R. Abeyaratne and S. Kim, Cyclic effects in shape-memory alloys: a one-dimensional continuum model, International Journal of Solids and Structures, vol.34, issue.25, pp.3273-3289, 1997.
DOI : 10.1016/S0020-7683(96)00213-2

B. J. Alder and T. E. Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, vol.9, issue.2, pp.31459-466, 1959.
DOI : 10.1063/1.1743957

M. S. Ali and K. Takahata, Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process, Sensors and Actuators A: Physical, vol.163, issue.1, pp.363-372, 2010.

N. M. Ames, V. Srivastava, S. A. Chester, A. , and L. , A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications, International Journal of Plasticity, vol.25, issue.8, pp.251495-1539, 2009.
DOI : 10.1016/j.ijplas.2008.11.005

L. Anand, N. M. Ames, V. Srivastava, C. , and S. A. , A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation, International Journal of Plasticity, vol.25, issue.8, pp.251474-1494, 2009.
DOI : 10.1016/j.ijplas.2008.11.004

L. Anand and M. E. Gurtin, Thermal effects in the superelasticity of crystalline shape-memory materials, Journal of the Mechanics and Physics of Solids, vol.51, issue.6, pp.1015-1058, 2003.
DOI : 10.1016/S0022-5096(03)00017-6

M. T. Andani and M. Elahinia, A rate dependent tension???torsion constitutive model for superelastic nitinol under non-proportional loading; a departure from von Mises equivalency, Smart Materials and Structures, vol.23, issue.1, p.15012, 2014.
DOI : 10.1088/0964-1726/23/1/015012

G. F. Andreasen and T. B. Hilleman, An Evaluation of 55 Cobalt Substituted Nitinol Wire for Use in Orthodontics, The Journal of the American Dental Association, vol.82, issue.6, pp.1373-1375, 1971.
DOI : 10.14219/jada.archive.1971.0209

J. Arghavani, Thermo-mechanical behavior of shape memory alloys under multiaxial loading: constitutive modeling and numerical implementation at small and finite strains, 2010.

J. Arghavani, F. Auricchio, and R. Naghdabadi, A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys, International Journal of Plasticity, vol.27, issue.6, pp.940-961, 2011.
DOI : 10.1016/j.ijplas.2010.10.006

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.7, pp.976-991, 2010.
DOI : 10.1016/j.ijplas.2009.12.003

F. Auricchio, A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model, International Journal of Plasticity, vol.17, issue.7, pp.971-990, 2001.
DOI : 10.1016/S0749-6419(00)00050-4

F. Auricchio, E. Bonetti, G. Scalet, and F. Ubertini, Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation, International Journal of Plasticity, vol.59, pp.30-54, 2014.
DOI : 10.1016/j.ijplas.2014.03.008

F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, International Journal for Numerical Methods in Engineering, vol.3, issue.5, pp.551255-1284, 2002.
DOI : 10.1007/BF00041097

F. Auricchio, A. Reali, and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, International Journal of Plasticity, vol.23, issue.2, pp.207-226, 2007.
DOI : 10.1016/j.ijplas.2006.02.012

F. Auricchio, A. Reali, and A. Tardugno, Shape-memory alloys: effective 3D modelling, computational aspects and design of devices, International Journal of Computational Materials Science and Surface Engineering, vol.3, issue.2/3, pp.199-223, 2010.
DOI : 10.1504/IJCMSSE.2010.033154

F. Auricchio and R. L. Taylor, Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1-2, pp.175-194, 1997.
DOI : 10.1016/S0045-7825(96)01147-4

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis, pp.13-52, 1987.

B. Barnes, D. Brei, J. Luntz, A. Browne, and K. Strom, Panel Deployment Using Ultrafast SMA Latches, Aerospace, pp.273-280, 2006.
DOI : 10.1115/IMECE2006-15026

T. Baxevanis, A. Parrinello, and D. Lagoudas, On the driving force for crack growth during thermal actuation of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.89, pp.255-271, 2015.
DOI : 10.1016/j.jmps.2015.12.011

Z. P. Ba?ant, F. C. Caner, I. Carol, M. D. Adley, and S. A. Akers, Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress, Journal of Engineering Mechanics, vol.126, issue.9, pp.944-953, 2000.
DOI : 10.1061/(ASCE)0733-9399(2000)126:9(944)

N. J. Bechle and S. Kyriakides, Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states, International Journal of Plasticity, vol.82, pp.1-31, 2016.
DOI : 10.1016/j.ijplas.2016.01.017

A. Bekker and L. C. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia, vol.46, issue.10, pp.463649-3665, 1998.
DOI : 10.1016/S1359-6454(97)00490-4

A. Bellini, M. Colli, and E. Dragoni, Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study, IEEE Transactions on Industrial Electronics, vol.56, issue.7, pp.562644-2656, 2009.
DOI : 10.1109/TIE.2009.2019773

M. Berry and E. Garcia, Bio-inspired shape memory alloy actuated hexapod robot, Active and Passive Smart Structures and Integrated Systems 2008, pp.69281-69281, 2008.
DOI : 10.1117/12.776540

A. Bhattacharyya, D. C. Lagoudas, Y. Wang, and V. K. Kinra, On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment, Smart Materials and Structures, p.252, 1995.
DOI : 10.1088/0964-1726/4/4/005

V. Birman, Review of Mechanics of Shape Memory Alloy Structures, Applied Mechanics Reviews, vol.50, issue.11, pp.629-646, 1997.
DOI : 10.1115/1.3101674

P. Blanc and C. Lexcellent, Micromechanical modelling of a CuAlNi shape memory alloy behaviour, Materials Science and Engineering: A, vol.378, issue.1-2, pp.465-469, 2004.
DOI : 10.1016/j.msea.2003.11.065

URL : https://hal.archives-ouvertes.fr/hal-00014090

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations, International Journal of Engineering Science, vol.37, issue.9, pp.1089-1140, 1997.
DOI : 10.1016/S0020-7225(98)00113-X

J. L. Bouvard, D. K. Francis, M. A. Tschopp, E. B. Marin, D. J. Bammann et al., An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation, International Journal of Plasticity, vol.42, pp.168-193, 2013.
DOI : 10.1016/j.ijplas.2012.10.005

URL : https://hal.archives-ouvertes.fr/hal-00767846

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61, 2004.
DOI : 10.1016/j.euromechsol.2003.09.005

J. S. Bowles and J. K. Mackenzie, The crystallography of martensite transformations I. Acta metallurgica, pp.129-137, 1954.

