. Lifelong, F. Bibliography-abramovich, and V. Grinshtein, Map model selection in gaussian regression, CHAPTER Electronic Journal of Statistics, vol.4, pp.932-949, 2010.

F. Abramovich and T. Lahav, Sparse additive regression on a regular lattice, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.2, pp.443-459, 2015.
DOI : 10.1111/j.1467-9868.2005.00532.x

URL : http://arxiv.org/abs/1307.5992

P. Alquier, Transductive and inductive adaptative inference for regression and density estimation, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00119593

P. Alquier, Bayesian Methods for Low-Rank Matrix Estimation: Short Survey and Theoretical Study, Algorithmic Learning Theory 2013, pp.309-323, 2013.
DOI : 10.1007/978-3-642-40935-6_22

URL : http://arxiv.org/abs/1306.3862

P. Alquier and G. Biau, Sparse single-index model, J. Mach. Learn. Res, vol.14, pp.243-280, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00556652

P. Alquier, C. Butucea, M. Hebiri, K. Meziani, and T. Morimae, Rank-penalized estimation of a quantum system, Physical Review A, vol.88, issue.3, p.32113, 2013.
DOI : 10.1007/s10208-011-9099-z

URL : https://hal.archives-ouvertes.fr/hal-00705755

P. Alquier, V. Cottet, N. Chopin, and J. Rousseau, Bayesian matrix completion: prior specification. arXiv preprint, 2014.

P. Alquier, V. Cottet, and G. Lecué, Estimation bounds and sharp oracle inequalities of regularized procedures with lipschitz loss functions. arXiv preprint, 2017.

P. Alquier and B. Guedj, Simpler pac-bayesian bounds for hostile data. arXiv preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385064

P. Alquier and K. Lounici, PAC-Bayesian bounds for sparse regression estimation with exponential weights, Electronic Journal of Statistics, vol.5, issue.0, pp.127-145, 2011.
DOI : 10.1214/11-EJS601

URL : https://hal.archives-ouvertes.fr/hal-00465801

P. Alquier, T. T. Mai, and M. Pontil, Regret bounds for lifelong learning, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017.

P. Alquier, K. Meziani, and G. Peyré, Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data, Inverse Problems, vol.29, issue.7, p.29075017, 2013.
DOI : 10.1088/0266-5611/29/7/075017

URL : https://hal.archives-ouvertes.fr/hal-00849962

P. Alquier, J. Ridgway, C. , and N. , On the properties of variational approximations of gibbs posteriors, Journal of Machine Learning Research, vol.17, issue.239, pp.1-41, 2016.

L. Artiles, R. Gill, and M. Gut¸?gut¸?-a, An invitation to quantum tomography, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.23, issue.1, pp.109-134, 2005.
DOI : 10.1017/CBO9780511813658

URL : http://arxiv.org/abs/quant-ph/0303020

K. M. Audenaert and S. Scheel, Quantum tomographic reconstruction with error bars: a Kalman filter approach, New Journal of Physics, vol.11, issue.2, p.23028, 2009.
DOI : 10.1088/1367-2630/11/2/023028

URL : http://doi.org/10.1088/1367-2630/11/2/023028

J. Audibert, Théorie statistique de l'apprentissage: une approche PAC-bayésienne, 2004.

J. Audibert, A Randomized Online Learning Algorithm for Better Variance Control, Proc. 19th Annual Conference on Learning Theory, pp.392-407, 2006.
DOI : 10.1007/11776420_30

S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, Lowrank matrix completion by variational sparse bayesian learning, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2188-2191, 2011.
DOI : 10.1109/icassp.2011.5946762

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, Sparse Bayesian Methods for Low-Rank Matrix Estimation, IEEE Transactions on Signal Processing, vol.60, issue.8, pp.603964-3977, 2012.
DOI : 10.1109/TSP.2012.2197748

URL : http://arxiv.org/abs/1102.5288

T. Baier, D. Petz, K. M. Hangos, and A. Magyar, COMPARISON OF SOME METHODS OF QUANTUM STATE ESTIMATION, Quantum Probability and Infinite Dimensional Analysis, pp.64-78, 2007.
DOI : 10.1142/9789812770271_0007

M. Balcan, A. Blum, and S. Vempala, Efficient representations for lifelong learning and autoencoding, Proc. 28th Conference on Learning Theory, pp.191-210, 2015.

