N
N

N

HAL

open science

A formalization of elliptic curves for cryptography

Evmorfia-Iro Bartzia

» To cite this version:

Evmorfia-Iro Bartzia. A formalization of elliptic curves for cryptography. Cryptography and Security
[cs.CR]. Université Paris Saclay (COmUE), 2017. English. NNT: 2017SACLX002 . tel-01563979

HAL Id: tel-01563979
https://pastel.hal.science/tel-01563979
Submitted on 18 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-01563979
https://hal.archives-ouvertes.fr

o
universite

ECOLE
- POLYTECHNIQUE
vvvvvvvv TE PARIS-SACLAY

y 4

informatiques, mathématiques

A~

NNT : 2017SACLX002

THESE DE DOCTORAT
DE L’UNIVERSITE PARIS-SACLAY

PREPAREE A INRIA PARIS
EQUIPE PROSECCO

Ecole doctorale n° 573

INTERFACES - Approches interdisciplinaires :

fondements, applications et innovations

Spécialité de doctorat : informatique

par

Evmorfia-Iro BARTZIA

A Formalization of Elliptic Curves

for Cryptography

These présentée et soutenue a Inria-Paris, le 15 février 2015.

Composition du Jury :

M. Gilles Barthe, Professeur

Relecteur

IMDEA Software Institute, Madrid, Espagne

M. Karthikeyan Bhargavan, Directeur de recherche

Inria Paris, France

Directeur de these

M. Philippe Guillot, Maitre de conférences Examinateur
Université de Paris 8, France
Mme. Assia Mahboubi, Chargé de recherche Examinatrice

Inria Saclay - Ile de France, France

Mme. Christine Paulin-Mohring, Professeur

Université Paris-Sud, France

Présidente du jury

M. Ben Smith, Chargé de recherche Examinateur
Inria Saclay - lle de France, France
M. Bas Spitters, Professeur associé Relecteur

Université d’Aarhus, Danemark

M. Pierre-Yves Strub, Maitre de conférences

Ecole Polytechnique, France

Co-directeur de theése

To Fredo and Robert

1 Introduction

1.1 History of formal methods
1.2 Proof assistants
1.3 Use of formal methods in mathematics
1.4 Use of formal methods in cryptography
1.5 Elliptic curves and cryptography
1.6 Contribution of this thesis

2 Background

2.1 Mathematical background
2.1.1 Elliptic curves definitions
2.1.2 Defining addition

2.1.3 Riemann Roch and the group law

2.2 Use of elliptic curves in cryptography

2.2.1 Algorithms for scalar multiplication

2.2.2 Use of different coordinate systems

2.3 Coq and its SSREFLECT extension
2.3.1 Propositions and Types
2.3.2 Coq by example
2.3.3 Functions and Equality
2.3.4 Inductive types
2.3.5 The SSREFLECT extension

3 A formal library for elliptic curves

3.1 Elliptic curves definitions
3.2 The Picard group of divisors

3.2.1 The field of rational functions K(&)

3.2.2 Principal Divisors
3.2.3 Divisorofaline.
3.2.4 The Picard Group
3.3 Linking Pic(€) to EXK)
3.4 The Projective Plane

Contents

0~ U W N

CONTENTS

3.5 Related work

4 A formalization of the GLV algorithm
4.1 The multi-exponentiation algorithm
4.2 The decomposition algorithm
4.3 Computing the endomorphisms
4.4 The GLV algorithm
4.5 Related worko

4.6 Comments and Future work

5 Applications
5.1 Verifying GLV with CoqEAL (future work)
5.2 A Verified Library of Elliptic Curvesin F*
5.3 An SSREFLECT library for monoidal algebras

6 Conclusion

References

vi

76

78
80
83
88
91
92
93

95
95
96
100

103

106

Une formalisation des courbes elliptiques pour la cryptographie.

Le sujet de ma these s’inscrit dans le domaine des preuves formelles et de la vérification des algo-
rithmes cryptographiques. L’implémentation des algorithmes cryptographiques est souvent une tache assez
compliquée, parce qu’ils sont optimisés pour étre efficaces et siirs en méme temps. Par conséquent, il n’est
pas toujours évident qu’un programme cryptographique en tant que fonction, corresponde exactement &
I’algorithme mathématique, c’est-a-dire que le programme soit correct. Les erreurs dans les programmes
cryptographiques peuvent mettre en danger la sécurité de systémes cryptographiques entiers et donc, des
preuves de correction sont souvent nécessaires. Les systemes formels et les assistants de preuves comme
Coq et Isabelle-HOL sont utilisés pour développer des preuves de correction des programmes. Les courbes
elliptiques sont largement utilisées en cryptographie surtout en tant que groupe cryptographique tres
efficace. Pour le développement des preuves formelles des algorithmes utilisant les courbes elliptiques, une
théorie formelle de celles-ci est nécessaire. Dans ce contexte, nous avons développé une théorie formelle
des courbes elliptiques en utilisant ’assistant de preuves Coq. Cette théorie est par la suite utilisée pour
prouver la correction des algorithmes de multiplication scalaire sur le groupe des points d’une courbe
elliptique.

