the six sublayers. The hairpin
structures lay at an angle of 45� to the wall and are subjected to a mean flow corresponding
to a zero pressure gradient turbulent boundary layer. The logarithmic region shows the lowest
levels in the low wavenumber range but high contribution for high wavenumbers. For the outer
region y{δ ¡ 0.1, on the one hand increasing levels are observed in the low wavenumber range as
the eddies increase in size while on the other hand, the biggest eddies have less contribution to
the high wavenumbers. This result follows observation made from measurements and numerical
simulations.

Influence of the upper limit

The results shown previously correspond to wavenumber spectra for a single sublayer. It is
interesting to evaluate the influence of the upper limit of the eddy distribution when considering
the contribution from all sublayers. Figure 4.8 shows the wavenumber spectra for a continuous
distribution of eddies laying within 3 sublayers up to 9 sublayers. For sublayers 7,8 and 9 the
aspect ratios of the structures are respectively L{λ � 0.6866, 0.4904 and 0.3269. As predicted
by Ahn et al. (2010), it can be seen that eddies above y{δ � 0.4 (6 sublayers) have neglige-
able contribution to the overall spectrum. Based on this observation, the following results will
correspond to an upper limit of y{δ � 0.4 for the largest eddy head location.

Influence of velocity field calculation method

In the model proposed by Ahn et al. (2010), the velocity field induced by the hairpin structure
is given by equation (4.3) which is obtained after simplifications and hypothesis for the Biot-
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Figure 4.7 – Streamwise wavenumber spectrum for each of the six hairpin sublayers. Legend
indicates the wall-normal position y{δ of the heads of the hairpin eddies.

Figure 4.8 – Influence of the upper limit position of the hairpin eddy field to the wavenumber
spectrum. For each case, the legend indicates the upper limit y{δ of the highest sublayer.
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Savart integral. The pressure spectrum has been calculated for both these methods and the
result is shown in figure 4.9. It can be seen that the difference for a spectrum obtained using the
analytical expression of the induced velocity field and the direct evaluation of the Biot-Savart
equation is negligeable. Therefore, the remainder of the study corresponds to results from the
analytical version for computation time issues.

Figure 4.9 – Influence of the velocity induced field calculation method on the wavenumber
spectrum.

Influence of the eddy shape

In the model developed by Ahn et al. (2010), the hairpin structures are idealized rectangular
horseshoes. Chang (1998) and Chang et al. (1999) have reported that the source terms Tij in the
Poisson equation that have a major contribution to the wall-pressure spectrum are those related
to the spinning motion of the legs in the spanwise/wall-normal plane. Moreover, Dhanak et al.
(1997) were able to retrieve satisfactory results for the high frequency and high wavenumber
ranges of the pressure spectrum using a model based on pairs of counter-rotating vortices in the
near-wall region.

The idea here is to quantify whether the rectangular horseshoe structure is the best candidate
for wall-pressure spectrum modeling. The first test consists of vortices with the complete hairpin
structure geometry as described by Robinson (1991a) and Head and Bandyopadhyay (1981), i.e.
two legs, a neck and a head. This is shown in figure 4.10 (left) where the isosurface of fluctuating
wall-normal velocity v1 reveals the shape of the eddy. In the second test the pressure spectrum
resulting from a pair of counter-rotating vortices located in the near-wall region (figure 4.10
right) was computed. The counter rotating vortices have a length of L�

� 430 in wall units.
Based on the observations by Johansson et al. (1987) and Johansson et al. (1991), they are placed
at an angle of 5� to the wall. Finally the influence of the head of the hairpin was investigated
as shown in figure 4.11. This has been performed in order to measure the relative weights of
the legs of the hairpin eddy versus that of the head. It is worth noting that the use of the
Biot-Savart integral is based on the hypothesis that the vorticity field is solenoidal. This is
violated here since we consider isolated contributions. Therefore, even if the decomposition is
possible mathematically, it has no real physical signification.
The streamwise wavenumber spectra for the different shaped hairpin structures are shown in
figure 4.12. The counter-rotating (CR) vortices are located in the near-wall region whereas for the
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Figure 4.10 – Local velocity field around a hairpin-like vortex with neck/legs geometry located
in the logarithmic region (left) and a pair of outward-spinning counter rotating quasi-streamwise
vortices at an angle of 5� to the wall located in the buffer region (right) - Isosurfaces of wall-
normal velocity v1   0 (blue) and v1 ¡ 0 (red).

Figure 4.11 – Local velocity field around a horseshoe-like vortex with head (top) and without
head (bottom) located in the logarithmic region - Isosurfaces of fluctuating streamwise velocity
u1   0 (blue) and u1 ¡ 0 (red).
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other cases, the structures span the boundary layer thickness up to 0.4δ. At low wavenumbers,
the rectangular and leg/neck shaped hairpin structures show the same and highest levels of
energy, while the no head structure provides the lowest levels. In the high wavenumbers range,
the no head and CR structures have similar levels and the rectangular hairpin eddy provides
highest levels once more. The biggest discrepancies are visible for mid wavenumbers 0.3   kxδ  
20. The no head eddy shows highest levels whereas the CR vortices show the lowest. In contrast
to these cases, the rectangular and leg/neck shapes have a rather constant slope in this region.
Finally, the oscillations for the CR vortices are due to the presence of a single pair of vortices
with a unique lengthscale L�

� 430. Therefore the continuous distribution modeling described
in figure 4.5 is not applied for this case.

Figure 4.12 – Streamwise wavenumber spectra predicted by the model for different shapes of the
coherent structures.

4.1.2 Introducing large-scale structures

It has been said that hairpin-like structures tend to group in the stream direction to form
hairpin packets. This type of arrangement has been observed in multiple wall-bounded flows.
The idea here is to reproduce this large-scale structure in the hairpin model. Figure 4.13 shows
a packet of 5 hairpin vortices. For now, the hairpin vortices are perfectly aligned along the
streamwise direction, whereas it has been seen through the analysis of the three-dimensional
database in section 3.2.3, that the packets have rather a meandering path. The separation
between two hairpin structures of a same packet is constant and is set to the average of the
vortex separations ∆ν{δ estimated in section 3.3.1, considering only the vortices near the event
location. Therefore, hairpin vortices within a packet are seperated by 0.19δ for APGs, 0.22δ for
APGw, 0.35δ for ZPG and 0.28δ for FPG.

The hairpin packet in the model generates a low momentum region beneath it. The ”inten-
sity” of this low-speed region depends on the number of hairpin vortices within the packet and
the distance between each individual structure. For the model, the average separation distance
is based on the analyses of conditionally averaged velocity fields as shown in figures 3.13 and
3.14.

Figure 4.14 shows the wavenumber spectrum predicted by the model in the pkx, kzq plane
with and without the hairpin packets configuration. In this example, all hairpin structures
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Figure 4.13 – Low-momentum region developing under a packet of five hairpin-like eddies -
Isosurface of negative fluctuating velocity u1   0 in blue.

paq pbq

Figure 4.14 – Model prediction of wavenumber-frequency spectrum in the pkx, kzq plane for paq
single hairpin and pbq for packets of five hairpin structures. The black cross indicates the position
of the peak.
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have the same size so that the packet is aligned with the wall. It can be seen that the packets
introduce anisotropy in the shape of the peak with a smaller extent in the kx direction. This
behaviour is similar to what is found in experiments and numerical results (see figure 2.25) and
is a direct proof of coherent structures having a bigger extent in the direction of the stream.
This result is crucial since it shows that hairpin packets are mandatory to build a reliable model
by taking into account the anisotropy of the turbulent motions; i.e. the hairpin packet model
provides better prediction of the wavenumber spectrum compared to the single hairpin model.

4.1.3 Introducing pressure gradient effect

As it has already been mentioned, one of the main challenges is to build a model capable of
predicting wall-pressure spectra for flows subjected to pressure gradients. Based on what has
been learned from the literature and the analyses of the LES velocity fields above, there are
three main means of taking into account the influence of a pressure gradient in the model.

� Mean flow: it has been showed that the pressure gradient has a direct impact on the
wake region of the mean velocity profile and the dimensionless turbulent boundary layer
thickness δuτ {ν which gives an indication on how the TBL thickness evolves with respect
to the pressure gradient. The first observation can be modeled by modifying the wake
parameter Π in the analytical expression of the velocity profile.

� Hairpin-eddy angle: it has been demonstrated in the previous chapter, as well as in the
literature (Lee and Sung, 2009; Mayam, 2009), that the angle of the individual eddies is
modified depending on the pressure gradient.

� Hairpin packet angle: as for the individual hairpin-like vortices, the hairpin packets have
different angles depending on the pressure gradient: low angles to the wall for favorable
pressure gradients and higher angles for adverse pressure gradients.

Concerning the first point, table 4.1 gives the values of Π and the dimensionless parameter
δuτ {ν through which the TBL thickness is imposed for each pressure-gradient. These values
correspond to the LES cases since it is our first case of validation for the model. Figure 4.15
shows the mean velocity profiles computed out of equation (4.11).

FPG ZPG APGw APGs

Π 0.17 0.6 1.1 1.8

δuτ {ν 696 540 637 638

Table 4.1 – Parameters for the mean velocity profiles extracted from the LES computations.

The effect of the angle of the single eddies is shown in figure 4.16. The mean flow as well as
the size of the eddies are similar for each configuration. There are two noticeable results as the
angle of the structure increases: 1) the levels in the low wavenumber domain are higher; this
can be linked to the increasing levels of energy for adverse pressure gradients where the coherent
structures (single hairpins and hairpin packets) have higher angles and 2) lower energy for the
high wavenumbers. This last result suggests that near-wall structures have a higher contribution
to the pressure spectrum at high wavenumbers.
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Figure 4.15 – Mean velocity profiles for favorable ( ), zero ( ) , adverse weak ( )
and adverse strong ( ) pressure gradients. Dashed black lines correspond to the theoretical
linear law U�

� y� and logarithmic law U�

� lnpy�q{0.41 � 5.1.

