R. Murr, GainsénergétiquesGainsénergétiques globaux par installation de pompesàpompesà chaleur dans un procédé agro-alimentaire, Thèse de doctorat, Mines ParisTech, 2002.

G. Sokhna and S. , Modélisation prospective de l'industrie diffuse pour l'´ evaluation de l'impact de politiques de Ma??triseMa??trise De l' ´ Energie (MDE) ` a partir du générateur de modèle TIMES : la récupération de chaleur par PompesàPompesà Chaleur (PAC) dans l'industrie agroalimentaire, Thèse de doctorat, 2003.

A. Pellet and F. Streiff, Repenser l'´ energie dans les entreprises industrielles, ADEME, 2003.

C. Molin, S. Ossard, and F. Guillet, Ma??triseMa??trise de l'´ energie dans l'industrie des pâtes, papiers, cartons. Centre Technique du Papier, p.14, 2010.

A. Lema??trelema??tre, Procédés papetiers, machinesàmachinesà papier. Techniques de l'ingénieur : Fabrication des grands produits industriels en chimie et pétrochimie, 2015.

A. Lema??trelema??tre, Procédés papetiers préparation des pâtes. Techniques de l'ingénieur Fabrication des grands produits industriels en chimie et pétrochimie, 2015.

C. Lauterbach, Potential, system analysis and preliminary design of low-temperature solar process heat systems, 2014.

P. Bajpai, Environmentally Friendly Production of Pulp and Paper, p.11, 2010.
DOI : 10.1002/9780470649657

. Düren, Comment augmenter l'efficacité de la sécherie. Rapport technique, Heimbach, p.13, 2005.

A. Reardon, A mathematical model for the simulation of paper drying energy consumption, Thèse de doctorat, p.14, 1994.

R. Murr, H. Thieriot, and A. Zoughaib, Multi-objective optimization of a multi water-to-water heat pump system using evolutionary algorithm, Applied Energy, vol.88, issue.11, pp.3580-3591, 2011.
DOI : 10.1016/j.apenergy.2011.04.013

URL : https://hal.archives-ouvertes.fr/hal-00769627

I. Heat and P. Center, Heat pump program, annex 21 : Industrial heat pumps -experiences, potential and global environmental benefits, p.20, 1995.

S. Wolf, J. Lambauer, U. Fahl, M. Blesl, and A. Voss, Industrial heat pumps in germany : potentials, technological development and market barriers. Rapport technique, pp.2012-2032

. Soroka and . Bhodan, PompesàPompesà chaleur industrielles. Rapport technique, 1920.

D. Clodic, X. Pan, E. Devin, T. Michineau, and S. Barrault, Alternatives aux hfcsàhfcsà fort gwp dans les applications de refrigération et de climation, ADEME, pp.2013-2034

R. Murr, H. Thieriot, and A. Zoughaib, Multi-objective optimization of a multi water-to-water heat pump system using evolutionary algorithm, Applied Energy, vol.88, issue.11, pp.3580-3591, 2011.
DOI : 10.1016/j.apenergy.2011.04.013

URL : https://hal.archives-ouvertes.fr/hal-00769627

K. Sadik, Hongtan : Heat Exchanger Selection, Rating and Thermal Design, p.60, 2002.

K. Thulukkanam, Heat Exchanger Design Handbook, p.61, 2013.

A. Bejan, The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications, Journal of Heat Transfer, vol.99, issue.3, p.63, 1977.
DOI : 10.1115/1.3450705

K. Chowdhury and S. Sarangi, A second law analysis of the concentric tube counterflow heat exchanger : Optimisation of wall conductivity, International Journal of Heat and Mass Transfer, p.63, 1983.

M. Arivazhagan and S. Lokeswaran, Entropy Generation Minimization of Shell and Tube Heat Exchanger with Porous Medium, Experimental Techniques, vol.26, issue.5, p.63, 2011.
DOI : 10.1002/er.810

H. Abbassi, Entropy generation analysis in a uniformly heated microchannel heat sink. Energy, p.63, 2007.
DOI : 10.1016/j.energy.2007.02.007

C. C. Wang, Investigation of wavy fin and tube heat exchanger : a contribution to databank. Experimental Heat Transfer, p.65, 1999.

