Influence de la matière organique dissoute d’origine urbaine sur la spéciation des micropolluants : de la station d’épuration au milieu récepteur

Abstract : Urban discharges alter the quality of dissolved organic matter (DMO) in receiving environments and are a major source of micropollutants. Natural MOD has been shown to influence the speciation and fate of micropollutants in both the receiving and treatment media. The objective here is to study the impact of the presence and quality of MOD on the dissolved/particulate distribution of micropollutants in aquatic systems, from the treatment plant to the receiving environment. The originality of our work is to compare the influence of a natural fulvic MOD and an urban MOD, and to work at concentrations close to concentrations in the aquatic environment. Initially, we characterized the adsorption of different types of MOD (fulvic acids (AF) and releases of STEP) on different types of particles (calcite, goethite, montmorillonite, quartz and activated carbon). In a second step, we characterized the adsorption of certain micropollutants (metallic trace elements (ETMs) and As (V), Polycyclic Aromatic Hydrocarbons (PAHs) and 13 pharmaceutical products) on particles in the absence of MOD or in the presence of MOD (AF) and releases of STEPs. Concerning the influence of MOD on the adsorption of ETMs by particles, the results obtained show a significant diversity of situations depending on the ETMs and particles considered. For goethite, we observed a decrease in adsorption in the presence of urban MOD compared to what is observed in the absence of MOD. For activated carbon, on the other hand, there is more adsorption in the presence of AF for all VTE except for Cu, which is more adsorbed in the presence of urban MOD. The various particles have generally exhibited a high adsorption capacity of PAHs, but this capacity is strongly modulated by the MOD, and this varies according to the particles. For goethite and montmorillonite, adsorption of PAHs decreased in the presence of MOD. It is stronger in the presence of urban MOD than in the presence of AF in the case of adsorption of light PAHs on goethite and adsorption of all PAHs on montmorillonite. The adsorption of heavier PAHs on goethite is lower with urban MOD than in the presence of AF. Concerning the adsorption of PAHs by the CAP, we observed a decrease in the presence of MOD, particularly in the case of urban MOD. Experiments conducted with sulfamethoxyazole did not reveal any influence of the origin of MOD on adsorption of this substance. For other pharmaceutical products, adsorption on CAP in the presence of urban MOD is generally much lower than in the mineral matrix and also lower than in the fulvic acid matrix. The abatement of these contaminants will therefore be lower in the presence of urban MOD. This can be related to the fractionation of urban MOD when adsorbed on the CAP. The results obtained show that it is essential to take into account the role of urban MOD in anthropized receptor environments (where it can be the majority in low-water environments) in order to better understand the fate of micropollutants in aquatic systems and in particular their particle/dissolved distribution. In addition, in a wastewater treatment context, the abatement of micropollutants is dependent on the nature of the present MOD, therefore, the abatement results of micropollutants observed in water purification could be significantly different in wastewater treatment
Document type :
Theses
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-01621716
Contributor : Abes Star <>
Submitted on : Monday, October 23, 2017 - 5:26:20 PM
Last modification on : Friday, October 4, 2019 - 1:31:52 AM

File

TH2016PESC1154.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01621716, version 1

Citation

Caroline Soares Pereira. Influence de la matière organique dissoute d’origine urbaine sur la spéciation des micropolluants : de la station d’épuration au milieu récepteur. Chimie inorganique. Université Paris-Est, 2016. Français. ⟨NNT : 2016PESC1154⟩. ⟨tel-01621716⟩

Share

Metrics

Record views

444

Files downloads

1273