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RESUME iii

Résumé

Au cours de cette thése, un modéle potentiel résolvant les équations d’Euler-Zakharov a été
développé dans le but de simuler la propagation de vagues et d’états de mer irréguliers et multi-
directionnels, du large jusqu’ala cote, sur des bathymétries variables. L’objectif est de représenter
les effets non-linéaires et dispersifs le plus précisément possible pour des domaines cétiers bidi-
mensionnels (dans le plan horizontal) de 'ordre de quelques kilométres.

La version 1DH initiale du modéle, résolvant le probléme aux limites de Laplace a I’aide de sché-
mas aux différences finies d’ordre élevé dans la direction horizontale combinés a une approche
spectrale sur la verticale, a été améliorée et validée. L’implémentation de conditions aux limites
de type Dirichlet et Neumann pour générer des vagues dans le domaine a été étudiée en détail.
Dans la pratique, une zone de relaxation a été utilisée en complément de ces conditions pour
améliorer la stabilité du modéle.

L’expression analytique de la relation de dispersion a été établie dans le cas d’un fond plat. Son
analyse a montré que la représentation des effets dispersifs s’améliorait significativement avec
l'augmentation de la résolution sur la direction verticale (i.e. avec le degré maximal de la base
de polynémes de Tchebyshev utilisée pour projeter le potentiel des vitesses sur la verticale). Une
étude de convergence menée pour des ondes solitaires modérément a fortement non-linéaires a
confirmé la convergence exponentielle avec la résolution verticale grace a ’approche spectrale,
ainsi que les convergences algébriques en temps et en espace sur I’horizontale avec des ordres
d’environ 4 (ou plus) en accord avec les schémas numériques utilisés.

La comparaison des résultats du modele a plusieurs jeux de données expérimentales a démon-
tré les capacités du modele a représenter les effets non-linéaires induits par les variations de
bathymeétrie, notamment les transferts d’énergie entre les composantes harmoniques, ainsi que
la représentation précise des propriétés dispersives. Une formulation visco-potentielle a égale-
ment été implémentée afin de prendre en compte les effets visqueux induits par la dissipation
interne et le frottement sur le fond. Cette formulation a été validée dans le cas d’une faible vis-
cosité avec un fond plat ou présentant une faible pente.

Dans le but de représenter des champs de vagues 2DH, le modele a été étendu en utilisant une
discrétisation non-structurée (par nuage de points) du plan horizontal. Les dérivées horizontales
ont été estimées a 'aide de la méthode RBF-FD (Radial Basis Function-Finite Difference), en con-
servant 'approche spectrale sur la verticale. Une étude numérique de sensibilité a été menée
afin d’évaluer la robustesse de la méthode RBF-FD, en comparant différents types de RBFs, avec
ou sans parametre de forme et I’ajout éventuel d’'un polynéme. La version 2DH du modéle a

été utilisée pour simuler deux expériences en bassin, validant ainsi I’approche choisie et démon-
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trant son applicabilité pour simuler la propagation 3D des vagues faisant intervenir des effets
non-linéaires. Dans le but de réduire le temps de calcul et de pouvoir appliquer le code a des
simulations sur de grands domaines, le code a été modifié pour utiliser le solveur linéaire direct

en mode parallele.

Mots-clé:

vagues, vagues cotiéres, propagation des vagues, modélisation numérique, fond variable, écoule-

ment potentiel, Fonction de Base Radiales, vagues non-linéaires, modéle visco-potentiel
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Abstract

In this work, a potential flow model based on the Euler-Zakharov equations was developed with
the objective of simulating the propagation of irregular and multidirectional sea states from deep
water conditions to the coast over variable bathymetry. A highly accurate representation of non-
linear and dispersive effects for bidimensional (2DH) nearshore and coastal domains on the order
of kilometers is targeted.

The preexisting 1DH version of the model, resolving the Laplace Boundary Value problem using
a combination of high-order finite difference schemes in the horizontal direction and a spectral
approach in the vertical direction, was improved and validated. The generation of incident waves
through the implementation of specific Dirichlet and Neumann boundary conditions was stud-
ied in detail. In practice, these conditions were used in combination with a relaxation zone to
improve the stability of the model.

The linear dispersion relation of the model was derived analytically for the flat bottom case. Its
analysis showed that the accuracy of the representation of dispersive effects improves signifi-
cantly by increasing the vertical resolution (i.e. the maximum degree of the Chebyshev poly-
nomial basis used to project the potential in the vertical). A convergence study conducted for
moderate to highly nonlinear solitary waves confirmed the exponential convergence in the ver-
tical dimension owing to the spectral approach, and the algebraic convergence in time and in
space (horizontal dimension) with orders of about 4 (or higher) in agreement with the numerical
schemes used.

The capability of the model to represent nonlinear effects induced by variable bathymetry, such
as the transfer of energy between harmonic components, as well as the accurate representation
of dispersive properties, were demonstrated with comparisons to several experimental data sets.
A visco-potential flow formulation was also implemented to take into account viscous effects in-
duced by bulk viscosity and bottom friction. This formulation was validated in the limit of small
viscosity for mild slope bathymetries.

To represent 2DH wave fields in complex nearshore domains, the model was extended using an
unstructured discretization (scattered nodes) in the horizontal plane. The horizontal derivatives
were estimated using the RBF-FD (Radial Basis Function - Finite Difference) method, while the
spectral approach in the vertical remained unchanged. A series of sensitivity tests were con-
ducted to evaluate numerically the robustness of the RBF-FD method, including a comparison of
a variety of RBFs with or without shape factors and augmented polynomials. The 2DH version
of the model was used to simulate two wave basin experiments, validating the approach and

demonstrating the applicability of this method for 3D wave propagation, including nonlinear
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effects. As an initial attempt to improve the computational efficiency of the model for running
simulations of large spatial domains, the code was adapted to use a parallelized direct linear

solver.

Keywords:

waves, coastal waves, wave propagation, numerical modeling, variable bottom, potential flow,

Radial Basis Functions, nonlinear waves, visco-potential
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Introduction

La modélisation de la transformation des vagues au cours de leur propagation depuis
leur zone de génération jusqu’a la cote est d’intérét majeur pour un grand nombre
d’applications d’ingénierie marine et cotiére. Selon la zone d’intérét, les processus
physiques a l'origine de ces transformations sont divers avec des échelles caractéris-
tiques de temps et d’espace variées, qui requiérent des approches de modélisation dif-
férentes. Les modeles dits "spectraux" représentent des quantités moyennes caractéris-
tiques de I’état de mer et sont généralement utilisés pour de grands domaines et par
grande profondeur. Au contraire, les modéles dits "a résolution de phase" donnent
Pévolution de I’élévation de surface libre au cours du temps et nécessitent une discréti-
sation plus fine. De ce fait, leur utilisation est limitée a de plus petits domaines. Ce
travail porte sur cette deuxiéme catégorie de modéles, avec pour objectif de développer
un modeéle déterministe capable de simuler la propagation de champs de vagues ir-
réguliers et multidirectionnels sur des bathymétries variables, du large jusqu’a la cte,
avec une représentation précise des effets non-linéaires et dispersifs. Pour cela, le choix
d’un modeéle potentiel basé sur les équations d’Euler irrotationnelles a été retenu comme
compromis entre des modéles ne prenant en compte que partiellement ces effets (équa-
tions de Saint-Venant, Berkhoff, Boussinesq) et les modéles trés coiiteux en temps (fondés
sur les équations de Navier-Stokes). De plus, une approche spectrale sur la verticale est
adoptée pour sa précision et sa flexibilité. Le chapitre 1 décrit le modéle mathématique
utilisé alors que le chapitre 2 présente la mise en ceuvre numérique de la version 1DH en
insistant particuliérement sur les conditions de génération et d’absorption des vagues.
Les capacités non-linéaires et dispersives de la version 1DH du modéle sont démontrées
d travers application a six cas tests dans le chapitre 3. Le chapitre 4 traite de la prise
en compte des effets visqueux de dissipation interne et de frottement sur le fond par une
formulation visco-potentielle. Les chapitres 5 et 6 sont dédiés a I’extension du modeéle
en 2DH avec une étude de la méthode RBF-FD et la validation par comparaison a des

données expérimentales en bassin a vagues.



2 INTRODUCTION

Context and objectives of the PhD thesis

Waves generated by the wind at the surface of seas and oceans can propagate over several thou-
sand kilometers from their generation zone to the coast. To be able to simulate wave propagation
and transformation is of major interest for a wide variety of applications in marine and coastal
environments. For example, coastal and marine engineers seek accurate descriptions of wave
conditions for the construction of offshore facilities, the study of sediment transport to evaluate
coastal erosion risks, the design of protective coastal structures to prevent overtopping and to
reduce flooding risks, the study of wave agitation in harbors, or the estimation of the potential

for marine renewable energy devices.

All of these applications require accurately modeling nearshore waves. Depending on the do-
main of interest, from the offshore, deep water wave conditions to the surf zone, a variety of
different physical processes control wave transformation. In the deep ocean, interactions with
the atmosphere are predominant, including wave generation from wind and wave energy dis-
sipation by white-capping. Quadruplet wave interactions (between four wave components) are
an important cause of deep-water wave spectrum transformation, usually leading to a frequency

downshift in the wave spectrum and an increase in the wave period.

When approaching the shore, bottom interactions become non-negligible causing shoaling, re-
fraction, and energy dissipation from bottom friction and depth-induced wave breaking. As
waves propagate over variable bathymetric profiles, triplet wave interactions (between three
wave components) become important in intermediate and shallow water, causing a decrease in
the mean wave period. Currents may also interact with waves causing refraction or even wave
blocking for specific conditions. In the vicinity of the coastline or marine structures, such as
offshore platforms, dykes or breakwaters, run-up, swash, overtopping, diffraction and reflection

from obstacles must also be considered.

These physical processes have different characteristic temporal and spatial scales, requiring dif-
ferent modeling approaches, which can be divided into two categories: phase-averaged (or spec-

tral) models and phase-resolved (or deterministic) models.

1. Phase-averaged (or spectral) models are based on a spectro-angular representation of
the sea state and its evolution following the conservation of wave action. These models
simulate the evolution of the wave action or energy spectrum, from which several averaged
quantities characterizing the wave field can be obtained (i.e. significant wave height, peak
period, propagation direction of the dominant wave). Models of this category (e.g. WAM,
Tomawac, SWAN and WaveWatch) are used for large-scale applications because of their
computational efficiency, but they are unable to take into account the phase difference

between different wave components. This is due to the fact that these models consider
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only mean (phase-averaged) wave properties and do not resolve the dynamics of each
wave profile. For example, a spectral wave model can predict the wave height in front of
a coastal structure but is unable to predict the spatially varying modulation of the wave

amplitude caused by wave reflection from the structure.

2. Phase-resolved (or deterministic) models simulate the evolution of the free surface el-
evation and the associated kinematics in a deterministic manner. These models simulate
the evolution of the free surface as a function of time and space, requiring finer spatial
and temporal resolutions (on the order of 10-100 points per wavelength and 10-100 time
steps per wave period) and thus longer computational times. In comparison to large-scale
spectral models, their use is limited to more local scales of the order of kilometers. More-
over, until recently, to meet the efficiency requirements of operational engineering studies,
many simplifying assumptions were often made for the derivation of these models: linear
theory (i.e. Berkhoff equations) or long wave assumption (shallow water equations), which
leads only to a partial representation of the nonlinear and dispersive effects. With a grow-
ing need for a more accurate representation of these effects that are non-negligible in the
nearshore area, more complex wave models were developed to take into account the non-
linear and dispersive properties of waves (i.e. Boussinesq, Green-Naghdi, Euler equations)

as discussed in the next section.

This PhD thesis falls within the scope of the latter type of models with the objective of devel-
oping a deterministic model capable of simulating the propagation of irregular and directional
wave fields over variable bathymetries from the offshore to the coast with a highly accurate
representation of the nonlinear and dispersive effects for bidimensional models on the order of
kilometers. To achieve this goal, several approaches are possible, and a brief review of existing

phase-resolving models is presented in the following section.

Brief review of phase-resolved numerical wave models

Most fluid flow problems can be described by the Navier-Stokes equations since they account
for nonlinearities, vorticity and viscosity. Models based on these equations can be very accu-
rate when studying wave interactions with structures in the surf zone (e.g. Lara et al. (2006);
Shao (2006)). These equations can be solved with two very different approaches. Either with an
Eulerian approach tracking the free surface position with a volume of fluid method, as for exam-
ple, in the widely used code OpenFOAM® (Higuera et al., 2013a,b), solving the RANS (Reynolds
Averaged Navier-Stokes) equations for two incompressible phases. Another option is to use a
Lagrangian approach where the fluid is represented as particles and the trajectories of each parti-
cles is computed considering their interactions, as for instance with the SPH (Smoothed Particle

Hydrodynamics) method (e.g. Dalrymple and Rogers (2006)). These models are highly accurate



4 INTRODUCTION

when studying local-scale processes, but the domain size and resolution are limited due to the
computational time, even with the use of GPU parallelized codes (Dalrymple et al., 2011). More-
over, these models usually suffer from a significant level of numerical diffusion, which prevents
them from being used for propagating waves over long distances. For both of these reasons, to
model large spatial domains, these codes are usually coupled with more computationally efficient
models, such as potential flow models, to simulate the far-field processes (Narayanaswamy et al.,
2010).

Some assumptions can be made to simplify the problem and thus reduce the computational time.
For example, the nonlinear shallow water equations (NLSWE) are derived by depth integrat-
ing the Navier-Stokes equations to model waves with a wavelength significantly longer than
the water depth (e.g.tidal waves, storm surges), but this set of equations does not take into ac-
count wave dispersion, and therefore they cannot be applied to model accurately short waves.
However, by including non-hydrostatic pressure in the NLSWE and dividing the water depth
into a sufficient number of layers, the frequency dispersion of waves can be greatly improved
(Stelling and Zijlema, 2003; Zijlema and Stelling, 2005, 2008; Zijlema et al., 2011). For example,
with only two layers, the accuracy of the deep water dispersion relation is similar to that of ex-
tended Boussinesq-type models. The dispersion of such non-hydrostatic models can be further

improved by optimizing the location of the levels (Zhu et al., 2014).

When viscous and turbulent effects are negligible, the flow can be represented well by potential
flow theory, which consists of solving the Laplace problem in the fluid domain, supplemented
by nonlinear free surface boundary conditions. One way of solving this problem is to use the
Boundary Integral Equations Method (BIEM), which projects the problem on the boundary sur-
face of the fluid domain using Green’s formula (Grilli et al., 1989; Wang et al., 1995). These models
enable an accurate description of nonlinear and even overturning waves and are well adapted
to simulate wave-structure interactions (e.g Dombre et al. (2015)). This method is mainly used
for calculating local-scale interactions owing to the long computational times. However, with
the use Fast Fourier Transform (FFT) (Fructus and Grue, 2007; Newman and Lee, 2002) or Fast
Multipole Algorithm methods (Fochesato et al., 2007), the computational time can be reduced

considerably.

Another way of solving the problem is to make additional assumptions about the nonlinear and
dispersive properties of waves. By doing a Taylor expansion of the vertical velocity about a
specified level and truncating it to a finite number of terms, Boussinesq-type models assume
a polynomial variation of the vertical velocity, thus reducing the problem by one dimension.
Boussinesq-type models are derived with the assumption that nonlinearity and frequency dis-
persion are weak or moderate (Kirby, 2003; Madsen and Schaffer, 1998). Using only a quadratic

polynomial approximation of the vertical flow distribution gives poor results for wave propaga-
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tion in intermediate depths. A lot of work has been done to improve the frequency dispersion
following various approaches such as: using higher degree polynomials for the vertical approx-
imation with the Green-Naghdi equations (Zhao et al., 2014), using Padé approximants (Agnon
et al., 1999) combined with an expansion of the Laplace solution from an arbitrary level (Mad-
sen et al.,, 2002), and resolving in two arbitrary layers to maintain low-order spatial derivatives
(Chazel et al., 2009; Lynett and Liu, 2004). Additional modeling approaches include those of
Kennedy et al. (2001), Fuhrman and Bingham (2004), and Engsig-Karup et al. (2006).

The system of potential flow equations can also be reformulated as a function of free surface
quantities, also known as the Zakharov equations (Zakharov, 1968). The temporal evolution of
the free surface elevation 7 and the free surface velocity potential ® are given as a function of
these two variables and the vertical velocity at the free surface w. The primary challenge is to
express the vertical velocity @ as a function of 77 and ®, a problem commonly called ‘Dirichlet-to-
Neumann’ or DtN. One possibility is to solve directly the Laplace equation using finite element
(Ma et al.,, 2001; Wu et al., 1998) or finite difference (Engsig-Karup et al., 2009; Li and Fleming,
1997) methods. When using finite difference methods, Kreiss and Oliger (1972) and Bingham and
Zhang (2007) recommend using fourth-order schemes with a stretched vertical grid (clustering
points near the free surface) instead of using second-order schemes with a regular grid. When
considering rectangular domains with a flat bottom, a high-order spectral approach (HOS) is
optimal (Dommermuth and Yue, 1987; Ducrozet et al., 2012a; West et al.,, 1987). This method is
faster than finite difference methods but less flexible with regard to the domain geometry and
bathymetry, even if progress has been made in taking into account variable and moving bottoms
(Gouin et al., 2016; Guyenne and Nicholls, 2007; Smith, 1998). However, one limitation of this
approach is the need to work with periodic domains in the horizontal plane, which can restricts

some applications to coastal and harbor domains.

An additional approach is to use a spectral method only in the vertical dimension either by ex-
panding the velocity potential with a local mode series (Belibassakis and Athanassoulis, 2011) or
by projecting it on a polynomial basis (Kennedy and Fenton, 1997; Tian and Sato, 2008). By using
high-order finite difference schemes in the horizontal, these models maintain a flexible approach
for variable domain geometries and bathymetry. A comparison between a vertical spectral ap-
proach and a finite difference approach in the vertical dimension shows the improved accuracy
and efficiency of the spectral method in 1DH (Yates and Benoit, 2015) and 2DH (Christiansen
et al., 2013). Others approaches can be used, such as the extension of the DtN operator as a sum
of global convolution terms and local integrals with kernels decaying quickly in space (Clamond
and Grue, 2001; Fructus et al., 2005). A more complete review and discussion of nonlinear poten-

tial flow models for wave simulation can be found in Gouin (2016).

Based on this analysis, the nonlinear potential flow approach is attractive, as it is in principle

more accurate than Boussinesq or Serre-Green-Naghdi models in representing nonlinear and
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dispersive wave effects in large water depths, while is does not suffer from the shortcomings
of CFD Navier-Stokes codes for large-scale applications. Furthermore, under the assumption of
non-overturning waves, a spectral approach in the vertical can be adopted, which results in both

an accurate and flexible model, as mentioned above.

Content and organization of the PhD dissertation

In this work, a potential flow theory numerical model, based on the Zakharov equations, is val-
idated and extended. The existing model, called Misthyc, solves the Laplace boundary problem
(based on previous work (Yates and Benoit, 2015)) with a combination of high-order finite differ-
ence schemes for the horizontal dimension (1DH version) and a spectral approach using Cheby-
shev polynomials in the vertical dimension (Tian and Sato, 2008). In this work, this approach was
extended to two horizontal dimensions, using a Radial Basis Function-Finite Difference (RBF-FD)
approach to estimate the horizontal derivatives to enable using an unstructured discretization of

the domain by a set of scattered nodes.

A variety of numerical and physical aspects of wave modeling were addressed during this PhD
and are presented in the following chapters. In the Chapter 1, the mathematical model is derived
with emphasis on the underlying assumptions. The resolution of the Laplace boundary value
problem using a spectral approach in the vertical is presented, and the accuracy of the linear
dispersion relation resulting from this approximation is studied. In Chapter 2, the numerical
methods used for the 1DH version of the model are described in detail with a focus on the imple-
mentation of the boundary conditions for wave generation and wave absorption. The application
of the 1DH version of the model to a series of challenging test cases demonstrates, in Chapter 3,
the nonlinear and dispersive capabilities of the code. In Chapter 4, a visco-potential formulation
is considered to take into account the dissipative effects induced by bulk viscosity and bottom
friction. This formulation of the model is validated in comparison to analytical solutions and
then applied to simulate wave tank experiments. Chapter 5 presents the extension of the model
to two horizontal dimensions using the RBF-FD method to estimate horizontal derivatives for a
set of scattered nodes. Then, a series of sensitivity tests of the accuracy and stability of the model
as a function of the parameters related to the RBF method are conducted to evaluate the robust-
ness of this approach for estimating derivatives. In Chapter 6, the 2DH version of the model is
validated first by a comparison to results from the 1DH version for a case that is uniform in the y
direction, and then by comparisons to two sets of experiments conducted in wave basins. Finally,
the last Chapter concluded with a summary of the main contributions of the PhD thesis and with

a discussion of possibilities for future improvements to the model.



Chapter 1

Derivation and analysis of the

Euler-Zakharov mathematical model

Dans ce chapitre, le modéle mathématique sur lequel repose le modéle numérique déve-
loppé est présenté. Les équations surfaciques de Zakharov décrivant I’évolution tem-
porelle de la position de la surface libre ) et du potentiel des vitesses a la surface libre
® sont établies a partir des équations de Navier-Stokes, en insistant sur les hypothéses.
La vitesse verticale a la surface libre, nécessaire a I’intégration en temps des équations
de Zakharov, est obtenue en résolvant le probleme aux limites de Laplace a 'aide d’une
méthode spectrale pour la direction verticale. Cette approche nécessite un changement
de coordonnée sur la verticale, la projection du profil vertical du potentiel des vitesses
® sur la base des polynémes de Tchebyshev de premiére espéce (tronquée a un degré
maximal Nt) et Uapplication de la méthode Tchebyshev-Tau, aboutissant au systéme
linéaire a résoudre pour obtenir le potentiel ® dans tout le domaine. A partir de la
connaissance de ®, les champs de vitesse verticale et horizontale et de pression peuvent
étre calculés. La version linéaire du modéle est finalement dérivée pour un fond plat
dans le but d’établir la relation de dispersion linéaire. La précision de celle-ci est étudiée
en fonction de la résolution verticale (N ) et comparée a celles issues d’autres modéles
de type Boussinesq d’ordre élevé. Les propriétés dispersives de la version linéaire du
modeéle s’améliorent avec I’augmentation de la valeur de Nt et pour N7 > 9, lerreur
relative sur la célérité de phase par rapport a la théorie de Stokes reste inférieure a 2.5%
pour kh < 100.
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1.1 From the Navier-Stokes equations to the Zakharov equations

In this section we consider a domain €2, with a fluid of density p, submitted to the atmospheric
pressure paim(z,y,t) and the acceleration of gravity g, moving with a velocity v(z,y, z,t) =
(u,v,w)T. The domain is delimited in the vertical by the free surface at elevation z = n(x, y, )

and the bottom (which can also vary in time) at elevation z = —h(x, y, t).

z

0 {\\/A\//\Vf\vm\//

=

Q

Figure 1.1: Diagram for the definition of the notations.

1.1.1 The Euler equations and boundary conditions

The starting point is the classical Navier-Stokes system of equations for a Newtonian fluid:

0

a—’;’ FV.(pv) =0 in O (1.1a)
dpy .
—— +V.(pov®v)=-Vp+ V. +pg in (1.1b)

ot

where p is the pressure, and T is the viscous stress tensor. It is first assumed that the flow is
incompressible, meaning that the fluid density is considered constant and homogeneous. In

this case, system (1.1) can be simplified to:

v=20 in Q (1.2a)

g‘i + (v.V)v = —;Vp +vAv+yg in (1.2b)

where V = (8%, a%, %)T denotes the gradient operator.

Making the additional assumption of an inviscid fluid, the momentum equations (Eq.(1.2b))

reduce to the Euler equations:

ov

1
—4+vVv=—-Vp+g inQ} (1.3)
ot P =
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To resolve the fluid dynamics, in addition to Eq.(1.2a)-(1.3) in the fluid domain €2, boundary con-
ditions must be specified. The kinematic free surface boundary condition (KFSBC) expresses the
impermeability of the free surface (a particle of fluid cannot go through the free surface). Math-
ematically, the free surface is defined as F'(z,y, z,t) = z — n(z,y,t) = 0, and the impermeable

condition is then expressed by the zero Lagrangian (or material) derivative of F™:

DF oF

S =0 & o tv VF =0. (1.4)
on  On  On _ _
o Yoy va—y—i—w—o at z = n(x,y,t). (1.5)

Introducing the outward unit normal vector at the free surface n:

T
(o) »
1+ |VH77|2 v Y

=)
I

where Vy; is the horizontal gradient operator, Eq.(1.5) can be rewritten as:

on / 2
_5 +v-n 1+’an’ =0 atz:n(xayat)‘ (17)

Usually, the dynamic boundary condition at the free surface (DFSBC) is derived from the conti-
nuity of the normal stress at the interface meaning that if the free surface is only subjected to
atmospheric pressure, the pressure at the free surface position equal the atmospheric pressure.
Nevertheless, a discontinuity of the normal stress can appear due to a normal force generated
by surface tension. This force is proportional to the mean curvature of the interface and acts in
the direction towards the center of curvature of the surface. Taking into account the effects of

surface tension, the DFSBC can be written as (Dingemans, 1997b):

V1+ ’anP

where o is the coefficient of surface tension expressed as a force per unit length (N/m). For a

water-air interface at 20 °C, 0 = 0.074 N/m.

\Y%
p(xa Y, 77(5Ua Y, t)7 t) = patm(ajv Y, t) - O-VH‘ (HT/> . (18)

At the bottom z = —h(x, y, t), an impermeability condition is applied. Following the treatment
of the KFSBC, the function G(z,y, z,t) = z + h(z,y, t) is introduced, and the impermeability
condition is expressed by setting the Lagrangian derivative of GG to zero.
DG oG
=0
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oh oh oh
il - s = = — . 1.1
8t+uax+v8y+w 0 atz h(z,y,t) (1.10)

The flow is then described by the following set of equations:

v=20 in 2 (1.11a)
ov 1 .

o + (v.V)y = —;Vp +g inQ (1.11b)

an
5 " Vy-Van+w =0 at z =n(x,y,t) (1.11c)
p(,y, (2, y,t),t) = parm (@, y,1) — o V. <VH77> at z =n(z,y,t) (1.11d)

V1+ |VH77|2

oh

5 +v,.Vuh+w =0 at z = —h(z,y,t) (1.11e)

where v, = (u,v)7 is the horizontal part of the fluid velocity.

At the lateral boundaries (denoted as 0€2;,;), periodic, Dirichlet or Neumann boundary conditions

must be imposed to close the system.

1.1.2 Potential flow equations: the water wave problem

By assuming irrotational flow, potential flow theory can be used. The velocity potential ®(x, y, 2, t)
is introduced such that v = V®. The preceding set of equations (1.11) can be rewritten in terms

of the new variable ®.

The continuity equation (Eq.(1.11a)) becomes the Laplace equation:
Vy=0 = VV®=0 = A®=0 inQ. (1.12)

where A is the Laplacian operator.

From the Euler equations (Eq.(1.11b)), the Bernoulli equation can be obtained:

v o .
a5 + (v.V)v = —;Vp +g inQ (1.13)
P 1
8; +Vo.V(VD) = —;Vp —V(gz) inQ (1.14)
0od 1 9 D o
< V (815 + §(VCI)> + ; + gz) =0 in{) (1.15)

The zero gradient in Eq.(1.15) means that the scalar argument in parenthesis is independent of the

variables z, y and z and therefore is an arbitrary function of time only, here chosen to be zero.
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Thus it is noted that ® is defined up to a constant, which will be discussed further in Section

2.2.2.3. Eq.(1.15) then becomes:
8(13
p(z,y,2z,t) = —p (gz + = 6t (VCD) ) (1.16)

At the free surface, the KFSBC (Eq.(1.11c)) becomes:

on 0P
— . —— =0, atz= 1.1
5 + Vu®@.Viun s 0, atz=n(z,y,1) (1.17)
and the DFSBC (Eq.(1.11d)), is reformulated using the Bernoulli equation (Eq.(1.16)) at the free
surface:
0P 1 DPatm (T, y,t) o Vun
(VO gy =T L TV —— | atz=g(z,y,t) (1.18)
ot 2( ) P p H T+ Va2 ( )

The bottom impermeability boundary condition (Eq.(1.11e)) becomes:

h Lo}
88 + Vud.Vyh + g =0 atz = —h(z,y,t) (1.19)

The nonlinear potential flow problem is thus:

AP =0 in Q (1.20a)
on 0P
e + Vu®.Vyn — P =0 at z = n(x,y,t) (1.20b)
8<I> 1 Patm (T, y,t) o Vun
Vo) +gn=——""—""—"+—-Vy. | ——— at z =n(z,y,t) (1.20c)
S t5(V®)’ +gn p oV \ v n(x, y,t)
gh + Vu®.Vyh + g—q) 0 at z = —h(z,y,t) (1.20d)
z

This is usually called the “water wave problem”. Note that the pressure does not appear explicitly
in this problem, but can be computed from Eq.(1.16) once ® is known. One of the main difficulties
encountered during the resolution of this set of equations is related to the fact that it is a free
boundary problem: the fluid domain is bounded by the free surface 7, which is also an unknown

of the problem.

1.1.3 Expression as a function of surface quantities

By making the assumption that the water column is continuous from the bottom to the

free surface (1(z, y, t) is single-valued), the velocity potential at the free surface can be defined
as (x,y,t) = D(x,y,7(z,y, 1), 1),

Using the chain rule, the following equations express the link between the derivatives of the free
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surface velocity potential ® and the derivatives of the global velocity potential ®:

0b_ov  onoo oo
da Oa  Oa 0z’ '
where o = x,y or t.

Expressing the KFSBC (Eq.(1.20b)) and the DFSBC (Eq.(1.20c)) as a function of the free surface

potential ®(x, y, ) using the above expressions, the following set of equations is obtained:

g’z = —Vu® Vin + (1 + (Van)?) (1.22)
a(i) 1 ~ 1_ patm($aya t) o VHU

— = — — S(Vu®)2 + —@?(1 + (Vyn)?) - 222V 4 2y, | —E— 1.23
ot an 2( u®) 2w ( (Van)?) P P H /71+|VH77|2 ( )

with @ the vertical velocity at the free surface:

- o
w(a:,y,t) = E(xvyun(xaya t)’t) (124)

These two coupled equations Eq.(1.22) and (1.23) involve only free surface quantities: the first one
describing the temporal evolution of the free surface elevation 7 and the second one expressing
the evolution of the free surface potential ®. In order to integrate these equations in time, it is
necessary to determine 1 (z, y, ) at each time step from 7(x, y, t) and ®(x, y, t), which is called
a Dirichlet-to-Neumann (DtN) problem. Different approaches have been proposed to solve this
problem, for example using a high-order spectral approach (HOS) (Dommermuth and Yue, 1987;
West et al., 1987), which is efficient for rectangular domains with a flat bottom. Other approaches
can be used, such as the extension of the DtN operator as a sum of global convolution terms and
a local integral with kernels decaying quickly in space (Clamond and Grue, 2001; Fructus et al.,
2005), or the expansion of the Laplace solution from an arbitrary level combined with the use
of Padé approximant, based on a Boussinesq approximation (Madsen et al., 2002). See also the
recent review and discussion by Wilkening and Vasan (2015). Here, as presented in the next
section, the DtN problem will be resolved by solving a Laplace boundary value problem (BVP)
for the potential ¢ in the entire domain (2 using a spectral approach in the vertical direction
(Tian and Sato, 2008; Yates and Benoit, 2015).

1.1.4 Discussion of the assumptions

To build the mathematical model Eq.(1.22)-(1.23), four assumptions were made. The conse-

quences of these assumptions and their validity are discussed.

« assumption 1: incompressible flow
This assumption means that the density of the fluid is homogeneous in space and constant in
time. In the ocean, the water density varies with temperature and salinity with typical scales

of variation on the order of tens of kilometers in the horizontal. These scales of variability are
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much larger than the domain over which the evolution of the free surface elevation is aimed to
be modeled. Vertical variations of the density do not have a significant impact on free surface
gravity waves, except in estuarine environments where vertical density gradients, due to the

overflow of freshwater in saltwater, can be important. This assumption seems reasonable.

« assumption 2: inviscid fluid

Internal forces due to the fluid viscosity are generally negligible for the considered wavelengths.
A viscous fluid tends to generate friction on the bottom or other solid walls with the development
of a boundary layer where energy is dissipated. In deep water, the boundary layer thickness is
very small in comparison with the water depth, so the effects of bottom friction are negligible.
With decreases in the water depth approaching the coast, this assumption becomes less valid
since the boundary layer may impact wave propagation. Therefore, viscous effects may become
non-negligible in shallow water. The introduction of some dissipative effects will be discussed

in Chapter 5.

« assumption 3: irrotational flow

This assumption implies that the particles of fluid do not have a rotational movement. It is a
reasonable assumption in case of low viscosity and/or when the bottom friction, which creates
turbulence and induces vorticity, can be neglected. This assumption is no longer true in the

breaking and swash zones.

- assumption 4: continuity of the water column from the bottom to the surface

Since the free surface is single-valued, it is not possible to simulate directly wave overturning.
This assumption is justified as long as waves are not overturning, so wave breaking cannot be
resolved with this approach. Some dissipative terms could be added to Eq.(1.22) and Eq.(1.23) in

order to parameterize wave breaking dissipation in the model.

1.1.5 The Zakharov equations

Finally, here, two additional weak assumptions are made:

« The atmospheric pressure is chosen to be homogeneous and constant.

This assumption limits the model to study waves subjected only to gravitational effects. The
effect of wind on waves (due to gradients in atmospheric pressure) are not considered here. The
pressure variations at the free surface are assumed negligible for the spatial scales of the domains
of interest, so the atmospheric pressure is held constant. As the pressure is defined within a con-

stant, it is chosen equal to zero for convenience, without limiting the generality of the problem.

« Surface tension is neglected.

Surface tension effects become noticeable for short waves with wavelengths on the order of cen-
timeters. For real applications, the wavelengths considered will be on the order of meters and
thus the effects of surface tension can be neglected. For the simulation of small-scales experi-

ments, the effects of surface tension may become important, as will be shown in Chapter 5.
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Thus, taking into account these two hypotheses, the set of equations resolved by the model

(unless otherwise specified) is:

% = —Vu® Vun + (14 (Van)?) (1.25)
@ - _ _ 1 H)2 1 ~2 2
o = 91 2(VH<I>) + 5w (14 (Van)?) (1.26)

1.2 Resolution of the Laplace BVP using a spectral method in the
vertical
To integrate the Zakharov equations in time, the estimation of the vertical velocity at the free

surface w is necessary. This is achieved by resolving the following Laplace BVP for the potential

® in the entire fluid domain €2:

Ay® +@,, =0 in Q (1.27a)
d=2a at z = n(x,y,t) (1.27b)

Vu® - Vuh+®, =0 at z = —h(z,y,t) (1.27¢)
V-1, =0 on O (1.27d)

Here, a Neumann condition is applied at the vertical lateral boundaries (denoted as 0€24¢), to
consider the particular case of impermeable lateral boundaries. n,;,; denotes the unit normal
vector at the lateral wall. In the following, spatial derivatives will be denoted by subscripts (i.e.
f. = 0f0w)

With a time invariant lateral boundary condition, the problem is dependent on time through the
shape of the domain. Lateral boundary conditions can vary in time, for example in the case of
wave generation, but this case is not considered in this section. Therefore, at each step of the
time integration scheme, the Laplace BVP has to be solved at least once taking into account the
new shape of the domain. For instance, using the classical fourth order Runge-Kutta scheme,

four resolutions are required. However, no derivatives in time appear in the BVP.

The numerical approach chosen to solve the Laplace BVP is the application of a spectral method
in the vertical direction. Yates and Benoit (2015) showed that using a spectral method is more
accurate and efficient than using finite difference schemes. Following the work of Tian and Sato

(2008), the method is divided into three main steps:

1. a change of variables for the vertical coordinate,

2. an expansion of the velocity potential ® using the basis of orthogonal Chebyshev polyno-
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mials of the first kind 7}, (n = 0, 1, ...), truncated at a given order N,

3. and an application of the Chebyshev-Tau method in the vertical.

An outline of the method is given in Yates and Benoit (2015) for the case of a single horizontal

dimension (i.e. x = x). Here the method is presented for the case of two horizontal dimensions

(ie. x = (z,v)).
1.2.1 Change of the vertical coordinate

First, a change of the vertical coordinate from z € [—h(x,t),n(x,t)] to s € [—1, 1] is made to

reduce the uneven time varying domain to a constant rectangular domain extending from the

bottom at s = —1 to the free surface at s = +1.
2z + h™(x,1)
t) = ——— 1.28
0= T 02
where h (x,t) = h(x,t) + n(x,t) and h™(x,t) = h(x,t) — n(x, t).
With this change of variables:
D(x,2,t) = @(x,5(x, 2, 1), 1)
Using the chain rule, the system of equations (1.27) is rewritten in terms of p(x, s, t):
Pz T Pyy + 2(SzPas + Sypys) +
(s2 + 513 + 52) s + (Szz + Syy) s =0 in (1.29a)
o(x,y,1) = d(z,y) ats =41 (1.29b)
At (hypr + hypy) +2(1 + b2 + h?,) ps =0 ats = —1 (1.29¢)
(SO:U + 336(105) Niate + ((py + Sy‘Ps) Niaty = 0 on O gt (1'29d)

where 144, and 744, are the components in the (z, y)-plane of the unit vector n;,; normal to

lateral boundaries.

1.2.2 Expansion of the potential on the basis of Chebyshev polynomials

The second step is based on the assumption that the velocity potential can be approximated
by its projection on a subset of the function space of finite dimension. Following the work of
Tian and Sato (2008), the chosen set of base functions are Chebyshev polynomials of the first
kind (denoted T},, with n the degree of the polynomial). Chebyshev polynomials are easy to

compute, are orthogonal for a weighted dot product, and converge rapidly over a large domain.
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By selecting a subset of the N + 1 first polynomials, the following approximation is made:

Nt
0(x,8,1) ~ onp (%,5,8) = Y an(x,8)Th(s) (1.30)
n=0

where the a,(x, t) coefficients are a set of unknown coefficients to be determined for each x, at
each time step. However, since there are no time derivatives in the Laplace BVP, in the following,
the a,, will be written only as a function of x to lighten the equations. This step allows separating

the horizontal variations a,,(x) of the velocity potential from the vertical variations 7T}, (s).

Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined on the in-
terval [-1,1]. They can be defined in two different ways (e.g. Boyd, 2001):

« by a recurrence relation: Ty(s) = 1, T1(s) = s, and T,,(s) = 2s T),—1(s) — Th—2(s)

« or with a trigonometric approach: T, (cosfl) = cos(n#), 6 €] — oo, +00|

The eight first Chebyshev polynomials are plotted in Figure 1.2. A Chebyshev polynomial of
degree p has p different simple roots, and |T,(s)| < 1 for s € [-1,1].

Figure 1.2: Eight first Chebyshev polynomials of the first kind 7,,(s) (n = 0 to 7).
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These polynomials form an orthogonal basis on the interval [-1,1] with respect to the weight

1/v/1 — s2. The inner product is then defined as:

ot ds
(fag>=/_1f9 N (1.31)

Thus, for two Chebyshev polynomials 73, and 7}, of orders n and p, respectively:

Oifp#n
(15, Ty) = § Sifp=n andn >1 (1.32)
mifp=n=20

Finally, the inner product of any function f defined on the interval [-1,1] with a Chebyshev

polynomial 7}, of order p is :

2
T

6022

. (1.33)
cp=1ifp>1

(f)p= (f,Tp) with{

The coefficient %Cp is introduced so that the basis of Chebyshev polynomials is orthonormal (i.e.

(Th)p = Onp, where 0y, is the Kronecker symbol).

By substituting the approximation of ¢ (Eq.(1.30)) into the set of equations (1.29), a new set
of equations is obtained, that depends only on the a,, coefficients, the 7, functions, and their

respective spatial derivatives.

The Laplace equation (Eq.(1.29a)) in the fluid domain becomes:

Nr Nr Nr Nr
E an,x:an + § an,nyn +2 s, g an,:an,s +2 Sy E an,yTn,s +
n=0 n=0 n=0 n=0

NT NT
(s2 + 5321 + 5%) Z an Thss + (Sza + Syy) Z an Tns=0 (1.34)

The Dirichlet condition (Eq.(1.29b)) at the free surface (s = +1) is:

> an = 2(x) (1.35)

n=0
The impermeable boundary condition (Eq.(1.29¢)) at the bottom (s = —1) is:
Nr

NT NT
hPhe Y (1) ane + bV hy Y (1) any + 21+ 12+ h2) > (=1)"'n’a, =0 (136)
n=0 n=0

n=0
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The impermeable lateral boundary condition (Eq.(1.29d)) becomes:

N N N Nr
(Z an,xTn + Sz Z anTn,s> Niate + <Z an,yTn + Sy Z anTn,s> Niaty = 0 (1'37)
n=0 n=0 n=0 n=0

The terms s, Sy, 52, Sz, and sy, can be expressed as polynomial functions of s:

hht—shiht
sy = S Gz ory),

hy;ht — 2k hy + (2h? — hiht) s

L 2 (i=x or y),

Sii =
Sy = hT

Replacing the derivatives of s by their expressions, and after some rearrangement, the Laplace

equation Eq.(1.34) becomes:

Ny Ny Ny Ny Ny
g O Qg pg + E B anyy + g Y ng + E 0 Gy + g Ca,=0 (1.38)
n=0 n=0 n=0 n=0 n=0
with :
~ mo101 Tns +mato1 S Tns
mM0220
5 — Mooit Ths +mio11 8 Tns
mM0220
2
= mo002 Th,ss — M1002 S Th,ss +mM2002 5% Ty ss + Mooo1 Th,s + m1001 8 Tn,s

mMo220

where the m;j;; terms only depend on h* and h™ and their spatial derivatives:

mogz0 = ht?
mo101 = 2hhy
mi101 = —2hTh}
moo11 = 2hthy,
mion = —2hth}
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mooo2 = 4+ hy? + hy?

mioo2 = 2 (hy hif 4 hy hyf)

maoo2 = hif? + hj?

mooo1 = —2hy hit —2h bt +hth, +hthy,
migor = 2h % + 2h;% — Wt hy, — BT R,

The impermeability condition at the lateral boundaries (Eq.(1.37)) becomes:

Np Nr Nr
Z 2a Niate Qn,x + Z 2ﬂ Niaty An,y + Z(’Y Niatz T 0 nlaty) apn = 0 (1'39)
n=0 n=0 n=0

1.2.3 Application of the Chebyshev-Tau approach to obtain the linear system

The aim of this last step is to obtain a linear system for the a,, coefficients, but Eq.(1.38) and (1.39)
still depend on x and s. In order to eliminate the dependence on s, both equations can be projected
on polynomials 7}, by applying the inner product (.), previously defined (Eq.(1.33)). Then, the
resulting equations only depend on the a,(x). In the case of simple boundary conditions at s =
—1 and s = +1 that can be satisfied by the Chebyshev polynomials (the chosen test functions),
the projection is done for p from 0 to Np. This is called the Galerkin method. Nevertheless, when
the boundary conditions are complicated or for particular problems, it is not always possible to
find a test function verifying them, so a solution is to apply only the projection for p from 0
to N7 — 2 supplemented by the two equations to account for the surface and bottom boundary
conditions Eq.(1.35) and Eq.(1.36). This method, called the Chebyshev-Tau method (Canuto et al.,
1988), will be used here.