J. Boyd and D. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity, vol.12, issue.6, pp.805-842, 1996.
DOI : 10.1016/S0749-6419(96)00030-7

L. Brassart, H. Inglis, L. Delannay, I. Doghri, and P. Geubelle, An extended Mori???Tanaka homogenization scheme for finite strain modeling of debonding in particle-reinforced elastomers, Computational Materials Science, vol.45, issue.3, pp.45611-616, 2009.
DOI : 10.1016/j.commatsci.2008.06.021

D. Brugger, M. Kohl, U. Hollenbach, A. Kapp, and C. Stiller, Ferromagnetic shape memory microscanner system for automotive applications, International Journal of Applied Electromagnetics and Mechanics, vol.23, issue.1 2, pp.107-112, 2006.

V. Bundhoo, E. Haslam, B. Birch, and E. J. Park, A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: design and evaluation, Robotica, vol.4, issue.01, pp.27131-146, 2009.
DOI : 10.1088/0964-1726/12/5/007

N. Caldwell, E. Gutmark, R. , and R. , Heat Transfer Model for Blade Twist Actuator System, Journal of Thermophysics and Heat Transfer, vol.21, issue.2, pp.352-360, 2007.
DOI : 10.2514/1.23120

F. T. Calkins and J. H. Mabe, Shape Memory Alloy Based Morphing Aerostructures, Journal of Mechanical Design, vol.112, issue.11, p.132111012, 2010.
DOI : 10.1117/12.776816

M. Carlo and S. Metin, A Biomimetic Climbing Robot Based on the Gecko, Journal of Bionic Engineering, vol.99, issue.3, pp.115-125, 2006.
DOI : 10.1073/pnas.192252799

B. Carpenter and J. Lyons, EO-1 technology validation report: lightweight flexible solar array experiment, NASA/GSFC. Last, 2001.

K. C. Chan, M. J. Godman, K. Walsh, N. Wilson, A. Redington et al., Transcatheter closure of atrial septal defect and interatrial communications with a new self expanding nitinol double disc device (Amplatzer septal occluder): multicentre UK experience, Heart, vol.82, issue.3, pp.82300-306, 1999.
DOI : 10.1136/hrt.82.3.300

D. Chatziathanasiou, Y. Chemisky, G. Chatzigeorgiou, and F. Meraghni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, International Journal of Plasticity, vol.82, pp.192-224, 2016.
DOI : 10.1016/j.ijplas.2016.03.005

URL : https://hal.archives-ouvertes.fr/hal-01360902

Y. Chemisky, G. Chatzigeorgiou, P. Kumar, and D. C. Lagoudas, A constitutive model for cyclic actuation of high-temperature shape memory alloys, Mechanics of Materials, vol.68, pp.120-136, 2014.
DOI : 10.1016/j.mechmat.2013.07.020

URL : https://hal.archives-ouvertes.fr/hal-01199736

G. S. Cheung and B. W. Darvell, Fatigue testing of a NiTi rotary instrument. Part 1: strain?life relationship, International Endodontic Journal, vol.5, issue.8, pp.40612-618, 2007.
DOI : 10.1046/j.1365-2591.2001.00420.x

K. Cho, E. Hawkes, C. Quinn, and R. J. Wood, Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish, Robotics and Automation IEEE International Conference, pp.706-711, 2008.

D. Christ and S. Reese, Finite-element modelling of shape memory alloys???A comparison between small-strain and large-strain formulations, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482343, 2008.
DOI : 10.1016/j.msea.2006.11.174

D. Christ and S. Reese, A finite element model for shape memory alloys considering thermomechanical couplings at large strains, International Journal of Solids and Structures, vol.46, issue.20, pp.3694-3709, 2009.
DOI : 10.1016/j.ijsolstr.2009.06.017

C. Cisse, W. Zaki, B. Zineb, and T. , A review of constitutive models and modeling techniques for shape memory alloys, International Journal of Plasticity, vol.76, pp.244-284, 2016.
DOI : 10.1016/j.ijplas.2015.08.006

URL : https://hal.archives-ouvertes.fr/hal-01415862

C. Cisse, W. Zaki, and T. B. Zineb, A review of modeling techniques for advanced effects in shape memory alloy behavior, Smart Materials and Structures, vol.25, issue.10, p.25103001, 2016.
DOI : 10.1088/0964-1726/25/10/103001

M. A. Cleveland, Apparatus and method for releaseably joining elements, U.S. Patent, vol.7, p.367738, 2008.

J. Colorado, A. Barrientos, C. Rossi, and K. S. Breuer, Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators, Bioinspiration & Biomimetics, vol.7, issue.3, p.36006, 2012.
DOI : 10.1088/1748-3182/7/3/036006

W. Cwikiel, R. Willen, H. Stridbeck, R. Lillo-gil, V. Holstein et al., Self-expanding stent in the treatment of benign esophageal strictures: experimental study in pigs and presentation of clinical cases., Radiology, vol.187, issue.3, pp.667-671, 1993.
DOI : 10.1148/radiology.187.3.8497612

Y. F. Dafalias, The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mechanics of Materials, vol.3, issue.4, p.361, 1984.
DOI : 10.1016/0167-6636(84)90036-X

M. S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, vol.4, issue.12, p.296443, 1984.
DOI : 10.1016/0039-6028(74)90060-0

J. Deng, X. Ding, T. Lookman, T. Suzuki, A. Saxena et al., Origin of ultrafast annihilation effect of martensite aging: Atomistic simulations, Physical Review B, vol.43, issue.18, p.82184101, 2010.
DOI : 10.1063/1.3086876

Y. I. Dimitrienko, Nonlinear continuum mechanics and large inelastic deformations, 2011.
DOI : 10.1007/978-94-007-0034-5

C. T. Dotter, R. W. Buschmann, M. K. Mckinney, R. , and J. , Transluminal expandable nitinol coil stent grafting: preliminary report., Radiology, vol.147, issue.1, pp.259-260, 1983.
DOI : 10.1148/radiology.147.1.6828741

T. W. Duerig, A. R. Pelton, and D. Stöckel, Superelastic nitinol for medical devices, MEDICAL PLASTIC AND BIOMATERIALS, vol.4, pp.30-43, 1997.

E. Engmann and M. R. Asch, Clinical Experience with the Antecubital Simon Nitinol IVC Filter, Journal of Vascular and Interventional Radiology, vol.9, issue.5, pp.774-778, 1998.
DOI : 10.1016/S1051-0443(98)70390-2

V. Evangelista, S. Marfia, and E. Sacco, A 3D SMA constitutive model in the framework of finite strain, International Journal for Numerical Methods in Engineering, vol.38, issue.1, pp.761-785, 2010.
DOI : 10.1007/978-94-017-0594-3

F. Falk, Model free energy, mechanics, and thermodynamics of shape memory alloys, Acta Metallurgica, vol.28, issue.12, pp.1773-1780, 1980.
DOI : 10.1016/0001-6160(80)90030-9

F. Falk, Ginzburg-Landau theory of static domain walls in shape-memory alloys, Zeitschrift fur Physik B Condensed Matter, pp.177-185, 1983.
DOI : 10.1007/BF01308772

