Y. M. Abushawashi, Modeling of Metal Cutting As Purposeful Fracture of work material, 2013.

P. Albrecht, New Developments in the Theory of the Metal-Cutting Process: Part I. The Ploughing Process in Metal Cutting, Journal of Engineering for Industry, vol.82, issue.4, p.348, 1960.
DOI : 10.1115/1.3664242

U. Andrade, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metallurgica et Materialia, vol.42, issue.9, pp.3183-3195, 1994.
DOI : 10.1016/0956-7151(94)90417-0

U. R. Andrade, M. A. Meyers, and A. H. Chokshi, Constitutive description of work- and shock-hardened copper, Scripta Metallurgica et Materialia, vol.30, issue.7, pp.933-938, 1994.
DOI : 10.1016/0956-716X(94)90418-9

P. J. Arrazola, Finite Element Modeling of Chip Formation Process, VIII International Conference on Computational Plasticity, pp.1-4, 2005.

P. J. Arrazola and T. Özel, Investigations on the effects of friction modeling in finite element simulation of machining, International Journal of Mechanical Sciences, vol.52, issue.1, pp.31-42, 2010.
DOI : 10.1016/j.ijmecsci.2009.10.001

V. Astakhov, Metal Cutting Mechanics, 1999.

V. P. Astakhov, The assessment of cutting tool wear, International Journal of Machine Tools and Manufacture, vol.44, issue.6, pp.637-647, 2004.
DOI : 10.1016/j.ijmachtools.2003.11.006

V. P. Astakhov, Tribology of metal cutting B, 2006.

V. P. Astakhov and S. Shvets, The assessment of plastic deformation in metal cutting, Journal of Materials Processing Technology, vol.146, issue.2, pp.193-202, 2004.
DOI : 10.1016/j.jmatprotec.2003.10.015

V. P. Astakhov and S. Shvets, The assessment of plastic deformation in metal cutting, Journal of Materials Processing Technology, vol.146, issue.2, pp.193-202, 2004.
DOI : 10.1016/j.jmatprotec.2003.10.015

V. P. Astakhov, S. V. Shvets, and M. O. Osman, Chip structure classification based on mechanics of its formation, Journal of Materials Processing Technology, vol.71, issue.2, pp.247-257, 1997.
DOI : 10.1016/S0924-0136(97)00081-2

A. G. Atkins, Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems, International Journal of Mechanical Sciences, vol.45, issue.2, pp.373-396, 2003.
DOI : 10.1016/S0020-7403(03)00040-7

Z. Atmani, Multi-physics Modelling in Machining OFHC Copper ??? Coupling of Microstructure-based Flow Stress and Grain Refinement Models, Procedia CIRP, pp.545-550, 2015.
DOI : 10.1016/j.procir.2015.03.023

URL : https://hal.archives-ouvertes.fr/hal-01417913

A. Attanasio, E. Ceretti, and C. Giardini, 3D FE MODELLING OF SUPERFICIAL RESIDUAL STRESSES IN TURNING OPERATIONS, Machining Science and Technology, vol.122, issue.3, pp.317-337, 2009.
DOI : 10.1016/j.jmatprotec.2007.03.021

J. Bacaria, Un modèle comportemental et transitoire pour la coupe des métaux, 2001.

M. Bacci-da-silva and J. Wallbank, Cutting temperature: prediction and measurement methods???a review, Journal of Materials Processing Technology, vol.88, issue.1-3, pp.1-3195, 1999.
DOI : 10.1016/S0924-0136(98)00395-1

Y. Bai and T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity, vol.24, issue.6, pp.1071-1096, 2008.
DOI : 10.1016/j.ijplas.2007.09.004

M. Bäker, J. Rösler, and C. Siemers, A finite element model of high speed metal cutting with adiabatic shearing, Computers & Structures, vol.80, issue.5-6, pp.495-513, 2002.
DOI : 10.1016/S0045-7949(02)00023-8