J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla et al., Experimental multiparticle entanglement dynamics induced by decoherence, Nature Physics, vol.6, issue.12, pp.943-946, 2010.
DOI : 10.1038/35002001

URL : http://arxiv.org/abs/1005.1965

J. Baxter, A bayesian/information theoretic model of learning to learn via multiple task sampling, Machine Learning, pp.7-39, 1997.

J. Baxter, A model of inductive bias learning, Journal of Artificial Intelligence Research, vol.12, pp.149-198, 2000.

L. Bégin, P. Germain, F. Laviolette, R. , and J. , Pac-bayesian bounds based on the rényi divergence, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.435-444, 2016.

A. Belloni, V. Chernozhukov, W. , and L. , Square-root lasso: pivotal recovery of sparse signals via conic programming, Biometrika, vol.98, issue.4, pp.791-806, 2011.
DOI : 10.1093/biomet/asr043

URL : http://arxiv.org/abs/1009.5689

J. Bennett and S. Lanning, The netflix prize, Proceedings of KDD cup and workshop, p.35, 2007.

L. Birgé and P. Massart, Gaussian model selection, Journal of the European Mathematical Society, vol.3, issue.3, pp.203-268, 2001.
DOI : 10.1007/s100970100031

P. G. Bissiri, C. Holmes, and S. G. Walker, A general framework for updating belief distributions, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.52, issue.5, 2016.
DOI : 10.1109/TIT.2005.864439

URL : http://doi.org/10.1111/rssb.12158

R. Blume-kohout, Optimal, reliable estimation of quantum states, New Journal of Physics, vol.12, issue.4, p.43034, 2010.
DOI : 10.1088/1367-2630/12/4/043034

URL : http://doi.org/10.1088/1367-2630/12/4/043034

S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic theory of independence, 2013.
DOI : 10.1093/acprof:oso/9780199535255.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00794821

R. Bro and A. K. Smilde, Principal component analysis, Anal. Methods, vol.35, issue.1, pp.2812-2831, 2014.
DOI : 10.1016/S0019-0578(96)00035-3

C. Butucea, M. Gut¸?gut¸?-a, and L. Artiles, Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data, The Annals of Statistics, vol.35, issue.2, pp.465-494, 2007.
DOI : 10.1214/009053606000001488

URL : https://hal.archives-ouvertes.fr/hal-00160843

C. Butucea, M. Gut¸?gut¸?-a, K. , and T. , Spectral thresholding quantum tomography for low rank states, New Journal of Physics, vol.17, issue.11, p.17113050, 2015.
DOI : 10.1088/1367-2630/17/11/113050

URL : http://doi.org/10.1088/1367-2630/17/11/113050

C. Butucea, M. Gut¸?gut¸?-a, K. , and T. , 113050), New Journal of Physics, vol.18, issue.6, p.69501, 2016.
DOI : 10.1088/1367-2630/18/6/069501

V. Bu?ek, R. Derka, G. Adam, and P. Knight, Reconstruction of Quantum States of Spin Systems: From Quantum Bayesian Inference to Quantum Tomography, Annals of Physics, vol.266, issue.2, pp.454-496, 1998.
DOI : 10.1006/aphy.1998.5802

J. Cai, E. J. Candès, and Z. Shen, A Singular Value Thresholding Algorithm for Matrix Completion, SIAM Journal on Optimization, vol.20, issue.4, pp.1956-1982, 2010.
DOI : 10.1137/080738970

URL : http://arxiv.org/abs/0810.3286

T. Cai, T. T. Cai, and A. Zhang, Structured Matrix Completion with Applications to Genomic Data Integration, Journal of the American Statistical Association, vol.7, issue.514, 2015.
DOI : 10.1007/s00439-007-0427-y

URL : http://arxiv.org/abs/1504.01823

T. Cai, D. Kim, Y. Wang, M. Yuan, and H. H. Zhou, Optimal large-scale quantum state tomography with Pauli measurements, The Annals of Statistics, vol.44, issue.2, 2015.
DOI : 10.1214/15-AOS1382

URL : http://arxiv.org/abs/1603.07559

T. Cai and W. Zhou, A max-norm constrained minimization approach to 1-bit matrix completion, Journal of Machine Learning Research, vol.14, issue.1, pp.3619-3647, 2013.