D. Favier, Y. Liu, L. Orgeas, R. , and G. , Mechanical Instability of NiTi in Tension, Compression and Shear, IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, pp.205-212, 2002.
DOI : 10.1007/978-94-017-0069-6_25

S. J. Furst, G. Bunget, and S. Seelecke, Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints, Smart Materials and Structures, vol.22, issue.1, p.14011, 2012.
DOI : 10.1088/0964-1726/22/1/014011

K. Gall and H. Sehitoglu, The role of texture in tension???compression asymmetry in polycrystalline NiTi, International Journal of Plasticity, vol.15, issue.1, pp.69-92, 1999.
DOI : 10.1016/S0749-6419(98)00060-6

J. A. Giacomel, Shape memory alloy actuator, U.S. Patent, vol.5, p.816306, 1998.

S. Govindjee and G. J. Hall, A computational model for shape memory alloys, International Journal of Solids and Structures, vol.37, issue.5, pp.735-760, 2000.
DOI : 10.1016/S0020-7683(99)00048-7

C. Grabe and O. T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, International Journal of Solids and Structures, vol.45, issue.7-8, pp.1876-1895, 2008.
DOI : 10.1016/j.ijsolstr.2007.10.029

C. Grabe and O. T. Bruhns, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes, International Journal of Plasticity, vol.25, issue.3, pp.513-545, 2009.
DOI : 10.1016/j.ijplas.2008.03.002

R. A. Grange and H. M. Stewart, The temperature range of martensite formation, Trans. AIME, vol.167, pp.467-501, 1946.

A. B. Greninger and A. R. Troiano, Orientation Habit of Martensite, Nature, vol.141, issue.3557, p.38, 1938.
DOI : 10.1038/141038a0

A. B. Greninger and A. R. Troiano, The mechanism of martensite formation. trans, AIME, vol.185, issue.9, pp.590-598, 1949.

X. Gu, W. Zaki, C. Morin, Z. Moumni, and W. Zhang, Time integration and assessment of a model for shape memory alloys considering multiaxial nonproportional loading cases, International Journal of Solids and Structures, vol.54, pp.82-99, 2015.
DOI : 10.1016/j.ijsolstr.2014.11.005

URL : https://hal.archives-ouvertes.fr/hal-01137441

M. E. Gurtin and L. Anand, The decomposition F=FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, International Journal of Plasticity, vol.21, issue.9, pp.1686-1719, 2005.
DOI : 10.1016/j.ijplas.2004.11.007

V. S. Guthikonda and R. S. Elliott, Modeling martensitic phase transformations in shape memory alloys with the self-consistent lattice dynamics approach, Journal of the Mechanics and Physics of Solids, vol.61, issue.4, pp.1010-1026, 2013.
DOI : 10.1016/j.jmps.2012.12.003

K. Hackl and R. Heinen, A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy, Continuum Mechanics and Thermodynamics, vol.455, issue.8, pp.499-510, 2008.
DOI : 10.1098/rspa.1999.0335

B. Halphen and N. Quoc-son, Plastic and visco-plastic materials with generalized potential, Mechanics Research Communications, vol.1, issue.1, pp.43-47, 1974.
DOI : 10.1016/0093-6413(74)90034-2

D. J. Hartl, G. Chatzigeorgiou, and D. C. Lagoudas, Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys, International Journal of Plasticity, vol.26, issue.10, pp.261485-1507, 2010.
DOI : 10.1016/j.ijplas.2010.01.002

D. J. Hartl and D. C. Lagoudas, Aerospace applications of shape memory alloys, Proceedings of the Institution of Mechanical Engineers, pp.535-552, 2007.
DOI : 10.1016/S0020-7225(98)00116-5

D. J. Hartl, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Materials and Structures, vol.19, issue.1, p.15020, 2009.
DOI : 10.1088/0964-1726/19/1/015020

D. J. Hartl, J. H. Mabe, O. Benafan, . Coda, B. Conduit et al., Standardization of shape memory alloy test methods toward certification of aerospace applications, Smart Materials and Structures, p.24082001, 2015.
DOI : 10.1088/0964-1726/24/8/082001

D. J. Hartl, J. T. Mooney, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis, Smart Materials and Structures, vol.19, issue.1, p.15021, 2009.
DOI : 10.1088/0964-1726/19/1/015021

S. Hazar, W. Zaki, Z. Moumni, and G. Anlas, Modeling of steady-state crack growth in shape memory alloys using a stationary method, International Journal of Plasticity, vol.67, pp.26-38, 2015.
DOI : 10.1016/j.ijplas.2014.08.018

D. Helm and P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, International Journal of Solids and Structures, vol.40, issue.4, pp.827-849, 2003.
DOI : 10.1016/S0020-7683(02)00621-2

W. Huang and W. Toh, Training two-way shape memory alloy by reheat treatment, Journal of Materials Science Letters, vol.19, issue.17, pp.1549-1550, 2000.
DOI : 10.1023/A:1006721022185

B. Huett and C. Willey, Design and development of miniature mechanisms for small spacecraft, 14th AIAA/USU Conference on Small Satellites, 2000.

A. V. Idesman, V. I. Levitas, D. L. Preston, and J. Y. Cho, Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model, Journal of the Mechanics and Physics of Solids, vol.53, issue.3, pp.495-523, 2005.
DOI : 10.1016/j.jmps.2004.10.001

M. D. Itzhak-'vinograd, B. Klin, and T. Brosh, A new intratracheal stent made from nitinol, an alloy with" shape memory effect, Cardiovascular Surgery, 1994.

Y. Ivshin and T. J. Pence, A constitutive model for hysteretic phase transition behavior, International Journal of Engineering Science, vol.32, issue.4, pp.681-704, 1994.
DOI : 10.1016/0020-7225(94)90027-2

R. D. James and Z. Zhang, A Way to Search for Multiferroic Materials with ???Unlikely??? Combinations of Physical Properties, Magnetism and structure in functional materials, pp.159-175, 2005.
DOI : 10.1007/3-540-31631-0_9

A. D. Johnson, Non-explosive separation device, U.S. Patent, vol.5, p.119555, 1992.

P. Junker and K. Hackl, Finite element simulations of poly-crystalline shape memory alloys based on a micromechanical model, Computational Mechanics, vol.6, issue.2, pp.505-517, 2011.
DOI : 10.1007/BF01135253

Q. Kan and G. Kang, Constitutive model for uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy at room temperature, International Journal of Plasticity, vol.26, issue.3, pp.441-465, 2010.
DOI : 10.1016/j.ijplas.2009.08.005

Q. Kan, C. Yu, G. Kang, J. Li, Y. et al., Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mechanics of Materials, vol.97, pp.48-58, 2016.
DOI : 10.1016/j.mechmat.2016.02.011

G. Kauffman and I. Mayo, Memory metal, Chem Matters, vol.11, issue.4, 1993.

D. K. Kennedy, F. K. Straub, L. M. Schetky, Z. Chaudhry, R. et al., Development of an SMA Actuator for In-flight Rotor Blade Tracking, Journal of Intelligent Material Systems and Structures, vol.15, issue.4, pp.235-248, 2004.
DOI : 10.1177/1045389X04042794

A. S. Khan and S. Huang, Continuum theory of plasticity, 1995.

A. Khandelwal and V. Buravalla, Models for Shape Memory Alloy Behavior: An overview of modeling approaches, The International Journal of Structural Changes in Solids, vol.1, issue.1, pp.111-148, 2009.