G. Besnard, F. Hild, and S. Roux, ???Finite-Element??? Displacement Fields Analysis from Digital Images: Application to Portevin???Le Ch??telier Bands, Experimental Mechanics, vol.404, issue.3, pp.789-803, 2006.
DOI : 10.1080/14786440808520347

S. Bissey-breton, Impact des conditions d'usinage sur la zone du mat??riau affect??e par le proc??d??, M??canique & Industries, vol.42, issue.3, pp.193-197, 2007.
DOI : 10.1016/S0013-4686(70)01783-8

S. Bissey-breton, J. Gravier, and V. Vignal, Impact of Superfinish Turning on Surface Integrity of Pure Copper, Procedia Engineering, pp.28-33, 2011.
DOI : 10.1016/j.proeng.2011.11.075

K. Bitans and R. H. Brown, An investigation of the deformation in orthogonal cutting, International Journal of Machine Tool Design and Research, vol.5, issue.3, pp.155-165, 1965.
DOI : 10.1016/0020-7357(65)90023-5

C. Bonnet, Identification of a friction model???Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool, International Journal of Machine Tools and Manufacture, vol.48, issue.11, 2008.
DOI : 10.1016/j.ijmachtools.2008.03.011

B. Sai, W. Triki, and E. , Influence des caractéristiques des surfaces usinées sur la résistance à la corrosion d'un acier inoxydable austénito-ferritique. Transactions of the CSME, pp.183-190, 2006.

E. Brinksmeier, Residual Stresses ??? Measurement and Causes in Machining Processes, CIRP Annals, vol.31, issue.2, pp.491-510, 1982.
DOI : 10.1016/S0007-8506(07)60172-3

J. T. Cammett and P. S. Prevey, Fatigue strength restoration in corrosion pitted 4340 Alloy Steel Via Low Plasticity Burnishing Finite element models of orthogonal cutting with application to single point diamond turning, International Journal of Mechanical Sciences, issue.12, pp.30899-920, 1988.

S. Caruso, Finite Element Modeling of Microstructural Changes in Hard Turning, Advanced Materials Research, vol.223, pp.960-968, 2011.
DOI : 10.4028/www.scientific.net/AMR.223.960

E. Ceretti, Application of 2D FEM to chip formation in orthogonal cutting, Journal of Materials Processing Technology, vol.59, issue.1-2, pp.169-180, 1996.
DOI : 10.1016/0924-0136(96)02296-0

W. Chen, Cutting forces and surface finish when machining medium hardness steel using CBN tools, International Journal of Machine Tools and Manufacture, vol.40, issue.3, pp.455-466, 2000.
DOI : 10.1016/S0890-6955(99)00011-5

R. W. Clough, The Finite Element Method in plane stress analysis, 2nd ASCE Conference on Electronic Computation, 1960.

M. A. Davies, On the measurement and prediction of temperature fields In machining AISI 1045 steel, CIRP Annals, vol.52, issue.1, pp.77-80, 2003.
DOI : 10.1016/S0007-8506(07)60535-6

J. P. Davim, H. Dehmani, F. Salvatore, and H. Hamdi, Surface integrity in machining Numerical study of residual stress induced by multi-steps orthogonal cutting, Procedia CIRP, pp.299-304, 2010.

R. Delhez, T. H. De-keijser, and E. J. Mittemeijer, Bestimmung von Kristallitgr??????en und Gitterverzerrungen durch R???ntgenbeugungs-Linienprofilanalyse, Fresenius' Zeitschrift f???r Analytische Chemie, vol.22, issue.1, pp.1-16, 1982.
DOI : 10.1107/S0567739476001794

L. Denguir, Influence of Cutting Process Mechanics on Surface Integrity and Electrochemical Behavior of OFHC Copper, Procedia CIRP, pp.186-191, 2014.
DOI : 10.1016/j.procir.2014.04.032

URL : https://hal.archives-ouvertes.fr/hal-01058408

L. A. Denguir, Orthogonal Cutting Simulation of OFHC Copper Using a New Constitutive Model Considering the State of Stress and the Microstructure Effects, Procedia CIRP, vol.46, pp.238-241, 2016.
DOI : 10.1016/j.procir.2016.03.208