Figure 4.16 – Streamwise wavenumber spectrum for hairpin structures at different angles to the
wall. Hairpin structures at 20�, 45� and 75� are illustrated on the right.
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4.1.4 Coupling with autospectrum model and frequency dependency

For now, the pkx, kzq spectrum is the spatial Fourier transform of the space-time pressure cor-
relationa at ”zero time delay”. This means that it represents the integral of all frequency
components in the wavenumber-frequency domain.
In order to perform coupling with an aircraft structure, the 3D wavenumber-frequency spectrum
is necessary. Since there is no frequency dependence for the spectrum in the hairpin model, this
needs to be modeled. There are three effects of the frequency on the convective peak which are
visible in figure 4.17:

� since the maximum of energy is located around the convective wavenumber kc � ω{Uc,
the convective peak is shifted towards higher wavenumber as the frequency increases.

� the slope of the spectrum along the streamwise wavenumber kx is steeper for low frequencies

� the maximum levels of energy decrease as the frequency increases.

The methods used to take into account each of these effects are detailed below.
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Figure 4.17 – Streamwise wavenumber spectra Spppkx, kz � 0, ωq for the ZPG case of the LES
computation for different frequencies ωδ�ref{Ue � 1.1, △ 5.2, 10.4, � 12, ▽
20.9, and � 31.1 - after Cohen (2015).

Shifting of the convective ridge
This is done by the knowledge of the convective wavenumber. The modelling of the convection
velocity follows the method used by Panton and Linebarger (1974). At low wavenumbers, the
surface pressure spectrum is dominated by the contribution of large structures, i.e. of the wake
region. Therefore, the convective velocity should be related to the mean velocity in this region:

Uc � U

uτ
� F pkxδ,Πq (4.19)

where Π is the wake parameter linked to the intensity of the pressure gradient. The high
wavenumber region is believed to be dominated by contribution of small-scale structures and
the convection velocity should then scale with inner variables:
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Uc

uτ
� f

�

kxν

uτ




(4.20)

By differentiating and equating both these expressions, this leads to the overlap laws:

F � β lnpkxδq �A1pΠq (4.21a)

f � β ln

�

kxν

uτ




�A2 (4.21b)

Equating the expressions again yields the friction law:

Uc

uτ
� �β ln

�

uτδ

ν




�A2 �A1pΠq (4.22)

Comparing this to the mean velocity profile, one can establish the coefficients β � 1{κ, κ being
the Von Kármán constant, A1 � �2Π{κ and A2 � 5.0. Based on convective velocity data by
Bradshaw (1967a,a), Panton and Linebarger (1974) were able to determine the form of the ’wake’
function W . The full convection velocity profile with respect to the streamwise wavenumber is
then given by:

Uc

uτ
� f

�

kxδ ;
uτδ

ν




�W pkxδ,Πq (4.23a)

f � �

1

κ
lnpkxδq �

1

κ

�

uτδ

ν




� 5.0 (4.23b)

W �

2

K

?

Πpkxδ � 1qe
2
3
pkxδ�1q for kxδ   1 (4.23c)

Decreasing levels of maximum energy
The pressure spectrum provided by equation (4.18) is a non-dimensional quantity. In order to
retrieve the real levels of energy, the wavenumber spectrum is coupled with an autospectrum
model for wall-pressure fluctuations. The model chosen for this is the Klabes et al. (2016) model
given by equation (2.60) provided in the wall-pressure models review in section 2.3.4. Therefore,
the expression of the wavenumber-frequency spectrum for wall-pressure is given by:

Φpppkx, kz, ωq � Φpωq � Spppkx, kz , ωq (4.24)

Note that now Spppkx, kz, ωq is frequency dependent due to the convection velocity that has
been introduced in the model. In addition to retrieving the real levels of energy, the one-point
spectrum will contribute to the decreasing levels at high frequencies (see figure 2.24 for one-point
spectrum behaviour for example).

Slope change
According to the wavenumber spectra shown in figure 4.17, the slope is weaker as the frequency
increases, meaning that small scales have an increasing contribution to the energy for high
frequencies. For now, the model is built in a way that all hairpin structures have the same
weight when summing each spectrum of each sublayer. The idea is then to introduce a function
that gives more or less importance to the eddies based on their size. The wavenumber spectrum
from equation (4.18) becomes:
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Spkx, kz, ωq �

» λmax

λmin

Apλ,Π, ωq|P̃ pkxλ, kzλq|2 dλ (4.25)

where 0   Apλ,Π, ωq   1 is a ponderation function of the eddy size λ, the pressure gradient Π
and the frequency:

Apλ,Π, ωq � 1

π
arctan

�

sign

�

ω

ωc
� 1




g

�

λ

δ
,Π


�

�B (4.26)

with B � 0.5 and g
�

λ
δ ,Π

�

� λ{δ � λmax�λmin
δΠ a function controlling the slope of the arctan

function as well as the ”cut-off” lengthscale depending on the pressure gradient.

4.2 Comparison with SONOBL database

The LES numerical database used for the velocity fields analyses was performed within the
SONOBL (SOurces of NOise from Boundary Layers over vehicles) project. The main objectives
were to provide new databases for turbulent boundary layers with non-zero pressure gradients,
in particular to help enhancing the wall-pressure spectrum models and to evaluate both direct
and indirect acoustic contributions, respectively the acoustic radiation into the free stream and
the contribution due to the wall-pressure fluctuations.

Figure 4.18 – Comparison of streamwise wavenumber spectra between (+) LES database and
( ) the hairpin packet model for first frequency ωδ{Ue � 0.06 (FPG), 0.09 (APGw) and 0.10
(APGs). Dashed vertical lines indicate the cut-off wavenumbers for the LES computations.

Figure 4.18 shows the streamwise wavenumber spectra from the LES computations compared
with the hairpin packet model predictions for the lowest frequency. The dashed vertical lines
correspond to the cut-off wavenumbers for the LES cases which is estimated to be kcox � 2π{4∆x,
meaning that eddies with a lengthscale smaller than four times the mesh resolution in the
streamwise direction are not resolved. For the ZPG case, the hairpin structures are set at an
angle of 45� to the wall, following the model by Ahn et al. (2010). Mayam (2009) and Lee and
Sung (2009) found that the average angle of hairpin eddies is 18% higher for APG flows compared
to ZPG cases. Based on this observation, the angles of the hairpin eddies for the hairpin packet
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model here are set to 53� and 60� for the APGw and APGs cases respectively. For FPG case,
the angle is 37�. It can be seen that the model predicts the correct hierarchy in term of energy
levels, i.e. lowest levels for the favorable and zero pressure gradient case and highest levels for
the strong adverse pressure gradient case. However, the levels at very low wavenumbers kxδ   3
are over-predicted by the model. It can also be noticed that the model provides satisfactory
slopes as well for each flow. In order to evaluate the modeling of the frequency dependence, the
streamwise wavenumber spectra for APGw ad APGs are shown for example at three different
frequencies in figure 4.19.

Figure 4.19 – Comparison of streamwise wavenumber spectra between (+) LES database and
( ) the hairpin packet model at three frequencies for (left) APGw r0.09, 0.86, 1.72s and (right)
APGs r0.10, 1.04, 2.08s. Frequencies ωδ{Ue are given inside brackets.

4.3 Coupling with vibro-acoustics code

Measurements of panels vibrations on three regions of the Advanced Technology Research Air-
craft (ATRA) have been carried out by the Deutsches Zentrum für Luft und Raumfahrt (DLR).
This was done by placing accelerometers against the inside skin of the aircraft in the front,
mid and aft cabin as shown in figure 4.20. Data for cruise flight conditions, i.e Mach number
M � 0.78 and flight level 35000ft, are avaible.

Figure 4.20 – ATRA aircraft from the DLR. The colors indicate the areas were measurements
of panels accelerations have been performed: front cabin (blue), mid cabin (red) and aft cabin
(green) - after Klabes et al. (2015).

In parallel, a Statistical Energy Analysis (SEA) (Fahy, 1994; Le Bot, 2015; Lyon, 1975; Lyon and
Maidanik, 1962) model was developed within Airbus for the front cabin area for acoustic and
vibration predictions (see figure 4.21). For the present study, the turbulent boundary layer is the
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only source of excitation of the structure. The results are computed using the vibro-acoustics
software VA-One. For the models, the turbulent boundary layer parameters are given in table
4.2.

δ � 103pmq uτ pm{sq Uepm{sq βC

60.2 7.122 239.9 0

Table 4.2 – Boundary layer parameters for front cabin region - A. Klabes personal communica-
tion.

Figure 4.21 – SEA model for the front cabin area. The panels mentioned here are used for SEA
computation using the TBL models.