Looking at the expressions for a(s), 8(s), d(s), v(s) and ((s), the following terms have to be
estimated: (T},)p, (T.5)ps (Tnoss)ps (S Tos)ps (8 Tross)p and (s? Ty, 55)p. The notation By, is
introduced:
_dkT, 2 [ .dT,
Bpikn = <SZW>I7 = Tcp <Sld8k, Tp (140)
The By, can be determined analytically as a function of n and p using the recurrence relation

of the Chebyshev polynomials or from linear combinations of previously defined B,
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<Tn>p :BpOOn: on
(T = B _2{nifp:n—l,n—3,n—5,...
n,s/p — Pp0ln =

° | 0 otherwise

2-pY)ifp=n—-2n—4n-6,..
<T”’Ss>p:Bp02nzclp{n(n p?)ifp=n—2,n—4,n—6,

0 otherwise

1 .
_ 5(Bpoo(r—1) + B )ifr >1
sT, =B —syn-lp 2( p00(r—1) p00(r+1) =
< ms)p plin Zr_o r0ln { Bp001 fr—0
1 .
- 5 (Bpoo(r—1) + B ) ifr >1
sT - B _ n72B 2( p00(r—1) p00(r+1)
< n,ss>p pl2n er() r02n { Bpo()l fr—0
(BpOO(rf2) + 2BpOOr + Bpoﬂ(r+2)) ifr >2
(3Bpoo1 + Bpoos) if r =1
(BpOOO + Bp002) ifr=20

<32 Tn,ss)p = Bp22n = Z?;g BrOQn

L e e

The By, terms are constant, depending only on the Chebyshev polynomials 7;,, and can be
computed once at the beginning of each simulation, after the maximal order of the Chebyshev

polynomials N7 is chosen.

The final set of equations to be solved is for the coefficients a,, (x), which depend only onx = (z,y)

and time (and not on the vertical coordinate s).

( Nr Nr Nr
Apz + Qpyy + Z Cpn @nz + Z Cyy any + Z Dpnan, =0 inQ (1.41a)
n=0 n=0 n=0

Nt
> an = 0(x,1) ats = +1 (1.41b)
n=0

NT NT
hhe » (=1)"ana +hhy > (=1)"any+
n=0 n=0

Nr
2(1+h2+ hz) Z(—l)"fln%n = ats =—1 (1.41c)
n=0
Nr
2 nyaty Qp,z + 2 Niaty Opy + Z(nlatx an + Niaty an) anp =0 on 094 (1.41d)
n=0

where C;fn = (m()l()pr()ln + mllOprnn)/moggo is the coefficient for An s
Con = (moo11Bpoin + m1011Bp11n)/mo220 is the coefficient for ay, 4,

and Dy, = (mooo2Bpozn — M1002Bpi2n + M2002 Bp22n + m0001 Bpoin + M1001 Bpiin)/mo220-



1.3 COMPUTATION OF FLOW PROPERTIES 21

For each node z, N7 + 1 unknown coefficients a,, must be determined. When applying the op-
erator (.), for p from 0 to N7 — 2 to Eq.(1.38) for nodes inside the domain or to Eq.(1.39) for
nodes on the lateral boundaries, N7 — 1 equations are obtained. To have a well-posed problem,
two additional equations are needed to complete the set of equations at each node. The Dirich-
let boundary condition at the surface (Eq.(1.41b)) and the impermeable condition at the bottom
(Eq.(1.41c)) are used for this purpose. The horizontal spatial derivatives of the a,, coefficients are
defined as linear combinations of the values in the vicinity of the node considered, leading to a

set of coupled equations.

Once the a,,(x) coefficients are determined, the vertical velocity at the free surface @ (x) is readily

obtained from:

Nt
B(x) = B (x,2 = 1) = 5. pus = +1) ~ hf() S n(x) 2 (1.42)
=7 n=0

The vertical velocity can then be used to evaluate the right hand side of Eq.(1.25) and Eq.(1.26),

required by the numerical scheme to integrate in time.

1.3 Computation of flow properties

The main results obtained with the model are surface quantities: the free surface elevation 77 and
the free surface velocity potential ®. Nevertheless, it also can be of interest to calculate other
properties inside the fluid domain. Since the Laplace BVP is resolved for the velocity potential
®(x, z,t) in the entire domain, it is possible to compute some properties of the flow at a given
time ¢, such as the velocity profile or the pressure field, or the depth-averaged velocity. For
convenience, the derivation of these expressions is done hereafter for the 1DH case (x = x).

Extension to the 2DH case is straightforward.

1.3.1 Horizontal and vertical velocities in the fluid domain

To visualize the flow inside the fluid domain v = (u,w), one must compute the gradient of the

velocity potential ®(z, z, t) at a number of points discretizing the domain:

0P Do Opds
“= or  Ox + 0s Ox (1.43a)
_ 02 Opds

From the spectral approach used in the vertical in the model, the velocity potential in 1DH is
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given by Eq.(1.30) repeated here for convenience:

O(x,2,t) = N, (T, 8,1) Zan (z,1) (1.44)
Expressions for the horizontal and vertical velocities are then deduced:
u_ZaMT + Zan s (1.452)

2
w=-= Z an Th.s (1.45b)
n=1

To compute the velocity components at a given point (z, z), one must first compute the coordi-
nates of the point in the (z, s)-plane, with the change of variables from Eq.(1.28), knowing the
value of n(x). Values of T},(s) and T, s(s) are also required and can be obtained analytically,
whereas the first order spatial derivative of the a,, coefficients is obtained numerically with a
fourth order finite difference scheme in the 1DH case, using the RBF-FD method in the 2DH

case, as explained in the following.
1.3.2 Pressure in the fluid domain

The pressure at any point (z, z) of the domain is given by the Bernoulli equation (Eq.(1.16)):

9% 1 (99\? 1 [/0%\*
p(z, z,t) = p(@t +3 <8x> t3 ((92) +gz>
The most difficult term to estimate is 22 at the point z, the Eulerian derivative of the velocity
potential ®, more particularly when the pomt is such that it is outside the fluid domain (i.e. above
the free surface) at t — At and inside the fluid domain at ¢ (or conversely). Because of the time
varying limits of the fluid domain, it is difficult to estimate directly the time derivative of ® with

a finite difference scheme. Thus, this derivative will be estimated in the (z, s)-space. Using the

spectral approximation of the potential:

o Jr
E(l" Z, t) ~ Z [an,t Tn + anTn,s St} 3 (1-46)
n=0

with s; = ;& (h¢ (1 — ) — ¢ (1+ 5)). The derivative a, ¢(, ) is computed with a backward
finite difference scheme of first or second order:
an(z,t) — ap(x,t — At)
At
3an(x,t) — dap(z,t — At) + an(x,t — 2At)
2At

« first order scheme: ay, (z,t) =

« second order scheme: ay, ((z,t) =
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The accuracy of the results is highly dependent on the approximation of the time derivative and
the time step. Other required terms are obtained easily: h; is zero in case of fixed bottom or
known if the evolution of the bottom elevation is prescribed, and 7, is already estimated as the
left hand-side of the first of the two Zakharov equations (Eq.(1.25)). Thus the pressure can be

estimated at any point inside the fluid domain at any given time ¢.

1.3.3 Depth averaged horizontal velocity

The depth averaged horizontal velocity u(x) at a location z, is obtained by integrating the vertical

profile of the horizontal velocity from the bottom to the top of the water column:

B 1 n(z) 1 1
u(x) = ) (D) /h(m) u(z, z) dz = 3 /1 u(x,s) ds (1.47)

Using the expression of the horizontal velocity in the (z, s)-space, obtained from the spectral

approximation of the potential (Eq.(1.43a)), this expression becomes:

1 [ L A ht [l
u(x) = B Zamz/lTn ds + Zan (th/leS ds — h+/1 sThs ds> (1.48)
n=0 - n=1 - -

By defining S;(n) = fil sIT,, . ds, Eq.(1.48) can be rewritten as:

1 Nrp Np — Bt
o7 — 0 r ¢l z ¢l
U(l') - 5 [Z Gn.x O + Zan <h+50 — h+51>] (149)
For any value of n the expressions of S{(n), S (n) and Si (n) are the following:

S(l)(n) = / Tn,s ds = [Tn]£1

1 (c1)n = 0 ifniseven
N | 2 ifnisodd

=2 ifn=0

1 [Tl]
. 1
So(n) = / T, ds = {Tm—l Tn—l} ! forn >0

n+1 n—1|_

1

0 ifn=2p+1,p>0
ifn=2p,p>0

-2
n2—1
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1 1
Si(n) = / sThsds=1s Tn]i1 —/ T, ds

—1
=T,(1) + To(-1) — S;
{ 0 if nis odd

2n?
n?—1

if n is even

Finally, Eq.(1.49) becomes:

]\IT/2 ; (NT+1)/2 h;; 2(2p)2

1 2
=1 — 2t g B A 1.50
u(x) 5 2 2pa 2p)? + T Agp—1 = 3 2 a2p(2p)2 1 (1.50)

Ny /2

1.4 Linear properties of the model

1.4.1 Linearization of the equations for a flat bottom

In this section, the linear version of the model is considered for only one horizontal dimension
(x = x). Itis derived by assuming that the amplitude of free surface deformation is small. It is ob-
tained: (i) by neglecting the non-linear terms in the Zakharov equations (Eq.(1.22) and Eq.(1.23)),
and (ii) by taking the upper limit of the fluid domain to be the elevation z = 0 (free surface
elevation at rest) instead of z = n(z, t). The water depth is held constant (i.e. the bottom is fixed
and flat). By introducing ®y = ®(x, z = 0,t) and Wy = %—f(x, z = 0, ), the velocity potential

and the vertical velocity at z = 0, respectively, the linear version of the model can be written as:

g’z — TDO at z = 0 (1513)
d
% = —gn atz =20 (1.51b)
AD = in, for —h <2 <0 (1.51¢)
)
a— =0 atz = —h (1.51d)
\ 0z

1.4.2 The first order Stokes solution

When considering regular progressive waves with period 1" (or angular frequency w = 2%),
wavelength L (or wave number k = %’T) and amplitude A, the exact solution of the set of linear

equations Eq.(1.51a)-Eq.(1.51d) is given by first-order Stokes theory (Dean and Dalrymple, 1991):

_ gAcosh(k(h + 2))

d t) = in(kx — wt 1.52
(x,2,t) W cosh(kh) sin(kx — wt), (1.52)
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which is used as the analytical reference to study the accuracy of the results obtained with the
model. The proposed model solves the same set of equations, but because of the numerical ap-
proach and the discretization of the problem, the model solution may differ from the exact ana-

lytical solution. Particular attention is paid to the dispersion relation:
w%’tokes = gk tanh(kzh) or w%’tokes =K tanh(,u) (153)

with y = kh, the relative water depth, and & = w, /2, the non-dimensional angular frequency.
g

The phase celerity of the wave can be deduced from Eq.(1.53):

2 ~ 2
h
Vgh Stokes H H

The relative water depth p is also known as a parameter measuring frequency dispersion. From

the expression of the phase celerity, one can notice that: (i) in shallow water (“small” p i.e.
% < % < p < qp) the celerity of the wave tends towards /gh corresponding to non-
dispersive waves (i.e. waves propagate at the same celerity regardless of their period), and (ii) in
« » o h 1 ¢ 1 ~ [}
deep water (“large” pie. ¥ > 5 & p > m) TR S ot C =~ \/; = 2. Thus, frequency
dispersion becomes important for large values of y (deep water or short waves). Even if the
relative water depth of the wave is not very large, the relative water depth corresponding to its
higher harmonics may become large. Therefore, it is important to have high accuracy for large

values of p.

1.4.3 Derivation of the linear dispersion relation of the proposed model

1.4.3.1 Analytical expression of the dispersion relation

To derive the dispersion relation of the linearized model, a progressive wave solution of a sinu-

soidal form is sought:

A
O(x,2,t) = g—f(z) sin(kz — wt), (1.55)

w
where f(z) represents the vertical variation of the velocity potential (in the case of first-order
Stokes wave theory, f(z) = % from Eq.(1.52)). The accuracy of the model is verified

in comparison to the vertical variation of the Stokes theory velocity potential. In particular, ac-

cording to Stokes theory, f(z = 0) = 1 must be satisfied.

From the expression of the velocity potential (Eq.(1.55)), ¢ and its time derivative are obtained:

Py = %f(O) sin(kz — wt) (1.56)
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and

8;;0 = —gAf(0) cos(kx — wt). (1.57)

By introducing Eq.(1.57) into Eq.(1.51b), the following expression for 7 is deduced :

109
n= —ga—to = Af(0) cos(kx — wt) (1.58)
If the condition f(0) = 1 is true, this expression of the free surface elevation corresponds to a
sinusoidal wave of amplitude A propagating in the z-direction.
Then, wq can be expressed as:
0P gA

Wy = a(x, z2=0,t) = jf'(O) sin(kx — wt) (1.59)

_ 4

where f/(0) = 5

(z=0).

0
Finally, replacing a—:z and wg by Eq.(1.58) and Eq.(1.59) their expressions in Eq.(1.51a), the dis-

persion relation of the linear version of the model is obtained:

— f(0) = £'(0), (1.60)
which in the non dimensional space, corresponds to:

L o)
“ =0 "

(1.61)

1.4.3.2 Expression of the dispersion relation as a function of the a,

The dispersion relation is determined from the vertical variation of the velocity potential. The
accuracy of estimation of this vertical variation is related to the spectral resolution of the nu-
merical method. Thus, the decomposition of f(z) on the basis of the Chebyshev polynomials is
studied. First, a change of variables of the vertical coordinate from z to s is completed (Eq.(1.28
for a flat bottom h = cst and = 0) following the steps previously shown in Section 1.2.1.
Derivatives of s with respect to « are zero because of the flat bottom assumption.

2
-

Sy = Spzr = Sz = S, =0 and s, =

Following the change of variables, f(z) becomes f(s). Using the chain rule (g—é = %{s »), Eq.(1.61)
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can be rewritten in terms of f:

(1.62)

f(s) ~ ZanTn(s). (1.63)

Contrary to the expansion of the velocity potential in the non-linear version of the model, the
coefficients a,, are now constant. The dependence on z does not appear in the function f, that

only depends on s, but in the argument (k.z — wt) of the sine functions.

Furthermore, the properties of the Chebyshev polynomials give the following expressions for
F(1) and F/(1);

Nt

f(l):Zan and f/(1 Zann

n=0

Thus the approximation of &? for a polynomial of maximum order Ny (@%VT) can be expressed

as a function of the qa,, coefficients:

2 ann?
0%, = 230 Ly ann? (1.64)

Nr
n=0 n

1.4.3.3 Resolution of the Laplace BVP

To get the a,, coefficients, the Laplace BVP is solved in the fluid domain. In the coordinate system

(x, s), where p(x,s) = ®(x, ), the Laplace equation (Eq.(1.51c)) is written as:
Ouz + 252025 + (82 + 52)@ss + Szaps = 0. (1.65)
In the case of a flat bottom, Eq.(1.65) can be simplified to:
4
Prx T ﬁ@ss =0. (1.66)
By substituting for ¢, this simplifies to:
pf(s) —4f"(s) = 0. (1.67)

in which the square of the dispersion parameter p appears.
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When f(s) is replaced by its approximation (Eq.(1.63)), Eq.(1.67) becomes:

Nt

Z an(U2Ty — 4 Ty ss) = 0. (1.68)
n=0

Finally, in order to eliminate the s coordinate, the Chebyshev-Tau operator (Eq.(1.33)) can be
applied to Eq.(1.68) for 0 < p < Np:

NT NT
Y an(p? < Ty >p—4 <Tnss >p) =0 = Y an(p’Bpoon — 4Bpozn) =0 (1.69)
n=0 n=0

1 2 _ p2Vifp — —2.n—4,n—6,..0
where B0, = dpn and Bpoo, = — n(n® —p?)ifp=n n n
¢p | 0 otherwise.

with ¢, defined in Eq.(1.33).

A linear system of N7+ 1 equations is then formed for the unknown coefficients a,,. This system

is made of:

« an equation imposing the free surface boundary condition (following Stokes theory):

fO)=1 & f1)=1 = ) ay=1, (1.70)

« an equation imposing the impermeability of the bottom:

0P

Nt
_ 7! _ n—1 2
o, =0 = f(-1)=0 = ;(—1) apn?=0, and  (171)

z=—h

+ the N7 — 1 equations corresponding to the inner product of the Laplace equation with 7},

for p from 0 to Np — 2:

Nt
Z (ln(,UJQBpOOn — 4Bp02n) =0 forp=0,..., Np — 2. (1.72)

n=0

An example of the linear system, in matrix format, for Np=4 is:

1 1 1 1 ao 1
0 1 -4 9 —16 ay 0
p 0 —16 0 —128 az | =10
0 2 0 -9 0 as 0
0 0 w> 0 —192 ay 0
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The solution of the system gives the expression of the a,, coefficients as a function of 2, from

which the non-dimensional dispersion relation can be deduced:

Nt
@Ry =2 ann®. (1.73)
n=1

1.4.3.4 Analytical resolution of the linear system

The linear system of the a,, coefficients can be solved “by hand” for small values of N7 (2 to
4), but for larger values of Nr the calculations become cumbersome. Therefore, a computer
algebra program wxMaxima (http://andrejv.github.io/wxmaxima/) is used to find the analytical
expression of the non-dimensional angular frequency corresponding to the linearized model with
a flat bottom as a function of the dispersion parameter p for several values of Np. The results

can be expressed as a rational function of p:

~ Npr—2
Oy :( C )2 IR D DT (70

2 /T - Nr—1 :
H gh) Ny 1+ Dot Bpu?

The values of the coefficients v, and 3, for Ny = 7 are given as an example (Table 1.1). The
coefficients for N7 from 2 to 15 are shown in Appendix A and will be compared to the theoretical
expression in the next section. For values of N7 greater than 15, there was not sufficient computer

memory (within a desktop linux machine) to obtain the analytical expressions.

ap forp=1to Ny —2 Bpforp=1to Ny —1
23 229
1 = 155 A= 350
443 937
@2 = 92160 B2 = 35735
_ 197 4259
Q3 = 3686400 Bz = 7372800
_ 287 _ 37507
Q4 = 1415577600 Ba = 9909043200
_ 7 _ 697
@5 = 30198988800 Bs = 90596966400
_ 17
Bs = GossTistazoso

Table 1.1: Dispersion relation coefficients for Ny =7

1.4.4 Accuracy of the dispersion relation of Misthyc

To study the accuracy of the dispersive properties of the model, the dispersion relation of Misthyc
is compared with Stokes’ analytical expression. Dispersion relations obtained with Boussinesq-
type models are also compared to these results. Boussinesq models are often used to simulate
water wave propagation. They do not resolve exactly the same set of equations, and their dis-
persion relation is different from Stokes analytical solution. Some Boussinesq models have a

dispersion relation corresponding to a rational approximation of Padé type, which means that
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tanhy/p is approximated as a rational function of y. Rational functions with the same order in
the numerator and denominator are known to give more accurate results. Relations for the order

(2,2) and (4,4) Padé approximants are considered in this comparison:

« the dispersion relation using a (2,2) Padé approximant is:

2
(x/c > _tanhpe 1+ g5t (175)
gh 7 1+ 2p2
« the dispersion relation using a (4,4) Padé approximant is:
2 1 1
<C> _tanhp 1 g+ g (1.76)
Vgh poo 14 gut+ gt

The Padé approximants may not be accurate enough to simulate well waves propagating in deep
water conditions (kh > ). Higher-order models have been proposed by several authors. Here,

two models are considered for further comparison. Their derived linear dispersion relations are:

« from the linearized two-layer Boussinesq model of Chazel et al. (2009):

< C >2_ 1+ agp?® + agp* + agp®
Vgh 1+ bop® + bap* + bpu® + bgu®’

One can notice that this corresponds to the analytical expression for the dispersion relation
of Misthyc (Eq.(1.74)) for N7 = 5 but with different coefficients:

(1.77)

1 1 5

CL2—2S+E y a4—S(2S+§) y CLﬁ—S
_ D _ac2 2 1 _ g2 5 _ g
by=25+ 55 =38+ 3S+ o L =525+ ) . b=

and with S = o(1 — 0)/12 where 0 = 0.314 is the recommended value.

« from the linearized extended Boussinesq model of Madsen et al. (2006):

C 2 1 2 4 6 8
( ) + agp® + agp® + agp® + asp (1.78)

Voh) 1+ bap® + bap® + bepb + bep® + bropld’

One can notice that this corresponds to the analytical expression for the dispersion relation
of Misthyc (Eq.(1.74)) for N7 = 6 but with different coefficients:
2 1 o? 40t

o
T 9 0 MT 120 51 67

=2

ag =
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where o = 0.5 is the recommended optimal value.

The dispersion relations are compared by plotting the ratio between the phase velocity obtained
by each model and the phase velocity of first-order Stokes theory (Figure 1.3) for kh in the range
[1072,10?%] (where kh = 10? is approximately 30 times the value usually taken as the infinite
depth limit). All of the models eventually diverge from C/Clsores = 1 for different large values
of kh, with different trends. Both Padé approximants diverge with larger values of the phase
velocity whereas the two “improved” Boussinesq models of Chazel et al. (2009) and Madsen et al.
(2006) diverge with lower values of the phase velocity. The phase velocities obtained with Mis-
thyc do not diverge monotonically. For shallow and intermediate water conditions, the models
are nearly equivalent, and differences become visible only for deep water conditions. The phase
velocity obtained with Misthyc using Np = 3 diverges for kh =~ 0.4 and the (2,2) Padé ap-
proximants diverge for kh ~ 2. Then, the curves corresponding to Misthyc with Ny = 5 and
N7 = 7 begin to diverge for smaller kh than the Boussinesq models of Chazel et al. (2009) and
Madsen et al. (2006). With Np = 20, C'/Cgores =~ 1 for the range of kh values considered here
(0.01 < kh < 100).

The relative error is also evaluated in comparison to the phase velocity given by first-order Stokes
theory (Figure 1.4). By setting a threshold of 2.5% error with respect to the Stokes phase velocity,
this error level is exceeded for increasing values of kh, when N increases: kh ~ 6.9 for N7 = 3,
and kh = 56 for N7 = 7, and the threshold is not exceeded for Ny > 15 (for kh < 100). The
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Figure 1.3: Phase velocity ratio in comparison with first-order Stokes theory, for Misthyc with
several values of Nr (solid lines), for the (2,2) Padé approximant (dashed green), the (4,4) Padé
approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed
dark blue).
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Figure 1.4: Phase velocity relative error in comparison with first-order Stokes theory, for Misthyc
with several values of Nt (solid lines), the (2,2) Padé approximant (dashed green), the (4,4) Padé
approximant (dashed light blue), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed
dark blue).
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accuracy of the dispersion relation is thus improved with larger N7. Moreover, the relative error
of Chazel et al. (2009) is larger than the error obtained with the (2,2) and (4,4) Padé approximants
in shallow and intermediate water, but the trend reverses for a narrow range of kh for deep water

conditions.

Misthyc is then compared with the two “improved” Boussinesq models considered here in deep
water conditions (7 < kh < 100). The phase velocity ratios are plotted for Ny = 7 — 12 in
Figure 1.5. Considering the value of kh where C'/Cgyokes diverges from 1, Misthyc obtains re-
sults similar to those of the two Boussinesq models for values of N of about 8-9. Looking at
the phase velocity ratio relative error (Figure 1.6) for kh < 6 the relative error of the Boussinesq
model of Chazel et al. (2009) is larger than for Misthyc with N7 = 7 but becomes smaller for a
narrow range of kh in deep water conditions. For kh < 30, the relative error of the Boussinesq
model of Madsen et al. (2006) is smaller than the errors for Misthyc with N = 7. For kh > 30
both considered Boussinesq models have a larger relative error than Misthyc with Ny > 10. For
both Boussinesq models, the 2.5% error limit is exceeded at kh ~ 30 — 33 and at kh ~ 55 for
Misthyc with Np > 7.

Thus, the dispersive properties of the linear version of Misthyc improve with an increasing value
of Np. This flexibility is an advantage when using the model in shallow or intermediate water
because a smaller value of N can be used to reduce the computational time significantly. For
N7 > 10 the relative error remains under the 2.5% threshold for kh € [0.01, 100].
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Figure 1.5: Phase velocity ratio in comparison with first-order Stokes theory, for Misthyc with
several values of Nt (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006) (dashed
dark blue). The extent of the horizontal axis is from kh = 7 (deep water threshold) to kh = 100.
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Figure 1.6: Relative phase velocity in comparison with first-order Stokes theory, for Misthyc
with several values of Ny (solid lines), Chazel et al. (2009) (dashed red) and Madsen et al. (2006)
(dashed dark blue). The extent of the horizontal axis is from kh = 7 (deep water threshold) to
kh = 100.



Chapter 2

Numerical implementation of the
1DH model

Dans ce Chapitre, dans un premier temps, les méthodes numériques utilisées pour

Iimplémentation de la version 1DH du modéle sont présentées briévement. Un schéma

explicite de Runge-Kutta a l'ordre 4 avec un pas de temps constant est utilisé pour

Uintégration en temps et un schéma aux différences finies avec un pas d’espace variable

est utilisé pour estimer les dérivées horizontales. La résolution numérique du systéme

linéaire est réalisée a l'aide du solveur direct MUMPS. Dans un second temps, les condi-

tions aux limites pour I’absorption et la génération de vagues sont étudiées. Deux méth-

odes d’absorption sont comparées : l'utilisation d’une zone de relaxation dans laquelle

n et  sont forcés a tendre progressivement vers 0 et ’ajout de termes dissipatifs dans les

conditions aux limites d la surface libre. Suite aux tests de sensibilité effectués, le choix

se porte sur l'utilisation d’une zone de relaxation d’au moins deux longueurs d’onde

de long pour plus de généralité. La condition a la limite appliquée a la frontiére ot se

situe le générateur de vague est étudiée vis a vis de la précision du champ de vague

généré pour des conditions de hauteur de vague incidente, période et direction fixées.

Les vagues sont générées selon la théorie linéaire. Quatre types d’implémentation, dif-

feérant par le jeu d’équations appliqué au point situé sur la frontiére lors de la résolution

du probléeme de Laplace, sont testés et comparés dans le cas de conditions a la limite

de type Dirichlet ou Neumann. Suite a cette étude, il est décidé d’ajouter une zone de

relaxation qui stabilise la génération et donne des résultats similaires quel que soit le

choix d’implémentation de la condition d la limite.
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2.1 Numerical methods

2.1.1 Integration in time

To integrate the Zakharov equations in time, the classical fourth order Runge Kutta (RK4) scheme,
with a constant time step, is chosen. This explicit method estimates the value of f(t + At) from
the value of f(¢) and an approximation of the derivative through a weighted average of the
derivative at ¢, t + At/2 and t + At. At each time step the error is of the order O(At®) and
the cumulative error is of the order O(At*). This common method is used for a wide range of

applications, because of its stability and efficiency.

For an equation of the type % = f(t,z,y) (here, y=n or y=®), the RK4 scheme gives the follow-

ing expression for ¥ Ay

At
Yi+rAt = Yt + ?(lﬁ + 2ky + 2ks3 + ky) (2.1)

(t,, ( t))

(t+ y(@,t) + k1 5t)
(t+ 5 2, y(x,t) + k2 5F)
(t + At,x,y(x,t) + ksAt)

with

A RK4 scheme with a constant time step is currently used because the given accuracy is suf-
ficient for the current applications. Nevertheless, a scheme with an adaptive time step (see e.g.
Clamond et al.,, 2007) or another iterative scheme may improve the accuracy and/or computa-
tional time. Symplectic schemes could also be considered as the Zakharov system is Hamiltonian
(e.g. Xu and Guyenne, 2009). Clamond et al. (2007) have shown however that a strategy using
a high-order explicit scheme with adaptive an time-step seems more appropriate for practical
integration of such systems. This topic deserves additional study and tests, but in this work, the

well-known and robust RK4 scheme is retained.

2.1.2 Derivatives in space

To calculate the spatial derivatives in the system of equations, so-called collocation methods are
used. The derivatives at computational nodes are replaced by algebraic approximations involving
a set of neighboring nodes. The m‘" order derivative of a function f at anode x = x; is expressed
as a linear combination of the values of the function f at the node x; and at its n closest neighbors.

n is related to the targeted approximation order in the Taylor series expansion:

m
dx =z

e > aif () (2.2)
i k=0
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where i € [0,n], and the o} coefficients are the optimal weights, for the mt" order derivative,
depending on the number of nodes (n + 1) used to obtain the derivative estimate at node z = x;.

In the following, the optimal weights for a stencil of size n + 1 are denoted «}",..

Fornberg (1988) developed a recursive algorithm to compute the optimal weights using the La-
grange interpolator polynomials. The n!* order Lagrange polynomial is defined from the n + 1
values of f(zx) (k= 0ton):

Pa@) = 3 Lin (@) f () (2:3)
k=0

with Lyn(z) = (x —x0)e(z — zp—1) (T — Thy1) .. (T — Tp) (2.4)

(g — x0)...(xk — Th—1) (T — Thy1) ... (Tk — Tn)

The following approximation is obtained:

d™ f(x)

dz™

_d"py
= dgm

. Zn: dmLk,n (l‘)

T=x; T=T; k=0

From the definition of Ly, ,(z) (Eq.(2.4)), recurrence relations can be derived. The first one is the

relation between Ly, , and Ly, ,,_1 when k # n:

Lin(x) = MLk,n—l(fE) (2.6)
(2K — n)

The second relation is obtained for k£ = n, making the link between L,, ,, and L,,_1 ,_1:

n—2
Lon(z) = ( i=0 (Tn-1 ~ 21) ) (2 — Zu1)Lno1 s (2) (27)

n—1
1o (Tn — @1)
Now, the nt" order Taylor series expansion of Ly, ,(z) at = z; is considered:
n

Lk,n(:z‘) ~ Z dmLk,n(fU)

dz™

m

(@—z)" O, (=)
=N ap 22 (2.8)

| !
= J— m! m!

When introduced into Eq.(2.6) and Eq.(2.7), two recurrence relations for the aj’, coefficients

(m > 0) are obtained by equating the terms (z — z)"* with the same order m:
Y €q g

1 -1
oy = G [kayy =y — (@n — @i)ag, ] fork #n
(2.9)
H":—2($n71,xl) —1
O‘mn = < l?i_ol(lfn—l'l) [ma;nfl,nfl - (ajn,1 - xi)a;n—l,n—l] fork=n

In the model, the fortran code provided by Fornberg (1988) is used. It computes recursively
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the optimal weights to estimate the first and second derivatives at a given node x;, given the
abscissa coordinates of the n + 1 nodes forming the stencil (zy, £ = 0, n) and the maximal order
of the targeted derivative. Misthyc is coded to allow the flexibility to choose the order of spatial
derivatives. However, to obtain high accuracy, n = 4 is used in all of the following applications
of the 1DH version of the model. The first and second order derivatives are then approximated
with an error of order O(Az?) in the case of a centered stencil, i.e. with two points on both side
of the node where the derivatives are estimated. When the stencil is not centered (for nodes on
or close to the boundaries of the domain), first order derivatives are estimated with an accuracy
of order O(Ax*) but second order derivatives are only O(Az?) accurate. To recover the O(Az?)

accuracy for nodes on the boundaries, one must take n = 5.
2.1.3 Resolution of the linear system

At each sub-step of the RK4 scheme, the discretization of the Laplace BVP in (z, s), with N PX
nodes in z and Np the maximum order of the Chebyshev polynomials, results in a system of
NPX(Nr+1) linear equations for the coefficients a,,(z;), forn =0,.., Nprandi = 1,.., NPX.
The corresponding matrix is sparse, and the system is currently solved in Misthyc using the direct
solver MUMPS (“MUltifrontal Massively Parallel Solver”, v4.10.0) (Amestoy et al., 2001, 2006),

using the default settings. Iterative solvers could be also used, and will be tested in the future.

2.2 Boundary conditions for wave generation and absorption

2.2.1 Wave absorption

2.2.1.1 Brief review of wave absorption in numerical models

Wave absorption is necessary in numerical models to prevent full reflection of waves from the
lateral (numerical) boundaries. In many cases, this numerical absorption is designed to take
into account physical dissipative processes (e.g. wave breaking or bottom friction) or simply to
simulate fully open (radiative) boundary conditions without wave reflection. There are several

methods used to absorb waves in numerical models, which can be classified into two main groups:

1. Wave absorption is located at the boundary and is achieved with adapted boundary con-
ditions. It can be either a radiative boundary condition that allows waves to propagate
out of the domain or “active” absorption that adapts the boundary condition such that a
wave is generated to cancel out the incoming wave. These two options require knowing
the characteristics of the waves to be absorbed (celerity, direction of propagation). These
methods can be very efficient for regular waves but are difficult to extend and to optimize

for irregular waves with a wide range of wavelengths and directions.

2. Wave absorption can be carried out in a zone leading up to the lateral boundary either by

adding dissipative terms in the evolution equations (i.e. Kim et al., 2014; Koo and Kim, 2004;
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Zhang et al., 2007) or by imposing a pressure opposing the waves (i.e. Clamond et al., 2005;
Viotti and Dias, 2014). These terms are generally added progressively in space to avoid
discontinuities and numerical instabilities. Another solution is to implement a relaxation
zone where the solution obtained by the model is progressively modified to correspond
to an imposed solution (i.e. Bingham and Agnon, 2005; Engsig-Karup, 2006). The effi-
ciency of this second kind of method strongly depends on several parameters: the length
of the relaxation zone, the mathematical formulation of the dissipative terms and its nu-
merical parameters, and the shape of the spatial ramp function. The optimization of these
characteristics might depend on the problem considered. Moreover, the lateral boundary
condition at the end of the domain still needs to be defined. Generally it is a fully re-
flective condition or null normal velocity, but it may be a condition of type (1) to absorb
long waves that might not have been absorbed well by methods of type (2) (i.e. Clément,
1996; Grilli and Horrillo, 1997; Zhang and Duan, 2012). The main drawbacks of this kind
of method are that they require increasing the size of the computational domain and thus

the computational time, and they may not be very efficient for absorbing very long waves.

The following paragraphs present a series of tests evaluating the implementation of methods of

type (2) with first a relaxation zone and then with the addition of dissipative terms.

2.2.1.2 Relaxation zones

Relaxation zones are used to impose a known solution with a progressive transition in space
to avoid the generation of shocks. The method is applied to both surface variables 1 and ®.
Over the length of the relaxation zone, the solution obtained with the model (n, <i>), at the end
of each time step, is replaced by a linear combination of the obtained values and the imposed
solution (Mmp, éimp). The linear combination is defined by the relaxation coefficient C,., which
is a monotonic positive function varying between 0 at the entrance of the relaxation zone (z =

Trelaz) and 1 at the boundary (x = x3) such that:

n(xz,t) = (1 — Cr(z)) n(z,t) + Cr () Nimp(x, t) (2.10)

O(x,t) = (1 — Cr(2)) ®(x,t) + Cp () Pippp(, t) (2.11)

If the imposed solution is the null function, the relaxation zone can be used to absorb, but it
can also be used in the case of wave generation with values of 77 and ® calculated using linear
(see Section 2.2.2) or nonlinear wave theory. As previously mentioned, this method depends on
adjustable parameters that have to be tuned and may depend on each specific problem, mainly

the length of the relaxation zone L,.j,, and the shape of the relaxation coefficient C,.. A good
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choice of these parameters is necessary to have an efficient relaxation zone, and a series of tests

are completed here to study the sensitivity to these parameters.

The first characteristic to be studied is the shape of the relaxation coefficient C'.. The condition
to meet for C, can be obtained for various shapes with different rates of transition from 0 to
1. A gradual change of the coefficient is important to avoid wave reflection from the relaxation

zone. The first implementation of C) in the model was made following Bingham and Agnon

(2005), with Cy.(z) = (1 — 0.6%)8, and |2y — Zyelaz| = Lrelar- However, this shape
of coefficient does not fulfill the condition C).(x = Zyejqz) = 1, so it was adapted to C,.(z) =
(1 — %) a, with « a real number to be determined for the optimization of the relaxation
zone. In Engsig-Karup (2006), relaxation zones for wave generation and absorption for high-order
Boussinesq-type models based on unstructured grids are studied, and o = 5 was suggested as
the optimal value. In Kim et al. (2014), dissipative terms are added to the free surface boundary
conditions. To avoid an abrupt change of the boundary conditions, they tested several ramp
functions to increase gradually the magnitude of the damping coefficient. In the following set
of tests, the ramp functions used by Kim et al. (2014) are considered. Finally, six shapes of the

relaxation coeflicient C,. are also tested:

5
Cri(z) = (1 - w) (2.12)
|

b — xrelaz‘

Cro(z)=1— [z — 2] (2.13)

|$b - xrelam‘

T T — Trelax

Cr3(z) =1 —cos <> (2.14)

2 Ty — Trelax

1 _
Cra(z) = = <1 — cos <7T:”relaz>> (2.15)
2 Ty — Trelax
Cs(x) = sin (—) (2.16)
2 Ty — Trelax
T — Trelax
20—
CTG(.T) =1-—e¢ Ly — Trelax (2.17)

All the tests in this section and the following one are made with the linear version of the code

for a regular wave of amplitude a = 0.06 m, wavelength L = 6 m and period T' = 1.96 s that



2.2 BOUNDARY CONDITIONS FOR WAVE GENERATION AND ABSORPTION 41

propagates over a flat bottom (h = 4 m). The domain extends from 0 m to 36 m (6L) and is
regularly meshed with Az = 0.7875 m (L./32). The wave is propagated during 607 with a time
step At = 0.0613 s (1'/32), and a vertical resolution N7 = 7. Waves are generated in a 2L-long
relaxation zone with a Dirichlet boundary condition at the left boundary. This relaxation zone is
not varied in the simulations since the focus is on the relaxation zone added for wave absorption.
Unless specified otherwise, the absorption relaxation zone is one wavelength (L) long. Figure
2.1 shows the shape of the factors 1 — C,.(x), by which the solution obtained by the model is

multiplied in the relaxation zone.

— 1-C
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— 1y
0.8 — 1-Cy ]
— 1-C
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=
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|
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0.2
0.0
30 31 32 33 31 35 36
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Figure 2.1: Shapes of the six 1 — C).(z) coefficients considered in the first set of simulations for

the absorption relaxation zone.

The efficiency of the relaxation zone is evaluated by the reflection measured inside the domain.
If waves are fully absorbed, there should be no reflection of the incoming wave field. Once
the periodic steady state is reached, the time series of the free surface elevation at 32 locations
between x = 18 m and x = 24 m covering a domain of one wavelength are analyzed to obtain
the average wave height at each location. If no reflection occurs (full absorption) the mean wave
height is expected to be constant, but as can be seen in Figure 2.2, the resulting normalized
wave height profiles obtained for the different shape of the relaxation coefficient vary along the
domain. The wave height is modulated by the phase difference between the incoming H; and

the reflected Hgi waves.

From the variations of the mean wave height profile, the reflection coefficient R can be computed
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Figure 2.2: Comparison of the normalized wave height for x € [18,24] m for different shapes of

the relaxation coefficient. Hj is the incident wave height, Hy = 2a = 0.12 m.

(Table 2.1).

- & o Hipox — Hpin

R="E = ,
HI Hmax + Hmzn

where H,,q, and H,,;, are the extreme values reached by the wave profile at each node. Reflec-
tions are minimum with the relaxation coefficient C}; and maximum with C,4. The coefficient
Cr¢ makes the free surface elevation zero along a longer part of the relaxation zone in compari-
son with C,.1, but this does not seem to be the important characteristic to reduce reflections. The
main difference between the studied relaxation coefficients is their derivatives at £ = x¢jq, (the
beginning of the relaxation zone), and it appears that the steeper the slope at the entrance of the
zone, the larger the reflection in the domain. Engsig-Karup (2006) showed that at the interface not
only Cy(Zrelqz) = 0 must be satisfied but also C.(Ze1az) = CF (@relaz) = CF (Tretaz) = - =0
to avoid the generation of spurious waves. Among the options considered here, this is only the

case for C,1, explaining the high reflection coefficients obtained with the other C, shapes.

Relaxation coefficient | Cpy | Cro | Crg | Crg | Crs | Crg
Reflection coefficient R | 0.14 | 0.40 | 0.21 | 0.32 | 0.52 | 0.94

Table 2.1: Reflection coefficients for the different shapes of the relaxation coefficients considered

in the first set of simulations (Figure 2.1).

Based on this set of tests, a coefficient of the type of C} is used for the model implementation of
relaxation zones. A sensitivity test on the value of the a parameter is carried out. As can be seen

in Figure 2.3, this value has a non negligible influence on the shape of the relaxation coefficient.
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As done previously, the mean wave height is computed from the time series of the free surface
elevation for z € [18,24] m. It is not constant and varies with = (Figure 2.4), showing that
reflections occur for all values of o. The amplitude of the variations depends on the parameter
«, with higher variations for extreme values of « (both low, = 1, and high, & = 9). The
reflection coefficients calculated from the wave height profiles are plotted in Figure 2.5 (blue

line). The optimal value to minimize reflection is approximately o = 3.5.

The same set of simulations was completed for longer relaxation zones of 1.5L and 2L. The evo-
lution of the reflection coefficients R as a function of « are plotted in Figure 2.5. The lengthening
of the relaxation zone improves its efficiency for every «, and the dependence on o weakens. The
optimal value of a seems to decrease with an optimal value around o« = 3 for L;.¢jq, = 1.5L and
o = 2.5 for L,cjq, = 2L. With a relaxation zone of two wavelengths, the reflection is less than

5% for o« > 2 and decreases down to 1% in the best cases.

In all test cases where absorption is required, a relaxation zone of two wavelengths of the primary
wave in the region is generally applied. The relaxation technique is applied at the end of each
time step, making the results dependent on the time step. With a smaller time step, the reflection
at the entrance of the absorption relaxation zone increases. When using the relaxation zone for
wave generation, the leading waves have larger amplitudes than with a smaller time step, so
reflections increase, and if the first waves are not correctly absorbed, this prevents convergence

of the simulations as a function of the time step. For two simulations with different time steps,
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Figure 2.3: Shape of the coefficient 1 — C.(z) for several values of the « parameter considered

in the second set of simulations for the absorption relaxation zone.



44 CHAPTER 2: NUMERICAL IMPLEMENTATION OF THE 1DH MODEL

if the relaxation zone is applied with the same frequency (i.e. applied every two time steps for

Aty = %), the convergence in time is recovered.

2.2.1.3 Adding dissipative terms

A second possibility for wave absorption is to include an artificial damping zone near the end of
the domain. In this zone, artificial damping terms are progressively applied to the free surface
boundary conditions. Kim et al. (2014) tested five different schemes to introduce wave absorption
in their 3D numerical wave tank, where damping terms such as n-type, ®-type or ®,,-type (with
®, = g—i the normal free surface velocity) were added to the KFSBC and/or the DFSBC. They
concluded that adding a ®,,-type term in the DFSBC and a 7)-type in the KFSBC (their method 5)

was the solution minimizing reflections (with a ramp function with shape C3) in their work:

oP 0P

= —gn — ] — DFSBC 2.18
T gn = Mg (2.18a)
% =W — pon KFSBC (2.18b)

In this system, the first damping term contributes to the damping of the water particle velocity,
whereas the second one contributes to the damping of the free surface elevation. The coefficients
(1 and g2 can be optimized through trial and error tests depending on wave characteristics. As
the propagation equations are modified in the damping zone, a relation between the two damping

coefficients is necessary to minimize the difference from the original boundary condition and to
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Figure 2.4: Comparison of the normalized wave height for x € [18,24] m for several values of

the parameter . H is the incident wave height, Hy = 2a = 0.12 m.
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Reflection Coef ficient R

Figure 2.5: Reflection coefficient as a function of the parameter « for three different lengths of
the relaxation zone (L¢jq,, = 1L (blue), 1.5L (green) and 2L (red)).

prevent wave dispersion and distortion. This relation is o = kp; for deep water conditions,
where k is the wave number. In their work, Kim et al. (2014) used a damping terms of pg = 2.5

such that 11 = po Cr(z) and po = po k Cr(x) .