H. A. Khater, G. Monnet, D. Terentyev, and A. Serra, Dislocation glide in Fe???carbon solid solution: From atomistic to continuum level description, International Journal of Plasticity, vol.62, pp.34-49, 2014.
DOI : 10.1016/j.ijplas.2014.06.006

M. Kheirikhah, S. Rabiee, and M. Edalat, A Review of Shape Memory Alloy Actuators in Robotics, RoboCup, vol.16, issue.2, pp.206-217, 2010.
DOI : 10.1088/0964-1726/16/4/055

M. Kimiecik, J. W. Jones, and S. Daly, The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium, Journal of the Mechanics and Physics of Solids, vol.89, pp.16-30, 2016.
DOI : 10.1016/j.jmps.2016.01.007

G. Knowles and R. W. Bird, Telescopic wing system, U.S. Patent, vol.6, p.834835, 2004.

B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp et al., Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy, Acta Materialia, vol.56, issue.14, pp.563630-3646, 2008.
DOI : 10.1016/j.actamat.2008.04.001

L. Krone, J. Mentz, M. Bram, H. Buchkremer, D. Stöver et al., The Potential of Powder Metallurgy for the Fabrication of Biomaterials on the Basis of Nickel-Titanium: A Case Study with a Staple Showing Shape Memory Behaviour, Advanced Engineering Materials, vol.378, issue.7, pp.613-619, 2005.
DOI : 10.1016/j.msea.2003.10.327

Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metallurgica, vol.33, issue.11, pp.332049-2056, 1985.
DOI : 10.1016/0001-6160(85)90128-2

J. N. Kudva, Overview of the DARPA smart wing project Journal of intelligent material systems and structures, pp.261-267, 2004.

I. Kutlucinar, Aircraft with shape memory alloys for retractable landing gear, U.S. Patent, vol.6, p.938416, 2005.

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, vol.32, issue.33, pp.32-33155, 2012.
DOI : 10.1016/j.ijplas.2011.10.009

D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, 2008.

D. C. Lagoudas, Z. Bo, and M. A. Qidwai, A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES, Mechanics of Composite Materials and Structures, vol.45, issue.3, pp.153-179, 1996.
DOI : 10.1002/nme.1620230303

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson et al., Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials, vol.38, issue.5-6, pp.5-6430, 2006.
DOI : 10.1016/j.mechmat.2005.08.003

D. C. Lagoudas and E. L. Vandygriff, Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering, Journal of Intelligent Material Systems and Structures, vol.31, issue.1, pp.837-850, 2002.
DOI : 10.1016/0001-6160(89)90315-5

W. S. Lai and B. X. Liu, Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering, Journal of Physics: Condensed Matter, vol.12, issue.5, p.53, 2000.
DOI : 10.1088/0953-8984/12/5/101

J. V. Larssen and F. T. Calkins, Deployable flap edge fence, U.S. Patent, vol.7, p.753316, 2013.

Z. Laster, A. D. Macbean, P. R. Ayliffe, and L. C. Newlands, Fixation of a frontozygomatic fracture with a shape-memory staple, British Journal of Oral and Maxillofacial Surgery, vol.39, issue.4, pp.324-325, 2001.
DOI : 10.1054/bjom.2001.0633

S. Leclercq and C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-980, 1996.
DOI : 10.1016/0022-5096(96)00013-0

L. Baldelli, A. Maurini, C. Pham, and K. , A gradient approach for the macroscopic modeling of superelasticity in softening shape memory alloys, International Journal of Solids and Structures, vol.52, pp.45-55, 2015.
DOI : 10.1016/j.ijsolstr.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-01227204

V. I. Levitas and I. B. Ozsoy, Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation, International Journal of Plasticity, vol.25, issue.2, pp.239-280, 2009.
DOI : 10.1016/j.ijplas.2008.02.004

V. I. Levitas and D. L. Preston, martensite, Physical Review B, vol.35, issue.13, p.66134206, 2002.
DOI : 10.1016/S0020-7683(97)00089-9

C. Lexcellent, Shape-memory alloys handbook, 2013.
DOI : 10.1002/9781118577776

C. Lexcellent, P. Blanc, C. , and N. , Two ways for predicting the hysteresis minimisation for shape memory alloys, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482, 2008.
DOI : 10.1016/j.msea.2007.03.120

URL : https://hal.archives-ouvertes.fr/hal-00019806

C. Lexcellent, M. Boubakar, C. Bouvet, C. , and S. , About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions, International Journal of Solids and Structures, vol.43, issue.3-4, pp.3-4613, 2006.
DOI : 10.1016/j.ijsolstr.2005.07.004

URL : https://hal.archives-ouvertes.fr/hal-00016370

C. Lexcellent and G. Bourbon, Thermodynamical model of cyclic behaviour of Ti???Ni and Cu???Zn???Al shape memory alloys under isothermal undulated tensile tests, Mechanics of Materials, vol.24, issue.1, pp.59-73, 1996.
DOI : 10.1016/0167-6636(96)00027-0

URL : https://hal.archives-ouvertes.fr/hal-00591127

Z. Q. Li and Q. P. Sun, The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension, International Journal of Plasticity, vol.18, issue.11, pp.1481-1498, 2002.
DOI : 10.1016/S0749-6419(02)00026-8

C. Liang and C. A. Rogers, One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, Journal of Intelligent Material Systems and Structures, vol.58, issue.9, pp.207-234, 1990.
DOI : 10.1063/1.338151

G. Lim, K. Park, M. Sugihara, K. Minami, and M. Esashi, Future of active catheters. Sensors and Actuators A: Physical, pp.113-121, 1996.