W. Pirompugd, C. C. Wang, and S. Wongwises, Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions, International Journal of Heat and Mass Transfer, vol.51, issue.15-16, p.66, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.11.049

R. K. Shah, D. Sekulic, and P. , Fundamentals of heat exchanger design. Wiler India edition, p.73, 2003.

P. Yu, K. H. Lin, W. K. Lin, and C. C. , Performance of a tube-in-tube CO2 gas cooler, International Journal of Refrigeration, vol.35, issue.7, pp.2033-2038, 2012.
DOI : 10.1016/j.ijrefrig.2012.06.010

C. Dang and . Hihara, In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement, International Journal of Refrigeration, vol.27, issue.7, pp.736-747, 2004.
DOI : 10.1016/j.ijrefrig.2004.04.018

C. C. Wang, W. L. Fu, and C. T. Chang, Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers, Experimental Thermal and Fluid Science, vol.14, issue.2, pp.174-186, 1997.
DOI : 10.1016/S0894-1777(96)00056-8

B. Delaitre, Etude d'un coeur hybride refroidì a l'eau supercritique, Thèse de doctorat, p.73, 2014.

T. L. Bregma, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Heat transfer a practical approach, pp.74-79, 2011.

C. W. Jian-min-yin, . Bullard, and S. Predrag, R-744 gas cooler model development and validation, International Journal of Refrigeration, vol.24, issue.7, pp.692-701, 2001.
DOI : 10.1016/S0140-7007(00)00082-7

S. S. Pitla, E. A. Groll, and S. Ramadhyani, New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2, International Journal of Refrigeration, vol.25, issue.7, pp.887-895, 2002.
DOI : 10.1016/S0140-7007(01)00098-6

E. Krasnoshchekov, I. Kuraeva, and V. Protopopov, Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions, High temperature, vol.7, issue.75, pp.856-862, 1970.

C. Dang and E. Hihara, Numerical study on in-tube laminar heat transfer of supercritical fluids, Applied Thermal Engineering, vol.30, issue.13, pp.1567-1573, 2010.
DOI : 10.1016/j.applthermaleng.2010.03.010

S. H. Yoon, J. H. Kim, Y. W. Hwang, M. S. Kim, K. Min et al., Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, International Journal of Refrigeration, vol.26, issue.8, pp.4796-4804, 2003.
DOI : 10.1016/S0140-7007(03)00096-3

C. Zhao and P. Jiang, Experimental study of in-tube cooling heat transfer and pressure drop characteristics of R134a at supercritical pressures, Experimental Thermal and Fluid Science, vol.35, issue.7, pp.1293-1303, 2011.
DOI : 10.1016/j.expthermflusci.2011.04.017

N. Petrov and V. Popov, Heat transfer and resistance of carbon dioxide being cooled in the supercritical region, Thermal Engineering, vol.32, pp.131-134, 1985.

A. Yunus, Cengel : Fundamentals of heat and mass transfer, seventh edition, p.82, 2002.

C. C. Wang, Y. J. Du, Y. J. Chang, and W. H. Tao, Airside performance of herringbone fin-and-tube heat exchangers in wet conditions, The Canadian Journal of Chemical Engineering, vol.20, issue.6, pp.1225-1230, 1999.
DOI : 10.1080/014576399271411

W. Pirompugd, C. Wang, and S. Wongwises, Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions, International Journal of Heat and Mass Transfer, vol.50, issue.3-4, pp.3-4552, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.07.017

G. Bigot, Etude et conception de systèmes air/air inversables utilisant des mélangesmélangesà glissement de température, Thèse de doctorat, ´ Ecole nationale supérieure des Mines de Paris, p.86, 2001.

C. Et-réalisation-d-'un-démonstrateur-expérimental-de, P. Fonctionnant-au, and R. , est assez d'engranger, il est temps d'´ eventer et d'honorer notre aire, p.94

. Fabrication-du-papier, Rapport technique, SCA, 2010.

. Bock, Compresseurs semi-hermétiques pour le fluide frigorigène r744, 2015.

C. C. Wang, W. L. Fu, and C. T. Chang, Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers, Experimental Thermal and Fluid Science, vol.14, issue.2, pp.174-186, 1997.
DOI : 10.1016/S0894-1777(96)00056-8

P. Performancesénergétiquesperformancesénergétiques-de-la, R32 et validation expérimentale des modèles utilisés L'expérience est une lanterne qui n'´ eclaire que celui qui la porte Louis

P. Cycle-optimisé-de-la, R32 en prenant en considération les pertes de charges dans leséchangeursleséchangeurs de chaleur, p.138