T. T. Cai, Z. Ren, and H. H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electronic Journal of Statistics, vol.10, issue.1, pp.1-59, 2016.
DOI : 10.1214/15-EJS1081

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski, Phase Retrieval via Matrix Completion, SIAM Review, vol.57, issue.2, pp.225-251, 2015.
DOI : 10.1137/151005099

E. J. Candès and Y. Plan, Matrix Completion With Noise, Proceedings of the IEEE, pp.925-936, 2010.
DOI : 10.1109/JPROC.2009.2035722

E. J. Candès and B. Recht, Exact Matrix Completion via Convex Optimization, Foundations of Computational Mathematics, vol.170, issue.1, pp.717-772, 2009.
DOI : 10.1017/CBO9780511814068

E. J. Candès and T. Tao, The Power of Convex Relaxation: Near-Optimal Matrix Completion, IEEE Transactions on Information Theory, vol.56, issue.5, pp.2053-2080, 2010.
DOI : 10.1109/TIT.2010.2044061

E. Carlen, Trace inequalities and quantum entropy: an introductory course, Entropy and the quantum, vol.529, pp.73-140, 2010.
DOI : 10.1090/conm/529/10428

A. Carpentier, O. Klopp, M. Löffler, and R. Nickl, Adaptive confidence sets for matrix completion. arXiv preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354030

O. Catoni, A PAC-Bayesian approach to adaptive classification, 2003.

O. Catoni, Statistical learning theory and stochastic optimization, volume 1851 of Saint-Flour Summer School on Probability Theory, Lecture Notes in Mathematics, 2001.

O. Catoni, PAC-Bayesian supervised classification: the thermodynamics of statistical learning, IMS Lecture Notes?Monograph Series, vol.56, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206119

O. Catoni, Challenging the empirical mean and empirical variance: A deviation study, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, pp.1148-1185, 2012.
DOI : 10.1214/11-AIHP454

URL : https://hal.archives-ouvertes.fr/hal-00517206

O. Catoni, PAC-Bayesian bounds for the Gram matrix and least squares regression with a random design. arXiv preprint, 2016.

G. Cavallanti, N. Cesa-bianchi, and C. Gentile, Linear algorithms for online multitask classification, Journal of Machine Learning Research, vol.1, pp.2901-2934, 2010.

N. Cesa-bianchi and G. Lugosi, Prediction, learning, and games, 2006.
DOI : 10.1017/CBO9780511546921

J. Corander and M. Villani, Bayesian assessment of dimensionality in reduced rank regression, Statistica Neerlandica, vol.36, issue.3, pp.255-270, 2004.
DOI : 10.1111/1467-9892.00212

V. Cottet and P. Alquier, 1-bit matrix completion: Pac-bayesian analysis of a variational approximation. arXiv preprint, 2016.

K. Crammer and Y. Mansour, Learning multiple tasks using shared hypotheses, Advances in Neural Information Processing Systems 25, pp.1475-1483, 2012.