The set of equations (2.18) was implemented in the linear version of Misthyc with a ramp function
corresponding to ('3 for a damping zone of one wavelength. A sensitivity test on the value of
1o was carried out. The mean wave height for several values of the parameter jig, around the
value of 2.5 used by Kim et al. (2014), are presented in Figure 2.6. The influence of the value of

(o is not negligible and the value pg = 2.5 is not the optimal one in that case.

The reflection coefficient as a function of y is plotted in Figure 2.7. A minimum in reflection is
obtained for pg ~ 1.75. It is important to notice that the reflection coefficient is smaller than 5%
for the range of values of pig considered, with a damping zone of only one wavelength, whereas
when using a relaxation zone of one wavelength, the reflection coefficient is over 10% (Figure
2.5). The relaxation zone has to be extended to two wavelengths to obtain comparable reflection

coefficients.

2.2.1.4 Conclusion

From this study, it appears that the use of artificial damping terms may be more efficient for wave
absorption than a relaxation zone since the same reflection coefficients are obtained for a shorter

length of the damping zone, allowing a gain of computational time. However, with the chosen
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Figure 2.6: Comparison of the normalized wave height for € [18,24] m for several values of

the parameter po. Hy is the incident wave height, Hy = 2a = 0.12 m.

Reflection Coef ficient R

Figure 2.7: Reflection coefficient as a function of the parameter pg for a damping zone of one

wavelength.

artificial damping scheme a relation linking (1 to uso is used, which relies on the wave number
k. It is not clear that the efficiency of the damping terms is maintained for a range wavelengths,
for example in the case of irregular waves. This has not been tested yet. Moreover, the relation

between pq and po is derived for deep water conditions only but what if this assumption is not
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verified? The values of 111 and pg then require being optimized, which may be more tedious than
an optimization of 14y only. Thus the choice was made, in case where wave absorption is needed,

to use a relaxation zone of generally two wavelengths long.

Finally, all the tests here were completed with the linear version of the model. Kim et al. (2014)
studied the effects of non-linearity on the artificial damping scheme by applying it to waves of
increasing steepness. They showed that even if the total energy ratio of nonlinear simulations
to linear simulation diverged from one with the increase in wave steepness, it reaches a steady

state indicating that the damping scheme is still efficient for nonlinear waves.
2.2.2 Wave generation

2.2.2.1 Brief review on wave generation in numerical models

When developing a numerical wave model, the focus is generally directed to the accurate rep-
resentation of wave propagation and kinematics. However, the accurate generation of incident
wave fields with specified characteristics (height, period, and direction) already presents a nu-

merical challenge.

Wave generation methods can be implemented either by using a moving (impermeable) bound-
ary, similar to what is done in experimental wave tanks (i.e. forcing the motion of fluid particles
in a Lagrangian manner) (Contento, 2000; Ducrozet et al., 2012b), or using numerical algorithms
to create the desired wave field by adapting the lateral or free surface boundary conditions or
the momentum equations. This second option can be divided into five main categories, most of
which were compared and discussed in Schmitt and Elsaesser (2015), with respect to developing

a model using the Volume of Fluid method:

1. lateral boundary forcing method: analytical solutions are prescribed at the incident, fixed
boundary in an Eulerian manner, for example the incident velocity profile (Ning and Teng,
2007; Xiao et al., 2008). Variations of this method exist, and they are categorized based on
how the wave conditions are imposed, including: Dirichlet-type conditions correspond-
ing to imposing the unknown variable itself at the boundary, Neumann-type conditions
corresponding to imposing its derivative (usually the normal derivative), or Robin-type

conditions that are a mix of Dirichlet and Neumann conditions.

2. mass source method: based on the observation that the inflow and outflow of water in the
domain can lead to a free surface displacement, the continuity equation is augmented with

a source term in a given region of the domain (Liam et al., 2014).

3. impulse source method: similar to the mass source method, this method consists in adding

source terms to the momentum equation (Lee and Suh, 1998).

4. surface pressure method: the wave motion is forced by applying a free surface pressure
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term in the DFSBC (Clamond et al., 2005) that is variable in space and time.

5. relaxation method: similar to what was presented in Section 2.2.1.2, a relaxation zone can
be implemented for wave generation using linear (or any high-order) wave theory to im-
pose progressively over a given distance the reference solution Engsig-Karup (2006). This
is done by replacing the computed solution at the end of each time step by a linear combi-

nation of this computed solution and the reference solution.

According to Schmitt and Elsaesser (2015), the relaxation method could lead to instabilities in
the cases they studied, whereas mass and impulse source methods proved to be quite accurate
and stable. Nevertheless, although the mass source method is simple to implement, it is limited
in the range of wave heights that can be created. The impulse source method is more complex
to implement and more computationally demanding, but it does not suffer from limitations on
the maximum possible wave height. Finally, methods 2-5 require increasing the domain size
to create a zone for waves to develop progressively, while method 1 (forcing at the boundary
only) allows minimizing the size of the computational domain. For a more complete study, these
methods could be compared with respect to the generation of spurious free waves, which can be

a limitation factor.

Wave generation using a boundary forcing condition method is studied in the Misthyc model in

the following section, in combination with the application of a relaxation zone.

2.2.2.2 Boundary conditions at the wave generator

To solve the Laplace problem, boundary conditions must be imposed at the lateral boundaries. At
the wave maker boundary (located at x = ;) either a Dirichlet condition (imposing the velocity
potential ®) or a Neumann condition (imposing the horizontal velocity u, which is the bound-
ary normal velocity) can be used. In the following sections, the expression for both conditions
applied at x = xp, at time ¢ are presented when linear theory is used to define ® and u for a 1IDH

domain (z, 2).

Linear representation of incident waves

The simplest way to generate regular or irregular progressive waves is to consider a linear model
such that the wave signal can be decomposed into N, independent sinusoidal waves. Each com-
ponent 7 is characterized by its height H;, angular frequency w;, wave number k; (obtained from
the linear dispersion relation), phase speed C; and phase ;. Using linear wave theory, the phases
1); are assumed uncorrelated. Thus every component ¢ can be treated separately as a solution of
the linearized problem for a flat bottom (where h is the water depth). The free surface elevation

n(x,t), velocity potential ®(x, z,t) and horizontal speed u(z, z, t) of the wave train are obtained
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by the superposition of each wave component.

Ne

H.
n(xz,t) = Z ?Z cos(k;x — wit + 1;), (2.19)
i=1
Ne o, g cosh(k;(z + h))
q)(l', z, t) = Z 2Z » o Z(k,h) Sil’l(kil' —w;t + T;Z)Z)a (220)
=1 i %
H; g cosh(k;(z + h))
u(x, z,t) = Z cos(k;x — wit + ;). (2.21)
— 2 C; cosh(k;h)

All of the results presented in this chapter use a linear representation of the incident wave field.
Then during propagation, the waves adapt to be consistent with the nonlinear model. When
the incident wave is too far from a linear wave, the linear generation can lead to the creation of
parasitic waves and instabilities. In such cases, it is possible to generate second or higher-order
regular waves (i.e. Rienecker and Fenton, 1981). It becomes more complicated when dealing with
irregular waves because of nonlinear interactions between all of the components that have to be

taken into account. Nevertheless, a second order generation is possible by using Dalzell (1999).

Dirichlet boundary condition

To derive the equations accounting for the Dirichlet boundary condition, the equality between
the imposed velocity potential and the one given by the model is expressed at the boundary
x = xp in the transformed (z, s)-plane. The imposed velocity potential ¢ (xp, s,t) given by

linear theory is:

1(zp, 8, 1) ZA cosh(B;(1 + s)), (2.22)

where A; and B; are functions depending on z; and t:

H; g

Aj= ———F———
2w cosh(k h)
+

sin(k;xp — wit + ), i = 1,..., N, (2.23)

ki .
B; = = E(h + n(xp, b)), i =1,..., N,. (2.24)

At the same time, the spectral approach used in the vertical direction in the model, gives the

following expression for the velocity potential:

Nt
)= an(z)Tn(s), (2.25)
n=0
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Writing that at the wave maker boundary = = x;, both expressions must be equal ;7 = o,
NT Nc
Z an(xp)Th(s) = Z A;cosh(B;(1+s)) Vse[-1;1], (2.26)
n=0 i=1

This expression is then projected on the Chebyshev polynomial basis by applying the operator
< f>p= W%p < f,T, > forp=0,1,..., Ny to (2.26):

Nr N,
Z an(xp) < Ty >p= ZAi < cosh(B;(1+s)) >p, p=0,1,....,Np. (2.27)
n=0 i=1

The left-hand-side of Eq.(2.27) can be rewritten as:

NT NT
D an(w) < T >p=> _ an(@y)0np = ap(), (2.28)

Moreover, it can be shown that the right-hand-side of Eq.(2.27) can be expressed using I, the
modified Bessel function of the first kind of order p (Tian and Sato, 2008):

e 9 Je cosh B; if piseven
< cosh(Bi(1 +5)) >,= — Y I,(B; ‘ ’ 2.29
; (Bil )) >p Cp Zz; »(Bi) { sinh B; if pisodd. (2.29)

Finally, combining Eq.(2.28) and Eq.(2.29), Eq.(2.27) is equivalent to:

cosh B; if piseven,

N,
- 2
= A;,—1,(B; 2.30
a (@) ZZ_; Cp o ){ sinh B; if pisodd. (2:30)

Thus, the a,(x) coefficients can be computed analytically for any time ¢, for p = 0,1, ..., N7.

When the incident waves cannot be decomposed as a sum of linear sinusoidal waves as in the case
for a solitary wave, for instance, the modified Bessel function of the first kind (/,,) can no longer
be used to compute the ay(zp) for p = 0,1, ..., Ny. For more general cases, the vertical profile
of the velocity potential ¢(xyp, s,t), at © = x;, for time ¢, has to be “directly”projected on the
Chebyshev polynomial basis by applying the operator < f >,. A Gauss-Chebyshev quadrature
(Eq.((2.31))) is used to compute the operator integral.

_ 2 [YOT6)
<f>= b / e ds~;wkf<8k>Tp<sk> (231)

_ T
with s, = cos ((22 Nl )”), wy = N where N is the number of nodes discretizing the vertical

profile of the velocity potential.

Thus the equivalent of Eq.(2.30) for an incident wave field that cannot be decomposed into sinu-
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soidal waves is:

ap(xp) =< P(ap, 5,t) >, . (2.32)

Neumann boundary condition

The method is used to obtain the expression for the Neumann boundary condition is quite similar
to the one used for the Dirichlet boundary condition, but now the horizontal velocity profile uy

at the wave maker (z = x3) is considered:

1(xp, 8, 1) Z A; cosh(B;(1+ s)), (2.33)
with
H; gk .
A==t IV cos(kay —wit ), i=1,..., N, 2.34
2 w; cosh(k;h) cos(kizy = wit +4), 4 (2:34)
kih™ _ ki
B; = 5 (h + 77(.2121), )) 1=1,..., N.. (2.35)

The spectral approach in the vertical leads to the following expression for the horizontal velocity

profile.

Z a, Z an(x _ §h+h+ T.(s). (2.36)

Similar to what was done previously for the velocity potential, the equality of the two expressions

of the horizontal velocity at the wave maker boundary (x = x;) gives:

—shint
Za (zp)Th(s) + Zan a:b +§ T (s) =
ZA cosh(B;(1+s)) Vse[-1;1], (2.37)

Then the operator < f >, is applied to Eq.(2.37) for p = 0,1, ..., N7:

LA = heht Tt
> a(wy) < To>p+ Y an(xs) [;;H ST, >p =g < 5T, >p| =
n=0 n=1

Ne

ZAZ- < cosh(Bi(1+5s)) >,, p=0,1,....,Np. (2.38)
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The left-hand side of Eq.(2.38) can be rewritten as:

/ hyht hih* /
Zan(azb) <T, >p +Zan(xb) 112 <T, >p T < 8T, >p| =

Nt
2a,,(xp) + Z Cpnan(xp), p=0,1,.....,Np, (2.39)

n=0

mo11Bpo1N + mi111Bpiin
020

where Cp,, = with mo11 = 2hTh,, mi;1 = —2hTh] and mogo =

ht2,

The right-hand side term is the same as in Eq.(2.29), so Eq.(2.38) can finally be rewritten as:

al Je 9 cosh B; if piseven
2(1’ x + Cnan x — 2 Azi_[ Bl v ) 240
() Z_% o () Z; ol >{ b By i pisodd (2.40)

The right-hand side of Eq.(2.40) can be analytically computed for any time ¢, for p = 0,1, ..., Np.
Just as for the Dirichlet boundary condition, if the incident waves cannot be decomposed as
a sum of linear waves, the vertical profile of the horizontal velocity u(xp, s,t) has to be “di-

rectly”projected on the Chebyshev polynomial basis through the Gauss-Chebyshev quadrature
(Eq.(2.31)).

2.2.2.3 Numerical implementation

Once the set of equations corresponding to Dirichlet or Neumann boundary conditions are de-
rived, and in particular the associated right-hand side coefficients, the question is how to imple-
ment it. With the spectral approach in the vertical, the N7 + 1 coefficients of the decomposition
on the Chebyshev polynomial basis have to be determined from a set of N7 + 1 equations. In
the case of the nodes within the domain (not at the lateral boundary), the set of equations in-
cludes the projection of the main equation (Laplace equation) on the first N — 2 Chebyshev
polynomials, completed with the Dirichlet boundary condition at the free surface, and the no-

flux condition at the bottom.

Two initial options are considered to implement the lateral boundary conditions: the simpler
option (option A) is to consider a set of equations consisting only of the boundary condition
equations (Eq.(2.30) or Eq.(2.40)) forp = 0, ..., Nt.

The second option of implementation (option B) is to do the same as for the interior nodes, by
replacing the Laplace equation by Eq.(2.30) or Eq.(2.40) forp =0, ..., Np — 2.

Two other options are also tested, based on the fact that the velocity potential is defined up to a
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constant. In the case of option B, with a Dirichlet lateral boundary condition, the first Npo —2 a,,
coeflicients are fixed leaving only two degrees of freedom through the a,, related to higher order
polynomials to make the velocity potential to verify the free surface and the bottom condition.
As it will be shown in the following part, this can lead to vertical oscillations in the profiles of
the velocity potential. Here, the coefficient ag (related to the constant polynomial 7p) is left free
so that the adaptation to the vertical boundary condition (particularly the free surface boundary
condition) is mainly obtained through the aq coefficient. Thus, for the third option of implemen-
tation (option C'), the set of equations for the node on the boundary includes Eq.(2.30) or Eq.(2.40)
forp =1, ..., Ny —1, supplemented by the free surface and the bottom boundary conditions. The
last option (option D) only takes into account the free surface boundary condition and Eq.(2.30)
or Eq.(2.40) for p = 1, ..., Np. All the four options tested for the implementation of the lateral

boundary condition for wave generation are summarized in Table 2.2.

Another question concerning the implementation is the introduction of the lateral boundary con-
dition in time. The goal here is to generate waves in a domain were the fluid is initially at rest
(n(xz,t =0) = 0,p(z,t = 0) = 0), but in linear theory, 7 and ¢ have a phase difference of 7 /2
so when 7 reaches an extremum, ¢ is zero. So, for a Dirichlet lateral boundary condition, the
initial condition on ¢ has to be set constant with a value consistent with the lateral condition.
With proper initial conditions to assure the consistency with imposed lateral conditions, it is
possible to apply “directly” the Dirichlet or the Neumann boundary condition at x = x;. Never-
theless, it is an abrupt manner to introduce the lateral condition, and the discontinuity caused by
the differences between the conditions applied at the boundary and the interior nodes can grow,
causing the simulation to end prematurely or long waves can be generated that interfere with

the primary wave if not absorbed properly.

One solution to reduce this phenomenon is to introduce the boundary condition progressively
in time. The incident condition ¢;, u; and n; are multiplied by a coeflicient varying linearly
from 0 to 1 over a certain duration generally equal to one or two wave periods. Second solu-
tion is, instead of introducing the boundary conditions progressively in time, to introduce them
progressively in space through the addition of a relaxation zone where the reference solution is

given by linear wave theory.

These options for wave generation in a domain where the fluid is initially at rest are tested for

regular waves propagating in deep water conditions.
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option set of equations for z =
ap(xp) =< ¢r(xp, s) >p for p = 0, N (Dirichlet)
A
2ay,(wp) + ZTJEO Cpnan(xp) =< ur(xp, s) >, for p = 0, Ny (Neumann)
ap(xp) =< ¢r(xp, s) >p for p = 0, Ny — 2 (Dirichlet)
2ay,(wp) + Z,JLTO Cpnan(xp) =< ur(xp, s) >, for p = 0, Ny — 2 (Neumann)
B
Sy an(wp) = B(xp) for s = 1
SNt Rt Ry (—1)™ aly () + 0T 2(1 + B2) (—1)" ' an(xp) = 0 for s = —1
ap(xp) =< ¢r(xp, s) >p for p =1, Ny — 1 (Dirichlet)
2ay,(wp) + ST Conan () =< ur(xy, s) >p for p= 1, Ny — 1 (Neumann)
C
Sy an(wp) = B(xp) for s = 1
SNt R Ry (—1)™ aly () + 0T 2(1 + B2) (—1)" ' an(xp) = 0 for s = —1
ap(xp) =< ¢r(xp, s) >p for p = 1, N (Dirichlet)
D 2ay,(wp) + ZTJEO Cpnan(zy) =< ur(zp, s) >, for p = 1, N (Neumann)
ST () = ®(x) for s = 1

Table 2.2: Description of the four options considered to implement the lateral boundary condition
for wave generation. The set of equations accounting for the node on the lateral boundary for

the Laplace resolution is detailed.

2.2.2.4 Tests and analysis

To study and compare the different ways to generate waves, tests are conducted for the case of

a small amplitude regular wave (¢ = 0.001 m, L = 2 m and T" =~ 1.132 s) propagating in deep
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water (h = 10 m). The wave steepness is small 2a/L = 0.1%, so linear theory should give a
good approximation. The associated relative water depth kh = 107 is ten times the usual limit
taken for deep water conditions. For such a high relative water depth, a large value of N7 is se-
lected to represent correctly the dispersion relation (here N7 = 20). The computational domain
extends from x = 0 m to z = 30 m and is regularly meshed with Az = 0.02 m (=~ L/100). From
x = 22 m, a relaxation zone is applied to absorb waves arriving at the right boundary. The wave
is propagated during 15 7" with a constant time step At = 0.01132 s (= 7'/100). The steady state
is not reached after 15 T but to have quantitative estimate of the representation of the wave by

the model, an averaged absolute error is computed for 7 on the interval z € [0, 8] m.

Impact of the introduction in time of the lateral boundary condition

First the free surface elevation profiles at ¢ ~ 157" are compared to evaluate the impact of the in-

troduction of the lateral boundary in time where the linear solution is used as a reference (Figure
2.8). Without a time ramp, option A does not work for the Dirichlet condition because a disconti-
nuity appears at the node on the boundary inducing large derivatives that amplify and cause the
simulation to blow up. Options C' and D give very similar results for the Dirichlet condition with
an error of 3.3 107> m. Option B shows results with a slightly larger error of 5.9 10~° m. The
wavelength of the first wave in the wave train is larger than the imposed wavelength. These long
waves may not be well absorbed by absorption zone and create reflections in the domain. For the
Neumann boundary condition, only options A and B work, giving very similar results with an
error of 2.7 10~° m (Figure 2.8a, right). The long wave generated is smaller than that generated
with Dirichlet boundary conditions. Options C and D do not work with Neumann boundary
conditions because these options consist of not imposing the component of the horizontal speed
component that is constant in the vertical, whose contribution may not be negligible. Hence,
the imposed horizontal speed is not consistent with the wave characteristics and instabilities
quickly develop. Then, applying a temporal ramp with Dirichlet boundary conditions improves
the results obtained with option B (error 1.3 107> m ) but spurious oscillations with very short
wavelengths appear and propagate in the domain. Option A still does not work, and the temporal
ramp has almost no effect on the results of options C' and D. For the Neumann boundary con-
ditions both results for options A and B are improved (error 3.0 10~% m) and options C' and D
are now stable, giving similar results that are, however, quite far from the linear solution (Figure
2.8b, right). Using a relaxation zone in addition to Dirichlet or Neumann boundary conditions
helps to generate stable waves. The four options of implementation of the boundary conditions
work, giving very similar results for the Dirichlet condition with an error of 4.2 10~% m. For the
Neumann condition, options C and D (error 1.8 10~° m) still show some small differences with
options A and B (error 6.2 10~% m). The relaxation zone seems to dominate the wave generation

in comparison with the lateral boundary conditions.

The results obtained with Dirichlet or Neumann boundary conditions do not appear qualitatively
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different when looking at the free surface elevation. However, the option (4, B, C, D) of im-
plementation for which the simulations finish without developing instabilities are different. The
differences between the various implementation options are investigated in the following sec-
tions looking more particularly at the results at the boundary node x = x; when a linear ramp

in time is applied.

Comparison of Dirichlet and Neumann boundary conditions with option B

The option B for the implementation of the boundary conditions is the only option producing

stable simulations for both Dirichlet and Neumann conditions. In Figure 2.9, the a,, coefficients
obtained at the end of the time step corresponding to ¢t ~ 157" are compared with the a,, given
by the projection of the linear solution for the velocity potential on the 21 first Chebyshev poly-
nomials (black dots). As expected, the a,, for n = 0 to 18 are exactly equal to those calculated
with the linear solution since they are imposed. Differences are observed for the two last a,,
whose values are several orders of magnitude larger than those of the linear solution. This is a
consequence of the need to satisfy the free surface and the bottom boundary conditions in addi-
tion to the Dirichlet lateral boundary condition. This leads to oscillations in the vertical profile
of the velocity potential ¢ (Figure 2.10, right), emphasized in the horizontal velocity u by the
horizontal derivative. The two last a,, obtained with the Neumann condition also present larger
values than the linear solution, but they are smaller than the ones from the Dirichlet condition.
It also leads to oscillations in the vertical profile of u, w and ® but with smaller amplitudes. Con-
trary to what is obtained with the Dirichlet condition, the first a,, are not rigorously equal those
from the linear solution, resulting in a slightly different shape of the vertical profile of ® (Figure
2.10, right). Thus, for option B, the largest difference between the Dirichlet and Neumann lateral
boundary conditions is the fact that for the Neumann condition, the a,, related to lower orders can

differ from the one from the linear solution not limiting the degrees of freedom to the two last a,,.

Comparison of options B, C' and D for Dirichlet boundary conditions

In Figure 2.11, are shown the effects of the different options of implementing the Dirichlet con-

ditions on the a,. Options C' and D produce almost the same a,, except for asy, which is kept
free for option C. The two main differences with option B are: (1) the value of ag resulting in
a shift of ® from the linear solution (Figure 2.12, right) and (2) the values of a9 and agy lower
than 10~® where it is equal to 107% for option B (resulting in smaller oscillations of the u, w
and ® profiles). Even with options C' and D, the horizontal velocity profile does not correspond

exactly to the linear solution.

Comparison of options A and B for the Neumann boundary condition

Similarly, Figure 2.13 shows the effects of the different options of implementing the Neumann
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condition on the a,. The difference between option A and B is only significant for the last two
coeflicients (a19 and agg) which mainly results in larger oscillations of the ® and u (in particular
for option B) profiles. Even for option A, the a,, coefficients are not equal to those of the linear
solution, indicating that the wave that propagates is not exactly a linear wave. This may be due
to the propagation of an additional long wave involuntarily generated. The vertical profile of
the horizontal velocity for option B has larger oscillations than the one obtained with option A.
Nevertheless, the free surface profiles are very similar, because 7 and ® and their propagation in

time depend on the vertical velocity at the free surface w, which is very similar for both options.

Conclusion

When applying a relaxation zone for the wave generation, similar results for the vertical pro-

files of u, v, and ® are obtained. The four options (4, B, C' and D) of implementation of the
lateral boundary condition lead to nearly the same evolution of the free surface elevation. The
effect of the relaxation zone dominates over the lateral boundary condition. Therefore, in the
following test cases (unless otherwise specified), Dirichlet lateral boundary conditions are im-
plemented with option B to generate waves, with a relaxation zone usually one wavelength long.

For irregular wave cases, the wavelength is calculated using the peak frequency.
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Figure 2.8: Free surface elevation profile after 1500 time steps (1577). Comparison of the three

methods to introduce the boundary condition in time, for the four implementation options (A,

B, C, D), for Dirichlet boundary condition (left) and Neumann boundary conditions (right).
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Figure 2.9: Comparison of the a,, coefficients computed at ¢ ~ 157, at x = 3, for Dirichlet
boundary conditions (red triangles) and Neumann boundary conditions (blue triangles). The
coeflicients corresponding to the linear potential expanded on the Chebyshev polynomial basis

are presented for reference (black dots).
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Figure 2.10: Comparison of the horizontal u and vertical w velocity profiles together with the
velocity potential profile computed at ¢ ~ 157, at x = xy, for Dirichlet boundary conditions

(red) and Neumann boundary conditions (blue). The linear solution is presented for reference

(black dashed line).



60 CHAPTER 2: NUMERICAL IMPLEMENTATION OF THE 1DH MODEL

107? — ‘ ‘ ‘ ;
i ¢ ¢ Simu B
Ty SRS B S R ¢ ¢ SimuC |5
° 000, 3 ¢ ¢ SimuD
S T %e .
: o )
10500 N S i
= [¢]
s 6 : [¢] :
10 e
: : : o :
; ; ; ; [+]
N : : : o :
i ?
10~ L i i i i
0 5 10 15 20
n

Figure 2.11: Comparison of the a,, coeflicients computed at ¢ ~ 157, at x = =z, for Dirichlet
boundary conditions for options B, C and D. The coefficients corresponding to the linear po-

tential expanded on the Chebyshev polynomial basis are presented for reference (black dots).
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Figure 2.12: Comparison of the horizontal u and vertical w velocity profiles together with the
velocity potential profile computed at ¢t &~ 157, at x = x, for Dirichlet boundary conditions for

options B, C and D. The linear solution is presented for reference (black dashed line).
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Figure 2.13: Comparison of the a,, coefficients computed at ¢ ~ 15T, at x = x, for Neumann
boundary conditions for options A and B. The coefficients corresponding to the linear potential

expanded on the Chebyshev polynomial basis are presented for reference (black dots).
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Figure 2.14: Comparison of the horizontal u and vertical w velocity profiles together with the
velocity potential profile computed at ¢ ~ 157, at x = x3, for Neumann boundary conditions

for options A and B. The linear solution is presented for reference (black dashed line).
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Chapter 3

Validation of the 1DH version of the

model

Ce chapitre est consacré d la validation de la version 1DH du modéle a travers Uapplica-
tion da six cas tests. Tout d’abord, la version linéaire du modéle est utilisée pour simuler
la réflexion et la transmission de vagues réguliéres lors de leur propagation au-dessus
d’un profil bathymétrique défini par Roseau (1976), pour lequel une solution ana-
Iytique est disponible. Ensuite, une étude de convergence approfondie, menée pour
les trois paramétres numériques At, Ax et Nr, dans le cas d’une onde solitaire se
propageant sur une longue distance, permet de montrer que les ordres de convergence
en temps et en espace sont cohérents avec le schéma de Runge-Kutta d’ordre 4 util-
isé pour intégration en temps et le schéma aux différences finies d’ordre 4 en espace
pour la discrétisation des dérivées horizontales. La convergence exponentielle avec le
paramétre N1 due a 'approche spectrale appliquée dans la direction verticale est égale-
ment mise en évidence. Finalement, le modéle est comparé a des données expérimentales
pour des cas de propagation de vagues non-déferlantes: la dynamique non-linéaire des
composantes libre et liée de la seconde harmonique lors de la génération d’un train
d’ondes par un générateur de vague de type piston (Chapalain et al., 1992), la généra-
tion de vagues par un mouvement impulsif du fond (Hammack, 1973), la propagation
de vagues réguliéres au-dessus d’une barre submergée (Dingemans, 1994) et la prop-
agation de vagues irréguliéres au-dessus d’une plage présentant un haut-fond (Becq-
Girard et al., 1999). L’ensemble de ces cas tests permet de montrer que le modéle est
capable de représenter précisément les effets non-linéaires et dispersifs de génération et
pro-pagation d’harmoniques d’ordres supérieurs ainsi que les transferts d’énergie entre

ces différentes composantes.
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This chapter is devoted to the validation of the 1DH version of the model, with a series of six test

cases.

The model is first validated by comparing the simulation results of the linear version to analytical
solutions of the linearized problem for the reflection of regular waves propagating over a partic-
ular bathymetric profile proposed by Roseau (1976). Secondly, an advanced study of convergence
is carried out for the case of a nonlinear solitary wave propagating over a flat bottom, for the
three numerical parameters At, Az and N7 controlling the accuracy of the solution. The model
is then compared with measurements from four laboratory experiments of non-breaking waves:
nonlinear dynamics of free and bound second-order components in a wave train generated by a
piston-type wave maker in constant water depth (Chapalain et al., 1992), wave generation from
an impulsive upthrust of the bottom (Hammack, 1973), propagation of a regular waves over
a submerged bar (Dingemans, 1994), and propagation of irregular waves over a barred beach
(Becq-Girard et al., 1999).

The majority of these test cases were presented in journal papers or conference proceedings.
Case 2 (solitary waves) was presented at the conference Journées Nationales Génie Cotier Génie
Civil 2014 in Dunkerque, while the third case was presented at the ICCE conference 2014 in Seoul
(Benoit et al., 2014), and the last three test cases were published in Coastal Engineering (Raoult
et al., 2016).
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3.1 Reflection of linear waves propagating over Roseau-type bathy-

metric profile

In Roseau (1976), the propagation of gravity waves in a infinite channel of variable depth h(x) is
studied using the linear potential flow theory, in one horizontal dimension (z, z). The bathymetry
varies between two flat regions hg (for ¢ — —o0) and hy (for ¢ — +o0) with hg > h;.
Monochromatic waves are considered, with angular frequency w. The motion is described by
the velocity potential ®(x, z,t) = Re[¢(x, z)e™!] where ¢ satisfies the Laplace equation in the
fluid domain, and a mixed condition at the (linearized) free surface (z = 0), and an impermeable

boundary condition at the bottom (z = —h(z)):

Grz + ¢ =0 for —oo <z < o0 and —h(z) <z <0 (3.1a)
w2

_?¢+¢Z =0 atz =0 (3.1b)
hetr + ¢, =0 at z = —h(z) (3.1¢)

The fluid domain (z, z) is transformed using conformal mapping (Z = F({)) into a rectangular
domain in the (£, x)-plane, where Z = x 4 iz and ( = £ + ix. Thus z = 0 becomes xy = 0,
and z = —h(z) becomes y = —1. The boundary value problem expressed in the (£, x)-plane for
©(&, x) = ¢(x, z) is then written as:

Oee + Iy =0 for —oo < £ < +ooand -1 < x <0 (3.2a)

2
—%F’(ﬁ)tp oy =0 aty =0 (3.2b)
o =0 at y = —1 (3.2¢)

The choice of the conformal mapping function is important in the definition of the problem since
it determines the family of the bottom topography in the (x, z)-plane that can be mapped. Here,

the conformal mapping function is (following Roseau (1976)):

F(C) = ho (( e (1 + eﬁ’rc)) , (3.3)
T

where the parameter 5 €]0, 1], € €]0, 1] since it is assumed that hg > hy, and € = hy/hg is the

far field depth ratio. This conformal mapping corresponds to a bottom profile varying smoothly

from the depth hg to h;. The width of the transition zone is controlled by the parameter 5.

The bed slope steepens when f increases. Thus the bottom profile is defined by the two non

dimensional quantities € and f3.

The bottom elevation is defined parametrically using the conformal mapping function F'({) for

¢ describing | — 0o, 4-o00]:
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76) _pe [hloF(g - i)] —¢- 16_7:Re In (1+ 7€),

y(&) 1 . 1—e¢ [ ( 8 (g-'))}
LA Im|—F(& — 1 Im |1 1 s i )
ho [ho (€= B n(( €
This particular form of the mapping was chosen by Roseau (1976) because it gives an explicit and

exact expression for the modulus of the reflection coefficient R due to the bottom transition:

; koho—k1hy
sinh ( 3 )

R= (3.4)
sinh <k0h0+k1 hy )
B
where k; are calculated from the linear dispersion relation w? = gk; tanh(k;h;).
The transmission coefficient 1" is obtained by conserving the energy flux:
T_ cosh(k1hy) (1— R?) 2koho + S%nh(2kzoh0). (3.5)
COSh(koh()) 2k1h1 + Slnh(2]€1h1)

To study the accuracy of Misthyc for the representation of wave propagation over a bottom
profile with a sharp transition between two flat regions of different depths, the linear version of
the code is applied to two bathymetric profiles. The choice was made to use the linear version
of Misthyc to compare to Roseau (1976)’s analytical results. The first bottom profile is defined
by € = 1/3 and 8 = 0.25 and the second profile presents a sharper transition for a larger “step”
with € = 0.1 and 8 = 0.5 (Figure 3.1).

-2 -2
£ £
N N
-3 -3
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—60 —40 —20 0 20 40 60 —60 —40 —20 0 20 40 60
x(m) x(m)

Figure 3.1: Bottom profiles and snapshots of free surface elevation (at an arbitrary time) for the
two sets of (¢, B) considered: (a) e = 1/3 and 8 = 0.25, and (b) e = 0.1 and § = 0.5.
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The reflection and transmission properties depend on the wave frequency. Two conditions for
the incident wave are therefore considered: one corresponding to a small relative water depth
(koho =~ 0.87), and a second one corresponding to deep water condition (kohg = 3.14). The
impact of the bathymetric variation on wave propagation is expected to be more important in
the case with smaller relative depth. Nevertheless, the case with larger relative water depth
is more challenging. Finally, four configurations are tested, the corresponding parameters are
shown in Table 3.1.

Wave characteristics Bottom
case | T (s) | L (m) | kohg | k1hy | € I5}
1 6.28 | 43.27 | 0.87 | 0.47 | 1/3 | 0.25
2 2.78 12 3.14 | 1.23 | 1/3 | 0.25
3 6.28 | 43.27 | 0.87 | 0.25 | 0.1 | 0.5
4 2.78 12 3.14 | 0.59 | 0.1 | 05

Table 3.1: Physical parameters for the four simulations of regular waves propagating over a

Roseau-type bottom profile.

Athanassoulis and Belibassakis (1999) (hereafter A&B1999) proposed an extension of the mild
slope equation to study the propagation of linear waves over a variable bathymetry using a
variational formulation of the linear wave problem. At each horizontal position, the velocity
potential is described by the vertical eigenfunctions associated with the propagating mode and
all of the evanescent modes. An additional mode is introduced to satisfy the bottom boundary
condition exactly. Simulations of the four cases are also made with this model (Matlab version
of the code presented in A&B1999, provided by Pr. K. Belibassakis) to compare with the Misthyc

simulation results.

For the simulations, the domain is regularly meshed with Az = 0.4 m (= L/108) for the longer
wave and Az = 0.1 m (= L/120) for the shorter wave. The origin of the horizontal axis is
taken where the bottom elevation is z = —(hg + h;1)/2. Waves are generated at the left end
of the domain in a relaxation zone that is two wavelength long. The right end of the domain is
extended so that the waves never reach the boundary to avoid reflections on the right side where
an impermeable boundary condition is imposed. The time step is chosen so that C'F'L = 1 with
CFL = C&—ﬁt for Cy = Lo/T, which gives At = 0.057 s and At = 0.023 s, for the longer and
shorter waves respectively. Waves are propagated during a period long enough to reach a steady
state over the zone encompassing the bottom transition. The vertical resolution is set to Np=7.
This choice of N7 is validated by the convergence study of the reflection and transmission coeffi-
cient as a function of N for cases 3 and 4 (presented below). The same horizontal discretization
of the domain was used for the coupled-mode model of A&B1999 and 5 modes were found to be

sufficient to represent accurately the vertical variation of the velocity potential.
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Figure 3.2: Normalized wave height profiles for cases 1 and 2, for the first bathymetric profile
(e = 1/3, B = 0.25). Comparison between Misthyc (blue) linear version with Ny = 7 and the
coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

Once the steady state is obtained, the wave height is computed from free surface elevation time-
series at each node in the domain. The wave height profiles are compared with those obtained
with the coupled-mode model of A&B1999 (Figures 3.2 and 3.3). For the four cases with different
physical parameters, both models give comparable results. They produce the same oscillation
pattern of the wave height before the transition caused by the reflection at the transition except
for case 2 where the reflection is very small and hardly visible (Figure 3.2b). The incident wave
height H; is modulated because of its interaction with the reflected wave (H ) traveling in the
opposite direction. After the bathymetric transition, the wave height becomes homogeneous, and
is denoted as Hr. Small differences are mainly visible for case 3 (Figure 3.3a) where the model
of A&B1999 gives a higher transmitted wave height than Misthyc. On the contrary, for case 4
(Figure 3.3b), the wave height profile from the Misthyc simulations is slightly shifted vertically,
showing larger wave heights than A&B1999.

From the wave height profile, the reflection (R) and transmission (7") coefficients can be calcu-

lated as:

Hy

_@_Hma:c_Hmin _ 4T
Hi

R= — “maxr “Tmun
HI Hmzzm + Hmzn

and T

where H,,q, and H,,;, are the extremum values reached by the wave profile before the bottom
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Figure 3.3: Normalized wave height profiles for cases 3 and 4, for the second bathymetric profile
(e = 0.1, 8 = 0.5). Comparison between Misthyc (blue) linear version with N7 = 7 and the
coupled-mode model of Athanassoulis and Belibassakis (1999) (red).

transition.

A convergence study of these two coefficients as a function of N7 was carried out for cases 3 and
4 with the more reflective bottom profile (¢ = 0.1 et 8 = 0.5). For both cases, the values obtained
for the reflection and transmission coeflicients appear to have converged (Figure 3.4 and Figure

3.5, respectively) for Np = 6, validating the choice of Ny = 7 in the previous simulations.

The reflection and the transmission coefficients are then compared with those obtained with the
model of A&B1999 and those obtained with the analytical expression Eq.(3.4) and Eq.(3.5) (Table
3.2). The reflection coefficient for case 2 was too small (only about 0.005%) to be determined
accurately from the wave height profile obtained with Misthyc using the method described above.
For the first bathymetric profile, both models produce coefficients close to the analytical ones.
For the second bathymetric profile, Misthyc shows more accurate results for long waves, whereas

the model of A&B1999 is more accurate for short waves.

This first test case shows that the linear version of the model (with N7 = 7) reproduces well the
reflection and transmission phenomena occurring when waves propagate over a steep transition
between two flat regions. Some differences with the analytical solution are obtained for the

steepest slope for the smallest wavelength, but the differences remain small.
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Figure 3.4: Convergence with N7 of the reflection coefficient () and the transmission coefficient
(T') obtained with Misthyc for case 3.
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Figure 3.5: Convergence with N7 of the reflection coefficient (R) and the transmission coefficient
(T') obtained with Misthyc for case 4.

Analytical results Misthyc A&B1999
case R T R T R T
1 0.02282 1.185 | 0.02273 | 1.184 | 0.02262 | 1.185
2 0.000051 | 0.9221 X 0.9222 | 0.00011 | 0.9222
3 0.3413 1.452 0.3414 1.457 0.3497 1.482
4 0.09428 1.029 | 0.09453 | 1.033 | 0.09415 | 1.030

Table 3.2: Analytical and simulated (with Misthyc and with the coupled-mode model of Athanas-

soulis and Belibassakis (1999)) reflection and transmission coefficients for the four cases of reg-

ular wave propagating over Roseau bathymetry profile. The reflection coefficient for case 2 was

too small to be determined accurately from the wave height profile obtained with Misthyc.



3.2 SOLITARY WAVE PROPAGATION OVER A FLAT BOTTOM 71

3.2 Solitary wave propagation over a flat bottom

3.2.1 Objectives

The goal of this test case is to propagate a solitary wave over a flat bottom over a long distance

with minimum distortion or phase difference.

Solitary waves, which are composed of a single hump of water, are a particular solution of a set
of mathematical models. They propagate with constant shape and celerity as a result of balance
between the effects of dispersion and nonlinearity. The expression and form of a solitary wave
is closely related to the selected mathematical model, and different mathematical systems such
as the Korteweg-De Vries (KdV) equations, various formulations of Boussinesq, Serre, or Green-

Naghdi equations, etc. exhibit different solitary wave profiles.

Solitary waves are also a particular solution of the Euler equations with nonlinear free surface
boundary conditions in the constant depth case. The expression of the wave can not be given
in closed analytical form, but it can be computed with high accuracy using specific numerical
algorithms (see e.g. Tanaka (1986), Clamond and Dutykh (2013))

Solitary waves are characterized by a single parameter, the nondimensional height 6 = H/h,
which is the ratio of the wave height (H) to the water depth (h). In this study, three values of §

are investigated, from the least nonlinear to the most nonlinear: § = 0.3,0.5, and 0.7.

3.2.2 Description

3.2.2.1 Model domain and numerical parameters

In these tests, the water depth is uniform (h = 1 m) and the horizontal length of the model
domain (L) is 700h (= 700 m). The horizontal domain extends from x/h = —25 to x/h = 675,
and the solitary wave is initially centered at z/h = 0 (e.g. Figure 3.6). The height H of each
solitary wave is determined from 6 = H/h = 0.3,0.5 or 0.7.

The horizontal domain consists of a regularly-spaced mesh of size Ax, and the simulations
are advanced in time with a fixed time step Af. The spatial and temporal discretizations are
controlled by the parameters M, and M, respectively, such that Az = Axz/h = 1/M, and
At = Aty/g/h = 1/M,.

Each wave is propagated during a nondimensional time T = T\/g/ifz set to T = 500, corre-
sponding to a physical time T ~ 159.64 s. The distance traveled by the wave at the end of the
simulation (d) is theoretically d = CT, where C' is the speed of the solitary wave. The wave
thus covers a nondimensional distance d = d /h=F T, where F is the Froude number defined
as F = C/Cy, with Cy = \/gh. Depending on the value of 4, this corresponds to d varying
between about 569h (6 = 0.3) and 6394 (6§ = 0.7).

The CFL number is defined here as CFL = CyAt/ Az, which can be rewritten as CFL = M, /M.
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Figure 3.6: Bathymetry and free surface profile at £ = 0 for a solitary wave with nondimensional

height 6 = 0.5 (the intermediate nonlinear case).

3.2.2.2 Boundary conditions

In the vertical, the bottom boundary condition is a fixed, impermeable bottom at z = —h (con-
stant depth). The lateral boundary conditions are impermeable vertical walls at the domain ex-
tremities (x/h = —25 and x/h = 675).