T. J. Lim and D. L. Mcdowell, Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy, Journal of the Mechanics and Physics of Solids, vol.50, issue.3, pp.651-676, 2002.
DOI : 10.1016/S0022-5096(01)00088-6

Y. Liu and P. G. Mccormick, Factors influencing the development of two-way shape memory in NiTi, Acta Metallurgica et Materialia, vol.38, issue.7, pp.1321-1326, 1990.
DOI : 10.1016/0956-7151(90)90204-T

R. G. Loewy, Recent developments in smart structures with aeronautical applications, Smart Materials and Structures, vol.6, issue.5, p.11, 1997.
DOI : 10.1088/0964-1726/6/5/001

F. C. Lovey, P. L. Rodriguez, J. Malarria, M. Sade, and V. Torra, On the Origin of the Two Way Shape Memory Effect in Cu-Zn-Al Alloys, Le Journal de Physique IV, vol.05, issue.C2, pp.2-287, 1995.
DOI : 10.1051/jp4:1995244

URL : https://hal.archives-ouvertes.fr/jpa-00253607

J. Lubliner and F. Auricchio, Generalized plasticity and shape-memory alloys, International Journal of Solids and Structures, vol.33, issue.7, pp.991-1003, 1996.
DOI : 10.1016/0020-7683(95)00082-8

J. Ma, I. Karaman, and R. D. Noebe, High temperature shape memory alloys, International Materials Reviews, vol.6929, issue.31, pp.257-315, 2010.
DOI : 10.1016/0025-5416(71)90051-6

G. Machado, H. Louche, T. Alonso, and D. Favier, Superelastic cellular NiTi tube-based materials: Fabrication, experiments and modeling, Materials & Design (1980-2015), vol.65, pp.212-220, 2015.
DOI : 10.1016/j.matdes.2014.09.007

URL : https://hal.archives-ouvertes.fr/hal-01285370

A. Masud, M. Panahandeh, and F. Aurrichio, A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys, Computer Methods in Applied Mechanics and Engineering, vol.148, issue.1-2, pp.23-37, 1997.
DOI : 10.1016/S0045-7825(97)00080-7

R. Mehrabi, M. T. Andani, M. Elahinia, and M. Kadkhodaei, Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling, Mechanics of Materials, vol.77, pp.110-124, 2014.
DOI : 10.1016/j.mechmat.2014.07.006

S. Miyazaki, K. Otsuka, and Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy, Scripta Metallurgica, vol.15, issue.3, pp.287-292, 1981.
DOI : 10.1016/0036-9748(81)90346-X

M. Jani, J. Leary, M. Subic, A. Gibson, and M. A. , A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015), vol.56, pp.1078-1113, 2014.
DOI : 10.1016/j.matdes.2013.11.084

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

C. Morin, Z. Moumni, and W. Zaki, A constitutive model for shape memory alloys accounting for thermomechanical coupling, International Journal of Plasticity, vol.27, issue.5, pp.748-767, 2011.
DOI : 10.1016/j.ijplas.2010.09.005

C. Morin, Z. Moumni, and W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, International Journal of Plasticity, vol.27, issue.12, pp.271959-1980, 2011.
DOI : 10.1016/j.ijplas.2011.05.005

Z. Moumni, Sur la modélisation du changement de phase solide: application aux matériaux à mémoire de forme et à l'endommagement fragile partiel, 1995.

Z. Moumni, A. V. Herpen, R. , and P. , Fatigue analysis of shape memory alloys: energy approach, Smart Materials and Structures, vol.14, issue.5, pp.287-292, 2005.
DOI : 10.1088/0964-1726/14/5/017

Z. Moumni, W. Zaki, and H. Maitournam, Cyclic behavior and energy approach to the fatigue of shape memory alloys, Journal of Mechanics of Materials and Structures, vol.44, issue.2, pp.395-411, 2009.
DOI : 10.1016/j.jmps.2007.03.012

Z. Moumni, W. Zaki, and Q. S. Nguyen, Theoretical and numerical modeling of solid???solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys, International Journal of Plasticity, vol.24, issue.4, pp.614-645, 2008.
DOI : 10.1016/j.ijplas.2007.07.007

C. Müller and O. T. Bruhns, A thermodynamic finite-strain model for pseudoelastic shape memory alloys, International Journal of Plasticity, vol.22, issue.9, pp.1658-1682, 2006.
DOI : 10.1016/j.ijplas.2006.02.010

D. Mutter and P. Nielaba, Simulation of the shape memory effect in a NiTi nano model system, Journal of Alloys and Compounds, vol.577, pp.83-87, 2013.
DOI : 10.1016/j.jallcom.2012.01.095

R. Neugebauer, A. Bucht, K. Pagel, J. , and J. , Numerical simulation of the activation behavior of thermal shape memory alloys, Industrial and Commercial Applications of Smart Structures Technologies 2010, pp.76450-76450, 2010.
DOI : 10.1117/12.847594

M. Nishida, K. Tanaka, W. , and H. O. , Development and control of a micro biped walking robot using shape memory alloys, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.1604-1609, 2006.
DOI : 10.1109/ROBOT.2006.1641936

S. D. Oehler, D. J. Hartl, R. Lopez, R. J. Malak, and D. C. Lagoudas, Design optimization and uncertainty analysis of SMA morphing structures, Smart Materials and Structures, p.94016, 2012.
DOI : 10.1088/0964-1726/21/9/094016

A. Ölander, AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS, Journal of the American Chemical Society, vol.54, issue.10, pp.3819-3833, 1932.
DOI : 10.1021/ja01349a004

J. Ortin, Preisach modeling of hysteresis for a pseudoelastic Cu???Zn???Al single crystal, Journal of Applied Physics, vol.22, issue.3, pp.1454-1461, 1992.
DOI : 10.1088/0022-3727/22/7/017

J. Ortin and L. Delaey, Hysteresis in shape-memory alloys, International Journal of Non-Linear Mechanics, vol.37, issue.8, pp.1275-1281, 2002.
DOI : 10.1016/S0020-7462(02)00027-6

URL : https://hal.archives-ouvertes.fr/jpa-00250555

R. Ostwald, T. Bartel, and A. Menzel, A computational micro-sphere model applied to the simulation of phase-transformations, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.43, issue.2, pp.605-622, 2010.
DOI : 10.1098/rspa.1999.0335

R. Ostwald, T. Bartel, and A. Menzel, A micro-sphere approach applied to the modelling of phase-transformations, PAMM, vol.10, issue.1, pp.315-316, 2010.
DOI : 10.1002/pamm.201010150

R. Ostwald, T. Bartel, and A. Menzel, A Gibbs-energy-barrier-based computational micro-sphere model for the simulation of martensitic phase-transformations, International Journal for Numerical Methods in Engineering, vol.40, issue.1, pp.97851-877, 2014.
DOI : 10.1016/S0020-7683(02)00668-6

R. Ostwald, T. Bartel, and A. Menzel, An energy-barrier-based computational micro-sphere model for phase-transformations interacting with plasticity, Computer Methods in Applied Mechanics and Engineering, vol.293, pp.232-265, 2015.
DOI : 10.1016/j.cma.2015.04.008

K. Otsuka and C. M. Wayman, Shape memory materials, 1999.

J. Paine and C. Rogers, High velocity impact response of composites with surface bonded nitinol-SMA hybrid layers, 36th Structures, Structural Dynamics and Materials Conference, p.1409, 1995.
DOI : 10.1016/0961-9526(91)90033-O

V. P. Panoskaltsis, L. C. Polymenakos, and D. Soldatos, Large deformation constitutive theory for a two-phase shape memory alloy, Engineering Transactions, vol.62, issue.4, pp.355-380, 2014.