URL : https://hal.archives-ouvertes.fr/hal-01333567

B. Denkena, In-process information storage on surfaces by turning operations, CIRP Annals, vol.57, issue.1, pp.85-88, 2008.
DOI : 10.1016/j.cirp.2008.03.058

B. Denkena, L. Leon, and . De, Milling induced residual stresses in structural parts out of forged aluminium alloys, International Journal of Machining and Machinability of Materials, vol.4, issue.4, p.335, 2008.
DOI : 10.1504/IJMMM.2008.023717

B. Derby, The dependence of grain size on stress during dynamic recrystallisation, Acta Metallurgica et Materialia, vol.39, issue.5, pp.955-962, 1991.
DOI : 10.1016/0956-7151(91)90295-C

H. Ding and Y. C. Shin, Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Commercially Pure Titanium, ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2, pp.1-10, 2011.
DOI : 10.1115/MSEC2011-50220

H. Ding and Y. C. Shin, Multi-physics modeling and simulations of surface microstructure alteration in hard turning, Journal of Materials Processing Technology, vol.213, issue.6, pp.877-886, 2013.
DOI : 10.1016/j.jmatprotec.2012.12.016

L. Ding, X. Zhang, and C. R. Liu, Finite Element Modeling on Dislocation Density and Grain Size Evolution in Machined Surface, Volume 1: Processing, pp.1-01, 2013.
DOI : 10.1115/MSEC2013-1130

R. Ding and Z. X. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization, Acta Materialia, vol.49, issue.16, pp.3163-3175, 2001.
DOI : 10.1016/S1359-6454(01)00233-6

S. Erikson and H. Hermanson, Pitting corrosion of copper in nuclear waste disposal environments, Studsvik Material AB, vol.101, pp.1-35, 1997.

Y. Estrin, A dislocation-based model for all hardening stages in large strain deformation, Acta Materialia, vol.46, issue.15, pp.5509-5522, 1998.
DOI : 10.1016/S1359-6454(98)00196-7

Y. Estrin and L. P. Kubin, Local strain hardening and nonuniformity of plastic deformation, Acta Metallurgica, vol.34, issue.12, pp.2455-2464, 1986.
DOI : 10.1016/0001-6160(86)90148-3

Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Materialia, vol.61, issue.3, pp.782-817, 2013.
DOI : 10.1016/j.actamat.2012.10.038

X. G. Fan, Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetic model, Materials Science and Engineering: A, vol.527, issue.21-22, pp.21-225368, 2010.
DOI : 10.1016/j.msea.2010.05.032

M. Ferry, Mechanism of Discontinuous Subgrain Growth in As-Deformed Aluminium Single Crystals, Materials Science Forum, vol.408, issue.412, pp.408-412979, 2002.
DOI : 10.4028/www.scientific.net/MSF.408-412.979

M. Field and J. F. Khales, The surface integrity of machined and ground high strength steels, DMIC Report, issue.210, pp.54-77, 1964.

N. A. Fleck, Strain gradient plasticity: Theory and experiment, Acta Metallurgica et Materialia, vol.42, issue.2, pp.475-487, 1994.
DOI : 10.1016/0956-7151(94)90502-9

D. Germain, Développement d'un modèle d'efforts de coupe intégrant le contact en dépouille, 2011.

S. Ghosh, Effect of Stress on Initiation and Propagation of Localized Corrosion in Aluminium Alloys, 212th ECS Meeting, 2007.

