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Résumé

L’associaèdre se situe à l’interface de plusieurs domaines mathématiques. Combi-
natoirement, il s’agit du complexe simplicial des dissections d’un polygone convexe
(ensembles de diagonales ne se croisant pas deux à deux). Géométriquement, il s’agit
d’un polytope dont les sommets et les arêtes encodent le graphe dual du complexe des
dissections. Enfin l’associaèdre décrit la structure combinatoire qui définit la présen-
tation par générateurs et relations de certaines algèbres, dites « amassées ». Du fait
de son omniprésence, de nouvelles familles généralisant cet objet sont régulièrement
découvertes. Cependant elles n’ont souvent que de faibles interactions. Leurs études
respectives présentent de notre point de vue deux enjeux majeurs : chercher à les relier
en se basant sur les propriétés connues de l’associaèdre ; et chercher pour chacune des
cadres combinatoire, géométrique et algébrique dans le même esprit.

Dans cette thèse, nous traitons le lien entre combinatoire et géométrie pour certaines
de ces généralisations : les associaèdres de graphes, les complexes de sous-mots et les
complexes d’accordéons. Nous suivons un fil rouge consistant à adapter, à ces trois
familles, une méthode de construction des associaèdres comme éventails (ensembles
de cônes polyédraux), dite méthode des d-vecteurs et issue de la théorie des algèbres
amassées. De manière plus large, notre problématique principale consiste à réaliser,
c’est-à-dire plonger géométriquement dans un espace vectoriel, des complexes abs-
traits. Nous obtenons trois familles de nouvelles réalisations, ainsi qu’une quatrième
encore conjecturale dont les premières instances constituent déjà des avancées signifi-
catives.

Enfin, en sus des résultats géométriques, nous démontrons des propriétés combi-
natoires spécifiques à chaque complexe simplicial abordé.

Abstract

The associahedron is at the interface between several mathematical fields. Combina-
torially, it is the simplicial complex of dissections of a convex polygon (sets of mutually
noncrossing diagonals). Geometrically, it is a polytope whose vertices and edges encode
the dual graph of the complex of dissections. Finally the associahedron describes the
combinatorial structure defining a presentation by generators and relations of certain
algebras, called “cluster algebras”. Because of its ubiquity, we regularly come up with
new families generalizing this object. However there often are only few interactions be-
tween them. From our perspective, there are two main issues when studying them:
looking for relations on the basis of known properties of the associahedron; and, for
each, looking for combinatorial, geometric and algebraic frameworks in the same spirit.

In this thesis, we deal with the link between combinatorics and geometry for some
of these generalizations: graph associahedra, subword complexes and accordion com-
plexes. We follow a guidelight consisting in adapting, to these three families, a method
for constructing associahedra as fans (sets of polyhedral cones), called the d-vector
method and coming from cluster algebra theory. More generally, our main concern is
to realize, that is geometrically embed in a vector space, abstract complexes. We obtain
three new families of generalizations, and a fourth conjectural one whose first instances
already constitute significant advances.

Finally in addition to the geometric results, we prove combinatorial properties spe-
cific to each encountered simplicial complex.
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INTRODUCTION AND
PRELIMINARIES
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1
Cette thèse de A à Z

1.1 Présentation de l’associaèdre

Les associaèdres apparaissent dans de multiples domaines des mathématiques. Leur
étude, ainsi que celle de leurs nombreuses généralisations, constitue en soi un champ
de recherche, à l’interface entre la combinatoire, la géométrie et l’algèbre. Cette thèse
se concentre sur les deux premiers aspects, tout en tirant certaines de ses inspirations
du dernier. Commençons par motiver notre travail sur la base de différentes formes
mathématiques que peuvent prendre les associaèdres.

1.1.1 Arbres binaires et leur graphe de rotation

Les associaèdres sont des objets naturels pour décrire le comportement de structures
de données appelées arbres binaires de recherche (voir par exemple [Knu98, section 6.2]
pour une présentation détaillée et des motivations algorithmiques).

Un arbre binaire T sur un ensemble S est une structure récursive définie par :
• soit T = ∅ est l’arbre vide, sans nœud,
• soit T est un triplet (L, r,R), où r ∈ S est la racine de T, dont le fils gauche L

(resp. droit R) est un arbre binaire. Les nœuds de T sont r et les nœuds de ses fils.
On note couramment un arbre binaire T = (L, r,R) sur S de la façon suivante :

T =
r

L R .

Quand S n’est pas spécifié, on note génériquement les nœuds •. La figure 1.1
(gauche) représente tous les arbres binaires à 3 noeuds. La hauteur h(T) d’un arbre
binaire T est récursivement définie par

h(∅) = −1 et h

( •
L R

)
= max(h(L), h(R)) + 1.

Lorsque les nœuds d’un arbre binaire T sont des nombres tels que tout nœud est stric-
tement supérieur (resp. inférieur) aux nœuds de son fils gauche (resp. droit), on dit
que T est un arbre binaire de recherche. Cette propriété permet en effet de réaliser ef-
ficacement recherches et insertions dans les arbres binaires lorsqu’ils sont équilibrés,

7
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FIGURE 1.1 – Les arbres binaires à 3 nœuds (gauche, avec T2
max en haut), les arbres

binaires de recherches sur {1, 2, 3} (centre) et les triangulations d’un hexagone (droite).
Les arêtes entre deux arbres (resp. triangulations), orientées vers le haut, correspondent
aux rotations droites (flips augmentant la pente), de sorte que chaque dessin donne
une interprétation combinatoire du treillis de Tamari T (3). Sans orientation, ils repré-
sentent le graphe de rotation (resp. de flip) F(2), ici un cycle à 5 sommets.

c’est-à-dire quand la différence de hauteurs entre les fils de tout nœud est d’au plus 1.
Afin de toujours travailler avec des arbres équilibrés, même après l’insertion ou la sup-
pression d’un élément, les algorithmes d’équilibrage utilisent la rotation droite ρr et
la rotation gauche ρ` définies de la façon suivante :

ρr


x2

x1

T1 T2

T3

 :=

x1

T1

T3T2

x2 et ρ`


x1

T1

T3T2

x2

 :=

x2

x1

T1 T2

T3 .

Observons que la définition récursive des arbres binaires (de recherche) induit naturel-
lement une rotation droite (resp. gauche) à chaque nœud de tout arbre binaire dont le
fils droit (resp. gauche) est non vide. La figure 1.1 (gauche et centre) illustre ces opé-
rations. Elles permettent de définir le graphe de rotation F(n) dont les sommets sont
les arbres binaires avec n + 1 nœuds et dont les arêtes contiennent les paires d’arbres
binaires obtenus l’un à partir de l’autre par une rotation (voir la figure 1.1 gauche et
centre). Ce graphe est le premier objet que l’on peut appeler un associaèdre. De nom-
breuses études ont porté sur les propriétés géodésiques de ce graphe. Remarquons
d’abord qu’il est connexe. En effet on peut appliquer une rotation droite à tout nœud
d’un arbre binaire dont le fils gauche n’est pas vide. Comme il n’y a qu’un seul arbre bi-
naire Tn

max dont tous les nœuds ont un fils gauche vide (l’arbre du haut de la figure 1.1
gauche), on peut obtenir n’importe quel arbre binaire à partir d’un autre en lui ap-
pliquant successivement une suite de rotations droites puis de rotations gauches. On
peut même raffiner cette preuve pour obtenir la borne supérieure de 2n sur le diamètre
de F(n). Pour cela, on définit la branche droite d’un arbre binaire T comme l’arbre
vide si T est vide, et comme l’arbre contenant sa racine et la branche droite de son
fils droit sinon. Remarquons qu’à un arbre binaire T différent de Tn

max, on peut non
seulement appliquer une rotation droite, mais on peut même le faire en un nœud de la
branche droite de T, de sorte que le nouvel arbre obtenu à partir de T a un nœud de
plus sur sa branche droite. Ainsi tout arbre binaire peut être transformé en Tn

max en
au plus n rotations droites, ce qui donne la borne 2n sur le diamètre de F(n). Contrai-
rement à la borne supérieure, il est très difficile d’évaluer précisément les distances
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dans F(n), et si la question épineuse du diamètre exact de F(n) a récemment été réso-
lue [STT88, Pou14], calculer efficacement la distance de rotation entre arbres binaires
reste un problème ouvert. Enfin, l’étude des associaèdres est aussi liée à la recherche
d’éventuelles structures de données nouvelles inspirées des arbres binaires (comme
les arbres cambriens [CP17] par exemple).

1.1.2 Triangulations et graphe des flips

Le nombre d’arbres binaires avec n nœuds est le n-ème nombre de Catalan Cn := 1
n+1

(2n
n

)
[OEI10, A000108]. Ces nombres sont omniprésents en combinatoire et comptent énor-
mément d’objets1 (voir par exemple [Sta01, chapitre 6]). Les triangulations de polygones
convexes forment une famille de Catalan et sont en pratique le modèle combinatoire
que nous privilégions pour travailler sur les associaèdres. Étant donné un polygone P
à n + 3 côtés, une triangulation de P est un ensemble de diagonales de P qui ne se
croisent pas deux à deux, et maximal pour cette propriété (voir la figure 1.2 gauche).
Ce nom vient du fait qu’une triangulation peut de façon équivalente être vue comme
une subdivision de P en triangles sans création de nouveau sommet. Notons que la
définition ne dépend pas de la géométrie de P puisque les croisements entre diagonales
sont déterminés par l’ordre cyclique sur leurs sommets. C’est pourquoi nous représen-
tons généralement P soit comme un polygone régulier, soit dans la configuration de la
figure 1.2, c’est-à-dire avec un grand côté horizontal et une chaîne convexe en dessous
de ce côté. Dans cette configuration, une bijection simple entre les triangulations de P
et les arbres binaires consiste à associer à toute triangulation son arbre dual, comme
illustré par la figure 1.2. Cette bijection induit de plus une correspondance entre la
rotation dans les arbres binaires et l’opération de flip dans les triangulations : soit T
une triangulation et δ ∈ T, enlever δ de T crée un quadrilatère dans T. Ce quadrilatère
a exactement deux diagonales, à savoir δ et une autre δ′. On peut donc remplacer δ
par δ′ dans T pour obtenir une nouvelle triangulation T′ := (T ∪ {δ′}) r {δ} (voir la fi-
gure 1.2 droite). On dit que T′ est obtenue à partir de T en flippant δ. La bijection de
la figure 1.2 fait correspondre les rotations droites (resp. gauches) aux flips augmen-
tant (resp. diminuant) la pente, c’est-à-dire tels que la diagonale introduite a une pente
supérieure (resp. inférieure) à celle de la diagonale enlevée. Le graphe des flips de P
est le graphe dont les sommets sont les triangulations de P et dont les arêtes corres-
pondent aux flips. Ce graphe est isomorphe au graphe F(n) sur les arbres binaires (voir
la figure 1.2 droite) et est donc aussi un modèle combinatoire de l’associaèdre.

L’associaèdre présente la propriété combinatoire importante suivante : en orientant
les arêtes du graphe des flips F(n) dans la direction de l’accroissement de pente (ou

FIGURE 1.2 – Une bijection entre les arbres binaires à n + 1 nœuds (en bleu) et les
triangulations d’un (n + 3)-gone (en rouge), illustrée pour n = 3 (gauche). Quand
le polygone P est dessiné dans cette configuration, avec un grand côté horizontal e,
l’arbre binaire associé à une triangulation est son arbre dual, enraciné au triangle qui
contient e. Cette bijection fait correspondre les rotations droites (resp. gauche) dans les
arbres binaires avec les flips augmentant (resp. diminuant) la pente (droite).

1Selon R. Stanley, il y a actuellement 207 interprétations combinatoires de ces nombres.
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v

δv
δ

δ1

δ2 T
v

δv
δ

δ1

δ2 v v v

Tv

FIGURE 1.3 – Illustration de la borne supérieure 2n− 4 sur le diamètre de F(n).

de façon équivalente, dans la direction donnée par les rotations droites), on obtient un
graphe dirigé acyclique, qui se trouve être le diagramme de Hasse d’un treillis, appelé
le treillis de Tamari T (n + 1) (voir [Tam51] et la figure 1.1). Ce treillis est lui aussi au
centre d’études variées et a été généralisé dans diverses directions. Enfin, à part être
une famille de Catalan, les triangulations de polygones convexes sont aussi les premiers
exemples de triangulations de configurations de points dans le plan (voir [DRS10] et les
références qui s’y trouvent), ce qui explique aussi pour partie l’intérêt qu’elles suscitent.
Comme nous l’avons dit, les triangulations sont un modèle complémentaire aux arbres
binaires pour étudier l’associaèdre. Illustrons cela en montrant que la borne 2n sur
le diamètre du graphe F(n) que nous avons prouvée dans la section 1.1.1 peut être
améliorée à 2n − 4 pour n ≥ 10 (voir la figure 1.3), qui est en fait la valeur exacte du
diamètre du graphe des flips F(n) dans ce cas [Pou14].

Preuve (borne supérieure 2n− 4 sur le diamètre de F(n)). Soit P un (n+3)-gone et v un
sommet de P, on note Tv la triangulation de P contenant les n diagonales de P inci-
dentes à v. Soit T une triangulation de P ne contenant pas une diagonale δv incidente
à v. Alors δv se trouve entre deux diagonales (potentiellement des côtés de P ) de T in-
cidentes à v, que nous notons δ1 et δ2. Ces deux diagonales appartiennent à un même
triangle de T, dont nous appelons la troisième diagonale δ. Comme δ1 et δ2 ne sont pas
consécutives dans Tv, la diagonale δ est interne (n’est pas un côté de P ) et peut donc
être flippée dans T en une nouvelle diagonale, incidente à v. On conclut par une récur-
rence immédiate que si T contient degv(T) diagonales incidentes à v, alors n− degv(T)
flips suffisent pour la transformer en la triangulation Tv. En particulier la distance de
flip entre T et une autre triangulation T′ vaut au plus 2n− (degv(T) + degv(T′)). Enfin
les diagonales de T∪T′ (comptées avec répétitions) ont au total 4n extrémités (comptées
avec répétitions), de sorte qu’en moyenne un sommet de P est incident à 4n

n+3 = 4− 12
n+3

diagonales de T ∪ T′. Cette moyenne est strictement supérieure à 3 pour n ≥ 10 et il
existe donc un sommet v de P pour lequel degv(T) + degv(T′) ≥ 4. �

1.1.3 Polytopes

Pour la partie géométrique de cette thèse, on s’intéresse en premier lieu aux polytopes.
Rappelons qu’un polytope est l’enveloppe convexe d’un nombre fini de points dans Rd
(voir le chapitre 3, en particulier la section 3.2.1). Les polytopes sont, entre autres
choses, des exemples de polyèdres, qui sont les domaines de définition des problèmes
d’optimisation linéaire (voir [GM07]). En particulier tout un pan de la recherche dans ce
domaine a pour objet le diamètre combinatoire des polytopes, en lien avec la conjecture
dite « de Hirsch polynomiale », qui affirme que le diamètre du graphe d’un polytope est
borné par un polynôme en son nombre de facettes (voir [San13] pour un panorama
détaillé sur ce sujet). Cependant la combinatoire des polytopes fait ressortir de nom-
breux problèmes difficiles (NP-durs), ce qui rend d’autant plus appréciable d’avoir à
notre disposition des familles de polytopes dont la combinatoire se décrit facilement.
Dans cet esprit, un exemple classique est le permutaèdre de dimension n Perm(n) (ou
simplement n-permutaèdre), que l’on définit comme l’enveloppe convexe des permuta-
tions de [n + 1] := {1, 2, . . . , n + 1}, vues comme vecteurs dans Rn+1 (voir figure 1.4).
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FIGURE 1.4 – Le 2-permutaèdre plongé dans R3 (gauche) et le 3-permutaèdre (droite).

Formellement, en notant Sn+1 le groupe symétrique des permutations de [n+ 1], on a

Perm(n) := conv
(
(σ(i))i∈[n+1] |σ ∈ Sn+1

)
.

Les associaèdres sont un autre exemple de tels polytopes. En effet si nous avons
décrit les associaèdres par la donnée combinatoire des graphes des flips (ou de rotation),
le terme associaèdre désigne plus fréquemment le polytope qui leur est associé.

Théorème A ([Hai84, Lee89, GKZ08, BFS90, SS93, SS97, RSS03, Lod04, HL07, CSZ15]).
Pour tout entier n, il existe un polytope de dimension n dont le graphe est isomorphe au
graphe des flips F(n). Un tel polytope est appelé un n-associaèdre.

Nous revenons sur quelques preuves du théorème A dans la section 1.2.2. Les fi-
gures 1.5 et 1.6 illustrent différentes réalisations du 3-associaèdre. Comme nous l’avons
vu, avoir des polytopes décrits par des graphes des flips est pratique du point de vue de
la géométrie. Il se trouve qu’en retour, la géométrie de ces polytopes peut nous aider à
trouver des propriétés combinatoires qui ne sont pas faciles à prouver directement. Par
exemple D. Sleator, R. Tarjan et W. Thurston [STT88] ont utilisé des polytopes hyper-
boliques dans leur étude du diamètre combinatoire de l’associaèdre. Un exemple plus
récent est donné dans la section 9.4 de cette thèse, où certaines propriétés des com-
plexes d’accordéon sont obtenues sur la base de leur réalisations polytopales. Cette
notion de « réalisation » est la raison pour laquelle nous travaillons conjointement sur
des aspects combinatoires et géométriques. De façon informelle, une réalisation géo-
métrique d’une structure combinatoire S est un objet plongé dans un espace vectoriel,
qui peut être entièrement défini par une information finie encodée par S. D’une cer-
taine manière, c’est une façon de plonger fidèlement une structure abstraite dans un

[Lod04, HL07] [HL07] [CFZ02, HL07, CSZ15] [CSZ15]

FIGURE 1.5 – Exemples de 3-associaèdres. Figure de [CSZ15], avec permission.
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cadre géométrique. Le théorème A illustre la réalisation d’un graphe par un polytope,
mais ce ne sont pas les seuls types de réalisations que nous allons considérer. Dans
cette thèse, on s’intéresse principalement à la réalisation de complexes simpliciaux (c’est
aussi le cas dans le théorème A). De plus les réalisations que nous donnons sont sou-
vent des éventails, à savoir nous encodons des complexes simpliciaux par des cônes
polyédraux s’intersectant proprement. L’objectif de cette thèse se résume donc ainsi.

But : d’une part nous essayons de mieux comprendre des objets abstraits de la famille
des associaèdres ; d’autre part nous travaillons avec ces objets dans le but d’obtenir de
nouvelles constructions de polytopes et d’éventails non triviaux.

Nous réservons la présentation formelle des complexes simpliciaux, polytopes et
éventails pour le chapitre 3, où nous donnons les pré-requis nécessaires à la lecture de
ce manuscrit. Décrivons à présent le contexte mathématique dans lequel il s’inscrit.

1.2 État de l’art

La première apparition de la structure combinatoire de l’associaèdre est le treillis de
Tamari (voir la section 1.1.2) dans la thèse de D. Tamari [Tam51]. Il fut ensuite étudié
en tant que complexe simplicial (voir la section 3.1) par J. Stasheff [Sta63] dans le but
d’étudier des propriétés d’homotopie des H-espaces, notamment pour leur rapport avec
les théories d’associativité. Au niveau de la géométrie, la première réalisation de l’asso-
ciaèdre comme polytope convexe est due à M. Haiman [Hai84] et C. Lee [Lee89]. Comme
nous l’avons expliqué, l’associaèdre a engendré un courant de recherche florissant dans
différentes directions, que l’on peut plus ou moins répartir entre « combinatoire », « géo-
métrie » et « algèbre ». Nous présentons d’abord quelques propriétés remarquables de
l’associaèdre dans chacun de ces mondes, en soulignant certaines interactions, avant
d’en venir à la construction des d-vecteurs, qui est au cœur de cette thèse.

1.2.1 Combinatoire

Comme nous l’avons déjà relevé dans la section 1.1.2, les arbres binaires et les trian-
gulations forment des familles de Catalan et décrivent le treillis de Tamari T (n+ 1). Les

FIGURE 1.6 – Deux 3-associaèdres de C. Hohlweg et C. Lange [HL07] (voir aussi la
figure 1.5 gauche et centre gauche). Les treillis cambriens correspondants sont obtenus
en les orientant du bas vers le haut. Celui de gauche est initialement dû à S. Shnider
et S. Sternberg [SS93, SS97] et J.-L. Loday [Lod04]. Figure de [LP13], avec permission.
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propriétés algébriques et combinatoires de ce dernier ont été très largement étudiées
et généralisées. L’une des raisons à cela est son lien fort avec l’ordre faible sur les per-
mutations. Rappelons que Sn+1 est le groupe symétrique des permutations de [n + 1].
L’ensemble des inversions d’une permutation σ ∈ Sn+1 est l’ensemble des paires (i, j)
d’entiers tels que i < j et σ(i) > σ(j). L’ordre faible est la relation d’ordre 4 sur les
permutations définie par

∀ σ, σ′ ∈ Sn+1, σ 4 σ′ ⇐⇒ inv(σ) ⊆ inv(σ′).