H. M. Paranjape, S. Manchiraju, A. , and P. M. , A phase field ??? Finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys, International Journal of Plasticity, vol.80, pp.1-18, 2016.
DOI : 10.1016/j.ijplas.2015.12.007

E. Patoor, A. Eberhardt, and M. Berveiller, Thermomechanical Behavior of Shape Memory Alloys, ESOMAT 1989, Ist European Symposium on Martensitic Transformations in Science and Technology, pp.133-140, 1989.
DOI : 10.1051/esomat/198903002

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5-6, pp.5-6391, 2006.
DOI : 10.1016/j.mechmat.2005.05.027

A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Gong, M. Barney et al., Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, vol.1, issue.2, pp.153-164, 2008.
DOI : 10.1016/j.jmbbm.2007.08.001

J. Perkins, Residual stresses and the origin of reversible (two-way) shape memory effects, Scripta Metallurgica, vol.8, issue.12, pp.1469-1476, 1974.
DOI : 10.1016/0036-9748(74)90191-4

J. Perkins and R. O. Sponholz, Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys, Metallurgical Transactions A, vol.13, issue.2, pp.313-321, 1984.
DOI : 10.1007/BF02642873

B. Peultier, B. Zineb, T. Patoor, and E. , Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM, Mechanics of Materials, vol.38, issue.5-6, pp.5-6510, 2006.
DOI : 10.1016/j.mechmat.2005.05.026

R. Peyroux, A. Chrysochoos, C. Licht, and M. Löbel, THERMOMECHANICAL COUPLINGS AND PSEUDOELASTICITY OF SHAPE MEMORY ALLOYS, International Journal of Engineering Science, vol.36, issue.4, pp.489-509, 1998.
DOI : 10.1016/S0020-7225(97)00052-9

D. Pitt, J. Dunne, E. White, and E. Garcia, SAMPSON smart inlet SMA powered adaptive lip design and static test, 19th AIAA Applied Aerodynamics Conference, p.1359, 2001.
DOI : 10.2514/6.2001-1359

P. Poletti, C. D. Becker, L. Prina, P. Ruijs, H. Bounameaux et al., Long-term results of the Simon nitinol inferior vena cava filter, European Radiology, vol.8, issue.2, pp.289-294, 1998.
DOI : 10.1007/s003300050382

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity, vol.23, issue.10-11, pp.10-111679, 2007.
DOI : 10.1016/j.ijplas.2007.03.011

H. Prahlad and I. Chopra, <title>Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators</title>, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, pp.46-59, 2001.
DOI : 10.1117/12.436559

L. Qiao and R. Radovitzky, Computational modeling of size-dependent superelasticity of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.93, pp.93-117, 2015.
DOI : 10.1016/j.jmps.2016.01.004

M. A. Qidwai and D. C. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, International Journal of Plasticity, vol.16, issue.10-11, pp.1309-1343, 2000.
DOI : 10.1016/S0749-6419(00)00012-7

A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Physical Review, vol.110, issue.2A, p.405, 1964.
DOI : 10.1103/PhysRev.110.999

B. Raniecki, C. Lexcellent, and K. Tanaka, Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Archiv of Mechanics, pp.261-284, 1992.

B. Reedlunn, C. B. Churchill, E. E. Nelson, J. A. Shaw, and S. H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, Journal of the Mechanics and Physics of Solids, vol.63, issue.1, pp.506-537, 2014.
DOI : 10.1016/j.jmps.2012.12.012

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys ??? Constitutive modelling and finite element implementation, International Journal of Plasticity, vol.24, issue.3, pp.455-482, 2008.
DOI : 10.1016/j.ijplas.2007.05.005

W. D. Reinhardt and R. N. Dubey, Application of Objective Rates in Mechanical Modeling of Solids, Journal of Applied Mechanics, vol.4, issue.3, pp.692-698, 1996.
DOI : 10.1115/1.2823351

R. Rizzoni and S. Marfia, A thermodynamical formulation for the constitutive modeling of a shape memory alloy with two martensite phases, Meccanica, vol.103, issue.11???12, pp.1121-1145, 2015.
DOI : 10.1515/9781400873173

S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi et al., An overview of vibration and seismic applications of NiTi shape memory alloy, Smart Materials and Structures, vol.11, issue.2, p.218, 2002.
DOI : 10.1088/0964-1726/11/2/305

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys, Smart Materials and Structures, vol.16, issue.5, p.51, 2007.
DOI : 10.1088/0964-1726/16/5/030

L. Saint-sulpice, S. A. Chirani, C. , and S. , A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mechanics of Materials, vol.41, issue.1, pp.12-26, 2009.
DOI : 10.1016/j.mechmat.2008.07.004

URL : https://hal.archives-ouvertes.fr/hal-00449131

A. F. Saleeb, B. Dhakal, S. Dilibal, J. S. Owusu-danquah, and S. A. Padula, On the modeling of the thermo-mechanical responses of four different classes of NiTi-based shape memory materials using a general multi-mechanism framework, Mechanics of Materials, vol.80, pp.8067-86, 2015.
DOI : 10.1016/j.mechmat.2014.09.001

A. F. Saleeb, B. Dhakal, M. S. Hosseini, I. Padula, and S. A. , Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles, Smart Materials and Structures, vol.22, issue.9, p.94006, 2013.
DOI : 10.1088/0964-1726/22/9/094006

A. F. Saleeb, S. A. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687, 2011.
DOI : 10.1016/j.ijplas.2010.08.012

A. E. Sanders, J. O. Sanders, and R. B. More, Nitinol spinal instrumentation and method for surgically treating scoliosis, U.S. Patent, vol.5, p.290289, 1994.

T. A. Schroeder and C. M. Wayman, The two-way shape memory effect and other ???training??? phenomena in Cu???Zn single crystals, Scripta Metallurgica, vol.11, issue.3, pp.225-230, 1977.
DOI : 10.1016/0036-9748(77)90058-8

P. Sedlák, M. Frost, B. Bene?ová, B. Zineb, T. ?ittner et al., Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, International Journal of Plasticity, vol.39, pp.132-151, 2012.
DOI : 10.1016/j.ijplas.2012.06.008

A. Sengupta, P. Papadopoulos, T. , and R. L. , Multiscale finite element modeling of superelasticity in Nitinol polycrystals, Computational Mechanics, vol.48, issue.4, p.43, 2009.
DOI : 10.1080/14786445108561065

J. A. Shaw, A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities, International Journal of Solids and Structures, vol.39, issue.5, pp.1275-1305, 2002.
DOI : 10.1016/S0020-7683(01)00242-6