A. Dalalyan and A. Tsybakov, Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity, Machine Learning, pp.39-61, 2008.
DOI : 10.1007/978-3-540-45167-9_23

URL : https://hal.archives-ouvertes.fr/hal-00265651

M. A. Davenport, Y. Plan, E. Van-den-berg, and M. Wootters, 1-Bit matrix completion, Information and Inference, vol.3, issue.3, pp.189-223, 2014.
DOI : 10.1093/imaiai/iau006

J. Fan, Y. Fan, and J. Lv, High dimensional covariance matrix estimation using a factor model, Journal of Econometrics, vol.147, issue.1, pp.186-197, 2008.
DOI : 10.1016/j.jeconom.2008.09.017

URL : http://arxiv.org/abs/math/0701124

C. Ferrie, Quantum model averaging, New Journal of Physics, vol.16, issue.9, p.93035, 2014.
DOI : 10.1088/1367-2630/16/9/093035

C. Ferrie and C. E. Granade, Likelihood-free methods for quantum parameter estimation. Physical review letters, p.130402, 2014.
DOI : 10.1103/physrevlett.112.130402

URL : http://arxiv.org/abs/1304.5828

S. T. Flammia, D. Gross, Y. Liu, and J. Eisert, Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators, New Journal of Physics, vol.14, issue.9, p.95022, 2012.
DOI : 10.1088/1367-2630/14/9/095022

URL : http://doi.org/10.1088/1367-2630/14/9/095022

R. Foygel, O. Shamir, N. Srebro, and R. Salakhutdinov, Learning with the weighted trace-norm under arbitrary sampling distributions, Advances in Neural Information Processing Systems, pp.2133-2141, 2011.

T. Galanti, L. Wolf, and T. Hazan, A theoretical framework for deep transfer learning, Information and Inference, vol.5, issue.2, p.8, 2016.
DOI : 10.1093/imaiai/iaw008

S. Gerchinovitz, Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00653550

S. Gerchinovitz, Sparsity regret bounds for individual sequences in online linear regression, Journal of Machine Learning Research, vol.14, issue.1, pp.729-769, 2013.
URL : https://hal.archives-ouvertes.fr/inria-00552267

P. Germain, Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif, l'apprentissage transductif et l'adaptation de domaine, 2015.

P. Germain, A. Habrard, F. Laviolette, and E. Morvant, A pacbayesian approach for domain adaptation with specialization to linear classifiers, ICML (3), pp.738-746, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00822685

J. Geweke, Bayesian reduced rank regression in econometrics, Journal of Econometrics, vol.75, issue.1, pp.121-146, 1996.
DOI : 10.1016/0304-4076(95)01773-9

S. Ghosal, J. K. Ghosh, . Van-der, and A. W. Vaart, Convergence rates of posterior distributions, The Annals of Statistics, vol.28, issue.2, pp.500-531, 2000.
DOI : 10.1214/aos/1016218228

S. Ghosal, J. K. Ghosh, and A. W. Van-der-vaart, Convergence rates of posterior distributions, The Annals of Statistics, vol.28, issue.2, pp.500-531, 2000.
DOI : 10.1214/aos/1016218228

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Giulini, PAC-Bayesian bounds for Principal Component Analysis in Hilbert spaces, 2015.

C. Granade, J. Combes, C. , and D. G. , Practical Bayesian tomography, New Journal of Physics, vol.18, issue.3, p.33024, 2016.
DOI : 10.1088/1367-2630/18/3/033024

URL : http://doi.org/10.1088/1367-2630/18/3/033024

D. Gross, Recovering low-rank matrices from few coefficients in any basis. Information Theory, IEEE Transactions on, vol.57, issue.3, pp.1548-1566, 2011.
DOI : 10.1109/tit.2011.2104999

URL : http://arxiv.org/abs/0910.1879

D. Gross, Y. Liu, S. T. Flammia, S. Becker, and J. Eisert, Quantum State Tomography via Compressed Sensing, Physical Review Letters, vol.105, issue.15, p.105150401, 2010.
DOI : 10.1063/1.2716992

URL : http://arxiv.org/abs/0909.3304

P. Grünwald, The Safe Bayesian, International Conference on Algorithmic Learning Theory, pp.169-183, 2012.
DOI : 10.1007/978-3-642-34106-9_16

P. D. Grünwald and N. A. Mehta, Fast rates with unbounded losses. arXiv preprint, 2016.

B. Guedj, Aggregation of estimators and classifiers : theory and methods, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00922353

S. Gunasekar, A. Banerjee, and J. Ghosh, Unified view of matrix completion under general structural constraints, Advances in Neural Information Processing Systems, pp.1180-1188, 2015.