Plus précisément, mes travaux de these peuvent étre divisées en deux parties principales. La premiére
concerne le développement de la théorie des courbes elliptiques en utilisant 'assistant des preuves Coq.
Notre développement de plus de 15000 lignes de code Coq comprend la formalisation des courbes elliptiques
données par une équation de Weierstrass, la théorie des corps des fonctions rationnelles sur une courbe, la
théorie des groupes libres et des diviseurs des fonctions rationnelles sur une courbe. Notre résultat principal
est la formalisation du théoréeme de Picard ; une conséquence directe de ce théoréme est ’associativité de
lopération du groupe des points d’une courbe elliptique qui est un résultat non trivial a prouver. La seconde
partie de ma these concerne la vérification de ’algorithme GLV pour effectuer la multiplication scalaire
sur des courbes elliptiques. Pour ce développement, nous avons vérifier trois algorithmes indépendants : la
multiexponentiation dans un groupe, la décomposition du scalaire et le calcul des endomorphismes sur
une courbe elliptique. Nous avons également développé une formalisation du plan projectif et des courbes
en coordonnées projectives et nous avons prouvé que les deux représentations (affine et projective) sont
isomorphes.

Mon travail est a la fois une premiere approche a la formalisation de la géométrie algébrique élémentaire
qui est intégré dans les bibliotheques de SSREFLECT mais qui sert aussi a la certification de véritables
programmes cryptographiques.

La manuscrit contient six chapitres.

— Le premier chapitre donne une introduction aux méthodes formelles, notamment dans le cadre de la
formalisation de résultats mathématiques ainsi que dans le contexte de la sécurité des infrastructures.

— Le deuxieme chapitre présente une introduction aux courbes elliptiques et de leur utilisation en
cryptographie. Il y est aussi donné une introduction a l’assistant a la preuve Coq et a son extension
SSREFLECT.

— Le troisieéme chapitre présente la contribution centrale de cette these : une bibliotheque formellement
vérifiée en Coq/SSREFLECT pour la théorie des courbes elliptiques. Le résultat principal est une
preuve de l'existence d’un isomorphisme entre les points d’une courbe elliptique et le groupe de
Picard de ses diviseurs. Ces travaux ont été publiés dans Interactive Theorem Proving 2014.

— Le quatriéme chapitre présente une preuve de correction de l'algorithme GLV (Gallant, Lambert,
et Vanstone) qui est utilisé pour la multiplication scalaire dans les courbes elliptiques — primitive
centrale de certaines constructions cryptographiques. Cet algorithme se décompose en trois parties,
dont 'une se repose sur la formalisation des courbes elliptiques présentée au chapitre précédent.

— Le cinquiéme chapitre conclue avec la présentation de trois applications et souligne I'importance
d’établir des liens formels entre bibliotheques formellement vérifiées de courbes elliptiques et les
implémentations afférentes. Une partie de ces travaux ont été publiés dans Computer Security
Foundations Symposium 2016.

— Le dernier chapitre conclue la thése et donne des directions de recherche pour des travaux futurs.

Mots-clés : Cryptographie, Méthodes formelles (informatique), Courbes elliptiques, Coq
(logiciel).

Introduction

1.1 History of formal methods

Kurt Gédel, On Formally Undecidable Propositions of Principia Mathematica
and Related Systems I:

The development of mathematics towards greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can prove any

theorem using nothing but a few mechanical rules.

The idea of mechanized reasoning probably began in the 17th century with
Leibniz who was the first to imagine a universal language (characteristica univer-
salis) where all statements could be expressed and checked for their truth value
via a calculus of reasoning (calculus ratiocinator). Interestingly, Leibniz’s char-
acteristica was not limited to expressing mathematical statements. He imagined
a universal language where all controversial statements could be resolved by his
calculus and therefore no disagreement could take place. Nevertheless, one had
to wait until the beginning of the 20th century, when important progress in the
domain of mathematical logic introduced once again Leibniz’s idea limited to
mathematical statements. The realization that common mathematical state-
ments can be expressed using formal axiomatic systems in such a way that it
would be possible (at least in principle) to automatically check if they are correct

or not, was one of the most important steps in the history of mathematics in

the 20th century. The first to present such a system was Frege [Fre93] in 1893,
followed by Zermelo with axiomatic set theory (in 1908), Russell and Whitehead
with ramified type theory in Principia Mathematica (in 1913), and Church with
simple type theory (in 1940).

Formalization consists of two aspects: (i) expressing statements in some
formal language and (ii) develop proofs based on a fixed set of rules, in a way
that their correctness can be checked by some algorithm. However, in practice,
formalizing mathematical theorems and proofs is extremely difficult to do by
hand:

"...the tiniest proof at the beginning of the Theory of Sets would already
require several hundreds of signs for its complete formalization... formalized
mathematics cannot in practice be written down in full... We shall therefore very

quickly abandon formalized mathematics." (Bourbaki)

Even Russell himself stated that his intellect never recovered from the strain of
writing Principia Mathematica. To sum up, as Rasiowa and Sikorski report: The
mechanical method of deducing some mathematical theorems has no practical
value, because this is too complicated in practice. As a result, the idea of
formalizing proofs has not prevailed and few mathematicians have actually
exercised it. However, the rise of computer science in the late 20th century has
made possible the complete formalization of complex mathematical theorems
and proofs. Since then, major progress has been made in the development of
axiomatic formal systems, and several impressive results have followed, like
the formalization of the prime number theorem [ADGRO7] or the four color
theorem [Gon07].

