.. Two-phase-layered-medium, 136 4.2.1 Cell functions and homogenized coefficients, p.137

. Fish, We begin by recalling in Section 4.1 recent results on higher-order two-scale homogenization for unbounded 1D periodic structures We then exploit the specificity of this one-dimensional case to propose local boundary conditions, expanding these results to bounded domains. Finally, the full procedure is illustrated for a layered two-phase periodic medium, for which this homogenization process, and in particular the computation of the featured cell functions, 2002.

. Bensoussan, Here, we provide the necessary background on higher-order two-scale homogenization We focus on the 1D time-harmonic problem, the interested reader being invited to refer to the books Cioranescu & Donato, 1999] for general two-scale homogenization and to, 1978.

J. D. Bibliography-achenbach, A. K. Gautesen, and H. Mcmaken, Ray methods for waves in elastic solids: with applications to scattering by cracks, 1982.

T. Aktosun, D. Gintides, and V. G. Papanicolaou, The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inverse Problems, vol.27, issue.11, pp.27-115004, 2011.
DOI : 10.1088/0266-5611/27/11/115004

G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: Control, Optimisation and Calculus of Variations, pp.209-243, 1999.
DOI : 10.1051/cocv:1999110

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Alouges and M. Aussal, The sparse cardinal sine decomposition and its application for fast numerical convolution, Numerical Algorithms, vol.98, issue.3, pp.427-448, 2015.
DOI : 10.1007/s00211-004-0538-5

H. Ammari, J. Garnier, V. Jugnon, and H. Kang, Stability and Resolution Analysis for a Topological Derivative Based Imaging Functional, SIAM Journal on Control and Optimization, vol.50, issue.1, pp.48-76, 2012.
DOI : 10.1137/100812501

URL : https://hal.archives-ouvertes.fr/hal-00695667

H. Ammari and H. Kang, Polarization and moment tensors: with applications to inverse problems and effective medium theory, 2007.

H. Ammari, H. Kang, G. Nakamura, and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion Journal of elasticity and the physical science of solids, pp.97-129, 2002.

I. V. Andrianov, V. I. Bolshakov, V. V. Danishevs-'kyy, and D. Weichert, Higher order asymptotic homogenization and wave propagation in periodic composite materials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.191, issue.2024, pp.464-1181, 2008.
DOI : 10.1070/SM2000v191n07ABEH000491

G. Anger, R. Gorenflo, H. Jochmann, H. Moritz, and W. Webers, Inverse problems: principles and applications in geophysics, technology, and medicine, 1993.

H. Askes and E. C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, vol.48, issue.13, pp.48-1962, 2011.
DOI : 10.1016/j.ijsolstr.2011.03.006

H. Askes, A. Metrikine, A. Pichugin, and T. Bennett, Four simplified gradient elasticity models for the simulation of dispersive wave propagation, Philosophical Magazine, vol.52, issue.28-29, pp.28-29, 2008.
DOI : 10.1002/nme.423

URL : https://hal.archives-ouvertes.fr/hal-00513983

C. Bellis and M. Bonnet, Crack identification by 3D time-domain elastic or acoustic topological sensitivity, Comptes Rendus M??canique, vol.337, issue.3, pp.124-130, 2009.
DOI : 10.1016/j.crme.2009.03.015

URL : https://hal.archives-ouvertes.fr/hal-00371796

C. Bellis, M. Bonnet, and F. Cakoni, Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals, Inverse Problems, issue.7, pp.29-075012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01323316

C. Bellis and B. Guzina, On the Existence and Uniqueness of a Solution to??the??Interior Transmission Problem for??Piecewise-Homogeneous Solids, Journal of Elasticity, vol.25, issue.1, pp.29-57, 2010.
DOI : 10.1007/978-3-642-61859-8

URL : https://hal.archives-ouvertes.fr/hal-00462117

A. Bensoussan, J. L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, 1978.
DOI : 10.1090/chel/374

M. Bonnet, Boundary integral equations methods in solids and fluids, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00112718

M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.37-40, 2006.
DOI : 10.1016/j.cma.2005.10.026