3.2.2.3 Initial conditions

To initialize the model, it is necessary to calculate the free surface elevation (1) and the free
surface velocity potential (¢ = ¢| »=n) corresponding to the Euler equations with nonlinear
boundary conditions at the surface. The algorithm of Clamond and Dutykh (2013) is adapted
to calculate these parameters and the Froude number F' using the nondimensional height J as

an input parameter.

3.2.3 Simulations and evaluation criteria

3.2.3.1 Simulation parameters

The ability of the model to simulate accurately the propagation of a solitary wave depends on the
horizontal spacing of the model grid (characterized by Ax or M), time step size (characterized
by At or M;), and the maximum order N7 of the Chebyshev polynomials used to resolve the

vertical variations.
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To evaluate the impact of these parameters on the simulation results, three convergence studies

were carried out:

1. convergence as a function of the size of the time step, with A, varying from 4 to 12 (M, =
10 and N = 7 held constant),

2. spatial convergence at a constant CFL number with M, varying from 5 to 30, (CFL = 1.25
and Nt = 7 held constant), and

3. convergence as a function of the maximum order of the Chebyshev polynomials with N7
varying from 3 to 15 (M, = 10 and M; = 8 held constant).

3.2.3.2 Quantities analyzed from model results

The performance of the model is evaluated as a function of four quantities that can be computed

at each time step:
1. the total volume of the fluid domain (V),
2. the total mechanical energy of the fluid domain (),
3. the solitary wave crest height (742),

4. the phase difference, or difference between the simulated and theoretical wave crest posi-
tions Tymaz (@S Nmaz = N1(Tmaz))-
The simulated wave crest height (1,,42) and position (2,,,4,) do not in general occur at grid points.

Therefore, they are estimated by fitting a quadratic polynomial to node with the maximum free

surface elevation and the two neighboring nodes.

3.2.3.3 Errors as a function of time

The first three quantities should be conserved during the simulation, and relative errors are

calculated in comparison to the values at the initial time:

Y() - Y
Erryw = Y - )Yo :,

where Y =V, E, maz-

The phase difference at time ¢ is calculated by comparing the simulated wave crest position to
the theoretical wave crest position calculated using the wave celerity given by the algorithm of
Clamond and Dutykh (2013):

Errpha,se(t) =

Tmaz(t) — Ct
Ct '
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3.2.3.4 Global errors

As described above, errors in four different quantities are calculated as a function of time dur-
ing the simulation period. Global errors are then defined to quantify the total error for each

simulation.

For the temporal and horizontal step size convergence tests, global volume and energy errors are

calculated as the arithmetic mean of the relative volume and energy evolution:

o 52)

Y

Yo Yo

_ '<Y<t>>t - Y

where (Y (t)); = w57 Zﬁ\;?T Y (¢;), NDT is the number of time steps,and Y = E or V.

The wave amplitude and phase errors are calculated relative to the initial amplitude and to the

theoretical position of the wave at the end of the simulation (att = T) :

) Errphase =

H

Mmaa(T) — H '
CT

T)—-CT
ETTampl = ' —fmax( ) ‘ .

For the vertical convergence tests, the maximum order N7 of the Chebyshev polynomial is varied
from N7 = 3 to 15, and the relative error is calculated using the results of the simulation with
the highest order as the reference value (here Ny = 15). In this case, the relative volume and

energy errors are given by:

(Y(t)e — (Y1s(t))e
(Yis(t))

Y

Erry = ’

where Y = E or V. Likewise, the relative wave amplitude and wave errors at the final time step

are defined as:

Tmazx (T) — Tmaxlh (T)
Tmaxlh (T)

Nimazx (T> — Nhmax15 (T)
Erremp =
amp Thmax15 (T)

) Errphase =

3.2.4 Results

The simulation results are evaluated with respect to the convergence as a function of the time
step At, horizontal grid spacing Az, and maximum order of the Chebyshev polynomial N for
three relative wave heights 6 = 0.3, 0.5, and 0.7. The efficiency of the model is also evaluated by
quantifying the dependence of the CPU time on these three parameters.
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3.2.4.1 Convergence as a function of the time step At

For these simulations, the horizontal and vertical resolution are held constant, with M, = 10 and
Nrp = 7. M, is varied from 12 to 4, giving a time step varying in the range At ~ 0.0266 —0.0798
s, corresponding to a CFL number ranging from 0.8333 to 2.5 (Table 3.3).

M, At At(s) CFL

12 | 1/12~0.0833 | =~ 0.0266 | 5/6 ~ 0.833
10 1/10=0.1 | ~0.0319 1

8 | 1/8=0.125 | ~0.0399 1.25

7 | 1/7~0.143 | ~0.0456 | =~ 1.429

6 | 1/6~0.167 | ~0.0532| =~ 1.667

5 1/5=02 | ~0.0639 2

4 1/4=025 | ~0.0798 2.5

Table 3.3: Selected time steps At and associated quantities for convergence runs as a function of
At (M, =10and Ny = 7)

Final free surface profiles. The free surface profile at end of the simulation (I' = 500) are
plotted in Figure 3.7 for the tree values of nonlinearity. For the least nonlinear case (6 = 0.3),
varying the time step within this range of values has only a small impact on the wave crest height
and phase difference at the end of the simulation (Figure 3.7(a)), and the four presented curves

(M; = 4,6, 8,12) are nearly superimposed on the reference solution.

For the more nonlinear cases, a decrease in the wave crest height is observed at the end of the sim-
ulations for larger time steps (e.g. My = 4, 5 in Figure 3.7(b) and M; = 5, 6, 8 in Figure 3.7(c)). In
addition, phase differences, caused by an underestimation of the wave celerity (which is directly

related to the underestimation of the wave height), are also observed for these cases.

As a function of the time step, the more nonlinear waves require a smaller time step to represent
accurately the wave height and propagation speed. For the case with § = 0.7 (Figure 3.7(c)),
there is a small phase and wave height difference in comparison to the reference solution even
for the smallest tested time step (At = 0.0266 s for M; = 12).

All simulations were stable for the length of the simulation period (T = 500), except for the case
with § = 0.7 and CFL = 2.5, which became unstable before reaching the end.

Conservation of volume and energy. Energy and volume are conserved well during the
simulations with the smallest errors for the smallest time steps. Both quantities decrease mono-
tonically throughout the simulation period, with a more rapid decrease for larger time steps
(Figure 3.8). For the largest time step, the final relative volume errors are of the order 10711,
1078 and 1076, and the final relative energy errors are of the order 1073, 1072, and 10~ 2 for
0 =0.3,6 =0.5and d = 0.7, respectively.
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Evolution of global errors as a function of the time step. To summarize the convergence
properties as a function of the time step, the four global errors are calculated for each simulation.
All four measures (relative volume, energy, phase, and amplitude) of simulation errors increase
both with increasing time step size and with increasing relative wave height (Figure 3.9), with
algebraic convergence rate. The slopes of the linear regression curves are similar for each test
case, ranging from 4 to 5 for § = 0.3 and 6 = 0.5, and 3.3-4.1 for § = 0.7, the most nonlinear
test case. These values are in agreement with the fourth-order Runge-Kutta temporal integration
scheme used in the model, demonstrating the fourth-order, algebraic temporal convergence of
the model.
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3.2.4.2 Convergence as a function of the spatial resolution Ax

To evaluate the convergence of the model as a function of the horizontal spatial resolution, a
series of simulations were run with M, varying from 30 to 5, corresponding to Az varying from
0.033 to 0.2 m. For each simulation, the time step was calculated to maintain a constant CFL

number equal to 1.25, and N7 = 7 was held constant (Table 3.4).

M, AZ Az(m) | M, At At(s)

30 | 1/30 ~0.0333 | ~0.0333 | 24 | 1/24~0.417 | ~0.0133
25 | 1/25 = 0.04 004 | 20 | 1/20=0.05 | ~0.0160
20 1/20 = 0.05 0.05 16 | 1/16 = 0.0625 | ~ 0.0200
15 | 1/15~ 0.0667 | ~ 0.0667 | 12 | 1/12 ~ 0.0833 | ~ 0.0266
10 1/10 =0.1 0.1 8 1/8 =0.125 | ~0.0399
5 1/5=0.2 0.2 4 | 1/4=025 | ~0.0798

Table 3.4: Selected spatial steps Az and associated quantities for convergence runs as a function
of Ax (CFL = 1.25 and Ny = 7)

Final free surface profiles. The free surface profiles at the end of the simulation period agree
well with the expected results for 6 = 0.3 (Figure 3.10(a)). As the wave nonlinearity increases,
decreases in the amplitude and wave phase speed become apparent for larger Ax or smaller
M, (e.g. for Ax = 0.2 with § = 0.5 in Figure 3.10(b) and for Az > 0.04 with 6 = 0.7 in
Figure 3.10(c)).

Conservation of volume and energy. The relative energy error time series show that energy
conservation improves with finer horizontal resolution, as expected (Figure 3.11, right column).
For 6 = 0.3 and § = 0.5, the energy appears to decrease nearly linearly in time. However, for
0 = 0.7 and large values of Az, the errors increase more rapidly and have larger final errors

than for smaller Az, but the rate of increase in error slows in time (e.g. Figure 3.11(c), right).

The relative volume error time series also show that volume conservation improves with finer
horizontal resolution, as expected, but only for the most nonlinear case with § = 0.7 (Figure 3.11,
left column). For smaller values of 9, there are several exceptions where simulations with larger
Az conserve volume better than those with smaller Az. For example, errors in volume conser-
vation for Ax = 0.04 m are larger than for Az = 0.1 m and Az = 0.05 m, for § = 0.3 and

0 = 0.5, respectively. The reason for these exceptions is unknown.

Evolution of global errors as a function of the spatial resolution. Global errors in relative
volume, energy, phase, and amplitude summarize the error trends as a function of Az and the
relative wave height § (Figure 3.12). With the exception of the anomalies in the volume errors,
with minima reached for intermediate values of Ax for § = 0.3 and § = 0.5, the global errors

decrease with decreasing Az and with decreasing relative wave height §. As a function of the
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horizontal resolution, the trends are linear in log-log plots, with slopes ranging from 4 to 5 for
0 = 0.3 and 6 = 0.5 and from 3 to 4 for § = 0.7, as would be expected for the fourth-order finite
difference schemes used in the model, confirming the fourth-order, algebraic spatial convergence
of the model.
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3.2.4.3 Convergence as a function of the Chebyshev polynomial order Ny

To evaluate the convergence as a function of the order of the maximum Chebyshev polynomial
used to resolve the vertical variation in ¢, a series of simulations were run with N7 ranging from
3 to 15, with a constant CFL = 1.25 (M, = 10 and M; = 8).

Final free surface profiles. The final (at 7' = 500) free surface profiles converges for inter-
mediate values of Np, and the particular value of N7 increases with increasing ¢ (Figure 3.13).
For example, the curves converge for Ny > 4 for 6 = 0.3, and for N > 7 for § = 0.5 and 0.7.
For 6 = 0.3 and 6 = 0.5, the free surface profile converges to the reference solution. However,
for 6 = 0.7, the most nonlinear test case, the free surface profile converges to a solution with
a slightly smaller wave height and slower propagation speed than the reference solution. This
difference is caused by the choice of Ax and At, which appear to be the limiting factors for large
values of Np. One can observe that the smallest value N7 = 3 results in a wave propagating
faster than the theoretical solution, while larger values of N7 result in waves propagating slower

than the theoretical solution.

Conservation of volume and energy. The relative energy time series show a decrease in
both of these quantities as a function of time, with larger final errors for smaller values of N, as
expected (Figure 3.14, right column). The relative volume time series also show similar trends,
with an unexplained exception in which the volume conservation is better for N7 = 4 than for
Np =5, for 6 = 0.5 and § = 0.7 (Figures 3.14(b) and 3.14(b), left).

Evolution of global errors as a function of N7. The global errors in the relative volume,
energy, phase, and amplitude as a function of N and the relative wave height ¢ are shown in
semi-log plots in Figure 3.15. The linear error trends decreasing with N7 demonstrate the expo-
nential convergence of the model as a function of N7. The model results converge exponentially
to the value obtained with N7 = 15, such that Error < exp(aN7). This is an appealing property

of the model since small errors can be attained with small to intermediate values of Nr.

The relative energy error does not show the same trend for 6 = 0.3 as for § = 0.5 and 0.7: for
0 = 0.3 the convergence is more rapid for values of N7 smaller than 7, and then the convergence
rate decreases rapidly. For this case, however, the relative phase and amplitude errors are equal
to 0 for Ny > 9 (and are thus not visible in Figure 3.15), which indicates that the model has

converged to a solution (for the given Ax and At).

For the test case with § = 0.5, the energy error decreases monotonically with N for Ny < 14,
but the errors in relative phase and amplitude appear to reach a plateau for Ny > 12. This
behavior is similar to that with 6 = 0.3, but with a higher threshold of N7 above which the
error is only marginally decreased by an increase of Np. Again, in this range, the error is likely

dependent on the choice of Az and At.

The volume errors also present an unusual trend as a function of N7, such that for a given
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even value of N7, the error is lower than for Ny + 1. This is hypothesized to be related to
the method used to calculate the relative volume error, which is essentially a simple arithmetic
mean of the difference in the free surface elevation profile for a given value of N7 and Ny = 15.
Therefore, positive and negative errors compensate partially over the length of the domain. This
compensation varies as a function of N, leading to the observed step-like behavior in volume

€ITrors.
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3.2.4.4 Analysis of CPU time

The efficiency of the current version of the model is evaluated by recording the CPU time nec-

essary for each of the convergence studies:

1. convergence as a function of the time step At (Figure 3.16(a)),
2. convergence as a function of the horizontal spatial resolution Ax (Figure 3.16(b)),

3. convergence as a function of the Chebyshev polynomial order N (Figure 3.16(c)).

For the three values of 4, the simulation times for the same values of At, Az, or Nt are very
similar, as expected. The CPU time depends on At, Az and N, and it is observed that this

dependence has the following form:

TCPU ~ At® A.%ﬁ N%

In the log-log plots (Figure 3.16), the CPU time is linearly dependent on At, Az, and Np, with
slopes of approximately -1, -2, and 1.5, respectively. Therefore, the CPU time is proportional to :

Topy ~ 17
CPU™ NtAg2

showing the importance in minimizing N and that the dependency on Deltaz is stronger than

the dependency on At and Nr.
3.2.5 Conclusions

This test case shows that the model is very accurate even in the limit of highly nonlinear waves
(0 = H/hup to0.7). For the same value of Az, At or N, relative errors in volume, energy, phase
and amplitude increase with increasing nonlinearity. This may be explained partly by the fact
that for a given CFL number as defined here, the true CFL number (taking into account the actual
wave celerity) is larger for 6 = 0.7 than for § = 0.3 due to the difference in the corresponding

Froude number.

The order of temporal and spatial convergence are approximately 4-5 for 6 = 0.3 and 0.5 and
3-4 for § = 0.7, in good agreement with the fourth-order Runge-Kutta temporal integration
scheme and the fourth-order finite difference schemes used in the model. The model shows
exponential convergence in the vertical dimension due to the applied spectral approach, which
enables obtaining highly accurate results for small to moderate values of the maximum order of

Chebyshev polynomials N (typically smaller than 10).
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3.3 Nonlinear wave dynamics in constant water depth

The third test case consists of simulating the propagation of waves generated by the sinusoidal
movement of a piston-type wavemaker over a flat bottom, based on the flume experiments of
Chapalain et al. (1992) (hereafter C92). The results presented here correspond to trial A (piston
stroke amplitude e = 7.8 cm and period 7" = 2.5 s), with a constant water depth 4 = 0.4 m. The
wavelength of the fundamental component is . = 4.74 m from the linear dispersion relation,
corresponding to long waves with ;1 = 0.53. The model domain is regularly meshed with Az =
0.1 m (= L/47) and extends far enough to prevent reflection from the right boundary. The
waves were propagated during 16 periods (i.e. 40 s) with a time step At = 7'/40 = 0.0625 s,
with maximum order of the Chebyshev polynomial N7 = 7. The model is forced by imposing

at the left boundary a sinusoidal time varying horizontal velocity that is uniform in the vertical.

A harmonic analysis of free surface elevation time series (after steady state is reached) decom-

poses the signal into a discrete sum:

N
n(t) = ap + Z an cos(nwt + o), (3.6)

n=1

where w = 2% is the angular frequency of the wavemaker, and a,, and ,, are the amplitude
and phase of the harmonic component n. The phase difference between the first and the second
harmonic is defined as A ¢1 92 = @2 — 2¢y, following Chapalain et al. (1992). The simulated
spatial evolution of the amplitudes of the first four harmonics agrees well with the experiments
(Figure 3.17a). Overall, the model correctly represents the energy transfers between the different
harmonic components, as well as the resultant beat lengths. However, a decrease in the second
harmonic amplitude (after z = 19 m) is observed in the experimental data but is not reproduced
in the simulations. This could be explained by dissipation in the experiments that is not taken into
account in the model. This phenomenon is more noticeable for short waves, hence more visible
for the higher harmonics. The spatial evolution of the phase difference between the first and
second harmonic is also reproduced well (Figure 3.17b). The phase difference oscillates between
—m/2 and +7 /2 with the same periodicity as the harmonic amplitudes. Zero phase difference
occurs when either the first harmonic is maximum and the second harmonic is minimum, or the

contrary.

The variation of the free surface elevation thus depends on the position in the wave channel,
as shown in Figure 3.18 at z = 4 m, 7 m, 10 m and 14 m (the simulated free surface position
qualitatively agrees well with the measurements, when compared to Figure 3 of Chapalain et al.
(1992)). When the first and second harmonics are in phase, the free surface profile is either quasi-
sinusoidal when the first harmonic is maximal and the second minimal (e.g. = 14 m), or cnoidal
when the second harmonic is maximal and the first minimal (e.g. z = 7 m). However, when the

first and second harmonics are out of phase, the waves are vertically asymmetrical with either a
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Figure 3.17: a) Spatial evolution of the first four harmonic amplitudes for test case A of Chapalain
etal. (1992): experimental (circles) and Misthyc simulation (solid line) results. b) Spatial evolution

of the phase difference between the first and second harmonic: experimental (circles) and Misthyc

simulation (solid line) results.

steeper (gentler) wave front and a gentler (steeper) rear slope if the phase difference is positive

(negative) (e.g x = 10 m and x = 4 m).

This test case demonstrates the ability of the model to simulate accurately the nonlinear resonant
interactions occurring when waves are generated with a piston-like wavemaker and propagate
over a flat bottom. The transfer of energy from the principal wave to the second harmonic was

reproduced well, including the beat length of the resonant interaction.
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Figure 3.18: Misthyc simulated free surface elevation 7 at four different positions in the wave

channel for the test case A of Chapalain et al. (1992).
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3.4 Waves generated by an impulsive bottom motion

The fourth test case simulates waves generated by an impulsive vertical motion of the bottom
to study tsunami-like wave dynamics. Hammack (1973) studied the case of a moving bottom
with laboratory experiments, an analytical study of the linear solution, and numerical simula-
tions with a KdV (Korteweg-de Vries) model. Fuhrman and Madsen (2009) (abbreviated F&MO09
hereafter) also tried to reproduce numerically these experiments with a high-order Boussinesq
model. Both upthrust and downthrust of the bottom were studied using different expressions for
the temporal evolution of the bottom. Here, impulsive exponential bed upthrust is first simulated
with the linear version of Misthyc and compared to the linear solution, and then simulated with
the nonlinear version of Misthyc and compared to the experimental data and to the results of
F&MO09. The fluid domain is initially motionless, with an undisturbed water depth hg = 1 m.
During the simulation, a step in the bottom between z = 0 m and x = b m is rapidly upthrust
(Figure 3.19, for b/hg = 12.2), and the water depth (h(z, t)) evolves following:

h($,t) =ho — C(.Z‘,t) with C(mat) = CO(l - e_at)H(b - .17), (3.7)

where H is the Heaviside step function. The step is upthrust over a total vertical distance of
Co/ho = 0.1, and the exponential decay constant and critical time are respectively o = 1.11/¢,
andt. = 0.148b/+/gho. The domain is discretized on a regular grid extending from 0 to 2500k =
2500 m, with a spatial step Az = ho/5 = 0.20 m (12501 nodes). The simulation length is
the nondimensional time t\/g/TO = 2375 (i.e. t =~ 75828 s), with nondimensionnal time step
At\/g/TO = 0.20 (i.e. At ~ 0.0638 s). The resulting CFL number is CFL = \/ghoAt/Ax = 1.
Fully reflective vertical boundaries are applied at both ends of the domain. The maximum order

of the Chebyshev polynomial is Np = 7.
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Figure 3.19: (left) Bathymetry at time ¢ (((¢)) and final bathymetry ({y), and (right) temporal

tl.:ll.ll « 1‘(5)

evolution of the bottom deformation.
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3.4.1 The linear solution

Hammack (1973) derived an analytical solution for the associated linearized potential flow prob-
lem. The free surface elevation resulting from an exponential bed movement is given by Eq.(22)
of Hammack (1973):

0o : 2
(1) = 2% / C°;§’§j}3;;;<0‘;b> o [~ costwr) — Leinten)] ak 69
This solution is numerically computed using the trapezoidal rule to estimate the integral to ob-
tain the free surface elevation time series at four positions in the domain ((x — b)/ho = 0, 20,
180, and 400), where experimental data are available. The results obtained with the linear ver-
sion of Misthyc for different values of Nt are compared to the linear solution in Figure 3.20.
The simulated free surface elevations are nearly superimposed on the linear solution, except
for the smaller values of Ny tested (N = 3 and 4). For these values of N, small differences
with the theoretical solution can be observed in the oscillatory trailing wave train following the
main wave, in particular at the last two stations. The results with N7 = 7 and 10 cannot be

distinguished visually from the theoretical solution at all four stations.

To quantify the convergence of the results with the vertical discretization (/N7), the averaged
absolute error over the interval [-20,100] (as shown in Figure 3.20) is computed at each of the

four positions considered in the domain. The error is defined as:

1~ . .
Averaged error = - Z [n(3) = Nres(7)]- (3.9)
=1
The evolution of this error as a function of N7 shows that a constant value is reached for N > 6
(Figure 3.21). For Ny = 3, the error is larger for the two last probes where the effects of dispersion
become apparent, and the dispersion relation obtained with Ny = 3 is less accurate (as shown

in Section 1.4.3).

3.4.2 Comparison with the experimental data

Here, the simulated time series of the free surface elevation obtained with the nonlinear version
of Misthyc and Ny = 7 are compared to the experimental measurements (red line) at four po-
sitions in the domain ((x — b)/hy = 0, 20, 180, and 400), and to the linear analytical solution
(Eq.3.8) (dotted blue line) in Figure 3.22.

Near the generation zone (Figure 3.22a and b), the simulated free surface position (black line)
agrees well with the global trend of the experimental data, with a slight overestimation at (z —
b)/ho = 0 and with larger oscillations at (z — b)/ho = 20. These results are similar to those
obtained by F&MO09 (their Figure 2). Farther from the generation zone (Figures 3.22c and d),
the differences are more significant. The linear solution diverges from the experimental mea-

surements, showing that a model with nonlinear properties is required to simulate properly this
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Figure 3.20: Free surface time series at four locations: (z — b)/hg = (a) 0, (b) 20, (c) 180, and (d)
400. Comparison between the linear solution (red dashed line) and results of the linear version
of the model for Ny = 3,4, 7 and 10.

case. The simulated results (with the present model) are closer to the measurements than to the
linear solution, demonstrating the nonlinear properties of the model. A comparison of the far-
field waves (Figure 3.22c and d) shows that the free surface deformations have the same global
shape, but that the model predicts faster wave propagation speeds (relative rightward shift in
the time series), which is consistent with the overprediction of the wave amplitude. Hammack
(1973), who obtained the same type of differences with a KdV model, suggested that differences in
the simulated and measured wave amplitudes could be due to viscous energy losses occurring in
the experiments that were neglected in both numerical models. The high-order (non-dissipative)
Boussinesq model of F&MO09 produces results in close agreement to Misthyc, which suggests that

the differences with the experiments can be attributed to dissipative effects.

When the wave train propagates over long distances (up to 2500 times the water depth), the
leading waves separate into two solitary waves (Figure 3.23). These solitary waves then propa-
gate with constant shape, with the first wave (larger amplitude) traveling faster, as observed by
F&MO09. In Figure 3.23, the free surface profiles at t\/g/TO = 2375 obtained with Misthyc for
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Figure 3.21: Averaged absolute error Eq.(3.9) as a function of Nr for the four probes located at
(x —b)/ho = 0, 20, 180, and 400, and shown in Figure 3.20.

several values of N are compared to the corresponding final results of F&M09 (dashed black
line). The Misthyc simulation results (converged for N7 > 5) predict slightly faster propagation
speeds of slightly larger amplitude solitary waves. In F&MO09, the simulation had a spatial res-
olution of Az = 0.25 m. More recently, D. Fuhrman provided (personal communication) new
results obtained with a finer spatial resolution of Az = 0.2 m (black line), to resolve accurately
the step upthrust with an integer number of grid spaces cells. In comparison to the simulation
results presented in F&MO09, these new results are closer to those obtained with Misthyc, some

small discrepancies likely due to the different mathematical models and numerical schemes used.

Comparisons of the simulated free surface time series with the experimental results of Hammack
(1973) confirm the ability of the model to reproduce accurately the wave disturbance dynamics,
including the formation of leading waves leaving the generation zone and their separation from

the wave train after a sufficient length of time, as observed by F&MO09.
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Figure 3.22: Free surface time series at four nondimensional positions in the domain: (z—b)/hg =
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and Hammack (1973) measurements (red line). The associated linear solution (blue dotted line)

is also shown.

0.10 .
-- FEMOY
— F&Mnsw
0.08 =7
- Np=5
Np=3
0.06

n/hg

0.04

0.02

0.00

2400 2420 2440 x/hg 2460 2480 2500
Figure 3.23: Free surface profiles at t\/g/TO = 2375. Comparison between F&MO09 final results
(corresponding to their figure 3) with a resolution Az = 0.25 m (dashed black line), a more
recent simulation using the same model but with a resolution Az = 0.2 m (solid black line), and
Misthyc simulation results for several values of Ny (N = 3 light blue, N7 = 5, dashed blue
and Np = 7, red).
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3.5 Regular waves over a submerged bar

Beji and Battjes (1993) and then Dingemans (1994) (D94) performed a series of experiments of
regular wave propagation over a submerged trapezoidal bar. These experiments are now a stan-
dard test case for wave models since both nonlinear and dispersive effects are important when
waves propagate over the top of the bar. The bottom profile is shown in Figure 3.24. The water
depth is h = 0.40 m offshore and reduces to a minimum of 0.10 m on top of the bar. The front
slope of the bar is 1:20, and the rear slope is 1:10. Eleven wave probes recorded the free surface

elevation time series in the experiments (see positions in Figure 3.24).
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Figure 3.24: Bathymetry and position of wave probes in the Beji and Battjes (1993) experiments.

Here, case A is studied with an incident wave height H = 2.0 cm and period T" = 2.02 s,
corresponding to long waves with ;1 = 0.67 (or h/L = 0.107) offshore of the bar and relatively
small wave steepness € = 0.017 (or H/L = 0.53%). Under these conditions, the incident wave
train is significantly affected during the propagation over the submerged bar, with transfers of

energy toward higher harmonics.

The model domain has a regularly spaced grid with Az = 0.05 m (i.e. about L/75 offshore of
the bar) and extends from z = —6 m to 30 m (721 nodes along the x axis). Waves are generated
in an 8-m wide relaxation zone at the left boundary of the domain (-6 < x < 2 m) using, here,
a second-order Stokes solution to impose the free surface elevation and the velocity potential.
Waves are absorbed in a 5-m wide relaxation zone (25 < x < 30 m) applied in front of the fully
reflective right boundary to avoid reflections. Waves are propagated during 25 wave periods (i.e.
50.5 s) with a time step At = 77/100 = 0.0202 s.

Times series of the free surface elevation computed with Ny = 7 are presented at probes 4 to 11
in Figure 3.25. The choice of this value of Nt will be discussed at the end of this section. When
waves propagate over the front slope of the bar, the wave height and steepness increase due to
shoaling effects (probes 4 to 6, Figure 3.25(a-c)). The wave profile becomes asymmetric due to
nonlinear wave-bottom interactions that create higher frequency bound harmonic components.
These harmonics are released in the shallowest region and on the rear slope of the bar and then
propagate at their own phase speed (probes 7 and 8, Figure 3.25(d-e)). After the bar, the measured
wave profiles vary significantly between the probes due to the differences in celerity of the free

wave components. At the last three probes (probes 9 to 11, Figure 3.25(f-h)), the model reproduces
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well the complex wave profiles, including the dispersive (high frequency) components.

0.03 (a) Probeid (x = 10:5 m) — MISTHYC (NT=7) l 0.03 (b) Probe 5 (x = 12:5 m)
0.02 ‘ Dot 0.02 # | i
\ N [\ [y i
= 001 AN / . [ [3 [ 4
= / 'I | |
= \ f \ \ i
£ 0.00 / j 1 0.00 1 { $
1 I 1
i ,
—0.01 / 0.01F %t p
—0.02 2
0‘035 36 37 38 39 40 4 0’03 36 37 38 39 40 4
0.03 (c) Probei6 (x = 13.5 m) 0.03 (d) Probe 7 (x = 14:5 m)
. ,\
b 3
\

!
0.02f{

g 0.01 \ ’ \ i 0.01
4 |

eta (m
5 S
—
T T
\\
\
e
— "
<
\
—T I
<

—0.01 0.01

—0.02 2
0-035 36 37 38 39 40 %935 36 37 38 39 40 4
0.03 (e) Probe:8 (x = 15.7 m) 0.03 7

: (f) Probe9 (x = 17.

Sr——
=
R
L

eta (m
™
S
™
Ty

\ \ R L S X 4 y.
YAYRRYEYRRYAY. L/ \ / /
—0.01 - ; i X \/ 0.01 % \/ \/
—0.02 2,
0-03; 36 37 38 39 40 %935 36 37 38 39 40 1
0.03 (g) Probe 10 (x = 19 m) 0.03 (h) Probe 11 (x = 21 m)
0.02 002}
. . A fi
= 0.01H Ao f } A 0.01F ot % \
= \ ryoory ,’ L ] I' \ [ \ A
g ) Py IR ) SRRy fod / L/
< 0.00 Loy | frid V£ 0.00F L / \
b v \ | »\/. v % f \ 1A § ‘ \ % / \ \
—0.01 0.01 \ ¥, 3

S5 '

35 36 37 38 39 40

s
o

36 37 38 39 40 4

Figure 3.25: Comparison of measured and simulated (with Ny = 7) free surface elevation time

series at probes 4 to 11 for case A of Dingemans (1994) (probe locations shown in Figure 3.24).

In order to examine more closely the energy transfers between harmonics, a Fourier analysis
of the measured and computed wave signals was completed. The model accurately reproduces
the spatial evolution of the amplitudes of the first six harmonics, corresponding to frequencies
f = 1/T (fundamental component) to 6 f (Figure 3.26). The amplitude of the fundamental wave
increases due to shoaling on the submerged bar up to the bar’s crest and then decreases (starting
from about x = 12 m) due to transfers of energy to higher harmonics. The observed oscillations
(of = 2-2 m wavelength) are hypothesized to be caused by reflections in the wave channel. The
amplitude of the second harmonic (2f) increases as the waves shoal on the front slope of the
bar, and continues increasing until z = 16 m, after which its amplitude fluctuates. The higher
harmonics start increasing in amplitude at shallower depths and have the largest amplitudes
around the bar crest (12 < & < 15 m). Harmonics 4 f to 6f decrease after the bar, which is not

the case for harmonics 2 f and 3 f. In addition, after the bar, the second harmonic has the largest
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amplitude, and the amplitude of the third harmonic is nearly comparable to (though smaller
than) that of the fundamental wave. The model results agree well with the data up to the sixth
harmonic, with the exception of slight differences in the amplitude of the second harmonic at

some locations (e.g. at x = 19 m).
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Figure 3.26: Spatial evolution of the first six harmonic amplitudes (at frequencies f, 2f,...,6f)
of the free surface elevation for case A of Dingemans (1994): observations (circles) and Misthyc

simulation results (solid lines).

To test the sensitivity of the model to the parameter N7, simulations were run with Ny =
3, 4, 5, 7 and 10 (all other parameters were kept constant) and compared to the observations
(Figure 3.27). In the offshore part of the flume and up to the submerged bar (i.e. up to probe
8), only the simulation results with Ny = 3 differ significantly from those with higher Nr,
which are superimposed and agree well with the measured time series. At the last three probes,
where dispersive effects are more important, the results with Ny = 3,4 and 5 show increasing
differences with the measurements. Results with N7 = 7 and 10 remain superimposed and in
good agreement with the measurements at all probes. Therefore, N7 = 7 was chosen to optimize

model’s accuracy and efficiency.

In this test case, the model reproduces well the propagation of regular waves over a submerged
bar, including the generation and propagation of higher harmonics. Dispersive effects become
important after the bar, and time series of the free surface elevation differ significantly along
the wave channel depending on the phase of the harmonic components. Values of Ny > 7
allow reproducing accurately the free surface elevation in the lee of the submerged bar, where

dispersive effects are most important.
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Figure 3.27: Comparison of measured and simulated free surface elevation time series at probes
6, 8, 10 and 11 for case A of Dingemans (1994). Results of simulations with 5 values of Nt (3, 4,

5, 7, 10) are compared (all other numerical parameters are constant).
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3.6 Random waves over a barred beach

The last 1DH test case simulates the propagation of irregular nonlinear waves over a barred
beach, reproducing the wave flume experiments of Becq-Girard et al. (1999) (B99). The bathy-
metric profile of these experiments (Figure 3.28) was specifically designed to study nonlinear
wave interactions in shallow water. Irregular waves were generated with a piston-type random
wavemaker using a JONSWAP wave spectrum with a peak-enhancement factor of v = 3.3. The
bottom profile was created with smooth metal sheets to minimize bottom friction dissipation,
and a beach absorber was included on the upper part of the beach to reduce wave reflection.
Resistive-type wave probes measured the free surface elevation at 16 locations in the wave flume

(black dots, Figure 3.28) during the 40-minute experiment with a sampling time step At = 0.07 s.

0.27 «—— wavemaker at x=-25 m
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Figure 3.28: Bathymetry and wave probe positions for the Becq-Girard et al. (1999) experiments.

The model computational grid extends from x = —5 m to = 25 m (with the foot of the bar at
x = 0 m). Waves are generated in a 5-m relaxation zone by imposing the velocity potential at
the left boundary and correcting the free surface position and velocity potential in the relaxation
zone. Non-breaking irregular waves are simulated with significant wave height H,,0 = 3.4 cm
and peak period 7, = 2.39 s in the deepest part of the domain (A = 0.65 m). Waves are ab-
sorbed in a 10-m long relaxation zone at the right boundary. Time series of these variables are
reconstructed using linear wave theory to sum the components of the wave spectrum obtained
from the free surface measurements at probe 2 (located at the foot of the submerged bar). The
computational grid is regularly meshed with Az = 0.05 m, and N7 = 7. The total simulation
time is 2380 s (approximately 39.7 min), with a time step equaling the sampling time step of the

free surface elevation probes, At = 0.07 s.

The measured and simulated wave variance spectra agree well (Figure 3.29, spectra shown for
probes 2, 5,7, 9, 11, 13, 15, and 16). The main spectral peak increases from probes 2 to 5 due to
wave shoaling. In addition, energy is transferred from lower to higher frequencies, particularly
from the peak frequency to its super-harmonics. This phenomenon is visible at probe 5 with the
appearance of the second harmonic peak (2f,). When the water depth becomes nearly constant
(probes 7, 9, and 11), the second and higher harmonic peaks become more pronounced. A peak

at the fifth harmonic (5f,) becomes visible in the spectra at probes 9 and 11, and its amplitude
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is reproduced well by the model. On the back side of the bar, the energy transfer reverses back
to the lower harmonics (in particular to the second harmonic). At probe 13, the peak of the fifth
harmonic has disappeared, and at probe 15, the peaks of the third and fourth harmonics have
also nearly disappeared. Only the second harmonic and main spectral peaks remain visible in
the trough. Finally, at probe 16, the third harmonic (3 f,) peak reappears due to the new decrease
in the water depth.

The simulated spatial evolution of the first five harmonic amplitudes agrees well with the exper-
imental observations (Figure 3.30). In the deepest region, the amplitude of the first harmonic is
dominant, and between 0 m and 5 m, its amplitude increases due to shoaling, while the higher
harmonic amplitudes remain constant. After 5 m, the first harmonic amplitude decreases while
the higher harmonic amplitudes increase due to transfers of energy from lower to higher fre-
quencies. Around 9 m, the water depth increases again, the first harmonic amplitude continues
decreasing, and the third, fourth, and fifth harmonic amplitudes also begin to decrease, with an
energy transfer to the second harmonic. Finally, in the shallowest part of the domain, the energy
transfer from the second to the third harmonic begins again. The oscillations visible in the first

and second harmonic amplitudes are likely caused by reflections from the lateral boundaries.

To further evaluate the spatial spectral evolution, a set of integral wave parameters are calculated.
From the variance density spectrum F( f), the significant wave height H,,0 = 4,/mg and mean
wave period Te = Tp—10 = mm—’ol or Trnoa = (%g)% can be expressed in terms of the n-th
moment (m,,) of the variance density spectrum:

i = /0 FUE() df (3.10)

The 0" moment corresponds to the free surface elevation variance or o2 = (( — (n))?) where

(—) denotes the time-average operator.

Nonlinear effects are also visible in the spatial evolution of these parameters, which are globally
estimated well by the model (Figure 3.31). The significant wave height evolves similarly to the
first harmonic amplitude shown in Figure 3.30. It increases as the waves shoal, decreases in
the trough and finally increases again as the water depth decreases approaching the beach. The
simulated H,,( agrees well with the measured values, with only a slight overestimation forz > 7
m, and a maximum difference of 8.8%. The evolution of the mean wave period is similar for
the two definitions considered (75,,—1,0 and 7},,02). The mean period initially decreases when a
reduction in the energy in the low frequency range of the spectrum is compensated for by an
increase in the high frequency range. The subsequent release of higher harmonics in the trough
leads to an increase in the mean wave period that persists along the tank. The largest differences
in mean period occur near the end of the tank, with errors of less than 3.5% and 7% for T;,,_1 0

and Tip0 2, respectively.

To further analyze the simulated wave nonlinearity, higher order statistical moments were cal-
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Figure 3.29: Comparison of the measured and simulated variance spectra of the free surface
position at probes 2, 5,7, 9, 11, 13, 15 and 16 for the Becq-Girard et al. (1999) experiments (probe
positions, Figure 3.28). The frequency scale is normalized by the peak frequency (f,) to identify
clearly the harmonic peaks (e.g. 2y, 3fp, ...).
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Bathymetry.

culated from the free surface elevation time series, including:

« the skewness (5) or horizontal asymmetry coefficient, defined as the normalized, centered,

third-order moment of the free surface elevation:

o3
It can also be defined as:
S ;’l:oio—oo :{io_oo Re [Bm’n]
- 3/2 )
Mg
where B, ,, is the complex bispectrum.
« the vertical asymmetry coefficient (A):
A= :_no:O—oo :io—oo Im[Bmﬂ’b]

3/2 ’
my

(3.11)

(3.12)

(3.13)
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Figure 3.31: Comparison of simulated and measured sea state parameters along the bathymetric
profile for the Becq-Girard et al. (1999) experiments: (a) significant wave height (H,,(), (b) mean

wave period (7},—1,0), and (c) mean wave period (1},,0,2).

« the kurtosis, which measures the flatness of the free surface elevation distribution and
is related to the probability of occurrence of high waves, is defined as the normalized,

centered, fourth-order moment of the free surface elevation:

- S =) (3.14)

For a linear sea state, both the horizontal and vertical asymmetries are zero. Here (Figure 3.32),
the simulated skewness and vertical asymmetry are approximately zero in the deepest part of
the domain and evolve along the bathymetric profile in close agreement with the measurements.
The spatial evolution of the kurtosis also begins with a value of approximately 3, typical of a
linear (Gaussian) sea state, and then increases in shallower water, reaching a maximum in the
shallowest zone. The model reproduces well the spatial evolution of the kurtosis, only slightly

underestimating the maximum.

This last test case validates the ability of the model to simulate the generation, propagation,
and absorption of irregular, non-breaking waves, including wave shoaling and nonlinear wave

interactions causing the transfer of energy between higher and lower harmonics.
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Figure 3.32: Comparison of simulated and measured sea state parameters along the bathymetric

profile for the Becq-Girard et al. (1999) experiments: (a) skewness (or horizontal asymmetry), (b)
vertical asymmetry, and (c) kurtosis.



110 CHAPTER 3: VALIDATION OF THE 1DH VERSION OF THE MODEL




Chapter 4

Modeling viscous dissipation: the

visco-potential approach

Ce chapitre, consacré a la prise en compte des effets visqueux dans le modéle poten-
tiel développé, commence par un bref apercu des différentes sources de dissipation de
Pénergie des vagues avec un accent mis sur les effets dissipatifs dus d la viscosité et les
différentes approches existantes pour prendre en compte ces effets dans les modéles po-
tentiels. Dans le modéle visco-potentiel retenu, la dissipation interne est prise en compte
par Uajout de deux termes dissipatifs dans les conditions aux limites a la surface libre
provenant de la contribution principale de la composante rotationnelle de la vitesse.
L’approximation de couche limite au niveau du fond, permet la dérivation d’un terme
venant modifier la condition d’imperméabilité, modélisant la dissipation par frottement
sur le fond. Ces développements sont ensuite validés par 'application a quatre cas tests.
Les deux premiers cas consistent a comparer les résultats obtenus par la version linéaire
du modéle avec des solutions analytiques pour la décroissance de vagues réguliéres se
propageant dans un domaine périodique en profondeur infinie et d’une onde station-
naire pour différentes valeurs de profondeur relative (Antuono and Colagrossi, 2013).
Le troisiéme cas test simule I’atténuation d’une onde solitaire se propageant sur un fond
plat qui se termine par une pente, ou Ueffet combiné du shoaling et du frottement sur le
fond est bien représenté par le modéle (Liu et al., 2006). Enfin, le dernier cas test consiste
a reproduire les expériences réalisées récemment a I’ESPCI a petite échelle de vagues se
propageant au-dessus d’une marche submergée. Dans ce cas, du fait du gradient im-
portant de bathymétrie, la validité du terme de frottement sur le fond n’est plus assurée.
L’utilisation des termes de dissipation interne avec une valeur de viscosité plus élevée

que celle de I'eau permet néanmoins d’obtenir des résultats proches des expériences.
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4.1 Introduction

4.1.1 Review of sources of wave energy dissipation

Many mechanisms contribute to the dissipation of wave energy. Wave breaking is the most im-
portant sink of wave energy in the open ocean and in the coastal zone by dissipating energy
through turbulence (e.g. Ardhuin, 2012). When the wave crest velocity exceeds the phase ve-
locity of the wave, the wave becomes unstable and the crest collapses. Depending on the wave
conditions (L, H) and bathymetry, different kinds of wave breaking may occur: spilling, col-
lapsing, plunging and surging. The amplification of wave steepness leading to breaking can be
induced by different processes. One must differentiate between depth-induced breaking occur-
ring in shallow water caused by the convergence of the energy flux through shoaling (H/h) and
deep water wave breaking (so-called white-capping) that is caused by the relative steepness of
a wave (H /L) exceeding a threshold. Deep water wave breaking is often caused by interactions

with the wind, or currents or between waves.