1.2 Proof assistants

The use of computers makes formalization a lot more realistic, because
computers can check and sometimes even generate proofs. In practice, we use a
proof assistant or a theorem prover, which is a computer program that assists
the user develop formal proofs by human - machine interaction. It works as a
calculator: the user writes an expression (definition, theorem, proof, ...) in the
language and the assistant mechanically checks the validity of the expression.
More precisely, the assistant includes a proof engine that provides tactics which
help the user interactively construct the proofs, and a kernel that checks if
the proof relies on valid reasoning. There exist many different proof assistants
[Wie06] that come with large mathematical libraries, such as Mizar based on
set theory, Isabelle-HOL based on higher order logic, Cog based on constructive
dependent type theory, ACL2 based on primitive recursive arithmetic, and PVS
based on classical dependent type theory.

But why one should believe that a formal proof checked by some proof
assistant is equally or even more reliable than a common hand proof? Given the
proof assistant’s architecture, the validity of a formal statement and its proof is
checked by the proof assistant’s kernel. Yet, a question naturally arises: If the
kernel checks the proof, who checks the kernel? The answer is that one needs to
trust that the kernel is correct. Nevertheless, the reliability of proof assistants
relies on their architecture: Usually the size of the kernel is much smaller and
simpler compared to the prover itself. Keeping the kernel negligibly small and
readable by humans minimizes the probability of errors. If the kernel is correct
and bug-free, then any proof checked by the kernel is guaranteed to be correct
too, and one can be certain that all the mathematical theories formalized on
top of it are correct too. As a result, the proof assistant is much easier to trust,
since we just need to trust a small readable part and then everything that is
constructed on top of it is mechanically checked for correctness. In that sense,
any proof checked by a theorem prover is more reliable than a human paper
proof, since (as will be explained next) it is not unusual for hand proofs to lack
rigor or to contain unspotted errors.

Coq [Thel0, BC04] is the proof assistant used in this thesis. Coq comes with a
pure functional programming language and a set of deduction and computational
rules that characterize the logic. There are proof tactics that allow the user to
interactively construct proofs and there are libraries of proved mathematical
theorems available for use. A short introduction to Coq is given in Section 2.3.

Coq logic is the Calculus of Inductive Constructions [ThelO, PP89], a de-
pendently typed polymorphic lambda calculus. In contrast to classical logic, Coq
logic is constructive, which means that the excluded middle principle does not
hold. Furthermore, it means that to prove any existential statement, one needs
to provide an explicit witness for the statement to hold. These consequences
of constructiveness need to be taken into account, and it remains an important
difference when trying to construct a formal proof in Coq from a non-constructive
mathematical paper proof. Another significant aspect of Coq logic is the Curry—
Howard correspondence: The relation between a program (i.e. a function) and
its type is the same as the relation between a proposition and its proof. The
Curry—Howard correspondence makes the Coq language suitable for writing both

programs and logical formulas.

1.3 Use of formal methods in mathematics

To begin with, a first concern is that we want to be certain that the methods
used in a mathematical proof are valid. For example, is it correct to use the
axiom of choice or the principle of excluded middle in all cases? A second concern

is, given a certain background of allowed methods, whether a proof meets these

particular standards: in other words whether it is correct. The debates on the
foundations of mathematics at the beginning of the 20th century were aiming to
address the first concern of what methods are legitimate to prove a mathematical
statement. However, formal methods are not designed to address this particular
problem, because formal correctness can be guaranteed only with respect to some
axiomatic logical framework, which is determined in advance. In a certain sense,
formal methods can be used to check the validity of mathematical statements
but only modulo a pre-existing underlying set of rules. Nevertheless, establishing
correctness and improving the rigor of mathematical statements is an important
issue for which formal methods are extremely helpful.

Indeed, guaranteeing the correctness of a mathematical statement is not a
trivial concern: unfortunately, imprecise statements and definitions, missing cases,
unclear hypotheses and unexplained inferences are very common in mathematical
literature. Moreover, mathematical proofs can sometimes be so complex that even
after being subjected to extensive peer-review, mistakes often escape unnoticed.
A large number of mathematical proofs have been found to contain errors
throughout the years: in 1935 Lecat wrote a book that includes 130 pages
of errors made by mathematicians up to 1900 [AH14]. Formal verification is

especially interesting for

1. proofs that are very long and complex such as the Classification of finite

simple groups or the Seymour-Robertson graph minor theorem,

2. proofs that rely on extensive calculation or that need explicit checking
of cases such as the Four-colour theorem or Hales’s proof of the Kepler

conjecture,

3. proofs where complete rigor is particularly painful such as program verific-
ation.