Figure 4.22 shows the predictions of the Corcos model, Cockburn-Jolly model, a modified
Efimtsov model, hairpin (HP) model, hairpin packet (HPP) model and Ewert’s FRPM model
(see section 2.3.4) applied by Amador Medeiros et al. (2016) for a roof panel in the front area
of the fuselage. The modified Efimtsov model is built using measurement fitted parameters
from flight tests on the ATRA. The predictions are compared to the in-flight measurements
from accelerometers. The Corcos excitation is the default TBL model implemented in the VA-
One software. All wavenumber-frequency models are made non-dimensional and coupled with
the same autospectrum model from Klabes et al. (2016). The overall trend is that the Corcos
and Cockburn-Jolly models over-predict the levels at low frequencies below f  400Hz. The
Cockburn-Jolly model provides however better results over the entire frequency range than the
Corcos model which shows low levels at high frequencies. The Efimtsov and hairpin models have
similar behaviours. They are quite satisfactory below 500Hz and at high frequencies f ¡ 2000Hz.
They under-predict the levels between 630   f   1600 up to 13dB less than those measured.
Overall, the Efimtsov and HPP model provide better results than the HP model. Finally, the
LES spectrum for the ZPG case is also shown. The non-dimensional frequency ωδ{Ue and
wavenumbers pkxδ, kzδq were used to rescale the spectrum to frequencies and wavenumbers
adapted to aircraft panels. The results from the LES provided very low levels, about 30dB
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Figure 4.22 – Comparison between the SEA predictions submitted to the hairpin model and
the flight test measurements on roof panel of the front cabin - acceleration vs 1/3 octave band
frequencies - paq Direct predictions, pbq predictions are rescaled to match measurement point at
2000Hz. Measurements, Cockburn-Jolly, Efimtsov and FRPM data have been communicated by
A. Klabes.
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below measurements. Therefore, in order to compare them to the models, all levels in figure
4.22pbq are rescaled to match measurements at 2000Hz (the SEA model provides the best results
around this frequency).

Figure 4.23 – Comparison between the SEA predictions submitted to the hairpin model and the
flight test measurements on window panel of the front cabin - acceleration vs 1/3 octave band
frequencies - paq Direct predictions, pbq predictions are rescaled to match measurement point at
2000Hz. Measurements, Cockburn-Jolly, Efimtsov and FRPM data have been communicated by
A. Klabes.

The same analysis is performed for a window panel in figure 4.23 and a lower side-wall panel
at floor level in figure 4.24. For the window panel, the same conclusions can be drawn, except
that the FRPM model provides highest discrepancies for f ¡ 1600Hz (these results need to be
regarded as preliminary as developments are still ongoing for the FRPM model). On the other
hand, the Corcos model seems very promising for this frequency range. For the lower side-wall
panel, similar observations can be made. Finally, for the window and lower side-wall panels, all
models predict maximum level at 1600Hz, whereas it varies in the range 1250Hz   f   2000Hz
for the roof panel. The bending wavenumber kb for flat plates is given by

kb � ω1{2 4

d

12ρpp1� ν2p q

Eh2p
(4.27)
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Figure 4.24 – Comparison between the SEA predictions submitted to the hairpin model and
the flight test measurements on lower side-wall panel of the front cabin - acceleration vs 1/3
octave band frequencies - paq Direct predictions, pbq predictions are rescaled to match measure-
ment point at 2000Hz. Measurements, Cockburn-Jolly, Efimtsov and FRPM data have been
communicated by A. Klabes.
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where ρp, E, νp and hp are respectively the density, the Young modulus, the Poisson coefficient,
and the thickness of the plate. For aluminum fuselage panels, kbpf � 1600Hzq � 67m�1. Under
the approximation that the convection velocity is Uc � 0.7Ue, the convective wavenumber is
kcpf � 1600Hzq � 61m�1, and therefore the aerodynamic coincidence is fairly well predicted.

This being said, it is important to keep in mind the limitations of the SEA method. In the SEA
model used here, the fuselage vibration pattern is deduced from analytical model of reduced
ribbed panel. The validity of the fuselage vibration modeling varies with frequency. At low
frequencies f   400Hz, the confidence is low. In this range, the SEA hypothesis requiring
energy gaps between panels is certainly not fulfilled since the structure is strongly influenced by
global modes. Between 400Hz and 800Hz, the so-called mid-frequency range for aircraft fuselage,
the confidence in the structure modeling is medium. The validity of the modeling should be
studied carefully as it corresponds to the transition from global to local structure modes which
generally results in a very sensitive and uncertain modeling. Above 800Hz, SEA hypotheses for
aircraft fuselage structure are surely fulfilled, the variability is low and the confidence level is
the highest. To tackle the low confidence level at low-medium frequencies for aircraft structure,
Airbus uses finite-element models. However, the coupling of the different TBL models with
such models could not be done yet. For these reasons, the TBL models comparison should be
done by highlighting the slopes (from 100 to 1000Hz and from 2000 to 5000Hz) of the predicted
spectra for the panels. Moreover, the aerodynamic coincidence frequency depends highly on the
accuracy of the structure dynamic and variability with theoretical results is not necessarily due
to the modeling of the frequency-wavenumber spectrum for wall-pressure. The oscillations of
the vibration at low and medium frequencies are clearly due to the structure modeling. Rarely
observed in measurements, it comes from limitations of the reduced ribbed panel modeling which
amplifies modal density variations (it is a consequence of the TBL/structure coupling).
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Chapter 5

Conclusions and perspectives

Summary

This thesis was performed in the context of flow-induced noise over aircraft. The turbulent
boundary layer induces pressure fluctuations at the wall that make the panels of the fuselage
vibrate. Theses vibrations are then transmitted through the structure and radiate noise inside
the cabin and cockpit. The levels of interior noise increase with the speed of the vehicle and for
this reason, aircraft manufacturers have demonstrated an increasing interest in this topic over
the past years in order to provide passengers and crew members with the best acoustic comfort
possible. To do so, predictions of interior noise levels need to be performed at the early devel-
opment stages of a new aircraft using wall-pressure models and vibro-acoustics computations.
Several models for the wall-pressure fluctuations exist in the literature, but a great majority of
them are limited to canonical flows which lack precision in regions subjected to pressure gradi-
ents such as the aircraft flight deck or the wing/fuselage junction.

The objective here was to understand the physical mechanisms responsible for the turbulent
boundary layer excitation and the effect of pressure gradients on the wall-pressure fluctuations.
A wall-pressure model was then developed based on theses results.
The analysis was performed using an available Large Eddy Simulation (LES) database of turbu-
lent boundary layer flows at Mach 0.5 subjected to four different pressure gradients: favorable,
zero, adverse weak and adverse strong (weak and strong characterize the intensity of the pressure
gradient which can be measured with Clauser’s pressure parameter βC for instance). For these
four databases, only two-dimensional planes (8 streamwise/wall-normal and 12 streamwise/s-
panwise) were available due to storage issues. The three components of velocity pu, v, wq were
available for each of these planes as well as the pressure field on the plane of the wall. In addition,
an older three-dimensional database (complete 3D domain) of a Mach 0.5 zero-pressure-gradient
turbulent boundary layer was available, with the three components of the velocity field and the
wall-pressure. For the five flows, great care has been taken to obtain turbulent boundary layers
in equilibrium in order to have spatially homogeneous and statistically stationary quantities in
the streamwise direction.

The pressure fluctuations at the wall are the imprint of the turbulent velocity field, and
more specifically of the coherent motions or turbulent structures which have multiple length-
and time-scales. In this work, a vortex identification method based on the swirling strength
λci (Zhou et al., 1999) was used. This quantity reveals regions of high vorticity where the ve-
locity field is characterized by a swirling motion and has been widely used recently by authors
interested in coherent structures in turbulent flows. The identification method has revealed
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that the boundary layer flow is predominantly populated by so-called hairpin vortices for all
pressure gradient cases. These structures tend to group in larger scale structures referred to
as hairpin packets which correspond to multiple hairpin vortices aligned along the streamwise
direction laying over regions of low momentum. Statistical analysis tools such as two-point cor-
relations and linear stochastic estimation showed that these packets have a certain angle to the
wall which depends on the pressure gradient: low angle for a favorable pressure gradient flow
which increases as the pressure gradient becomes more and more adverse. This analysis also
revealed that the hairpin vortices and hairpin packets are the most common structures related
to swirling spanwise vorticity (spanwise vorticity induced by a swirling/spinning motions and
not mean shear). The effect of the pressure gradient on the streamwise spacing between hairpin
vortices within a same packet were quantified. Subpacket organization, which corresponds to
smaller-scale hairpin packets within a same packet was also observed. The angle of the hairpin
packets was measured based on the pressure gradient and the distance of the packets to the
wall. This showed that the hairpin packets organization tends to vanish beyond 0.6δ for the
favorable and zero-pressure-gradient cases and beyond 0.7δ for the adverse pressure gradients
(here δ denotes the boundary layer thickness). The influence of the pressure gradient as well as
the wall-normal distance on the streamwise extent of hairpin packets was also assessed. Similar
analysis in the streamwise/transverse planes provided results on the spanwise lengthscale of the
hairpin structures and hairpin packets, according to the pressure gradient and their wall-normal
position in the boundary layer. It was observed that the effect of the pressure gradient depends
on the distance of the structures from the wall and that a particular behaviour for the strong
adverse pressure case existed around 0.1δ which can be correlated to the secondary peak of
turbulent intensities urms

i for adverse pressure gradient flows.
The statistical analysis of the three-dimensional zero-pressure-gradient database provided a
three-dimensional estimation of the structures with respect to their distance from the wall.
The increasing size of hairpin-like vortices could be explicitly observed and the leg-neck-head
geometry seemed to vanish, replaced by a leg-head geometry when moving away from the wall.
this also showed that even if hairpin packets tend to vanish beyond 0.6δ, individual hairpin vor-
tices still exist at these distances. Moreover, a pair of counter-rotating quasi-streamwise vortices
was identified laying over hairpin packet at several wall-normal positions. These vortices have
a positive angle to the wall and a circulation opposite to that of the hairpin structures. To the
authors knowledge, this has never been observed before and an ”inverse hairpin” model was
proposed.