Aside from wave breaking, wave amplitudes decrease during propagation in the open ocean as
well as in laboratory experiments. For non-breaking waves, three main processes lead to energy
dissipation (Lighthill, 1978).

1. Near-surface dissipation is related to the difference between the instantaneous and equi-
librium surface tension. This effect is usually negligible when the water surface is clean,
but when it is fully contaminated (e.g. film of oil,...), the presence of a thin film at the
surface changes the attenuation properties of the free surface (zero tangential velocity),
and energy dissipation may become significant. The damping rate due to near surface dis-
sipation can be even more important for partial contamination when a resonance occurs
between capillary-gravity waves and elastic waves (Marangoni waves) on the surface film
(Henderson and Segur, 2013; Przadka et al., 2015). In laboratory experiments, the pollution
of the water surface from ambient air conditions can modify the nature of the physical
processes at the origin of the damping and may explain extra dissipation occurring in ex-
periments where dissipation rates are too large to be attributed only to boundary layer
effects (Henderson and Segur, 2013; Nicolas and Vega, 2000). This can be avoided by clean-
ing the surface. When considering the dissipation of ocean swell, Henderson and Segur
(2013) showed that a linear inextensible film model produces a better decay rate prediction
than a clean surface model (i.e. Lamb, 1932) or a two-phase model (taking into account the
air-water interface). The stress due to the action of the wind at the surface may induce

additional energy dissipation (Dore, 1978).

2. Internal dissipation by viscous stresses acting throughout the water volume (also called
bulk viscosity) is generally small for water waves but may be comparable with boundary
layer damping in some cases (Miles and Henderson, 1998). These internal viscous effects

can be estimated from the decrease in the wave height of deep water waves propagating
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over long distance in the absence of wind.

3. Interaction with solid boundaries (i.e. bottom and lateral wall friction when consid-
ering laboratory experiments in a wave tank) also cause dissipation due to friction. The
rotational motion induced in the oscillatory boundary layers that develop close to solid
boundaries dissipates energy. Bottom friction becomes important when the water depth is

shallow enough such that waves induce significant horizontal motions near the bottom.

According to Dutykh (2009a), the rate of viscous dissipation is O(#/?) in the free-surface bound-
ary layer (for a clean water surface), O(v) in the fluid interior from bulk viscosity, and O(v/?) in
the bottom boundary layer, where v is the kinematic viscosity of the fluid ([m?/s]). The largest
energy dissipation mechanism in the absence of wave breaking is bottom friction, when this

phenomenon becomes important in intermediate and shallow water conditions.
4.1.2 Review of wave attenuation due to viscous effects

Different theoretical estimations of the wave damping have been derived depending on which
sources of energy dissipation are taken into account: in infinite depth, only bulk viscosity is im-

portant, whereas in finite depth, solid boundary interactions must be also considered.

First, Lamb (1932) derived the decay rate for a wave amplitude a in infinite depth, assuming small
viscosity, using two methods: first by a dissipation calculation and then by a direct calculation
using the linearized Navier-Stokes equations, and obtained the same result. When the wave
amplitude varies in time but is homogeneous in the entire domain (i.e. periodic waves in space),

he estimated the following decay rate:

da

— = —wk’a 4.1

7 (4.1)
where k is the wave number. The wave amplitude at time ¢ is therefore a(t) = a(t = 0) =¥ k%t

The amplitude decrease is exponential in time and faster for shorter waves (i.e. large k).

Later, Biesel (1949) considered the finite depth case, using zero normal pressure and zero tan-
gential stress free surface boundary conditions, plus zero velocity at the bottom to derive an
expression of the decay rate for the wave amplitude assuming very small viscosity and laminar
flow. The obtained dispersion relation, expressing the complex angular frequency is expanded as
a function of the viscosity v, and only the terms of order O(/v) and O(v) are kept. Surprisingly,
Biesel (1949) found that in deep water conditions, even when the movement close to the bottom

is very weak, the effect of bottom friction is not negligible.

Hunt (1952) then derived an expression for wave damping in a finite and uniform width b chan-

nel, in shallow water, to be able to estimate the total energy dissipation observed in laboratory
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experiments. He took into account the dissipation of energy in the boundary layers near the

bottom and the lateral walls.

_ , 2k [v [ kb+ sinh(2kh)
_ _ at W _
alt) =a(t=0) e ith o= b\ 2w <2kh + sinh(2kh)) (4.2)

In Hunt (1952), the case where the bottom has a mild slope is also considered.

More recently, Behroozi (2004) used the conservation of energy flux to derive a relationship
between the fluid viscosity and waves attenuation, for a wave amplitude that varies in space,
contrary to Lamb (1932). He considered that the wave amplitude is constant in time at a given
location but varies in space as the waves propagate in the domain by using a complex wave num-
ber. The power loss per unit area due to viscous dissipation was estimated and equated to the
power loss per unit area of the spatial decay in wave amplitude. The results were generalized to

take into account the effects of surface tension.

With the objective of extending Lamb’s results, Antuono and Colagrossi (2013) derived a new
approximation of the decay rate of gravity waves in viscous fluid using the linearized Navier-
Stokes equations. The objective was to both remove the assumption of infinite depth, making the
approximation valid for waves propagating in intermediate and shallow water, and to relax the
assumption of small viscosity. They completed a perturbation expansion of the angular frequency
as a function of the Reynolds number Re (Re = UL /v, dimensionless quantity defined as the
ratio of inertial forces to viscous forces) to obtain a complex expression for the wave damping,.
In deep water and at first order their decay rate corresponds to the one obtained by Lamb (1932).
However, the second order term in their development is negative, such that Lamb’s first-order
solution overestimates the decay rate. In finite depth, the differences with Lamb’s solution are

even larger since Lamb’s solution does not consider dissipation through bottom friction.
4.1.3 On the inclusion of viscous dissipation in potential modeling approaches

Potential flow theory (inviscid fluid and irrotational flow) reproduces well water wave propaga-
tion and is therefore a commonly used approach. However, it does not contain natural dissipation
terms, as shown in the corresponding set of equations repeated from Section 1.1.2 (here, neglect-

ing surface tension and with pg,, = 0):
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AP =0 in the fluid domain (4.3)
0P 1 Patm
5 T 5(V®) +gn+ , 0 at z =n(z,y,1) (4.4)
an 0P
N +Vugd.Vgn— 5 = 0 at z = n(z,y,t) (4.5)
0P
Vg®.Vgh+ 5 0 at z = —h(z,y) (4.6)

Here, the bottom is assumed to be fixed in time (but is variable in space).

In certain cases (long propagation times, shallow water...), viscous effects cannot be neglected to
reproduce correctly wave evolution during propagation. Viscosity causes a decrease in the wave
amplitude but also alters the speed and shape of the wave. Moreover, to estimate accurately the
bottom shear stress and to compute sediment transport fluxes and the induced changes in the
bathymetry, viscous effects must be taken into account. One alternative is to resolve the full
Navier-Stokes equations using a three-phase (air, water and sediment) model, but this approach
is generally computationally expensive and only allows simulating a few wavelengths. Lu et al.
(2010) studied the resonance of incident waves in narrow gaps between identical bodies. They
compared the results obtained with (i) a viscous fluid model and (ii) a potential flow model in-
cluding artificial viscous damping, and showed that the results obtained with both models are
similar. The wave height in the narrow gap can be predicted correctly as long as the damping
coeflicient is properly calibrated. Two important questions are then, how to narrow the gap be-
tween the Navier-Stokes equations and the potential flow equations, and what kind of physically

relevant dissipative terms should be included?

In infinite depth, potential flow is a solution of the Navier-Stokes equations, but to take into
account the effects of viscosity, the boundary conditions of the potential flow problem have to
be modified. The zero normal stress condition at the free surface can be still satisfied with irro-
tational flow. This is not the case for the zero tangential stress condition, thus vorticity has to
be introduced in the model. Dias et al. (2008), following the work of Lamb (1932), introduced a
Helmholtz decomposition of the velocity in the linearized Navier-Stokes equations to separate
the vortical and potential flow contributions. They showed that the vortical velocity can be ex-
pressed asymptotically as a function of the velocity potential and the free surface elevation. A
new set of equations was derived with viscous correction terms added in the KFSBC and DFSBC.
They extended their set of equations with the addition of nonlinear terms by conjecturing that
the expression of the dissipative term as a function of the surface elevation in the KFSBC is still
valid when the viscosity is small. By deriving the Non Linear Schrédinger (NLS) equation from
their model, they obtained the widely used damped NLS equation. This set of equations has

been used by Chen and Dias (2010) to study time harmonic ship waves (after deriving a new
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boundary condition only satisfied by the velocity potential by combining the linear KFSBC and
DFSBC of Dias et al. (2008) and introducing the effects of surface tension). In the limit of small
viscosity, the solution of Chen and Dias (2010) leads to the same decay rate as that of Lamb (1932).

Longuet-Higgins (1992) also re-derived the same decay rate but with another physical interpre-
tation. By assuming that viscous effects are confined to a vortical boundary layer close to the free
surface, the zero tangential stress condition at the free surface leads to an increase in the surface
elevation that contributes to the normal stress, in addition to the classic viscous component of
the normal stress. Thus, the zero normal stress condition applied at the free surface boundary
corresponds to a pressure correction that is twice the one obtained when not taking into account

the vortical boundary layer at the free surface.

Joseph and Wang (2004) first derived the decay rate of gravity waves by solving the stability
problem corresponding to the set of equations formed by the Laplace equation in the domain, the
Bernoulli equation at the free surface and the normal stress balance at the free surface. The decay
rate obtained with this method is half the one found by Lamb (1932) in the limit of long waves.
The authors discovered that for long waves, a vorticity layer is created close to the surface, and
a correction to the irrotational pressure is needed to satisfy the zero shear stress boundary con-
dition and compensate for the irrotational shear stress. With this correction, Joseph and Wang

(2004) obtained the same decay rate as Lamb.

In the case of finite depth, a boundary layer approach is applied at the bottom. In this bound-
ary layer, vorticity is introduced to satisfy the no-slip (zero velocity) boundary condition at the
bottom. The boundary layer is assumed laminar, and the flow is assumed irrotational outside
the boundary layer. Liu and Orfila (2004) derived a new kinematic bottom boundary condition
for the velocity potential with a non local term in time (convolution integral) scaling as O (/7).
This condition can be seen as a correction of the vertical velocity at the bottom, corresponding to
the potential flow problem, due to the vertical rotational velocity induced in the boundary layer.
The derived model with the Boussinesq approximation has been validated with comparison to
experimental data to study viscous damping and shoaling of a solitary wave in a wave tank (Liu
et al,, 2006). For this study the derived expression was extended from constant water depth to
slowly varying water depth. The study of the laminar bottom boundary layer flow under a soli-
tary wave (Liu et al., 2007) shows that the nonlinear advection terms have a weak impact on the
results. The model was further improved to take into account a turbulent bottom boundary layer
(Simarro et al.,, 2009). In parallel, Dutykh and Dias (2007) derived the same bottom boundary
condition with the addition of to bulk viscosity dissipative terms scaling as O(v)). The study of
the time-dependent dispersion relation associated with the long wave model derived from the
new potential flow equations first is complete assuming a slowly varying rotational frequency
with time (Dutykh, 2009a), and then with a relaxation of this assumption (Dutykh, 2009b). The
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last paper showed that the local dissipative terms in the KFSBC and the DFSBC have a stabilizing
effect, whereas the non-local term in the bottom boundary layer creates modes with a positive

imaginary part that have a destabilizing effect.

Generally, the new sets of visco-potential equations (Dutykh and Dias, 2007; Liu and Orfila, 2004)
are not solved directly. Boussinesq-type “lighter” long wave models are often derived, since the
derivation from the inviscid potential equations is easier than that from the complete Navier-
Stokes equations. A review of the derivation of asymptotic models taking into account viscosity
is presented in Le Meur (2015). He pointed out two difficulties in completing a rigorous deriva-
tion of the asymptotic model: (i) matching the boundary layer solution and the potential flow
solution in the interior of the domain, and (ii) the resolution of Cauchy problem with an initial
condition. He then presented the derivation of a Boussinesq model from the Navier-Stokes equa-
tions without the irrotationality assumption, with special care dedicated to the treatment of the

initial solution for the half derivative.

Kakleas and Nicholls (2010) restate the set of equations from Dias et al. (2008) in terms of the
free surface quantities (1 and (ZNS) to obtain a Zakharov-like set of equations taking into account
viscosity in infinite depth. They developed the related Dirichlet-to-Neumann operator up to the

second order in nonlinearity to obtain a weakly nonlinear model for small values of viscosity.

In this chapter, the dissipative terms to be added to the classical potential flow equations (Eq.(4.3)-
Eq.(4.6)) are re-derived to take into account the dissipation due to both bulk viscosity and bottom
friction. Then the implementation of the free surface dissipative terms and of the non-local term
in the bottom boundary condition is presented. With a linear version of the code, the damping
rate is studied for two cases: (1) regular waves propagating over a flat bottom with only the
bulk viscosity contribution to the dissipation, and (2) standing waves evolving in several relative
depths and Reynolds numbers following Antuono and Colagrossi (2013). The nonlinear version
of the code augmented with viscous terms derived under the linear assumption is then validated
with a comparison to laboratory experiments for the propagation of a solitary wave attenuated
by bottom friction in Liu et al. (2006). Finally the model is used to study the dissipation of regular

waves propagating over a step to small-scale experiments performed by Monsalve et al. (2015).

4.2 Mathematical modeling of visco-potential flows

4.2.1 Linearized Navier-Stokes system

The derivation of the dissipative terms is carried out for the simplified case of linear theory.
In this context, the free surface flow in a fluid layer of constant depth (h), whose free surface

displacement is denoted by 7, can be described by the continuity equation and the linearized 3D
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incompressible Navier-Stokes equations in the fluid domain (£2):

Vv=0 (4.7)
@:—@—{—g%—uA\_/ (4.8)
ot p =

where v is the velocity vector. These equations are supplemented by appropriate boundary con-
ditions:

- a no-slip condition at the bottom : v(z = —h) = 0,

- a linearized kinematic condition at the free surface 9 _ w, and

- a dynamic condition at the free surface [c.n] = 0, where ¢ = —pn + 7.1 is the stress tensor
and T = (7;;) = pv(0v;i/0z; + Ovj/0x;) is the viscous tensor. [f] denotes the jump of the
function f across the interface, and n is the unit vector normal to the interface. The dynamic
condition at the free surface is decomposed into three conditions corresponding to the tangential

components (0, and 0,.) and the normal component (o) of the stress at the free surface.

4.2.2 Dissipation due to bulk viscosity

In this section, the derivation of dissipative terms to model dissipation due to bulk viscosity in
potential flow equations is shown, following the work of Dias et al. (2008), who derived this new
set of equation for 1DH cases in infinite depth, and of Dutykh and Dias (2007) who extended it to
3D cases in finite depth. The main contribution of the vortical component of the velocity in the
KFSBC can be expressed as a dissipative term that depends only on the free surface elevation,

and is negligible in comparison to the velocity potential contribution in the DFSBC.

4.2.2.1 Velocity decomposition

In order to decouple the problem, the Helmholtz-Leray decomposition is applied to the velocity
field v = (u, v, w) dividing it into a potential (irrotational) component and a rotational compo-

nent:

v=V®+ VAT with ¥ = (U, Uy, Uy) (4.9)
(4.10)

@+%_3‘1’2

ox oy 0z
hence v = %—i’ + 86‘121 — % (4.11)

0P + oV oV,

0z ox Oy



4.2 MATHEMATICAL MODELING OF VISCO-POTENTIAL FLOWS 119

where @ is the velocity potential and ¥ the vector stream function. Substitution of this decom-

position (Eq.(4.11)) into the continuity equation (Eq.(4.7)) gives:

V.(V®+VAL) =0

AD + V.(VAT) =0,
|

=0 by def
Ad = 0.
0 (4.12)
Similarly, the momentum equation (Eq.(4.8)) can be rewritten as:
) v
OVEHVAY) VP L yA(VE 4V A D)
ot p =
ovVe®  Vp OVAY +vAVAYD)
— 4 — A(VD) = —
9 + P +Vgz+vAV) 5
ovVo ov
ove + Ve +Vgz+v[V(V.(V®) —=VA(VA(VD)]=-VA—+1VVAAYD)
ot p —— ——— ot
= 0by (4.12) = 0 by def
o p oV
—+ = = —— AY .
V(at+p+gz) VA( 5 TV v) (4.13)
One can notice that Eq.(4.13) is satisfied, if  and W also satisfy:
ov p B
o +=4+g92=0 (a)
ow (4.14)
a —vAY =0 (b)

To determine the structure of ® and ¥, the Fourier-Laplace transform of Eq.(4.12) and Eq.(4.14b)
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is taken to work in (k, s) space. The Fourier-Laplace transform is defined as:
Ly = Lo F suchthat f(z,t) — f(k,s), with k= (k,, k,) and k = |k|

Applying the Fourier-Laplace transform to the continuity equation gives:

)
A@:o-»—#¢+99:o
022

The solution to this equation can be written as:
(i)(ka S) = @E)F(Ev S)ekz + 95(; (Ev S)e_kzv

where $¢ and ¢, are unknown functions of k and s.

The Fourier-Laplace transform applied to Eq.(4.14b) gives:

ov ) 2.7 ¥
E :VAQHSQZV(—]{J g‘F @),

whose solution is:
1&1(&’ 8) = 1&1'0(&’ 8) (am‘z + Cl(ka 5)6_|m|z> 3

with m2 = k2 4+ s/v, and 9 (i = 1,3) and C; (i = 1,3) are unknown functions that will be

determined by using the initial and boundary conditions.

4.2.2.2 Modification of the kinematic free surface condition

Now the goal is to investigate how the vortical term impacts the KFSBC. With the velocity de-
composition presented in 4.2.2.1, the KFSBC becomes:

o _
ot

ob 0¥y IV,
= — ———onz=0

YT, T or oy

When applying the Fourier-Laplace transform, this expression becomes:
s = k(¢g — @y ) + ikyhio(1+ C1) — ikathao(1+ C) (4.15)

To see if the vortical term in Eq.(4.15) can be expressed as a function of ® and 7 only, the tangen-
tial stresses at the free surface must be continuous across the interface (here at z = 0, following
linear theory):

ow Ou

Ozz = PV(% %) =0 (4.16)
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ow Ov

After substitution of the decomposition of v, the Fourier-Laplace transform of Eq.(4.16) and
Eq.(4.17) are:

L 0P o - 0Py My
2ik, 92 ko + kpkyin zky—az 5.2 = 0 (4.18)
. a()b N 27 827751 . 61/;3
—22kyfaz — kykypo + kb + 5,2 + ik, 5 = 0 (4.19)

Combining these two equations as (—ik,)(4.18) + (—ik,)(4.19) produces an expression relating
the vortical term of Eq.(4.15) and the irrotational velocity.

2k (¢g — #o)

ikylz}l[)(l + Cl) — ikxIZ)Q()(l + CQ) = K2 4 m2

(4.20)

Eq.(4.15) and Eq.(4.20) can be combined and rearranged to express of the vortical part of the
KFSBC as a function of 7} only:

ikyino(1 + C1) — ikythao(1 + Co) = —20k?7). (4.21)

Substituting Eq.(4.20) in Eq.(4.15) gives a KFSBC expressed only as a function of the potential

flow problem variables:
s = k(¢ — @) — 2vk*A. (4.22)

By taking the inverse Fourier-Laplace transform of Eq.(4.22), this expression becomes:

on 0%
E = & + 2I/AHT] (4.23)

This expression is the KFSBC of the irrotational linearized Euler problem with an additional

diffusive term coming from the vortical velocity contribution.

4.2.2.3 Modification of the dynamic free surface condition

The condition for the normal stress at the free surface (0., = 0 at z = 0) gives the following

expression for the pressure at the free surface:

2 2 2
o Oy aqjl) at z = 0. (4.24)

—9 _
b=y (8,22 * 9z0n 020y
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The Fourier-Laplace transform of this equation is:
b= 2pv (—K3(BF = 35) + m (~ikethan(1 = C3) + ikyro(1 = C1))) (4.25)

Now the order of each term is evaluated. Eq.(4.21) shows that (—iky 120(1 + C3) + iky Dro(1 +
C1)) = O(v). Dutykh and Dias (2007) argue that the second term of the right-hand side of
Eq.(4.25) is O(v3/?), which is negligible in comparison with the first term which is O (), when
weak dissipation is considered (typically v € [1076; 1073] m?/s). In the following developments,
terms of the order of o(v) will be neglected. Inferring this from Eq.(4.21) is not so immediate but
considering both extreme cases where C' and C) are either < 1 or > 1, —ik, 1&20(1 —Cy) +
iky ¥10(1 — C}) can be considered as O(v). Since m = O(v~'/2), the second term of the
right hand side of Eq.(4.25) is actually O(V3/ 2). Taking the inverse Fourier-Laplace transform of
Eq.(4.25), the pressure at the free surface at the leading order in v is thus:

2P
p= 2puﬁ atz = 0. (4.26)

This pressure can be considered as a correction of the pressure in the Bernoulli equation, which
is the DFSBC of the potential flow approach. Therefore the new DFSBC can be written as:

2

0P 0°®

Finally, the two free surface conditions of the linearized irrotational Euler problem can be com-

pleted with dissipative terms to take into account the effects of bulk viscosity:

on 0d

— 2UA = 4.2
N 8z+ vAgn atz=0, (4.28)
0P 0%®

— =—gn—2v——= atz=0. 4.29
5 g —2vag atz (4.29)
Dias et al. (2008) obtained these equations for the linear case, and extended them heuristically
to the nonlinear case by keeping the same expressions of the additional dissipative terms in the
nonlinear DFSBC and KFSBC (by conjecturing that the expression of the dissipative term as a
function of 7 in the KFSBC is still valid when the viscosity is small).

4.2.3 Dissipation due to bottom friction

The two dissipative terms added to the irrotational Euler free surface boundary conditions, de-
rived in the previous section, account for the dissipation due to the bulk viscosity. However,
the predominant source of dissipation in shallow water is bottom friction. To take into account
this dissipation source, a boundary layer correction is introduced at the bottom. This correction

estimates the impacts of the rotational part of the vertical velocity induced in the boundary layer
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on the flow in the interior (Dutykh and Dias, 2007; Liu and Orfila, 2004). Although the fluid mo-
tion is described well by potential theory in the interior of the fluid domain, this is not the case
anymore close to the bottom, due to viscous effects. In potential flow theory, the condition of
impermeability at the bottom implies a tangential velocity component, whereas when consider-
ing the boundary layer, this condition is replaced by a no-slip condition at the bottom. To fullfill
this condition, a horizontal rotational velocity component of the same order of magnitude as
the horizontal velocity in the interior of the fluid domain appears in the bottom boundary layer,
which generates a vertical velocity component that persists outside the boundary layer (Liu and
Orfila, 2004). It is this vertical rotational component that is evaluated hereafter to determine the

correction of the impermeability condition of the potential problem at the bottom boundary.

4.2.3.1 Nondimensional equations

Based on the work of Liu and Orfila (2004), a wave train with surface displacement ), with ampli-
tude a and wavelength /, in a constant water depth h is considered. The following dimensionless

variables (denoted by *) are defined:

(2%, ") = (@,9)  «_ 2z . _tJ/gh g P
’ l h l a pgh

(U*,U*) _ (u,v) * w

= wzi’
Vgh w gh

where ;1 = h/l is a parameter quantifying the dispersion. In comparison to Liu and Orfila (2004),

some slight differences in the nondimensionalization may be noticed. The small parameter € =
a/h does not appear here since the problem was already linearized. In addition, here O(w*) =
O(pu*) which is, in our opinion, more consistent with the physics than the choice of O(w*) =
O(w*/p) by Liu and Orfila (2004). While the intermediate steps differ, this nondimensionalization
leads to the same bottom correction term in dimensional space as in Liu and Orfila (2004) and
Dutykh and Dias (2007). In the following, the dimensionless equations are considered, after

dropping the * to facilitate reading. The dimensionless continuity equation remains unchanged:

Vau+—-—=0 (4.30)

1 6?
. _Vup+a? (Ahu+ 2 u) ; (4.31)

2
ot 0z 1
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where Ay, is the horizontal Laplacian operator and o = ; \;/gT is the dimensionless viscosity (i.e.

equivalent to the inverse of a Reynolds number).

4.2.3.2 Bottom boundary layer approximation

The Helmholtz decomposition is again applied to the velocity: v = V& + v", where the vortical
component is now expressed as v" = (u",w"), such that V.u" = 0. The rotational part of the
velocity is assumed to vary rapidly in the direction normal to the bottom, in the boundary layer
of thickness O(«), and the potential flow needs to be corrected at order O(«). Thus the following

perturbation expansions of the potential and the velocities are introduced:

D =Py 4+ ad; + O(Oé), (4.33)
u” = uj + auy + o(a), (4.34)
w" = wy + aw] + o(a). (4.35)

To focus on the flow inside the bottom boundary layer, a new vertical coordinate is introduced:

g=2"1 (4.36)
«

where £ = 0 corresponds to the solid boundary. This change of coordinate is only applied for
the vortical velocity.
Substituting the expansion of the rotational part of the velocity in the continuity equation gives

at zero and first order in o

o(1) : 8(;1;6 =0 (4.37)
O(a) : Vyul + a;? =0 (4.38)

Eq.(4.37) shows that wj) is independent of the vertical coordinate, and thus with the no-slip con-
dition at the bottom (v = 0), the following relations at the zero and first order in « can be

written:

a®,

O1):Vgdy = —uy and a5 = —wy (4.39)
z

O(a) : Vg®; = —u] and % = —wj (4.40)
z

The no-flux condition at the bottom of the potential flow problem implies that % = 0. There-
fore, wj, = 0 at the bottom and throughout the whole boundary layer because of Eq.(4.37). The

correction to the bottom boundary condition is thus the term —w?]. Looking for the leading order



4.2 MATHEMATICAL MODELING OF VISCO-POTENTIAL FLOWS 125

in « of the momentum equation for the horizontal rotational velocity gives:

ouy 1 82u6

= ——=". 4.41
ot p? &2 (4.41)
After the coordinate change 8 = u&, Eq.(4.41) becomes:
oul,  0%uj
—_— = . 4.42
ot 052 (4.42)

The boundary conditions for the horizontal rotational flow are known: Eq.(4.39) at the bottom,
and uj — Oas /8 — +oo. Following Liu and Orfila (2004) and Dutykh and Dias (2007), the
solution of Eq.(4.42) is:

Viad( =— __8
uly = / BO@ 2= L) a4 (4.43)
NI Vi—T

=

Then, from the continuity equation (Eq.(4.38)) and with substitution for 5:

e o V4d(z,2=—1,7)
wh(€=0) = — / = dr. (4.44)

From the no-flux bottom boundary condition (Eq.(4.40)), the expression of the correction of the

potential vertical velocity at the bottom is obtained:

@(z_ )= —aw] EAR®(z, 2= —1,7)
0z 1= u\f Vi—T1

In dimensional space, using the continuity equation, Eq.(4.45) becomes:

0P = h

This term enables accounting for the viscous effects created by bottom friction in the bottom

dr. (4.45)

boundary layer, in the interior of the flow region. As it is a diffusion process, the influence of
viscosity is not instantaneous, and a time dependent term appears. The effect of the boundary
layer is cumulative in time but weighted in favor of the current time (through the term 1/v/t — 7

in the time integral).

4.2.3.3 Bottom boundary condition for an uneven bottom

The previous correction term was derived for the constant depth case. For an uneven bottom,
the bottom boundary condition has to be modified to take into account the slope (y = O(V g h)).

As done by Liu et al. (2006), a local orthonormal coordinate system is introduced (2/,z’) with
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2/ parallel and 2z’ normal to the bottom. In this new system of coordinates, u’ and w’ are the
velocities parallel and normal to the bottom, and the non dimensional continuity and momentum

equations for the horizontal speed u’ are:

/
/HQ/_’_ aal;)/ =0, (4.47)
81/ / 1 }Ih / 82 ,
R ter R G =) ) (449

The same methodology as in 4.2.3.2 is then applied: first a stretched coordinate is defined in
the direction perpendicular to the bottom ({’ = 2’/a) to focus on the variation of the vortical
part of the velocity in the boundary layer, then a Helmholtz decomposition of the velocity field
is completed, followed by a perturbation expansion. The expression of the vortical part of the
velocity is substituted in the continuity equation giving at zero and first order in « the same
expressions as Eq.(4.37) and Eq.(4.38). When substituted in the momentum equation, the leading
order in « gives:

. 2 Ir / 2,.Ir
Al 1 0%y 1 Viyh 1 0%ug —1—0(%)- (4.49)

ot p? 02 pl+ (Vigh)? 2 0¢2

The solution of this equation is known and given by Eq.(4.43). The expression of w} ({ = 0)
can then be deduced (Eq.(4.44)). The no-flux condition at the bottom gives the bottom condition

correction term to apply to the potential flow problem in the local coordinate system:

acb(, 0 N EALD
— (2 = = —w =
! M\F vt—T

0z
In the global coordinate system (z, z), this new bottom condition is written as:

)
( ) (450)

oP Ap®(z,z = —h,T) vy
9 =—n dr = VyhV® + 0(L,al 4.51
e MI/ S A= Vah Wy +0(LaT) @5y

According to Liu et al. (2006) this equation is valid under the assumption that the bottom slope
satisfies O(y) ~ O(u?), necessary for the linearization of the boundary layer momentum equa-

tion.

4.3 Numerical implementation of the viscous terms

4.3.1 Numerical implementation of the terms in the free surface boundary

condition

To take into account of the effects of bulk viscosity, the two dissipative terms in Eq.(4.28) and

(4.29), derived in the linear case, are added to the nonlinear Zakharov equations resolved by the



4.3 NUMERICAL IMPLEMENTATION OF THE VISCOUS TERMS 127

code:
0 = -
a—? = —Vud.Vyn+ a1+ (Van)?) + 2w, (4.52)
0% 1oz 1 0*®
o = d)? + —32(1 22—, 4.53
5 g1 = 5(Va®)” + 5w (1 + (VEn)7) = 2 v (4.53)
The first term A g7 is computed with finite difference schemes whereas the second term 627%) (z,2

n) is computed at the end of each resolution of the Laplace BVP from the a,, () coefficients ac-

cording to:

0%® 1 &
@(x, z=1n) = 52p(s = +1) = Ee] Z (=1)" n?(n? — 1) an(z) (4.54)
n=2

4.3.2 Numerical implementation of the bottom friction term

The bottom friction condition (Eq.(4.46) or Eq.(4.51)) includes a term with an integral in time of
the following form:
t 020

Blha) = | 3\%:?) r.

(4.55)

The evaluation of A(t) is carried out assuming that %27?(7', x) is constant over each (small) time
step At. Under this assumption Eq.(4.55) can be evaluated knowing the value of %27%’(7', x) at
each half-time step (t = kAt/2, with k = 0,1, ...), as needed by the fourth-order Runge-Kutta
algorithm (RK4).

3At

2 == 2 34t
B(t)%B(kAt)%M@)/“ S S M(At)/ v
° 2005k

2 22 KA 7 022 A
z 34t kAL — z kAt— 5t kSt — 1

By defining:

A A A
g =2 Tt and o) =2 (\/(2}7—!-1)45—\/(2]9—1)415) p>1, (4.57)

8, =2 <\/(2p+2)it_\/(2p+1)it> p>0. (4.58)
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Eq.(4.56) can then be rewritten as:
At At 9*® At

In Eq.(4.59), the last term is the only one depending on the potential at current time ¢, which
then has to be expanded on the Chebyshev polynomial basis. The other terms in Eq.(4.59) are
evaluated from the values of %27? (7, x) computed for the previous time steps and constitute the

right-hand side of the bottom boundary condition. In terms of a,,(x, t), Eq.(4.46) can be written:

n 1 t— At 825D
n 1 —

The implementation of this term requires storing the values of %27‘21')(7', x) at each sub-time step

of the RK4 algorithm at all the nodes of the domain, which may be computationally expensive
in terms of both memory and CPU time if the domain is large and the integration time long.
To reduce the memory requirement, Torsvik and Liu (2007) proposed estimating A(t) from the
values of ?927?(7', x) for the most recent N time steps only, by applying a correction term to
compensate for the truncated series. The correction term is computed from the residual term
(accumulation of the discarded values), and a coefficient that has to be calibrated. This method
will not be used for the presented test cases since the goal was first to study the relevance of
the additional viscous terms to reproduce physical processes occurring in the experiments. To
optimize the inclusion of this term, one must analyze the impact of this approximation of B(t) on
the quality of the results, the sensitivity to free parameters in this method, and the computational
gain is.

To implement viscous effects in a domain without any relaxation zones for wave generation,
viscous terms are applied in the entire domain. Additional complexities appear when there are
relaxation zones, because the solution imposed in the relaxation zone does not take into account
viscous effects. One way to avoid this problem, associated with wave generation, is to apply the
viscous terms only outside the relaxation zones. To smooth the discontinuity at the transition, the
viscous terms are applied progressively in space. Nevertheless, in areas where the bottom friction
is large (in shallow water or for large values of the viscosity), the simulations tend to become
unstable at the end of the transition zone. The limit of stability depending on the viscosity value

and the water depth is not yet defined, and it would require additional attention.
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4.4 Validation test cases

4.4.1 Bulk viscosity terms in the linear regime

The first goal is to determine the bulk viscosity damping rate as a function of time for a regular
wave in a periodic domain of constant water depth (h). The wavelength is fixed (k is real), and
the angular frequency w is complex (here denoted by the underlined variable): w = a — b,
where the real part a is the temporal frequency of the signal and the imaginary part b is the
coefficient of the damping factor e % . Again, the linearized system of equations describing the
problem will be considered here. Both the KFSBC (Eq.(4.28)) and the DFSBC (Eq.(4.29)) free
surface boundary conditions are supplemented by terms accounting for the bulk dissipation,
which are proportional to the kinematic viscosity of the fluid v. In the following, the viscosity

appearing in each of these equations is differentiated by v and 1, to evaluate their respective

contributions:
on 0P
% 92 +211An atz=0 (4.61)
od 2P

E:—gn—%/g@ atz =0 (4.62)

The solution of these equations for a progressive wave of initial complex amplitude A is:

n(z,t) = A elthret) (4.63)

ZQA COSh<k(h + Z)) 6i(k:c—gt)

d t) = — 4.64
&@ 2t =~ ok cosh(kh) (4.64)
together with the dispersion relation:
k2 k2
w? (1+i2y1;)(1+i21/2;) = w? (4.65)

with w2 = gk tanh(kh).

Depending on the values of v; and 15, three cases can be considered to obtain w as the roots of
Eq.(4.65):

ecasel:vy=v>0andy =0:w=wy 1—(V1k2)2—iV1k2

ccase2:vy =0and vy = v > 0:w = wpy /1 — (2E)2 — j 1pk?
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ecase3:vy=v>0ands =v > 0:w = wy — i 2 vk?

In the third case where the dissipative term is added in both free surface boundary conditions,
the dispersion relation corresponds to that of Lamb (1932), and the damping rate is twice that
when the dissipation is present in only one boundary condition (case 1 and 2). Thus both terms
contribute equally to the damping of the amplitude of the wave. When either v or v is equal
to zero, the angular frequency (real part of w) is slightly reduced, whereas it remains unchanged

when both dissipative terms are present.

| 5 " 1=25m

—_lA=005m

0.0 0.5 1.0

X (m)

Figure 4.1: Set-up of the simulations of regular waves of amplitude A = 0.05 m, propagating
in a periodic domain equal to one wavelength (L = 2.5 m), in constant water depth h = 0.5
m. The blue line is the initial free surface position and the red arrow indicates the direction of

propagation of the wave.

To verify the numerical implementation of the viscous terms in the code and to evaluate the
contribution of each term, a linear regular wave, of wavelength L = 2.5 m, period Tp = 27 /wg =~
1.3724 s and amplitude A = 0.05 m is propagated in a periodic domain of constant depth (h =
0.5 m) for 10 periods (about 13.7 s) (Figure 4.1). The linear version of the model is used with
Az = 0.025m (=~ L/100), At = 0.001372 s (= T'/1000) for the two smallest values of viscosity
and At = 0.0001372 s (= 17'/10000) for the largest viscosity, and Ny = 7. At time ¢t = 0 s, the
free surface elevation is maximal at the left end of the domain. The time evolution of the free
surface elevation at this point is compared to the envelop (Eq.(4.66)) for v = 107%,1073, and
0.2263 m? /s in Figures 4.2-4.4, respectively.

Fv,2,t) = £nmag(a,t = 0)e " (4.66)

In these figures the envelop corresponding to cases 1 and 2 is the black dashed line and the one

corresponding to case 3 is the dark blue dashed line. For small values of the viscosity (v =
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1075 m?/s, see Figure 4.2), the amplitude decrease is hardly visible during the simulated period.
The differences between the three cases are very small but by zooming in one can see that the
amplitude decreases faster for case 3 than for cases 1 and 2, and that the decay rate is the same
for cases 1 and 2, in agreement with the theory. The decrease of the local maxima follows well
the predicted envelop for the three cases. For a 1000-times higher value of the viscosity (v =

1073 m? /s, see Figure 4.3) these effects are even more visible.

0.06

0.04
0.02b L

n(m)

—0.02b L L

0.050000 ez o

0.049998

. 0.049996 bt TN | ".
£ e | 1

i L = = AL o | 009984 |
— case 1l e | |
—0.06} ~- cmse2| . o | ’|
— case 3 " : i s 3 i iz 4
0] 2 4 6 8 10 12 14

Figure 4.2: Amplitude decay at the first node of the domain as a function of time with viscosity

v = 1076 m?/s, for cases 1-3.

According to the theory, the angular frequency is reduced for case 1 and case 2. However, the
value of the viscosity needed to obtain a significant reduction in the angular frequency is large.
To obtain an angular frequency w = awy (o € [0, 1]), the viscosity must be v = V0,V 1 — 02,
with Vynee = wo/ k2. For the wave characteristics considered here, the viscosity therefore must
be v = 0.2263 m? /s (as Vpae = 0.7248 m?/s) to obtain a 5% reduction of the angular frequency,
which is not a physically realistic value. However, in order to check the correct implementation
of the dissipative terms in the code, the results of the simulations of the three cases with this
value of viscosity are presented in Figure 4.4. The period estimated from Figure 4.4 for cases 1
and 2is T' = 1.444596 s, which is in good agreement with the theoretical value of 7" = 1.444635
s. Note the very rapid reduction of the amplitude of the free surface with this high value of
viscosity (consequently the extent of the time interval in the horizontal axis of this figure was

reduced compared to Figures 4.2 and 4.3).
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0.06

—-0.04}

—0.060
t(s)

Figure 4.3: Amplitude decay at the first node of the domain as a function of time with viscosity

v = 1073 m?/s, for cases 1-3.

This test case shows the ability of the model to take into account the effects of bulk viscosity,
showing good agreement with Lamb’s theory (Lamb, 1932). Moreover, it is shown theoretically
and verified numerically that the viscous terms contribute equally to the damping of the ampli-

tude of the wave.
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Figure 4.4: Amplitude decay at the first node of the domain as a function of time with viscosity
v = 0.2263 m?/s, for cases 1-3. (Note that the time interval in this figure is shorter than the

simulated duration, contrary to Figures 4.2 and 4.3).
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4.4.2 Viscous standing wave in the linear regime

The energy loss due to bulk viscosity following Lamb’s theory (Lamb, 1932) is well reproduced
by the model. Nevertheless, this theory is only valid for high Reynolds numbers. In the case
of finite depth, additional energy losses may exist due to bottom friction, which are not taken
into account with Lamb’s damping coefficient. As an extension of Lamb’s theory, Antuono and
Colagrossi (2013) (AC2013 hereafter) considered waves propagating in finite depth in a viscous
fluid for a wide range of Reynold numbers (as low as Re = 50), and they derived an approximate

formula for the damping rate using a solution of the linearized Navier-Stokes equations.

%6 5 10 15 20
x (m)
Figure 4.5: Set-up of the simulations of standing waves of amplitude a, oscillating in a periodic
domain equal to one wavelength (L), in constant water depth h. Blue solid and dashed lines

indicate the extreme positions of the free surface.

Here, the simulations of standing waves, using the linear version of Misthyc, will be compared to
this theory. The standing wave has an amplitude a = 0.05 m in depth A = 1 m (Figure 4.5). The
periodic domain is one wavelength long (L). The temporal evolution of the total kinetic energy

of the fluid, normalized by its value at initial time, is defined as:

% [//¢Z—Wa ;()d:zdy—k/x/yqb(z:—h,t) gi(z:—h,t) dzxdy| (4.67)

where the first term is the free surface contribution and the second term is the bottom contribu-
tion.

Several values of the viscosity () or Reynolds number, here defined as Re = h+/gh/v and rela-
tive water depth (kh), are considered. Five combinations of (Re, kh) from deep to shallow water
(see Table 4.1) were tested. For each combination, two linear simulations were completed by ac-
tivating, (1) only the bulk viscosity, (2) the bulk viscosity and bottom friction terms. The second

series of simulations allows evaluating when bottom friction is negligible. Simulations 1, 2 and 3
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can be compared to assess the effects of viscosity in deep water (kh = ), which are expected to
be small since bulk viscosity is the only source of dissipation. Large values of the viscosity (up
to v = 0.06264 m?/s) are tested for this analysis to emphasize the viscous effects. Simulations
2, 4 and 5, can be compared to assess the impacts of the relative water depth. The dissipation is
expected to increase as the relative water depth decreases, and the bottom friction term become
predominant. The results are plotted in Figures 4.6-4.11 as a function of the nondimensional time
t* =1t\/g/h.

Simulation | kh | L(m) | Re | v (m?/s)
1 2 50 0.06264
2 2 500 | 0.006264
3 2 2500 | 0.001253
4 7/3 | 6 | 500 | 0.06264
5 /12 24 500 0.06264

Table 4.1: Nondimensional and physical parameters for the five simulations.

In some cases, instabilities develop in time when the bottom friction term is present (e.g. Fig-
ure 4.6). Small wavelength oscillations in the free surface elevation appear and grow during the
simulation. Looking at the time evolution of the amplitude spectra as a function of £ (not shown
here), the increase of energy for high values of k is clearly visible. In simulation 4, for which
time instabilities develop, a series of tests of the numerical parameters (At, Az and Nr) were
completed for the simulation with bottom friction (see Figure 4.6). The default parameters are
At = T/1000 = 0.00222 s, Az = L/100 = 0.06 m and Np = 7 (dark blue line). With these
numerical parameters, the kinetic energy diverges from the approximated solution proposed by
AC2013 around t* ~ 28. Decreasing the time step by a factor of 100 (dashed red line) does not
delay the divergence. A finer spatial resolution (light blue line) leads to an earlier divergence
around t* = 24, and the increase of the vertical resolution to N7 = 12 (purple line) also leads to
an even earlier divergence at t*x = 12. The simulations were stabilized by applying a low-pass fil-
ter on the variable 9°®/02%(z = —h) which is integrated in time in the bottom friction condition
(Eq.(4.46)). At each time step, the Fast Fourier Transform of 9?®/92%(z = —h) is computed and
only the first 10 modes are kept. With filtering (orange line), the evolution of the kinetic energy
agrees with AC2013. The frequency of the filtering was also tested. For this simulation, applying
the filter only every 6 time steps is sufficient to avoid the growth of instabilities. However, this
is not a general result, and the optimal filtering frequency may vary for each simulation. Thus,

the filter is applied at every time step in the following simulations.