During the last few years, significant formalization efforts have taken place
and many impressive results have been formalized such as: the prime number
theorem (Avigad et al using Isabelle/HOL, Harrison et al using HOL Light), the
four-color theorem (Gonthier et al using Coq), the Jordan curve theorem (Hales
et al using HOL Light, Trybulec et al. using Mizar), the Hales proof of the
Kepler conjecture (Flyspeck project using HOL light and Isabelle) and the Feit—
Thompson Odd Order Theorem (Georges Gonthier et al using Coq). However,
maybe even more important than the results themselves are the mathematical
theories developed to support these formalizations. Those developments include
libraries about number theory, finite group theory, Galois theory, linear algebra,
real and complex analysis, probability theory and more which can be used for
future formalizations.

Formal verification is also useful in computer science to prove the correctness
of computer software and hardware. In most developments (software or hardware)

we do not even have informal proofs of correctness. To certify correctness,

4

software and hardware are routinely tested for bugs. Nevertheless it is impossible
to test exhaustively in most cases and bugs are sometimes not detected with
really disastrous consequences. Formal methods can be used to certify the

correctness of software and hardware.

1.4 Use of formal methods in cryptography

From the early 90s formal methods have been used to model and analyze
the computational security of cryptographic protocols [But99, Mea03]. Formal
techniques are employed in several different phases in designing cryptographic
protocols such as the specification, construction and verification of protocols.

In abstract cryptographic models, security is provided against adversaries
who can only query the algorithm on inputs of their choice and then interpret the
outputs which are computed according to the correct secret key. Nevertheless,
real life physical implementations do not always correspond to such a model and
actual adversaries exploiting physical leakage turn out to be much more powerful.
During the last years, there has been significant research on evaluating physical
security of cryptographic systems, notably against side-channel attacks, such as
power consumption or electromagnetic radiation. Formal analysis of side channel
attacks has been proposed to model more general physical leakages [SMYO06,
BDK13, PR13, MRO03]. while recent works [BBC*14, GPP'16] have addressed
side-channel resistance (such as timing and memory accesses) for low level
cryptographic code.

Provable security [Ste03, GM84] is used to establish the security of crypto-
graphic systems in terms of rigorous mathematical proofs, by reduction: if an
adversary is able to compromise the security of the system, then she possesses
a way to solve a computationally hard problem. Although, provable security
aims to provide strong guarantees of security for cryptographic schemes, the
complexity of the proofs is difficult to handle and many proofs have resulted to
be flawed. Formal methods modelling game-based proofs, have been successfully
introduced to confront this problem and have resulted to many impressive results
in this area [BBGO09, BGLB11, BGJBO07].

Proofs of correctness In all the above uses of formal methods to verify
cryptographic schemes, one assumes that the cryptographic functions are correct.
Indeed, correctness of implementations is essential when focusing on crypto-
graphic programs: Apart from the obvious fact that the user of a program needs
to be certain that the program does what is supposed to do, any bug or backdoor
in an implementation can be catastrophic for security [BBPV11b]. Yet, although
the precise computational security of composite constructions and protocols has
been widely studied using formal tools [BGHB11, BGZB09, BFK*14], imple-

mentations of the underlying primitives have received far less attention from the
formal verification community.

For symmetric primitives such as block ciphers and hash functions, the
algorithm is the specification. Hence, verifying a block cipher implementation
amounts to proving the equivalence between a concrete program written for
some platform and an abstract program given in the standard specification.
Practitioners commonly believe that a combination of careful code inspection
and comprehensive testing is enough to provide high-assurance for such primitives,
although a more formal approach can also be used to prove correctness [Appl5a].

For asymmetric primitives such as RSA encryption, finite field Diffie-Hellman,
or elliptic curves, the gap between specification and code can be large. Abstractly,
such primitives compute well-defined mathematical functions in some finite
field, whereas concretely, their implementations manipulate arrays of bytes that
represent arbitrary precision integers. Moreover, asymmetric cryptography is
based on a more complex mathematical theory than symmetric cryptography,
such as number theory and algebraic geometry in the case of elliptic curves. As a
result, asymmetric algorithms designed to exploit certain mathematical properties
(of the underlying field for example) are more complicated to understand and to
implement correctly. Such an example is the Montgomery reduction algorithm
to perform modular reduction in prime fields.

Furthermore, since asymmetric primitives are typically much slower and can
form the bottleneck in a cryptographic protocol, most implementations incorpor-
ate a range of subtle performance optimizations that further distance the code
from the mathematical specification. Further optimizations may take place in
order for the implementation to satisfy security criteria such as side channel res-
istance. Consequently, even for small prime fields, comprehensive testing is inef-
fective for guaranteeing the correctness of asymmetric primitive implementations,
leading to bugs even in well-vetted cryptographic libraries [BBPV12, Opel5].
Even worse, asymmetric primitives are often used with long-term keys, so any
bug that leaks underlying key material can be disastrous.

To sum up, besides functional correctness, cryptographic algorithms need to
achieve contradictory goals such as efficiency and side—channel resistance. Faulty
implementations of algorithms may endanger security [BBPV11a]. This is why
formal assurance of their correctness is essential; even more so when it comes to
asymmetric primitives which are based on complex mathematical theories.