URL : https://hal.archives-ouvertes.fr/hal-00092360

M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Problems, vol.24, issue.3, p.35022, 2008.
DOI : 10.1088/0266-5611/24/3/035022

M. Bonnet, Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions, International Journal of Solids and Structures, vol.46, issue.11-12, pp.2275-2292, 2009.
DOI : 10.1016/j.ijsolstr.2009.01.021

URL : https://hal.archives-ouvertes.fr/hal-00495407

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-d potential problems. Engineering Analysis with Boundary Elements, pp.223-235, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00495407

M. Bonnet, Second-order homogenization of wave problems: properties of cell-based tensor functions, 2016.

M. Bonnet, Solvability of a volume integral equation formulation for anisotropic elastodynamic scattering, Journal of Integral Equations and Applications, vol.28, issue.2, 2016.
DOI : 10.1216/JIE-2016-28-2-169

URL : https://hal.archives-ouvertes.fr/hal-01246135

M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems, vol.21, issue.2, 2005.
DOI : 10.1088/0266-5611/21/2/R01

URL : https://hal.archives-ouvertes.fr/hal-00111264

M. Bonnet and R. Cornaggia, Higher order topological derivatives for three-dimensional anisotropic elasticity. submitted to ESAIM: Mathematical Modelling and Numerical Analysis
DOI : 10.1051/m2an/2017015

URL : https://hal.archives-ouvertes.fr/hal-01499498

M. Bonnet and R. Cornaggia, Higher-order expansion of misfit function for small defect identification in time-harmonic elasticity

M. Bonnet and G. Delgado, The topological derivative in anisotropic elasticity, The Quarterly Journal of Mechanics and Applied Mathematics, vol.66, issue.4, pp.557-586, 2013.
DOI : 10.1093/qjmam/hbt018

URL : https://hal.archives-ouvertes.fr/hal-00852248

M. Bonnet and B. B. Guzina, Sounding of finite solid bodies by way of topological derivative, International Journal for Numerical Methods in Engineering, vol.55, issue.13, pp.61-2344, 2004.
DOI : 10.1007/978-94-011-9306-1

URL : https://hal.archives-ouvertes.fr/hal-00111263

M. Bonnet and B. B. Guzina, Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework, Journal of Computational Physics, vol.228, issue.2, pp.294-311, 2009.
DOI : 10.1016/j.jcp.2008.09.009

URL : https://hal.archives-ouvertes.fr/hal-00320517

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Number 1 in 0172-5939, 2011.
DOI : 10.1007/978-0-387-70914-7

F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory: An introduction, 2006.

F. Cakoni, D. Colton, and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, vol.348, issue.7-8, pp.379-383, 2010.
DOI : 10.1016/j.crma.2010.02.003

URL : https://hal.archives-ouvertes.fr/hal-00739142

F. Cakoni, D. Colton, and P. Monk, The linear sampling method in inverse electromagnetic scattering, 2011.
DOI : 10.1137/1.9780898719406

F. Cakoni, B. B. Guzina, and S. Moskow, On the Homogenization of a Scalar Scattering Problem for Highly Oscillating Anisotropic Media, SIAM Journal on Mathematical Analysis, vol.48, issue.4, pp.2532-2560, 2016.
DOI : 10.1137/15M1018009

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, Inside Out: Inverse Problems and Applications II, 2013.
DOI : 10.1137/1.9781611974461

URL : https://hal.archives-ouvertes.fr/hal-00741615

F. Cakoni, H. Haddar, and I. Harris, Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem, Inverse Problems and Imaging, vol.9, issue.4, pp.1025-1049, 2015.
DOI : 10.3934/ipi.2015.9.1025

URL : https://hal.archives-ouvertes.fr/hal-01110294

J. Céa, S. Garreau, P. Guillaume, and M. Masmoudi, The shape and topological optimizations connection, {IVth} World Congress on Computational Mechanics. (II). Optimum, pp.713-726, 2000.
DOI : 10.1016/S0045-7825(99)00357-6

S. Chaillat, M. Bonnet, and J. Semblat, A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.49-50, pp.49-50, 2008.
DOI : 10.1016/j.cma.2008.04.024

URL : https://hal.archives-ouvertes.fr/hal-00276092

D. Cioranescu and P. Donato, An introduction to homogenization, of Oxford Lecture Series in Mathematics and its Applications, 1999.

