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Chapter 1

Introduction

1.1 Introduction

This thesis focuses on the coherent structures in turbulenboundary layers subjected to pressure
gradients and their role in aircraft structure excitation d ue to wall-pressure uctuations. Flow-
generated noise has become a non-negligible technologiéssue for the transport industry since
great e orts have been made in reducing the propulsion genettad noise.

This chapter aims at describing the context and motivationsof this study by focusing on the ow-
generated noise mechanisms. Due to the smooth curvature ofraraft fuselage, the importance
of developing a precise knowledge of the turbulent properéis of the ow when subjected to
pressure gradients will be highlighted. The objectives andoutline of this study will also be
presented hereafter.

1.2 Context and motivations

Since the engine noise levels have considerably reduced cinthe past 60 years, the turbulent
boundary layer (TBL) has become one of the main sources of araft interior noise over a
large frequency range (see gure 1.1), driving insulation oncept design in the cabin and ight
deck area. As a driver of the crew and passenger comfort it is aubject of interest since years
and several contributions on ight tests data and/or modeling approaches can be found in the
literature (Bhat, 1971; Collery, 2010; Collery et al., 2013 Rackl and Weston, 2005; Rizzi et al.,
2000). In fact, the pressure uctuations within a turbulent boundary layer are responsible
for structural vibrations (Blake, 1986) that are transmitt ed through the structure and radiate
into the vehicle as can be seen in the scheme in gure 1.2. Theira of this research eld has
always been to increase con dence in excitation models to iprove design concepts for aircraft
insulation. Nevertheless, these models are usually not agiéed to characterize pressure gradient
areas, such as the ight deck and the wing/fuselage junction and need strong improvements.
Nowadays, with improvements of numerical capabilities, irvestigations of turbulent structures
properties and their organization in the vicinity of walls at representative Mach numbers are
accessible.

In fact, the pressure uctuations which are responsible forthe excitation of the aircraft's
cockpit and fuselage panels are the imprint of the turbulent motions living within the ow.
Therefore it is crucial to investigate these coherent strutures in order to understand the mech-
anism of noise generation from ow vibrating panels and buid more reliable noise prediction
tools.

Many authors have worked on turbulent boundary layers subjeted to zero and non-zero pressure
gradients (Bradshaw, 1967b; Burton, 1973; Clauser, 1954, iRit and Ramesh, 2010; Hu and Herr,
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Figure 1.1 { Sound pressure levels and noise sources in an A380 cockpit - Airbusclment.

2016; Kline et al., 1967; Lee and Sung, 2009; McGrath and Singon, 1988; Salze et al., 2014,
Schloemer, 1967; Spalart and Watmu , 1993). Apart from the canonical zero pressure gradient
ow which gathers the majority of the research, focus has bee put on adverse pressure gradient
ows, since this type of pressure gradient can be critical inseveral engineering applications such
as separation of the turbulent boundary layer over the wing when the critical angle of attack is
reached or pumping e ect in turbomachinery. Favorable pressire gradient turbulent boundary
layers would come in last position in terms of amount of rese@h papers.

Nevertheless, even though turbulent boundary layer ows hae gathered the interest of many
authors, there is little information concerning the coherent turbulent structures when the ow
is subjected to pressure gradients. It is well known that theturbulent eddies play an important
role in turbulence production and mass and momentum transpd, but very little is known on
their contribution to wall-pressure uctuations. In this s tudy, an attempt to correlate these
structures to the wall-pressure uctuations is undergone.

Figure 1.2 { Flow-generated-noise mechanism.

1.3 Objectives

Aircraft manufacturers show increasing interest in noise gnerated by the turbulent boundary
layer ow over the fuselage and cockpit. The noise predictig tools which are used in industry
today rely on analytic wall-pressure models which lack preision especially in areas where the
ow is subjected to pressure gradients.

The aims of the thesis are

From a phenomenological point of view, to understand the e et of pressure gradient on
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the turbulent boundary layer excitation by investigating t he turbulent coherent structures
existing within the ow. Many authors have showed that the hairpin vortex, which refers
to hairpin, cane, horseshoe or omega vortex, is one of the mofequently encountered
coherent structure in the turbulent boundary layer ow and it is believed that this type
of vortex has a signi cant in uence on the wall-pressure uctuations.