M. Gut¸?gut¸?-a, T. Kypraios, and I. Dryden, Rank-based model selection for multiple ions quantum tomography, New Journal of Physics, issue.10, p.14105002, 2012.

E. Hazan, Introduction to Online Convex Optimization, Foundations and Trends?? in Optimization, vol.2, issue.3-4, pp.3-4157, 2016.
DOI : 10.1561/2400000013

Z. Hradil, J. Rehá?ek, J. Fiurá?ek, and . Je?ek, 3 maximumlikelihood methodsin quantum mechanics, Quantum state estimation, pp.59-112, 2004.
DOI : 10.1007/978-3-540-44481-7_3

F. Huszár and N. M. Houlsby, Adaptive Bayesian quantum tomography, Physical Review A, vol.85, issue.5, p.52120, 2012.
DOI : 10.1214/009053606000001488

H. Ji, C. Liu, Z. Shen, and Y. Xu, Robust video denoising using low rank matrix completion, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1791-1798, 2010.
DOI : 10.1109/CVPR.2010.5539849

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Kapur, K. Marwah, A. , and G. , Gene expression prediction using low-rank matrix completion, BMC Bioinformatics, vol.141, issue.3, p.243, 2016.
DOI : 10.1378/chest.11-0449

URL : http://doi.org/10.1186/s12859-016-1106-6

R. H. Keshavan, S. Oh, and A. Montanari, Matrix completion from a few entries, IEEE International Symposium on Information Theory, pp.324-328, 2009.
DOI : 10.1109/isit.2009.5205567

URL : http://arxiv.org/abs/0901.3150

F. Kleibergen and R. Paap, Priors, posteriors and bayes factors for a Bayesian analysis of cointegration, Journal of Econometrics, vol.111, issue.2, pp.223-249, 2002.
DOI : 10.1016/S0304-4076(02)00105-7

O. Klopp, Rank penalized estimators for high-dimensional matrices, Electronic Journal of Statistics, vol.5, issue.0, pp.1161-1183, 2011.
DOI : 10.1214/11-EJS637

URL : https://hal.archives-ouvertes.fr/hal-00583884

O. Klopp, Noisy low-rank matrix completion with general sampling distribution, Bernoulli, vol.20, issue.1, pp.282-303, 2014.
DOI : 10.3150/12-BEJ486

URL : https://hal.archives-ouvertes.fr/hal-00675413

O. Klopp, Matrix completion by singular value thresholding: Sharp bounds, Electronic Journal of Statistics, vol.9, issue.2, pp.2348-2369, 2015.
DOI : 10.1214/15-EJS1076

URL : https://hal.archives-ouvertes.fr/hal-01111757

O. Klopp, J. Lafond, ´. E. Moulines, and J. Salmon, Adaptive multinomial matrix completion, Electronic Journal of Statistics, vol.9, issue.2, pp.2950-2975, 2015.
DOI : 10.1214/15-EJS1093

URL : https://hal.archives-ouvertes.fr/hal-01058447

O. Klopp, K. Lounici, and A. B. Tsybakov, Robust matrix completion . Probability Theory and Related Fields, pp.1-42, 2014.
DOI : 10.1007/s00440-016-0736-y

URL : https://hal.archives-ouvertes.fr/hal-01098492

V. Koltchinskii, Von Neumann entropy penalization and low-rank matrix estimation, The Annals of Statistics, vol.39, issue.6, pp.2936-2973, 2011.
DOI : 10.1214/11-AOS926

URL : http://arxiv.org/abs/1009.2439

V. Koltchinskii, K. Lounici, and A. B. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion, The Annals of Statistics, vol.39, issue.5, pp.2302-2329, 2011.
DOI : 10.1214/11-AOS894

URL : https://hal.archives-ouvertes.fr/hal-00676868

V. Koltchinskii and D. Xia, Optimal estimation of low rank density matrices, Journal of Machine Learning Research, vol.16, pp.1757-1792, 2015.

