Quantification of modelling uncertainties in turbulent flow simulations

Résumé : Le but de cette thèse est de faire des simulations prédictives à partir de modèles de turbulence de type RANS (Reynolds-Averaged Navier-Stokes). Ces simulations font l'objet d'un traitement systématique du modèle, de son incertitude et de leur propagation par le biais d'un modèle de calcul prédictif aux incertitudes quantifiées. Pour faire cela, nous utilisons le cadre robuste de la statistique Bayesienne.La première étape vers ce but a été d'obtenir une estimation de l'erreur de simulations RANS basées sur le modèle de turbulence de Launder-Sharma k-e. Nous avons recherché en particulier à estimer des incertitudes pour les coefficients du modele, pour des écoulements de parois en gradients favorable et défavorable. Dans le but d'estimer la propagation des coefficients qui reproduisent le plus précisemment ces types d'écoulements, nous avons étudié 13 configurations différentes de calibrations Bayesienne. Chaque calibration était associée à un gradient de pression spécifique gràce à un modèle statistique. Nous representont la totalite des incertitudes dans la solution avec une boite-probabilite (p-box). Cette boîte-p représente aussi bien les paramètres de variabilité de l'écoulement que les incertitudes epistemiques de chaque calibration. L'estimation d'un nouvel écoulement de couche-limite est faite pour des valeurs d'incertitudes générées par cette information sur l'incertitude elle-même. L'erreur d'incertitude qui en résulte est consistante avec les mesures expérimentales.Cependant, malgré l'accord avec les mesures, l'erreur obtenue était encore trop large. Ceci est dû au fait que la boite-p est une prédiction non pondérée. Pour améliorer cela, nous avons développé une autre approche qui repose également sur la variabilité des coefficients de fermeture du modèle, au travers de multiples scénarios d'écoulements et de multiples modèles de fermeture. La variabilité est là encore estimée par le recours à la calibration Bayesienne et confrontée aux mesures expérimentales de chaque scénario. Cependant, un scénario-modèle Bayesien moyen (BMSA) est ici utilisé pour faire correspondre les distributions a posteriori à un scénario (prédictif) non mesuré. Contrairement aux boîtes-p, cette approche est une approche pondérée faisant appel aux probabilités des modèles de turbulence, déterminée par les données de calibration. Pour tous les scénarios de prédiction considérés, la déviation standard de l'estimation stochastique est consistante avec les mesures effectuées.Les résultats de l'approche BMSA expriment des barres d'erreur raisonnables. Cependant, afin de l'appliquer à des topologies plus complexes et au-delà de la classe des écoulements de couche-limite, des techniques de modeles de substitution doivent être mises en places. La méthode de la collocation Stochastique-Simplex (SSC) est une de ces techniques et est particulièrement robuste pour la propagation de distributions d'entrée incertaines dans un code de calcul. Néanmois, son utilisation de la triangulation Delaunay peut entrainer un problème de coût prohibitif pour les cas à plus de 5 dimensions. Nous avons donc étudié des moyens pour améliorer cette faible scalabilité. En premier lieu, c'est dans ce but que nous avons en premier proposé une technique alternative d'interpolation basée sur le probleme 'Set-Covering'. Deuxièmement, nous avons intégré la méthode SSC au cadre du modèle de réduction à haute dimension (HDMR) dans le but d'éviter de considérer tous les espaces de haute dimension en même temps.Finalement, avec l'utilisation de notre technique de modelisation de substitution (surrogate modelling technique), nous avons appliqué le cadre BMSA à un écoulement transsonique autour d'un profil d'aile. Avec cet outil nous sommes maintenant capable de faire des simulations prédictives d'écoulements auparavant trop coûteux et offrant des incertitudes quantifiées selon les imperfections des différents modèles de turbulence.
Type de document :
Thèse
Fluids mechanics [physics.class-ph]. Ecole nationale supérieure d'arts et métiers - ENSAM, 2015. English. 〈NNT : 2015ENAM0007〉
Liste complète des métadonnées

Littérature citée [125 références]  Voir  Masquer  Télécharger

https://pastel.archives-ouvertes.fr/tel-01555595
Contributeur : Abes Star <>
Soumis le : mardi 4 juillet 2017 - 11:46:13
Dernière modification le : mercredi 11 juillet 2018 - 01:03:24
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 00:08:20

Fichier

EDELING.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01555595, version 1

Collections

Citation

Wouter Nico Edeling. Quantification of modelling uncertainties in turbulent flow simulations. Fluids mechanics [physics.class-ph]. Ecole nationale supérieure d'arts et métiers - ENSAM, 2015. English. 〈NNT : 2015ENAM0007〉. 〈tel-01555595〉

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

118