Cet ordre est un treillis aux multiples propriétés combinatoires. Par exemple ses chaînes
maximales encodent les factorisations minimales de la permutation [n + 1, . . . , 1] en
produit de transpositions simples. Dans [BW97, section 9] A. Björner et M. Wachs ont
observé que restreindre l’ordre faible aux permutations évitant le motif (132) en donnait
un sous-treillis, isomorphe au treillis de Tamari. N. Reading [Rea06] a ensuite généralisé
le treillis de Tamari en définissant les treillis cambriens, dont il a aussi montré qu’ils
sont des treillis quotients de l’ordre faible. Un treillis cambrien (de type A) est décrit
par une suite de n + 1 signes ε ∈ {+,−}n+1 (appelée signature) de la façon suivante :
à partir de ε, on construit un polygone cambrien Pε obtenu en plaçant deux sommets
étiquetés 0 et n + 2 sur l’axe horizontal puis en plaçant les autres sommets par ordre
croissant d’abscisse entre 0 et n + 2, au-dessus ou en-dessous de la droite passant
par 0 et n+ 2 selon le signe correspondant dans ε. Le treillis cambrien déterminé par ε
est alors l’ordre partiel dont le diagramme de Hasse est le graphe des flips de Pε, où
les arêtes sont orientées selon les flips augmentant la pente. En particulier le treillis
de Tamari T (n + 1) est le treillis cambrien correspondant à la signature (−)i∈[n+1]. La
figure 1.6 représente le treillis de Tamari et un autre treillis cambrien. Nous n’étudions
pas directement les treillis cambriens dans cette thèse, mais ils sont naturellement
visibles sur les objets qui nous intéressent.

1.2.2 Géométrie

Les polytopes que nous considérons sont décrits par des structures combinatoires,
dont certaines propriétés sont « lisibles géométriquement ». Par exemple, en orientant
le graphe du permutaèdre Perm(n) (plongé dans Rn+1 comme dans la section 1.1.3)
dans la direction donnée par le vecteur (n + 1, n, . . . , 1)− (1, 2, . . . , n + 1), on obtient le
diagramme de Hasse de l’ordre faible. Comme nous l’avons vu dans le théorème A, une
kyrielle de réalisations polytopales de l’associaèdre furent découvertes par à peu près
autant d’auteurs [Hai84, Lee89, GKZ08, BFS90, SS93, SS97, RSS03, Lod04, HL07,
CSZ15]. Parmi elles on distingue trois familles principales.

Les polytopes secondaires. Les polytopes secondaires de configurations de points ont
été introduits par I. Gelfand, M. Kapranov et A. Zelevinsky dans [GKZ08]. L’as-
sociaèdre apparaît dans ce cadre comme le polytope secondaire d’un ensemble
de points du plan en position convexe. Comme deux configurations différentes gé-
nèrent deux polytopes différents, cela permet d’obtenir une famille très nombreuse
de réalisations. Néanmoins les associaèdres ne sont certainement pas centraux
dans cette théorie, étant donné qu’ils en constituent l’exemple « le plus facile ».

Les associaèdres par signatures. S. Shnider et S. Sternberg ont construit dans [SS93,
SS97] une réalisation de l’associaèdre obtenue en oubliant certaines inégalités dé-
finissant le permutaèdre Perm(n). J.-L. Loday donna dans [Lod04] une interpré-
tation des coordonnées des sommets de cette réalisation basée sur des calculs
simples sur les arbres binaires. Entre autres propriétés, cet associaèdre, que nous
appelons associaèdre de Loday, peut être orienté dans la même direction linéaire
que le permutaèdre de sorte que l’orientation induite sur son graphe en fait le
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diagramme de Hasse du treillis de Tamari. Prouvant une conjecture de N. Rea-
ding [Rea06], C. Hohlweg et C. Lange [HL07] obtinrent par la suite approximati-
vement 2n réalisations différentes du n-associaèdre, dont l’associaèdre de Loday,
construites à partir du permutaèdre de façon similaire à ce dernier. La méthode de
C. Hohlweg et C. Lange utilise les triangulations des polygones cambriens (voir la
section 1.2.1). En effet leurs réalisations sont spécialement adaptées afin que les
diagrammes de Hasse des treillis cambriens (de type A) s’obtiennent en choisis-
sant une bonne orientation linéaire dans leurs espaces ambiants respectifs (voir
la figure 1.6). Enfin la description combinatoire des sommets de ces réalisations
donnée dans [HL07] fut ensuite réinterprétée par C. Lange et V. Pilaud [LP13] sur
les arbres duaux des triangulations des polygones cambriens.

Les d-associaèdres. La dernière famille de réalisations fut découverte dans le contexte
des algèbres amassées par F. Chapoton, S. Fomin et A. Zelevinsky [CFZ02]. Dans
cet article, une réalisation est donnée pour chaque associaèdre généralisé en
utilisant des degrés de compatibilité, qui sont aussi les vecteurs dénominateur
(voir [FZ03b, CP15]) dans l’algèbre amassée correspondante. F. Santos a ensuite
étendu cette méthode dans le cas du type A, dans un article publié avec C. Cebal-
los et G. Ziegler [CSZ15, Section 5], afin d’obtenir environ Cn = 1

n+1
(2n
n

)
réalisa-

tions différentes du n-associaèdre classique.

Le même article de C. Ceballos, F. Santos et G. Ziegler [CSZ15] fournit par ailleurs un
aperçu précis sur les méthodes précédemment décrites. Nous nous concentrerons sur
la dernière, qui est pour ainsi dire le fil rouge de la partie géométrique de cette thèse.
Elle s’appuie sur les algèbres amassées, que nous présentons maintenant.

1.2.3 Algèbre

Les permutations et les arbres apparaissent également dans des contextes algébriques,
en indexant notamment les bases d’algèbres de Hopf combinatoires [LR98, HNT05,
Cha00, CP17]. Ces algèbres n’étant que peu reliées à notre étude, nous passons directe-
ment aux algèbres amassées. Elles furent introduites par S. Fomin et A. Zelevinsky dans
une série d’articles communs [FZ03b, FZ02, FZ03a, FZ07] et un article avec A. Beren-
stein [BFZ05]. Dès lors, diverses applications leur ont été trouvées, notamment en théo-
rie des systèmes dynamiques discrets, en géométrie tropicale, en théorie de Teichmüller
et en géométrie de Poisson (voir [FZ04] pour un tour d’horizon).

Comme nous n’avons pas besoin de la définition précise (et lourde) des algèbres
amassées, nous nous contentons de donner quelques idées informelles suffisantes à la
compréhension de ce qui suit. En particulier nous ne considérons que des algèbres sur
le corps Q des nombres rationnels. Une algèbre amassée est une algèbre commutativeA
donnée par une présentation par générateurs et relations définie combinatoirement : les
générateurs de A sont appelés les variables d’amas. Elles sont regroupées en amas non
disjoints, tous de cardinal identique (le rang de A). À chaque amas on associe une ma-
trice d’échange2, avec laquelle il forme une graine. Les matrices d’échange encodent
un processus involutif appelé mutation, qui relie les amas de la façon suivante : étant
donné une graine s = (X,B) constituée d’un amas X = (x1, . . . , xn) et d’une matrice
d’échange B, et un entier i ∈ [n], la mutation de s en xi transforme la graine s en une
nouvelle graine s′ = (X ′,B′) où

• l’amas X ′ = (x′1, . . . , x′n) satisfait x′j = xj pour tout j 6= i, et les variables xi et x′i,
qui sont échangées au cours de la mutation, sont liées par une relation algébrique
de la forme xix′i = M+ + M− dans A, où M+ et M− sont des monômes premiers
entre eux en les variables xj (pour j 6= i) déterminés par B ;

• la matrice B′ est une nouvelle matrice d’échange aussi déterminée par B.

2Une matrice d’entiers avec une propriété un peu moins forte que l’antisymétrie.
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{x1, x2}

{x1, x3}

{x2, x4}
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x2x3=1+x1
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x1x5=1+x3

x3
x4
=
1+

x5Amas

Mutation

Graine

Variable d’amas

Relation d’échange

FIGURE 1.7 – Le graphe de mutation d’une algèbre amassée de type A et de rang 2, et
l’illustration du vocabulaire des algèbres amassées. Ici les données combinatoires qui
encodent les mutations sont les triangulations d’un pentagone. Ce graphe de mutation
est isomorphe au graphe des flips F(2).

La raison d’être des matrices d’échange est de coder le processus de mutation. Elles
sont donc remplaçables par n’importe quelle autre structure combinatoire remplissant
le même rôle. Certaines mutations se décrivent par exemple en termes de carquois (mul-
tigraphes dirigés, voir par exemple [Kel13, section 3]), ou par des objets plus spécifiques
(triangulations de surfaces épointées, triangulations centralement symétriques ...).

Les relations xix
′
i = M+ + M− sont les relations d’échange et définissent la pré-

sentation de A. Le graphe d’échange (ou graphe de mutation) de A est le graphe dont
les sommets sont les graines de A et dans lequel deux graines sont adjacentes si une
mutation transforme l’une en l’autre. Il est important de préciser que les graines sont
considérées à permutation et ré-étiquetage de leurs variables près, de sorte qu’il faut
penser aux amas comme à des ensembles non ordonnés. Si les éléments d’un amas sont
généralement donnés avec un ordre, c’est parce qu’ils indexent les lignes et colonnes de
la matrice d’échange associée. La figure 1.7 illustre les définitions précédentes.

Observons que la donnée d’une seule graine suffit à déterminer toute son algèbre
amassée. Les algèbres amassées sont de fait généralement introduites par une pre-
mière description du processus de mutation, après quoi l’on considère la sous-algèbre
du corps Q(x◦1, . . . , x◦n) (des fonctions rationnelles sur Q en n variables) engendrée par
l’ensemble des variables d’amas contenues dans toutes les graines obtenues à par-
tir d’une graine initiale s◦ = (X◦,B◦) (ayant pour amas initial X◦ = (x◦1, . . . , x◦n)) par
des mutations successives. Le développement des variables d’amas de la figure 1.7 en
fractions rationnelles d’un amas initial fixé sont donnés dans la figure 1.8, qui illustre
également la première propriété cruciale des algèbres amassées.

Théorème B (Phénomène de Laurent, [FZ02, théorème 3.1]). Pour tout amas initialX◦ =
(x◦1, . . . , x◦n) d’une algèbre amassée A et toute variable d’amas x de A, le développement
de x comme fraction rationnelle en les variables (x◦1, . . . , x◦n) est un polynôme de Laurent3.

Parmi les algèbres amassées, on s’intéresse en particulier à celles dont le graphe de
mutation est fini. Ce sont les algèbres amassées de type fini, décrite de façon équiva-
lente comme les algèbres amassées avec un nombre fini de variables d’amas. Ce résultat
est un sous-produit de la classification exacte des algèbres amassées de type fini.

3C’est-à-dire une fraction rationnelle dont le dénominateur est un monôme en (x◦1, . . . , x◦n).
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FIGURE 1.8 – Le développement des variables d’amas de la figure 1.7 en les variables de
l’amas initial (x1, x2). Toutes ces fractions rationnelles sont des polynômes de Laurent
en (x1, x2) (voir le théorème B).

Théorème C (Classification des types finis, [FZ03a, théorèmes 1.7 et 1.8]). Les algèbres
amassées de type fini sont classifiées par les systèmes de racines cristallographiques4.
En particulier le graphe de mutation des algèbres amassées de type An est isomorphe au
graphe des flips F(n).

Les variables d’amas d’une algèbre amassée A sont combinatoirement liées par le
graphe de mutation deA, qui est le graphe dual du complexe d’amas deA, défini comme
le complexe simplicial dont les facettes sont les amas de A.

Exemple. Le complexe amassé de type A et de rang n est le complexe des dissections
d’un polygone convexe P à n + 3 sommets, c’est-à-dire le complexe dont les faces sont
les dissections (ensembles de diagonales ne se croisant pas deux à deux) de P. Le graphe
dual de ce complexe est le graphe F(n). Il se trouve que tous les complexes amassés
de type fini non exceptionnels ont une interprétation semblable à celle en type A, à
savoir en termes de configurations géométriques d’arcs ne se croisant pas dans le plan
(voir [FZ03a, CP15]). Ainsi qu’expliqué dans la section 6.3.3, les amas de type B sont
par exemple encodés par les triangulations centralement symétriques d’un polygone
centralement symétrique.

L’une des propriétés pour lesquelles nous nous intéressons aux algèbres amassées
de type fini est que leur structure est entièrement décrite par la combinatoire de leurs
complexes d’amas. Les algèbres amassées de type fini sont donc en quelque sorte des
« réalisations algébriques » de leurs complexes d’amas.

Théorème D ([FZ03a, théorème 1.12]). Les algèbres amassées de type fini (sans coeffi-
cient) sont caractérisées par leurs complexes d’amas. Autrement dit deux algèbres amas-
sées de type fini (sans coefficient) sont isomorphes si et seulement si leurs complexes
d’amas le sont.

4Dans toute le manuscrit, nous n’utilisons jamais la théorie de Coxeter mais nous mentionnons réguliè-
rement les différents « type » des systèmes de racines. Notre travail traite essentiellement le type A mais nous
faisons parfois des remarques ou comparaisons avec les autres types. Cependant tous les résultats sont for-
mulés afin qu’aucun pré-requis sur ce sujet ne soit nécessaire à leur compréhension. Nous renvoyons donc
le lecteur intéressé aux manuels classiques [Hum90, BB05].
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Enfin, en plus de ces propriétés algébriques, les complexes d’amas ont le bon goût
d’avoir des réalisations comme polytopes convexes.

Théorème E (Associaèdres généralisés, [CFZ02, théorème 1.4],[HLT11, Ste13],[PS15a,
corollaire 6.10]). Tout complexe d’amas de type fini admet une réalisation polytopale,
appelée l’associaèdre généralisé du même type. Dans ce contexte, l’associaèdre classique
est l’associaèdre généralisé de type A.

Admettre des réalisations comme polytope est en fait une propriété plus forte, pour
un complexe simplicial, que d’admettre des réalisations par éventail. Ainsi le théo-
rème E implique que les complexes amassés de type fini admettent aussi des réali-
sations par éventails. Néanmoins les réalisations par polytopes sont généralement ob-
tenues en deux étapes, à savoir d’abord la construction d’une réalisation par éventail,
que l’on montre seulement ensuite être l’éventail normal d’un polytope. C’est le cas
pour la réalisation des associaèdres généralisés par F. Chapoton, S. Fomin et A. Zele-
vinsky [CFZ02], qui se fonde sur la construction d’un éventail proposée par S. Fomin et
A. Zelevinsky [FZ03b]. La preuve de C. Hohlweg, C. Lange et H. Thomas [HLT11] est une
extension de la construction des associaèdres par signatures, présentée dans la sec-
tion 1.2.2, aux complexes d’amas de type fini. Elle repose sur les mêmes motivations, à
savoir les articles de N. Reading et D. Speyer [Rea06, RS09], dans lequel des réalisations
des complexes amassés de type fini par les éventails cambriens sont déjà construites.
Les polytopes construits dans [HLT11] ont pour éventails normaux ces éventails cam-
briens. Les réalisations de S. Stella [Ste13] et de V. Pilaud et C. Stump [PS15a] sont
essentiellement les mêmes que celles de [HLT11] mais elles apportent de nouvelles pers-
pectives sur les complexes d’amas. En particulier S. Stella [Ste13] fait le lien entre les
éventails cambriens et les éventails d’amas et V. Pilaud et C. Stump [PS15a] généra-
lisent les polytopes de briques introduits par V. Pilaud et F. Santos [PS12].

Les théorèmes D et E décrivent ce que nous appelons un « triptyque combinatoire-
géométrie-algèbre » en ce sens qu’un même objet peut être indifféremment pensé dans
ces trois mondes. En particulier quand nous travaillons avec des généralisations de l’as-
sociaèdre, l’une de nos principales quêtes consiste à chercher d’autres triptyques sem-
blables à celui-ci, avec autant de propriétés analogues à celles des complexes d’amas,
des associaèdres généralisés et des algèbres amassées que possible.

1.2.4 La construction des d-vecteurs

Nous venons de souligner que la plupart des réalisations polytopales de complexes
simpliciaux commencent par la construction d’un éventail approprié. Cela dit trouver de
nouvelles réalisations par éventail, même pour des complexes notoirement polytopaux,
n’est pas seulement appréciable en tant que première étape, mais aussi parce que deux
polytopes sont en général considérés comme « essentiellement différents » quand leurs
éventails normaux ne sont pas linéairement isomorphes (voir la section 3.2). Pour ce qui
est des complexes d’amas de type fini, il existe deux constructions majeures issues de
la théorie des algèbres amassées. L’éventail réalisé dans [FZ03b] (dont la preuve qu’il
est polytopal est donnée dans [CFZ02]) se situe à l’intersection des deux familles de
réalisations résultant de ces constructions. Nous avons en fait déjà donné une idée de
ces constructions dans la section 1.2.2. D’une part les associaèdres par signature sont
en effet expliqués en termes de g-vecteurs par S. Stella [Ste13]. Nous présentons ces
vecteurs en type A dans le chapitre 9. D’autre part les réalisations de F. Santos [CSZ15,
section 5] étendent la construction par les d-vecteurs, que nous présentons maintenant.

Étant donné une algèbre amassée A et un amas initial X◦ = (x◦1, . . . , x◦n) de A,
le phénomène de Laurent (théorème B) permet d’associer à chaque variable d’amas x
son vecteur dénominateur par rapport à X◦

d(X◦, x) := [(x◦1 ‖x), . . . , (x◦n ‖x)],
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FIGURE 1.9 – Les d-vecteurs des variables d’amas du graphe de mutation de la figure 1.7
par rapport à l’amas initial (x1, x2) = (x◦1, x◦2). La première (resp. deuxième) coordonnée
de chaque d-vecteur correspond au degré de compatibilité avec x◦1 (resp. x◦2). Les d-
vecteurs sont groupés par amas. Les valeurs de leurs entrées sont obtenues à partir
des développements explicites de la figure 1.8 ou bien directement des croisements
entre les diagonales correspondantes dans les triangulations associées aux amas.

aussi appelé son d-vecteur, où (x◦i ‖x) est l’exposant de la variable d’amas initiale x◦i
dans le développement de x comme polynôme de Laurent en les variables de X◦ (cette
notation n’est pas ambiguë par la proposition G 1). Il se trouve que cette quantité, ini-
tialement définie comme un degré de compatibilité de façon algébrique par S. Fomin
et A. Zelevinsky [FZ03b], a une interprétation combinatoire en termes de croisements
dans les modèles géométriques pour les complexes d’amas des types finis non excep-
tionnels [FZ03b, CP15]. Dans le cas de l’associaèdre classique, les variables d’amas
sont représentées par les diagonales d’un polygone convexe P et le degré de compatibi-
lité peut être directement lu dans ce cadre : étant donné deux diagonales δ et δ′ de P,
on a (δ ‖ δ′) = (δ′ ‖ δ) = −1 si δ = δ′, (δ ‖ δ′) = (δ′ ‖ δ) = 0 si δ et δ′ ne se croisent pas,
et (δ ‖ δ′) = (δ′ ‖ δ) = 1 sinon. Ainsi à partir de toute triangulation initiale T◦ de P, on
peut associer à chaque diagonale de P un vecteur à coordonnées dans {−1, 0, 1}, dont
les entrées sont indicées par les diagonales de T◦.

Théorème F ([CSZ15, théorème 5.1]). Pour toute triangulation initiale T◦ de P , les vec-
teurs dans {d(T◦, δ) | δ diagonale de P} sont les rayons d’un éventail simplicial complet
réalisant le complexe des dissections de P . Dans la terminologie des algèbres amassées,
cela signifie qu’en type A, les vecteurs dénominateur associés à toute graine initiale sup-
portent une réalisation du complexe d’amas par un éventail simplicial complet.

Nous reprenons l’exemple des figures 1.7 et 1.8 pour illustrer le théorème F. Dans la
figure 1.9, nous donnons les vecteurs dénominateur des variables d’amas par rapport
à l’amas initial choisi dans la figure 1.8, tandis que la figure 1.10 illustre l’éventail
obtenu à partir de ces vecteurs. En sus du théorème F, il a été prouvé que les d-vecteurs
supportent un éventail simplicial complet réalisant le complexe d’amas en tous types
pour l’amas initial biparti par S. Fomin et A. Zelevinsky [FZ03a], en tous types pour
tout amas initial acyclique par S. Stella [Ste13], et pour tout amas initial en types A,B
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(−1, 0)

(0,−1)

(1, 0)
(1, 1)

(1, 0)

{x1, x3}

{x3, x5}

{x4, x5}

{x2, x4}{x1, x2}

FIGURE 1.10 – L’éventail réalisant l’associaèdre de type A2 obtenu à partir des d-
vecteurs de la figure 1.9. On associe à chaque amas le cône engendré par les d-vecteurs
de ses variables d’amas. Chaque rayon r de cet éventail est l’intersection de deux cônes
correspondant à deux amas qui eux-mêmes s’intersectent en une variable, dont le d-
vecteur engendre r.

et C dans le chapitre 6 de cette thèse. Nous nous attendons à ce que cette propriété
soit vraie dans toute algèbre amassée de type fini.