J. Gravier, Impact de l ' usinage de superfinition sur la zone affectée par le procédé, 2009.

J. Gravier, V. Vignal, and S. Bissey-breton, Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere, Corrosion Science, vol.61, pp.61162-170, 2012.
DOI : 10.1016/j.corsci.2012.04.032

URL : https://hal.archives-ouvertes.fr/hal-00761231

B. Griffiths, Manufacturing Surface Technology Penton Pre, 2001.

L. Y. Gurvich and L. I. Shubadeeva, Effect of machining on corrosion resistance in stainless steels, Soviet Materials Science, vol.7, issue.4, pp.396-399, 1971.
DOI : 10.1007/BF00722403

E. K. Henriksen, Residual stresses in machined surfaces, Trans. ASME, vol.73, pp.69-76, 1951.

A. Hillerborg, M. Modéer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, vol.6, issue.6, pp.773-781, 1976.
DOI : 10.1016/0008-8846(76)90007-7

A. Hohenwarter and R. Pippan, Fracture and fracture toughness of nanopolycrystalline metals produced by severe plastic deformation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.22, issue.6910, p.20140366, 2015.
DOI : 10.1088/0965-0393/22/4/045010

J. M. Huang and J. T. Black, An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining, Journal of Manufacturing Science and Engineering, vol.61, issue.4, p.545, 1996.
DOI : 10.1115/1.2899695

G. D. Hughes, Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scripta Metallurgica, vol.20, issue.1, pp.93-97, 1986.
DOI : 10.1016/0036-9748(86)90219-X

P. Iurea, Finite Element Modeling of Residual Stresses Obtained by Cutting Pieces: A Review, International Journal of Modern Manufacturing Technologies I, vol.2, issue.2, pp.44-62, 2014.

K. Jacobus, R. E. Devor, and S. G. Kapoor, Machining-Induced Residual Stress: Experimentation and Modeling, Journal of Manufacturing Science and Engineering, vol.10, issue.1, p.20, 2000.
DOI : 10.1108/eb023893

S. P. Jaspers and J. H. Dautzenberg, Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone, Journal of Materials Processing Technology, vol.122, issue.2-3, pp.2-3322, 2002.
DOI : 10.1016/S0924-0136(01)01228-6

I. S. Jawahir, Surface integrity in material removal processes: Recent advances, CIRP Annals, vol.60, issue.2, pp.603-626, 2011.
DOI : 10.1016/j.cirp.2011.05.002

G. R. Johnson and W. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, vol.21, issue.1, pp.31-48, 1985.
DOI : 10.1016/0013-7944(85)90052-9

G. Kear, B. Barker, and F. Walsh, Electrochemical corrosion of unalloyed copper in chloride media??????a critical review, Corrosion Science, vol.46, issue.1, pp.109-135, 2004.
DOI : 10.1016/S0010-938X(02)00257-3

J. R. Klepaczko, T. Sasaki, and T. Kurokawa, On rate sensitivity of polycrystalline aluminium at high strain rates. Transactions of the Japan Society for Aeronautical and Space Sicences, pp.170-187, 1993.

O. Klinkova, Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions, Tribology International, vol.44, issue.12, pp.2050-2058, 2011.
DOI : 10.1016/j.triboint.2011.09.006

URL : https://hal.archives-ouvertes.fr/hal-00851254

F. Klocke, H. Raedt, and S. Hoppe, 2D-FEM SIMULATION OF THE ORTHOGONAL HIGH SPEED CUTTING PROCESS, Machining Science and Technology, vol.107, issue.3, pp.323-340, 2001.
DOI : 10.1063/1.1707586

U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology, vol.98, issue.1, pp.76-85, 1976.
DOI : 10.1115/1.3443340

I. Korkut, M. A. Donertas, and H. , The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool?chip contact length during face milling Local electrochemical studies after heat treatment of stainless steel: Role of induced metallurgical and surface modifications on pitting triggering, Metallurgical and Materials Transactions A, issue.11, pp.353515-3521, 2004.

H. Krawiec, V. Vignal, and J. Banas, Macroscopic and Local Electrochemical Studies of Austempered Ductile Iron in Perchlorate Solutions Local electrochemical studies of the microstructural corrosion of AlCu4Mg1 as-cast aluminium alloy and influence of applied strain, Journal of The Electrochemical Society Journal of Solid State Electrochemistry, vol.153, issue.78, pp.131181-1191, 2006.