Following the work of Ahn et al. (2010), a stochastic model for wall-pressure spectrum was de-
veloped. The idea is to build a stochastic velocity field using hairpin packets which are subjected
to a turbulent mean flow. The results from the LES databases analysis are used to characterize
the hairpin packets depending on the pressure gradient case that needs to be simulated. The
pressure field at the wall is obtained by solving a Poisson equation. It has been demonstrated
that a model based on hairpin packets rather than single hairpins retrieves the anisotropic char-
acter of the wavenumber spectrum more accurately. A frequency dependence as well as coupling
with an autospectrum model was introduced to build the complete wavenumber-frequency wall-
pressure spectrum which is necessary for vibro-acoustics simulations. The frequency dependence
is modeled using a pressure-gradient-dependent convection velocity and a function which weights
the contribution of the different eddy scales. The model shows good agreement with numeri-
cal results of flows subjected to pressure gradients. Finally, the model was used as input for
a Statistical Energy Analysis (SEA) simulation in order to predict the levels of vibration of
panels submitted to a turbulent boundary layer flow over a portion of an aircraft cabin. The
computation was performed using the vibro-acoustic software VA-One. Comparison with in
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flight measurements using accelerometers showed good agreement in the low and high frequency
regions but provided low levels in the mid frequency range. First results from the hairpin packet
model look promising compared to other models from the literature when considering the entire
frequency range that is solved. However, the SEA modeling of the structure of the aircraft
has its limitations and the confidence in the SEA vibro-acoustic model needs to be assessed,
independently of the wall-pressure model.

Perspectives

The first task to conduct as future work is to perform additional comparison of the hair-
pin packet model with numerical and experimental databases of turbulent boundary layer flows
subjected to pressure gradients, as well as using the model for SEA simulations over regions of
the aircraft with non-zero pressure gradients (cockpit or wing/fuselage junction for instance).
An LES computation of a Mach 0.7 zero-pressure gradient turbulent boundary layer with a
domain four times longer and twice wider those analyzed in the current study was recently per-
formed at the DynFluid Laboratory. For this case, Reynolds numbers Reθ � Op104q (an order
of magnitude higher than what is presented here) were achieved. An analysis of the coherent
structures would provide interesting results on the Reynolds number effect on hairpin vortices
and hairpin packets (density, geometry, angles, ...). This would also help improving the the
hairpin packet model when considering high Reynolds numbers flows and fulfill the validation
needs to ensure the robustness of the model.

In terms of potential improvements, the following paths could be pursued. The measurement
of the angle of single hairpin structures would be very interesting in order to characterize the
influence of the pressure gradient on this quantity. This can be done by measuring the angle of
the Q2 event laying between the legs of hairpin vortices in the streamwise/wall-normal planes.
Another solution, which is more straightforward, is to store three-dimensional databases for the
non-zero pressure gradient cases and perform a statistical reconstruction of the vortices. This
will provide directly the angles of the structures as well as their geometry depending the pressure
gradient.
Results from the literature are contradictory regarding the contribution of the mean-shear and
the turbulent-turbulent source terms in Lighthill’s equation for pressure. As study similar to that
of Chang et al. (1999) would provide additional results for discussion. It would also characterize
the contribution of the different layers (near-wall, logarithmic, outer-region) and coherent struc-
tures (hairpin packets, bulges, quasi-streamwise vortices, ...) to the wall-pressure spectrum and
its dependence on the pressure gradient. Once again, this is only possible if three-dimensional
databases are available.
In the hairpin packet model, the source for the pressure field is the mean-shear term. A calcu-
lation including the turbulence-turbulence term would be interesting. This could help evaluate
the importance of each term to the wall-pressure spectrum without applying Lighthill’s analogy
to a three-dimensional velocity field which is numerically costly. For now, all hairpin structures
within a packet are the same whereas the analysis of the LES databases has revealed that the
eddies downstream of a packet are larger than those upstream of the packet. This aspect would
then need to be taken into account in the model. Finally, work still needs to be done concerning
the frequency dependence. More accurate knowledge on how the pressure gradient influences
the slope of the wavenumber spectrum with increasing frequencies is needed in order to improve
the weighting function that has been introduced in the model.
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T. Hyhĺık and H. Netrebská. Evaluation of travelling vortex speed by means of dynamic mode
decomposition and residual vorticity. EPJ Web of Conferences, 114, 2016.

A.J Izzo. An experimental investigation of the turbulent characteristics of a boundary layer flow
over a vibrating plate. Technical Report U417-69-049, DTIC Document, 1969.

J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285:69–94, 1995.

A.V. Johansson, P.H. Alfredsson, and H. Eckelmann. On the evolution of shear-layer structures
in near-wall turbulence. In Advances in turbulence, pages 383–390. Springer, 1987.

A.V. Johansson, P.H. Alfredsson, and J. Kim. Evolution and dynamics of shear-layer structures
in near-wall turbulence. J. Fluid Mech., 224:579–599, 1991.

M.B. Jones, I. Marusic, and A.E. Perry. Evolution and structure of sink-flow turbulent boundary
layers. J. Fluid Mech., 428:1–27, 2001.
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Centrale de Lyon, Lyon, France, 2007.

E. Salze, C. Bailly, O. Marsden, E. Jondeau, and D. Juvé. An experimental characterisation
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1. INTRODUCTION 

Cette étude se concentre sur le rôle des structures turbulentes, dites aussi structures 
FRKpUHQWHV�� GDQV� O¶H[FLWDWLRQ� GH� SDQQHDX[� G¶DYLRQ� VRXPLV� j� XQ� pFRXOHPHQW� GH� FRXFKH� OLPLWH�
turbulente en présence de gradients de pression longitudinaux. Le bruit généré par des 
écoulements autour de véhicules est devenu XQ� HQMHX� PDMHXU� SRXU� O¶LQGXVWULH� GX� WUDQVSRUW 
depuis que les niveaux de bruits liés aux éléments propulsifs ont considérablement été réduits. 
,O� V¶DJLW� G¶XQH� WKqVH�&,\�5\�� ODQFpH� SDU�$LUEXV�� HQ� SDUWHQDULDW�avec le laboratoire DynFluid de 
O¶\�FROH�1DWLRQDOH�6XSpULHXUH�G¶$UWV�HW�0pWLHUV�GH�3DULV� 
 
 
2. CONTEXTE ET MOTIVATIONS 

'HSXLV�SOXV�G¶XQ�GHPL-siècle, les constructeurs aéronautiques V¶HIIRUFHQW�GH�UpGXLUH�OH�EUXLW�GHV�
turboréacteurs qui constitue une forte gêne j�O¶LQWpULHXU�GH�O¶DSSDUHLO�PDLV�pJDOHPHQW�DXWRXU�GHV�
aéroports. Ainsi, la couche limite turbulente, à savoir la région de O¶pFRXOHPHQW�VXU�OD�SHDX�G¶XQ�
véhicule ayant un caractère turbulent, esW� GHYHQXH� OD�SULQFLSDOH� VRXUFH�GH�EUXLW� HW� G¶LQFRQIRUW�
sonore SRXU� OHV�SDVVDJHUV�HW� OHV�PHPEUHV�G¶pTXLSDJH�HQ� UpJLPH�GH�FURLVLqUH (voir Figure 1). 
Par conséquent, de nombreuses études ont été menées, à travers des mesures en soufflerie 
mais aussi des essais en vol, pour caractériser et modéliser le bruit de couche limite dans le but 
G¶DPpOLRUHU�OHV�PpWKRGHV�G¶LVRODWLRQ�SKRQLTXH�GHV�DYLRQV� 
 

 
Figure 1 - Niveaux et sources de bruit dans un cockpit d'Airbus A380 

 
Le mécanisme de génération de bruit intérieur par un écoulement externe est assez simple (voir 
Figure 2). Le caractère turbulent de la couche limite induit des fluctuations de pression 
instationnaires sur les panneaux du fuselage qui se mettent alors à vibrer. Ces vibrations sont 
transmises à tUDYHUV� OD� VWUXFWXUH� GH� O¶DYLRQ� HW� UD\�RQQHQW� �UD\�RQQHPHQW� DFRXVWLTXH�� GDQV� OD�
cabine et le cockpit. 
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Figure 2 - Mécanisme de transmission du bruit de couche limite 

 
Les modèles de pression pariétale sous une couche limite turbulenWH�TXL�H[LVWHQW�DXMRXUG¶KXL�QH�
sont pas adapWpV�SRXU�OHV�UpJLRQV�GH�O¶DYLRQ soumises à des gradients de pression, tels que la 
pointe avant et la jonction aile/fuselage. Grace aux avancéeV� HQ� WHUPH� G¶DOJRULWKPH�� GH�
puissance de calcul et des méthodes numériques ces dernières années, de nouveaux moyens 
G¶LQYHVWLJDWLRQ� GHV� pFRXOHPHQWs pariétaux ont pu être développés afin de caractériser plus 
précisément les structures turbulentes existantes dans la couche limite à des nombres de Mach 
représentatifs des applications industrielles. 
(Q�HIIHW�� OHV�IOXFWXDWLRQV�GH�SUHVVLRQ�TXL�H[FLWHQW� OD�SHDX�GH�O¶DSSDUHLO�QH�VRQW�TXH�O¶HPSUHLQWH�
des structures turbulentes. Il est alors primordial G¶pWXGLHU�FHV�VWUXFWXUHV�DILQ�G¶DSSUpKHQGHU�DX�
mieux le bruit lié aux écoulements et de construire des modèles de prédiction plus robustes. 
 