Comme nous l’avons vu, la construction des d-vecteurs repose sur une notion de
degré de compatibilité ( ‖ ), qui satisfait des propriétés générales directement héritées
de la structure des algèbres amassées.

Proposition G (corollaire immédiat de [FZ03b, section 3.5]). Dans toute algèbre amas-
sée de type A,B,C ou D, le degré de compatibilité satisfait les propriétés suivantes.

1. La fonction ( ‖ ) est à valeurs entières et est définie sur les couples de variables
d’amas de A, autrement dit l’entrée (x◦i ‖x) du d-vecteur d’une variable d’amas x
par rapport à un amas initial X◦ = (x◦1, . . . , x◦n) ne dépend que de x◦i , et non de
tout l’amas X◦. De façon équivalente, l’exposant de x◦i dans le dénominateur de x
est toujours le même quand x est développée en les variables d’un amas initial
contenant x◦i .

2. Pour toute variable d’amas x de A, on a (x ‖x) = −1 et (x ‖x′) ≥ 0 pour toute
variable d’amas x′ de A différente de x.

3. Deux variables d’amas distinctes x et x′ de A sont compatibles (appartiennent à un
même amas) si et seulement si (x ‖x′) = (x′ ‖x) = 0.

4. Deux variables d’amas distinctes x et x′ de A sont échangeables (sont échangées
par une mutation) si et seulement si (x ‖x′) = (x′ ‖x) = 1.

Remarque. Notre description du degré de compatibilité sur les diagonales d’un poly-
gone et la proposition G impliquent qu’en type A, deux variables d’amas sont toujours
soit compatibles, soit échangeables. Ce point est clair si l’on part de l’interprétation
combinatoire des variables d’amas en termes de diagonales. En effet si deux diago-
nales δ, δ′ d’un polygone P ne se croisent pas, alors elles appartiennent à une certaine
triangulation de P, et donc les variables d’amas correspondantes appartiennent à un
amas commun. Si au contraire δ et δ′ se croisent, alors leurs sommets définissent un
quadrilatère Q dans P, dont les quatre côtés (soit des diagonales internes, soit des côtés
de P ) ne croisent ni δ, ni δ′. Ainsi une triangulation contenant ce quadrilatère contient
nécessairement soit δ, soit δ′, et flipper l’une introduit l’autre. Cela implique que des
diagonales incompatibles sont échangeables.
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Même si elle s’inscrit dans un contexte algébrique, la méthode des d-vecteurs a une
interprétation combinatoire claire. En particulier lorsque nous traitons de générali-
sations combinatoires de l’associaèdre, nous essayons systématiquement de nous en
inspirer pour construire des réalisations par éventails. Nous espérons bien sûr en tirer
un moyen de passer de la combinatoire à la géométrie, mais aussi à de potentielles
structures algébriques avec des propriétés analogues à celles des algèbres amassées.
En d’autres termes cette approche par les d-vecteurs, même sans qu’il ne s’agisse plus
de vecteurs dénominateur, est une stratégie générale dans notre quête de nouveaux
triptyques combinatoire-géométrie-algèbre.

1.3 Contribution de cette thèse

En tant que cas particulier de familles plus larges, l’associaèdre admet naturellement
de nombreuses généralisations, souvent définies en premier lieu combinatoirement.

Cette thèse propose des avancées dans la compréhension combinatoire et géométrique
de trois familles de sphères simpliciales. En particulier nous appliquons avec succès
la stratégie des d-vecteurs décrite précédemment, avec l’espoir que ses inspirations de
nature algébrique puissent également aboutir à des progrès à ce niveau. Nous obtenons
aussi d’autres propriétés combinatoires spécifiques à chaque famille, qui vont au-delà
du strict nécessaire à l’implémentation de la méthode des d-vecteurs. Enfin nous don-
nons des réalisations par éventail supplémentaires, basées sur d’autres techniques.

1.3.1 Matériel de la thèse

Cette thèse s’appuie sur trois articles publiés ou acceptés pour publication :

[Man17a] Fan realizations for some 2-associahedra, Thibault Manneville, à paraître
dans Experiment. Math., 2017.

[MP15] Graph properties of graph associahedra, Thibault Manneville and Vincent Pi-
laud, Sém Lothar. Combin., 73 :B73d, 2015.

[MP17a] Compatibility fans for graphical nested complexes, Thibault Manneville and
Vincent Pilaud, J. Combin. Theory Ser. A, 150 : 36–107, 2017.

et deux prépublications :

[Man17b] The serpent nest conjecture on accordion complexes, Thibault Manneville,
prépublication arXiv:1704.01534, 2017.

[MP17b] Geometric realizations of accordion complexes, Thibault Manneville and Vincent
Pilaud, prépublication arXiv:1703.09953, 2017.

1.3.2 Plan et aperçu des résultats

Dans le chapitre 3, nous donnons les définitions et pré-requis sur les complexes simpli-
ciaux et leurs liens avec la géométrie polyédrale nécessaires tout au long du manuscrit.
Le reste de la thèse est séparé en deux parties indépendantes, que nous suivons pour
présenter nos contributions principales. La partie II concerne une famille de complexes
simpliciaux indexés par les graphes simples, et nous présentons dans la partie III des
résultats sur deux familles que nous rassemblons pour des raisons expliquées alors.
Les deux parties s’organisent selon le même schéma global :
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1. un chapitre introductif (le chapitre 4, puis le chapitre 7 et les sections 8.1 et 8.2)
dans lequel nous donnons des définitions et des éléments de contexte sur les
complexes dont il est question ;

2. un chapitre traitant des aspects combinatoires spécifiques à ces complexes (des
propriétés graphiques dans le chapitre 5 et des résultats énumératifs dans le cha-
pitre 8) ;

3. un ou deux chapitres dédiés à des réalisations géométriques, par des éventails
ou des polytopes. Deux d’entre elles étendent la construction des d-vecteurs (le
chapitre 6 et la section 9.3), deux autres s’appuient sur des idées différentes (la
section 9.2 et le chapitre 10).

Un appendice au chapitre 5 complète enfin les deux parties. Nous ne donnons ici que
les idées nécessaires pour résumer nos résultats et gardons les présentations détaillées
de chaque famille de complexes pour les chapitres correspondants.

1.3.2.1 Associaèdres de graphes et nestoèdres

Les associaèdres de graphes sont des complexes simpliciaux indexés par les graphes
simples introduits par M. Carr et S. Devadoss [CD06]. Étant donné un graphe G, le com-
plexe emboîté N (G) de G est le complexe simplicial dont les sommets sont les tubes
(sous-graphes connexes) de G et dont les faces sont les tubages de G (les ensembles de
tubes de G qui, deux à deux, soit sont emboîtés, soit n’ont pas de sommets adjacents
dans G). M. Carr et S. Devadoss ont donné une réalisation polytopale pour chacun
d’entre eux, retrouvée par la suite de différentes façons par plusieurs auteurs. L’asso-
ciaèdre est un cas particulier de cette famille (obtenu quand G est un chemin). Nous
présentons ces complexes en détail au chapitre 4.

Propriétés combinatoires. Dans le chapitre 5, nous étudions des propriétés gra-
phiques des graphes duaux F(G) des complexes emboîtés N (G), avec des extensions
aux complexes emboîtés plus généraux définis par A. Postnikov [Pos09]. Nos premiers
résultats concernent des propriétés géodésiques de ces graphes, qui généralisent des
faits déjà connus sur le graphe des flips F(n) défini dans la section 1.1.2. Notons δ(F(G))
le diamètre du graphe F(G). Notre motivation initiale est la preuve récente de la valeur
exacte du diamètre des associaèdres par L. Pournin [Pou14].

Théorème H ([STT88, Pou14]). Le diamètre du graphe des flipsF(n) est 2n−4 pour n ≥ 9.

Notre premier résultat décrit un phénomène de structure relativement clair du point
de vue géométrique, étant donné la construction proposée par M. Carr et S. Devadoss.

Théorème I (théorème 5.4, généralisé par le théorème 5.9). Le diamètre δ(F(.)) est une
fonction croissante, c’est-à-dire si G ⊆ G′, alors δ(F(G)) ≤ δ(F(G′)).

Pour obtenir des bornes sur les diamètres des associaèdres de graphes, nous uti-
lisons la non-leaving-face property NLFP. Un complexe simplicial a cette propriété si,
dans tout chemin dual entre deux de ses facettes, les sommets communs à ces facettes
ne disparaissent à aucun moment. L’associaèdre est un exemple de complexe satisfai-
sant cette propriété.

Théorème J ([STT88]). Dans un plus court chemin de flips entre deux triangulations,
aucune diagonale commune à ces triangulations n’est flippée.

Les associaèdres de graphe ne satisfont pas tous NLFP. Nous donnons un contre-
exemple dans la section 5.3.3. Toutefois nous obtenons le résultat plus faible suivant,
où l’on considère tout tubage de G comme l’ordre d’inclusion sur ses tubes.
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Proposition K (proposition 5.14 (i)). Soit T,T′ deux tubages maximaux sur G et T =
T0,T1, . . . ,Tk = T′ un plus court chemin dual dans N (G) entre T et T′. Tout tubage Ti
(i ∈ [k]) contient le plus grand idéal supérieur commun à T et T′.

À partir des théorèmes H et I, de la proposition K et d’arguments plus géométriques,
nous obtenons les bornes, asymptotiquement exactes, suivantes sur le diamètre du
graphe dual de tout associaèdre de graphe.

Théorème L (théorème 5.16). Pour tout graphe G connexe avec n+1 sommets et e arêtes,

max(2n− 18, e) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

Une part importante de nos preuves utilisent des « réductions combinatoires » qui
ne sont pas toujours nécessaires mais simplifient la présentation. De plus le fait de
bien comprendre ces réductions indique aussi que nous parvenons à isoler la com-
plexité « réelle » des objets que nous manipulons. En particulier nous nous intéressons
souvent à la façon dont les complexes simpliciaux peuvent se décomposer en jointures
de complexes plus petits. Pour les associaèdres de graphes, et en fait pour n’importe
quel complexe emboîté général, nous donnons une description complète des décompo-
sitions de ce type, qui implique en particulier que les associaèdres de graphes ont un
comportement « rigide » à cet égard.

Théorème M (corollaire immédiat de la proposition 5.23). Pour tout graphe G, le com-
plexe emboîté N (G) se décompose en une jointure de complexes simpliciaux plus pe-
tits C1 ∗ · · · ∗ Ck si et seulement si G a k composantes connexes G1, . . . ,Gk telles que Ci
est isomorphe à N (Gi) pour tout i ∈ [k].

Enfin nous montrons dans l’appendice A qu’essentiellement tous les associaèdres de
graphes sont hamiltoniens. Ce résultat étend la même propriété déjà connue pour des
sous-familles spécifiques des associaèdres de graphes, dont les associaèdres classiques.

Théorème N (théorèmes 5.1 et A.1). Pour tout graphe G ayant au moins deux arêtes, le
graphe F(G) est hamiltonien.

Réalisations par éventails utilisant des d-vecteurs. Au niveau géométrique, nous
décrivons au chapitre 6 l’extension suivante de la construction par les d-vecteurs aux
associaèdres de graphes.

Étant donné deux tubes t, t′ d’un graphe simple G, on définit le degré de compatibi-
lité (t ‖ t′) de t par rapport à t′ comme étant (t ‖ t′) = −1 si t = t′, (t ‖ t′) = 0 si t 6= t′
sont compatibles (emboîtés ou d’union non connexe), et (t ‖ t′) = |{voisins de t dans t′ r t}|
sinon. Comme le degré de compatibilité dans les algèbres amassées (voir la proposi-
tion G), il satisfait (t ‖ t′) ≥ 0 pour tous tubes t, t′ distincts de G, avec égalité si et
seulement si t et t′ sont compatibles, et (t ‖ t′) = 1 = (t′ ‖ t) si et seulement si t et t′
sont échangeables. Comme dans la section 1.2.4, nous définissons le vecteur de com-
patibilité d(T◦, t) := [(t◦1 ‖ t), . . . , (t◦n ‖ t)] d’un tube t par rapport à un tubage maximal
initial T◦ := {t◦1, . . . , t◦n}.

Remarquons que notre degré est asymétrique, ce qui induit une notion naturelle de
dualité. On définit donc le vecteur de compatibilité dual d∗(t,T◦) := [(t ‖ t◦1), . . . , (t ‖ t◦n)]
de t par rapport T◦. Pour distinguer clairement avec les vecteurs de compatibilité duaux,
nous appelons souvent d(T◦, t) le vecteur de compatibilité primal. Bien qu’il n’y ait
plus de dénominateur dans ce contexte, nous gardons la lettre d pour degré et pour
coller à la notation des algèbres amassées. En effet nos degrés de compatibilité pour les
chemins et cycles coïncident avec ceux définis dans [FZ03b] pour les types A,B, et C.
Les degrés de compatibilité entre variables d’amas de type A correspondent aux degrés
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de compatibilité (primaux et duaux) sur les tubes des chemins, tandis que les degrés
de compatibilité entre variables d’amas de type C (resp. B) correspondent aux degrés
de compatibilité primaux (resp. duaux) entre les tubes des cycles.

Notre résultat principal est la réalisation par éventail de compatibilité suivante, ana-
logue à celle de F. Santos dans [CSZ15, section 5].

Théorème O (théorèmes 6.10 et 6.14, étendus par le théorème 6.53). Pour tout graphe G,
les vecteurs de compatibilité primaux (resp. duaux) des tubes de G par rapport à tout tu-
bage maximal initial T◦ sur G supportent un éventail simplicial completD(G,T◦) réalisant
le complexe emboîté N (G) de G.

Nous étudions également le nombre d’éventails de compatibilité distincts que nous
obtenons. Suivant [CSZ15], nous considérons comme équivalents deux éventails de
compatibilité D(G,T◦) et D(G′,T′◦) si un isomorphisme linéaire envoie l’un sur l’autre
(voir la section 3.2.2). Un tel isomorphisme linéaire induit un isomorphisme entre les
complexes emboîtés de G et G′. En plus de ceux induits par les isomorphismes de
graphes entre G et G′, nous montrons dans la section 6.4.2 un isomorphisme de com-
plexes emboîtés non trivial sur toute araignée (ensemble de chemins tous reliés par
une extrémité à une même clique). Nous montrons que cet isomorphisme est essentiel-
lement le seul isomorphisme non trivial entre des complexes emboîtés de graphes.

Théorème P (théorème 6.37). Tous les isomorphismes de complexes emboîtés sont in-
duits par des isomorphismes de graphes G→G′, sauf si l’une des composantes connexes
de G est une araignée.

Corollaire Q (corollaire 6.40 étendu par le corollaire 6.41). Si aucune composante
connexe de G n’est un chemin, alors le nombre de classes d’isomorphisme linéaires des
éventails de compatibilité de G est le nombre d’orbites des tubages maximaux de G sous
l’action du groupe d’automorphisme de G.

L’étape suivante serait de montrer que tous ces éventails simpliciaux sont les éven-
tails normaux de polytopes. Cette question reste ouverte, sauf pour quelques graphes
particuliers : en plus des graphes à au plus 4 sommets, nous résolvons le cas des
chemins et des cycles, avec une preuve similaire à celle proposée dans [CSZ15].

Théorème R (théorème 6.46). Tous les éventails de compatibilité primaux et duaux des
chemins et des cycles sont polytopaux. En particulier, la construction par les d-vecteurs
donne bien une réalisation polytopale du complexe amassé pour toute graine initiale en
types A,B et C.

1.3.2.2 Complexes de sous-mots et complexes d’accordéons

Comme nous l’expliquons au chapitre 7, nous nous intéressons avant tout aux com-
plexes de sous-mots [KM04]. Notre étude des complexes d’accordéons est motivée par
des liens intrigants que nous développons dans la section 8.4. Il se trouve malgré cela
que nous obtenons finalement plus de résultats sur les complexes d’accordéons (cha-
pitres 8 et 9) que sur les complexes de sous-mots (chapitre 10).

Étant donné une dissection D d’un polygone convexe P, on définit le complexe d’ac-
cordéons AC(D) de D comme le complexe simplicial dont les faces sont les dissections
de P contenant uniquement certaines diagonales autorisées par D, appelées les dia-
gonales D-accordéon. De façon informelle, ces diagonales sont celles qui croisent un
ensemble connexe de diagonales (où l’on inclut les côtés de P ) de D, lorsque celle-ci
est tournée d’un très petit angle puis superposée sur P. Nous présentons en détail les
complexes d’accordéons dans les sections 8.1 et 8.2.
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Propriétés combinatoires des complexes d’accordéons. Dans son article [Cha16],
F. Chapoton propose trois problèmes, qui incluent la réalisation des complexes d’accor-
déons par des polytopes (que nous abordons au paragraphe suivant) et des questions
énumératives. La principale d’entre elles concerne l’existence d’une bijection entre les
facettes du complexe d’accordéons AC(Q) d’une quadrangulation Q et des objets appe-
lés nids de serpents de Q. Cette question se généralise naturellement à n’importe quelle
dissection, en utilisant la définition de nids de serpents propre comme des ensembles
de chemins duaux dans l’arbre dual de D qui ne croisent aucune cellule de D par des
diagonales non incidentes et de sorte que, deux à deux, ils ne terminent pas dans une
même cellule en y entrant par le même côté. Les nids de serpents sont alors définis
comme les classes d’équivalence des nids de serpents propres qui induisent le même
schéma local au voisinage de chaque diagonale de D. Nous exhibons une bijection, ba-
sée sur des décompositions « à la Catalan » des dissections D-accordéon maximales,
répondant ainsi par l’affirmative à la question de F. Chapoton.

Théorème S (théorème 8.15). Pour toute dissection D, il y a autant de facettes dans le
complexe d’accordéons AC(D) que de nids de serpents de D.

Pour prouver le théorème S, nous décrivons les coques dans les complexes d’ac-
cordéons et obtenons par là même une description des décompositions en jointures
analogue au théorème M.

Proposition T (proposition 8.6). Étant donné une dissection D, le complexe d’accor-
déons AC(D) se décompose en jointure de complexes simpliciaux plus petits si et seule-
ment si D contient un pont (cellule avec au moins 2 côtés de P non consécutifs). Les termes
de la décomposition de AC(D) sont alors eux-mêmes des complexes d’accordéons.

F. Chapoton définit aussi le F -triangle d’une quadrangulation Q dans [Cha16], dont
la définition s’étend aussi à des dissections arbitraires. Ce triangle de nombres est un
raffinement du f -vecteur du complexe d’accordéons AC(D). À savoir le terme indicé
par deux entiers k et r dans le F -triangle d’une dissection D est le nombre de dissec-
tions D-accordéon avec k diagonales parmi lesquelles exactement r appartiennent à D.
F. Chapoton conjecture que l’opération de twist sur les dissections, qui consiste à appli-
quer une symétrie axiale à l’une des parties obtenues en coupant une dissection le long
d’une de ses diagonales avant de la recoller à l’autre partie, préserve cette statistique.
Nous démontrons cette conjecture.

Théorème U (théorème 8.19). Si une dissection D′ est obtenue à partir d’une dissection D
par une opération de twist, alors les F -triangles de D et de D′ sont égaux.

Réalisations des complexes d’accordéons par des éventails et des polytopes. Dans
le chapitre 9, nous donnons des réalisations géométriques des complexes d’accor-
déons AC(D) en adaptant les méthodes classiques des algèbres amassées, dont la
construction par les d-vecteurs. En reprenant la même interprétation du degré de com-
patibilité entre les diagonales en type A, nous produisons des réalisations par éven-
tails, qui étendent la construction de l’associaèdre par les d-vecteurs (quand D est une
triangulation). Pour cela nous définissons le degré de compatibilité entre deux diago-
nales D-accordéon δ et δ′ comme la quantité (δ ‖ δ′) = −1 si δ = δ′, (δ ‖ δ′) = 0 si δ
et δ′ ne se croisent pas et (δ ‖ δ′) = 1 sinon. Avec ce degré on définit une fois de plus
des d-vecteurs, pour lesquels nous obtenons le résultat suivant.

Théorème V (théorème 9.33). À part si D contient une cellule intérieure paire, les d-
vecteurs des diagonales D-accordéon par rapport à la facette particulière D du complexe
d’accordéons AC(D) supportent un éventail simplicial complet Fd(D) réalisant AC(D).
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En plus de ce résultat, nous donnons un contre-exemple pour toute dissection de ré-
férence D contenant une cellule intérieure paire. Le théorème V ne fournit pas une réa-
lisation pour chaque facette du complexe AC(D), mais nous suspectons cette propriété
pour les dissections dont il est question. Nous adaptons également la construction des
associaèdres généralisés par les g-vecteurs au contexte des complexes d’accordéons, ce
qui nous permet de trouver des réalisations comme éventails de tous les complexes d’ac-
cordéons, sans restriction. Une fois de plus, nous n’obtenons pas une réalisation pour
chaque facette du complexe mais nous montrons que notre second éventail est polyto-
pal, répondant ainsi positivement à la question géométrique de F. Chapoton [Cha16].

Théorème W (théorème 9.19). Pour toute dissection D, il existe un polytope simple réa-
lisant le complexe d’accordéons AC(D). On appelle ce polytope l’accordéoèdre de D et on
le note Acco(D).