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 1998.
DOI : 10.1007/978-3-662-03537-5

D. Colton, P. Monk, and J. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, vol.26, issue.4, p.45011, 2010.
DOI : 10.1088/0266-5611/26/4/045011

D. Colton, L. Paivarinta, and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, vol.1, issue.1, pp.13-28, 2007.
DOI : 10.3934/ipi.2007.1.13

URL : https://hal.archives-ouvertes.fr/hal-00739143

R. Cornaggia, C. Bellis, and B. B. Guzina, On the homogenization of a 1d interior transmission problem for the identification of a microstructured rod

B. E. Dahlberg, C. E. Kenig, and G. C. Verchota, Lipschitz domains, Duke Mathematical Journal, vol.57, issue.3, pp.795-818, 1988.
DOI : 10.1215/S0012-7094-88-05735-3

G. Delgado and M. Bonnet, The topological derivative of stress-based cost functionals in anisotropic elasticity, Computers and Mathematics with Applications, 2015.
DOI : 10.1016/j.camwa.2015.03.010

URL : https://hal.archives-ouvertes.fr/hal-00950107

E. V. Dontsov, R. D. Tokmashev, and B. B. Guzina, A physical perspective of the length scales in gradient elasticity through the prism of wave dispersion, International Journal of Solids and Structures, vol.50, issue.22-23, pp.22-23, 2013.
DOI : 10.1016/j.ijsolstr.2013.07.012

A. C. Eringen and E. Suhubi, Elastodynamics, vol 2 -Linear Theory, 1975.
DOI : 10.1115/1.3424252

H. Eschenauer, V. Kobelev, and A. Schumacher, Bubble method for topology and shape optimization of structures, Structural Optimization, vol.24, issue.2, pp.42-51, 1994.
DOI : 10.1007/978-94-011-1804-0_18

J. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society, pp.376-396, 1957.

J. Eshelby, Elastic Inclusions and Inhomogeneities, Progress in solid mechanics, pp.89-140, 1961.
DOI : 10.1007/1-4020-4499-2_26

J. Fish, W. Chen, and G. Nagai, Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case, International Journal for Numerical Methods in Engineering, vol.IV, issue.3, pp.331-346, 2002.
DOI : 10.1137/0514053

A. B. Freidin and V. A. Kucher, Solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity, Mathematics and Mechanics of Solids, vol.68, issue.3, pp.255-262, 2016.
DOI : 10.1007/b98245

Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne et al., A fast solution method for three-dimensional many-particle problems of linear elasticity, International Journal for Numerical Methods in Engineering, vol.71, issue.7, pp.42-1215, 1998.
DOI : 10.1080/01418619508242962

R. Furuhashi and T. Mura, On the equivalent inclusion method and impotent eigenstrains, Journal of Elasticity, vol.23, issue.3, pp.263-270, 1979.
DOI : 10.1007/BF00041098

S. Garreau, P. Guillaume, and M. Masmoudi, The Topological Asymptotic for PDE Systems: The Elasticity Case, SIAM Journal on Control and Optimization, vol.39, issue.6, pp.1756-1778, 2001.
DOI : 10.1137/S0363012900369538

D. Gérard-varet and N. Masmoudi, Homogenization and boundary layers, Acta Mathematica, vol.209, issue.1, pp.133-178, 2012.
DOI : 10.1007/s11511-012-0083-5

D. Gintides and K. Kiriaki, Solvability of the integrodifferential equation of Eshelby's equivalent inclusion method, The Quarterly Journal of Mechanics and Applied Mathematics, vol.68, issue.1, pp.85-96, 2015.
DOI : 10.1093/qjmam/hbu025

S. M. Giusti, A. A. Novotny, and E. A. De-souza-neto, Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010.
DOI : 10.1016/j.jbiomech.2008.06.020

O. Gonzalez and A. M. Stuart, A first course in continuum mechanics. Cambridge texts in applied mathematics, 2008.

M. Gurtin and E. Sternberg, Theorems in linear elastostatics for exterior domains Archive for Rational Mechanics and Analysis, pp.99-119, 1961.