/D�WUqV�JUDQGH�PDMRULWp�GHV�pWXGHV�V¶LQWpUHVVHnt j�O¶pFRXOHPHQW�FDQRQLTXH�G¶XQH�FRXFKH�OLPLWH�
turbulente sur plaque plane et sans gradient de pression. De nombreuses études ont également 
été menées sur des couches limites soumises à un gradient de pression adverse (gradient de 
SUHVVLRQ�SRVLWLI�GDQV�OD�GLUHFWLRQ�GH�O¶pFRXOHPHQW��SXLVTXH�FH�W\SH�GH�JUDGLHQW�SHXW�rWUH�FULWLTXH�
dans des applications industrielles ; un gradient adverse fort peut par exemple entrainer une 
séparation de la couche limite au-GHVVXV�GHV�DLOHV�G¶XQ�DYLRQ�FRQGXLVDQW�j�une perte soudaine 
de la portée ou encore induire un effet de pompage dans les turbomachines. Le dernier type de 
gradient, dit gradient favorable (gradient de pressiRQ�QpJDWLI�GDQV�OD�GLUHFWLRQ�GH�O¶pFRXOHPHQW��
DUULYH�TXDQW�j�OXL�HQ�GHUQLqUH�SRVLWLRQ�HQ�WHUPH�GH�TXDQWLWp�G¶pWXGHV� 
Toutefois, malgré une littérature prépondérante sur la couche limite, les structures cohérentes 
ont été assez peu regardées, en particulier ORUVTXH� O¶pFRXOHPHQW�HVW�VRXPLV�j�XQ�JUDGLHQW�GH�
pression. De plus, le rôle de ces structures dans la production de la turbulence et au transport 
de masse et de quantité de mouvement est un élément bien connu depuis plusieurs années, 
PDLV�SHX�G¶pOpPHQWV�Hxistent quant à leur contribution aux fluctuations de pression pariétale.  
 
 
3. OBJECTIFS 

$XMRXUG¶KXL�� OHV�FRQVWUXFWHXUV�DpURQDXWLTXHV�PRQWUHQW�XQ� LQWpUêt croissant pour le bruit généré 
SDU�O¶pFRXOHPHQW�DXWRXU�GX�IXVHODJH�HW�GX�FRFNSLW��,OV�XWLOLVHQW�GHV�moyens de prédiction du bruit 
intérieur basé sur des modèles analytiques de pression pariétale qui manquent de robustesse, 
notamment dans les régions à géométries non canoniques. Par conséquent, deux objectifs  
principaux ont été fixés pour cette étude : 
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1. '¶XQ�SRLQW�GH�YXH�SKpQRPpQRORJLTXH��FRPSUHQGUH� O¶HIIHW�G¶XQ�JUDGLHQW�GH�SUHVVLRQ�sur 
O¶H[FLWDWLRQ�GH�FRXFKH�OLPLWH�HQ�V¶LQWpUHVVDQW�DX[�VWUXFWXUHV�FRKpUHQWHV�TXL�H[LVWHQW�GDQV�
un tel écoulement. De nombreux auteurs ont identifié le « hairpin » (tourbillon en forme 
G¶pSLQJOH�j�FKHYHX[���FRPPH�pWDQW� O¶XQH�GHV�VWUXFWXUHV� OD�SOXV� IUpTXHPPHQW�REVHUYpH�
GDQV�O¶pFRXOHPHQW�GH�FRXFKH�OLPLWH�HW�on suppose TX¶LO�D�XQ�U{OH�PDMHXU sur la pression 
pariétale. 

 
2. De construire un modèle stochastique de prédiction du spectre de pression pariétale. Ce 

modèle aura cette propriété peu commune de prendre en compte les caractéristiques 
WXUEXOHQWHV�GH�O¶pFRXOHPHQW��FRQWUDLUHPHQW�j� OD�JUDQGH�PDMRULWp�GHV�PRGqOHV�TXL�QH�VH�
basent principalement que sur des grandeurs moyennes. Malgré un degré de complexité 
plus élevé, il conviendra de bâtir un modèle adapté à des applications industrielles, 
notamment en terme de ressources et de temps de calcul. 
 

Cette étude a été menée en parallèle du projet SONOBL (Source of Noise from Boundary Layer 
over vehicles) et coordonnée par le laboratoire de mécanique des fluides '\Q)OXLG�GH� O¶(FROH�
1DWLRQDOH�6XSpULHXUH�G¶Arts et Métiers (ENSAM) de Paris, en collaboration avec le Laboratoire 
GH�0pFDQLTXH�GHV�)OXLGHV�HW�G¶$FRXVWLTXH��/0)$��GH� O¶(FROH�&HQWUDOH�GH Lyon (ECL), Airbus, 
Renault et Dassault. Dans le cadre de ce projet, une importante base de données numérique 
issue de Simulation aux Grandes Echelles (Large Eddy Simulation LES) de couches limites 
turbulentes soumises à des gradients de pression nul et non-nuls a été produite. Les résultats 
GH� FHV� FDOFXOV� RQW� SX� rWUH� FRPSDUpV� j� GHV�PHVXUHV� G¶pFRXOHPHQWV� pTXLYDOHQWV� HIIHFWXpV� HQ�
soufflerie au LMFA. Le travail mené dans cette thèse a consisté à post-traiter les bases 
numériques LES en se concentrant tout paUWLFXOLqUHPHQW�VXU� O¶pWXGH�GHV�VWUXFWXUHV�FRKpUHQWHV�
de type hairpin. 
 
 
4. ORGANISATION DE LA THÈSE 

&HWWH�WKqVH�V¶DUWLFXOH�DXWRXU�GH�WURLV�D[HV�PDMHXUV� 
 

1. Une revue bibliographique des écoulements de couches limites turbulentes soumises à 
des gradients de pression en se focalisant particulièrement sur les structures cohérentes, 
QRWDPPHQW� OHV� WRXUELOORQV� GH� W\SH� KDLUSLQ�� /¶pWXGH� GH� ces structures repose sur des 
PpWKRGHV� GH� YLVXDOLVDWLRQV� HW� G¶LGHQWLILFDWLRQV� G¶pYqQHPHQWV� SUpVHQWDQW� XQH� FHUWDLQH�
cohérence spatialH�HW�RX� WHPSRUHOOH��&HV�RXWLOV�G¶DQDO\VH, qui peuvent être instantanés 
ou statistiques, FRQVWLWXHQW� XQH� SDUW� HVVHQWLHOOH� GH� O¶pWXGH� ELEOLRJUDSKLTXH�� (QILQ�� XQH�
bonne connaissance des travaux liés aux fluctuations de pression pariétale sous une 
couche limite et des modèles GH� SUpGLFWLRQ� G¶XQH� VWUXFWXUH� PpFDQLTXH� SDU� XQ 
écoulement turbulent constituent également une base nécessaire pour atteindre les 
objectifs de ce travail de recherche. 

 
2. La majeure partie de cette thèse correspond au post traitement de  bases de données 

numériques de champs de vitesses de couches limites turbulentes issus de calcul LES. 
4XDWUH� W\SHV� G¶pFRXOHPHQW� pWDLHQW� GLVSRQLEOHV : gradient de pression nul, favorable et 
deux adverses. Un gradient de pression adverse introduit un véritable changement dans 
O¶pFRXOHPHQW�� FRPSDUDWLYHPHQW� j� XQ� pFRXOHPHQW� FDQRQLTXH ; il était donc intéressant 
G¶pWXGLHU�GHX[�FDV�GH�JUDGLHQWV�GH�SUHVVLRQ�DGYHUVHs, un faible et un plus intense. Au vu 
des objectifs fixés, cette étude V¶HVW�FRQFHQWUpH�VXU� OHV� WRXUELOORns de type hairpin et la 
PDQLqUH�GRQW�LOV�VRQW�DIIHFWpV�SDU�OD�SUpVHQFH�G¶XQ�JUDGLHQW�GH�SUHVVLRQ� 
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3. /HV�UpVXOWDWV�GH�O¶pWXGH�GHV�VWUXFWXUHV�FRKpUHQWHV�RQW�DORUV�VHUYL�GH�SRLQW�G¶HQWUpH�j�OD�
FRQVWUXFWLRQ�G¶XQ�PRGqOH�VWRFKDVWLTXH�GH�VSHFWUH�GH� OD�SUHVVLRQ�SDriétale. Ce modèle, 
inspiré du modèle de Ahn et al. (JFM 2010), repose sur les tourbillons hairpin pour créer 
XQ�FKDPS�GH�SUHVVLRQ�LQVWDQWDQpH�j�OD�SDURL�TXL�SUHQG�HQ�FRPSWH�OHV�HIIHWV�G¶XQ�JUDGLent 
de pression. Le point final de cette thèse a consisté à appliquer ce modèle à une portion 
G¶XQ�IXVHODJH�G¶DYLRQ�DILQ�GH�SUpGLUH�O¶DFFpOpUDWLRQ�GHV�SDQQHDX[�GH�OD�SHDX�GH�O¶DSSDUHLO�
soumis à un écoulement dans des conditions de croisière. 
 
 

 
5. PRINCIPAUX RÉSULTATS 

(Q�SUpVHQFH�G¶XQ�REVWDFOH��OD�YLWHVVH�G¶XQ�pFRXOHPHnt à sa paroi est nulle dû à la viscosité du 
IOXLGH��/D�FRXFKH�OLPLWH�HVW�DORUV�OD�UpJLRQ�GH�O¶pFRXOHPHQW�R��OD�YLWHVVH�GX�IOXLGH�SDVVH�GH�]pUR�
� L r j�OD�YLWHVVH�GH�O¶pFRXOHPHQW�OLEUH�ORLQ�GH�O¶REVWDFOH�7¶ comme le montre la Figure 3. Dans 
XQH� PDMRULWp� G¶DSSOLFDWLRQV� LQGXVWULHOOHV�� OHV� YLWHVVHV� LPSRUWDQWHV� GHV� pFRXOHPHQWV�� OHV�
contraintes mécaniques et géométriques induisent un régime turbulent. 
 