Our motivation in this thesis is to develop libraries to allow the formal veri-
fication of asymmetric cryptographic algorithms, more precisely of elliptic curve
algorithms. Until now work on formal verification of security protocols assumed
that the cryptographic libraries correctly implement all algorithms [APS12].
The first step towards the formal verification of cryptographic algorithms is the

development of libraries that formally express the corresponding mathematical

theory. This thesis presents a formal library for elementary elliptic curve theory
that will enable formal analysis of elliptic-curve algorithms. We also present the
formalization of the GLV algorithm for scalar multiplication on an elliptic curve
group [GLVO1].

1.5 Elliptic curves and cryptography

Elliptic curves have been used since the 19th century to approach a wide
range of problems, such as the fast factorization of integers and the search for
congruent numbers. In the 20th century, researchers have increased interest in
elliptic curves because of their applications in cryptography, first suggested in
1985 independently by Neal Koblitz [Kob87] and Victor Miller [Mil85]. Their use
in cryptography relies principally on the existence of a group law which makes
them a good candidate for public key cryptography, as its Discrete Logarithm
Problem is hard relative to the size of the parameters used. Elliptic curves also
allow the definition of digital signatures and of new cryptographic primitives,
such as identity-based encryption [Sha84], based on bilinear (Weil and Tate)
pairings [BFO1].

Elliptic curves are used in public key cryptography mainly as an alternative
to traditional public-key cryptosystems such as RSA and finite field discrete
logarithm based systems. Elliptic curve cryptosystems present an efficiency
and security advantage over finite field Diffie-Hellman cryptosystems, known
to be slow and vulnerable to the number field sieve attack using precomputa-
tion [ABD™15], two limitations that do not apply to elliptic curves, as far as
currently known. Indeed, up to now and with the exception of some curves of
special form [MOV93], there has not been found a generic attack for elliptic
curves over prime fields with a subgroup of large prime order better than the
Pollard’s rho attack [Pol78] which runs in exponential time. Therefore, when
compared to standard finite field Diffie-Hellman or RSA, elliptic curve systems
require much shorter keys to achieve the same security level. Because of their
efficiency advantage, elliptic curves were widely adopted, especially in cases of
constrained devices such as smartcards, cellphones and smartphones and also
in web servers for which public key cryptography is a bottleneck. As a result,
the use of elliptic curves has been encouraged by several institutions such as
the U.S. National Institute of Standards and Technology (NIST) [Nat99], the
U.S. National Security Agency (NSA) and I’Agence Nationale de la Securité
des Systemes d’Information (ANSSI) proposing sets of recommended elliptic
curves and algorithms on top of them. It is indicative that in the report [Nat13]
of NSA, Elliptic Curve Diffie-Hellman (ECDH) and the Elliptic Curve Digital
Signature (ECDSA) are proposed as primitives suitable for communications

requiring a top secret level of security. In the recent years, concerns about mass

surveillance have led to a shift towards the use of elliptic curves in preference to
older public—key primitives such as RSA, which no longer provide a sufficient level
of security. In that context, elliptic curve cryptosystems are of major significance
for many protocols and applications nowadays, and therefore the efficient and
secure implementation of elliptic curves schemes is of key importance.

The main operation performed in elliptic curve schemes is scalar multiplica-
tion, denoted [k] P in this thesis (where P is a point on an elliptic curve and k is an
integer). Several different algorithms are used to speed up scalar multiplication,
ranging from generic exponentiation algorithms such as binary exponentiation
to curve specific algorithms such as GLV [GLV01] and GLS [GLS09]. Usually,
these algorithms are further optimized to achieve better performance by using
special curve forms and alternative curve coordinate systems [CMO98, CC86].
Moreover, sometimes further optimizations are used to accelerate the underlying
field arithmetic. In practice, implementations have to take security criteria such
as side—channel resistance into consideration, so they are even further modified.
As a result, implementations of elliptic curve algorithms can be particularly
tricky, and in most cases it is not evident that an implementation is correct.
This problem can be approached with the use of formal methods, which can
provide formal certification that an implementation is correct. In that context,
libraries to provide a formal theory for elliptic curves are needed. And this is

what we provide.

1.6 Contribution of this thesis

This thesis is in the domain of formalization of mathematics. Our motivation
is to formalize elliptic curve theory using the Coq proof assistant, which will
enable formal analysis of elliptic-curve schemes and algorithms. For this purpose,
we used the SSREFLECT extension and the mathematical libraries developed
by the Mathematical Components team during the formalization of the Four
Color Theorem. Our central result is a formal proof of Picard’s theorem for
elliptic curves: there exists an isomorphism between the Picard group of divisor
classes and the group of points of an elliptic curve. An important immediate
consequence of this proposition is the associativity of the elliptic curve group
operation. This development has resulted in more than 15000 lines of code and
includes formal theory about Weierstrass curves, the field of rational functions
on a curve, theory about free groups, divisors of rational functions on curves
and isomorphic representations in different coordinate systems. Our results have
been published as the article A Formal Library for Elliptic Curves in the Coq
Proof Assistant at the International Theorem Proving conference 2014.

Furthermore, we present a formal proof of correctness for the GLV algorithm
[GLVO01] for scalar multiplication on elliptic curve groups. The GLV algorithm

exploits properties of the elliptic curve group in order to accelerate computation.
It is composed of three independent algorithms : multiexponentiation on a
generic group, decomposition of the scalar and computing endomorphisms on
algebraic curves. This development includes theory about endomorphisms on
elliptic curves and is more than 5000 lines of code.