Unexpectedly, the time instability develops even more rapidly in the case of deep water (kh = 7)
when the bottom friction term should be negligible, and the simulations with and without bottom
friction should produce nearly the same results. For simulation 1, filtering the 0?®/92%(z =

—h) term is not sufficient. Previous results without viscosity showed that the model accuracy
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Figure 4.6: Evolution of the normalized kinetic energy of the system as a function of nondimen-
sional time for kh = 7/3 and Re = 500 (v = 0.06264 m?/s), for different values of Az, At and
Nr (see legend).

increases for deep water cases with larger Np (Yates and Benoit (2015)), but increasing the value
of Nt only caused the divergence to occur earlier (as seen for simulation 4). On the contrary, by
decreasing Nt to Ny = 5, the simulation with bottom friction shows the same kinetic energy
evolution as the simulation with only the bulk viscosity (Figure 4.7). In deep water, the simulated
vertical profile of the velocity potential varies significantly, and adding higher order polynomials
in the decomposition increases the creation of small oscillations in the profile that are amplified
by taking the second derivative. These instabilities occur for high values of the viscosity, above
the range of validity of the theory (which is roughly v € [107¢,1073] m?/s). Higher order terms
(O(v)) that were neglected for small viscosities may become important and their absence could
destabilize the system. In real application cases, the viscosity will be of maximum value e.g. 1073
m?/s. For this range of viscosities, the simulations are stable even without filtering (simulation
3).

It is also important to note that filtering enables increasing the simulation time step to that of
the same order as the one used for the simulations without viscosity. For example, simulation
5 with bottom friction is stable for At = 7'/10000 without filtering, and At = 7'/100 with
filtering, producing visually identical curves of the kinetic energy evolution. Table 4.2 shows the
maximum nondivergent time step for the five simulations with bottom friction, with and without
filtering. The time step used for the simulation with bulk viscosity only is the same as the one

for the simulation with bottom friction and filtering.

The results for the deep water cases (kh = ) for several values of viscosity are compared to
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Simulation At,in no filter At in filter
1 X T/2000 = 0.000567 s (N7 = 5)
2 X T /200 = 0.00567 s
3 T/100 = 0.01134 s T/100 = 0.01134 s
4 X T/100 = 0.0222 s
5 T/10000 = 0.000775 s T/100 = 0.0775 s

Table 4.2: Maximum time steps for the simulations with and without a low-pass filter on the 10
first modes of 9?®/9z?(z = —h) at each time step. X means that the simulation diverged even
for the smallest time step tested At = 7"/10000.

the solution proposed by AC2013 (green dashed line) and Lamb’s solution (black dashed line) in
Figures 4.7 to 4.9. For this set of simulations, the results of the simulation with and without bot-
tom friction are superimposed, since in infinite depth the effects of bottom friction are negligible.
Lamb’s solution overestimates the energy dissipation in comparison with the solution proposed
by AC2013, especially for small Reynolds numbers (high viscosity). The leading order term of
the damping rate obtained by AC2013 coincides with Lamb’s damping coefficient, and the neg-
ative higher order terms in AC2013 thus explains the overestimation of Lamb’s solution. The
simulation results follow Lamb’s solution since the bulk viscous terms have been derived using
the same assumptions by considering small viscosity values to neglect terms of order o(v). For
the smallest value of viscosity (v = 0.001253 m?/s), the difference between the two solutions
is hardly visible, but, according to AC2013, for long propagation times, these differences could

become important.
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Figure 4.7: Evolution of the normalized kinetic energy of the system as a function of nondimen-
sional time for kh = 7 and Re = 50 (v = 0.06264 m?/s).
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Figure 4.8: Evolution of the normalized kinetic energy of the system as a function of nondimen-
sional time for kh = 7 and Re = 500 (v = 0.006264 m?/s).

In cases 4 and 5 where the relative water depths are no longer in the infinite depth limit, the
differences between the simulation with and without bottom friction increase when the relative
water depth decreases (Figures 4.10 and 4.11). The damping is more important with bottom fric-
tion and has consequences on the wave amplitude and propagation speed, as seen in the phase
shift between the two curves. The simulations with bulk viscosity only follow Lamb’s solution,
while the simulations that also include bottom friction are in good agreement with the solution
proposed by AC2013. For intermediate and small relative water depths, the bottom friction term
becomes non negligible and contributes significantly to the dissipation. It is necessary to take
into account the effect of bottom friction to reproduce correctly the damping of a standing wave

during in finite depth.

In comparison to the solution proposed by AC2013, it is necessary to use the bottom friction
term to reproduce correctly the decay of the kinetic energy in intermediate and shallow water.
However, in deep water, the numerical model overestimates the decay of the kinetic energy for

small Reynolds numbers since it follows Lamb’s theory.

This set of simulations will be presented in a a publication currently being prepared on taking
into account viscosity in water waves models. The visco-potential flow model is compared to a
model based on the linear free surface Stokes equations and a model resolving the full nonlinear

free surface Navier-Stokes equations.
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Figure 4.9: Evolution of the normalized kinetic energy of the system as a function of nondimen-
sional time for kh = 7 and Re = 2500 (v = 0.001253 m?/s).
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Figure 4.10: Evolution of the normalized kinetic energy of the system as a function of nondimen-
sional time for kh = 7/3 and Re = 500 (v = 0.06264 m?/s).
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Figure 4.11: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = 7/12 and Re = 500 (v = 0.06264 m?/s).
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4.4.3 Attenuation of a solitary wave in a wave flume

The third test case simulates the propagation of a solitary wave over a flat bottom (hg = 0.15
m) and then up a gentle slope (1/20), based on the experiments of Liu et al. (2006). In the exper-
iments, the wave is generated by a piston-type wavemaker. Acoustic gauges in the wave flume
record the evolution of the free surface elevation in the flat-bottom zone and in the shoaling zone
(black triangles in Figure 4.12). The domain for the numerical simulation extends from z = 0 m
to z = 25 m (with the slope beginning at z = 19.88 m), with a regular mesh with Az = 0.0075
m, and N7 = 7. Since the numerical model is not able to simulate run-up on the slope, a mini-
mum depth of h; = 0.01 m is set, and the simulations are stopped before the wave arrives at the
reflective right boundary. Facing stability problems at the right boundary for high values of Ny
due to the very small water depth, the impermeable wall boundary condition is slightly modified,
using its projection on the N7 + 1 first Chebyshev polynomials instead of only on the Ny — 1
supplemented by the Dirichlet condition at the free surface and the slip or no-slip condition on

the bottom as done usually.
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Figure 4.12: Bathymetry, initial free surface elevation, and positions of wave gauges (black tri-

angles) in the Liu et al. (2006) experiments.

The initial condition is the solution of the fully nonlinear Euler equations obtained with the al-
gorithm of Clamond and Dutykh (2013), computed using the solitary wave amplitude measured
at the first gauge (z = 6.5 m). Among the five wave amplitudes tested by Liu et al. (2006), the
smallest (¢ = 0.01365 m) and the largest (¢« = 0.06135 m) are simulated here, corresponding to
non-linearities of € = a/hy = 0.091 and € = 0.409, respectively. The time step is calculated such
that CFL = 1 with CFL = CAt/Ax (using the velocity C given by the algorithm of Clamond
and Dutykh (2013). For the smallest wave, At = 0.006 s and for the largest wave At = 0.0052

s. The simulation parameters are shown in Table 4.3.
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a (m) € At(s) | CFL
0.01365 | 0.091 | 0.006 1
0.06135 | 0.409 | 0.0052 1

Table 4.3: Simulation parameters for the two solitary waves.

The nonlinear version of the model is used for this test case, simply by adding the linear viscous
correction terms to the basic nonlinear equations (Eq.4.5) and (Eq.4.4), and using the no-slip
boundary condition at the bottom (Eq.4.51). As noted by Dutykh and Dias (2007), the derivation
of these viscous terms was completed for the linear regime, and it is merely hypothesized that
these terms can be generalized directly to the fully nonlinear equations. The application to a case
with small (¢ = 0.091) and moderate (¢ = 0.409) nonlinearities is a good test of the limits of this
hypothesis.

The domain can be decomposed into two zones of interest where different physical processes are
important. First, over the flat bottom (x < 19.88m), wave dissipation is caused by bulk viscos-
ity and bottom friction. Second, on the slope, the effects of wave shoaling (increase of the wave
amplitude due to the water depth decrease) become important and compete with the energy dissi-
pation (19.88 m< = < 25 m). Over the flat bottom, the amplitude of the solitary waves decreases
(Figure 4.13 a and b for € = 0.091 and € = 0.409, respectively) due to these dissipative pro-
cesses. The results of four simulations for each value of € are presented in Figure 4.13 to evaluate
the influence of the different sources of energy dissipation on the decay rate. Without viscosity
(light blue line), the wave amplitude remains constant. The simulations with only the bulk vis-
cosity terms (slip bottom condition) and with v = 7.107% m?/s show only a weak amplitude
decay and are close to the simulations without viscosity (v = 0 m?/s). When the bottom fric-
tion term (no-slip bottom condition) is added, the soliton amplitudes decrease significantly. The
primary source of energy dissipation is bottom friction. This effect becomes more pronounced
for larger wave heights that have larger horizontal velocities at the bottom. The value of the
viscosity required to best fit the experimental data is slightly higher (v = 7.107% m?/s) than
the kinematic viscosity of water (v = 1075 m?/s). Using a Boussineq model to simulate these
experiments, Liu et al. (2006) found the same decay rate with a viscosity of 107% m?/s when
taking into account the boundary layers on the walls of the wave flume. Here this dissipation is
not taken into account, which could explain the higher value of v adjusted to obtain the same
decay rate as in the experiments. The same value of viscosity is used to fit the experimental data
for the two wave heights, showing the insensitivity of this value to the wave non-linearity, for

the considered range of conditions.

Over the sloping bottom, two processes are competing: energy dissipation that decreases the

wave amplitude, and wave shoaling that increases the wave amplitude with a decrease in water
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Figure 4.13: Decrease of the amplitude of the soliton along the wave flume, for a) ¢ = 0.091 and b)
€ = 0.409, comparing the experimental data (red dots), and numerical results without viscosity
(light blue), with v = 107% m?/s bottom pure slip condition (green), with v = 107¢ m?/s

no-slip bottom condition (blue), and with v = 7.10~% m? /s no-slip bottom condition (black) .

depth. The shoaling effects appear stronger than the dissipative effects for these two simulations
since the amplitude of the wave increases as the wave propagates over the slope. This increase is
reproduced well by the simulations with the bottom friction term using v = 7.107% m? /s (Figure
4.14). Here, it is essential to use the modified bottom friction term for a non flat bottom (Eq.4.51),

otherwise the dissipation due to bottom friction is overestimated by the numerical model.
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Figure 4.14: Evolution of the amplitude of the soliton in the shoaling zone, for a) ¢ = 0.091
and b) ¢ = 0.409, comparing the experimental data (red dots), and the numerical results with
v =7.10"%m?/s (black).
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This third test case shows that the introduction of the linear viscous terms in the nonlinear
version of the model allows reproducing well the experiments with non negligible nonlinear
effects. When the bottom friction term is modified to take into account the bottom slope, the
model reproduces correctly the equilibrium between the effects of dissipation and shoaling on

the wave amplitude as the soliton propagates up the slope.
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4.4.4 Dissipation of waves propagating over a step

The last test case simulates the propagation of regular waves over a vertical submerged step,
based on a series of small-scale experiments performed by E. Monsalve in the PMMH labora-
tory, at the ESPCI (Ecole Supérieure de Physique et de Chimie Industrielle de la ville de Paris)
(Monsalve et al., 2015). The goal of these experiments is to study the nonlinearities occuring
when waves pass over a submerged obstacle and to compare the observations with Massel’s
theory (Massel, 1983) for a wide range of incident wave frequencies f; €[1 Hz; 4 Hz]. Massel
developed a second order theory to explain the generation of a second harmonic over a step
(zone (I1), Figure 4.16). The second harmonic can be decomposed into two components: (1)
bound waves that propagate at the same celerity as the fundamental mode with frequency f; but
with a wave number twice the fundamental wave number (2]{:5[[) = 2k(f1, pUI ))), and (2) free
waves with the wave number corresponding to the linear dispersion relation for the frequency
2f1 (kgn) = k(2f1, hID)) that propagate at the corresponding celerity. These two components
interact, creating a beating of the second harmonic amplitude. The beat length is estimated by
(Massel, 1983):

2
D =———F—— (4.68)
kém — 2]{{11)

In the experiments, the nonlinearities are created by the transition between the deep water re-
gion (h)) = 6.5 cm) and the shallow water region (R = 2.0 cm) at a vertical step located
at £ = 0 m (Figure 4.16). Waves are generated by a flap wavemaker at x = —0.38 m. At the
right end of the domain, beginning at z = 0.85 m, an absorbing beach of slope 8% is constructed
to prevent wave reflection. The free surface deformation is measured through a non-intrusive
method, called Fourier Transformed Profilometry (Cobelli et al., 2009). A sinusoidal pattern is
projected on the water surface made opaque by adding 7705 particles (Figure 4.15). The free
surface is reconstructed from the phase difference between the deformed fringe pattern due to
wave propagation, and the reference pattern measured when the water is at rest. This provides

accurate spatial (2D) and temporal measurements of the free surface.

The 1DH nonlinear version of the model (Eq.(1.25) and Eq.(1.26)) that does not include the effects
of viscous dissipation was first used to simulate the experiments. The vertical step is modeled
with a hyperbolic tangent, with a transition of slope 85 degrees in order to avoid creating a
discontinuity at the step (see inset in Figure 4.16). The numerical domain is the same as that of
the experiments (z € [—0.38 m; 0.85 m]), with the addition of a Lge,-long relaxation zone for
wave generation and a Lgps-long relaxation zone for wave absorption (Figure 4.16). Waves are
generated with a Dirichlet boundary condition for the potential computed using linear theory.
The amplitude of the incident wave was not measured in the experiments (only the motion of the

wave maker was prescribed), so the amplitude used in the numerical simulation is determined
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Figure 4.15: Experimental set-up. ESPCI credit.

by qualitatively fitting the amplitude of the simulation results to the experimental data before

the step.
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Figure 4.16: Bathymetry used in the numerical simulations, showing a zoom of the hyperbolic

tangent form of the step transition in the bottom elevation.

The first simulations were completed for an incident wave frequency of f; = 1.9837 Hz. The
associated wavelength depending on the water depth is given by the linear dispersion relation:
L{" = 0.334 m in depth 2D and L{'") = 0.2112 m in depth 2(/D. In this case Ny = 7, and the
domain was irregularly meshed with a spatial step of Az = Lgl) /100 far from the step, and a
refinement of Az /2 near the step. The time step was At = 0.025 s &~ 7 /200 in order to have a
maximum CFL=1. The amplitude of the wave was set to a = 3.2 mm. The relaxation zones were
of length Lge,, = Lgl) and L., = 2LgH).

The simulated space-time evolution of the free surface elevation shows wave crests in red and
wave troughs in deep blue (Figure 4.17). The slope of the line following a wave crest is pro-
portional to the inverse of its celerity: the steeper the slope, the slower the wave propagation.
Two phenomena are visible: (1) The reflection on the step causes an amplitude modulation in the

deeper part of the domain. (2) Passing over the step, the slope of the line following a wave crest in-
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creases, showing the decrease in wave propagation associated with a decrease in the water depth.
A secondary crest (in light blue) forms between the two main crests from (z € [0.2 m; 0.4 m)).
In addition, the slope of the secondary crest is even steeper, corresponding to the free component

of the second harmonic, which propagates more slowly than the fundamental wave.

n (mm)

@ (m)

Figure 4.17: Simulated space-time profile of the free surface elevation (in mm) for f; = 1.9837
Hz. The position of the step is indicated by the vertical white dashed line. The slope of the crest

and trough lines show the wave celerity.

The free surface elevation time series were decomposed into the amplitudes of the first five har-
monics. The spatial evolution of these amplitudes were then compared to those obtained from
the measurements. In the experiments, the bi-dimensional measurements of the free surface
show that transverse variations are not always negligible. Here the simulation results are com-
pared to the transverse average of the amplitudes (dashed lines), and the standard deviation is
indicated by the shaded zone. For f; = 1.9837 Hz, in the deeper region of the domain before
the step, the simulation results agree well with the experiments (Figure 4.18). However, in the
shallower water part over the step, the harmonic amplitudes from the experimental data (dashed

lines) show significant dissipation that is not reproduced by the simulations (that do no include
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viscous effects). In addition, the beat length of the second harmonic in the simulations is smaller

than in the experiments.
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Figure 4.18: Simulated (solid line) and measured (dashed line) spatial evolution of the first five
harmonic amplitudes for f; = 1.9837 Hz without including viscosity or surface tension in the
simulations. The dashed line is the transversal mean of the measurements and the shaded zone

is the standard deviation.

To evaluate the importance of viscous effects, first, the bulk viscosity terms were added to the
model and the optimal value of the bulk viscosity was sought to reproduce the amplitude of the
second harmonic (Figure 4.19). The optimal value v = 4.10~ m? /s is higher than the viscosity
of pure water. This is likely due to the fact that only dissipation through internal friction was
included whereas the effects of bottom friction may also be important. However, adding bulk
viscosity to the simulations improves the agreement with the experimental data, but the model
still overestimates the harmonic amplitudes for z > 0.2 m. The bulk viscosity terms have no

effect on the beat-length of the second harmonic.

The beat length of the second harmonic is expressed as a function of the difference between the
wave numbers of the free and bound components (Eq.(4.68)), which depend on the dispersion
relation for waves. The surface tension () modifies the linear dispersion relation such that
(Dingemans, 1997a):

1
w? = (1 + BO) gk tanh(kh), (4.69)

where Bo = pg/(ck?) is the Bond number quantifying the ratio between gravity effects and

surface tension effects. If Bo > 1, surface tension effects can be neglected and the classical
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Figure 4.19: Simulated (solid line) and measured (dashed line) spatial evolution of the first five
harmonic amplitudes for f; = 1.9837 Hz with bulk viscosity v = 4.107° m?2/s, but without the
effects of surface tension. For comparison, the results from the simulation without the effects of

viscosity or surface tension are shown by the gray lines.

relation dispersion is recovered. For small Bo, surface tension effects become important causing
an increase in the wavelength for a given wave frequency. According to the values in Table 4.4,
for the water depth h{/1), the Bond numbers corresponding to kgn) and kén) are respectively
Bo = 158 and Bo = 29.

Surface tension impacts short waves with wavelengths on the order of centimeters. The wave
lengths associated with the second harmonic over the step are less than 10 cm, so the influence
of surface tension on their associated wavelength is small (Table 4.4), but important enough to

modify the beat length.

o (N/m) | kY rad/m) | LD (m) | &5 (rad/m) | LT (m) | D= (m)
0 29.65 0.2118 70.95 0.08855 0.5393
0.071 29.54 0.2127 69.11 0.0909 0.6264

Table 4.4: Wave number and wavelength of the first and second harmonics with the associated
beat length for the water depth h(//) = 2.0 c¢m, and for surface tension ¢ = 0 N/mand o = 0.071
N/m.

To take into account the effects of surface tension, the dynamic free surface boundary condition

is modified with a term proportional to the curvature of the free surface (e.g. Dias and Kharif,
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1999), Eq.(1.26) becomes:

- -\ 2
0P 1 {0d 1, on\ 2 92 o 0 G
= —gn—= [ — St (14 (=) | —2vas o | 22— | @70
ot S 2(896) ot ( +<8x) V822+p8:c o\ 2 (4.70)
e (3)
With surface tension (o = 0.071 N/m), the simulated beat length of the second harmonic (red

curves, Figure 4.20) is close the measured value. Thus, even with wavelengths at the limit of the

range for which surface tension has significant effects, the influence is visible.
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Figure 4.20: Simulated (solid line) and measured (dashed line) spatial evolution of the first five
harmonic amplitudes for f; = 1.9837 Hz without the effects of viscosity but with surface tension
o = 0.071 N/m. For comparison, the results from the simulation without the effects of viscosity

or surface tension are shown by the gray lines.

Finally, by simulating the combined effects of bulk viscosity (v = 4.10~° m?/s) and surface ten-
sion (0 = 0.071 N/m), the simulation results agree well with the experiments (Figure 4.21). The
amplitude of the second harmonic reaches a minimum around =z = 0.59 m, that is larger in the
simulations than measured in the experiments. This minimum is proportional to the amplitude
difference between the bound and free waves. The free wave has a smaller wavelength than the
bound wave, and is thus more dissipated by the bulk viscosity. Therefore, the difference between
the two amplitudes increases, explaining the increase of the minimum attained by the second
harmonic amplitude. The space-time profiles of the free surface elevation of the simulation (Fig-
ure 4.22) and the experiments (Figure 4.23) show that in the simulation, the dissipation is still

underestimated in comparison with the experiments. Note that the experimental space-time free
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surface profile is made with the free surface elevation at the center of the wave tank, which may

explain some differences in wave amplitude attenuation when compared with Figure 4.21.

0.0040

0.0035 |- 4

0.0030 |- -

0.0025 F-ooeoeee

0.0020 |-~

amplitudes (m)

0.0015 -
0.0010 |-

0.0005 |-

0.0000

Figure 4.21: Simulated (solid line) and measured (dashed line) spatial evolution of the first five
harmonic amplitudes for f; = 1.9837 Hz with viscosity v = 4.107° m? /s and surface tension
o =0.071 N/m.

Additional experiments were completed with higher incident wave frequencies. Using the same
value of the bulk viscosity (v = 4.107° m?/s) in the simulations produces good results for
frequencies up to 3 Hz. For higher frequencies, the simulated dissipation is too strong, and the
amplitudes decrease even before the step. This is likely due to the fact that the dominant source

of energy dissipation is bottom friction.

Bottom friction may become a significant source of dissipation for lower frequency waves (L)
(since the dissipation is stronger for longer wavelengths). By taking into account the effects of
bottom friction, the optimal viscosity will likely be reduced. Therefore, a series of tests were run
including the bottom friction term. The no-slip condition was first applied everywhere in the
domain, except the generation relaxation zone. However, this did not give satisfactory results in
the region around the step. Since the bottom friction term is derived assuming small gradients
in the water depth, the theory is likely no longer valid when simulating abrupt changes in depth
like a bottom step.

Finally, the no-slip condition was only applied in the shallow water region. To prevent an abrupt
change of the bottom boundary condition, the viscosity in the bottom friction term increase

slowly in space to reach the targeted value. However, for value of the viscosity required to re-
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Figure 4.22: Simulated space-time profile of the free surface elevation (in mm) for f; = 1.9837
Hz, with viscosity v = 4.107° m?/s and surface tension ¢ = 0.071 N/m. The position of the
step is indicated by the vertical white dashed line.

produced the observed amplitude decay, oscillations occur in the viscosity transition zone mak-
ing the simulation unstable. Therefore, only simulations taking into account the effects of bulk

dissipation are shown here.

In the numerical model, only two sources of energy dissipation are represented. Przadka et al.
(2015) show that the white pigments added to the water were chosen to avoid surface film effects
contrary to most other paint pigments that contain surfactants. But if the water is not perfectly
clean, a surface film can form, which changes the attenuation properties at the surface of the
fluid and increases the damping. This effect can increase significantly owing to a resonance
effect between capillary-gravity waves and elastic waves (also called) Marangoni waves. Thus,
the high dissipation observed in the experiments may also be due to the presence of dust on the
water surface. This contribution to energy dissipation is not taken into account in the numerical
model and may be one additional explanation for the differences between the experiments and

simulations.

With the bulk viscosity and surface tension terms, the model reproduces well the experimental

data for a given frequency of the incident wave (e.g. Figure 4.21). However, the value of the bulk
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Figure 4.23: Experimental space-time profile of the free surface elevation (in mm) for f; = 1.9837

Hz. The position of the step is indicated by the vertical white dashed line.

viscosity has to be adapted for each frequency. The model is not able to take into account the
effects of bottom friction in this specific case (too steep bottom slope) nor surface film effects

that may be an important mechanisms for energy dissipation in the experiments.

4.5 Conclusions

Dissipation has been introduced into the potential flow model deriving a visco-potential system
of equations that contains: (1) two additional terms in the free surface boundary conditions to
take into account the predominant contribution of the vortical component of the velocity repre-
senting the effects of bulk viscosity, and (2) the modification of the bottom boundary condition
to take into account the presence of a boundary layer representing the effects of bottom fric-
tion. The simulation results agree well with the developed theories and experimental data when

applied to cases respecting the model assumptions (i.e. v < 1073, small bottom slope).
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Figure 4.24: Simulated (solid line) and measured (dashed line) spatial evolution of the first five
harmonic amplitudes for f; = 3.8 Hz with viscosity v = 4.107% m?/s and surface tension
o = 0.071 N/m. The dashed line is the transversal mean of the measurements and the shaded

zone is the standard deviation.



Chapter 5

Development and implementation of
the 2DH version of the model using
Radial Basis Functions (RBF)

Ce chapitre traite de I’extension du modéle en deux dimensions dans le plan horizontal.
Avec Dobjectif de modifier le moins possible la structure du code 1DH (i.e. en gar-
dant un schéma explicite de Runge-Kutta d’ordre 4 pour Uintégration en temps et la
résolution spectrale du probléme de Laplace sur la verticale), et de pouvoir traiter des
domaines irréguliers, une méthode basée sur les Fonctions de Base Radiales (en Anglais
RBF) est utilisée pour estimer les dérivées horizontales en deux dimensions pour des
nuages de points distribués de facon irréguliére et non-structurée. Aprés une revue des
différentes utilisations et caractéristiques des RBFs, le choix se porte sur la méthode RBF-
FD, qui consiste a estimer la dérivée d’une fonction en un point comme une combinaison
linéaire des valeurs de la fonction en ses points voisins. Les RBF centrées en ces points
sont ensuite utilisées pour déterminer les pondérations. La formulation mathématique
de la méthode ainsi que sa mise en ceuvre numérique sont présentées. La précision
de lestimation des dérivées premiéres et secondes est testée pour une fonction sinusoi-
dale en faisant varier les différents paramétres de la méthode: type de RBF, valeur du
paramétre de forme C, taille du stencil Ny, degré du polynome augmentél. L objectif
étant d’appliquer les poids déterminés pour chaque type de dérivée d toutes les variables
du modeéle, la recommandation pour une telle utilisation serait de privilégier des RBFs
ne dépendant pas de paramétre de forme. En effet, la valeur optimale de celui-ci appa-
raissant fortement dépendante de la fonction considérée, il peut s’avérer compliqué de
trouver une valeur adéquate pour l’ensemble des fonctions utilisées. Pour une taille de
stencil fixée entre 20 et 30 points, la PHS (Polyharmonic Spline) " augmentée d’un
polynéme de degré 3 semble un bon compromis entre précision de l’estimation et temps

de calcul.
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For the extension of the model to two horizontal dimensions, our aim in the frame of the current
PhD work was to modify as little as possible the 1DH version of the code, keeping the RK4 scheme
for time integration (section 2.1.1) and the spectral resolution in the vertical dimension (section
1.2). Nevertheless, for the estimation of the horizontal derivatives, finite-difference schemes are
hardly generalizable for two or higher dimensions since polynomial unisolvency is no longer
assured. In cases where the geometry of the domain is simple, horizontal dimensions can be
treated separately with 1D schemes but then, the model cannot be applied to complex domains
requiring geometric flexibility with scattered node layout. Here, a meshless method based on
the Radial Basis Functions (RBF) is tested and implemented in Misthyc to avoid these kind of

restrictions.

5.1 Presentation of the RBF method

5.1.1 General context

5.1.1.1 RBF to interpolate scattered data fields

RBF were first introduced by Hardy (1971) for interpolation purposes. He wanted to construct
a continuous surface representative of the topography of a given zone, from a set of scattered
elevation measurements. After trying to use Fourier and polynomial series methods that he found

unsatisfactory, Hardy finally obtained good results using a basis composed of radially symmetric

functions ¢(||z — x;||), with one centered at each data point z;, (where the norm is the standard
Euclidean distance function). Thus the interpolant s(z) knowing the data values f; at N nodes

zp, k=1,2,..., N can be written as:
N
s(@) =Y Mk ¢l — 2y 1) (5.1)
k=1

The coefficients A, in the RBF interpolant can be found by enforcing s(z;) = fi, which results

in the system of linear equations:

O(llzy —zll)  o(llzy —2ol]) -+ ollzy —anll) | | M fi
o(l|lzy —zo|)  S(llze —2ol]) - @llzg — zn]]) A2 )

: : . =1 (5:2)
(llzy —21l]) o(llzy —2ol]) -+ o(llzy —2znlD] AN fn

Hardy (1971) used the multiquadric (M Q) radial function ¢(r) = v/r2 + C? with C a strictly
positive shape parameter to have a continuously differentiable basis function (even when r = 0).
C controls the sharpness of the RBFs: large values of C' give rise to flat basis functions, whereas
intermediate values lead to bowl-like basis functions, and small values to narrow cone-like ba-

sis functions. Franke (1982) led a study on scattered data interpolation, testing 29 interpolation
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methods for 6 different test functions, and the M () function was among the most accurate, to-
gether with the inverse multiquadric (IMQ), and the thin plate spline (TPS). Despite the good
results obtained with the multiquadric RBF, Franke (1982) still raised concerns because the non-

singularity of the associated interpolation matrix had not been proven at the time of the study:.

Many different RBFs can be used, the most common choices are presented in Table 5.1.

Name (Acronyme) Function ¢(r) Condition Regularity
Polyharmonic Spline (PH S) r’™m m odd integer | piecewise-smooth
Thin Plate Spline (T'PS) ™ logr m even integer | piecewise-smooth
Multiquadric (M Q) Vr2 4+ C? CeR infinitely-smooth
Inverse Multiquadric (I M Q) ﬁ CeR infinitely-smooth
Inverse Quadratic (/Q) ﬁ CeR infinitely-smooth
Gaussian (GA) e~/C? CeR infinitely-smooth

Table 5.1: Commonly used RBFs including the form of the function, the necessary constraints on

the free parameter, and the regularity of the function.

For infinitely smooth RBFs (typically those with a shape parameter C), the interpolation sys-
tem will never be singular if the scattered nodes are distinct, and they lead to spectral accuracy.
For GA, IQ) and I M (@) RBFs, it can be shown that because they have a positive Fourier trans-
form, their interpolation matrices are positive definite and thus non-singular (Fornberg and Flyer,
2015), but it is not the case with the M Q). However, Micchelli (1986) proved that the interpolation

matrix for M Q) has one positive and N — 1 negative eigenvalues, ensuring its non-singularity.

Piecewise smooth RBFs do not depend on a shape parameter, but they present a singularity at the
origin leading to algebraic rather than spectral convergence. To assure the unique solvability of
the linear system for interpolation with piecewise smooth RBF, the interpolant has to be modified

slightly by including polynomial terms:

N M
s(@) =Y e oz —zl) + > Bjpj(a), (5.3)
=1 =1
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I4d
with p; (g)](:dl) a basis for polynomials up to degree [ in R? (where (l—;d) is the binomial coeffi-
cient (lzd) = (l;ﬁ) !). For PH S of degree m, Barnett (2015) showed that a polynomial of degree

at least | = (m — 1)/2 must be added to meet this condition. The addition of polynomial terms
requires additional constraints for the linear system to be well-posed, which tend to minimize

far-field growth (reducing the divergence order when r — o0):
N
D Aipjlz) =0 j=1,2,3., M. (5.4)
=1

In this case, the non-singularity of the matrix becomes more restrictive since it requires the
nodes not just to be distinct but also unisolvent with regard to the appended polynomial space
(Fornberg and Flyer, 2015).

5.1.1.2 Use of RBF to solve partial differential equations (PDE)

The good interpolation results obtained with the RBF method made it of interest for partial
derivative estimates on scattered nodes. Stead (1984) compared partial derivatives obtained from
the M@ interpolant and from the least square quadratic approximation. Because RBF inter-
polants have no polynomial precision (except when adding polynomial terms Eq.(5.3)), Stead
(1984) recommended the M () method for surfaces with significant curvature. Later, Kansa (1990)
was the first to use the M () method (with a modified scheme) to solve PDEs (namely a Poisson
equation) with the straight collocation method, by applying the PDE derivative operators to in-
terior nodes and boundary conditions to the nodes on the boundary. The resulting matrix is not
symmetric and not proved to be unisolvent. Hon and Schaback (2001) showed that it was possible
to find very rare cases where the matrix was singular and so a general proof of unisolvency is
impossible. That is why, Fasshauer (1997) tried to recover the symmetry of the matrix, to ensure
non-singularity, by modifying the basis functions following a method based on Hermite inter-
polation. Another improvement was made by Fedoseyev et al. (2002), imposing both the PDE
and the boundary conditions at boundary nodes. Larsson and Fornberg (2003) compared these
three collocation methods to solve a Poisson equation for several functions. They found that
for infinitely-smooth RBFs, symmetric collocation gave the best results whereas, for piecewise

smooth RBFs, extra boundary collocation worked better.

5.1.2 Condition number of the interpolation matrix

The RBF interpolation method is known for generating ill-conditioned interpolation matrices.
The matrix condition number measures how sensitive the solution of the system is to changes
in the interpolation matrix. The computation of a solution of a linear system associated with
an ill-conditioned matrix is prone to large numerical errors. The interpolation coefficients be-

come oscillatory with large magnitudes that may lead to a poor evaluation of the interpolation
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because of numerical cancellations. Practically, the matrix is almost singular because the matrix
coeflicients become very similar. In the case of the global RBF method, the matrix becomes ill-
conditioned either when the size of the matrix increases (i.e. when the number of nodes N in
the domain increases) or when the shape parameter C' of the infinitely smooth RBFs becomes
very large leading to matrix coefficients that depend strongly on C. Overcoming the problem of
an ill-conditioned matrix is an important part of the work on RBFs (i.e. Kansa and Hon, 2000).
Depending on the causes of the ill-conditioned matrix, several types of solutions have been pro-

posed, which are presented briefly in the following sub-sections.

5.1.2.1 Numerical methods

Even without knowing the cause of an ill-conditioned matrix, some numerical approaches can be
used to solve ill-conditioned systems. The first idea is to increase the arithmetic precision of the
calculation, but it is computationally costly and is not usually retained as a “good” solution. Other
methods such as using a preconditioner or doing block partitioning have also been tested (Kansa
and Hon, 2000). Additionally, filtering techniques, using the Singular Value Decomposition (SVD)
method, which neglects the smallest singular values, is also suggested by Boyd (2010).

5.1.2.2 Reduction of the size of the matrix

The interpolation method was first introduced as a global method taking into account all the
nodes of the domain, leading to a full matrix. When the size of the matrix becomes too large,
it often becomes ill-conditioned appears. In this case, the size of the matrix can be reduced by
considering smaller domains using domain decomposition algorithms (Beatson et al., 2001; Wong
et al, 1999; Zhou et al., 2003). By extending this idea to the other limit, one can switch to a local
approach, defining stencils centered at each node of the domain, including only its Ngep, — 1
nearest neighbors, for a total of Ny, nodes in each stencil. Tolstykh and Shirobokov (2003)
were the first to consider this method to estimate derivatives with a finite difference approach,
followed shortly by Wright (2003) and Shu et al. (2003). Wright and Fornberg (2006) improved
the accuracy of this method by including a linear combination of derivatives of the function f at
the surrounding nodes. This local method also presents the advantage of reducing considerably
the computational time in comparison with the global method, and offers the possibility of be-
ing easily parallelized. The construction of approximate formulas for the derivatives using RBF

interpolants, also called the RBF-FD method, will be presented in more detail in Section 5.2.
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5.1.2.3 Nearly flat basis functions (C' — 00)

The interpolation matrix becomes ill-conditioned when C' — o0, i.e. in the limit of flat ba-
sis functions, generally leading to a trade-off between accuracy and numerical conditioning.
Nevertheless, according to Fornberg and Flyer (2015), the interpolation problem is not itself ill-
conditioned in the flat basis function limit; it is the numerical algorithm corresponding to the
“direct” application of the method that leads to an ill-conditioned procedure, whereas the prob-
lem is completely well-conditioned. Work has been done to develop stable algorithms to reach
accurate results even for high values of C. For example, the Contour Padé algorithm (Fornberg
and Wright, 2004) allows numerically stable computations of M () RBF interpolants for all C val-
ues. The interpolant is written as the sum of a rational function and a power series in C' whose
coefficients are determined in a complex C'-plane, removing the restriction that C' is real. This
method is not really adapted for a large data set. Another stable algorithm valid for larger node
sets, called RBF-QR, was developed by Fornberg and Piret (2007) for data points distributed over
the surface of a sphere. It consists in finding an alternative well-conditioned RBF basis spanning
exactly the same space. In this case, the new equivalent bases converge to the spherical harmonic
basis as C' — oo. The RBF-QR method has been extended to more general domains from 1 to 3
dimensions (Fornberg et al., 2011) mainly for GA RBF (Table 5.1). More recently a simpler and
faster algorithm, the RBF-GA algorithm has been developed (Fornberg et al., 2013), particularly
well-suited for RBF-FD applications. Use of a stable algorithm not only improves the accuracy
by allowing the use of larger values of C, but also makes the choice of optimal C' less critical.

Nevertheless, the modified RBFs have much more complicated expressions.

5.1.3 Accuracy of the estimates and choice of the RBF

The choice of RBF to obtain the most accurate estimates is not straightforward. Some trade-
offs must be considered. RBFs can be divided into two categories: the infinitely smooth and the
piecewise smooth functions. Two characteristics mainly differentiate these two categories: (1)
the type of convergence when reducing the typical node distance, and (2) the dependency on a

shape parameter C.

5.1.3.1 Spectral convergence vs algebraic convergence

Considering global RBF methods, infinitely-smooth RBFs have a spectral convergence when
piecewise smooth RBFs only have algebraic convergence, which often leads to a preference for
infinitely smooth RBFs (Fornberg and Flyer, 2015). Nevertheless, when considering local meth-
ods (i.e. RBF-FD method), the spectral accuracy of infinitely smooth RBFs is lost, minimizing
its advantage with respect to convergence. Moreover, infinitely smooth RBFs feature stagnation
errors, meaning that when the inter-node spacing is reduced, the error is not improved indef-

initely but reaches a plateau because the matrix becomes ill-conditioned. To counteract this
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problem, the value of C' is generally increased while the inter-node distance is decreased to keep
the condition number of the matrix constant. However this increase in C tends to degrade the
accuracy and prevents convergence (Fornberg and Flyer, 2015). The addition of a polynomial of
variable degree (at least a constant) to the RBF interpolant may reduce these errors producing
a convergence rate corresponding to the degree of the added polynomial. PH S RBFs need the
addition of a polynomial to the interpolant to guarantee the unisolvency of the system, thus they
do not present this kind of stagnation error. Flyer et al. (2016) recommended for simple local in-
terpolation problems with PH S to increase the degree of the polynomial close the maximum
value allowed by the size of the stencil, but for more complex applications, the degree of the
added polynomial should be such that there are twice as many RBFs as polynomial terms in the
interpolant (i.e Ngien, = 2M) (Barnett, 2015).

5.1.3.2 Optimal value for the shape parameter C

With infinitely smooth RBFs, the estimation error is very dependent on the value of the shape pa-
rameter C: for small values of C, the error is generally quite high and decreases with an increase
of C, often reaching a minimum for an intermediate value of C' = C,,; (called in the following
the optimal value of (). Increasing C' beyond this optimal value, the error increases and large
oscillations may be observed if the matrix becomes ill-conditioned. However, the matrix may
already become ill-conditioned for values of C' smaller than C,: in this case, the minimal error
is just at the limit of ill-conditioning. In the limit of C' — oo, Fornberg et al. (2004) showed
that when the limit exists, the interpolant tends to a multivariate polynomial. Except for GA
RBF, the existence of the limit depends on the unisolvency of the node setting with regard to
multivariate polynomials. Concerning the estimation of derivatives, Bayona et al. (2010) showed
that the formulas obtained with the RBF-FD method approached conventional finite-difference
formulas in the limit of infinitely flat RBFs, and that there is a range of values of C' that produce

more accurate estimates than standard finite difference schemes.

However, finding C,,; is a difficult task. For global methods, there is no mathematical theory to
help with the choice of C'. Usually, the choice of C'is based on the inter-node spacing, for conve-
nience, but Carlson and Foley (1991) concluded that (according to their tests), the value of optimal
shape parameter depended on the value of the function interpolated and not on the node spacing
or the node positions. This was also observed by Rippa (1999). For interpolation, the value of C'
is chosen by cross-validation methods, for example Rippa (1999) developed a method based on
the minimization of a cost function that was the sum over each node of the errors between the
interpolant and the function when each node is removed from the initial set. Fasshauer and Zang
(2007) adapted Rippa’s algorithm for the resolution of PDEs with RBF pseudospectral method.
For RBF-FD, Bayona et al. (2010) derived an expression of the error estimate as a function of C,

showing that C,,,; depends on the value of the function and its derivatives, and is independent of
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the node spacing at first order, but can vary with node locations in 2D. Knowing the expression
of the error estimate, Bayona et al. (2011) proposed an algorithm to find the optimal value of
C. However, this required solving the problem twice, since the values of the derivative of the

function are necessary to compute the error estimates.

Several studies show that the accuracy of the estimations could be greatly improved by making
the shape parameter vary with the location of the center. For example, Kansa and Carlson (1992)
used a strictly monotonic function to vary C' at each node by several orders of magnitude, de-
pending on its index in the node set. Later, Kansa and Hon (2000) varied the shape parameter
as a function of the local curvature radius of the function being solved. According to Fornberg
and Zuev (2007), C should be proportional to the distance to the nearest neighbor and should be
increased at the edge of the domain. Even if varying the shape parameter seems to improve the
accuracy, the optimal way in which C' must vary from one node to another is yet not very clear,
except in the RBF-FD method. Indeed, with the analytical expression of the error estimates, Bay-
ona et al. (2012) developed an algorithm to find the C,,; for each node (a generalized M () is for
nodes without C,,;) and improve significantly the accuracy in comparison with a constant shape
parameter. With a variable shape parameter the proof of the non-singularity of the interpolation
matrix is no longer valid, but it seems that singular systems still are not likely to arise (Fornberg
and Flyer, 2015). Moreover, this approach produces more variable matrix coefficients, reducing

the condition number.

The selection of a “good” value for the shape parameter can be challenging, which is why RBFs
without shape parameters such as PH S, recently have become more and more attractive, noting

furthermore that they produce relatively well-conditioned matrices.

5.1.3.3 Stencil size for the RBF-FD method

In the case of local methods, the size of the stencil also enters into consideration when looking at
the accuracy of the estimation. Bayona et al. (2010) and Ding et al. (2005) study, among other pa-
rameters, the convergence of the error as a function of the number of nodes in the stencil (Ns¢ep).
They showed that the accuracy is generally increased when the size of the stencil increases, with
some jumps occurring at certain values of Ng.,,. Bayona et al. (2010) gave the threshold value of
Niten for which the error is significantly smaller than the error for Ny, —1: Niter, = (p—1)2+4
(where p is an even integer) for equispaced nodes and Ntep, = (p+ 2)(p + 3)/2 (where p is any
integer) for non-equispaced nodes. As a consequence, the order of convergence as a function of
the node spacing also varies in phase with the number of nodes in the stencil, which is different
for equispaced nodes and non-equispaced nodes. For example with Ny, = 13, the convergence

is of order p = 4 for equispaced nodes, but only of order p = 2 for non-equispaced nodes, ac-
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cording to Bayona et al. (2010). For PH S RBFs, increasing the stencil size decreases the error,
but the order of convergence is controlled by the degree of the added polynomials, not by the

stencil size itself.
5.1.4 Runge phenomenon and boundary errors

Approximations near the boundary usually present larger errors than in the interior due to the
one-sided nature of the stencil. It is a problem of major concern since for time-dependent PDEs,
the errors at the boundary can contaminate the solution across the entire domain or simply grow
quickly and cause the solution to diverge. That is why it is particularly important to find solutions
to minimize boundary errors. Fornberg et al. (2002) studied four edge enhancement techniques:
inclusion of low degree polynomials (here first degree), node clustering (with higher density of
nodes near the boundary), Not-a-knot (Nak) and Super Not-a-knot (Snak) methods. The last two
techniques consist in moving some RBF centers from the inside to the outside of the domain:
nodes from the first row inside the domain for Nak, and nodes on the boundary are added for
Snak. Their conclusions are that the four correction methods are efficient with a preference for
the Nak type of correction that is more “local” and may be more adapted for complex geometry

domains than the addition of low degree polynomials.