 
Figure 3 - La couche limite turbulente 

 
/H�FDUDFWqUH�GpVRUGRQQp�G¶XQ�pFRXOHPHQW�WXUEXOHQW�HVW�UHODWLI��(Q�HIIHW��GHSXLV�OD�ILQ�GHV�DQQpHV�
������ LO� D� pWp�PRQWUp�TX¶LO� H[LVWH� GHV� UpJLRQV� GH� O¶pFRXOHPHQW� Rù des grandeurs telles que le 
champ de vitesse ou de pression présentent une certaine cohérence spatiale et/ou temporelle. 
Ces régions sont nommées structures turbulentes, structures cohérentes, évènements 
turbulents ou encore évènement cohérents. Parmi les plus connus dans les écoulements de 
couche limite turbulente, on peut citer : 
 

x les sweeps et ejections, qui sont respectivement des mouvements rapides proches paroi 
de fluides projetés en direction de la paroi et de fluides éjectés loin de la paroi. 

x les low et high-speed streaks, qui sont des structures longitudinales proche paroi de 
faible et grande quantité de mouvement respectivement (voir Figure 4). 

x les bulges qui sont des structures grandes échelles dans la partie externe de la couche 
limite séparées par des « vallées » de fluide non turbulent (voir Figure 5). 

x les tourbillons qui sont des régions ou le fluide présente un mouvement de rotation. 
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Figure 4 - Isocontours de la vitesse proche de la paroi révélant les structures low- speed streaks (bleu) et 

high-speed streaks (jaune). 

 
 

 
 
Figure 5 - Schéma de couche limite turbulente montrant les structures grande échelle « bulge s » séparées par 

GHV�©�YDOOpHV�ª�G¶pFRXOHPHQW�QRQ�WXUEXOHQW� 

 
Dans cette étude, nous nous intéressons particulièrement aux structures tourbillonnaires dites 
« hairpin ª��,O�V¶DJLW�GH�VWUXFWXUHV�SUpVHQWDQW�XQH�IRUPH�G¶pSLQJOH�j�FKHYHX[�RX�GH�IHU�j�FKHYDO, 
caractérisées SDU�GHX[�MDPEHV��XQ�FRX��HW�XQH�WrWH�WUDQVYHUVDOH�j�OD�GLUHFWLRQ�GH�O¶pFRXOHPHQW�WHO�
que le montre la Figure 6. On peut également y voir une organisation en paquet, i.e un 
JURXSHPHQW�GH�SOXVLHXUV�KDLUSLQV�DOLJQpV�DYHF� O¶pFRXOHPHQW��&HWWH� VWUXFWXUH�JUDQGH�pFKHOOH�D�
été observée dans tous les écoulements de couche limite où O¶DXWHXU�V¶LQWpUHVVDLW�j�O¶pWXGH�GHV�
hairpins. 
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Figure 6 - Modèle de tourbillon de type hairpin (gauche) et organisation en paquets de h airpins (droite) 

 
Un caractère important des paquets GH� KDLUSLQV� HVW� TX¶LOV� IRUPHQW� XQ� DQJOH�� HQ� JpQpUDO� SOXV�
IDLEOH�TXH�FHOXL�GHV�KDLUSLQV�LQGLYLGXHOV��DYHF�OD�SDURL��/¶XQH�GHV�SUHPLqUHV�HVWLPDWLRQV�GH�FHWWH�
inclinaison fut réalisée au début des années 1980 en utilisation une méthode de visualisation 
G¶pFRXOHPHQW��/HV�DXWHXUV�RQW�UHOHYp�XQ�DQJOH�G¶HQYLURQ���� comme le montre la Figure 7. Plus 
UpFHPPHQW��G¶DXWUHV�DXWHXUV�RQW�PHVXUp�GHV�DQJOHV�GH�paquets entre 8° et 35° en utilisant des 
moyens similaires ou basés sur des méthodes statistiques appliquées à des mesures en 
soufflerie ou à des bases de données numériques. Il a également été démontré que la présence 
G¶XQ� JUDGLHQW� GH� SUHVVLRQ� DGYHUVH� FRQduit à une augmentation GH� O¶DQJOH� G¶LQFOLQDLVRQ� GHV�
paquets, mais aussi à celui des hairpins. 
 

 
Figure 7 - Mise en évidence d'alignements de hairpins selon un angle de 20°  à la paroi - l'écoulement est de la 

droite vers la gauche. 

 
Pour cette étude, une base de données de calculs LES a été post-traitée pour quatre 
écoulements de couche limite turbulente à Mach 0.5 et à nombres de Reynolds basés sur 
O¶pSDLVVHXU�GH�TXDQWLWp�GH�PRXYHPHQW�4A� L säwF u H sr7 ÷ 
 

1. Gradient de pression favorable (FPG) 
2. Gradient de pression nul (ZPG) 
3. Gradient de pression adverse faible (APGw, « w » pour weak) 
4. Gradient de pression adverse fort (APGs, « s » pour strong) 

 
La Figure 8 montre les domaines de maillage pour ces quatre calculs. La méthode pour 
LQWURGXLUH� XQ� JUDGLHQW� GH� SUHVVLRQ� HVW� G¶LQFOLQHU� OD� SDURL�� /D� YDOHXU� GH� O¶DQJOH� G¶LQFOLQDLVRQ�
FRQWU{OH� O¶LQWHQVLWp� GX� JUDGLHQW� GH� SUHVVLRQ�� /HV� DQDO\VHV� des champs de vitesse ont été 
réalisées sur un sous-GRPDLQH�GX�GRPDLQH�GH�FDOFXO��DSSHOp�]RQH�G¶LQWpUrW�HW�UHSUpVHQWpH�SDU�
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un rectangle en pointillés sur la figure. Dans cette région, on considère que la couche limite est 
en quasi-équilibre. 
 

 
Figure 8 - Maillages dans le plan longitunale/normal à la paroi pour les calculs (a) A PGs, (b) APGw, (c) ZPG et 

(d) FPG. Les rectangles en pointillés montrent les zones d'intérêt utilisée pour l'analy se. 

 
Sur la Figure 9, un critère de visualisation des structures tourbillonnaires a été appliqué et révèle 
OD�SUpGRPLQDQFH�GHV�KDUSLQV�DLQVL�TXH�O¶DUUDQJHPHQW�HQ�SDTXHW��6XU�FHWWH�ILJXUH��O¶pFoulement 
correspond à une couche limite turbulente sur plaque plane sans gradient de pression. 
/¶DUUDQJHPHQW� HQ� SDTXHW� H[LVWH� pJDOHPHQW� GDQV� OHV� pFRXOHPHQWs soumis à un gradient de 
pression, ce que montre la Figure 10. Ici, les champs de vitesse sont visualisés dans un 
système de référence se déplaçant à une vitesse de convection 7Ö L räyt7¶. Dans ce cadre, 
des mouvements de rotation (cercles) ainsi que des points de stagnation (flèches) sont visibles 
et sont représentatifs des structures hairpins ; les mouvements de rotation, dans le sens horaire, 
sont la signature des têtes de hairpins. On remarque ainsi un enchaînement de plusieurs 
KDLUSLQV� GDQV� OD� GLUHFWLRQ� GH� O¶pFRXOHPHQW� TXL� IRUPHQW� XQ� SDquet de hairpin. On peut enfin 
ajouter que les paquets présentent une inclinaison variable par rapport à la paroi. 
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Figure 9 - Mise en évidence de tourbillons de type hairpins et organisation en paq uet (rectangle jaune) dans 

une couche limite sans gradient de pression. 

 



 

10 

 

 
Figure 10 - Champs de vecteurs de vitesse instantanée dans un plan longitudinal/norm al à la paroi, 

représentés dans un système de référence se déplaçant à �� L ÙäàÛ�¶ pour les écoulements (a) APGs, (b) 
APGw, (c) ZPG et (d) FPG. 

 
Les Figure 9 - Mise en évidence de tourbillons de type hairpins et organisation en paquet 
(rectangle jaune) dans une couche limite sans gradient de pression. et Figure 10 - Champs de 
vecteurs de vitesse instantanée dans un plan longitudinal/normal à la paroi, représentés dans un 
système de référence se déplaçant à �� L ÙäàÛ�¶ pour les écoulements (a) APGs, (b) APGw, 
(c) ZPG et (d) FPG. donnent une vue instantanée du champ de vitesse pris à un temps aléatoire 
au cours du calcul. Afin de mieux caractériser les tourbillons, une méthode statistique, dite 
Estimation Stochastique Linéaire, est introduite. Cette méthode consiste à reconstruire, de 
manière stochastique, un champ de vitesse conditionnel, i.e. un champ de vitesse contraint par 
une certaine condition. La condition, ou évènement, choisie ici est le tourbillon prograde. ,O�V¶DJLW�
G¶XQ� WRXUELOORQ� WUDQVYHUVH� �SHUSHQGLFXODLUH� j� O¶pFRXOHPHQW� HW� SDUDOOqOH� j� OD� SDURL�� GRQW� OD�
FLUFXODWLRQ�HVW�GDQV�OD�PrPH�GLUHFWLRQ�TXH�OD�FLUFXODWLRQ�PR\HQQH�GH�O¶pFRXOHPHQW��'DQV�QRWUH�
FDV��LO�V¶DJLW�G¶XQ�WRXUELOORQ�DYHF�XQ�PRXYHPHQW�GH�URWDWLRQ horaire.  
 