B. B. Guzina and M. Bonnet, Topological derivative for the inverse scattering of elastic waves, The Quarterly Journal of Mechanics and Applied Mathematics, vol.57, issue.2, pp.161-179, 2004.
DOI : 10.1093/qjmam/57.2.161

URL : https://hal.archives-ouvertes.fr/hal-00092401

B. B. Guzina and I. Chikichev, From imaging to material identification: A generalized concept of topological sensitivity, Journal of the Mechanics and Physics of Solids, vol.55, issue.2, pp.245-279, 2007.
DOI : 10.1016/j.jmps.2006.07.009

B. B. Guzina and F. Pourahmadian, Why the high-frequency inverse scattering by topological sensitivity may work, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol.471, issue.2179, p.471, 2015.
DOI : 10.1088/0266-5611/21/4/001

B. B. Guzina and H. Yuan, On the small-defect perturbation and sampling of heterogeneous solids, Acta Mechanica, vol.14, issue.4, pp.51-75, 2009.
DOI : 10.1088/0266-5611/14/4/019

P. Helnwein, Some remarks on the compressed matrix representation of symmetric secondorder and fourth-order tensors, Computer Methods in Applied Mechanics and Engineering, vol.190, pp.22-23, 2001.

M. Hintermüller, A. Laurain, and A. Novotny, Second-order topological expansion for electrical impedance tomography, Advances in Computational Mathematics, vol.37, issue.4, pp.235-265, 2012.
DOI : 10.1137/S0363012997323230

M. Holmes, Introduction to perturbation methods. Texts in applied mathematics, 1995.
DOI : 10.1007/978-1-4614-5477-9

G. Hsiao and W. L. Wendland, Boundary Integral Equations, 2008.

H. Kang and G. Milton, Solutions to the p` olya-szegö conjecture and the weak eshelby conjecture. Archive for Rational Mechanics and Analysis, pp.93-116, 2008.

J. Kaplunov and A. Pichugin, On Rational Boundary Conditions for Higher-Order Long-Wave Models, IUTAM Symposium on Scaling in Solid Mechanics, pp.81-90, 2009.
DOI : 10.1007/978-1-4020-9033-2_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Kirsch, The Denseness of the Far Field Patterns for the Transmission Problem, IMA Journal of Applied Mathematics, vol.37, issue.3, pp.213-225, 1986.
DOI : 10.1093/imamat/37.3.213

A. Kirsch, An introduction to the mathematical theory of inverse problems, 2011.

R. J. Knops, Further Considerations of the Elastic Inclusion Problem, Proceedings of the Edinburgh Mathematical Society, vol.31, issue.01, pp.61-70, 1964.
DOI : 10.1139/p53-093

R. J. Knops and L. E. Payne, Uniqueness Theorems in Linear Elasticity, 1971.
DOI : 10.1007/978-3-642-65101-4

R. Kress, Linear integral equations, 1989.

V. Kupradze, Three-dimensional problems of elasticity and thermoelasticity. North-Holland Series in Applied Mathematics and Mechanics, 1979.

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, 2000.

S. G. Mikhlin and S. Prössdorf, Singular integral operators, 1986.
DOI : 10.1007/978-3-642-61631-0

R. Mindlin and N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol.4, issue.1, pp.109-124, 1968.
DOI : 10.1016/0020-7683(68)90036-X

S. V. Moskow, First-order corrections to the homogenized eigenvalues of a periodic composite medium: the case of neumann boundary conditions, 1997.