Moreover, in the near-flat limit, infinitely smooth RBF may tend to a multivariate polynomial,
but polynomial interpolation on an equispaced grid is known to present large oscillations of
the interpolated function at the edges of the domain. This effect, usually called the Runge phe-
nomenon, can be prevented by node clustering close to the boundaries. Nevertheless, with the
RBF method, this phenomenon can be also triggered by node refinement in the interior of the
domain. It is then advantageous to let the shape parameter vary spatially (Fornberg and Zuev,
2007). Increasing the value of C' for nodes on the boundary may significantly improve the accu-

racy.

Finally, another possibility to reduce the one-sided nature of the stencil for nodes on the bound-
ary, is to add a layer of nodes just outside the boundary. No equations are enforced at their
location, which is why they are usually called ghost nodes, but they become part of the stencil of
boundary and near boundary interior nodes. These additional nodes allow enforcing, in addition
to the boundary condition, the PDE at the boundary nodes. The function values at the ghost

nodes are found by enforcing either a non-Dirichlet condition or the PDE at the boundary nodes.
5.1.5 Stability for the resolution of time-dependent PDEs

The RBF-FD method allows obtaining sparse differentiation matrices (DM), that then can be used
to solve PDEs. The analysis of the distribution of the DM eigenvalues gives important infor-
mation concerning the capacity of the method to solve time-dependent PDEs with an explicit
time-stepping algorithm. For purely convective PDEs, as energy should be constant for all time-
stepping, all eigenvalues of the DM should be purely imaginary. Nevertheless, because of the

irregularity of the stencils, eigenvalues of the DM are scattered into the right half of the com-
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plex plane, which can cause severe instabilities if no natural dissipation occurs. This effect is
emphasized by large stencils since the scatter of the eigenvalues increases with Ngep,. Thus the

resolution of time-dependent PDE without a diffusive operator is quite challenging.

To prevent numerical instabilities, the stencil size is often limited to relatively small values be-
tween 5 and 15. To control the eigenvalues, a hyperviscosity approach can be implemented
(Fornberg and Lehto, 2011). This method acts like a filter, by adding higher order derivatives of
the Laplacian to the right hand side of the governing equations. The effect will be a damping of
the spurious high frequencies by moving the corresponding eigenvalues to the left side of the
complex plane, while leaving the relevant modes intact. As a consequence, larger stencils can be
used allowing approximations of higher accuracy. For PH S RBFs, the implementation is quite
simple since the Laplacian operator can be expressed as a function of another PH S RBF (Bar-
nett, 2015).

For more details on RBF methods and numerous application examples, see the recently published
book of Fornberg and Flyer (2015).

5.2 Implementation of the RBF-FD method

In the extension of the model to two horizontal dimensions, the horizontal derivatives will be
approximated with the local RBF-FD method. This method seems to be a good compromise

between:

« an easy implementation, with an algorithm similar to finite-difference methods,
« accuracy close to pseudo-spectral methods and global RBF methods,
« flexibility with a scattered nodes distribution and possibilities of local refinement,

« potential for high computational speed with sparse DM and parallelization due to the local

definition of the stencil.

5.2.1 Theory

In this section, the estimation of derivatives with the RBF-method is described following Barnett
(2015). The goal is to estimate the value of Lf(x;), where z; = (x1,y1) is any point in the
domain, f is any function expressed at each node, and L the desired linear differential operator
. 2 2
(i.e. %, 8% , %, (%2, etc.).

Here, the local RBF method is applied, so a stencil of Nge,, nodes, formed by the node of interest
2, (center of the stencil) and its Ny, — 1 nearest neighbors (2o, 23, ..., 2y, ), is considered.

In Figure 5.1, an example of a RBF-FD stencil in 2D corresponding to Ngep, = 9 is shown. The
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Figure 5.1: Definition of a stencil with Nge,, = 9 nodes. The node in red () is the center of the

stencil and the blue dots are its supporting nodes. Black dots are non-supporting nodes.

corresponding function values are fi, fo, ..., fN.,.,,- Weights {wz}f\gie" are sought so that:

Nsten
Lf(z)~ ) wifi (5.5)
i=1
In matrix formalism this becomes:
/
Lf(xy) = [w y} [0 : (5.6)
where
w= [wl w2 "‘U’Nsm] and v = [Ul v2 “'UM]
with
T
f= [fl Jo oo stten] . (5.7)

The M weights contained in v are added here in order to facilitate the derivation made using
a matrix formalism (explained further below). But they will be discarded once the system is

resolved.

To derive these weights, a RBF interpolant supplemented with a polynomial of degree ! (general

case) is considered :

Nsten M

s@)= Y M olllz —apll) + Y Biwj(z) (5.8)
k=1 j

1

1+2
with p; (Q)FQI) a basis of polynomials up to degree [ in R? and M = (122).
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The interpolation coefficients ({)\k}]k\fjf”, {B; ]J\i 1), are found by enforcing:

+ Ngten constraints corresponding to forcing the interpolant to have the value of the function

for all nodes in the stencil: s(z;,) = fi, for k =1, .., Ngten,

« M constraints to minimize the far-field growth due to the addition of polynomial terms:

The addition of the M polynomial terms increases the size of the system in Eq.(5.2), leading to

the following linear system:

-1

A PI[A]l _[r Al _[a Py
P o] |5) ” H [ﬁ e o 0] )
where
B(||lzy — z4]) o(llzy —xoll) - S|z — 2N, [])
A o(||zy — zo]|) O(llzg —zof| - |z — 2N, )
o(llzn,,., —zill) ollzn,., —2ll) - dlzn,,.., — 2N, )
p1(z1) p2(z1) o pum(zy)
P1 (12) P2 (Ez) ce pM(EQ
P = : : .. : ’
1(zn,,.,) 22N, - pPm(Zn,,.,)
T T
AZ[M PYIIEEE )\Nsten} and ﬁz[ﬁl Ba - 5M} .

Evaluating the derivative of the interpolant (Eq.(5.8)) at z; gives:

Nsten

M
Ls(z) = > M Loz — zil) + D BiLpj(zy)
k=1 Jj=1

-1 f
H (5.10)
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where

b=[Lo(llzy —zll) -+ Lollas — )] and c=[Lpi(z)-+ Lpn(zy)]-

By equating Eq.(5.6) and Eq.(5.10), it is found that:

b

Finally, taking the transpose of Eq.(5.11) leads to the following system for the unknown weights

w and v of Eq.(5.6):
w'| "
] - H 612

Notice that the system can be simplified in this manner because the matrix A is symmetric. Thus

-1

AP = {w Q} (5.11)

PT 0

A P
PT 0

the matrix arising in the system to find the derivative weights is the same as for the interpola-

tion problem. Otherwise, if A is not symmetric, the matrix has to be replaced by its

PT
transposed matrix. The application of the method depends on the non-singularity of the matrix
A

pr , which was discussed in Section 5.1.

5.2.2 Numerical implementation

The calculation of the approximation weights of Eq.(5.6) has to be done at all nodes of the domain
for each differential operator L required for the discretization of the PDE. In the Misthyc model,
first and second-order derivatives in the two horizontal dimensions are needed. The resolution of
the linear system Eq.(5.12) is achieved with a LU decomposition with a threshold of 10716, Once
the weights are computed, they are stored in tables (differentiation matrices) and can be used
whenever a derivative is estimated in the model. They are applied to evaluate the derivatives
of any function in the model, such as the bottom profile h, the free surface elevation 7, the a,
coefficients of the decomposition of the velocity potential ® on the Chebyshev polynomial basis.
The calculation of the weights is completed only once at the beginning of the simulation, and is

therefore a part of the pre-processing phase.

Before the weights in Eq.(5.6) are calculated, it is necessary to determine the Ny, — 1 nearest
neighbors. The size of the stencil is defined at the beginning of the simulation, and is often de-

fined either as a fixed number of nodes or as a fixed radius including a variable number of nodes.
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For all the simulations presented in the two following chapters, the size of the stencil is constant
for all the nodes as Nggep. In the code, an algorithm that calculates the Euclidean distance be-
tween two nodes (developed by Michel Benoit) is implemented to identify the Ngtep-1 nearest
neighbors. Some faster algorithms could have been used such as the k-dimensional tree algo-
rithm (Fornberg and Flyer, 2015). Nevertheless, it is a pre-processing task whose computational
time is relatively small in comparison to the resolution of the Laplace problem. Note that with
this algorithm, the final set of nodes defining the stencil depends on the index of the nodes: since
the stencil size is imposed to determine the nodes belonging to the stencil, (rather than a char-
acteristic distance to the center), several nodes separated by the same distance to the center (for

example, for regular grid) may be selected depending on the order in which they are evaluated.

Another characteristic of the code is the possibility to normalize the stencil. The physical length
of the stencil is different for randomly scattered nodes, and the optimal value of the shape pa-
rameter that depends on the scale of the supporting region may vary from one node to another.
Shu et al. (2003) proposed, similarly to finite element methods, to transform the local support to

a unit circle by applying the following coordinate transformation:

(') = (li gl) : (5.13)

where (z,y) are the coordinates in the physical space, (2, y’) the coordinates in the unit circle,
and D; is the diameter of the smallest circle enclosing all nodes belonging to the stencil of node
center 7. This normalization is equivalent to considering a traditional RBF with a modified shape
parameter C' = CD;. Thus, when D; changes, the equivalent C' in the physical space also
changes. Considering a set of evenly distributed scattered nodes, for a given stencil size Nsiep,
nodes located at the interior of the domain display a centered stencil whereas nodes located at
the boundary have only a one-sided stencil. As a consequence, the D; of a node at the boundary
will be larger than the one for a node from the interior of the domain, as well as the equivalent
C. Knowing that the estimation error generally decreases with an increase in C, the goal of the
normalization is to reduce the difference in accuracy between interior nodes (with centered sten-
cil) and boundary nodes with asymmetric or one-sided stencils. Note that the value of C' used
to estimate the weighting coefficients is constant for all the RBFs of a given stencil. It does not

vary with the centers of the RBF contrary to what was tested by Fornberg and Zuev (2007).

The implementation of the RBF-FD method is first tested for the approximation of spatial deriva-
tives. A series of tests are completed to verify that the main characteristics of the RBF-FD method

described in the literature review (Section 5.1) are well reproduced.
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5.3 Tests on the estimation of derivatives with the RBF-FD method.

This section is dedicated to a series of tests to evaluate the capabilities and limitations of the
RBF-FD method to estimate first and second-order spatial derivatives, before implementing it
in the time-stepping Misthyc code. The test function is first presented with the results of the
tests designed to make numerical experiments with RBF-FD and to help evaluate the choice of
several parameters of the method (RBF, shape parameter, added polynomial, stencil size Ngiep,

and stencil normalization).
5.3.1 Presentation of the test functions

Different types of functions have been tested to evaluate the performance of RBF methods for
interpolation and derivative estimations in the literature. These functions were usually chosen
arbitrarily, displaying more or less complex spatial variations (i.e. steep gradients, flat func-
tions,...). Here, the tests are completed for a sinusoidal function because it is the first step to

represent waves, and the free surface in the model will generally present oscillatory variations:

f(z,y) = Acos <2L7T(ac cos 6 + ysin 9)) , (5.14)

where L = 0.5 m is the characteristic length of variation (or wavelength), A is the wave ampli-
tude such that A/L = 0.05 and § = 20° is the direction of wave propagation with respect to the
x axis (Figure 5.2). The domain of interest is defined by 0 <z < 1mand 0 <y < 1m.
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0.015
10.010
10.005
10.000
1—0.005

—0.010
—0.015
—0.020
—0.025

Figure 5.2: Test function f(z,y) = Acos (22(x cos§ + ysinf)) with L = 0.5m, A/L = 0.05,
and 0 = 20°.

First and second-order derivatives in both horizontal dimensions are computed with the RBF-FD

method, and the results are compared to the analytical derivatives (Figure 5.3). These derivatives
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2
feature sinusoidal variations with different amplitudes: the largest are obtained for f,, = %

and the smallest for f, = %@Jj
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Figure 5.3: Analytical first and second-order derivatives of the test function f(x,y).

Although the literature review showed that the accuracy of the method, and especially the value
of the optimal shape parameter C, may vary with the function considered, the tests have been
completed primarily for a sinusoidal function. The RBF-FD method is aimed to be used to esti-
mate the derivatives of any variable occurring in the model (i.e. free surface elevation, velocity
potential, bottom profile and a,, coefficients), which may have spatial variations quite different
from sinusoidal variations. Therefore, some limited tests have also been carried out using a flat
function, since in some test cases, the bottom bathymetry presents large flat areas. The results
of the present tests may not be directly extended to all functions, they enable evaluating the

advantages and disadvantages of the RBF-FD method.
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5.3.2 Presentation of the tests

RBF methods rely on several parameters: the choice of RBF, the shape parameter, the degree of
the added polynomial, and the size of the stencil. From the series of tests carried out to study the
sensitivity of the accuracy to these parameters, one initial question is “Which RBF to choose?”,

and the values for the other parameters will result from this first choice.

In the case of RBFs depending on a shape parameter, the following tests were completed:

« four infinitely smooth RBFs: M Q, IMQ, IQ) and G A (see Table 5.1 for the expressions of

the functions),
« variation of the shape parameter in the range C' € |0, 30],
« added polynomials up to second degree,

« three stencil sizes N, = 5, 13 and 21, corresponding to the thresholds defined by Bayona
et al. (2010) (see Section 5.1.3.3) (with corresponding node sets for interior nodes plotted
in Figure 5.4), and

« five node spacings from L /50 to L/200.

The dependency of the accuracy of the method on the shape parameter as well as the effects of
the stencil size and the node spacing were evaluated. Some methods to prevent the matrix from
becoming ill-conditioned for high values of C' and to reduce the errors on the boundary were

also tested.

. . s . « s & s 8 LI
. s = « * & e @ « &« & e « 1 1 & s s s s
Nsten =5 Ngten = 13 Ngten = 21 Ngten = 21

Figure 5.4: Node sets for the size of stencil considered in the tests for infinitely smooth RBF
Ngten, = 5,13 and 21 for interior nodes with centered stencils (left), and node set for a one-sided

stencil for a node at the upper boundary of the domain with Ny, = 21 (right).
For RBF not depending on a shape parameter, the following tests were completed:

. three piecewise smooth RBFs: one T'PS function ¢(r) = r*logr to have at least the

continuity of the second-order derivatives, and two PH S functions ¢(r) = 7° and ¢(r) =

r,
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« added polynomials up to degree 5, and

« stencil sizes in the range Ngep, € [9, 56].

To evaluate the accuracy of the estimations, a normalized averaged error is computed for the N

nodes in the entire domain:

Averaged Error = \/Zf\il (LS (2;) = Lfiheo(2:))*
Sty (L neol;))?

(5.15)

The domain is discretized with a regular set of nodes with a node spacing Az = Ay = 0.005
m (= L/100). Although a regular grid can be problematic for global RBF methods, it has less of
an impact in local RBF-FD method (Fornberg and Flyer, 2015). Moreover, it is easier to conduct

convergence studies and to define a regular centered stencil.

Many combinations of the method parameters have been tested and the averaged error for the
four derivatives (first and second order in x and y) have been computed. Only the most relevant
results and comparisons will be shown and discussed in the following, to illustrate the main
characteristics of the method emerging from these tests, and how to relate these observations to

the literature.
5.3.3 General results

First, some general observations are made looking at the local error for the estimates of first and
second-order derivatives with the M Q) RBF (recommended by Franke (1982)), Ngen, = 21 and
C = 0.1 (Figure 5.5). The local error at x is defined as : |Lf(z) — L fipeo()

are larger for the second-order derivatives than for the first-order derivatives. As expected, the

. Globally, errors

largest errors occur at the boundary, and more particularly, at the boundary where the stencil
is one sided in the direction of the derivative (i.e. for x = 0 m and x = 41 m in the case of
derivatives in x and y = 0 m and y = 41 m in the case of derivatives in y) whereas they are
globally smaller on the other boundaries where the stencil is more elongated in the direction of

the derivative.

The averaged error for all the nodes in the domain (global error) is then compared to the averaged
error on subsets of nodes. The node subsets are based on the asymmetry of the stencil. Three
sets are defined: interior nodes with a centered stencil (Figure 5.4, left), the first row of interior
nodes with an asymmetric stencil (denoted as boundary nodes 2 in the figures 5.6, 5.10 and 5.15),
and the boundary nodes with a one-sided stencil (Figure 5.4, right). The four averaged errors
are plotted as a function of the shape parameter C for the M Q) RBF and a stencil Ny, = 21 in
Figure 5.6. The error increases when close to the boundary due to the growing asymmetry of the
stencil. Moreover, despite the smaller number of boundary nodes in comparison with interior
nodes, the global error is dominated by boundary errors, therefore presenting the same evolution
trend with C.
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Figure 5.5: Examples of the local errors for the first and second-order derivatives (Figure 5.3)
estimated with the M@ RBF, a stencil of 21 nodes, a shape parameter C' = 0.1 and an added
polynomial of degree 0.
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Figure 5.6: Averaged error for f; as a function of the shape parameter C' with the M () RBF
(added polynomial of degree 0 and N, = 21), for the four node sets defined in the text.
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In the following presentation of the results, the global averaged error will be shown except when
the error behavior in response to the parameter or the method tested is different for the three

node sets and deserves to be analyzed specifically.
5.3.4 RBFs depending on a shape parameter C'

5.3.4.1 Accuracy as a function of the shape parameter C

The infinitely smooth RBFs all depend on a shape parameter C' controlling the flatness of the

function: the functions flatten when C' is increased (Figure 5.7).
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Figure 5.7: The four infinitely smooth RBFs that are studied M @), GA, IMQ and I(Q as a function
of the radius r = ||z—z;|| with z; the center of the RBF, for three values of the shape parameter
(C'=0.5,1and 2).

With this kind of RBF, the choice of the value of C is a main concern. As can be noted from
Figure 5.8, the accuracy of the estimation of the derivatives depends strongly on C'. The error
is quite high for small C' and decreases with increases in C'. Nevertheless, if C' continues to in-
crease, the derivative estimation eventually becomes unstable and large oscillations of the error
appear because the matrix becomes ill-conditioned. Without an ill-conditioned matrix, the error
might reach a minimum an optimal C, but sometimes (as it is the case here), the matrix becomes

ill-conditioned before this minimum is reached. The four RBFs display the same general behavior
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as a function of C, with ill-conditioning appearing for slightly smaller values of C' for GA and
M@ than for IMQ and IQ). Therefore, examples of the results using one RBF will be shown in

the following section for clarity.
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Figure 5.8: Global error for the estimate of f,, for the four RBFs (see legend) as a function of the
shape parameter C' (with N, = 21 and added polynomial of degree 0).

From the literature, it is known that the optimal value of C' depends on the function considered.
Here, it also depends on the derivative estimated (Figure 5.9). First and second-order deriva-
tives in z seem to reach a minimum for the error for C' =~ 0.42, whereas the matrix becomes
ill-conditioned for the first and second-order derivatives in y, before a minimum is reached. It
can then be inferred that the optimal C' for derivatives in y are larger than for derivatives in x

for this particular case (due to the chosen wave direction).

It has already been shown that the errors are larger for nodes at the boundaries than for interior
nodes (section 5.3.3, Figure 5.5 and 5.6). Here, the optimal value of C is not the same for interior
nodes and boundary nodes (e.g. Figure 5.10 for M (). The optimal value of C' decreases closer

to the boundary.

When studying the sensitivity of the error to the stencil size (Figure 5.11), the matrix becomes
ill-conditioned for smaller values of C' when N, increases (C' ~ 0.8 for Ng.,, = 13 whereas
C = 0.5 for Ngien, = 21). The accuracy of the derivative estimates is greatly improved by in-
creasing the stencil size from 5 to 13 nodes, and even more with 21 nodes, but more attention has

to be paid to the choice of C, since the range of value of C producing a well-conditioned matrix is
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Figure 5.9: Global error for the estimate of the first and second-order derivatives in = and y, for
the I M () RBF as a function of the shape parameter C' (with Ngse,, = 21 and an added polynomial
of degree 1.
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Figure 5.10: Error for the estimate of f, with the M@ as a function of the shape parameter C'
(with Ngter, = 13 and added polynomial of degree 0) for the three different sets of nodes defined

in Section 5.3.3.
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Figure 5.11: Error for the estimate of f,, for the I M () RBF as a function of the shape parameter
C (with added polynomial of degree 0) for different stencil sizes: Ny, = 5,13 and 21.

reduced. In addition, increasing Nge,, increases the computational time, so a compromise has to
be found between accuracy, the difficulties finding an optimal value of C, and the computational

time.

With infinitely smooth RBFs, the matrix also becomes ill-conditioned with a decrease in the node
spacing. The optimal C' is generally insensitive to the node spacing, but if it is decreased too sig-
nificantly, the matrix may become ill-conditioned before an optimal value of C is reached (Figure
5.12). In general, when the node spacing is decreased, C' is also decreased to keep the condition
number of the collocation matrix roughly constant. According to Fornberg and Flyer (2015), a
mean condition number on the order of 10'” — 102 was found to give RBF-FD a competitive

edge with regard to the accuracy reported by other high-order methods.

Considering all the parameters that need to be taken into account in the determination of a
suitable value of C, the choice of the value of the shape parameter C' is not straightforward.
In the literature, trial and error is the method most often used. Recently, Bayona et al. (2010)
derived an analytical expression for the estimation of the error that was then used to develop
an algorithm to find the optimal value of C (Bayona et al., 2011). Nevertheless, it requires a first
estimate of the derivatives and C,,; depends on the function considered and thus would vary for
derivatives of each variable considered. For the application of the RBF-FD method in the model,

this is not a suitable option. Although the estimation accuracy can be improved by several orders
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Figure 5.12: Error for the estimate of f;, for the /M Q) as a function of the shape parameter C'

(with added polynomial of order 1 and Ny, = 21) for several different node-spacings.

of magnitude when C,,; is determined, the range of C for which this accuracy is reached is very
small and the dependency of C,,; on the function makes it unlikely that the optimal range of C'
is the same for all the function considered in the code (and their derivatives). For implementation
reasons, the choice of C'is currently limited to a single value to estimate all the derivatives of all
the functions, just as for finite difference where the derivative weights depend only on the node
placement. This objective leads to focus on the determination of the values of C' giving small
errors even if it not the smallest that can be obtained and, above all, to avoid an ill-conditioned

matrix.

5.3.4.2 Tests to reduce the dependency on the shape parameter C

In the following section, some options to reduce the dependency of the error on C' and to post-
pone the matrix becoming ill-conditioned for higher values of C are tested in order to widen the
range of acceptable values for C' to decrease the error on the boundaries. Among the possible

options that are easily implementable, three options were selected:

« resolution of the linear system with a SVD method instead of a LU decomposition,
« addition of polynomial terms to the RBF interpolants,

- normalization of the stencil.
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The SVD method

The resolution of the linear system giving the weights for the derivative estimation is completed
with a LU decomposition algorithm. However, it is not the most adapted algorithm when the
matrix is ill-conditioned, as is the case with RBF-FD, since large numerical errors can arise. The
SVD method is used here as a filtering method by setting to zero all the eigenvalues smaller
than a threshold defined as thresh = pSmaz, Where sy, is the largest eigenvalue and p is a
free parameter controlling the filtering (to be set by the user). Three values of the parameter
p were tested = 107910712 and 107'° (Figure 5.13). Small values of . tend to avoid the
problems associated with an ill-conditioned matrix by reaching a plateau for larger values of C,
particularly for ;1 = 10~1°. However, if the threshold is too large (i.e. = 1075), the filtering is
too strong and information about the system is lost, leading to large errors. Using a SVD method
to resolve the system has a stabilizing effect, but the choice of ;1 must be made with caution: it
should be small enough so as not to degrade the basis of the space by a lack of information, but

not too small to eliminate the filtering effect.
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Figure 5.13: Error for the estimate of f,, for the M@ as a function of the shape parameter C
(with added polynomial of degree 0 and Ny, = 21). Comparison between solving the system

with a LU decomposition and using a SVD filtering method for three values of the threshold p.

The added polynomial

The addition of polynomial terms in the RBF interpolant has often been described as a method

to improve the accuracy of the estimation, particularly at the boundaries of the domain (Forn-
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berg et al.,, 2002). The sensitivity of the error to the degree of the added polynomial is studied
by increasing its degree from 0 to 2 and comparing it to the results without polynomial terms.
In Figure 5.14, the boundary and interior nodes present different behaviors with the increase of
the added polynomial degree. For interior nodes (Figure 5.14, right), higher degree polynomials
are beneficial for C' < 0.18, but this improvement is lost for higher values of C. For the nodes
on the boundary (Figure 5.14, center), the error (average of the error for boundary node 1 and
boundary node 2) is greatly reduced with the addition of a polynomial and increase in degree of
the polynomial for C' < 0.05. From a certain degree of polynomial (depending on Ngy,), the
dependency of the error on C is reduced, and the error minimum as a function of C' disappears.
The global error (Figure 5.14, left) follows the same trend as the boundary node error. Moreover,
since RBFs are not exact for polynomials, it is essential to add at least a constant to the RBF in-

terpolant to be able to estimate the derivative of a constant function accurately.
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Figure 5.14: Error for the estimate of f, for the IMQ as a function of the shape parameter C'
(with Nggenp, = 21) for added polynomials of degree 0 to 2: (left panel) all nodes, (central panel)

boundary nodes (boundary nodes 1 and boundary nodes 2), (right panel) interior nodes.

The normalization of the stencil

The last option tested to improve the RBF-FD method is the normalization of the stencil (see
Section 5.2.2 for more implementation details). With the normalization, a single value of C' is
imposed, but the corresponding C in the physical space is modified based on the diameter of
the stencil, leading to larger C' for boundary nodes in comparison to interior nodes. The main
consequence of this normalization (Figure 5.15) is the compression of the boundary node error
curve towards the left side of the graph, while the interior node error curve remains the same
(only the range of values of the shape parameter giving minimal errors is shifted). The expecta-
tion when applying this method is that, for small values of C, the differences between boundary
errors and interior errors decrease. For the case considered here, the impact of the normalization
of the stencil is not significant (Figure 5.15), and the normalization does not allow increasing the

range of optimal values of C'. A side effect of the method is that increasing C' for the estimation
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at the boundary may increase the risk of ill-conditioned matrix for boundary nodes, which is the
opposite of the main objective of improving the estimation at the boundaries. Another side-effect

is that U, varies with the refining or coarsening of the node set.

non-normalized stencil normalized stencil

10°

— boundary nodes 1
——  boundary nodes 2

—— interior nodes

averaged error
averaged error

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.15: Effect of the normalization of the stencil on the error for the estimate of f,, for the
M (@) as a function of the shape parameter C' (with added polynomial of degree 0 and N, = 21):
for the three sets of nodes defined in Section 5.3.3.

5.3.4.3 Conclusions

The choice of an infinitely smooth RBF in the RBF-FD method may be very interesting when it is
possible to use it in combination with an algorithm to find the optimal value for C'. Otherwise the
choice of C' may require a calibration based on trial and error, that is only possible when data are
available for comparison. With the objective to use the model for operational wave propagation
studies it may not be the best option unless the validation with experimental test cases reveals

that the results are not so dependent on the choice of the shape parameter.

5.3.5 RBF not depending on a shape parameter

Contrary to infinitely smooth RBFs (Figure 5.7), piecewise smooth RBFs such as T'PS and PH S
are less regular but present the advantage of being independent of a shape parameter. In this
section, three functions are tested: a TP.S rlogr and two PHS r° and r” (Figure 5.16).

5.3.5.1 Comparison with infinitely smooth RBFs

The estimation errors for the four derivatives (f;, fy, fz» and f,) obtained with each piecewise
smooth RBF are compared with the results obtained with the /M () RBF (Figure 5.17). The error

decreases when the degree of r increases in the RBF, ¢(r) = r7, producing the best results for
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Figure 5.16: The three piecewise smooth RBFs studied, as a function of the radius r = ||z—z;]|

with x; the center of the RBF.

the four derivatives considered. Piecewise smooth RBFs display smaller errors than the M Q)
RBF for small values of C. The RBF ¢(r) = 7 produces an error comparable to the minimum
error obtained with I M@ RBF for f, and f,,, whereas for the derivatives in =, /M () RBF can
reach a smaller minimum error for C around C,;. Although the RBF ¢(7) = 7 may not be the
optimal choice since the I M () RBF and an appropriate C' can attain a smaller error, the errors
are nearly comparable, and the ¢(r) = 7 has the advantage of not relying on the choice of a

shape parameter.

Moreover, RBFs of this type are not subjected to saturation errors when the inter-node spacing is
decreased (Figure 5.18): the convergence rate is constant. The RBFs ¢(r) = r4logr and ¢(r) = 75
have almost the same convergence rate, which is slower than the convergence rate of ¢(r) = .
Here the I M (@ interpolant is augmented with polynomial terms up to degree 1, which allows
the convergence rate to decrease without reaching a plateau (as would be the case without an

added polynomial). For large Az, the I M @ method converges at the same rate as ¢(r) = r'.

Errors obtained with TPS rlogr are larger than errors obtained with PHS 75 and r7. There-
fore only the PH .S RBFs will be considered in the remaining tests.
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Figure 5.17: Error for the estimate of f;, fy, fzz and fy,, for the three piecewise smooth RBFs
considered in comparison with the error estimate of the I M () as a function of the shape param-

eter C' (with an added polynomial of degree 0).

5.3.5.2 Comparison between PHS 75 and r”

For P H S RBFs, the addition of polynomial terms is essential to guarantee the inversibility of the
collocation matrix, and a minimum polynomial degree is required that depends on the degree of
the PHS. In parallel, the degree of the added polynomial is limited by the size of the stencil. To
ensure that the problem is well-posed, the number of nodes in the stencil has to be larger than
the number of independent monomials constituting the basis of polynomials of the same degree
as the added polynomial. With these considerations, a series of tests were conducted to study
the sensitivity of the error estimation of the PH S r> and 7 to the stencil size (Ngzen, € [9, 56])
and to the degree of the added polynomial (varied between 2 and 5).
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Figure 5.18: Convergence of the error for the estimate of f; as a function of the spatial resolution
Az. Comparison of the IM( with C' = 0.4 and the three piecewise smooth functions (for
Nsten = 21)

With regular node sets, the condition on the minimum stencil size for a given degree of added
polynomial is not sufficient to ensure the non-singularity of the matrix. The regularity of the
node set does not allow the matrix to be unisolvent for the polynomial basis. The stencil size
thus has to be increased to recover the inversibility of the matrix. With an irregular node set this

should not occur.

The results obtained with both PH S are compared in Figure 5.19. Similar behavior is observed
for first and second-order derivatives in a given dimension. For a given degree of added poly-
nomial, PH S r7 shows smaller errors than PHS r°. Some exceptions occur, for derivatives in
2 for Ngien, < 25 and added polynomial of degree 3, and for the second-order derivative in x
with the added polynomial of degree 4. For derivatives in y, there is no much gain in accuracy
when the degree of the added polynomial increases from 3 to 4. In all cases, the error is weakly
dependent on Nge,. Nevertheless, PHS r® has the advantage to be used with only a second

degree polynomial, hence requiring a smaller Ny, and less computational time.

5.3.6 Conclusions and recommendations

The series of tests conducted to study the estimation of the derivatives of a sinusoidal func-
tion with the RBF-FD method demonstrate that very accurate results can be obtained with an
infinitely smooth function (without significant differences between M Q, GA, IM (@ and IQ).
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Figure 5.19: Error for the estimate of f,, f,, fz. and f,,, for r® and 7 PH S as a function of the
stencil size Ngep, and the degree of the added polynomial (shown in the legend).

However, the fact that these RBFs depend on a shape parameter controlling the accuracy of the
approximation, and that the optimal value of this shape parameter depends on the value of the
function and its derivatives, make this method quite questionable for the targeted application.
The success of the application (for example the performance of the Misthyc code) will depend
on the accuracy required for the derivative estimates and how sensitive the model is to that pa-

rameter.

To avoid the problem associated with the choice of the shape parameter, PH .S RBFs appear to be
a good alternative. In particular the PH S 7 produced nearly the same order of accuracy as the
IM@ RBF (for the considered case). Nevertheless, the PH S r° is also of interest because even
if the accuracy is reduced, smaller values of Ngt., can be used, meaning a gain in computational
time. For a targeted stencil size between 20 and 30 nodes, PH .S r’+ p3 are recommended, and
if larger stencils can be considered (in the range 30-40) the PHS > 4 p4 or 77 + p4 are an

appropriate choice.
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Chapter 6

Validation of the 2DH version of the
model using RBFs in the horizontal

plane

Ce chapitre est consacré a la validation de la version 2DH du modéle, utilisant la méth-
ode RBF-FD pour estimer les dérivées horizontales, a travers Uapplica-tion a trois cas
tests. Le premier cas est un cas invariant eny, d une vague réguliére se propageant dans
la direction x. Les résultats sont comparés aux résultats obtenus avec la version 1DH du
modele. Un grand nombre de tests est réalisé sur le type de RBE, la valeur du parameétre
de forme et la taille du stencil, confirmant les bonnes performances de la PH S 7 4 p3.
Le modeéle est ensuite utilisé pour simuler deux expériences de propagation de vagues
réguliéres au-dessus de bathymétries différentes : une marche semi-circulaire d’apreés
les expériences de Whalin (1971) et une bosse elliptique submergée d’apres les expéri-
ences de Vincent and Briggs (1989). Ces deux cas tests montrent que le modéle est ca-
pable de reproduire précisément des champs de vague 2D avec des structures complexes
ainsi que les effets non-linéaires associés. Ce chapitre se termine sur quelques considéra-
tions concernant l'optimisation du code, dont le temps de calcul a largement augmenté
avec Uextension en 2DH. Les tests de parallélisation du solveur linéaire MUMPS permet-
tent, dans le cas considéré, une diminution du temps de calcul d’un facteur 3.5 quand le
calcul est lancé avec 15 processus MPL Ce facteur d’accélération, possiblement dépen-
dant du probléme testé, reste assez faible. D’autres méthodes comme le recours a des
solveurs itératifs ou la décomposition de domaine seront a considérer pour augmenter
Pefficacité du code.
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This chapter is devoted to the validation of the 2DH version of the model using RBFs with a series
of three test cases, followed a discussion of the optimization of the code to reduce computational
time that has been considerably increased with the extension of the model to two horizontal
dimensions.

The 2DH version of the model is first validated by a comparison to the simulation results obtained
with the 1DH version of the model for the case of a regular wave propagating in constant depth in
the z direction (invariant in y). The simulation results are then compared to measurements from
two laboratory experiments studying the convergence of regular waves propagating over two
different bathymetric profiles: a semi-circular step based on the flume experiments of Whalin
(1971), and a submerged shoal based on the basin experiments of Vincent and Briggs (1989). The
second test case was presented at the conference Journées Nationales Génie Cotier Génie Civil
2016 in Toulon.

6.1 Regular waves propagating over a flat bottom

In Section 5.3, the derivative estimates with the RBF-FD method were studied for a sinusoidal
function. Accurate results were achieved for interior nodes, but larger errors appeared at the
boundaries. Now, the RBF-FD scheme is introduced in the wave propagation model to extend
the 1DH version of Misthyc to 2DH, solving the time-dependent equations without physical dif-
fusion terms. The objective is to determine if the RBF-FD approach is suitable for simulating
wave propagation with a fully nonlinear and dispersive wave model. One of the most impor-
tant obstacles is to evaluate whether larger errors at the boundaries are going to spread inside
the domain, degrade the solution and disrupt the stability of the simulation. Boundary errors
depend strongly on the type of RBF considered, and the accuracy and stability of the simulation
are studied for two infinitely smooth RBF (M @) and G A) with a wide range of shape parameters
(C € [0.1,20]). The stencil size is also varied to study its impact on the solution accuracy. A
total of 128 combinations of (C, Ny, ) are considered with an augmented polynomial of degree
0 (i.e. only a constant coefficient). Two PH .S RBF are also tested r® 4+ p2 with Nge, = 13 and

7 + p3 with Ngten, = 21. In all of the simulations, the stencil is normalized.

The case of regular waves of amplitude A = 0.005 m, period 7' = 2.26 s and wavelength
L = 6.14 m propagating in constant depth (h = 1 m) is considered. The test case is designed
to be invariant in the y direction so that the simulation results can be compared with those ob-
tained with the 1DH version of the model. The domain is seven wavelengths long in the wave
propagation direction, with a one-wavelength long relaxation zone at the left boundary for wave
generation and a two-wavelength long relaxation zone at the right boundary for wave absorption.
In the transversal direction, the domain extends over one-tenth of a wavelength. The domain is
discretized with irregularly spaced scattered nodes with an average node spacing » ~ 0.0614
m (L/100) for a total of 9090 nodes, with Ny = 7. Impermeable conditions are applied at the
lateral boundaries. Waves are propagated during 127" with a time step of At = 0.0226 s (7°/100).
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Figure 6.1: Three dimensional view of the free surface elevation at the end of the simulation
obtained with PHS 77 + p3 and Nen, = 21.

At the end of each simulation, the free surface elevation (Figure 6.1) is evaluated by comparison
to the 1DH results that are used as the reference solution (7, s), and a normalized averaged error

is computed for the N nodes of the domain outside the relaxation zones:

N N — NE
averaged error = > iz [1(Zi) — mreg (24)] 6.1)
N 2
> ic rep ()]

The averaged error is computed for all of the simulations that were stable during the entire 127
simulation. The averaged error for each tested simulation is presented in Figure 6.2. Although
more simulations remain stable with M () (47.6%) than with G A (32.8%) RBFs, the same evolution
of the error as a function of C' is observed for the different values of Ng;.,. For both functions,
the error decreases when C' increases. Nevertheless, contrary to the results for larger Ngey,, the
error is almost independent of C, for Ny, = 5 but is large (of the order of 1). Simulations with
larger Ngep, are stable only for small C. When C is increased, the simulations become unstable
likely due to an ill-conditioned matrix, as discussed in the previous chapter. For smaller Ngep,
(5 and 13) the simulations are unstable for small C' not because of an ill-conditioned matrix but
due to large errors in the derivative estimates. The minimum averaged error obtained with in-
finitely smooth RBFs is about 2.1073. It is reached for different values of C' depending on Niey,:
C =1 for Ngter, = 29 (MQ), C = 5 for Ngter, = 13 (MQ), and C' = 15 — 20 for Nger, = 9
(MQ and GA). For a given Ny, the averaged errors obtained with G A are larger than with
M@ mainly because they become unstable for smaller C. The r° + p2 PHS produces an error of
approximately 3.1073, which is slightly larger than the minimum error obtained with M@ for
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an optimal C, but better than most of the results with both infinitely smooth RBFs G A and M Q).
Finally, for this test case, the PHS 77 + p3 produces far more accurate results than any other RBF

with an averaged error of 3.107%.

—o N,.=5MQ —o N,.=25MQ v N,,.=5GA v N,.,=25GA
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Figure 6.2: Averaged error computed for the free surface elevation at the end of the simulation
(t = 127) for all simulations with M () and GA RBFs (as a function of the shape parameter C'
for several values of Nycp,), and for PHS r° + p2 and r” + p3 (independent of C') RBFs.

Another way to visualize the results is to plot the error in the (Ngtepn,C')-space (Figures 6.3(a)
and 6.4(a) for MQ and GA, respectively). The value of the error is indicated by the colorscale,
with large errors in red and small errors in blue. Smaller errors are obtained for larger values of
C until a limit is reached and the simulations become unstable. Comparing Figures 6.3(a) and
6.4(a), many fewer simulations are stable with the G A RBF than with the M @) RBF, and the errors
obtained using G A RBFs are not as small as those obtained using M () RBFs.

By looking at the averaged condition number of the collocation matrix (Figures 6.3(b) and 6.4(b))
the simulations generally become unstable when the condition number is larger than 10'4. For
a given value of (C, Ngten), the condition number is usually larger for GA than for M Q. This

likely explains why more simulations are unstable with G A than with M () for large values of



6.1 REGULAR WAVES PROPAGATING OVER A FLAT BOTTOM 191

C and Ngep. For small values of C some simulations were unstable even though their corre-
sponding condition numbers were small (10> — 103). In these cases, the instabilities are likely

caused by poor derivative estimates because of very narrow basis functions owing to the small C.
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Figure 6.3: (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simulation,
and (b) averaged condition number of the collocation matrix for the M ) RBF in (Nger,,C)-space.

The crosses indicate simulations that were not stable for the entire 127"
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Figure 6.4: (a) (a) Averaged error of the free surface position (Eq.(6.1)) at the end of each simula-
tion, and (b) averaged condition number of the collocation matrix for the G A RBF in (Ngen,C)-

space. The crosses indicate simulations that were not stable for the entire 127".

The dependency of the efficiency of the model on the temporal resolution At, the spatial resolu-
tion in the horizontal Ax, Ay and the spatial resolution in the vertical N7, was already studied
for the 1DH version of the model (Section 3.2.4.4). It is expected to be similar in the 2DH version
for At and N7. The dependency on the spatial resolution however is likely modified due to the
fact that in two dimensions, when dividing by two the grid spacing, the number of discretization

nodes is not just doubled but roughly multiplied by four. The model’s efficiency as a function of
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Figure 6.5: CPU time as a function of the stencil size Ngyep,, for simulations using the M @) RBF
with C' = 1 (duration of the simulation 127" with At = 7'/100, using 9090 nodes in the (z, y)-
plane and Np = 7).

the horizontal resolution has not been verified here. Nevertheless, the dependency on the size
of the stencil N, is studied here for the M Q) RBF with C' = 1 (Figure 6.5). Ny, impacts the
efficiency of the model since it modifies the fill-in ratio of the matrix used to solve the Laplace
BVP. In the log-log plot (Figure 6.5), the CPU time increases linearly with N, with a slope of
approximately 1.36, showing the importance of minimizing N, to reduce the model’s compu-

tational time.