Les polytopes du théorème W sont obtenus en oubliant les inégalités définissant
un certain zonotope défini à partir de vecteurs analogues aux c-vecteurs des algèbres
amassées. Après nos résultats géométriques, nous donnons une interprétation combi-
natoire de ces c-vecteurs. En utilisant le fait que les complexes d’accordéons sont des
sous-complexes des associaèdres, nous utilisons la cohérence des signes de g-vecteurs
pour obtenir une construction purement géométrique des accordéoèdres.

Théorème X (théorème 9.40). Si une dissection D de P est contenue dans une autre
dissection D′ de P , alors on peut obtenir un polytope réalisant le complexe d’accor-
déons AC(D) en projetant l’accordéoèdre Acco(D′) sur un sous-espace de coordonnées.
En particulier tout complexe d’accordéons peut être réalisé en projetant un associaèdre
classique obtenu par la construction des g-vecteurs.

Notre construction par les g-vecteurs garde une mémoire des symétries de la dis-
section de référence D, nous permettant de décrire des objets de type B/C. Même si D
peut avoir de nombreuses symétries, on ne peut plonger que les types B/C, ce qui est
courant sur ce genre de structures.

Théorème Y (proposition 9.28). Pour toute dissection centralement symétrique D, il
existe un polytope simple réalisant le complexe des dissections D-accordéon centralement
symétriques.

Réalisations par éventails de certains complexes de sous-mots. Comme nous n’avons
pas besoin de la définition des complexes de sous-mots pour décrire notre dernier ré-
sultat, nous renvoyons le lecteur au chapitre 7. L’important ici est que l’on conjecture
depuis une dizaine d’années que ces complexes ont des réalisations polytopales, et que
très peu de progrès en ce sens ont été faits depuis leur apparition. Dans le chapitre 10,
nous décrivons des réalisations par éventails de certains complexes de sous-mots et
donnons des candidats pour la famille des 2-associaèdres. Cette famille se décrit de la
façon suivante. Étant donné des entiers n et k, le k-associaèdre simplicial ∆k,n est le
complexe simplicial dont les faces sont les k-dissections d’un n + 2k + 1-gone P, c’est-
à-dire les ensembles de diagonales de P dans lesquels il n’existe pas k + 1 diagonales
se croisant deux à deux. Ces complexes forment une famille universelle parmi les com-
plexes de sous-mots, ce qui signifie que leur trouver des réalisations géométriques re-
vient à trouver des réalisations géométriques pour tous les complexes de sous-mots de
type A. Le chapitre 10 décrit une tentative en vue d’obtenir de telles réalisations, basée
sur des mouvements combinatoires locaux à l’intérieur des complexes de sous-mots.
Nous obtenons des éventails réalisant des 2-associaèdres jamais réalisés auparavant.

Théorème Z (théorème 10.2). Tous les 2-associaèdres ∆2,n pour n ∈ [8] ont des réalisa-
tions par éventails.
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Le théorème Z est un résultat purement expérimental vérifié par ordinateur. Les
rayons utilisés pour construire nos éventails sont décrits par un schéma de coor-
données pour tout n ∈ N, qui pourrait tout à fait s’avérer valide pour tous les 2-
associaèdres. Nous avons deviné ce schéma après des étapes heuristiques successives,
la dernière faisant intervenir un aléa visant à perturber avantageusement des rayons
candidats dégénérés. Les autres étapes correspondent à la traduction intuitive de trans-
formations combinatoires sur les complexes de sous-mots qui induisent, entre autres
choses, des subdivisions stellaires (voir la section 3.1) et subdivisions stellaires inverses
d’arêtes. Dans notre travail, ces opérations apparaissent véritablement comme des ou-
tils uniquement dans ce dernier chapitre 10. Cependant nous les avons rencontrées
dans tous les contextes que nous avons mentionnés.

1.3.3 Subdivisions stellaires d’arêtes

Même si nous ne prouvons pas de résultat spécial en utilisant les subdivisions stel-
laires, cette thèse suggère de regarder plus avant la classe des complexes simpliciaux
pouvant être obtenus par des suites de jointures et de subdivisions stellaires d’arêtes,
à partir de bords de 1-simplexes. Ces complexes sont entre autres des complexes de
cliques, réalisables par des polytopes (voir lemme 10.4) dont les duaux polaires sont gé-
néralement appelés cubes 2-tronqués. Comme nous l’expliquons dans la section 3.2.3,
être un complexe de cliques est une propriété nécessaire pour envisager une construc-
tion s’appuyant sur de notre stratégie des d-vecteurs. La classe des cubes 2-tronqués
inclut les associaèdres de graphes, et conjecturalement les complexes de sous-mots de
type A qui sont en plus des complexes de cliques. Elle a déjà été étudiée dans des
travaux sur les complexes de cliques en général [LN16] ou en topologie torique [BP15,
sections 1.5 et 1.6] par exemple. Tout au long de cette thèse, nous avons essayé de
définir des opérations combinatoires sur les différentes structures sous-jacentes aux
complexes que nous étudiions, ayant pour effets topologiques des subdivisions stel-
laires. Comme nous l’avons dit, ce genre de transformation existe déjà dans les com-
plexes de sous-mots [Gor14]. Nous mentionnons en section 8.4 deux transformations
relativement naturelles sur certaines dissections, qui induisent des subdivisions stel-
laires d’arêtes sur leurs complexes d’accordéons. Pour le moment notre intérêt pour ces
opérations tient surtout au potentiel cadre unificateur qu’elles pourraient nous fournir.
Nous les mentionnons comme l’une des perspectives ouvertes par cette thèse.



2
This thesis from A to Z

2.1 Presentation of the associahedron

Associahedra relevantly appear in multiple mathematical areas. Their study, so as this
of their many generalizations, is therefore a field of research by itself, at the interface
between combinatorics, geometry and algebra. This thesis focuses on the first two
aspects, with inspirations from the third one. We begin with some motivations based
on several mathematical interpretations of associahedra.

2.1.1 Binary trees and rotation graph

Associahedra are natural objects to describe the behavior of data structures called bi-
nary search trees (see for instance [Knu98, Section 6.2] for a detailed presentation and
algorithmic motivations).

Given a set S, a binary tree T on S is a structure recursively defined as follows:
• either T = ∅ is the empty tree, with no node,
• or T is a triple (L, r,R), where r ∈ S is the root of T, whose left (resp. right) child L

(resp. R) is itself a binary tree on S. The nodes of T are r and the nodes of L and R.
The usual notation for a binary tree T = (L, r,R) on S is

T =
r

L R .

When S is unspecified, we generically denote nodes by •. Figure 2.1 (left) represents all
binary trees with 3 nodes. The height h(T) of a binary tree T is recursively defined by

h(∅) = −1 and h

( •
L R

)
= max(h(L), h(R)) + 1.

When the nodes of a binary tree T are integers such that any node is greater (resp.
smaller) than all nodes of its left (resp. right) child, the tree T is called a binary search
tree. This property indeed allows efficient search and insertion operations in binary
trees that are balanced, that is in which the difference of height between the two child-
ren of any node is at most 1. In order to keep binary search trees balanced while

27
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Figure 2.1 – All binary trees with 3 nodes (left, with T2
max at the top), all binary search

trees with three nodes in {1, 2, 3} (middle) and all triangulations of a hexagon (right). Li-
nes between binary (search) trees (resp. triangulations), oriented upwards, correspond
to right rotations (resp. slope increasing flips), so that each picture is a combinatorial
representation of the Tamari lattice T (3). Without the orientation, they also represent
the rotation (resp. flip) graph F(2), that is a cycle with 5 vertices.

manipulating them (for instance inserting or deleting elements), balancing algorithms
use the right (resp. left) rotation operation ρr (resp. ρ`), defined as follows.

ρr


x2

x1

T1 T2

T3

 :=

x1

T1

T3T2

x2 and ρ`


x1

T1

T3T2

x2

 :=

x2

x1

T1 T2

T3 .

Moreover, the recursive definition of binary trees naturally induces a right (resp. left)
rotation at each node with nonempty right (resp. left) child in any binary tree. Figure 2.1
(left and middle) illustrates these operations. From them one can define the rotation
graph F(n) whose vertices are binary trees with (n+ 1) nodes and whose edges connect
two binary trees related by a rotation (see Figure 2.1 left and middle). This graph is the
first object that can be called an associahedron. For the previous reasons, numerous
studies focused on geodesic properties of the graph F(n). First it is connected. Indeed,
in a binary tree, one can apply a right rotation to any node with nonempty left child.
As there is only one binary tree Tn

max all of whose nodes have empty left children (see
the top tree in Figure 2.1 left), any two binary trees are reachable from each other by
successively applying a sequence of right rotations and a sequence of left rotations. This
analysis can be refined to derive the upper bound 2n for the diameter of F(n). For this
recursively define the right branch of a binary tree T as the empty tree if T = ∅ and as
the tree formed by its root and the right branch of its right child otherwise. Now remark
that if a binary tree T is different from Tn

max, then it is not only possible to apply a right
rotation to T, but such rotation can moreover be done at a node on the right branch
of T, so that the new tree obtained from T has one node more on its right branch.
Any binary tree can thus be transformed into Tn

max in at most n right rotations, which
proves the bound 2n for the diameter of F(n). Contrarily to upper bounds, giving precise
evaluations for the distances in F(n) is very challenging, and if the hard question of
finding the exact diameter of F(n) was recently settled [STT88, Pou14], it remains an
open problem to efficiently compute the rotation distance between any two binary trees.
Finally a last computer science purpose linked to associahedra is to look for potential
new data structures, inspired from binary trees (as Cambrian trees [CP17] for instance).
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2.1.2 Triangulations and flip graphs

The number of binary trees with n nodes is the n-th Catalan number Cn := 1
n+1

(2n
n

)
[OEI10, A000108]. These numbers are ubiquitous in combinatorics and count many
other objects1 (see for instance [Sta01, Chapter 6]). The triangulations of convex poly-
gons are such a Catalan family, and are in practice the main combinatorial model used
to deal with associahedra. Given a convex polygon P with n+ 3 vertices, a triangulation
of P is an inclusion maximal set of pairwise noncrossing diagonals of P (see Figure 2.2
left). The name comes from the fact that a triangulation of P can equivalently be though
of as a subdivision of P into triangles without creating any new vertex. Notice that the
formal definition does not rely on the geometry of P since crossings between diagonals
have a combinatorial translation in term of cyclic order on their vertices. Therefore, we
generally represent P either as a regular polygon or in the configuration of Figure 2.2,
that is with a long horizontal boundary edge and a convex chain under it. In this last
configuration, taking the dual tree of a triangulation provides a simple bijection bet-
ween triangulations of P and binary trees with n+ 1 nodes, as illustrated in Figure 2.2.
This bijection moreover induces a correspondence between rotations on binary tree and
the natural flip operations on triangulation. Consider a triangulation T and a diago-
nal δ ∈ T. Removing δ from T creates a quadrilateral in T, which has exactly two
diagonals, namely δ and another one δ′. On can then replace δ by δ′ to obtain a new tri-
angulation T′ := (T ∪ {δ′})r{δ} (see Figure 2.2 right). We say that T′ is obtained from T
by flipping δ. Under the bijection of Figure 2.2, right (resp. left) rotations correspond
to slope increasing (resp. decreasing) flips, that is where the introduced diagonal has
a greater (resp. smaller) slope than the removed one. The flip graph of P is the graph
whose vertices are the triangulations of P and whose edges correspond to flips between
them. This graph is isomorphic to the graph F(n) on binary trees (see Figure 2.2 right)
and so is also a combinatorial model for the associahedron.

At the combinatorial level, the associahedron has the interesting following property.
The edges of the flip graph F(n) can be oriented in the directions given by slope incre-
asing flips (or equivalently right rotations for binary trees), namely if a diagonal δ of a
triangulation T is flipped into a diagonal δ′ of greater slope, then the edge of F(n) bet-
ween the triangulations T and T′ = T∪{δ′}r{δ} is oriented from T to T′. The resulting
directed graph is acyclic, and it is in fact the Hasse diagram of a lattice, called the Ta-
mari lattice T (n + 1) (see [Tam51] and Figure 2.1), at the center of many studies and
also generalized in several directions. Moreover, apart from being a relevant Catalan fa-
mily, triangulations of convex polygons are also the very first example of triangulations

Figure 2.2 – A bijection between binary trees with n+ 1 nodes (in blue) and triangulati-
ons of a (n+ 3)-gon (in red), illustrated for n = 3 (left). When the polygon P is drawn in
this configuration, with a long horizontal boundary edge e, the binary tree associated
to a triangulation is just the dual tree of this triangulation, rooted at the triangle con-
taining e. This bijection makes right (resp. left) rotations on binary trees correspond to
slope increasing (resp. decreasing) flips on triangulations (right).

1According to R. Stanley, there are currently 207 different combinatorial interpretations for them.
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Figure 2.3 – Illustration of the proof of the upper bound 2n− 4 on the diameter of F(n).

of points configurations in the plane (see [DRS10] and references therein), explaining
why the focus naturally comes to them. Finally triangulations are a convenient comple-
mentary model in addition to binary trees for studying the associahedron. To illustrate
that, let us refine the bound 2n on the diameter of F(n) proved in Section 2.1.1 to 2n−4
for n ≥ 10 (see Figure 2.3 for an illustration of this proof), which is in fact the exact
value of the diameter of the flip graph F(n) in this case [Pou14].

Proof (upper bound 2n− 4 on the diameter of F(n)). Consider an (n + 3)-gon P, a ver-
tex v of P and let Tv be the triangulation of P consisting of the n diagonals of P
incident to v. Let T be a triangulation of P that does not contain a diagonal δv incident
to v. Then δv lies between two consecutive diagonals (either internal diagonals or boun-
dary edges) of T incident to v, that we denote δ1 and δ2. These diagonals belong to a
common triangle of T, whose third diagonal we denote δ. As δ1 and δ2 are not consecu-
tive in Tv, the diagonal δ is internal and can therefore be flipped in T, to obtain a new
diagonal, which is incident to v. A straightforward induction thus shows that if T con-
tains degv(T) diagonals incident to v, then it can be transformed into Tv in n− degv(T)
flips. In particular the flip distance between T and any other triangulation T′ is at
most 2n − (degv(T) + degv(T′)). Finally observe that the diagonals in T ∪ T′ (with re-
petitions) have in total 4n extremities (with repetitions). So in average a vertex of P is
incident to 4n

n+3 = 4− 12
n+3 diagonals of T∪T′. In particular if n ≥ 10, this average value is

strictly greater than 3, and there is a vertex v of P for which degv(T) + degv(T′) ≥ 4. �

2.1.3 Polytopes

For the geometric part of this thesis, we are primarily interested in polytopes. We recall
that a polytope is the convex hull of finitely many points in Rd (see Chapter 3, in parti-
cular Section 3.2.1 for more details). Among other things, polytopes are bounded poly-
hedra, that are the feasibility domains of linear optimization problems (see [GM07]). In
particular a whole field of research on polytopes concerns their combinatorial diameter,
in relation with the so called polynomial Hirsch conjecture, asserting that the diameter
of the graph of a polytope is polynomial in its number of facets (see [San13] for a rich
survey on these topics). Yet dealing with the combinatorics of polytope is hard in ge-
neral, and it is valuable to have families of examples whose combinatorial structure is
easily described. A very classical polytope in this spirit is the n-dimensional permutahe-
dron Perm(n) (or n-permutahedron), defined as the convex hull of all the permutations
of [n + 1] := {1, 2, . . . , n + 1} seen as vectors in Rn+1 (see Figure 2.4). Formally if we
denote by Sn+1 the symmetric group of permutations of [n+ 1], we have

Perm(n) := conv
(
(σ(i))i∈[n+1] |σ ∈ Sn+1

)
.

Associahedra are another instance of such polytopes. Indeed, if we previously des-
cribed associahedra with the combinatorial data of flip (or rotation) graphs, the term as-
sociahedron more usually refers to the corresponding polytope.

Theorem A ([Hai84, Lee89, GKZ08, BFS90, SS93, SS97, RSS03, Lod04, HL07, CSZ15]).
For any integer n, there exists an n-dimensional polytope whose graph is isomorphic to
the flip graph F(n). Such a polytope is called an n-associahedron.
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Figure 2.4 – The 2-permutahedron embedded in R3 (left) and the 3-permutahedron (right).

We discuss some proofs of Theorem A in Section 2.2.2. Figures 2.5 and 2.6 illustrate
some realizations by different authors for the 3-associahedron. As we explained, having
polytopes described by flip graphs is convenient for geometric purposes. In turn the ge-
ometry of such polytopes can sometimes provide us with combinatorial results that are
hard to prove directly. For instance D. Sleator, R. Tarjan and W. Thurston [STT88] used
arguments of hyperbolic polytopes in their attempt to determine the combinatorial dia-
meter of associahedra. A more recent example of this fact is Section 9.4 of this thesis,
where some properties of accordion complexes are derived directly from their polytopal
realizations. This notion of “realization” is the reason why we jointly study combina-
torial and geometric properties. Informally, a geometric realization of a combinatorial
structure S is any object in a vector space that is fully describable by a finite informa-
tion encoded by S. In some sense it is a way to faithfully embed an abstract structure
in a geometric setting. Theorem A illustrates the realization of a graph by a polytope but
they are not the only kind of objects we are interested in. In this thesis, we are indeed
more concerned with realizing simplicial complexes (which in fact is also the case in
Theorem A). Moreover the realizations that we give are mainly fan realizations, that is
we encode simplicial complexes by sets of cones intersecting properly. The main goal of
this thesis can thus be summed up as follows.

Goal: on the one hand we try to provide a better understanding of some abstract re-
latives of the associahedron; on the other hand we work with them into obtaining new
constructions of rich and relevant instances of polytopes and fans.

We keep the formal presentation of simplicial complexes, fans and polytopes for
Chapter 3, where we give the general preliminaries needed along the manuscript, and
now go to the description of the mathematical context in which our work takes place.

[Lod04, HL07] [HL07] [CFZ02, HL07, CSZ15] [CSZ15]

Figure 2.5 – Examples of 3-associahedra. Figure from [CSZ15], with permission.
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2.2 State of the art

The combinatorial structure of the associahedron first appeared as the Tamari lat-
tice (see Section 2.1.2) in early work of D. Tamari [Tam51]. It was then studied as
a simplicial complex (see Section 3.1) by J. Stasheff [Sta63], in order to study homo-
topy properties of H-spaces, in connection with associativity theories. At the geome-
tric level, the first realizations of the associahedron as a convex polytope are due to
M. Haiman [Hai84] and C. Lee [Lee89]. As we previously mentioned, the associahedron
motivated a flourishing trend of research in various fields, that can more or less be
distributed between “combinatorics”, “geometry” and “algebra”. We first present a few
remarkable properties of the associahedron in each world and describe some connecti-
ons before detailing the d-vector construction, which is at the heart of this thesis.

2.2.1 Combinatorics

As we pointed out in Section 2.1.2, binary trees and triangulations are relevant in Cata-
lan combinatorics and encode the Tamari lattice T (n+1). The algebraic and combinato-
rial properties of the latter was extensively studied and generalized. One of the reasons
is its deep connection with the weak order on permutations. We recall that Sn+1 is
the symmetric group of permutations of [n + 1]. The inversion set inv(σ) of a permuta-
tion σ ∈ Sn+1 is the set of pairs (i, j) satisfying i < j and σ(j) < σ(i). The weak order
is the order relation 4 on permutations defined by

∀σ, σ′ ∈ Sn+1, σ 4 σ′ ⇐⇒ inv(σ) ⊆ inv(σ′).

This order on permutations is a lattice with many combinatorial properties. For in-
stance its maximal chains encode the minimal factorizations of the permutation [n +
1, . . . , 1] into products of simple transpositions. In [BW97, Section 9] A. Björner and
M. Wachs observed that restricting the weak order to (132)-avoiding permutations
yields a sublattice of the weak order, that is isomorphic to the Tamari lattice. N. Re-
ading [Rea06] extended the Tamari lattice to Cambrian lattices and moreover showed
that they were quotient lattices of the weak order. A (type A) Cambrian lattice can be
described by a sequence of n + 1 signs ε ∈ {+,−}n+1 (called a signature) as follows.
The signature ε determines a Cambrian polygon Pε obtained by drawing two vertices
labeled 0 and n + 2 on the horizontal axis and then draw the other vertices in abscissa

Figure 2.6 – Two 3-associahedra by C. Hohlweg and C. Lange [HL07] (see also Figure 2.5
left and middle left). The corresponding Cambrian lattices are obtained by orienting
them from bottom to top. The left one is initially due to S. Shnider and S. Stern-
berg [SS93, SS97] and J.-L. Loday [Lod04]. Figure from [LP13], with permission.
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increasing order between 0 and n + 2 either above or under the line determined by 0
and n+ 2, depending on the corresponding sign in ε. The Cambrian lattice determined
by ε is then the flip graph of Pε, oriented by slope increasing flips. In particular the
Tamari lattice T (n + 1) is the Cambrian lattice obtained from the signature (−)i∈[n+1].
Figure 2.6 illustrates the Tamari lattice and another Cambrian lattice, when the two
graphs are oriented from bottom to top. We do not study Cambrian lattices directly in
this thesis, but they are naturally encoded in the geometric objects that we deal with.