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.18, issue.06, pp.1263-1299, 1997.
DOI : 10.1007/BF01442554

T. Mura, Micromechanics of defects in solids. M. Nijhoff (The Hague and Boston and Higham, 1982.

A. Novotny, R. Feijo, E. Taroco, and C. Padra, Topological sensitivity analysis, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.7-8, pp.803-829, 2003.
DOI : 10.1016/S0045-7825(02)00599-6

URL : https://hal.archives-ouvertes.fr/hal-00861461

D. Onofrei and B. Vernescu, Asymptotic analysis of second-order boundary layer correctors, Applicable Analysis, vol.357, issue.3, pp.1097-1110, 2012.
DOI : 10.1007/s002050000082

W. J. Parnell, The Eshelby, Hill, Moment and Concentration Tensors for Ellipsoidal Inhomogeneities in the Newtonian Potential Problem and Linear Elastostatics, Journal of Elasticity, vol.467, issue.1, pp.1-64, 2016.
DOI : 10.1098/rspa.2010.0271

V. Z. Parton, P. I. Perlin, and R. S. Wadhwa, Mathematical methods of the theory of elasticity, 1984.

C. Prange, Asymptotic Analysis of Boundary Layer Correctors in Periodic Homogenization, SIAM Journal on Mathematical Analysis, vol.45, issue.1, pp.345-387, 2013.
DOI : 10.1137/120876502

A. G. Ramm, A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators, The American Mathematical Monthly, vol.108, issue.9, pp.855-860, 2001.
DOI : 10.2307/2695558

J. Rocha-de-faria and A. Novotny, On the second order topological asymptotic expansion. Structural and Multidisciplinary Optimization, pp.547-555, 2009.

W. Rudin, Functional Analysis, 1991.

E. Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.127, 1980.

F. Santosa and M. Vogelius, First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium, SIAM Journal on Applied Mathematics, vol.53, issue.6, pp.1636-1668, 1993.
DOI : 10.1137/0153076

F. Santosa and M. Vogelius, Erratum to the Paper: First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium, SIAM Journal on Applied Mathematics, vol.55, issue.3, pp.864-864, 1995.
DOI : 10.1137/0155046

M. Schneider and H. Andr, The topological gradient in anisotropic elasticity with an eye towards lightweight design, Mathematical Methods in the Applied Sciences, vol.64, issue.2-3, pp.1624-1641, 2014.
DOI : 10.1023/A:1015203721914

A. Schumacher, Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien, Forschungszentrum für Multidisziplinäre Analysen und Angewandte Strukturoptimierung. Institut für Mechanik und Regelungstechnik, 1996.

M. Silva, M. Matalon, and D. A. Tortorelli, Higher order topological derivatives in elasticity, International Journal of Solids and Structures, vol.47, issue.22-23, pp.47-69, 2010.
DOI : 10.1016/j.ijsolstr.2010.07.004

J. Sokolowski and A. Zochowski, On the Topological Derivative in Shape Optimization, SIAM Journal on Control and Optimization, vol.37, issue.4, pp.1251-1272, 1999.
DOI : 10.1137/S0363012997323230

A. Toader, The Topological Derivative of Homogenized Elastic Coefficients of Periodic Microstructures, SIAM Journal on Control and Optimization, vol.49, issue.4, pp.1607-1628, 2011.
DOI : 10.1137/100782772

R. Tokmashev, A. Tixier, and B. B. Guzina, Experimental validation of the topological sensitivity approach to elastic-wave imaging, Inverse Problems, vol.29, issue.12, pp.29-125005, 2013.
DOI : 10.1088/0266-5611/29/12/125005

C. Wang and J. D. Achenbach, Three-Dimensional Time-Harmonic Elastodynamic Green's Functions for Anisotropic Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.449, issue.1937, pp.449-441, 1937.
DOI : 10.1098/rspa.1995.0052

A. Wautier and B. B. Guzina, On the second-order homogenization of wave motion in periodic media and the sound of a chessboard, Journal of the Mechanics and Physics of Solids, vol.78, issue.0, 2015.
DOI : 10.1016/j.jmps.2015.03.001

K. Yoshida, Applications of fast multipole method to boundary integral equation method, 2001.

K. Yoshida, N. Nishimura, and S. Kobayashi, Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D, International Journal for Numerical Methods in Engineering, vol.19, issue.3, pp.525-547, 2001.
DOI : 10.1137/S106482759630989X