J. H. Kotecha and P. M. Djuric, Gibbs sampling approach for generation of truncated multivariate Gaussian random variables, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), pp.1757-1760, 1999.
DOI : 10.1109/ICASSP.1999.756335

K. Kravtsov, S. Straupe, I. Radchenko, N. Houlsby, F. Huszár et al., Experimental adaptive Bayesian tomography, Physical Review A, vol.87, issue.6, p.62122, 2013.
DOI : 10.1103/PhysRevLett.87.050402

K. Kreutz-delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee et al., Dictionary Learning Algorithms for Sparse Representation, Neural Computation, vol.15, issue.2, pp.349-396, 2003.
DOI : 10.1162/089976601300014385

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944020

R. Kueng and C. Ferrie, Near-optimal quantum tomography: estimators and bounds, New Journal of Physics, vol.17, issue.12, p.123013, 2015.
DOI : 10.1088/1367-2630/17/12/123013

URL : http://doi.org/10.1088/1367-2630/17/12/123013

N. D. Lawrence and R. Urtasun, Non-linear matrix factorization with Gaussian processes, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.601-608, 2009.
DOI : 10.1145/1553374.1553452

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. J. Lim and Y. W. Teh, Variational bayesian approach to movie rating prediction, Proceedings of KDD Cup and Workshop, pp.15-21, 2007.

J. Liu, P. Musialski, P. Wonka, Y. , and J. , Tensor Completion for Estimating Missing Values in Visual Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.1, pp.208-220, 2013.
DOI : 10.1109/TPAMI.2012.39

W. Liu, T. Zhang, J. Liu, P. Chen, and J. Yuan, Experimental Quantum State Tomography via Compressed Sampling, Physical Review Letters, vol.108, issue.17, p.170403, 2012.
DOI : 10.1103/PhysRevA.67.040301

K. Lounici, High-dimensional covariance matrix estimation with missing observations, Bernoulli, vol.20, issue.3, pp.1029-1058, 2014.
DOI : 10.3150/12-BEJ487

URL : http://arxiv.org/abs/1201.2577

T. T. Mai and P. Alquier, A Bayesian approach for noisy matrix completion: Optimal rate under general sampling distribution, Electronic Journal of Statistics, vol.9, issue.1, pp.823-841, 2015.
DOI : 10.1214/15-EJS1020

URL : http://arxiv.org/abs/1408.5820

T. T. Mai and P. Alquier, Pseudo-Bayesian quantum tomography with rank-adaptation, Journal of Statistical Planning and Inference, vol.184, pp.62-76, 2017.
DOI : 10.1016/j.jspi.2016.11.003

URL : http://arxiv.org/abs/1605.05933

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.689-696, 2009.
DOI : 10.1145/1553374.1553463

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Massart, Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics, Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, 2003.

A. Maurer, Algorithmic stability and meta-learning, Journal of Machine Learning Research, vol.6, pp.967-994, 2005.

A. Maurer, M. Pontil, and B. Romera-paredes, Sparse coding for multitask and transfer learning, Proc. 30th International Conference on Machine Learning, pp.343-351, 2013.

A. Maurer, M. Pontil, and B. Romera-paredes, The benefit of multitask representation learning, Journal of Machine Learning Research, vol.17, issue.81, pp.1-32, 2016.

D. A. Mcallester, Some PAC-Bayesian theorems, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.230-234, 1998.
DOI : 10.1145/279943.279989

D. A. Mcallester, PAC-Bayesian model averaging, Proceedings of the twelfth annual conference on Computational learning theory , COLT '99, pp.164-170, 1999.
DOI : 10.1145/307400.307435

P. Melville and V. Sindhwani, Recommender Systems, Encyclopedia of machine learning, pp.829-838, 2011.
DOI : 10.1145/1363686.1363903

K. Meziani, Estimations et tests non paramétriques en tomographie quantique homodyne, 2008.

N. Natarajan and I. S. Dhillon, Inductive matrix completion for predicting gene-disease associations, Bioinformatics, vol.30, issue.12, pp.30-60, 2014.
DOI : 10.1093/bioinformatics/btu269

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058925

Z. Naulet and E. Barat, Bayesian nonparametric estimation for quantum homodyne tomography, 2016.

S. Negahban and M. J. Wainwright, Restricted strong convexity and weighted matrix completion: optimal bounds with noise, J. Mach. Learn. Res, vol.13, pp.1665-1697, 2012.