From a modelling point of view, to develop based upon these atervations a stochastic
wall-pressure spectrum model. This model is designed to impve the reliability of the

current turbulent boundary layer excitation by explicitly taking into account turbulent

features of the ow. Indeed, the majority of the models used ly transport manufacturers
nowadays rely only on averaged quantities since these modare very easy to implement
and require very low computation time.

This work has been conducted in the frame of the SONOBL projec(Sources of NOise from
Boundary Layers over vehicules) which was coordinated by te uid mechanics laboratory Dyn-
Fluid from Ecole Nationale Sugerieure des Arts et Metiers located in Paris, and in collaboration
with the Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA) from Ecole Centrale
de Lyon, as well as three industrial partners, Airbus, Renalt and Dassault. Among the main
outcomes of SONOBL, an extensive numerical Large Eddy Simalion (LES) database of tur-
bulent boundary layers ows subjected to favorable (FPG), zero (ZPG) and adverse (APG)
pressure gradients has been generated by DynFluid, and comaped with wind tunnel measure-
ments from LMFA. The current thesis is built on these roots and greatly acknowledges them.
Therefore, a particular e ort will be put on analyzing this da tabase to characterize the features
of the ow, and more speci cally quantify hairpin vortices e volution prior to modelling them
as vibroacoustic excitation input. However, the various vbroacoustic approaches themselves
(Analytical, FEM, SEA, ...) and their properties are out of t he scope and will not be discussed
in the current manuscript.

1.4 Organization of the thesis

This thesis is divided into ve parts.

The rst chapter contains the introduction in which the moti vations, objectives and organization
of the manuscript are presented.

The second chapter is a literature review of boundary layer ows along with the e ects of pressure
gradients. This chapter also provides detailed phenomenoby on the coherent structures in
turbulent boundary layer ows with a specic focus on hairpi n vortex type. An overview of

the common visualization and identi cation methods and criteria will also be provided. This

chapter ends with a review of the existing wall-pressure moels, and their way to couple the
wall-pressure spectrum with the structure.

The third chapter deals with the instantaneous and statistical analysis of the velocity elds for

turbulent boundary layers subjected to zero and non-zero pessure gradients. The numerical
simulation providing the database used for this study will be presented in this chapter, along
with description of the numerical tools and methods used forthe study. The e ect of pressure

gradients on the turbulent vortices will be highlighted.

The fourth chapter focuses on the stochastic wall-pressurepectrum model. In this section the
model as well as the methodology of enhancement of the modeteadescribed. Results from a
rst coupling with an aircraft structure using a vibroacous tic simulation tool will also be shown.

3
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The conclusions of this study are summarized in the last chaier where perspectives for future
work are also proposed.



Chapter 2

Turbulent boundary layer .
literature review

The boundary layer is a well known concept in mechanical, aemautical, naval as well as civil
engineering and has undergone increasing interest from thscienti c community as a result of

rapidly growing use of powerful computation methods and tods. This concept came into the
mind of Prandtl (1904) in the beginning of the past century were he build a bridge between
the two major disciplines of uid dynamics at that moment, hy drodynamics which had devel-
oped from Euler's theory of inviscid ows and hydraulics which relied on a large amount of
experimental data to tackle practical engineering problens. In his 1904 paper, Prandtl stated
that however small the viscosity of a uid in motion may be, it cannot be ignored. Over the
years, this had an outstanding impact on the competitivenes-driven industry of transport by

introducing a theoretical background to the concept of dragfor uid-immersed bodies. A simple
de nition of the boundary layer would be :

"The boundary layer is a region of the ow with non-negligible e ects of viscosity separating
a solid body and a free ow which corresponds to the inviscidrhiting solution.”

Due to viscosity e ects, the ow within the boundary layer can be considered laminar or turbu-
lent depending on the Reynolds numberRe, de ned hereafter :

uUx

Rex (2.2)

where U and x are respectively a characteristic streamwise velocity andhe distance from the
leading edge of the surface and is the kinematic viscosity of the uid. When the Reynolds num-
ber increases, the regime transitions from laminar to turbdent leading to much more complex
ow pattern and a thickening of the boundary layer as shown in gure 2.1.