An application of our formalization is presented in Chapter 5. This work
consists of formally proving real-life implementations of elliptic curve algorithms
combining our development in Coq and F*, which is a new higher order pro-
gramming language designed for program verification.

The entire development presented in this thesis is available at https://
github.com/strub/glv.

https://github.com/strub/glv
https://github.com/strub/glv

Background

2.1 Mathematical background

2.1.1 Elliptic curves definitions

Definition 2.1 (Projective plane). The projective plane P? over F is the quotient
P2 = (F*\(0,0,0))/~ where (z,y,2) ~ (z',9',2") if and only if there exists a X € F*
such that (z',y',2") = (A, Ay, A\z).

Definition 2.2 (Curve of the projective plane). A curve of the projective plane
is the set of projective points (z :y : z) whose coordinates are a solution of a

homogeneous equation f(x,y,z) = 0.

A curve represented by the homogeneous equation f(z,y,z) = 0 is smooth
or non-singular if the partial derivatives of f with respect to z,y, z do not all
vanish simultaneously on the curve. If a curve is smooth, then there are no
singular points, i.e. no cusps or nodes (self-intersections).

The definition of an elliptic curve in full generality is the following:

Definition 2.3 (Elliptic Curve). An elliptic curve € over some field F is a

smooth projective plane curve over F of the form
Y2Z + a1 XYZ +asYZ% = X3+ as X% Z + ay X Z? + ag Z°

with the a; € F. This form is called a Generalized Weierstrass form.

10

There exists a one-to-one correspondence between the projective plane P?
and the union of an affine plane F? and the projective line at infinity. (To be
more precise, there exists an isomorphism of algebraic varieties between the
projective plane and the above union). Indeed, let v = (x,y, z) be a non zero
vector of F3. If z # 0 then the equivalence class of v (denoted here [v]) is
[v] = [z7'v] = (£ : £ : 1) and there exists a unique representative of the class of
the form (2’,3y’,1). Hence, there is a 1-to-1 map between the set of projective
points with z # 0 and F2. If z = 0, then x and y cannot both be zero because
v is a non zero vector. Moreover, if z # 0 then [v] = [z 'v] = (£ : £ : 0) and
so there exists a unique representative of the class of the form (1,y',0). So,
there exists a 1-to-1 map between the set of projective points with z,z # 0
and F. If z = 0 and = = 0 then [v] = [y~ 0] = [0, 2,0l =(0:1:0). Hence,
P22F2UFU{(0:1:0)}.

In this setting, an elliptic curve of equation Y2Z + a1 XY Z + asY Z? =
X3 4+ a2 X%Z + a4 X Z? + agZ? in projective coordinates is isomorphic to the
curve of equation y? + a1xy + asy = 23 + asx? + aux + ag of the affine plane,
together with a separate point O called the point at infinity. A projective point
of the elliptic curve with z = 0 is of the form (0 : y : 0), and since a projective
point is an equivalence class, we can choose the representative (0,1,0) for this
class. This is the point at infinity (0 : 1 : 0) in projective coordinates, which
plays an important role when moving to the definition of the group law. This
part is explained in details in Chapter 3.

If the characteristic of the field F is not 2 or 3, then by an appropriate change of
variables [Sil09], an elliptic curve can be written in the form y2z = 23 +axz?+bz3,
where a and b are elements of F. The condition that the curve is smooth reduces
to A = 4a® + 272 # 0.

Most of the time, when introducing elliptic curves in a cryptographic context,
we use its short Weierstrass form:

Definition 2.4 (Elliptic Curve Short Weierstrass Form). An elliptic curve €
over some field F with characteristic different from 2 and 3 is an affine curve of
equation y? = 2% 4+ ax + b together with a separate point O called the point at
infinity, where a,b € F satisfy A = 4a® 4 27b% # 0.

In standard elliptic curve implementations we often use projective coordin-
ate systems when performing cryptographic operations in order to improve

performance and avoid expensive field inversions.

The below remarks are not necessary to understand the mathematics of our
development and the reader may skip them, but they provide interesting context
to elliptic curve theory.

11

Remark 1 : Isomorphisms of algebraic curves

The notion of isomorphism of curves is much stronger than bijection of sets
of points, and reveals more about the relationship between two curves. One of
the reasons that isomorphisms are more interesting is that they are defined by
polynomials (or rational functions), so they’re something that one might actually
compute while bijections are much looser. In particular, every isomorphism
induces a bijection of sets of points, but the converse does not hold.

For example, if we take two 256-bit primes p and ¢ that are very close together,
then their Hasse intervals (p+1—2./p, p+1+2/p) and (¢+1—-2,/q,q+1+2,/q)
intersect, and we can hope to find a prime r in the intersection. Then there must
exist (by Deuring’s theorem) [Sch87] a curve E,, over F,, and a curve E, over F,
such that r = #E,(F,) = #E4(F,;). These groups have the same order, so there
exists a bijection between them. But since the curves are defined over different
fields, there is simply no way that we can efficiently realize that bijection as a
polynomial mapping. In general, we cannot compute such a bijection without
solving discrete logarithms which is cryptographically hard.