J. A. Shaw and S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1243-1281, 1995.
DOI : 10.1016/0022-5096(95)00024-D

J. C. Simo and T. J. Hughes, Computational inelasticity, 2008.

K. Singh and I. Chopra, <title>Design of an improved shape memory alloy actuator for rotor blade tracking</title>, Smart Structures and Materials 2002: Smart Structures and Integrated Systems, pp.244-266, 2002.
DOI : 10.1117/12.474663

P. Sittner, Y. Hara, and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and Materials Transactions A, vol.32, issue.11, pp.262923-2935, 1995.
DOI : 10.1179/095066086790324276

P. ?ittner and V. Novák, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, International Journal of Plasticity, vol.16, issue.10-11, pp.1243-1268, 2000.
DOI : 10.1016/S0749-6419(00)00009-7

R. C. Smith, Smart material systems: model development, 2005.
DOI : 10.1137/1.9780898717471

A. Y. Sofla, S. A. Meguid, K. T. Tan, and W. K. Yeo, Shape morphing of aircraft wing: Status and challenges, Materials & Design, vol.31, issue.3, pp.311284-1292, 2010.
DOI : 10.1016/j.matdes.2009.09.011

C. Song, History and Current Situation of Shape Memory Alloys Devices for Minimally Invasive Surgery, The Open Medical Devices Journal, 2010.
DOI : 10.2174/1875181401002020024

D. Song, G. Kang, Q. Kan, C. Yu, and C. Zhang, Non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy: Experimental observations, Mechanics of Materials, vol.70, pp.94-105, 2014.
DOI : 10.1016/j.mechmat.2013.12.003

G. Song and N. Ma, Shape memory alloy actuated adaptive exhaust nozzle for jet engine, U.S. Patent, vol.7, p.587899, 2009.

A. C. Souza, E. N. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, European Journal of Mechanics - A/Solids, vol.17, issue.5, pp.789-806, 1998.
DOI : 10.1016/S0997-7538(98)80005-3

S. Neto, E. Peric, D. Owen, and D. , Computational methods for plasticity: theory and applications, 2008.

A. Stebner and L. Brinson, Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys, Computer Methods in Applied Mechanics and Engineering, vol.257, pp.17-35, 2013.
DOI : 10.1016/j.cma.2012.12.021

J. Strittmatter, P. Gumpel, and H. Zhigang, Long-time stability of shape memory actuators for pedestrian safety system, J. Achiev. Mater. Manuf Eng, vol.34, issue.1, pp.23-30, 2009.

S. Stupkiewicz and H. Petryk, Modelling of laminated microstructures in stress-induced martensitic transformations, Journal of the Mechanics and Physics of Solids, vol.50, issue.11, pp.2303-2331, 2002.
DOI : 10.1016/S0022-5096(02)00029-7

S. Stupkiewicz and H. Petryk, Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys, Materials Science and Engineering: A, vol.438, issue.440, pp.126-130, 2006.
DOI : 10.1016/j.msea.2006.01.112

S. Stupkiewicz and H. Petryk, Grain-size effect in micromechanical modelling of hysteresis in shape, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, pp.795783-795, 2010.

Q. P. Sun and K. C. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys???I. Derivation of general relations, Journal of the Mechanics and Physics of Solids, vol.41, issue.1, pp.1-17, 1993.
DOI : 10.1016/0022-5096(93)90060-S

Q. Sun and K. Hwang, Micromechanics Constitutive Description of Thermoelastic Martensitic Transformations, Advances in Applied Mechanics, pp.249-298, 1994.
DOI : 10.1016/S0065-2156(08)70257-6

T. Suzuki and M. Shimono, A simple model for martensitic transformation, Journal de Physique IV (Proceedings), volume, pp.129-132, 2003.
DOI : 10.1051/jp4:2003849

T. Tadaki, K. Otsuka, and K. Shimizu, Shape Memory Alloys, Annual Review of Materials Science, vol.18, issue.1, pp.25-45, 1988.
DOI : 10.1146/annurev.ms.18.080188.000325

K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, International Journal of Plasticity, vol.2, issue.1, pp.59-72, 1986.
DOI : 10.1016/0749-6419(86)90016-1

T. Tao, Y. Liang, and M. Taya, Bio-inspired actuating system for swimming using shape memory alloy composites, International Journal of Automation and Computing, vol.251, issue.12, pp.366-373, 2006.
DOI : 10.1093/icb/28.2.709

M. Tawfik, J. Ro, M. , and C. , Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates, Smart Materials and Structures, vol.11, issue.2, p.297, 2002.
DOI : 10.1088/0964-1726/11/2/313

G. I. Taylor and H. Quinney, The Plastic Distortion of Metals, Containing Papers of a Mathematical or Physical Character, pp.323-362, 1932.
DOI : 10.1098/rsta.1932.0009

J. P. Teeriaho, An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties, International Journal of Plasticity, vol.43, pp.153-176, 2013.
DOI : 10.1016/j.ijplas.2012.11.009

C. Testa, S. Leone, and S. Ameduri, Feasibility study on rotorcraft blade morphing in hovering, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, pp.171-182, 2005.
DOI : 10.1117/12.600975

P. Thamburaja, A finite-deformation-based phenomenological theory for shape-memory alloys, International Journal of Plasticity, vol.26, issue.8, pp.1195-1219, 2010.
DOI : 10.1016/j.ijplas.2009.12.004

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: effect of crystallographic texture, Journal of the Mechanics and Physics of Solids, vol.49, issue.4, pp.709-737, 2001.
DOI : 10.1016/S0022-5096(00)00061-2

B. V. Thanopoulos, C. V. Laskari, G. S. Tsaousis, A. Zarayelyan, A. Vekiou et al., Closure of Atrial Septal Defects With the Amplatzer Occlusion Device: Preliminary Results, Journal of the American College of Cardiology, vol.31, issue.5, pp.311110-1116, 1998.
DOI : 10.1016/S0735-1097(98)00039-4

Y. Toi, J. Lee, and M. Taya, Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs, Computers & Structures, vol.82, issue.20-21, pp.20-211685, 2004.
DOI : 10.1016/j.compstruc.2004.03.025

C. Tuna, J. H. Solomon, D. L. Jones, and M. J. Hartmann, Object shape recognition with artificial whiskers using tomographic reconstruction, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2537-2540, 2012.
DOI : 10.1109/ICASSP.2012.6288433

T. Uehara, C. Asai, and N. Ohno, Molecular dynamics simulation of shape memory behaviour using a multi-grain model, Modelling and Simulation in Materials Science and Engineering, vol.17, issue.3, p.35011, 2009.
DOI : 10.1088/0965-0393/17/3/035011

I. N. Vladimirov, M. P. Pietryga, R. , and S. , Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming, International Journal of Plasticity, vol.26, issue.5, pp.659-687, 2010.
DOI : 10.1016/j.ijplas.2009.09.008

M. Wagner and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Materialia, vol.56, issue.20, pp.566232-6245, 2008.
DOI : 10.1016/j.actamat.2008.08.043