/H�UpVXOWDW�GH�FHWWH�RXWLO�G¶DQDO\VH�HVW�PRQWUp�GDQV� OD�Figure 11 - Estimation stochastique du 
champ de vitesse basée sur une condition de tourbillon prograde situé à ��¾ L ÙäÛ pour les 
écoulements (a) APGs, (b) APGw, (c) ZPG) et (d) FPG. pour les quatre cas de gradient de 
pression et pour un point de référence �SRLQW� R�� VH� VLWXH� O¶pYqQHPHQW�� j� U�Ü L rät, Ü étant 
O¶pSDLVVHXU� GH� OD� FRXFKH� OLPLWH� On retrouve ainsi une organisation des tourbillons hairpins 
(repérés par des cercles) en paquet possédant un angle positif à la paroi. Cet angle a été estimé 
en fonction de la distance à la paroi et du gradient de pression. Les résultats sont montrés dans 
la Figure 12 dans laquelle sont également notés des résultats de littérature sur le sujet. On 
observe que les angles les plus élevés correspondent aux écoulements soumis à un gradient de 
pression adverse et que le cas favorable correspond aux angles les plus faibles. Une remarque 
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intéressante est que cet angle croit DYHF�OD�GLVWDQFH�j��OD�SDURL�SXLV�FKXWH�EUXWDOHPHQW�ORUVTX¶RQ�
DSSURFKH�GX�ERUG�GH� OD�FRXFKH� OLPLWH��&HFL�V¶H[SOLTXH�SDU� OH� IDLW�TXH� O¶RUJDQLVDWLRQ�HQ�SDTXHW�
disparait au-GHOj�G¶XQH�FHUWDLQH�GLVWDQFH�SDU�UDSSRUW�j� OD�SDURL ; au-delà de U�Ü L räx pour les 
cas FPG et ZPG et U�Ü L räy pour les cas APG. Autrement dit, les paquets de hairpins 
persistent plus haut dans la couche limite pour les écoulements avec gradient de pression 
adverse. 
 

 
Figure 11 - Estimation stochastique du champ de vitesse basée sur une condition de tourbillon prograde 

situé à ��¾ L ÙäÛ pour les écoulements (a) APGs, (b) APGw, (c) ZPG) et (d) FPG. 

 

 
Figure 12 - Angles des paquets de hairpins en fonction de la distance des pa quets à la paroi. 

 
Une estimation stochastique similaire à celle présentée dans la Figure 11 a été réalisée sur un 
volume pour un écoulement sans gradient de pression. La Figure 13 montre le résultat de cette 
HVWLPDWLRQ��2Q�REVHUYH� XQ� KDLUSLQ� SULQFLSDO� DXWRXU� GX� SRLQW� GH� UpIpUHQFH�GH� O¶HVWLPDWLRQ� DLQVL�
TX¶XQ� KDLUSLQ� VHFRQGDLUH� HQ� DYDO� GH� FHOXL-FL�� 'H� QRXYHDX�� FHFL� HVW� FDUDFWpULVWLTXH� G¶XQH�
organisation en paquet des tourbillons de type hairpins. Les résultats de la littérature ainsi que 
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les champs instantanés révèlent que les paquets de hairpins reposent sur des structures 
longitudinales basse vitesse dites Low Momentum Region (LMR). Ici, on retrouve ce type de 
structure qui est représentée en bleu. 2Q�UHPDUTXH�pJDOHPHQW�TX¶LO�HVW�SRVVLEOH�G¶HVWLPHU� OHV�
DQJOHV�GHV�MDPEHV�HW�GX�FRX�G¶XQ�KDLUSLQ�JUkFH�j�FH�JHQUH�GH�FDOFXO� 
 

 
Figure 13 - Estimation stochastique du champ de vitesse pour une condition de type tourbi llon prograde à 
��¾ L ÙäÛ pour une couche limite sans gradient de pression. En bleu est représenté une structure  basse 

vitesse dite Low Momentum Region (LMR). 

 
,O�pWDLW�DORUV�LQWpUHVVDQW�GH�UHJDUGHU�O¶pYROXWLRQ�GH�OD�WRSRORJLH�GHV�WRXUELOORQV�GH�W\SH hairpins en 
fonction de leur distance à la paroi. Sur la Figure 14 RQ� UHSUpVHQWH� OH� UpVXOWDW� G¶XQ� FDOFXO�
VLPLODLUH�j�FHOXL�GpFULW�SUpFpGHPPHQW�SRXU�XQ�SRLQW�GH�UpIpUHQFH�GH� O¶pYqQHPHQW�YDULDQW�HQWUH�

U�Ü L rät et U�Ü L rä{. Deux points sont alors remarquables : 
 

x /¶pFKHOOH�VSDWLDOH�GHV�KDLUSLQV�GpSHQG�GH�OHXU�GLVWDQFH�j�OD�SDURL ; les structures les plus 
grandes se trouvent en bordure de couche limite 

x /HV�KDLUSLQV�SHUVLVWHQW�WUqV�KDXW�GDQV�OD�FRXFKH�OLPLWH��MXVTX¶j�U�Ü L rä{, alors que nous 
avons vu que les paquets ne sont pas présents à des distances à la paroi supérieures à 
U�Ü L räy. 
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Figure 14 - Reconstruction de structures hairpins par estimation stochastique linéaire basé e sur une 

condition de type tourbillon prograde pour différentes distances à la paroi. 

Cette analyse permet alors de construire un modèle stochastique de spectre de pression 
pariétale basé sur des structures de type hairpin. Ce modèle est inspiré des travaux de Ahn et 
al. (JFM 2010) dont le principe est illustré dans la Figure 15Figure 15 
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Figure 15 - Principe du modèle stochastique de hairpin de Ahn et al. (JFM 2010) 

 
En turbulence, la décomposition de Reynolds suggère que le champ de vitesse instantanée � 
peut être décomposé en un champ moyen de vitesse �%  et un champ fluctuant de vitesse �ï, soit 
� L �% E �ï�� /¶LGpH� GH� $KQ� HW� DO�� HVW� DORUV� GH� FRQVWUXLUH� XQ� FKDPS� VWRFKDVWLTXH� GH� YLWHVVH�
instantanée en utilisant un tourbillon de type hairpin pour modéliser le champ fluctuant. Les 
structures ont une forme simplifiée de portique. Chaque élément du portique est modélisé par un 
cylindre avec une distribution uniforme de vorticité Ó le long de son axe. Le champ de vitesse 
induit par la combinaison champ moyen + hairpin est calculé en utilisant une intégrale de Biot-
Savart. Comme cela a déjà été dit, nous sommes intéressés par le spectre de pression 
pariétale. Pour ce faire, on utilise une équation de Poisson avec un terme source ne prenant en 
compte que la contribution du terme linéaire (ou rapide). Enfin, on applique une transformée de 
)RXULHU�VSDWLDOH�VXU�OH�FKDPS�GH�SUHVVLRQ�SDULpWDOH�DILQ�G¶REWHQLU�OH�VSHFWUH�QRPEUH�G¶onde qui 
est adimensionné. Cette démarche est résumée sur la Figure 16. 
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Figure 16 - Schéma d'obtention du spectre de pression pariétale à partir du modèle de h airpin. 

A ce stade, le spectre calculé ne contient pas de dépendance fréquentielle ; il peut être 
considéré comme XQ� VSHFWUH� LQWpJUp� VXU� O¶HQVHPEOH� GHV� IUpTXHQFHV�� (Q� HIIHW�� OH� VSHFWre de 
pression pariétale est un spectre fréquence-QRPEUH�G¶RQGH�TXH�O¶RQ�SHXW�QRWHU�5ãã:GëáGíáñ;, où 
Gë, Gí et ñ VRQW�UHVSHFWLYHPHQW�OH�QRPEUH�G¶RQGH�ORQJLWXGLQDO��OH�QRPEUH�G¶RQGH�WUDQVYHUVDO�HW�
OD� IUpTXHQFH� �RQ� WURXYH� OH� WHUPH�IUpTXHQFH�SDU�DEXV�GH� ODQJDJH�PDLV� LO�V¶DJLW�HQ� UpDOLWp�GH� OD�
pulsation tèB). Trois « ingrédients ª�VRQW�DORUV� LPSOpPHQWpV�DILQ�GH�UHFRQVWUXLUH� O¶LQWpJUDOLWp�GX�
spectre : 
 

1. /H� VSHFWUH� QRPEUH� G¶RQGH� HVW multiplié par un auto-spectre de pression pariétale 
(modèle analytique de la littérature)��&HFL�SHUPHW�G¶LQWURGXLUH�XQH�SUHPLqUH�GpSHQGDQFH�
IUpTXHQWLHOOH�DLQVL�TXH�GH�UHWURXYHU�OHV�ERQV�QLYHDX[�G¶pQHUJLH� 

2. /¶LQWURGXFWLRQ� G¶XQH� YLWHVVH� GH� FRQYHFWLRQ� 7Ö (inspirée du modèle de Panton et 
Linebarger JFM 1974) afin de modéliser la convection des structures en fonction de leur 
échelle spatiale. 

3. Une fonction de pondération empirique qui pilote la contribution de chaque échelle de 
structure en fonction de la bande fréquentielle considérée. 

 
/¶pWXGH� GHV� EDVHV� QXPpULTXHV� QRXV� D� DSSULV� TXH� OHV� KDLUSLQV� V¶RUJDQLVHQW� HQ� SDTXHW�� 3DU�
conséquent, dans notre modèle le hairpin individuel est remplacé par un paquet. En procédant 
ainsi, on peut de plus générer une structure basse vitesse de type LMR tel que le montre la 
Figure 17 - Paquet de cinq portiques au-dessus d'une région basse vitesse. En enrichissant 
ainsi le modèle, on introduit un caractère anisotropique au spectre de pression pariétale (voir 
Figure 18), ce qui est conforme aux résultats de la littérature. 
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Figure 17 - Paquet de cinq portiques au-dessus d'une région basse vitesse. 