Remark 2 : The Projective space

The construction of the projective plane is a special case of a projective space:

Definition 2.5 (Projective space). Let F be a field. The Projective n-space
over F, denoted P", is the set of all lines through (0,0, ...,0) in F*+L

Two non zero points A = (a1, as,...,an41), B = (b1,ba,...,bp41) determine
the same line if there exists a A € F* such that Vi, a; = Ab;. Hence, we can altern-
atively define the projective space P" as the quotient set P? = (F"*'\(0.....0)/~,
where (a1,a2,...,an41) ~ (b1,ba,...,byy1) if and only if there exists a A € F*
such that a; = Ab;, Vi. Elements of P™ are equivalence classes of the quotient set
(i.e. lines from a geometric point of view), and are called points of the projective
space. If (z1,%2,...,2n41) is a representative of a certain class of P we say
that (21,2, ..., Znt1) 18 a set of homogeneous coordinates for this class and we
denote the projective point (1 : @2 : ... : £p41). It can be shown that there
is an isomorphism between a projective n-space P and the union of an affine
n-space and a hyperplane at infinity. More precisely, P* = F" U H,, where
Ho ={(z1:22: (,p : Tnt1) | 1 = 0}, ie. Hy = PP~ For more details,
see [Ful89).

Remark 3 : The genus of a curve

The genus of a curve can be intuitively understood as a measure of the
curve’s geometric complexity.
One reasonable classification of algebraic curves could be according to the

degree of the curve (i.e. the degree of the polynomial that defines the curve

12

equation), but unfortunately it does not work for curves of higher degree. For
example, let us consider the non-singular curves L : y = 0 and C : yz — 22 = 0.
The curves L and C' are isomorphic: There exists a mapping m : (z :y : 2) —
(¥ :0:2) from C to L and a mapping n : (z : y : 2) — (22 : 2% : 2?) from
L to C such that (mon)(z :y:2)=(x:y:2) forall (zx:y:2) €L and
(nom)(z:y:2)=(x:y:z) foral (z:y:z) € C. One would want the
measure that characterizes the geometric complexity of algebraic curves to be
invariant under isomorphism. Nevertheless, in this case L is of degree 1 and C'
is of degree 2.
The genus is a non-negative integer that can be associated to any algebraic
curve and characterizes the geometric complexity of the curve. For example:
— the curve C1 : y = x has genus 0,
— the curve Cs : y? = 22 + Bz? has genus 0,
— the curve C3 : y?2 = 23 + Axz? + B2 has genus 1,
— the curve Cy : y%2? = 2* has genus 1, and
— the curve Cjs : y223 = 2% 4 22* has genus 2.
To compute the genus of a non-singular curve, we can use the formula

(d—1)(d—2)
2

of scope for this thesis, see [Cas91].

, where d is the degree of the curve. For singular curves, which is out

A smooth projective plane curve of genus 1 is a cubic defined by a homogen-

eous polynomial of the form
f(z,y,2) = Ae® + By* +C2° + Da’y+ Ex? 2+ Fy*a+Gy’ 2+ H2 2w+ 122y + Jryz.

This is a direct consequence of the Riemann—Roch theorem which will be
explained in the end of this section. An equivalent definition of an elliptic curve

is the following;:

Definition 2.6. An elliptic curve £ over some field F is defined as a smooth

projective plane curve of genus 1 together with a point O € E(F).

Remark 4 : Abelian Varieties and Elliptic Curves

An alternative definition of an elliptic curve, in a more algebraic context, is
that an elliptic curve is an abelian variety of dimension one. To give some intu-
ition, a variety is the zeros of a set of polynomials subject to some irreducibility
conditions. For a precise definition and further details, see [Ful89]. A variety
of dimension one is a curve. An abelian variety is a smooth projective variety
where one can define a group operation by ratio of polynomials. This operation
makes the variety a commutative group. In this sense, an abelian variety of
dimension one is a smooth projective curve equipped with a group operation
defined by polynomial fractions, and it can be shown that every such curve is an

elliptic curve.

13

2.1.2 Defining addition

From this point on, we consider fields with characteristic different from 2, 3
and so we are free to interchange between the projective and the short Weierstrass
form of elliptic curves.

To understand the group law, one first needs to understand Bézout’s theorem

for elliptic curves:

Lemma 2.1 (Bézout for elliptic curves). Let F be an algebraically closed field,
and f € F[X,Y, Z] a homogeneous polynomial of degree 3. Let £ be the elliptic
curve defined by the equation £ : Y% = X® +aXZ? +bZ3 and L a line (not
contained in £). Then LNE has exactly 3 points counted with multiplicity.