J. Wang, H. Sehitoglu, and H. J. Maier, Dislocation slip stress prediction in shape memory alloys, International Journal of Plasticity, vol.54, pp.247-266, 2014.
DOI : 10.1016/j.ijplas.2013.08.017

L. X. Wang and R. V. Melnik, Thermo-Mechanical Wave Propagations in Shape Memory Alloy Rod with Phase Transformations, Mechanics of Advanced Materials and Structures, vol.14, issue.8, pp.14665-676, 2007.
DOI : 10.1007/BF01385653

X. M. Wang, B. X. Xu, Y. , and Z. F. , Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys, International Journal of Plasticity, vol.24, issue.8, pp.1307-1332, 2008.
DOI : 10.1016/j.ijplas.2007.09.006

Z. Wang, G. Hang, Y. Wang, J. Li, and W. Du, Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion, Smart Materials and Structures, vol.17, issue.2, p.25039, 2008.
DOI : 10.1088/0964-1726/17/2/025039

E. Williams and M. H. Elahinia, An Automotive SMA Mirror Actuator: Modeling, Design, and Experimental Evaluation, Journal of Intelligent Material Systems and Structures, vol.18, issue.1, pp.1425-1434, 2008.
DOI : 10.1177/104538903039134

E. A. Williams, G. Shaw, and M. Elahinia, Control of an automotive shape memory alloy mirror actuator, Mechatronics, vol.20, issue.5, pp.527-534, 2010.
DOI : 10.1016/j.mechatronics.2010.04.002

X. D. Wu, G. J. Sun, and J. S. Wu, The nonlinear relationship between transformation strain and applied stress for nitinol, Materials Letters, vol.57, issue.7, pp.1334-1338, 2003.
DOI : 10.1016/S0167-577X(02)00983-7

H. Xiao, An explicit, straightforward approach to modeling SMA pseudoelastic hysteresis, International Journal of Plasticity, vol.53, pp.228-240, 2014.
DOI : 10.1016/j.ijplas.2013.08.010

H. Xiao, O. Bruhns, and . Meyers, Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress, Acta Mechanica, vol.168, issue.1-2, pp.21-33, 2004.
DOI : 10.1007/s00707-004-0074-5

H. Xiao, O. T. Bruhns, and A. Meyers, On objective corotational rates and their defining spin tensors, International Journal of Solids and Structures, vol.35, issue.30, pp.4001-4014, 1998.
DOI : 10.1016/S0020-7683(97)00267-9

K. Yanagihara, H. Mizuno, H. Wada, and S. Hitomi, Tracheal stenosis treated with self-expanding nitinol stent. The Annals of thoracic surgery, pp.1786-1789, 1997.

H. Yin, Y. He, and Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, Journal of the Mechanics and Physics of Solids, vol.67, pp.100-128, 2014.
DOI : 10.1016/j.jmps.2014.01.013

URL : https://hal.archives-ouvertes.fr/hal-01241642

C. Yu, G. Kang, and Q. Kan, Study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model, International Journal of Solids and Structures, vol.51, issue.25-26, pp.25-264386, 2014.
DOI : 10.1016/j.ijsolstr.2014.09.006

C. Yu, G. Kang, and Q. Kan, A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals, Journal of the Mechanics and Physics of Solids, vol.82, pp.97-136, 2015.
DOI : 10.1016/j.jmps.2015.05.012

C. Yu, G. Kang, Q. Kan, and D. Song, A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys, International Journal of Plasticity, vol.44, pp.161-191, 2013.
DOI : 10.1016/j.ijplas.2013.01.001

C. Yu, G. Kang, Q. Kan, and Y. Zhu, Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: Thermo-mechanical coupled and physical mechanism-based constitutive model, International Journal of Plasticity, vol.72, pp.60-90, 2015.
DOI : 10.1016/j.ijplas.2015.05.011

C. Yu, G. Kang, D. Song, and Q. Kan, Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy, Computational Materials Science, vol.56, pp.1-5, 2012.
DOI : 10.1016/j.commatsci.2011.12.032

W. Zaki, An approach to modeling tensile???compressive asymmetry for martensitic shape memory alloys, Smart Materials and Structures, vol.19, issue.2, p.25009, 2010.
DOI : 10.1088/0964-1726/19/2/025009

W. Zaki, Modeling and Simulation of the Mechanical Response of Martensitic Shape Memory Alloys, ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1, pp.189-193, 2011.
DOI : 10.1115/SMASIS2011-5178

W. Zaki, An efficient implementation for a model of martensite reorientation in martensitic shape memory alloys under multiaxial nonproportional loading, International Journal of Plasticity, vol.37, pp.72-94, 2012.
DOI : 10.1016/j.ijplas.2012.04.002

W. Zaki, C. Morin, and Z. Moumni, A simple 1D model with thermomechanical coupling for superelastic SMAs, IOP Conference Series: Materials Science and Engineering, p.12149, 2010.
DOI : 10.1088/1757-899X/10/1/012149

W. Zaki and Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2427-2454, 2007.
DOI : 10.1016/j.jmps.2007.03.011

W. Zaki and Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2455-2490, 2007.
DOI : 10.1016/j.jmps.2007.03.012

W. Zaki, S. Zamfir, and Z. Moumni, An extension of the ZM model for shape memory alloys accounting for plastic deformation, Mechanics of Materials, vol.42, issue.3, pp.266-274, 2010.
DOI : 10.1016/j.mechmat.2009.11.013

X. Zhang, X. Yan, H. Xie, and R. Sun, Modeling evolutions of plastic strain, maximum transformation strain and transformation temperatures in SMA under superelastic cycling, Computational Materials Science, vol.81, pp.113-122, 2014.
DOI : 10.1016/j.commatsci.2013.07.022

Y. Zhang, Y. You, Z. Moumni, G. Anlas, J. Zhu et al., Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys, International Journal of Plasticity, vol.90, pp.1-30, 2017.
DOI : 10.1016/j.ijplas.2016.11.012

Y. Zhong and T. Zhu, Patterning of martensitic nanotwins, Scripta Materialia, vol.67, issue.11, pp.883-886, 2012.
DOI : 10.1016/j.scriptamat.2012.08.014

Y. Zhong and T. Zhu, Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Materialia, vol.75, pp.337-347, 2014.
DOI : 10.1016/j.actamat.2014.04.013

B. Zhou, A macroscopic constitutive model of shape memory alloy considering plasticity, Mechanics of Materials, vol.48, pp.71-81, 2012.
DOI : 10.1016/j.mechmat.2012.02.001

Y. Zhu, G. Kang, Q. Kan, and O. T. Bruhns, Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity, International Journal of Plasticity, vol.54, pp.34-55, 2014.
DOI : 10.1016/j.ijplas.2013.08.004

A. Ziolkowski, Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains, Continuum Mechanics and Thermodynamics, vol.124, issue.6, pp.379-398, 2007.
DOI : 10.1007/s00161-007-0060-y