D. Landolt, Traité des matériaux -Volume 12 -Chimie et corrosion de surfaces des métaux 3ème éditi, Presses Polytechniques et Universitaires Romandes (PPUR), 2003.

V. Lemiale, Grain refinement under high strain rate impact: A numerical approach, Computational Materials Science, vol.48, issue.1, pp.124-132, 2010.
DOI : 10.1016/j.commatsci.2009.12.018

W. Li and D. Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Materialia, vol.54, issue.2, pp.445-452, 2006.
DOI : 10.1016/j.actamat.2005.09.017

Z. Lin and S. Lo, Ultra-precision orthogonal cutting simulation for oxygen-free high-conductivity copper, Journal of Materials Processing Technology, vol.65, issue.1-3, pp.281-291, 1997.
DOI : 10.1016/S0924-0136(96)02416-8

Z. C. Lin and S. Y. Lin, A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting, Journal of Engineering Materials and Technology, vol.114, issue.2, p.218, 1992.
DOI : 10.1115/1.2904165

L. Lindgren, K. Domkin, and S. Hansson, Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L, Mechanics of Materials, vol.40, issue.11, pp.907-919, 2008.
DOI : 10.1016/j.mechmat.2008.05.005

G. List, Etude des mécanismes d'endommagement des outils carbure WC-Co par la caractérisation de l'interface outil copeau : application à l'usinage à sec de l'alliage pp, pp.827-831, 2004.

M. N. Nasr, E. G. Ng, and M. A. Elbestawi, Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L, International Journal of Machine Tools and Manufacture, vol.47, issue.2, pp.401-411, 2007.
DOI : 10.1016/j.ijmachtools.2006.03.004

E. Nes, Modelling of work hardening and stress saturation in FCC metals, Progress in Materials Science, pp.129-193, 1997.
DOI : 10.1016/S0079-6425(97)00032-7

K. Okushima and Y. Kakino, The residual stresses produced by metal cutting, Annals of the CIRP, vol.10, issue.1, pp.13-14, 1971.

L. Olovsson, L. Nilsson, and K. Simonsson, An ALE formulation for the solution of two-dimensional metal cutting problems, Computers & Structures, vol.72, issue.4-5, pp.497-507, 1999.
DOI : 10.1016/S0045-7949(98)00332-0

J. C. Outeiro, Evaluation of Present Numerical Models for Predicting Metal Cutting Performance And Residual Stresses, Machining Science and Technology, vol.7, issue.2, pp.183-216, 2015.
DOI : 10.1016/j.jmatprotec.2008.09.019

J. C. Outeiro, Experimental and numerical assessment of subsurface plastic deformation induced by OFHC copper machining, CIRP Annals, vol.64, issue.1, pp.53-56, 2015.
DOI : 10.1016/j.cirp.2015.04.080

URL : https://hal.archives-ouvertes.fr/hal-01178081

J. C. Outeiro, Influence of tool sharpness on the thermal and mechanical phenomena generated during machining operations, International Journal of Machining and Machinability of Materials, vol.2, issue.3/4, p.413, 2007.
DOI : 10.1504/IJMMM.2007.015474

J. C. Outeiro, A. M. Dias, and I. S. Jawahir, On the Effects of Residual Stresses Induced by Coated and Uncoated Cutting Tools with Finite Edge Radii in Turning Operations, CIRP Annals, vol.55, issue.1, pp.111-116, 2006.
DOI : 10.1016/S0007-8506(07)60378-3

J. C. Outeiro, T. Özel, and T. Altan, Application of recent metal cutting approaches to the study of machining residual stresses, Ph-D Thesis in Science of Mechanical Engineering -Manufacturing technologies, Faculty of Science and Technology of the Process simulation using finite element method -prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling, International Journal of Machine Tools and Manufacture, issue.5, pp.40713-738, 2000.

T. Ozel, T. Hsu, and E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel, The International Journal of Advanced Manufacturing Technology, vol.25, pp.3-4262, 2005.