More precisely, a line in the projective space is the set of projective points
(X :Y : Z) which are the solutions of the equation kX + 1Y +mZ = 0 for
some k,l,m € F (k,I,m not all zero). Given an elliptic curve £ of equation
E:Y% = X3+aXZ?+bZ3, there exist three different kinds of lines:

1. the line of equation Z = 0, which intersects the elliptic curve £ at the
point at infinity (0 : 1 :0) with multiplicity 3,

2. the line of equation X + ¢Z = 0 (with ¢ # 0) which intersects the elliptic
curve £ at the point at infinity and at the points (—c: \/(—¢)3 —ac+b: 1),

(—c: —4/(—¢)3 —ac+b: 1) which may coincide, and

3. the line of equation kX + 1Y +1{Z = 0, (with k,l, m # 0) which intersects
the elliptic curve £ at three finite points of the form (x : y : 1), which may
coincide. To compute the x,y we have to solve the system

V=234 ar+0b
kx +ly+m = 0.

Bézout’s theorem allows us to geometrically define an operation on elliptic
curve points. Let P and () be points on an elliptic curve &, and [be the line
through P and @ (or the tangent to the curve at P if P = Q). By the Bézout
theorem, [intersects £ at a third point, denoted by P @ Q. The sum P + @ is
the opposite of P [(@), obtained by taking the symmetric of P @ @ with respect
to the = axis (in affine coordinates) or the point (z : —y : z) (in projective

coordinates).

Addition in affine coordinates.
1. O is defined to be the neutral element: VP,P+ O =0 + P = P.
2. the negative of a point (xp,yp) (resp. O) is (zp, —yp) (resp. O), and

3. if three points are collinear, their sum is equal to O.

14

This geometrical definition can be translated into an algebraic setting, ob-
taining the following polynomial formulas: Let P = (zp,yp) and Q = (29, y0)
be two finite points. Then:

1. if P # @, then P+ Q = (zs,ys) with:

where \ =

xS:)\Q—xp—mQ Yp — YQ
yS:—)\3+2)\mp—)\xQ—yQ Tp—TQ

2. if P = Q with yp = yg # 0, then will apply the previous formulas with
A= (3‘T§9+a)/2yp,

3. if P=Q with yp =yg =0, then P+Q = O.

Addition in projective coordinates. In projective coordinates, addition is
defined by the following rules:

1. The zero element is the point at infinity (0: 1 :0).
2. The negative of a projective point (z : y : z) is the point (z : —y : 2).
3. If three points are collinear, their sum is equal to O.

Like in the affine setting, these rules can be translated into polynomial
formulas: For all P = (zp : yp : zp) on E and Q = (zg : yg : 2g) on E, let
S=P+ Q= (xzs:ys:zs) be the sum of the two points.

— If P =(Q then

u = 3x% + az’ rg = vr

v = 2y123 ys = —u(r — v2x) —ypv®

r= u22p — 2v2zp zg = Zp’l)s.

— If P#Q then
U =Yzprp — YPRQ rs = ur
V=2Qrp — TP2Q ys = —u(r — xpzgv®) — ypzgu®

r= uZzsz — v2(xsz +xgzp) zs= zszv3.

Remark 4: Bézout generalized for algebraic curves

Bézout theorem can be generalized for algebraic curves. Let C, D be two
plane projective curves given by the equations F'(x,y,2) =0 and G(z,y,2z) =0
respectively. We say that the curves share a common component if F,G have
a non constant common divisor. Any projective point (zq : yo : z0) satisfying
F(z0,y0,20) = 0 and G(zg,yo,20) = 0 is defined as an intersection point of
C and D. Any two algebraic curves without common component intersect in
finitely many points. Let P be an intersection point of C' and D. Then we can

15

define an intersection multiplicity at P, denoted here as vp(C, D). We are not
going to give here the detailed definition of this intersection multiplicity, for

more details see [Sut15].

Lemma 2.2 (Bézout). Let C, D be two plane projective curves over an algebra-
ically closed field F of degree m and n respectively. Suppose that C' and D share
no common components. Let S be the set of intersection points C(F) N D(F).
Then) pegvp(C, D) = mn.

2.1.3 Riemann Roch and the group law

The set of points of an elliptic curve together with the operation defined
above form an abelian group: the operation is commutative and associative,
there is a neutral element (the point at infinity), and there exists a negative
point for every point on the curve. In both a geometrical or an algebraic setting,
it is direct to prove that the operation is commutative, but it is not trivial to
prove that it is associative. In what follows we sketch three different proofs of
associativity:

— a geometrical (grid) proof,
— a computational proof, and

— a proof based on the Riemann Roch theorem.

The first two proofs are interesting as context for elliptic curves, but they
are not necessary to understand as a background to our formalization. The
third proof, which is based on the Riemann—Roch theorem, allows to introduce
several notions that reappear in the formalization presented in Chapter 3. The
proof of associativity that we have formalized is based on the idea underlying
the Riemann—Roch proof. However, the formalization of the Riemann—-Roch
theorem was out of the scope of this thesis. As a result, the parts of the proof
which are direct consequences of the Riemann—Roch theorem are formalized in a

more elementary way. This is explained in details in Chapter 3.

The geometrical grid proof

Let us recall the Bézout theorem as stated in [HIS14]:

Theorem 2.3 (Bézout). Let X and Y be two plane projective curves defined
over a field F that do not have a common component (i.e. X and Y are defined
by polynomials whose greatest common divisor is a constant). Then the total
number of intersection points of X and Y with coordinates in an algebraically
closed field E which co