 
 

 
Figure 18 - Spectre de pression pariétale pour (a) un hairpin individuel et (b) un paquet de cinq hairpins. 

 
/D�GHUQLqUH�pWDSH�GH�FRQVWUXFWLRQ�GX�PRGqOH�HVW�O¶LQIOXHQFH�G¶XQ�JUDGLHQW�GH�SUHVVLRQ��3RXU�FH�
faire, deux paramètres sont considérés : 
 

1. Prise en compte de la forme du sillage dans le profil moyen de vitesse à travers la valeur 
du paramètre de sillage de Coles qui dépend du gradient de pression à modéliser 

2. 0RGLILFDWLRQ� GH� O¶DQJOH� GHV� VWUXFWXUHV� KDLUSLQV ; nous avons mentionné en effet que le 
JUDGLHQW�GH�SUHVVLRQ�D�XQH�LQIOXHQFH�GLUHFWH�VXU�O¶LQFOLQDLVRQ�GHV�VWUXFWXUHV�SDU�UDSSRUW�j�
la paroi. 
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Un calcul du spectre de pression pariétale a été réalisé à partir du modèle de paquets de 
hairpins correspondant aux écoulements des simulations LES. Ceci est montré sur la Figure 19. 
Ici, les lignes verticales repèrent OD�SRVLWLRQ�GH�O¶pFKHOOH�GH�FRXSXUH�GHV�FDOFXOV�/(6��HVWLPpH�j�
tè�v�T, où �T HW� OH� SDV� GH�PDLOODJH� GDQV� OD� GLUHFWLRQ� GH� O¶pFRXOHPHQW. Ceci signifie que les 
échelles inférieures v�T ne sont pas résolues. Les structures hairpins sont placées à 45° par 
rapport à la paroi pour le cas ZPG, 37° pour le cas FPG, 53° pour le cas APGw  et 60° pour le 
cas APGs. On remarque alors que le modèle prédit la bonne hiérarchie en terme de niveaux et 
XQH�ERQQH�HVWLPDWLRQ�GHV�SHQWHV�GHV�VSHFWUHV�SRXU�OHV�QRPEUHV�G¶RQGHV�PR\HQV��7RXWHIRLV��OH�

modèle surestime les niveaux pour les faibles nombres G¶RQGHV�GëÜ O u. 
 

 
Figure 19 - Spectre de pression pariétale en fonction du nombre d'onde longitudinal pour les  quatre cas de 
gradients de pression à la première fréquence- Prédiction du modèle de paquets de hairpi ns comparé aux 

calculs LES (++). 

 
Pour finir, le modèle de paquet de hairpins a été appliqué à un cas industriel concret . Des 
PHVXUHV� G¶DFFpOpUDWLRQ� GH� SDQQHDX[� GH� IXVHODJH� RQW� pWp� UpDOLVpHV� VXU� O¶DYLRQ� $���� G¶HVVDL�
ATRA (Advanced Technology Research Aircraft) du DLR (Deutsches Zentrum für Luft und 
Raumfahrt). En parallèle, Airbus a réalisé un modèle vibroacoustique de type SEA (Statistical 
EQHUJ\�DQDO\VLV��G¶XQH�SRUWLRQ�DYDQW�GH�FDELQH�G¶XQ�DYLRQ�$�����SUpVHQWp�VXU la Figure 20. 
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Figure 20 - Modèle SEA de la portion avant d'une cabine d'avion de type A320. 

 
/H�PRGqOH�6($�SHUPHW�GH�VLPXOHU�O¶DFFpOpUDWLRQ�GHV�SDQQHDX[�GH�IXVHODJH ORUVTX¶LO�VRQW�VRXPLV�
à une excitation de type couche limite. La comparaison de O¶accélération prédite par le modèle 
SEA soumis à différents modèles de couche limite et O¶accélération mesurée en vol dans des 
conditions de croisière est montrée sur la Figure 21 pour le panneau supérieur de la cabine 
(Roof panel). 
 
 

 
Figure 21 - Accélération du panneau supérieur (Roof panel) mesurée en vol et prédite par le modèle SEA sous 

différents types d'excitations de couche limite. 
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Les modèles HP et HPP correspondent au modèle de hairpin individuel (de type Ahn et al. JFM 
2010) et modèle de paquet de hairpins respectivement. Les modèles de Corcos, Cockburn-Jolly, 
Efimstsov et FRPM (Fast Random Particle Mesh)  sont issus de la littérature. Les données de 
ses deux derniers modèles, les résultats des mesures en vol ainsi que les paramètres de 
couche limite des conditions de croisièUH�GH�O¶DYLRQ�RQW�pWp�FRPPXQLTXpV par A. Klabes, dans le 
cadre de sa thèse sur un sujet similaire. On remarque alors que ce sont les modèles HPP et 
Efimtsov qui donnent les meilleurs UpVXOWDWV�� ,O� IDXW� SUpFLVHU� TX¶LFL� les constantes du modèle 
G¶(ILPWVRY�RQW�pWp�FDOLEUpes à partir des PHVXUHV�HQ�YRO�VXU�O¶DYLRQ�$75A. 
 
 
6. PERSECTIVES 

Ce type de travaux et de modèle ouvrent de nombreuses possibilités. Une des premières tâches 
à effectuer est de réaliser davantage G¶pWXGHs comparatives du modèle de paquet de hairpins 
DYHF�GHV�GRQQpHV�H[SpULPHQWDOHV�HW�QXPpULTXHV�G¶pFRXOHPHQW�GH�FRXFKHs limites soumises à 
des gradients GH�SUHVVLRQ��,O�FRQYLHQW�pJDOHPHQW�G¶DSSOLTXHU�FH�PRGqOH�j�XQ�FDOFXO�6($�VXU�GHV�
UpJLRQV� G¶DYLRQ� DYHF� XQ� JUDGLHQW� GH� SUHVVLRQ�� WHO� TXH� OD� SRLQWH� DYDQW� Ht la jonction 
voilure/fuselage.  
 
8Q�FDOFXO�/(6�G¶XQH�FRXFKH�OLPLWH�VDQV�JUDGLHQW�GH�SUHVVLRQ�j�0DFK�����HW�DYHF�XQ�QRPEUH�GH�

Reynolds plus élevé 4A� L 1:sr8; a également été réalisé plus récemment au laboratoire 
Dynfluid. Une analyse des structures cohérentes pour un tel écoulement donnerait des résultats 
LQWpUHVVDQWV�VXU�O¶HIIHW�GX�QRPEUH�GH�5H\QROGV�VXU�OHV�WRXUELOORQV�GH�W\SH�KDLUSLQ��GHQVLWp��DQJOH��
topologie, etc.). Ceci fournirait également des éléments G¶DPpOLRUDWLRQ�GX�PRGqOH�GH�SDquet de 
hairpins pour des écoulement à hauts nombres de Reynolds. 
 
'DQV� FHWWH� pWXGH�� QRXV� DYRQV� PHVXUp� O¶DQJOH� GHV� SDTXHWV� GH� KDLUSLQV�� ,O� HVW� pJDOHPHQW�
LQWpUHVVDQW� GH� PHVXUHU� O¶DQJOH� GHV� KDLUSLQs individuels DILQ� G¶pYDOXHU� O¶HIIHW� GX� JUDGLHQW� GH�
pression sur cet angle. &HFL�SHXW�rWUH�UpDOLVp�HQ�PHVXUDQW�O¶DQJOH�GH�O¶pYqQHPHQW�3t (ejection) 
entre les jambes des hairpins. Un autre moyen serait de réaliser une estimation stochastique du 
champ de vitesse sur une base de données 3D comme cela a été fait pour le cas ZPG ici. Pour 
cela, il est nécessaire de stocker des volumes, ce qui demande des capacités de stockage de 
GRQQpHV� WUqV� LPSRUWDQWHV�� &HWWH� PpWKRGH� HVW� WRXWHIRLV� OD� SOXV� UREXVWH� SXLVTX¶HOOH� GRQQH�
GLUHFWHPHQW�O¶DQJOH�GHV�VWUXFWXUHV�GH�W\SH�KDLUSLQ� 
 
Le modèle de paqueW�GH�KDLUSLQ�WHO�TX¶LO�D�pWp�FRQVWUXLW�UHSRVH�VXU�O¶K\SRWKqVH�TXH�VHXO�OH�WHUPH�
source rapide contribue à la pression pariétale. Il semble important de confirmer, ou non, cette 
K\SRWKqVH�HQ�LQWpJUDQW�GDQV�O¶pTXDWLRQ�GH�3RLVVRQ�GH�FDOFXO�GX�FKDPS�GH�SUHVVLRn pariétale le 
terme lent (turbulent-turbulent). Cette hypothèse peut également être vérifiée directement à 
partir des bases de données LES HQ� UpVROYDQW� XQ� SUREOqPH� G¶DQDORJLH� GH� /LJKWKLOO�� PDLV� Oj�
encore, une base volumique est nécessaire. Enfin , une telle base permettrait aussi G¶HVWLPHU�OD�
FRQWULEXWLRQ�GH�FKDTXH�FRXFKH�GH�O¶pFRXOHPHQW�j�OD�SUHVVLRQ�SDULpWDOH��(Q�HIIHW��OHV�FRQFOXVLRQV�
de la littérature sont contradictoires à ce sujet ; certains résultats suggèrent que les couches loin 
de la paroi ont une contribution QpJOLJHDEOH�j�OD�SUHVVLRQ�SDULpWDOH�DORUV�TXH�G¶DXWUHV�PRQWUHQW�
TXH�FHFL�Q¶HVW�SDV�vrai. 
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