2.2.2 Geometry

The polytopes that we are interested in are described by combinatorial structures, some
of whose properties are “readable” directly from the geometry. As an instance, the
graph of the permutahedron Perm(n) (embedded in Rn+1 as in Section 2.1.3), when
oriented in the direction given by the vector (n + 1, n, . . . , 1) − (1, 2, . . . , n + 1), is the
Hasse diagram of the weak order. As mentioned in Theorem A, many authors provided
polytopal realizations for the associahedron [Hai84, Lee89, GKZ08, BFS90, SS93, SS97,
RSS03, Lod04, HL07, CSZ15], resulting in three main families.

Secondary polytopes. Secondary polytopes of point configurations were introduced by
I. Gelfand, M. Kapranov and A. Zelevinsky in [GKZ08]. The associahedron appears
as the secondary polytope of points in convex position in the plane. As different
configurations give rise to different polytopes, it provides us with an important
family of realizations. Associahedra are yet not the central object of this theory
and somehow constitute the “easiest” examples to deal with from this perspective.

Associahedra via signatures. S. Shnider and S. Sternberg produced in [SS93, SS97] a
realization of the associahedron, obtained by forgetting some inequalities defining
the permutahedron Perm(n). J.-L. Loday gave in [Lod04] an interpretation for the
coordinates of the vertices of this realization, based on simple computations on
binary trees. Among other properties, this associahedron, that we refer to as the
Loday associahedron, can be oriented in the same linear direction as the permu-
tahedron so that the induced orientation on its graphs makes it isomorphic to the
Hasse diagram of the Tamari lattice. Motivated by N. Reading’s work on Cambrian
lattices [Rea06], C. Hohlweg and C. Lange [HL07] obtained about 2n different rea-
lizations of the n-associahedron, including Loday’s, constructed from the permu-
tahedron Perm(n) similarly to the latter. The method of C. Hohlweg and C. Lange
is based on triangulations of Cambrian polygons (see Section 2.2.1). Their realiza-
tions are indeed designed into satisfying the specific property that suitable linear
orientations of their ambient space induce orientations of their graphs providing
the Hasse diagrams of all (type A) Cambrian lattices (see Figure 2.6). They also
gave a combinatorial description of the vertices of their realizations, that was later
reinterpreted by C. Lange and V. Pilaud [LP13] in terms of the dual trees of the
triangulations of Cambrian polygons.

d-associahedra. The last family of realizations was discovered in the broader context
of cluster algebras by F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02]. In this
paper, one realization for each generalized associahedron was given, using compa-
tibility degrees, which are also the denominator vectors (see [FZ03b, CP15]) of the
corresponding cluster algebra. F. Santos then extended this method in the type A
case, in a paper published with C. Ceballos and G. Ziegler [CSZ15, Section 5], to
obtain about Cn = 1

n+1
(2n
n

)
different realizations of the classical n-associahedron.

The same paper by C. Ceballos, F. Santos and G. Ziegler [CSZ15] provides a precise
survey on these methods so that we do not give more details here. We only focus on
the last one, that is so to say the “guidelight” of the geometric part of this thesis. As
mentioned, it relies on cluster algebra results, which we discuss in the next section.
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2.2.3 Algebra

Permutations and (binary) trees also appear in more algebraic contexts as they index
bases of combinatorial Hopf algebras [LR98, HNT05, Cha00, CP17]. But Hopf algebras
do not carry a lot of underlying motivations for this thesis, and we skip their pre-
sentation and go directly to cluster algebras. They were introduced by S. Fomin and
A. Zelevinsky in a series of papers [FZ03b, FZ02, FZ03a, FZ07] and in a paper with
A. Berenstein [BFZ05]. Since then, cluster algebras happened to have applications in
diverse areas, including discrete dynamical systems, quiver representations, tropical
geometry, Teichmüller theory and Poisson geometry (see [FZ04] for a survey).

We do not need the (heavy) precise definition of cluster algebras, and thus only give
the informal ideas necessary for our purposes. For simplicity, we restrict ourself to alge-
bras over the field Q of rational numbers. A cluster algebra is a commutative algebra A
defined by a combinatorially controlled presentation by generators and relations: the
generators of A are called the cluster variables. They are grouped into overlapping clus-
ters of same cardinality (the rank of A), to each of which is associated an exchange ma-
trix2, with which it forms a seed. The exchange matrices encode an involutory mutation
process relating the clusters to each other as follows. Given a seed s = (X,B) consis-
ting in a cluster X = (x1, . . . , xn) and an exchange matrix B, and an integer i ∈ [n], the
mutation of s at xi transforms the seed s into a new seed s′ = (X ′,B′) where

• the cluster X ′ = (x′1, . . . , x′n) satisfies x′j = xj for any j 6= i, and the variables xi
and x′i, that are exchanged by the mutation, are related by an algebraic relation of
the form xix

′
i = M++M− in A, where M+ and M− are relatively prime monomials

in the variables xj (for j 6= i) determined by B;
• the matrix B′ is a new exchange matrix also obtained from the data of B.
The point of exchange matrices is to encode the mutation process. They can the-

refore be replaced by any relevant combinatorial structure suitably playing that role.
Some mutations can for instance be described in terms of quivers (directed multigraphs,
see for instance [Kel13, Section 3]), or even more specific objects in well-behaved cases
(triangulations of punctured surfaces, centrally symmetric triangulations...).

The relations xix′i = M++M− are the exchange relations and define the presentation
of A. The exchange (or mutation) graph of A is the graph whose vertices are the seeds
of A and where seeds are adjacent if they are related by a mutation. It is important to
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Cluster variable
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Figure 2.7 – The mutation graph of a the type A cluster algebras of rank 2 and several
cluster algebra terminologies illustrated on it. Here the combinatorial data encoding
the mutations are the triangulations of a pentagon. This mutation graph is therefore
isomorphic to the flip graph F(2).

2Exchange matrices are integer matrices slightly more general than skew symmetric matrices.
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Figure 2.8 – The expansions of all cluster variables in the mutation graph of Figure 2.7
in the variables of the initial cluster (x1, x2). All these expansions are Laurent polyno-
mials in (x1, x2) (see Theorem B).

precise that seeds are meant up to permutation and relabeling of cluster variables, so
that the clusters should be though of as sets (and not tuples) of cluster variables. In
fact the elements of a cluster are usually given with an order because they index the
entries of the corresponding exchange matrix. Figure 2.7 illustrates these definitions.

Observe that the data of one seed is enough to determine the whole cluster algebra.
Cluster algebras are thus generally introduced by describing the mutation process and
then considering the subalgebra of the field Q(x◦1, . . . , x◦n) (of rational function over Q
in n variables) generated by all the cluster variables in the seeds obtainable from an ini-
tial seed s◦ = (X◦,B◦) (with initial cluster X◦ = (x◦1, . . . , x◦n)) by sequences of mutations.
The expansion of the cluster variables of Figure 2.7 in some initial cluster are given in
Figure 2.8, which also illustrates the very first crucial property of cluster algebras.

Theorem B (Laurent phenomenon, [FZ02, Theorem 3.1]). Given any initial cluster X◦ =
(x◦1, . . . , x◦n) of a cluster algebra A and any cluster variable x of A, the expansion of x as
a rational function in the initial variables (x◦1, . . . , x◦n) is a Laurent polynomial3.

Among cluster algebras, we are particularly interested in those having a finite mu-
tation graph. Such algebras are called finite type cluster algebras and are equivalently
those cluster algebras with a finite number of cluster variables. In fact this result is a
byproduct of the exact classification of finite type cluster algebras.

Theorem C (Finite type classification, [FZ03a, Theorems 1.7 and 1.8]). Finite type clus-
ter algebras are classified by crystallographic root systems4. In particular the mutation
graph of cluster algebras of type An is isomorphic to the flip graph F(n).

The cluster variables of a cluster algebra A are combinatorially related by the muta-
tion graph of A. It is the dual graph of the cluster complex of A, namely the simplicial
complex whose facets are the clusters of A.

3That is a rational function whose denominator is a monomial in (x◦1, . . . , x◦n).
4In the whole thesis, we never use Coxeter theory but often mention the different “types” of Coxeter and

crystallographic root systems. Our setting mostly includes type A objects, but we sometimes make remarks
on or comparisons with other types. However all our results are formulated in order to require no background
on this topic, and we therefore only refer the interested reader to the classical textbooks [Hum90, BB05].
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Example. For instance the type A cluster complex of rank n is the dissection complex
of a convex polygon P with n + 3 vertices, namely the simplicial complex whose faces
are the dissections (sets of pairwise noncrossing diagonals) of P. The dual graph of this
complex is the flip graph F(n). In fact all nonexceptional finite type cluster complexes
have interpretations similar to that in type A, that is in terms of geometric configurati-
ons of noncrossing arcs in the plane (see [FZ03a, CP15]). As explained in Section 6.3.3,
type B clusters are for example encoded by the centrally symmetric triangulations of a
centrally symmetric polygon.

One of the properties making finite type cluster algebras interesting is that their
structure is fully described by the combinatorics of the cluster complex. Finite type
cluster algebras thus are somehow “algebraic realizations” of their cluster complex.

Theorem D ([FZ03a, Theorem 1.12]). Finite type (coefficient-free) cluster algebras are
characterized by their cluster complexes. Equivalently, isomorphic finite type (coefficient-
free) cluster algebras have isomorphic cluster complexes.

Finally, completing these algebraic properties, cluster complexes are particularly
nice from our perspective as they admit geometric realizations as polytopes.

Theorem E (Generalized associahedra, [CFZ02, Theorem 1.4],[HLT11, Ste13],[PS15a,
Corollary 6.10]). Any finite type cluster complex has a polytopal realization, called a ge-
neralized associahedron of the corresponding type. In this setting the classical associae-
dron is the type A generalized associahedron.

For a simplicial complex, being realizable as a polytope is in fact stronger than as
a fan, and so formally Theorem E implies that cluster complexes also admit fan rea-
lizations. Yet polytopal realizations are often obtained in two steps, namely one first
constructs a fan realization and only then shows that this fan is the normal fan of a
polytope. This is the case for the realization of generalized associahedra by F. Chapo-
ton, S. Fomin and A. Zelevinsky [CFZ02], based on the fan construction proposed by
S. Fomin and A. Zelevinsky [FZ03b]. The proof by C. Hohlweg, C. Lange and H. Tho-
mas [HLT11] is an extension of the construction of associahedra via signatures pre-
sented in Section 2.2.2 to all finite type cluster complexes. It relies on the same mo-
tivations, namely the articles of N. Reading and D. Speyer [Rea06, RS09], where in
particular realizations of finite type cluster complexes by Cambrian fans are already gi-
ven. The polytopes in [HLT11] are designed especially into having these fans as normal
fans. The realizations by S. Stella [Ste13] and by V. Pilaud and C. Stump [PS15a] are
essentially the same as in [HLT11] but bring new perspectives on cluster complexes.
In particular S. Stella [Ste13] relates Cambrian fans to cluster fans and V. Pilaud and
C. Stump [PS15a] generalize the brick polytopes and the settings introduced by V. Pilaud
and F. Santos [PS12].

Theorems D and E describe what we call a “triad combinatorics–geometry–algebra”
in the sense that a same object can equivalently be thought of in these three different
worlds. In particular when dealing with generalizations of the associahedron, one of our
main issues consists in finding analogs of this triad, that mimic as much as possible
the nice properties of cluster complexes, generalized associahedra and cluster algebras.

2.2.4 The d-vector construction

As we just underlined, most polytopal realizations of simplicial complexes start by the
construction of a suitable fan. But providing new fan realizations of complexes, even
known to have polytopal ones, is not only valuable as a “first step”, but also because two
polytopes are generally considered to be “essentially different” when their normal fans
are not linearly isomorphic (see Section 3.2). Concerning finite type cluster complexes,
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there are two main constructions arising from cluster algebra theory. The fan realized
in [FZ03b] (shown to be polytopal in [CFZ02]) somehow represents the intersection
of the two resulting families of realizations. In fact we already gave their flavor in
Section 2.2.2. On the one hand associahedra via signatures are indeed explained in
terms of g-vectors by S. Stella in [Ste13]. We present these vectors for the type A in
Chapter 9, in relation with its content. On the other hand the realizations by F. Santos
in [CSZ15, Section 5] extends to the d-vector construction, that we explain now.

Given a finite type cluster algebra A and an initial cluster X◦ = (x◦1, . . . , x◦n) of A,
the Laurent phenomenon (Theorem B) allows us to associate to each cluster variable x
its denominator vector with respect to X◦

d(X◦, x) := [(x◦1 ‖x), . . . , (x◦n ‖x)],

also called its d-vector, where (x◦i ‖x) is the exponent of the initial cluster variable x◦i
in the expansion of x as a Laurent polynomial in X◦ (the notation is not ambiguous
by Proposition G 1). It turns out that this quantity, initially defined as a compatibility
degree in algebraic terms by S. Fomin and A. Zelevinsly [FZ03b], has a combinatorial
interpretation in term of crossings in the different geometric models for nonexceptional
finite type cluster complexes [FZ03b, CP15]. In the case of the classical associahedron,
cluster variables are represented by the diagonals of a convex polygon P so that the
compatibility degree can be read directly in this setting: for two diagonals δ, δ′ of P,
we have (δ ‖ δ′) = (δ′ ‖ δ) = −1 if δ = δ′, (δ ‖ δ′) = (δ′ ‖ δ) = 0 if δ and δ′ do not cross,
and (δ ‖ δ′) = (δ′ ‖ δ) = 1 otherwise. So any initial triangulation T◦ of P provides us with
a vector with coordinates in {−1, 0, 1} associated to each diagonal of P, whose entries
correspond to the diagonals of T◦.
Theorem F ([CSZ15, Theorem 5.1]). For any initial triangulation T◦ of P , the vectors
in {d(T◦, δ) | δ diagonal of P} are the rays of a complete simplicial fan realizing the com-
plex of dissections of P . In cluster algebra terms, it means that the denominator vectors
associated to any initial seed in type A support a complete simplicial fan realizing the
corresponding cluster complex.

We continue the example of Figures 2.7 and 2.8 to illustrate Theorem F. In Fi-
gure 2.9, we give the denominator vectors of all cluster variables with respect to the
initial cluster chosen in Figure 2.8, and we show in Figure 2.10 the fan obtained from
these vectors. Besides Theorem F, it is proved by S. Fomin and A. Zelevinsky [FZ03a]
that the d-vectors support a complete simplicial fan realizing the cluster complex for
the bipartite initial cluster in all types, by S. Stella [Ste13] for all acyclic initial clusters
in all types, and for any initial cluster in types A,B and C in Chapter 6. We expect this
property to hold for any initial cluster, acyclic or not, of any finite type cluster algebra.

As we saw, the d-vector construction relies on a notion of compatibility degree ( ‖ ),
which fulfills general properties directly inherited from the cluster algebra structure.

Proposition G (direct corollary of [FZ03b, Section 3.5]). In any type A,B,C or D cluster
algebra A, the compatibility degree ( ‖ ) satisfies the following properties.

1. The function ( ‖ ) is an integer function defined on couples of cluster variables of A,
that is the entry (x◦i ‖x) of the d-vector of a cluster variable xwith respect to an initial
cluster X◦ = (x◦1, . . . , x◦n) does only depend on x◦i , and not on the whole cluster X◦.
Equivalently, the exponent of x◦i in the denominator x is always the same when x is
expanded in any initial cluster containing x◦i .

2. For any cluster variable x of A, we have that (x ‖x) = −1 and (x ‖x′) ≥ 0 for any
cluster variable x′ of A different from x.

3. Two distinct cluster variables x and x′ of A are compatible (that is they belong to a
common cluster) if and only if (x ‖x′) = (x′ ‖x) = 0.

4. Two distinct cluster variables x and x′ of A are exchangeable (that is they are ex-
changed along a mutation) if and only if (x ‖x′) = (x′ ‖x) = 1.
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Figure 2.9 – The d-vectors of all cluster variables in the mutation graph of Figure 2.7
with respect to the initial cluster (x1, x2) = (x◦1, x◦2). The first (resp. second) coordinate
of each d-vector corresponds to the compatibility degree with x◦1 (resp. x◦2). The d-
vectors are grouped accordingly to the clusters. The values of their entries are obtained
either by considering the explicit expansions of Figure 2.8 or directly the crossings
between the corresponding diagonals in the triangulations indexing each cluster.
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Figure 2.10 – The fan realizing the type A2 associahedron obtained from the d-vectors
of Figure 2.9. Each cluster is associated to the cone generated by the d-vectors of its
cluster variables. Each ray r of this fan is the intersection of 2 cones corresponding to 2
clusters themselves intersecting in only one variable, whose d-vector generates r.
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Remark. From our description of the compatibility degree on the diagonals of a polygon
and from Proposition G, it follows that any two cluster variables in type A are always
either compatible or exchangeable. This is clear from the interpretation of cluster varia-
bles in terms of diagonals. Indeed if two diagonals δ, δ′ of a polygon P do not cross, then
they belong by definition to a certain triangulation of P, meaning that the correspon-
ding cluster variables belong to a common cluster. If on the contrary δ and δ′ cross,
then their vertices define a quadrilateral Q in P, whose four edges (either diagonals or
boundary edges of P ) do not cross either δ nor δ′. Then any triangulation containing
this quadrilateral has to contain either δ or δ′ and flipping the present one introduces
the other. This implies that noncompatible diagonals are exchangeable.

Even if stated in an algebraic context, the d-vector method turns out to have a clear
combinatorial interpretation. In particular, when dealing with combinatorial relatives of
associahedra, we try to systematically inspire from it to construct fan realizations. The
expected outcome is of course a way from combinatorics to geometry, but also maybe
to algebraic structures with analog properties as those of cluster algebras. In other
terms this d-vector approach, even when there is no denominator involved any more, is
a general strategy for us to look for new triads combinatorics–geometry–algebra.

2.3 Contribution of the thesis

As a special instance of broader families, the associahedron naturally admits generali-
zations in many directions, that are often first defined at the combinatorial level.

This thesis provides progresses in the combinatorial and geometric understanding of
three families of simplicial spheres. In particular we follow with substantial successes
the d-vector strategy exposed earlier with the hope that its algebraic inspiration can lead
to advances also at that level. We also derive combinatorial properties specific to each
families, that go beyond those that are necessary to implement the d-vector method.
Finally we provide additional new fan realizations using alternative techniques.

2.3.1 Material of the thesis

The thesis relies on three articles either published or accepted for publication:

[Man17a] Fan realizations for some 2-associahedra, Thibault Manneville, to appear in
Experiment. Math., 2017.

[MP15] Graph properties of graph associahedra, Thibault Manneville and Vincent Pi-
laud, Sém Lothar. Combin., 73:B73d, 2015.

[MP17a] Compatibility fans for graphical nested complexes, Thibault Manneville and
Vincent Pilaud, J. Combin. Theory Ser. A, 150 : 36–107, 2017.

and two preprint articles:

[Man17b] The serpent nest conjecture on accordion complexes, Thibault Manneville,
preprint arXiv:1704.01534, 2017.

[MP17b] Geometric realizations of accordion complexes, Thibault Manneville and Vin-
cent Pilaud, preprint arXiv:1703.09953, 2017.
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2.3.2 Outline

In Chapter 3, we give the definitions and background on simplicial complexes and
their relations to polyhedral geometry needed all along the manuscript. The rest of
the thesis is separated into two independent parts, that we follow to present our main
contributions. Part II deals with a family of simplicial complexes indexed by simple
graphs, and we present in Part III results on two families that we put together for
reasons explained there. Both parts are organized according to the same global scheme:

1. an introductory chapter (Chapter 4 and Chapter 7 together with Sections 8.1
and 8.2) that provides the definitions and pieces of context for the currently con-
sidered complexes;

2. a chapter dealing with some specific combinatorial aspects of these complexes
(graphical properties in Chapter 5 and enumerative results in Chapter 8);

3. one or two chapters dedicated to geometric realizations as fans or polytopes. Two
of them extend the d-vector construction (Chapter 6 and Section 9.3), and two
others are based on different ideas (Section 9.2 and Chapter 10).

An appendix to Chapter 5 follows the two parts. We keep the individual presentation
of each family of complexes that we study for the corresponding chapters and just give
here the ideas necessary to sum up our results.

2.3.2.1 Graph associahedra and nestohedra

Graph associahedra are simplicial complexes indexed by simple graphs that were in-
troduced by M. Carr and S. Devadoss [CD06]. Given a graph G, one defines the nested
complex N (G) of G as the simplicial complex whose vertices are the tubes (connected
subgraphs) of G and whose faces are the tubings (sets of tubes of G that are pairwise
either nested or that do not have vertices adjacent in G) on G. M. Carr and S. Devadoss
described one polytopal realization for each of them, then recovered in several ways by
many other authors. The associahedron is a special instance of this family, when G is
specified to be a path. We present these complexes and the related literature in more
detail in Chapter 4.

Combinatorial properties. In Chapter 5 we study properties of the dual graphs F(G)
of nested complexes N (G), with some extensions to general nested complexes defined
by A. Postnikov [Pos09]. Our first results concern geodesic properties for these graphs,
extending known results for the flip graph F(n) defined in Section 2.1.2. We denote
by δ(F(G)) the diameter of F(G). Our initial motivation is the recent proof by L. Pournin
of the exact value of the diameter of the n-associahedron for all values of n [Pou14].