This first test case shows that accurate results can be obtained with the RBF-FD method when
resolving a time-dependent PDE without any physical dissipation terms as long as N, and C
are chosen in the appropriate range. The size of the stencil Ny, should not be too large since
it both limits the range of “admissible” C for infinitely smooth RBFs (for which the simulations
remain stable) and increases the computational time for all RBFs. Thus, values of N, in the
range [9,21] appear to be a reasonable compromise between accuracy and efficiency. A larger
range of “admissible” C' values is possible using M () instead of GA. The most accurate results
are obtained with the PH .S 7" 4 p3. These last two observations may be specific to this test case,
but for the following applications, the G A will not be tested further.
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6.2 Regular waves propagating over a semi-circular step

Whalin (1971) performed a series of experiments with regular waves propagating over a semi-
circular bottom topography that acts as a focusing lens. These experiments were first conducted
to test the limit of linear and nondiffractive theory in a convergence zone, considering non-
breaking waves with periods of 1, 2 and 3 s for three wave heights. The bottom topography
was designed to produce strong wave converge and minimize sidewall effects and dissipation by
bottom friction. The wave tank was 6.096 m wide and 25.603 m long. In the experiments, regular
waves were generated by a piston wave maker and propagated from a water depth of 0.4572 m
to a shallower region of 0.1524 m. The bathymetric profile used for the simulations here is the

same as the one presented by Shao and Faltinsen (2014):

0.4572, —20.0 < z < 10.67 — G(y)
h(z,y) = { 0.4572 4+ 5 (10.67 — G(y) — ), 10.67—G(y) <z <1829—G(y) (6.2)
0.1524, 18.29 — G(y) < x < 35

with G(y) = /y(6.096 — y). A 2D view of the bathymetry is shown in Figure 6.6.
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Figure 6.6: Analytical bathymetry (Eq.(6.2)) of the experiments of Whalin (1971).

The wave conditions simulated here correspond to a regular wave with a period 7" = 2 s and
wavelength L. = 3.91 m in the deeper part of the domain, with an amplitude of A = 0.0075 m.
The computational domain extends from -3.91 m to 32.5 m in the x direction and from 0 to 6.096
m in the y direction. The computational domain is longer than the physical domain in the z-
direction to include a one-wavelength long relaxation zone at the left boundary for wave gener-
ation and absorption of reflected waves from the underwater topography, and a three-wavelength
long relaxation zone at the right boundary for wave absorption. Impermeable conditions are ap-
plied at the lateral boundaries.

The domain is discretized with 137,712 scattered nodes with regular node spacings (Ax ~ Ay ~

0.04 m, or approximately L/98). Waves are propagated during 36 seconds (18 periods), with a
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constant time step At = 0.0178s (=~ 7'/112) and Ny = 7. To compute horizontal derivatives,
the PHS RBF 77 + p3 was used with a stencil size Nger, = 21. Several additional tests were
conducted to evaluate the sensitivity of the results to the node spacing, type of RBF, and stencil

size.

The free surface profile at the end of the simulation is shown in Figure 6.7. In the deeper part of
the domain (x < 7.5 m), waves display 2D behavior with almost no variations in the y direction.
The 3D wave patterns develop in the shallower zone where nonlinear effects are important. The
convergence of wave energy is caused by the combination of shoaling, diffraction, and refraction

over the convergent bathymetric profile.
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Figure 6.7: Three-dimensional view of the free surface elevation at the end of the simulation
(t = 18T), obtained with PHS 77 + p3 and Ny, = 21.

The simulated crest and trough elevation envelope along the centerline of the tank (y = 3.048 m)
shows that before the foot of the slope, the crest and trough are nearly symmetric with respect
to the water depth at rest (Figure 6.8). In the shallower zone (z > 15 m), there is an increase in
the difference between the crest and trough with a decrease in the trough elevation, and an even
larger increase in the crest height, breaking the horizontal symmetry observed in the deeper part
of the domain. Looking at the free surface profile at the end of the simulation, the vertical asym-
metry of the wave increases from x = 10 m, displaying a sharper wave front. At the maximum
of the crest envelop (z ~ 20 m), the wave presents two small lobes on each side, a consequence

of the increase of the second harmonic amplitude due to nonlinear effects on the slope.

To examine more closely the nonlinear effects and the energy transfers between harmonics, a
Fourier analysis of the simulated wave signal along the centerline of the wave tank was completed
to compare to the amplitudes of the first three harmonics from the measurement time series
(Figure 6.9). The model accurately reproduces the spatial evolution of the amplitudes of the

first three harmonics, corresponding to frequencies f, 2f and 3f. The amplitude of the second



6.2 REGULAR WAVES PROPAGATING OVER A SEMI-CIRCULAR STEP 195

0.025 : : : : ;
0.020 . b g S

0.010f

z(m)

0.005

—0.005

—0.015

0 5 10 15 20 25 30
Xx(m)

Figure 6.8: Free surface elevation profile along the centerline of the tank at the end of the simula-
tion (black line) and maximum and minimum free surface elevation (wave envelope) during the
simulation (gray lines). The light gray shaded areas (r < 0 m and x > 25 m) indicate relaxation

zones for wave generation and absorption.

harmonic is slightly underestimated in the deeper part of the domain, possibly related to the
linear wave generation method. In the shallower zone, the second harmonic amplitude is slightly
overestimated. As mentioned previously, in the convergence region (around x = 20 m), the
second and third harmonic amplitudes increase due to energy transfers from the first harmonic.
The second harmonic amplitude is about one half of the first harmonic amplitude. In comparison
with 1DH cases (Section 3.5 and Section3.6) the amplitude of the first harmonic does not decrease.
According to Whalin (1971), this can be explained by the fact that the rate of decrease due to
nonlinear transfers to higher harmonics is compensated by the rate of increase in amplitude

along the centerline of the tank due to refraction and shoaling.

A series of tests were conducted to look at the sensitivity of the results as a function of:

« the node distribution: a domain discretized with regularly-spaced or irregularly spaced

nodes, with approximatively the same total number of nodes.

« the choice of RBF: the results presented above used the P H.S RBF r7+p3 with Ngen, = 21.
Here, simulations with the PH.S RBF 7° 4 p2 are presented as well as results with the M Q
RBF for different values of the shape parameter C.

« the node spacing: two coarser regularly distributed node sets are compared.

Details of the simulations are summarized in Table 6.1.
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Figure 6.9: Observed (circles) and simulated (solid lines) spatial evolution of the amplitude of
first three harmonics (at frequencies f, 2f and 3f) of the free surface elevation for T" = 2 s,
A = 0.0075 m of the experiments of Whalin (1971) obtained with PHS RBF 77 4 p3 with
Ngten = 21.

First, the spatial evolution of the first three harmonics are compared for the simulations with
regularly and irregularly spaced nodes, with Az ~ Ay ~ 0.06 m (Figure 6.10). The results are
not very sensitive to the numerical parameters of the simulations. The amplitudes of the three
harmonics are very similar along the centerline of the domain. For the regular node set, the use
of the M@ with C = 2 produced results in agreement with the observations. However, for an
irregular node set, a series of tests were required to find a suitable value of C' to keep the sim-
ulation stable. The range of C' for which the simulations remain stable with irregular nodes is
small. This may be due to the fact that the normalization of the stencil takes into account dif-
ferences in the maximum distance between nodes, while here the problem may be related to the
differences between the minimum distance between nodes. Errors eventually increase locally
because of stagnation errors, and these errors continue to grow, making the simulation unstable.

Additional tests are needed to verify this hypothesis.

Simulations with the PHS 75 + p2 also required also several tests to find a suitable value of
Ngten. With Ngie, = 15, the simulation was unstable. The stability of the simulation was recov-
ered with Ny, = 18. Simulations with the PHS 7 + p3 were stable with Ny, = 21.

Finally, once the appropriate combination of numerical parameters is determined to enable sta-
ble simulations, the results obtained using the different RBFs are similar. Regular or irregular
node spacings do cause significant differences in the results, except for the choice of the shape
parameter with for M () RBF.
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Simulations | node set | Axz(m) | RBFtype | C | Nggen | At (s)

reg MQ 1 regular 0.060 MA@ 2 13 0.0267
reg MQ) 2 regular 0.060 M@ 1 13 0.0267
reg PHS 1 | regular | 0060 | r"+p3 | - 21 | 0.0267
reg PHS 2 | regular | 0.040 | r" +p3 | - 21 | 0.0178
reg PHS3 | regular | 0075 | »"4+p3 | - 21 | 0.0333

irreg M@ 1 | irregular | = 0.060 M@ 1 13 0.0267
irreg M) 2 | irregular | ~ 0.060 M@ 0.75 13 0.0267
irreg PHS 1 | irregular | ~ 0.060 | 77 + p3 - 21 0.0267
irreg PHS 2 | irregular | ~ 0.060 | 7° 4+ p2 - 18 0.0267

Table 6.1: Numerical parameters for the nine simulations compared for the case with 7' = 2 s,
A = 0.0075 m of Whalin (1971). The parameters of the simulations presented in the first part of

this section are in bold.
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Figure 6.10: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes
of first three harmonics (at frequencies f, 2f and 3 f, as shown in Figure 6.9) of the free surface
elevation for the case T' = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the
type of node sets and the choice of RBF.

A second comparison of the spatial evolution of the first three harmonics is made for simula-
tions using a regular grid (Ax = Ay) with three different spatial resolutions: Az = 0.040 m,
Az = 0.060 m, and Az = 0.075 m (Figure 6.11). Small differences between the three resolutions
are observed for the harmonic amplitudes. The wave envelope obtained with the medium res-

olution (not shown), shows only small differences in the representation of the peaky crests and



198 CHAPTER 6: VALIDATION OF THE 2DH VERSION

the secondary crest in the convergence zone. An additional simulation was run with a coarser
resolution of Az = 0.090 m, but the simulation was unstable. Increasing the stencil size was
not enough to recover the stability, and the solution found to recover stability was to refine the

mesh near the boundaries.
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Figure 6.11: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes
of first three harmonics (at frequencies f, 2f and 3 f, as shown in Figure 6.9) of the free surface
elevation for the case 7' = 2 s, A = 0.0075 m of Whalin (1971): sensitivity of the results to the

node spacing, for three resolutions.

A second wave condition with the same period (1" = 2 s) and an increased amplitude A = 0.0106
m was also simulated. The same characteristics of domain extent, time step and vertical resolu-
tion are used, but the spatial discretization corresponds to the irregular node set with Az ~ 0.06
m used in the test of the former case (Table 6.1). The RBF-FD method is used with the M () RBF,
a shape parameter C = 1, and Ng, = 13. The simulated spatial evolution of the first three
harmonics along the centerline of the tank are compared to the experimental data (Figure 6.12).
The model reproduces well the spatial evolution of the amplitudes, again underestimating the
second harmonic amplitude before the slope. Nevertheless, in the convergent region, the simu-
lated harmonic amplitudes agree well with the experimental measurements. With the increase
in the incident wave height, nonlinear effects become more important, and the second amplitude
becomes almost two-thirds the amplitude of the first harmonic amplitude at its maximum. The
amplitude of the first harmonic also decreases slightly around z = 20 m, which did not occur
for the case with the smaller wave amplitude. According to Whalin (1971), this decrease can be
explained by the fact that in this case, the nonlinear energy transfers to higher frequency com-
ponents occurs at a faster rate than the energy convergence from refraction, so losses are not

compensated exactly.
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Figure 6.12: Observed (triangles) and simulated (solid lines) spatial evolution of the amplitudes
of first three harmonics (at frequencies f, 2f and 3 f, as shown in Figure 6.9) of the free surface
elevation for the case T'=2s, A = 0.0106 m of Whalin (1971).

This second test case shows that 3D wave patterns induced by a specific bottom topography and
the associated nonlinear effects can be well reproduced by the model. Moreover, in comparison

to the simpler test case of a regular wave propagating over a flat bottom (Section 6.1):

+ The choice of the parameters for the RBF-FD method to obtain a stable simulation is more

complicated.

« For the M () RBFs, the stability of the simulations depends strongly on the shape parameter
C and the use of an irregular node set can make the choice of C' even more difficult. In
this case, the implementation of a variable shape parameter based on the distance to the

nearest neighbor might improve the stability of the simulations.

« With PH S functions, instability problems may be resolved by increasing the size of the
stencil, at least to a certain extent. For very coarse resolution grids, this solution is not suffi-

cient, but the stability can be recovered by increasing the resolution close to the boundary).

« For this test case, M () is optimal in terms of computational time since it can be used
with Ngten=13, whereas PH S functions require at least Ny, = 18 to achieve the same

accuracy.
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6.3 Regular waves propagating over an elliptical shoal

The last test case simulates the propagation of regular waves over a submerged elliptical mound,
reproducing the experiments of Vincent and Briggs (1989). The aim of the experiments was
to look at the limits of the monochromatic wave approximation for irregular wave conditions,
producing a large experimental data set for both monochromatic wave conditions and irregular
waves with narrow or broad frequency and directional spreading. In this section, the regular
wave condition test case M1 is considered, with T = 1.3s, L = 2.3 m,and A = 0.0275 m.

The experiments were conducted in a directional wave basin that is 35 m wide and 29 m long.
The measurement area is restricted to a 6.10 m wide by 15.24 m long zone. The elliptical shoal
has a major radius of 3.96 m and a minor radius of 3.05 m. Its center is located at (z¢,10)=(6.10 m,

13.72 m). The shoal boundary is defined by:

[T — X0 ? Y —Yo 2_
S(x’y)_< 3.05 > +< 3.96 ) =1 63

The water depth around the shoal is constant h(z,y) = 0.4572 m (i.e. for S(x,y) > 1), and the

water depth over the shoal is given by the expression:

2 2
T — o Y —Y
h = 0.9144 — 0.76204 [ 1 — - 6.4
(z,y) = 0.9 0.76 0\/ (3.81) <4.95> (64)

The minimum water depth over the center of the shoal is h,;, = 0.1524 m. In the experiments,

waves are generated by a directional wave generator. The free surface elevation was measured
using an array of nine parallel resistive probes placed along nine different transects (5 parallel
and 4 perpendicular to the wave maker). In the following, two transects will be studied (Fig-
ure 6.13): the transversal transect 4 (x = 12.2 m) and the longitudinal transect at the centerline

of the tank, consisting of transects 7 and 9 (y = 13.72 m).

To limit the computational time, the simulated domain is smaller than the experimental wave
basin. The numerical domain extends from —2.3 m< z < 20.5 m and 3.7 m< z < 23.7 m.
Two relaxation zones are added (hatched zones in Figure 6.13): the first is one wavelength long
at the left side of the domain for wave generation, and the second is two wavelengths long at
the right side of the domain for wave absorption. Impermeable conditions are applied at the
lateral boundaries. The domain is discretized by regularly spaced nodes with a resolution of
Ax = Ay = 0.075 m, for a total of 81,435 nodes. Waves were generated with an amplitude of
A = 0.02325 m, using linear wave theory. This value is smaller than the one prescribed to the
wavemaker in the experiments, but an adjustment of the incident wave amplitude was necessary
to obtain comparable average wave height ( = 0.0445 m) at a reference probe located in an

unperturbed zone of the domain, upstream of the shoal (x = 3.05 m, y = 21.34 m).
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Figure 6.13: Numerical domain and bathymetry of the experiments of Vincent and Briggs (1989).
Horizontal and vertical white lines indicate the transects where the comparisons between the
simulation results and the experimental measurements are completed. Hatched zones indicate

the wave generation (left side) and absorption (right side) zones.

Waves are propagated during approximately 100 s (= 787'), with a constant time step At = 0.036
s (= T'/36), using N7 = 5. To compute the horizontal derivatives, the PH S RBF r’+ p3 is used
with a normalized stencil of size Ny, = 21. The sensitivity of the results to the type of PHS

and to the spatial resolution is briefly studied with a few additional simulations.

The contour plot of the free surface elevation at the end of the simulation, when the periodic
steady state is reached, is shown in Figure 6.14. The wave height increases in the zone behind
the shoal (x > 6 m), and complex 2D patterns of the free surface elevation develop with strong
variations in both horizontal directions. The convergence zone along the centerline of the tank
is surrounded by rectilinear zones of almost zero amplitude looking like a wake. In addition,
the crests and troughs in the y direction are modulated with a characteristic length scale of
approximately 3 m due to reflections from the lateral walls. The fact that the computational
domain is smaller than the experimental one may increase the importance of lateral reflections

and possibly overestimate this effect.

To compare the simulation results with the experimental data, a zero up-crossing analysis of
the free surface elevation time series is applied to compute the average wave height along each
transect. To conduct the analysis in the same way as for the experiments, a 28-period window
of the free surface elevation time series is considered (from ¢ = 60 s to 96.4 s). Wave height
profiles for the two transects plotted in Figure 6.13 are presented in Figures 6.15 (transect 4) and
6.16 (transects 7 and 9). Because of the reflection effects in the simulation, the variations of the
free surface position at a given point in the domain is not perfectly periodic in time. Depending

on the location of the node, in addition to the oscillatory evolution of the free surface, spatial
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Figure 6.14: Contour plot of the free surface elevation at the end of the simulation (¢ ~ 78T) for
case M1 of Vincent and Briggs (1989). The dotted line indicates the limit of the elliptical shoal.

modulations may also exist. Consequently, the extracted time series of the wave height is not
constant. Therefore, here the average simulated wave height profiles are presented with a shaded

zone indicating the standard deviation.

Good agreement with the experimental data is observed for the wave height along the perpendic-
ular transect (transect 4, Figure 6.15). The wave height profile presents a maximum at the center,
corresponding to the center of the shoal (y = 13.72 m), which is more than twice the incident
wave height (ratio ~ 2.03). The amplitude of this maximum is slightly underestimated in the
simulations. Moving symmetrically away from the center, two minima are reached, with wave
heights less than half the incident wave height (ratios ~ 0.21 and 0.43, respectively). Farther

from the shoal, the wave height is nearly equal to the incident wave height.

The wave height profile was also studied in the wave propagation direction, along transects 7
and 9 (Figure 6.16). The simulation results agree well with the experimental measurements. The
differences are slightly larger than those observed along transect 4. In particular, the increase in
the wave height between £ = 4 m and z = 6 m and the peak around x = 7.5 m are not repro-
duced by the model. From x = 9 m the simulated wave height profile shows small oscillations

that may be due to reflections from the relaxation zone that is not perfectly absorbing.
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Figure 6.15: Average wave height along transect 4, for case M1 of Vincent and Briggs (1989). The

blue shaded zone around the simulation results shows the standard deviation due to reflections.

The experimental measurements show variability between different runs, and by investigating
a data point appearing in both profiles (r = 12.2, y = 13.72 m), the observed wave height is
0.0975 m along transect 4, while it is 0.104 m along transects 7 and 9, which is a difference of ap-
proximately 6.25%. Although this variability in the measurements cannot be directly extended
to other measurements, it can be used to estimate the order of magnitude of the experimental

errors and variability.

The harmonic analysis was performed on the simulated free surface time series along transects
7 and 9, and the evolution of the first three harmonic amplitudes are shown in Figure 6.17. Un-
fortunately, the experimental time series were not available to perform the same analysis to use
as a comparison for the simulation results. Before the shoal, the waves are only weakly nonlin-
ear, and the amplitudes of the second and third harmonic increase over the shoal. The second
harmonic amplitude is more than half the amplitude of the first harmonic. This effect is likely
caused by the narrowing of the wave crest over the shoal, as seen in Figure 6.14. After the shoal,
the amplitude of the first harmonic is more than twice the amplitude before the shoal due to the
convergence of wave energy induced by refraction. Nonlinearities are not significant after the

shoal, although a modulation of the amplitude of the second harmonic is clearly observed.

The sensitivity of the results to the degree of the PH S RBF and to the spatial resolution of the
discretization was evaluated. In Figure 6.18, the wave height profiles along transect 4 and tran-

sects 7 and 9 are plotted for three different combinations of PH S and augmented polynomials:
PHS r54+p2 with Ngter, = 15, PHS r°+p2 with Ngsep, = 21, and PH S r"+p3 with Ngsen, = 21.
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Figure 6.16: Average wave height along transects 7 and 9, for case M1 of Vincent and Briggs
(1989). The blue shaded zone around the simulation results accounts for the standard deviation

due to reflections.
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Figure 6.17: Spatial evolution of the first three harmonic amplitudes for the M1 Vincent and
Briggs (1989) experiments along transects 7 and 9 (y = 13.72 m).
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Very similar results are obtained with P H .S 75+ p2 for the two different stencil sizes (Figure 6.18).
For this case, the accuracy obtained with Ny, = 15 is sufficient, and this choice of stencil size
is optimal to minimize the computational cost. Wave height profiles obtained with PH S r7 +p3
show only small differences along transects 7 and 9 (with a small phase shift), and the evolution

trend is globally the same for the three simulations.
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Figure 6.18: Average wave height along transect 4 (top) and transects 7 and 9 (bottom), for case
M1 of Vincent and Briggs (1989). Comparison of 3 combinations of PH S RBFs and Ny, (see
legend).

Additional tests were completed with a coarser discretization of the domain, using PHS r7 + p3
and Nggep, = 21. The node spacing was increased from Ax = 0.075 m to 0.10 m. Comparisons
of the wave height profiles for the two resolutions are shown in Figure 6.19. The wave height
profiles along transect 4 are nearly superimposed. Again, the differences are more visible along
transects 7 and 9, with only very small errors. The same evolution trend is obtained with both

simulations.

This last 3D test case shows that the model is able to reproduce accurately complex 3D wave
patterns with smaller characteristic length scales but weaker nonlinear effects than the experi-
ments of Whalin (1971). This test case also demonstrated that a lower degree polynomial function
(PHS 75 + p2) with a smaller stencil size can lead to the same accuracy of the final simulation

results, with the advantage of a shorter computational time.
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6.4 Computational cost and optimization

The transition to a 2DH version of the code was accompanied by a significant increase of the
computational time. This led to an evaluation of the code to identify the most time consuming
parts. Two possible techniques were identified to improve the numerical efficiency: the reorder-

ing of the matrix and the parallelization of the direct solver.

6.4.1 Computational requirements of the code

The code was analyzed with the objective of identifying the parts of the code with the highest
computational cost. The analysis was conducted for the test case presented in Section 6.2, for
which the domain was discretized with 60,716 irregularly-spaced nodes, and N7 = 7. The linear
system of the Laplace BVP to be solved thus contains 485,728 unknowns.

In this case, the computational time in sequential mode for one time step is 600 s whereas the
pre-processing phase (for the entire code) requires only 3.33% of this amount of time (= 20 s).
The pre-processing time increases with the stencil size, but here it remains negligible in compar-
ison with the processing time for each time step. At each time step, the right-hand sides of the
Zakharov equations are calculated four times because of the RK4 scheme used to advance the
model in time. Each independent resolution of the Laplace BVP requires approximately 150 s, of
which the vast majority of the time is the linear system resolution since less than 1 s is dedicated
to constructing the matrix. The most time consuming part of the code is thus the resolution of

the linear system.

Therefore, the focus is then made on the direct resolution of the linear system for the Laplace
BVP with MUMPS (Amestoy et al., 2006). The resolution with MUMPS is divided into three
main phases: analysis, factorization and resolution. Permutation, scaling, and pivot ordering
options are available (see the MUMPS Users’ guide for more details). The default options are
used after verification that they were the optimal choices. No permutation is completed but
simultaneous row and column iterative scaling is computed, and the METIS package is used for
the pivot ordering. Finally, it is found that the factorization phase is the most time-consuming

phase requiring approximately 95% of resolution time.

6.4.2 Matrix reordering

The cost of direct sparse solvers is increased with the scattering of non-zero entries in the matrix.
The structure of the matrix is directly related to node ordering. If no attention is paid to node
ordering, nearby nodes in physical space may be far in index space. Here, the nodes are indexed
arbitrarily beginning anti-clockwise with the boundary nodes and then with increasing = and
y for the interior nodes. The matrix associated with the Laplace BVP is sparse but has a large
bandwidth (Figure 6.20, left).
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During the factorization phase of the resolution with MUMPS, some transformations are applied
to make the matrix simpler to solve. Here, the idea is to reorder the nodes with the objective of
reducing the analysis and factorization phases with the advantage that node reordering can be
done once at the beginning of the simulation as a pre-processing task instead of during the anal-
ysis and factorization phases at each time step. With this in mind, a reordering algorithm based
on the reverse Cuthill-McKee algorithm was implemented. The original version of the algorithm

was slightly modified and simplified to take into account the specificities of case considered:

« all nodes in the domain have the same number of neighbors,

« when a node belongs to the stencil of another node, the inverse is not necessarily true.

The reordering algorithm was first tested for a regular node set of (5x5) nodes using a stencil of
Ngten, = 5. Figure 6.20 shows an effective reduction of the bandwidth of the matrix associated to
the Laplace BVP. The nonzero entries are more concentrated around the diagonal. Nevertheless,
when applied to “real” cases such as the test case presented in Section 6.2 the gain in efficiency
was not noticeable. It is likely that the implemented reordering scheme was not beneficial in

comparison with the MUMPS internal reordering process.

P

Figure 6.20: Left, sparsity of the matrix associated with the Laplace BVP using a stencil of
Nsten = b for a regular node set of (5x5) nodes. Right sparsity of the matrix associated with
the Laplace BVP after using an adapted reverse Cuthill-McKee algorithm. The black dots are the

nonzero elements.

6.4.3 Parallelization of the linear solver

The numerical model Misthyc was originally implemented in a sequential version, with a poten-

tially parallel version of the MUMPS solver. A first step to parallelizing the code is thus to use
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a parallel version of the MUMPS to reduce the computational time required to solve the linear

system as each time step.

One of the advantages of MUMPS is the possibility to define the matrix in distributed form, with
as many submatrices as the number of MPI processes. The host process then builds the global ma-
trix and solves the system in parallel. Thus, pre-processing tasks such as derivative computations
and building of the submatrices can also be handled in parallel after the decomposition of the
computational domain into smaller subdomains. Nevertheless, this is not necessarily straight-
forward and requires sharing data from one subdomain to another (i.e. to compute derivatives).
It was tested for the parallelization of the 1DH version of the model without any significant im-
provement of the in the computational time, likely because the matrix was too small to achieve
a real gain with the parallel resolution of the system. The implementation of the 2DH version is

more complex and requires more communication between subdomains.

Taking into account that the pre-processing phase and the building of the matrix are not the
most computationally expensive tasks in the 2DH version, the choice was made to parallelize
only the resolution of the linear system, maintaining the rest of the code in sequential mode.
The parallel resolution is managed automatically. Fewer changes of the code are required with
this option. This parallelization was tested for the same case considered in Section 6.4.1 using the
Athos cluster. The cluster consists of 776 nodes, each with 64 Go RAM, with two processors (2.7
GHz) made up of 6 cores. This capacity is doubled with hyperthreading, enabling 24 processes to
be available on each node. The computational time per time-step is recorded when the number
of MPI processes is increased from 1 to 24 for one node of the cluster. The speed-up ratio (Figure
6.21) is defined as the ratio between the “real” time necessary to compute one time step with the
sequential version of the model and the time required with the parallel version of the model run

with Npo. MPI processes:

timesequential
timeparallel (Nproc)

speed-up ratio (Nproc) = (6.5)
where timegsequentiat = 333 s for this case. The speed-up ratio increases with Np,.,, but at a
decreasing rate for larger numbers of processors, eventually reaching a plateau. For this case,
the maximum speed-up is obtained for N, = 15, leading to a reduction of the computational
cost by a factor of 3.5. For large values of Npyo. the speed-up ratio decreases a little (3.2). It
can be noticed that the speed-up ratio for Ny, = 1 is smaller than one, meaning that is it not
appropriate to use the parallel version of the model with only one MPI process. Moreover, the
analysis of the speed-up ratio by the parallelization of the solver is made for a rather small 2DH
case (485,728 unknowns). The conclusion concerning the optimal number of MPI processes may
not be directly applicable to cases with more unknowns. The parallel resolution requires more

memory than sequential computation, and larger cases may cause the memory limit for one node
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to be surpassed. In this case, the number of nodes needs to be increased, together with the num-

ber of MPI processes, to ensure sufficient memory.
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Figure 6.21: Speed-up ratio (Eq.(6.5)) as a function of the number of MPI processes (Npoc), for

the test case presented in Section 6.2 with 485,728 unknowns.

6.4.4 Summary

These first attempts to optimize the 2DH version of the code are not entirely successful. Although
the algorithm for node reordering was efficient in reducing the matrix bandwidth, it did not lead
to a reduction in the analysis and factorization steps in MUMPS. Nevertheless, the parallelization
of the solver enables improving the efficiency of the model in comparison to the sequential ver-
sion, and for the case considered here, a maximum speed-up ratio of 3.5 is reached when using
15 MPI processes. These results may be problem-dependent and further tests should be con-
ducted to see how these results can be generalized for larger domains. However, the speed-up
ratios are quite small, and the next step towards a more efficient code could be the parallelization
by domain decomposition. Other options could be considered including: the use of an iterative
linear solver (i.e. GMRES, BiCGSTAB,...), and the use of other time marching schemes, such as
Adams-Moulton (AM) and Adams-Bashworth (AB) predictor-corrector schemes, which require

fewer resolutions of the Laplace BVP.



Conclusions and perspectives

Au cours de cette thése, un modéle de vague simulant de maniére précise les effets
non-linéaires et dispersifs intervenant lors de la propagation des vagues au-dessus de
bathymétries variables a été développé et amélioré. La version 1IDH du modéle a été
validée a travers application a de nombreux cas tests, démontrant ses capacités disper-
sives pour une large gamme de profondeurs relatives. Afin d’élargir le champ d’applica-
tion du modéle, n’incluant pas de terme de diffusion par hypothése, une formulation
visco-potentielle a été étudiée, permettant de prendre en compte les effets dissipatifs dus
d la friction interne et d la friction sur le fond, dans la limite de faible viscosité et faible
pente du fond. L’extension du modéle en 2DH avec une approche sans maillage, basée
sur la méthode RBF-FD, a été choisie. Les tests de sensibilité aux différents paramétres
de la méthode ont abouti d la recommandation de I'utilisation de la RBF PH S r7 + p3
avec une taille de stencil entre 20 et 30 nceuds pour des applications générales. La com-
paraison a des résultats expérimentaux pour des cas a bathymétrie variable a mon-
tré que cette méthode était applicable pour la propagation de vagues en 2DH. Cepen-
dant, plusieurs aspects du modéle peuvent encore étre améliorés, notamment 'ajout
de conditions aux limites pour permettre la modélisation de cas plus réalistes avec la
génération de vagues non-linéaires et la modélisation du run-up. Quant aux proces-
sus physiques représentés, la stabilité du terme du frottement sur le fond pourrait étre
étudiée plus en profondeur et Iinclusion de la dissipation d’énergie induit par le défer-
lement bathymétrique serait un plus. Concernant les aspects numeériques, la robustesse
de la méthode RBF-FD reste a améliorer, notamment pour limiter le développement
d’instabilités au niveau des bords du domaine du fait des stencils décentrés. Enfin, le
passage a la version 2DH du modéle a entrainé une large augmentation du temps de cal-
cul du fait de la dépendance du temps de résolution du probléme de Laplace au nombre
de nceuds de discrétisation. Des techniques d’optimisation telles que la décomposition
de domaines ou l'utilisation de solveurs itératifs pourraient étre testées afin de rendre

le code plus performant.
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The main objective of the PhD thesis was to pursue the development and validation of a de-
terministic wave model capable of simulating the propagation of irregular and multidirectional
sea-states from the offshore (deep water) to the coast over variable bathymetry, with a highly ac-
curate representation of the nonlinear and dispersive effects, for bidimensional (2DH) domains
on the order of kilometers. The goal was to simulate practical, 2DH applications with complex
coastal domains and bottom bathymetry, thus the model was discretized with scattered nodes
(unstructured-type grids) to be able to refine the distribution of nodes at locations of interest,

such as zones of significant bottom or coastline variability.

The development of a potential flow model based on the Euler-Zakharov equations began prior
to this PhD thesis (Benoit et al., 2013; Yates and Benoit, 2012). An important component of the
numerical model is the resolution of the Laplace boundary value problem (BVP). Following pre-
vious work, (Yates and Benoit, 2015) concluded that a spectral approach in the vertical (Tian and
Sato, 2008) combined with finite difference schemes in the horizontal direction was the optimal

approach for the 1DH version of the model that was then developed further in this thesis.

Summary of the main achievements of the PhD thesis

During this PhD thesis, several aspects of numerical wave modeling were addressed, from nu-
merical aspects to physical processes important in wave propagation, leading to a number of

improvements and extensions of the computational model.

One of the critical issues in numerical wave modeling is wave generation and absorption. A
comprehensive study was conducted on the implementation of specific boundary conditions for
wave generation, including a comparison between Dirichlet and Neumann boundary conditions.
The selected solution resulted in a combination of classical Dirichlet boundary conditions and
the use of relaxation zones. This technique proved to be efficient for both generation and ab-
sorption as long as the relaxation zones are properly designed (i.e. length of the zone and shape

of the function used to progressively impose the desired solution).

Then, an extensive study of the accuracy of the nonlinear and dispersive capabilities of the model
was completed. First, the linear dispersion relation of the model was derived, showing an increase
in accuracy with Np. For instance, the relative error in the calculated wave celerity for flat bot-
tom conditions (in comparison with Stokes’ analytical solution) remains smaller than 2.5% for
kh up to 100 using N7 > 9. The linear version of the model was validated with comparisons
to analytical solutions of the reflection of regular waves over a Roseau-type bathymetric profile

and the generation of waves generated by bottom motions.

The convergence properties of the nonlinear version of the model were studied in detail for

moderate to highly nonlinear solitary waves. The order of temporal and spatial (algebraic) con-
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vergence were approximately 4-5 for the two less nonlinear cases and 3-4 for the most non-
linear case, in agreement with the properties of the fourth-order Runge-Kutta (RK4) temporal
discretization scheme and the fourth-order finite difference schemes used to approximate the
horizontal derivatives. The exponential convergence in the vertical dimension obtained with the
spectral approach was confirmed, showing an accurate representation of the vertical structure

of the potential with a small maximum degree of Chebyshev polynomial.

Finally, the 1DH version of the model was validated with a series of challenging test cases: a
moving bottom generating free surface deformations (tsunami-like wave generation), propaga-
tion over steep bottom bathymetry (submerged bar, barred beach profile), etc. The comparisons
with experimental data showed the accurate simulation of energy transfers between the har-
monic components over variable bathymetry and demonstrated the dispersive capabilities of the
model. The numerous test cases showed the influence of several numerical parameters, in partic-
ular confirming the optimal value of Np: from 5 to 10, depending on the dispersive characteristics

of the test case.

To broaden the range of applications of the model that is by definition non-diffusive, a visco-
potential formulation was studied to take into account the effects of bulk viscosity and bottom
friction in the Zakharov equations. To our knowledge, this had not yet been done. Boussinesg-
type (i.e. long wave) models mainly have been derived from this set of equations. The only study
we are aware of involving the Zakharov equations was limited to bulk viscosity terms with an
additional assumption of weak nonlinearity (Kakleas and Nicholls, 2010). This new implemen-
tation of the visco-potential formulation was validated with comparisons to a linear analytical
solution for the decay rate of a standing wave over a flat bottom, and with experimental mea-
surements of the decay and the shoaling of a solitary wave propagating over a flat bottom and
then up a mild slope. The application to small-scale experiments studying the propagation of
regular waves over a submerged step showed the limits of the derivation and implementation of
the bottom friction term. However, satisfactory results in comparison to the experiments were
obtained considering only the bulk viscosity terms. In addition, this test case validated the in-

clusion of surface tensions effects in the model.

The extension of the model to two horizontal dimensions was also an important component of
this PhD thesis. A meshless approach, based on the RBF-FD (Radial Basis Function - Finite Dif-
ference) method was chosen to allow significant flexibility for the application to real domains,
enabling using non-rectangular grids and refining the nodes easily. This method presents the
advantage of being similar to finite difference methods and rather simple to implement, not re-
quiring major adaptations of the code. A series of sensitivity tests to the parameters involved
in the RBF-FD method were conducted to examine the robustness of this approach for the es-

timation of derivatives. The application of the 2DH version for the simulation of two different
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wave basin experiments showed that it is possible to use this method for 2D wave propagation.
However, the method is sensitive to the choice of parameters, in particular the shape parameter
for infinitely smooth RBFs. This difficulty can be avoided by using piecewise smooth RBFs that
do not depend on a shape parameter. Based on the tests performed here, the present recommen-
dation is to use such piecewise smooth RBFs, in particular the Poly-Harmonic Splines (PHS) of

degree 5 or 7, supplemented with an augmented polynomial.

Finally, the numerical efficiency of the 2DH version of the model appeared to be an important
obstacle for simulations in large domains. The resolution of the Laplace BVP linear system is
the most computationally expensive part of the model. Therefore, an initial attempt to improve
the numerical efficiency was to use the parallelized version of the direct linear solver MUMPS.
The test conducted for a 60,716 node set with Ny, = 13 showed a maximum speed-up of 3.5
when the simulation was run with 15 MPI processes. Further tests are needed to generalize these

results.

To summarize, at the end of this thesis, an accurate model for simulating nonlinear and dis-
persive effects occurring during water wave propagation over variable bottom profiles has been
developed and improved. The 1DH version has been validated extensively and is applicable for a
wide range of relative water depths, and its applicability for 2DH cases has been demonstrated.
Considering the work on physical processes, bulk viscous effects and bottom friction are taken
into account in the limit of small viscosity and small bottom slope, as well as surface tension

effects for short waves.

Perspectives

With the long term objective of applying the model to real and complex nearshore domains,
including wave propagation near coastal and harbor structures, work can be done to validate
and improve several aspects of the model, in particular: boundary conditions, representation of
physical processes, coupling with other models, robustness of the method, and computational
efficiency. These topics are discussed hereafter, and some insight is given on possible future

developments.

Boundary conditions: Additional realistic boundary conditions must be developed and/or
validated. The generation of irregular and directional waves from a prescribed directional spec-
trum has been implemented using linear wave theory (at the end of the PhD thesis) but requires
being validated (e.g. with test cases from Vincent and Briggs (1989) experiments). This will en-
able forcing the model with spectra obtained from larger scale applications of phase-averaged

models (such as Tomawac, Swan, or WaveWatch-III).

The possibility to generate nonlinear (at least at second order) irregular wave fields may improve

the stability of the model when generating highly nonlinear wave fields (e.g. Schéffer, 1996; Yang
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et al,, 2014).

Moreover, modeling run-up and run-down on slopes is also of interest to widen the range of

applications of the model to “real” coastal problems.

Representation of physical processes: In this work, the representation of bulk viscosity has
been carefully validated. However, the implementation of the bottom boundary condition of the
visco-potential formulation, to take into account bottom friction effects, still requires improve-
ments in the case where it is used in combination with relaxation zones for wave generation.
Moreover, it will be important to derive the expression of the bottom boundary condition with-

out the limitation of a mild bottom slope.

In addition, the calculation of this term is not computationally efficient since it is non-local in
time, and thus requires storage of a large amount of data. To optimize the efficiency and memory
requirements of the computation of this non-local term, the approximation proposed by Torsvik

and Liu (2007) could be tested to evaluate the impact on the accuracy of the results.

The inclusion of energy dissipation through depth-induced wave breaking is necessary for prac-
tical applications, though it cannot be simulated directly with a potential flow model. The goal is
to extend the model to estimate properly the wave height attenuation due to breaking. This re-
quires the modification of the evolution equations (Zakharov equations), and two methods may
be considered: the addition of pressure terms at the free surface to simulate the effects of wave
rollers, following Guignard and Grilli (2001), or the addition of an eddy viscosity-like term to the
KFSBC and DFSBC (Tian et al., 2010), following previous works (i.e. Heitner and Housner, 1970;
Kennedy et al., 2000; Zelt, 1991).

The effects of ambient currents could also be considered for applications where tidal or river

outflow effects are important.

Coupling with other models: Although some viscous effects are taken into account to model
bulk and bottom friction induced viscous dissipation, some applications (i.e. wave-structure in-
teractions, for marine renewable energy devices, offshore platforms, etc.) require a more accurate
representation of viscous effects. In particular, it may be necessary to account for vorticity effects,
wakes in the lee of structures, the viscous drag part of forces, etc. To achieve this, the Misthyc
potential flow model could be coupled with a Navier-Stokes code that takes into account fluid-
structure interactions at local scales, for example, following the SWENSE method proposed by
Ferrant et al. (2003).

Robustness of the RBF-FD method: The RBF-FD method used to estimate derivatives in the
2DH version of the model when solving the Boundary Value Problem or in the Zakharov equa-
tions, is sensitive to the choice of the RBF, the value of the shape parameter C, and the size of
the stencil Ngp,. Finding an appropriate set of parameters for a given application can be a chal-
lenge. The main source of instabilities is the lack of accuracy in the estimation of derivatives at

and close to the boundaries because of non-centered stencils at these locations. Some techniques
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may be tested to reduce the development of instabilities and thus increase the robustness of the
model, for example: decreasing the stencil size of boundary nodes (leading to a more diffusive
approximation at the boundaries), increasing the degree of the augmented polynomial at the

boundary, or refining the mesh when approaching the boundaries.

Another option would be the addition of ghost nodes outside of the domain to reduce the one-
sidedness of the stencils of boundary nodes. Nevertheless, the implementation of such a method
is not trivial. A common method to stabilize the resolution of PDEs without a physical dissipative
term (as is the case for the Zakharov equations) is to add a hyper-viscosity operator to the right
hand-side of the evolution equation to introduce artificially a small amount of dissipation that
will damp spurious high frequency oscillations. In parallel, alternative options for the resolution

of the 2DH problem could also be considered.

Computational efficiency: With a direct solver, the efficiency of the resolution of the Laplace
BVP system depend strongly on the number of nodes in the domain, and parallelizing the code
with a domain decomposition approach could increase its efficiency (over using simply the par-
allel version of the linear solver). Other possibilities to reduce the computational cost could be to
consider time integration schemes requiring fewer resolutions of the Laplace BVP (i.e. multi-step
predictor-corrector schemes) and/or to test iterative solvers, such as GMRES or BiCGSTAB, with

suitable preconditioners. Work on these two subjects is currently in progress.

Further validation and applications: Finally, further validation of the 2DH version of the
model is required, including cases with complex coastlines and variable bathymetries, islands,
coastal structures and a variety of different wave conditions. In the near future, the model will
be applied to real coastal cases where field measurements are available or will be collected, in par-
ticular within projects related to marine renewable energies (e.g. the ongoing EMACOP French
project “Energies MArines COtieres et Portuaires”, and the proposed ANR DiMe project “Dimen-
sionnement et Meteocean: modélisation et observations des états de mer extrémes déferlants
pour les EMR”).

The model may also be used for modeling the generation of waves due to seismic bottom mo-
tion or submarine landslide, in particular for the study of tsunamis. It is currently used for that
purpose within the PIA-ANR TANDEM (Tsunamis in the Atlantic and the English chaNnel: Def-
inition of the Effects through numerical Modeling, see http://www-tandem.cea.fr/), where it has
proven very accurate to simulate such waves. The test cases “Solitary wave over a flat bottom” of
Section 3.2 and “Waves generated by impulsive bottom motion” of Section 3.4 have been consid-
ered in this project. Within the same project, the linear and nonlinear versions of the model have
been used during the PhD of Marine Le Gal to study the generation phase of tsunami (Le Gal
et al,, 2017). These applications have demonstrated the applicability of the model to tsunami

generation and propagation, and this opens another field of future developments/applications.



Appendix A : Dispersion relation for
Misthyc

The dispersion relation of the model depends on the vertical resolution N7. It can be expressed

as a rational function of p according to Eq.(1.74) repeated here for convenience:

@R, ( . )2 _ ZI]’V=T1_2 app?P

I Voh) np 1+ B
The values of the coefficients oy, and 3, for N7 from 2 to 9 are presented in Table 2, for N7 from
10 to 12 in Table 3 and, for N from 13 to 15 in Table 4.
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Table 2: Dispersion relation coefficients for Ny ranging from 2 to 9
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Table 3: Dispersion relation coefficients for N7 ranging from 10 to 12
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Table 4: Dispersion relation coefficients for N7 = ranging from 13 to 15
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