M. Paris and J. , Quantum state estimation, Lecture Notes in Physics, vol.649, 2004.
DOI : 10.1007/b98673

A. Pentina and S. Ben-david, Multi-task and Lifelong Learning of Kernels, Proc. 26th International Conference on Algorithmic Learning Theory, pp.194-208, 2015.
DOI : 10.1007/s10994-009-5109-7

A. Pentina and C. Lampert, A pac-bayesian bound for lifelong learning, Proc. 31st International Conference on Machine Learning, pp.991-999, 2014.

M. Pourahmadi, High-dimensional covariance estimation: with highdimensional data, 2013.
DOI : 10.1002/9781118573617

R. Team, R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, 2014.

J. Rau, Inferring the Gibbs state of a small quantum system, Physical Review A, vol.649, issue.1, p.12101, 2011.
DOI : 10.1016/0034-4877(76)90065-3

J. Rau, Appearance of Gibbs states in quantum-state tomography, Physical Review A, vol.42, issue.6, p.62114, 2014.
DOI : 10.1016/0167-2789(93)90241-R

B. Recht and C. Ré, Parallel stochastic gradient algorithms for large-scale matrix completion, Mathematical Programming Computation, vol.8, issue.2, pp.201-226, 2013.
DOI : 10.1137/S1052623495294797

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

?. Rehá?ek, J. Mogilevtsev, D. Hradil, and Z. , Operational tomography: fitting of data patterns. Physical review letters, p.10402, 2010.

J. Ridgway, P. Alquier, N. Chopin, and F. Liang, Pac-bayesian auc classification and scoring, Advances in Neural Information Processing Systems, pp.658-666, 2014.

C. Robert and G. Casella, Monte Carlo statistical methods, 2013.

A. Rohde and A. B. Tsybakov, Estimation of high-dimensional lowrank matrices. The Annals of Statistics, pp.887-930, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606063

J. Rousseau, On the Frequentist Properties of Bayesian Nonparametric Methods, Annual Review of Statistics and Its Application, vol.3, issue.1, pp.211-231, 2016.
DOI : 10.1146/annurev-statistics-041715-033523

URL : https://hal.archives-ouvertes.fr/hal-01252919

D. B. Rowe, Multivariate Bayesian statistics: models for source separation and signal unmixing, 2002.
DOI : 10.1201/9781420035261

P. Ruvolo and E. Eaton, Ella: An efficient lifelong learning algorithm, Proc. 30th International Conference on Machine Learning, pp.507-515, 2013.

R. Salakhutdinov and A. Mnih, Bayesian probabilistic matrix factorization using Markov chain Monte Carlo, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.880-887, 2008.
DOI : 10.1145/1390156.1390267

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Schmied, Quantum state tomography of a single qubit: comparison of methods, Journal of Modern Optics, vol.1, issue.18, pp.1-15, 2016.
DOI : 10.1126/science.1250147

C. Schwemmer, L. Knips, D. Richart, H. Weinfurter, T. Moroder et al., Systematic Errors in Current Quantum State Tomography Tools, Physical Review Letters, vol.27, issue.8, p.80403, 2015.
DOI : 10.1103/PhysRevLett.95.210501

URL : http://arxiv.org/abs/1310.8465

Y. Seldin, F. Laviolette, N. Cesa-bianchi, J. Shawe-taylor, and P. Auer, PAC-Bayesian Inequalities for Martingales, IEEE Transactions on Information Theory, vol.58, issue.12, pp.587086-7093, 2012.
DOI : 10.1109/TIT.2012.2211334

URL : http://arxiv.org/abs/1110.6886

S. Shalev-shwartz, Online Learning and Online Convex Optimization, Machine Learning, pp.107-194, 2011.
DOI : 10.1561/2200000018

S. Shalev-shwartz, Online Learning and Online Convex Optimization, Machine Learning, pp.107-194, 2012.
DOI : 10.1561/2200000018

J. Shang, H. K. Ng, and B. Englert, Quantum state tomography: Mean squared error matters, bias does not. arXiv preprint, 2014.