Theorem H ([STT88, Pou14]). The diameter of the flip graph F(n) is 2n− 4 for n ≥ 9.

Our first result combinatorially describes a structural phenomenon that is relatively
clear from the geometric perspective, given the construction of M. Carr and S. Devadoss.

Theorem I (Theorem 5.4, generalized by Theorem 5.9). The diameter δ(F(.)) is a non-
decreasing function, that is if G ⊆ G′, then δ(F(G)) ≤ δ(F(G′)).

To come up with bounds on the diameters of graph associahedra, we use what we
call the nonleaving-face property NLFP. A simplicial complex has this property if in any
dual path between two of its facets, the common vertices of the extremities of this path
never disappear. The associahedron is an instance of complex having this property.

Theorem J ([STT88]). In a shortest sequence of flips between two triangulations, none
of their common diagonals is flipped.



2.3. CONTRIBUTION OF THE THESIS 41

Graph associahedra do not necessarily satisfy NLFP and we give a counterexample
in Section 5.3.3. However we obtain the following weaker result, where tubings on G
are seen as the inclusion posets on their tubes.

Proposition K (Proposition 5.14 (i)). Let T,T′ be two maximal tubings on G and T =
T0,T1, . . . ,Tk = T′ be a shortest dual path in N (G) between T and T′. Then any tu-
bing Ti (i ∈ [k]) contains all tubes of the maximal common upper ideal of T and T′.

Combining Theorems H and I and Proposition K, together with more geometric argu-
ments, we obtain the following asymptotically tight bounds on the diameter of the dual
graph of any graph associahedron.

Theorem L (Theorem 5.16). For any connected graph G with n+ 1 vertices and e edges,
we have

max(2n− 18, e) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

A significant proportion of our proofs uses “combinatorial reductions” that are not
always necessary but simplify the presentation. Moreover understanding such reducti-
ons is also an hint that we isolate the “true” complexity of the objects that we mani-
pulate. In particular we are often interested in how simplicial complexes decompose
into joins of smaller ones. For graph associahedra, and in fact general nested com-
plexes, we obtain a complete description of such decompositions, implying in particular
that graph associahedra behave “rigidly” from this point of view.

Theorem M (direct corollary of Proposition 5.23). For any graph G, the nested com-
plex N (G) decomposes as a join of smaller simplicial complexes C1 ∗ · · · ∗ Ck if and only
if G has k connected components G1, . . . ,Gk such that Ci is isomorphic to N (Gi) for
all i ∈ [k].

Finally we show in Appendix A that essentially all graph associahedra contain a
Hamiltonian cycle. This result extends the corresponding property, that was already
known for specific subfamilies of graph associahedra, including classical associehedra.

Theorem N (Theorems 5.1 and A.1). For any graph G with at least two edges, the
graph F(G) is Hamiltonian.

Fan realizations using d-vectors. On the geometric side, we describe in Chapter 6
the following extension of the d-vector construction to all graph associahedra.

Given two tubes t, t′ of a simple graph G, we define the compatibility degree (t ‖ t′)
of t with respect to t′ to be (t ‖ t′) = −1 if t = t′, (t ‖ t′) = 0 if t 6= t′ are compatible (nested
or with disconnected union), and (t ‖ t′) = |{neighbors of t in t′ r t}| otherwise. Similar
to the compatibility degree for cluster algebras (see Proposition G), it satisfies (t ‖ t′) ≥ 0
for any distinct tubes t, t′ of G, with equality if and only if t and t′ are compatible,
and (t ‖ t′) = 1 = (t′ ‖ t) if and only if t and t′ are exchangeable. As in Section 2.2.4, we
define the compatibility vector d(T◦, t) := [(t◦1 ‖ t), . . . , (t◦n ‖ t)] of a tube t with respect to
an initial maximal tubing T◦ := {t◦1, . . . , t◦n}.

Notice that our degree is asymmetric, which yields a natural notion of duality. We de-
fine the dual compatibility vector d∗(t,T◦) := [(t ‖ t◦1), . . . , (t ‖ t◦n)] of t with respect to T◦.
To make the distinction clear from the dual compatibility vector, we often call d(T◦, t)
the primal compatibility vector. Although there is no notion of denominator anymore,
we still use the letter d to stand for compatibility degree, and to match with the cluster
algebra notations. Indeed, our compatibility degrees for paths and cycles coincide with
the compatibility degrees of [FZ03b] in types A, B, and C. Compatibility degrees on
type A cluster variables correspond to compatibility (and dual compatibility) degrees on
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tubes of paths while compatibility degrees in type C (resp. B) cluster variables corre-
spond to primal (resp. dual) compatibility degrees on tubes of cycles.

Our main result is the following analog of the compatibility fan for path associahedra
constructed by F. Santos in [CSZ15, Section 5].

Theorem O (Theorems 6.10 and 6.14, extended by Theorem 6.53). For any graph G,
the primal (resp. dual) compatibility vectors of all tubes of G with respect to any initial
maximal tubing T◦ on G support a complete simplicial fan D(G,T◦) realizing N (G).

We also study the number of distinct compatibility fans that we obtain. As in [CSZ15],
we consider that two compatibility fans D(G,T◦) and D(G′,T′◦) are equivalent if they
differ by a linear isomorphism (see Section 3.2.2). Such a linear isomorphism induces
an isomorphism between the nested complexes of G and G′. Besides those induced by
graph isomorphisms between G and G′, we exhibit in Section 6.4.2 a nontrivial nes-
ted complex isomorphism on any spider (a set of paths attached by one endpoint to a
clique). We show that it essentially is the only nontrivial nested complex isomorphism.

Theorem P (Theorem 6.37). All nested complex isomorphisms are induced by graph
isomorphisms G→G′, except if one of the connected components of G is a spider.

Corollary Q (Corollary 6.40, extended by Corollary 6.41). If no connected components
of G is a path, then the number of linear isomorphism classes of compatibility fans of G
is the number of orbits of maximal tubings on G under graph automorphisms of G.

The next step would be to realize all these complete simplicial fans as normal fans of
convex polytopes. This question remains open, except for some particular graphs: be-
sides all graphs with at most 4 vertices, we settle the case of paths and cycles following
a similar proof as in [CSZ15].

Theorem R (Theorem 6.46). All compatibility and dual compatibility fans of paths and
cycles are polytopal. In particular the d-vector construction provides polytopal realizations
of finite type cluster complexes from any initial seed in types A,B and C.

2.3.2.2 Subword complexes and accordion complexes

As explained in Chapter 7, we are primarily interested in subword complexes [KM04].
Our study of accordion complexes [GM16] is motivated by intriguing relations that we
develop in Section 8.4. It nevertheless turns out that we obtain more results concerning
accordion complexes (Chapters 8 and 9) than subword complexes (Chapter 10).

Given a dissection D of a convex polygon P, the accordion complex AC(D) of D is the
simplicial complex whose faces are the dissections of P containing only certain diago-
nals determined by D, called the D-accordion diagonals. Informally, these diagonals are
those that cross a connected set of diagonals (including boundary edges) of D, when D
is rotated by a very small angle and superimposed on P. The detailed presentation of
accordion complexes is done in Sections 8.1 and 8.2.

Combinatorial properties of accordion complexes. F. Chapoton raised in [Cha16]
three challenges, including realizing accordion complexes as polytopes (that we discuss
in the next paragraph) and enumerative questions. The main one consists in asking for
a bijection between the facets of the accordion complexAC(Q) of any quadrangulation Q
and objects called the serpent nests of Q. The question can be generalized to arbitrary
dissections using the definition of proper serpent nests as sets of dual paths in the dual
tree of D that do not cross any cell of D by nonincident diagonals and such that no two
of them end up in the same cell by the same diagonal. Serpent nests can then be defined
as the equivalence classes of proper serpent nests inducing the same local pattern at
each diagonal of D. We exhibit a bijection, based on Catalan-like decompositions of D-
accordion maximal dissections, giving a positive answer to F. Chapoton’s question.



2.3. CONTRIBUTION OF THE THESIS 43

Theorem S (Theorem 8.15). For any dissection D, there are as many facets in the accor-
dion complex AC(D) as serpent nests of D.

To prove Theorem S, we describe the links in accordion complexes and derive in
addition the description of their decompositions into joins analog to this in Theorem M.

Proposition T (Proposition 8.6). Given a dissection D, the accordion complex AC(D)
decomposes into joins of smaller simplicial complexes if and only if D contains a bridge
(a cell containing at least 2 nonconsecutive boundary edges of P ). In this case the terms
of the decomposition of AC(D) are themselves accordion complexes.

Finally F. Chapoton also defined the F -triangle of a quadrangulation Q in [Cha16],
whose definition can also be extended to arbitrary dissections. This triangle of num-
bers is a refinement of the f -vector of the accordion complex AC(D). Namely the term
indexed by integers k and r in the F -triangle of a dissection D is the number of D-
accordion dissections with k diagonals among which exactly r belong to D. F. Chapoton
conjectures that the twist operation on dissections, consisting in applying a mirror sym-
metry to one of the two part obtained by cutting a dissection along a diagonal before
gluing them back together, preserves this statistic. We prove this conjecture.

Theorem U (Theorem 8.19). If a dissection D′ is obtained from a dissection D by a twist
operation, then the F -triangles of D and D′ are equal.

Fan and polytopal realizations of accordion complexes. In Chapter 9, we give geo-
metric realizations for accordion complexes AC(D) based on classical constructions of
cluster algebras, including the d-vector construction. Following the very same interpre-
tation of the compatibility degree on diagonals in type A, we provide fan realizations,
extending the d-vector construction of the associahedron (when D is a triangulation).
Namely we define the compatibility degree of two D-accordion diagonals δ and δ′ to be
the quantity (δ ‖ δ′) = −1 if δ = δ′, (δ ‖ δ′) = 0 if δ and δ′ do not cross and (δ ‖ δ′) = 1
otherwise. This degree gives rise to d-vectors, for which we obtain the following result.

Theorem V (Theorem 9.33). Except if D contains an even interior cell, the d-vectors
of D-accordion diagonals with respect to the distinguished facet D of the accordion com-
plex AC(D) support a complete simplicial fan Fd(D) realizing AC(D).

In addition to this result, we provide a counterexample for any reference dissection D
containing an even interior cell. Theorem V does not give us a realization for each facet
of the complex AC(D), but we expect this property to be true for the same dissections.
We also adapt the other classical construction of generalized associahedra by g-vectors
to the setting of accordion complex, which allows us to realize any accordion com-
plex AC(D) as a fan, without any restriction. Again we do not obtain one realization
for each facet of the complex, but we show that our second fan realization is polytopal,
giving a positive answer to the geometric question of F. Chapoton [Cha16].

Theorem W (Theorem 9.19). For any dissection D, there is a simple polytope realizing the
accordion complex AC(D). It is called the accordeohedron of D and denoted by Acco(D).

The polytopes of Theorem W are obtained by forgetting inequalities in a zonotope
defined from vectors analog to the c-vectors of cluster algebras. After our geometric
results, we also provide a combinatorial interpretation of these c-vectors. Using that
accordion complexes are in fact subcomplexes of the associahedron, we use the sign
coherence of the g-vectors to obtain a purely geometric construction of accordiohedra.

Theorem X (Theorem 9.40). If a dissection D is included in another dissection D′, then
a polytope realizing the accordion complex AC(D) can be obtained from Acco(D′) by a
projection on a coordinate subspace. In particular any accordion complex can be realized
by projecting a classical associahedron obtained from the g-vector construction.
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Our g-vector construction keeps track of the symmetries of the reference dissection D,
allowing to derive type B/C objects. Even if D can exhibit many symmetries, we can
only embed type B/C, which is commonly the case with cluster-like structures.

Theorem Y (Proposition 9.28). For any centrally symmetric dissection D, there exists a
simple polytope realizing the complex of centrally symmetric D-accordion dissections.

Fan realizations of some subword complexes. As we do not need the precise defi-
nition of subword complexes to present our last result, we refer the reader to Chap-
ter 7. The important fact for now is that polytopal realizations are conjectured for
about a decade for them, and that very few progresses have been done in this direction
since they were introduced. In Chapter 10, we provide fan realizations for some in-
stances of subword complexes and give conjectural ones for the whole subfamily of 2-
associahedra. This family can be described as follows. Given integers n and k, the
simplicial k-associahedron ∆k,n is the simplicial complex whose vertices are the diago-
nals of a convex (n+ 2k + 1)-gon P and whose faces are the k-dissections of P, namely
the sets of diagonals of P such that no k + 1 of them pairwise cross each other. These
complexes form a universal family among subword complexes, meaning that providing
geometric realizations for all of them would result in geometric realizations for all type A
subword complexes. Chapter 10 describes a tentative approach towards such realiza-
tions, based on local combinatorial moves inside subword complexes. We obtain fans
realizing 2-associahedra for which no geometric realizations were known before.

Theorem Z (Theorem 10.2). All 2-associahedra ∆2,n for n ∈ [8] have fan realizations.

Theorem Z is a purely experimental result and was checked computationally. The
rays used to construct our fans are described by a coordinate pattern for any n ∈ N,
that potentially could as well be valid for all 2-associahedra. We guessed this pattern
after successive heuristic steps, the last of which relies on a randomization in order to
suitably perturb degenerate sets of candidate rays. The other steps correspond to intui-
tive translations of combinatorial transformations on subword complexes that induce,
among other things, stellar subdivisions (see Section 3.1) and reverse stellar subdivi-
sions of edges. In our work, these operations really appear as a tool only in this last
Chapter 10. However, we encountered them in all the other contexts mentioned before.

2.3.3 Stellar subdivisions of edges

Even if we do not prove any special result using stellar subdivisions, this thesis suggests
to have a deeper look at the class of simplicial complexes obtainable by successive ope-
rations of join and stellar subdivision of edges, starting from boundaries of 1-simplexes.
All complexes of this class are flag and realizable as polytopes (see Lemma 10.4) whose po-
lar duals are usually called 2-truncated cubes. As explained in Section 3.2.3, the notion
of flagness is a necessary property of any complex for which a d-vector-like construction
can be defined. The class of 2-truncated cubes includes graph associahedra and con-
jecturally flag type A subword complexes. It already motivated some works on general
flag simplicial complexes [LN16] or in the context of toric topology [BP15, Sections 1.5
and 1.6] for instance. Throughout this thesis, we tried to define relevant combinatorial
operations on the different underlying data of the complexes that we studied, whose
topological effects are stellar subdivisions. As we mentioned, this kind of moves already
exists for subword complexes [Gor14]. We also mention in Section 8.4 two relatively
natural transformations on some dissections, inducing stellar subdivisions of edges on
their accordion complexes. For now our interest for these operations mostly comes from
the potentially unifying framework they could provide us with. We only mention them
as a perspective opened by this work.



3
General preliminaries

and notations

In this chapter, we formally define some notions used in Chapter 2 and fix a few nota-
tions. We use the classical associahedron as running example to illustrate them. We
assume the reader to be familiar with basic graph theory (see [Ber58, Die10] for a com-
plete presentation). In all the thesis, the term “maximal” is, without more precision,
meant with respect to the inclusion order. We detail preliminary notions on simplicial
complexes in Section 3.1 and give some basics on polyhedral geometry in Section 3.2.

3.1 Simplicial complexes

Simplicial complexes are our main combinatorial structures. We give the definitions that
are relevant in our context and refer the reader to [Sta13, online Chapter 13], [Sta97,
pages 307–311] and [Hat02, Chapter 0 and Section 2.1] for a detailed introduction.

Given a finite set V, a (abstract) simplicial complex (or simply a complex) on V is
a subset C of the power set of V closed under taking subsets: C ⊆ 2V and f ⊆ g ∈
C ⇒ f ∈ C. Usually one requires C to contain all singletons. The elements of V, and
by extension the corresponding singletons, are the vertices of C. The pairs in C are
the edges of C and form together with the vertices a graph called the 1-skeleton of C.
The elements of C are its faces, the inclusion maximal of which are called facets. We will
always describe any explicit complex by its list of facets, which is equivalent to the whole
data. We will moreover denote a complex whose single facet is an edge {x, y} directly
by xy, and we will use the notation x both for the vertex x and for the singleton {x}.
If C = 2V, then C is called a simplex. In particular any face of a simplicial complex
is the unique facet of a simplex, therefore the faces of C are also called the simplices
of C. The dimension of a face f ∈ C is the quantity dim(f) := |f | − 1 while the dimension
of C is dim(C) := maxf∈C dim(f). The complex C is pure if all its facets have the same
dimension d ≥ 0, in which case C is also called a d-complex. The faces of dimension (d−
1) of a d-complex are called its ridges. The facet adjacency graph (or dual graph) of a
pure simplicial complex C is the graph whose vertices are the facets of C, with two facets
belonging to a common edge (or being adjacent) if their intersection is a ridge of C. Two
simplicial complexes are isomorphic if there is a bijection between their vertices inducing
a bijection between their faces.
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Figure 3.1 – The topological realizations of the simplicial 3-associahedron embedded
on a sphere, whose vertices are the diagonals of a hexagon (left), of the complex
on [5] with facets {{1, 2, 3}, {1, 3, 4}, {1, 3, 5}} (middle) and of the complex on [4] with
facets {{1, 2}, {2, 3}, {1, 3, 4}} (right). The 3-associahedron is a 2-dimensional sphere.

Example 3.1. The simplicial n-associahedron1 is the simplicial complex whose vertices
are the internal diagonals of a convex polygon P with n + 3 vertices, and whose faces
are the sets of pairwise noncrossing internal diagonals. It is pure of dimension (n− 1)
since its facets are the triangulations of P, that all have cardinality n. Its dual graph is
isomorphic to the flip graph F(n) defined in Section 2.1.2.

An abstract simplicial complex C can equivalently be dealt with as a topological
space via its topological realization Top(C) defined as follows. Identifying the vertex set
of C to [n], and denoting e1, . . . , en the canonical basis of Rn, we have

Top(C) :=
⋃
f∈C

conv{ei | i ∈ f},

where conv denotes the convex hull operator. The topological realization is meant up
to homeomorphism. Informally it is a simple way to represent simplicial complexes,
as collections of topological simplexes glued to each other along faces. We again refer
to [Sta13, online Chapter 13] for details. Figure 3.1 illustrates the topological realizati-
ons of a simplicial 3-associahedron and other examples.

A simplicial complex C is a pseudo-manifold (without boundary) if it is pure and thin,
that is any ridge of C is contained in exactly two facets of C.

Example 3.2. • The simplicial associahedron is a pseudo-manifold. Indeed its rid-
ges are the sets of diagonals obtained by deleting a diagonal in a triangulation.
There are then exactly two ways to extend a ridge to obtain a triangulation of P.
This property allows to define the flip operation on triangulations (see Section 2.1.2).

• The complex of Figure 3.1 (middle) is pure but is not a pseudo-manifold since its
ridge {1, 3} is contained in three facets.

Finally a complex is a simplicial sphere (or simply a sphere) if its topological realiza-
tion is homeomorphic to the n-dimensional sphere. In this case the complex itself is of
dimension n. Any sphere is a pseudo-manifold (see Figure 3.1 left).

A nonface of a complex C is an element in 2V r C. The complex C is flag if all its
inclusion minimal nonfaces are pairs. In this case C is also called a clique complex,
because its faces are exactly the cliques of its 1-skeleton.

1Where n stands for the dimension of the corresponding polytope (See Section 3.2.1).
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Figure 3.2 – A 2-complex C1 = {{1, 2, 3}, {1, 3, 4}} (top left) and the stel-
lar subdivision of the facet {1, 2, 3} in it (top right), and a 3-complex C2 =
{{1, 2, 3, 4}, {1, 3, 4, 5}, {1, 4, 5, 6}} (bottom left) and the stellar subdivision of the
edge {1, 3} in it (bottom right).

Example 3.3. • The simplicial associahedron is flag since it is the clique complex of
the graph whose vertices are the diagonals of P with two diagonals being adjacent
if they do not cross. It can be checked in Figure 3.1 (left) that all triangles formed
by any three edges of the 2-associahedron also belong to the associahedron.

• The complexes represented in Figures 3.1 (right) and 3.2 (top right) are not flag.
In both cases, the triangle {1, 2, 3} is a minimal nonface.

Given two complexes C1 and C2, the join of C1 and C2 is the complex

C1 ∗ C2 := {f t f ′ | f ∈ C1, f
′ ∈ C2}

where C1 and C2 are considered with disjoint vertex sets and ”t” is the disjoint union.
The dual graph of C1 ∗ C2 is then the Cartesian product of the dual graphs of C1 and C2.

Given a face f of a simplicial complex C, the star stC(f), the link lkC(f) and the
deletion delC(f) of f in C are the complexes respectively defined by

stC(f) := {f ′ ∈ C | f ∪ f ′ ∈ C},
lkC(f) := {f ′ ∈ C | f ∩ f ′ = ∅ and f ∪ f ′ ∈ C},

delC(f) := {f ′ ∈ C | f 6⊆ f ′}.
Most combinatorial properties of simplicial complexes that we consider are closed

under joins and links, as for instance being a pseudo-manifold or a sphere.

Example 3.4. • Given an (n + 3)-gon P and a diagonal δ of P, the link of δ in the
simplicial n-associahedron defined by P is the join of the two associahedra defined
by the two polygons into which P is split by δ.