T. Özel and E. Zeren, Finite Element Method Simulation of Machining of AISI 1045 Steel With A Round Edge Cutting Tool, Proceedings of the eighth CIRP international workshop on modeling of machining operations, pp.533-542, 2005.

G. Poulachon and A. L. Moisan, Hard Turning: Chip Formation Mechanisms and Metallurgical Aspects, Journal of Manufacturing Science and Engineering, vol.31, issue.1, p.406, 2000.
DOI : 10.1016/S0007-8506(07)63273-9

J. Proudian, Simulating Residual Stress in Machining; from Post Process Measurement to Pre-Process Predictions, KTH Royal Institute of Technology, 2012.

D. Raabe, Scaling Monte Carlo kinetics of the Potts model using rate theory, Acta Materialia, vol.48, issue.7, pp.1617-1628, 2000.
DOI : 10.1016/S1359-6454(99)00451-6

R. Rakotomalala, P. Joyot, and M. Touratier, Arbitrary Lagrangian-Eulerian thermomechanical finite-element model of material cutting, Communications in Numerical Methods in Engineering, vol.46, issue.12, pp.975-987, 1993.
DOI : 10.1115/1.2899695

K. D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, CORROSION, vol.66, issue.7, p.75005, 2010.
DOI : 10.5006/1.3462912

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields???, Journal of the Mechanics and Physics of Solids, vol.17, issue.3, pp.201-217, 1969.
DOI : 10.1016/0022-5096(69)90033-7

W. Roberts, A nucleation criterion for dynamic recrystallization during hot working, Acta Metallurgica, vol.26, issue.5, pp.801-813, 1978.
DOI : 10.1016/0001-6160(78)90030-5

G. Rotella, Finite element modeling of microstructural changes in turning of AA7075-T651 Alloy, Journal of Manufacturing Processes, vol.15, issue.1, pp.141-150, 2013.
DOI : 10.1016/j.jmapro.2012.09.005

M. Salio, T. Berruti, and G. De-poli, Prediction of residual stress distribution after turning in turbine disks, International Journal of Mechanical Sciences, vol.48, issue.9, pp.976-984, 2006.
DOI : 10.1016/j.ijmecsci.2006.03.009

F. Salvatore, Contribution à la modélisation analytique et à la simulation numérique de l'enlèvement de matière et de ses conséquences induites, 2011.

R. Sandström and R. Lagneborg, A model for hot working occuring by recrystallization, Scripta Metallurgica, vol.8, issue.11, p.pp.liv?lv, 1974.
DOI : 10.1016/0036-9748(74)90362-7

H. Sasahara, T. Obikawa, and T. Shirakashi, Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models, International Journal of Machine Tools and Manufacture, vol.44, issue.7-8, pp.7-8815, 2004.
DOI : 10.1016/j.ijmachtools.2004.01.002

C. Shet and X. Deng, Residual stresses and strains in orthogonal metal cutting, International Journal of Machine Tools and Manufacture, vol.43, issue.6, pp.573-587, 2003.
DOI : 10.1016/S0890-6955(03)00018-X

A. J. Shih, Finite Element Simulation of Orthogonal Metal Cutting, Journal of Engineering for Industry, vol.28, issue.1, p.84, 1995.
DOI : 10.1115/1.3439413

J. S. Strenkowski and J. T. Carroll, A Finite Element Model of Orthogonal Metal Cutting, Journal of Engineering for Industry, vol.107, issue.4, p.349, 1985.
DOI : 10.1115/1.3186008

A. Svoboda, Simulation of metal cutting using a physically based plasticity model, Modelling and Simulation in Materials Science and Engineering, vol.18, issue.7, p.75005, 2010.
DOI : 10.1088/0965-0393/18/7/075005

A. O. Tay, A numerical method for calculating temperature distributions in machining, from force and shear angle measurements, International Journal of Machine Tool Design and Research, vol.16, issue.4, pp.335-349, 1976.
DOI : 10.1016/0020-7357(76)90043-3

L. S. Tóth, A. Molinari, and Y. Estrin, Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model, Journal of Engineering Materials and Technology, vol.124, issue.1, p.71, 2002.
DOI : 10.1115/1.1421049

D. Umbrello, Influence of material microstructure changes on surface integrity in hard machining of AISI 52100 steel. The International Journal of Advanced Manufacturing Technology, pp.9-12887, 2011.