J. Shawe-taylor and R. Williamson, A PAC analysis of a Bayes estimator, Proceedings of the Tenth Annual Conference on Computational Learning Theory, pp.2-9, 1997.

N. Srebro, J. D. Rennie, and T. S. Jaakkola, Maximum-margin matrix factorization, NIPS, pp.1329-1336, 2004.

G. Struchalin, I. Pogorelov, S. Straupe, K. Kravtsov, I. Radchenko et al., Experimental adaptive quantum tomography of two-qubit states, Physical Review A, vol.14, issue.1, p.12103, 2016.
DOI : 10.1093/biomet/57.1.97

URL : http://arxiv.org/abs/1510.05303

M. Sundin, Bayesian methods for sparse and low-rank matrix problems, 2016.

M. Sundin, C. R. Rojas, M. Jansson, C. , and S. , Relevance Singular Vector Machine for Low-Rank Matrix Reconstruction, IEEE Transactions on Signal Processing, vol.64, issue.20, pp.5327-5339, 2016.
DOI : 10.1109/TSP.2016.2597121

T. Suzuki, Pac-bayesian bound for gaussian process regression and multiple kernel additive model, JMLR: Workshop and Conference Proceedings, pp.8-9, 2012.

T. Suzuki, Convergence rate of bayesian tensor estimatior and its minimax optimality, Proceedings of the 32nd International Conference on Machine Learning, pp.1273-1282, 2015.

S. Thrun and L. Pratt, Learning to Learn, 1998.
DOI : 10.1007/978-1-4615-5529-2

I. Tosic and P. Frossard, Dictionary Learning, IEEE Signal Processing Magazine, vol.28, issue.2, pp.27-38, 2011.
DOI : 10.1109/MSP.2010.939537

V. Vapnik, Statistical Learning Theory, 1998.

K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Physical Review A, vol.306, issue.5, p.2847, 1989.
DOI : 10.1038/306141a0

H. M. Wallach, D. M. Mimno, and A. Mccallum, Rethinking LDA: Why priors matter, Advances in neural information processing systems, pp.1973-1981, 2009.

Y. Wang, Asymptotic equivalence of quantum state tomography and noisy matrix completion, The Annals of Statistics, vol.41, issue.5, pp.2462-2504, 2013.
DOI : 10.1214/13-AOS1156

URL : http://arxiv.org/abs/1311.4976

S. Wilhelm and B. Manjunath, tmvtnorm: A package for the truncated multivariate normal distribution. sigma, 2010.

J. Wright, A. Ganesh, S. Rao, Y. Peng, M. et al., Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in neural information processing systems, pp.2080-2088, 2009.

D. Xia, Estimation of low rank density matrices by Pauli measurements, Electronic Journal of Statistics, vol.11, issue.1, pp.50-77, 2017.
DOI : 10.1214/16-EJS1222

D. Xia and V. Koltchinskii, Estimation of low rank density matrices: Bounds in Schatten norms and other distances, Electronic Journal of Statistics, vol.10, issue.2, pp.2717-2745, 2016.
DOI : 10.1214/16-EJS1192

M. Zhou, C. Wang, M. Chen, J. Paisley, D. Dunson et al., Nonparametric Bayesian matrix completion, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop, 2010.
DOI : 10.1109/SAM.2010.5606741

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Zou, T. Hastie, and R. Tibshirani, Sparse Principal Component Analysis, Journal of Computational and Graphical Statistics, vol.15, issue.2, pp.265-286, 2006.
DOI : 10.1198/106186006X113430

K. Zyczkowski, K. Penson, I. Nechita, C. , and B. , Generating random density matrices, Journal of Mathematical Physics, vol.135, issue.6, p.52062201, 2011.
DOI : 10.1155/S1073792800000532

URL : https://hal.archives-ouvertes.fr/hal-00559120