• The link of the edge {1, 3} in the complex of Figure 3.1 (middle) is {{2}, {4}, {5}}
and the link of the vertex 1 in the complex of Figure 3.1 (right) is {{2}, {3, 4}}.

For a complex C and a face f of C, the stellar subdivision of f in C is the complex

stellC(f) := delC(f) ∪ {f ′ ∪ {a} | f 6⊆ f ′ ∈ stC(f)} = delC∪stC(f)∗{a}(f)

where a /∈ V is a new vertex, called subdivision vertex. Intuitively the stellar subdivision
corresponds to “putting a vertex in the middle of the face f” and adding the faces ne-
cessary to preserve the topology of the complex (see Figure 3.2 for examples). We really
need stellar subdivisions only in Chapter 10, but we conclude this section with them as
they repeatedly appears while dealing with the objects in this thesis (see Section 2.3.3).
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3.2 Polyhedral geometry

We now give the notions of polyhedral geometry needed in the thesis and their relations
to abstract simplicial complexes. For a complete presentation on polytopes and fans,
we refer the reader to [Zie95], [Mat01, Chapters 1 and 5] and [DRS10, Section 2.1.1].

3.2.1 Polytopes

We denote the convex hull of a set S of points in Rd by conv(S). A polytope is the convex
hull of a finite set of points in Rd. Equivalently a polytope P is a bounded intersection
of finitely many closed affine half-spaces in Rd. The dimension of P is the dimension of
its affine hull in Rd, and we abbreviate “polytope of dimension d” to d-polytope. A sup-
porting hyperplane of P is an affine hyperplane that does not separate any two points
of P. A face of P is the intersection of P with one of its supporting hyperplanes. By
convention P itself is also considered as a face. The faces of a polytope are them-
selves polytopes and we again abbreviate “face of dimension d” to d-face. The 0-faces
(resp. 1-faces, resp 1-codimensional faces) of P are its vertices (resp. edges, resp. fa-
cets). The graph (or 1-skeleton) of P is the graph whose vertices are the vertices of P
and whose edges are the pairs of vertices of P belonging to a common edge of P. A ge-
ometric simplex is the convex hull of affinely independent points in Rd and a polytope
is simplicial if all its faces, except maybe itself, are simplices. The nonmaximal faces of a
simplicial polytope P, seen as the sets of their vertices, form a simplicial complex called
the boundary complex of P. A complex C is polytopal (or has a polytopal realization) if
there is a simplicial polytope whose boundary complex is isomorphic to C.

Example 3.5. • 2-polytopes are exactly convex planar polygons and are simplicial.
• The octahedron (see Figure 3.3 left) is a 3-dimensional simplicial polytope.
• For any n ∈ N, the simplicial n-associahedron has polytopal realizations generi-

cally called geometric simplicial n-associahedron. Figure 3.3 (middle right) illustra-
tes a polytopal realization of the simplicial 3-associahedron.

The faces of a polytope are naturally ordered by inclusion, forming the face lattice of
the polytope. We refer to [Sta97, Sections 3.1 to 3.5] for background on posets and lat-
tices, and to [Zie95, Chapter 2] for more details on the face lattice. Given a polytope P,
there is a polytope P� called the polar dual of P, whose face lattice is dual to the face
lattice of P (see Figure 3.3). The polar dual of a simplicial polytope is called simple. The
polar duality is an involution, that is (P�)� = P, so that from a combinatorial point of
view, dealing with simplicial or simple polytopes is equivalent. For reasons explained in
Section 3.2.2, we prefer to work with simple polytopes. When P is simplicial, the graph
of P� is isomorphic to the dual graph of the boundary complex of P. In particular the
graph of the polar dual of the geometric simplicial associahedron is isomorphic to the

Figure 3.3 – From left to right: the octahedron and its polar dual (the cube), and a
geometric simplicial 3-associahedron Asso(3) and its polar dual.
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flip graph F(n) defined in Section 2.1.2 (see Figures 2.6 and 3.3 right). We abuse notati-
ons and still denote by Asso(n) any simple polytope whose graph is isomorphic to F(n).
The following result implies that the flip graph F(n) already carries all the combinato-
rial data of the associahedron Asso(n). This explains why we primarily considered this
flip graph itself as the associahedron.

Theorem 3.6 ([BM87, Kal88]). Two simple polytopes with isomorphic graphs have iso-
morphic face lattices. Equivalently two polytopal simplicial complexes with isomorphic
dual graphs are isomorphic.

3.2.2 Fans

We now present fans, that are in practice the main geometric objects of this thesis. The
definitions are very similar to those presented in Section 3.2.1. The notions of fans and
polytopes can indeed be treated in a common setting (see [Zie95]). However there are
important differences, in particular concerning simplicial complex realizations, that we
are interested in. We therefore choose a separate presentation.

We denote by R≥0V (resp. R>0V) the positive (resp. strictly positive) span of a set V
of vectors in Rd, namely the set of all linear combinations of elements of V with positive
(resp. strictly positive) coefficients. A polyhedral cone (or just a cone) is the positive
span of a finite set of vectors in Rd. Equivalently a cone is the intersection of finitely
many closed linear halfspaces. The dimension of a cone is the dimension of its linear
span. The faces of a cone are its intersections with its supporting hyperplanes, that is
the linear hyperplanes that do not strictly separate two of its elements. Faces of a cone
still are cones and the 1-dimensional faces of a cone are its rays. A cone is simplicial
if it is generated by independent vectors. A simplicial cone is generated by its rays and
any subset of its rays generates one of its faces.

A (polyhedral) fan is a set of cones closed by taking faces and such that any two of
them intersect in a common face. The maximal faces of the fan are its facets. A fan
is simplicial if all its cones are, and it is complete if the union of its cones covers the
whole space Rd. A simplicial fan F naturally defines a simplicial complex CF whose
vertices are the rays of F and whose faces are the subsets of rays generating the cones
of F . A simplicial complex C is then realizable as a fan if there exists a simplicial
fan F such that C is isomorphic to CF . The fan F is then called a fan realization of the
complex C. Figure 3.4 illustrates these notions.

1
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2 3 4 5
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Figure 3.4 – A simplicial fan in dimension 2 whose associated complex has fa-
cets {{4}, {1, 5}, {2, 3}} (left), a complete simplicial fan in dimension 2 realizing the
simplicial 2-associahedron (middle) and a simplicial fan in dimension 3 whose associa-
ted complex has facets {{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {6, 7, 8}} (right).
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A simplicial complex realizable by a complete simplicial fan is a sphere. Indeed
the intersection of the corresponding fan with the standard sphere in Rd provides a
topological realization of this complex. In particular a fan realizing a 1-codimensional
simplicial sphere is always complete. However simplicial spheres need not have fan
realizations in general (see for instance [Ewa96, Theorems 5.5 and 5.7]). To realize a
simplicial sphere as a complete simplicial fan, it suffices to find suitable coordinates for
generators of the rays corresponding to its vertices. These vectors then support (that is,
are the rays of) a complete simplicial fan realizing the complex if and only if a certain
condition on adjacent facets is satisfied.

Proposition 3.7 (see e.g. [DRS10, Corollary 4.5.20]). For a simplicial sphere C with
vertex set V and a set of vectors V := (vx)x∈V of Rd, the set of cones

{
R≥0Vf | f ∈ C

}
,

where Vf := {vx | x ∈ f}, forms a complete simplicial fan if and only if

1. there exists a facet F of C such that VF is a basis of Rd and such that the open
cones R>0VF and R>0VF ′ are disjoint for any facet F ′ of C distinct from F ;

2. for adjacent facets F, F ′ of C with F r {x} = F ′r {x′}, there is a linear dependence

αvx + α′ vx′ +
∑

y∈F∩F ′
βy vy = 0

on VF∪F ′ in which the coefficients α and α′ have the same sign (different from 0).
When these conditions hold, this linear dependence is unique up to rescaling.

In [DRS10, Corollary 4.5.20], Condition 1 is a special case of “property (IPP)” and Con-
dition 2 is a special case of “property (ICoP)”. Moreover the result stays true when stated
with Condition 1 holding for any facet. Proposition 3.7 is our main geometric tool. All
fan realizations in this thesis rely on it. Since our concern is only about realizing sphe-
res, by “fan realization” we mean from now on that the corresponding fan is complete.
Simplicial spheres realizable as fans are also called geodesic spheres.

Proposition 3.8. If C is a geodesic sphere, then so is the link lkC(f) of any face f ∈ C.

Proof. We already said that link of spheres are themselves spheres in Section 3.1, so
we only check here the conditions of Proposition 3.7 to prove that lkC(f) has a fan re-
alization. Let V be the vertex set of C and let {vx |x ∈ V} be a set of vectors in Rd
generating the rays of a fan realization of C. These vectors then satisfy the conditions
of Proposition 3.7. Let V be the orthogonal complement in Rd of the space span-
ned by {vx |x ∈ f} and p : Rd → V denote the orthogonal projection from Rd to V.
Consider the set of vectors {p(vx) |x ∈ lkC(f)} of V. These vectors clearly satisfy Con-
dition 2 of Proposition 3.7, since the corresponding linear dependence are obtained
by applying p to these between the vectors {vx |x ∈ V}. For Condition 1, consider
a facet F of lkC(f). By definition of the link, the set F ∪ f is a facet of C. In par-
ticular the set {vx |x ∈ F ∪ f} is a basis of Rd since it spans a simplicial cone of
full dimension. This implies that the set {p(vx) |x ∈ F} is a basis of V. Now sup-
pose, for sake of contradiction, that another facet F ′ of lkC(f) is such that the open
cones R>0{p(vx) |x ∈ F} and R>0{p(vy) | y ∈ F ′} are not disjoint, so that there are
strictly positive coefficients {αx |x ∈ F} and {βy | y ∈ F ′} such that∑

x∈F
αxp(vx) =

∑
y∈F ′

βyp(vy). (3.1)

As a vector in Rd, we can then expand the left hand side of Equation (3.1) in the
basis {vx |x ∈ F ∪ f} and its right hand side in the basis {vy | y ∈ F ′ ∪ f} to obtain∑

x∈F
α′xvx +

∑
z∈f

δzvz =
∑
y∈F ′

β′yvy +
∑
z∈f

γzvz. (3.2)
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Applying the projection p to both sides of Equation (3.2) yields back Equation (3.1), so
that α′x = αx > 0 for any x ∈ F and β′y = βy > 0 for any y ∈ F ′, since {p(vx) |x ∈ F}
and {p(vy) | y ∈ F ′} are both bases of V. Partitioning f := f1 t f2 according to the sign
of the coefficients λz := δz − γz in Equation (3.2), we finally obtain a linear dependence
with positive coefficient of the form∑

x∈F
αxvx +

∑
z∈f1

λzvz =
∑
y∈F ′

βyvy +
∑
z∈f2

λzvz.

This contradicts that the cones associated to the faces F ∪ f1 and F ′ ∪ f2 in the fan
realization of C intersect in a common face and concludes the proof. �

3.2.3 Flagness condition for the d-vector construction

As explained in Section 2.2.4, one of our main goals is to extend the d-vector con-
struction of the associahedron to other classes of simplicial spheres. We recall that this
construction is based on a compatibility degree (. ‖ .) on the diagonals of a polygon. We
look for extensions relying on the same principle and require, for cluster algebra moti-
vations, that our new “compatibility” degrees fulfill Condition 3 of Proposition G, namely
“nonequal vertices x and y belong to a common facet if and only if (x ‖ y) = (y ‖x) = 0”.
Let us now briefly explain why this can only be achieved for spheres that are flag.

Assume that there is some compatibility degree (. ‖ .) : V × V→ Z on the vertices of
a simplicial sphere C fulfilling Condition 3 of Proposition G. As in Section 2.2.4, given
any initial facet F ◦ = {x◦1, . . . , x◦n} of C and any vertex x of C, define the d-vector of x
with respect to F ◦ as the vector d(F ◦, x) := [(x◦1 ‖x), . . . , (x◦n ‖x)] in RF ◦ . Suppose that
for any facet F ◦ of C, the corresponding d-vectors support a complete simplicial fan
realizing C and assume, for sake of contradiction, that C is not flag. It means that there
is a minimal nonface f̄ ∈ 2V r C containing at least three vertices. Let us choose a
distinguished vertex x in f̄ . Since f̄ is a minimal nonface, there exists a facet F of C
containing f̄r{x}. We take the same notations as in the proof of Proposition 3.8, where
the face f is specified to f̄r{x}, the ambient space is RF and the vectors {vy | y ∈ V} are
the d-vectors with respect to F . By Condition 3 of Proposition G, all d-vectors of vertices
in lkC(f) already lie in V. In particular the orthogonal projection p : RF → V defined
in the proof of Proposition 3.8 is the identity function on these vectors, so that the set
of cones {d(F, r) | r vertex of lkC(f)} is a complete simplicial fan in V. This implies in
particular that any vector in V is a positive linear combination of the d-vectors of the
vertices of a face in lkC(f). Now for any vertex y in f , the vertices x and y belong to a face
of C, since f̄ is a minimal nonface. Therefore there must hold (y ‖x) = 0 for any y ∈ f by
Condition 3 of Proposition G, so that d(F, x) belongs to V. Thus there exists a face f ′ ∈
lkC(f) ⊆ C such that the intersection of the cones R≥0{d(F, y) | y ∈ f ′} and R≥0d(F, x)
is R≥0d(F, x), which is not a face of R≥0{d(F, y) | y ∈ f ′}. This contradicts that the d-
vectors with respect to F support a complete simplicial fan realizing C. �

3.2.4 The normal fan of a polytope

Given a d-polytope P in Rd and a face F of P, the normal cone of F is the cone N �P(F)
in the dual space (Rd)∗ of Rd defined by

N �P(F) := {φ ∈ (Rd)∗ |F = ArgmaxP(φ)},

where Argmax denotes the argument of the maxima operator. In words, the cone N �P(F)
is the set of linear functional whose restriction to P is maximized exactly at F. If P
contains the origin of Rd in its interior, it is interpreted as the sets of outgoing normal
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Figure 3.5 – The polar dual of a 2-associahedron (vertices are blue triangulations and
edges appear red) and its normal fan.

directions to F in Rd, hence the name. The normal fan F�(P) of P is defined by

F�(P) := {N �P(F) |F face of P} .
Figure 3.5 illustrates the normal fan of a simple 2-associahedron.

The normal fan of a polytope P is always complete and the inclusion order on its
faces is reverse to this on the faces of P. Moreover, if P is simple, then its normal fan
is simplicial. Since the polar dual P� of P also have a face lattice reverse to this of P,
both F�P and P� realize the same simplicial complex. In particular any simplicial com-
plex realizable as a polytope is also realizable as a complete simplicial fan. Again the
converse is not true (see for instance [DRS10, Section 7.1]). All proofs that some fans
are the normal fans of some polytopes rely on the following characterization, in con-
nection to regular triangulations of vector configurations and to the theory of secondary
polytopes [GKZ08] (see also [DRS10]). Equivalent formulations appear e.g. in [CFZ02,
Lemma 2.1], [Zel06, Proposition 6.3], [HLT11, Theorem 4.1], or [CSZ15, Lemma 5.4].
We follow the presentation of [CSZ15, Lemma 5.4] which fits our previous notations.

Proposition 3.9. Let F be a complete simplicial fan in Rd and let R denote a set of
vectors generating its rays. Then the following are equivalent:

1. F is the normal fan of a simple polytope in (Rd)∗;
2. There exists a map ω : R → R>0 such that for any two maximal adjacent co-

nes R≥0S and R≥0S′ of F with S,S′ ⊆ R and S r {s} = S′ r {s′}, we have

αω(s) + α′ ω(s′) +
∑

r∈S∩S′
βr ω(r) > 0, where α s + α′ s′ +

∑
r∈S∩S′

βr r = 0

is the unique (up to rescaling) linear dependence between the vectors in S ∪ S′
with α, α′>0.

Under these conditions, F is the normal fan of the polytope defined by{
φ ∈ (Rd)∗

∣∣∣ φ(r) ≤ ω(r) for all r ∈ R
}
.

The map ω of Proposition 3.9 is called a height function. Following [CSZ15], we
consider that two polytopes are normally equivalent if there is a linear isomorphism
sending the normal fan of the first one to the normal fan of the second one. The reason
of this choice is clear from the similar formulations of Propositions 3.7 and 3.9. Indeed
if two simplicial fans F and F ′ are linearly isomorphic, then any valid height function
for F ′ provided by Proposition 3.9 is also valid for F , because the linear dependences
of Proposition 3.7 between the rays of F and of F ′ are the same. So when caring about
geometric realizations, it is natural first to try to construct many fans before looking for
the corresponding polytopes, and then classify polytopes up to normal equivalence.
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4
Context and motivations

4.1 Introduction

In this first part, we deal with the family of nestohedra (called nested polytopes in [Zel06])
introduced by A. Postnikov [Pos09] and E.M. Feichtner and D. Kozlov [FK04]. We are
interested in these polytopes first because permutahedra and associahedra appear as
particular instances of nestohedra. Secondly we want to formalize and deepen the idea
that the boundary complexes of nestohedra behave analogously to finite type cluster
complexes, according to previous remarks of A. Zelevinsky.

A. Zelevinsky [Zel06]: “Our aim is to bring into focus the striking similarity
between nested complexes and associated fans and polytopes on one side,
and cluster complexes and generalized associahedra [...] on the other side.”

Nestohedra include the class of graph associahedra defined by M. Carr and S. L. De-
vadoss [CD06], which naturally generalize the classical associahedra. Most results that
follow concern this particular family, as it really seems to constitute a shadow of finite
type cluster complexes among nestohedra.

A. Zelevinsky [Zel06]: “For them an analogy with cluster complexes becomes
sharper: in particular, the corresponding nested complex is a clique complex.”

In this first chapter, we define nestohedra and graph associahedra, and give a few
motivations for studying them. In particular we briefly discuss Laurent Phenomenon
algebras, introduced by T. Lam and P. Pylyavskyy [LP16a, LP16b]. These algebras play
the same role for a class of nestohedra (including graph associahedra) as this played by
cluster algebras for generalized associahedra.

Chapter 5 gathers the results of [MP15] on combinatorial properties of the 1-skeleton
of graph associahedra, with some extensions to general nestohedra. Namely we give
structural properties and bounds on its diameter, and some of its geodesics. Chapter 5
also contains the characterization of nested complexes that decompose as joins of other
simplicial complexes, which is not in [MP15].

Finally we describe in Chapter 6 a d-vector-like construction of fans realizing graph
associahedra presented in [MP17a]. These realizations are meaningful since for in-
stance they recover the d-vector construction of generalized associahedra of types A
and B/C. Moreover we classify all isomorphisms of graphical nested complexes, which
in return allows us to classify our realizations up to geometric (normal) equivalence.
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4.2 Definition of nestohedra and first properties

In [Pos09], A. Postnikov defines generalized permutahedra as the polytopes obtained
from the classical permutahedron Perm(n) = conv((σ(1), . . . , σ(n + 1))|σ ∈ Sn+1) by
relaxing the constant terms in the inequalities defining its facets. Informally, a gene-
ralized permutahedron is a polytope obtained by moving facets of Perm(n) along their
normal rays. We will concentrate on the subclass of generalized permutahedra cal-
led nestohedra. A polytope in this class can be described by a combinatorial data called
a building set. According to E.M. Feichtner and D. Kozlov [FK04], this notion first ap-
peared in works of W. E. Fulton and R. MacPherson [FM94] and C. De Concini and
C. Procesi [DP95], but with definitions depending upon geometric objects. The purely
combinatorial definitions of building sets and their nested complexes were indepen-
dently introduced by A. Postnikov [Pos09] and E.M. Feichtner and D. Kozlov [FK04]. We
refer to [CD06, FS05, Pos09, Zel06] for more details and motivations on building sets
and related structures. We mostly follow the presentation of A. Postnikov [Pos09].

Definition 4.1. Let V be a finite set. A building set on the ground set V is a set B ⊆ 2V

of subsets of V satisfying the two following conditions.

(B1) If b, b′ ∈ B and b ∩ b′ 6= ∅, then b ∪ b′ ∈ B, and

(B2) the set B contains all singletons {v} for v ∈ V.

For instance, if G is a simple graph with vertex set V, then the subsets of V inducing
the connected subgraphs of G form a (graphical) building set. We describe these parti-
cular building sets in more detail in Section 4.3. We denote by Bmax the set of inclusion
maximal elements of B. The building set B is connected if Bmax is a singleton, in which
case Bmax = {V}. A B-nested set (or a nested set on B) on B is a subset N of B such that

(N1) for any n, n′ ∈ N, either n ⊆ n′ or n′ ⊆ n or n ∩ n′ = ∅, and

(N2) for any k > 1 pairwise disjoint sets n1, . . . , nk ∈ N, the union n1∪. . .∪nk is not in B.

Definition 4.2. The B-nested complex is the (|V| − |Bmax|)-dimensional simplicial com-
plex N (B) of all nested sets on B containing only elements in B r Bmax.

For a building set B and an element b ∈ B, the restriction of B to b is the building set

B|b :=
{
b′
∣∣ b′ ∈ B, b′ ⊆ b

}
.