2.1 Boundary layer : state of the art

2.1.1 Laminar boundary layer

The laminar ow is characterized by smooth streamlines appoximately parallel to the wall over
which the boundary layer develops. The boundary layer is likely to be laminar (at least for a
short time before transitioning) in the range 1000 Re, 10° (White, 1991) which is coherent
with the critical Reynolds number de ned in the next section. If we consider a ow over a at
plate with its leading edge atx 0, the thickness of the boundary layer is a monotonically

5
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Figure 2.1 { Boundary layer representation with free stream velocity U showing transition
between laminar and turbulent regimes.

increasing function of x. The transition from boundary layer ow to outer ow for lami nar
regime takes place continuously so that the boundary cannobe given precisely. Thus, the most
straightforward de nition of boundary layer thickness is given by the point where the velocity
reaches 99% of the free stream velocity and is therefore oftedenoted gg.

A correct and reliable measure for the thickness of the bounary layer is the displacement
thickness  (also denoted 1), which, under hypothesis of incompressible ow, is de nedby:

X u
X 1 — x;y dy (2.2)

0 Ue
where Ug is the edge velocity, i.e. the velocity at the outer edge of te boundary layer, U is
the mean ow velocity and vy is the wall-normal distance. The displacement thickness ths us
how far the streamlines of the outer ow are displaced by the mundary layer (Schlichting and
Gersten, 2000) as depicted in gure 2.2 and is about 1/3 of theboundary layer thickness for

laminar ow over at plate.

Figure 2.2 { Velocity defect caused by the presence of the bawdary layer in comparison to ideal
uid - this is quanti ed by the displacement thickness

One can also de ne the following integral quantity referredto as the momentum thickness
(also denoted ;) de ned by:
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X u U
X —1 — xy d 2.3
. Ul XYW (2.3)
The momentum thickness is a distance indicative of the boundry layer momentum de cit
relative to a mean ow. The displacement and momentum thickness are related through the
shape factorH given by:

H — 1 (2.4)

Notice how the shape of the mean velocity pro le is atter away from the wall in the case of a
turbulent boundary layer (see gure 2.3). This " atness" is characterized by the shape factoH .
The shape factor is around 5/2 for a laminar boundary layer oer a at plate (White, 1991); for
instanceH  2:6 for the Blasius (1908) pro le. In comparison, the shape fator is lower for the
turbulent boundary layer - H 1.3 for the zero pressure gradient Klebano (1954) boundary
layer.

2.1.2 Turbulent boundary layer

As was already mentioned, the boundary layer does not remaifaminar and transitions towards
a turbulent regime at a certain critical Reynolds number. The numerical value of the critical
Reynolds numberRegj; is strongly dependent on the level of perturbations in the oter ow.
Considering a turbulent boundary layer developing over a & plate, this number ranges within
3:10° Rex:crit 3:1C°, wherex is the distance from the leading edge of the plate. The turbu-
lent boundary layer (TBL) is characterized, from a very basic point of view, by a great increase
in its thickness and wall-shear stress leading to a change ithe shape of the mean velocity pro le
as can be seen in gure 2.3.

Figure 2.3 { Typical velocity pro les on a at plate for lamin ar and turbulent boundary layers
showing the increase in wall-shear for the turbulent case -feer Young (1989).
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Unlike the laminar boundary layer where the entire region ofthe boundary layer is a ected by
viscosity, the rst turbulent boundary layer studies (Kleb ano, 1954; Kovasznay, 1967; Laufer,
1954; Townsend, 1951) show that it can be divided into two remns:

a very thin layer directly at the wall called the viscous sublayer or viscous wall layer where
the e ects of viscosity are dominant

a larger region away from the wall which can be referred to ashe frictional layer be-
cause only the "apparent friction" due to the turbulent uct uating motions, and which is
una ected by viscosity, is driving the ow.

Figure 2.4 { Typical velocity pro le for a turbulent boundar y layer showing the di erent sub-
layers with respect to the wall-normal distance for di erent Reynolds numbers. The logarithmic
regions increases as the Reynolds number increases - afteelery (2007), the text in the gure
was translated from french to english.

This leads to the fact that there is no global scaling for the atire turbulent boundary layer.
For instance, the pro le of the mean velocity close to the wal is dictated by inner variables
such as the wall-shear dU dy (where is the dynamic viscosity), the friction velocity
u ‘w , and the kinematic viscosity , whereas the outer pro le can be scaled with outer
variables such as the edge velocityJe and the TBL thickness . A detailed description of the
di erent layers