D. Umbrello and L. Filice, Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation, CIRP Annals, vol.58, issue.1, pp.73-76, 2009.
DOI : 10.1016/j.cirp.2009.03.106

E. Usui and T. Shirakashi, Mechanics of Metal Machining-From " Descriptive " to " Predictive " Theory,. On the Art of Cutting Metals: A Tribute to FW, 1982.

F. Valiorgue, Simulation des processus de génération de contraintes résiduelles en tournage du 316L Nouvelle approche numérique et expérimentale, 2008.

V. Vignal, A Mechanical???Electrochemical Approach for the Determination of Precursor Sites for Pitting Corrosion at the Microscale, Journal of The Electrochemical Society, vol.182, issue.9, p.352, 2006.
DOI : 10.1016/0921-5093(95)80059-4

URL : https://hal.archives-ouvertes.fr/hal-00438169

V. Vignal, Analogy between the effects of a mechanical and chemical perturbation on the conductivity of passive films, Corrosion Science, vol.44, issue.7, pp.1477-1496, 2002.
DOI : 10.1016/S0010-938X(01)00162-7

V. Vignal and D. Kempf, Influence of Heterogeneous Plastic Strain FIields on the Corrosion Susceptibility of Duplex Stainless Steels at the Microscale, Advances In Materials Science, vol.7, issue.11, pp.77-82, 2007.

G. K. Williamson and R. E. Smallmann, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philosophical Magazine, vol.2, issue.1, pp.34-46, 1956.
DOI : 10.1107/S0365110X54001879

URL : https://hal.archives-ouvertes.fr/hal-01669772

K. S. Woon, Investigations of tool edge radius effect in micromachining: A FEM simulation approach, Journal of Materials Processing Technology, vol.195, issue.1-3, pp.1-3204, 2008.
DOI : 10.1016/j.jmatprotec.2007.04.137

D. W. Wu and Y. Matsumoto, The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel, Journal of Engineering for Industry, vol.112, issue.3, pp.245-252, 1990.
DOI : 10.1115/1.2899582

J. Yanagimoto, Incremental Formulation for the Prediction of Flow Stress and Microstructural Change in Hot Forming, Journal of Manufacturing Science and Engineering, vol.2, issue.6, pp.316-322, 1998.
DOI : 10.2355/isijinternational1966.23.100

S. Yin and D. Y. Li, Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions, Materials Science and Engineering: A, vol.394, issue.1-2, pp.266-276, 2005.
DOI : 10.1016/j.msea.2004.11.054

F. J. Zerilli and R. W. Armstrong, Dislocation???mechanics???based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol.46, issue.5, pp.611816-1825, 1987.
DOI : 10.1063/1.1707363

B. Zhang and A. Bagchi, Finite Element Simulation of Chip Formation and Comparison with Machining Experiment, Journal of Engineering for Industry, vol.116, issue.3, p.289, 1994.
DOI : 10.1115/1.2901944

Y. C. Zhang, Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elements in Analysis and Design, pp.47850-863, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00629449

S. Zone-chin-lin and . Lo, Ultra-precision orthogonal cutting simulation for oxygen-free high-conductivity copper, Materials Processing Technology, vol.65, pp.281-291, 1997.

N. N. Zorev and M. C. Shaw, Metal cutting mechanics. (Voprosy mekhaniki protsessa rezaniia metallov), 1966.

B. Avec-la-méthode-explicite, C. , and D. , Si on simplifie la notation de ces deux équations en laissant les inconnues í µí¼Œc et í µí¼Œw et en, p.16