Observe that for a nonconnected building set B, the nested complex N (B) is the join
of the nested complexes B|bmax of all restrictions of elements bmax ∈ Bmax. Conver-
sely for building sets B1, . . . ,Bk on disjoint ground sets V1, . . . ,Vk, the disjoint union
of B1, . . . ,Bk is the building set B1 t · · · t Bk on the ground set V1 t · · · t Vk.

Examples 4.3. Relevant examples of nested complexes include
• simplexes, that are nested complexes corresponding to building sets of minimal

size, namely building sets of the form {{v} | v ∈ V} ∪ {V},
• the classical permutahedron Perm(n), which corresponds to the nested complex of

the building set of maximal size, namely the building set 2[n+1],
• the classical associahedron Asso(n) is the nested complex of the building set con-

sisting in all intervals of [n+ 1].
The permutahedron and the associahedron have in fact a little more structure as they
appear to be graph associahedra (see Figure 4.2 in Section 4.3). These two examples
are treated in more detail in Section 6.3.

Nested complexes are relevant to many extends, one of which being that they admit
beautiful and meaningful geometric realizations as polytopes.
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Theorem 4.4 ([FS05, Pos09, Zel06]). For any building set B, the nested complex N (B)
is realizable as the boundary complex of a convex polytope, called a nestohedron, and
generically denoted by Nest(B).

Let us briefly describe the construction of A. Postnikov [Pos09] in order to to high-
light a relevant fact on nested complexes. Let B be a building set on [n + 1] for an
integer n. Let 4[n+1] denote the standard simplex of Rn+1 and 4I denote the face
of 4[n+1] corresponding to a subset I ( [n+ 1]. Let Nest(B) denote the Minkowski sum
of all simplexes 4b for all b ∈ B, that is

Nest(B) :=
∑
b∈B
4b.

Then Nest(B) is a simple polytope whose polar dual realizes the nested complex N (B)
(see Figure 4.4 for an illustration). We come back to this construction in Section 6.1.1.

Proposition 4.5 (e.g. [FK04, Theorem 3.4][FM04, Theorem 4.2]). Any nested complex
can be obtained by successive stellar subdivisions of a simplex.

Proof. (Sketch). Let P be the Minkowski sum of 4[n+1] and some of its faces, and I be
a proper subset of [n + 1]. Suppose that the affine hull of 4[n+1]rI is directed by the
same vector space as this directing the affine hull of a face F of P. One can then show
that the Minkowski sum of P and 4I is combinatorially isomorphic to the polytope
obtained by truncating the face F of P. Now for simple polytopes, face truncations
correspond to stellar subdivisions of the corresponding dual face in the dual of their
boundary complex. Since connected nested complexes are the dual complexes of po-
lytopes constructed as Minkowski sums of 4[n+1] and of some faces of it, and since
the Minkowski sum is commutative, we can show the result for connected nested com-
plexes by induction on the number of summands, starting with higher dimensional
ones (see [CD06, Lemma 2.15] for details on this method). As nonconnected nested
complexes are joins of connected nested complexes, we are done. �

4.3 Graph associahedra

We now present a rich family of nested complexes, namely the class of graphical nested
complexes (or graph associahedra). They were introduced by M. Carr and S. Deva-
doss in [CD06] in connection to C. De Concini and C. Procesi’s wonderful arrange-
ments [DP95]. To study these complexes, we introduce a more specific terminology,
following the presentation of [CD06]. Given a simple graph G with vertex set V, we
denote by κ(G) the set of connected components of G, and by G[U ] the subgraph of G
induced by a subset U of V.

A tube of G is a nonempty subset t of vertices of G inducing a connected subgraph G[t]
of G. The inclusion maximal tubes of G are its connected components, whose set we de-
note by κ(G); all other tubes are called proper. The set of all tubes of G is denoted B(G).
It is clearly a building set, called the graphical building set of G. Two tubes t, t′ of G are
compatible if they are either nested, that is t ⊆ t′ or t′ ⊆ t (Conditions N1), or disjoint
and nonadjacent, that is t ∪ t′ is not a tube of G (Condition N2). A tubing on G is a
set T of pairwise compatible proper tubes of G. The collection of all tubings on G then
coincides with the nested complex of the graphical building set B(G), called the nested
complex of G and denoted by N (G). We say that a nested complex is graphical if the
underlying building set is a graphical building set. We already know by Theorem 4.4
that the complex N (G) is isomorphic to the dual boundary complex of a simple convex
polytope. This result was already proved for graphical nested complexes by M. Carr and
S. Devadoss [CD06]. In this case this polytope is also called the graph associahedron
of G, and is denoted by Asso(G).
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Figure 4.1 – A tube t◦ex of G◦ex (left) and a maximal tubing T◦ex on G◦ex (right).

Example 4.6. We illustrate the previous notions with an example (see Figure 4.1), that
we follow here and in Chapter 6. We have represented a graph G◦ex on the left with a
tube t◦ex := {a, b, d, f, g, h, i, k, l}, and a maximal tubing T◦ex on G◦ex on the right.

Example 4.7 (Classical polytopes). For certain families of graphs, graph associahedra
specialize to classical polytopes (see Figure 4.2):

(i) the path associahedron Asso(Pn+1) coincides with the n-associahedron,
(ii) the cycle associahedron Asso(On+1) coincides with the n-cyclohedron,
(iii) the complete graph associahedron Asso(Kn+1) coincides with the n-permutahedron.
A more detailed treatment of these specific families of graph associahedra is done in
Sections 6.3.2, 6.3.3 and 6.3.4 respectively.

Remark 4.8. Note that B(G)max = κ(G) so that the building set B(G) is connected if and
only if G is. In particular if G has connected components Gi for i ∈ [k], then the graph
associahedron Asso(G) is isomorphic to the Cartesian product Asso(G1)×· · ·×Asso(Gk).

Let n = |V| − |κ(G)|. The nested complex N (G) is an (n − 1)-dimensional sphere,
and so a pseudo-manifold in particular. This induces a flip operation, described in
Proposition 5.2: in any maximal tubing T on G, any tube t can be replaced by a unique
other tube t′ of G such that T∪ {t′}r {t} is still a maximal tubing on G. A flip is a pair
of distinct maximal tubings T,T′ on G such that Tr{t} = T′r{t′} for some tubes t ∈ T
and t′ ∈ T′. The dual graph of N (G) is the flip graph of G, denoted by F(G), whose
vertices are maximal tubings on G and whose edges are flips between them.

Example 4.9. Figure 4.3 illustrates the flip between two maximal tubings T◦ex and T′ex
on G◦ex. The flipped tubes t◦ex = {a, b, c, d, f, g, h, k, l,m} and t′ex = {c, d, e, h, i,m} are
dashed red, the forced tubes (see Section 6.2.1) are green.

We saw in Section 2.2.4 that we are interested in giving many nonequivalent geome-
tric realizations of nested complexes using d-vector-like constructions (which is done
in Chapter 6). As explained in Section 3.2.2, such a strategy cannot be successfully
applied to nonflag complexes. Graph associahedra are defined as clique complexes of
a certain compatibility relation, and so are flag by definition. But graphical nested
complexes are far from being the only flag nested complexes, even up to isomorphism.

Example 4.10. Consider the path P4 with ground set {1, 2, 3, 4}. The nested com-
plex N (Bex) of the building set Bex = B(P4) ∪ {1, 2, 4} is flag, connected and it has one
more facet than the associahedron Asso(4). From the realization of Nest(Bex) presented
in Figure 4.4 and the explicit description of all 3-dimensional connected graph associa-
hedra given in Appendix A (Figure A.10), we obtain that N (Bex) is not isomorphic to a
graphical nested complex. A quick way to check it consists in observing that no graph
associahedron has the same number of facets as Nest(Bex).
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Figure 4.2 – The classical associahedron (top left) is the path associahedron (top right),
the cyclohedron (middle left) is the cycle associahedron (middle right) and the permu-
tahedron (bottom left) is the complete graph associahedron (bottom right).
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Figure 4.3 – The flip between two maximal tubings T◦ex and T′ex on G◦ex.
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Figure 4.4 – The nestohedron Nest(Bex) is not isomorphic to a graph associahedron.

Example 4.10 can be generalized to any connected graph G containing a vertex v ∈ V
such that G[V r v] is not connected: for such graph, the set B = {V r {v}} ∪ B(G) is a
building set, and N (B) can clearly be obtained from N (G) by applying a stellar subdi-
vision on the face containing the tubes inducing the connected components of G[Vrv].
If v disconnects G into exactly two connected components, then the stellar subdivision
is applied to an edge of N (G), which preserves flagness. In this case N (B) is flag and
contains exactly one vertex more than N (G). Observe that N (G) is a natural subcom-
plex of N (B). We can then check that N (B) is not isomorphic to a graphical nested
complex. Indeed the description of isomorphisms between graphical nested complexes
given in Section 6.4.2 implies that a connected graph G′ such thatN (B) ∼= N (G′) would
contain a strict subgraph isomorphic to G, and thus that |B(G′)| > |B|, a contradiction.

The only study concerning flag nested complexes that we are aware of is a paper of
V. Volodin [Vol10], where flag nestohedra are realized by successive truncations of 2-
codimensional faces of a cube. Dealing with general flag nested complexes is not easy
and it is a challenging question to provide relevant and useful characterizations for
them. However we still understand them more than nonflag nested complexes, that
only admit a single (up to equivalence) known polytopal realization each, as explained
in Section 6.1.1. A family of nonflag nested complexes is presented in Section 4.4.2.

4.4 Laurent phenomenon algebras

In Chapters 5 and 6, we will respectively be concerned with combinatorial and geometric
considerations on graphical nested complexes. Following the very same triad motivation
as before, we conclude this chapter with some more algebraic motivations. Recently
T. Lam and P. Pylyavskyy [LP16a, LP16b] defined Laurent Phenomenon algebras (or LP-
algebras), in order to generalized cluster algebras. The definition of LP-algebras is
similar to that of cluster algebras, namely a LP-algebra is an algebra generated by a
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set of variables grouped into clusters, that are the vertices of an exchange graph, the
edges of which are still called mutations. The difference is that mutations are not any
more encoded by mutation matrices, rather by exchange polynomials attached to each
variable in each cluster1. The precise definitions related to clusters and the mutation
process are technical and since we will not use them, we simply refer to [LP16a] for the
detailed presentation of LP-algebras. LP-algebras exhibits many common properties
with cluster algebras, among which two particularly interest us.

Theorem 4.11 (Laurent Phenomenon [LP16a, Theorem 5.1]). LetA be a LP-algebra and
let X◦ be any initial seed of A. Any cluster variable of A is a Laurent polynomial in the
variables contained in X◦.

In particular, there is a natural notion of d-vectors associated to any initial seed of a
LP-algebra, just as in cluster algebras. For now very few is known about these vectors
for general LP-algebras. The second property that we are interested in is the possibility,
as in cluster algebras, to freeze a cluster variable [LP16a, Section 3.5]. Namely all seeds
that can be obtained by mutations from an initial one X◦ = {(x1, P1), . . . , (xm, Pm)}
without mutating the variable x1 are the vertices of a graph isomorphic to the mutation
graph of a new LP-algebra. But it does not mean that the class of cluster complexes of
LP-algebras is closed under links. Even if it is reasonable to believe it, it is not known
so far that links are connected in such cluster complexes.

As for cluster algebras, we focus our interest on mutation graphs of LP-algebras that
are finite. Until now, we are not aware of any characterization of such complexes. From
the point of view presented in this thesis, LP-algebras are interesting to many extends.

4.4.1 Unification

As we just mentioned, we expect finite cluster complexes of LP-algebras to be closed
under links. Since all classes of complexes that we consider in this thesis have this
same property, it allows to hope of defining related LP-algebra structures in order to
unify them in a natural common framework. We have seen in Proposition 4.5 that
nested complexes can be obtained from a simplex by successive stellar subdivisions
of faces, a property that is either known or conjectured for almost all combinatorial
structures studied in this thesis. This raises the following question.

Question 4.12. For a cluster complex C of a LP-algebra and a face F of C, is the stellar
subdivision stellC(F ) isomorphic to the cluster complex of a LP-algebra?

Question 4.12 seems to be hard in general. Indeed even if stellar subdivisions are
local operations, building a LP-algebra with a prescribed cluster complex requires a
strong control on all its seeds. As we recently studied LP-algebras of rank 2 both theo-
retically and computationally, it seemed that the answer to Question 4.12 is negative,
or “at least for sufficiently generic LP-algebras”. For them it is possible to show that
the only finite cluster complexes of dimension 1 are the triangle, the square, the pen-
tagon, the hexagon and the octagon. Yet nongeneric examples give rise to other cluster
complexes with much more than 8 seeds.

4.4.2 Some nested complexes are cluster complexes

There are some hints towards a classification of finite cluster complexes of LP-algebras.
One of them is that graph associahedra appear as instances of finite cluster complexes
of some LP-algebras. In [LP16b], T. Lam and P. Pylyavskyy study in more detail linear
LP-algebras, that is those LP-algebras in one of whose clusters, all polynomials attached
to cluster variables are of degree 1. They show the following result.

1That is the exchange polynomial attached to a variable depends on the cluster in which this variable is
considered and it is updated along mutations.
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Theorem 4.13 ([LP16b, Theorem 1.1]). Let A be a LP-algebra such that all exchange
polynomials in a given cluster X have degree 1, nonconstant coefficients in {0, 1}, and
algebraically independent constant coefficients. The cluster complex of A is finite.

T. Lam and P. Pylyavskyy are even able to describe the cluster complexes of such LP-
algebras. Some cluster complexes of linear LP-algebras are the design graphical nested
complexes that are defined and studied in Section 6.4.4. The only relevant fact for our
current concern is that graphical nested complexes are (connected) links of them, so
that they also are the cluster complexes of some LP-algebras. Nevertheless one should
again be careful with this statement as, contrarily to cluster algebras, it does not mean
that they fully describe a unique LP-algebra structure [LP16b, Section 6.2].

In fact, any nested complex has a “design” version, but once more we do not need
it for technical purposes so that we skip the proper definition. The cluster complexes
of linear LP-algebras that are not design graphical nested complexes however still are
design nested complexes of some building sets, namely those consisting of strongly
connected components of a certain directed graph. We mention them for completeness
and in order to present the only class of nonflag nested complexes encountered in this
thesis. For a directed graph G on a vertex set V, we keep denoting by B(G) the building
set consisting in the subsets of V inducing strongly connected components of G. No-
tice that undirected graphs are naturally identified to some instances of this class by
replacing each of their undirected edge by a pair of opposite directed edges. Suppose
that G contains a directed cycle v1 → · · · → vk → v1 of length at least 3, then the nested
complex N (G) is not flag. Indeed the set {v1, . . . , vk} belongs to B(G) but none of its
proper subsets of cardinality at least 2 does, meaning that the simplex {{v1}, . . . , {vk}}
is a minimal nonface of N (G). In fact the following straightforward characterization of
nonflag “digraphical” nested complexes holds.

Lemma 4.14. Let G be a simple digraph. LetM(G) be the graph whose vertices are the
strongly connected induced subgraphs of G and where t1 → t2 is an edge if t1 ∩ t2 = ∅
and there is an edge in G from a vertex in t1 to a vertex in t2. Then N (G) is flag if and
only ifM(G) does not contain any induced directed cycle of length at least 3.

Proof (Sketch). The proof follows the same lines as before, replacing vi’s by ti’s in a
directed induced cycle ofM(G) for the “if” part. For the “only if” part, one derives easily
from the direct translation of having a minimal nonface in N (G) that no t in such a
nonface can have indegree nor outdegree at least 2 inM(G). �

Question 4.15. Are all nested complexes the cluster complexes of some LP-algebras?

4.4.3 Towards a d-vector construction

To conclude this chapter, recall the existence of d-vectors, implied by the Laurent phe-
nomenon (Theorem 4.11). Preliminary computations indicate that these vectors do not
behave as comfortably as in finite type cluster algebras. In particular their entries do
depend on the whole initial seed, and not separately from each initial variable. Even
worse, their entries cannot encode compatibility of cluster variables in flag cluster com-
plexes. Indeed, even in this case, if an initial variable x◦ and another cluster variable x
belong to a common cluster, the exponent of x◦ in x need not be 0, depending on the
initial cluster X◦. However our experiments suggest that for linear LP-algebras, the d-
vectors still support a complete simplicial fan realizing the cluster complex.

Question 4.16. For which LP-algebras A with finite cluster complex, and for which
initial clusters X◦, do the d-vectors calculated with respect to X◦ support a complete
simplicial fan realizing the cluster complex of A?
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Graph properties of
graph associahedra

5.1 Introduction

5.1.1 Motivations

In this chapter, we consider graph properties, namely the diameter, decomposition in
Cartesian products and Hamiltonicity, of the flip graphs of nested complexes. For the n-
permutahedron, the diameter of the transposition graph is the number

(n+1
2
)

of inver-
sions of the longest permutation of [n + 1]. Moreover, H. Steinhaus [Ste64], S. John-
son [Joh63], and H. Trotter [Tro62] independently designed an algorithm to construct
a Hamiltonian cycle of this graph. On the other hand, the diameter of the associ-
ahedron motivated intensive research and relevant approaches, involving volumetric
arguments in hyperbolic geometry [STT88] and combinatorial properties of Thompson’s
groups [Deh10]. Recently, L. Pournin gave a purely combinatorial proof that the dia-
meter of the n-associahedron is precisely 2n − 4 as soon as n ≥ 9 [Pou14]. Moreover
J. Lucas [Luc87] proved that its graph is Hamiltonian, after which F. Hurtado and
M. Noy [HN99] obtained a simpler proof of this result, using a hierarchy of triangulati-
ons organizing all triangulations of convex polygons into an infinite generating tree.

5.1.2 Overview

Motivated by the examples of the associahedron and the permutahedron, we prove in
this chapter structural properties, bounds of the diameter and some geodesic properties
of the flip graphs of graph associahedra and nested complexes. Based on an inductive
decomposition of graph associahedra, we also show the following statement.

Theorem 5.1. For a graph G with at least two edges, the flip graph F(G) is Hamiltonian.

If the strategy of the proof of Theorem 5.1 is quite elegant, its actual formalization
has to go through heavy case analyses. Therefore we delay the section devoted to it
to Appendix A. In Section 5.2, we give additional preliminaries on graph associahedra.
In Section 5.3, we study diameter and geodesic properties of the flip graphs of graph
associahedra, with some extensions to general nested complexes. Finally we characte-
rize in Section 5.4 those nested complexes that decompose into joins of other simplicial
complexes.
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5.2 Preliminaries

5.2.1 Proper and nonproper tubes

Until now, we did not pay that much attention about the distinction between proper
and nonproper elements of building sets that we encountered. These notions will howe-
ver be very helpful in order to clarify the presentation of Section 5.3.

We consider a simple graph G with vertex set V and κ connected components. A
tube is proper if it does not induce a connected component of G. A tubing is proper
if it contains only proper tubes and loaded if it contains B(G)max. Since inclusion
maximal tubes are compatible with all tubes, we can transform any tubing T into a
proper tubing T r B(G)max or into a loaded tubing T ∪ B(G)max, and we switch along
the chapter to whichever version better suits the current purpose. Observe by the way
that maximal tubings are automatically loaded. Figure 5.1 illustrates these notions on
a graph with 9 vertices.
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Figure 5.1 – from left to right: a proper tube, a tubing, a maximal proper tubing, and a
maximal (loaded) tubing.

With this terminology the nested complex N (G) is the set of all proper tubings on G,
and the flip graph F(G) is the graph whose vertices are the maximal proper tubings
on G and whose edges connect maximal proper tubings related by a flip. We refer to
Figures 4.3 and 5.2 for illustrations, and to Section 5.2.3 for a description of flips in
tubings. To avoid confusion, we always use the term edge for the edges of the graph G,
and the term flip for the edges of the flip graph F(G). To simplify the presentation, it
is sometimes more convenient to consider the loaded flip graph, obtained from F(G) by
loading all its vertices with B(G)max, and that we abusively still denote by F(G). Note
that only proper tubes can be flipped in each maximal tubing on the loaded flip graph.

5.2.2 Spines

Spines provide convenient representations of the tubings on G. For a tubing T on G and
a tube t of T ∪ κ(G), we define λ(t,T) := t r

⋃
t′∈T,t′(t t′. The sets λ(t,T) for t ∈ T ∪ κ(G)

form a partition of the vertex set of G. When T is a maximal tubing, each set λ(t,T)
contains a unique vertex of G that we call the root of t in T. The spine S of T is the
Hasse diagram of the inclusion poset on T∪ B(G)max, where the node corresponding to
a tube t ∈ T∪B(G)max is labeled by λ(t,T) (see Figure 5.2 for an illustration). Spines are
called B(G)-forests in [Pos09] and can be defined in full generality for nested complexes.

For a tubing T on a graph G, with associated spine S, the compatibility condition
on the tubes of T implies that S is a rooted forest, where roots correspond to elements
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of B(G)max. The tubes of T ∪ B(G)max are the descendants sets desc(s, S) of the nodes s
of the forest S, where desc(s, S) denotes the union of the labels of the descendants of s
in S, including s itself. The tubing T ∪ B(G)max is maximal if and only if all labels are
singletons, and we then identify nodes with their labels (see again Figure 5.2).

Let T, T̄ be tubings on G with corresponding spines S, S̄. Then T̄ ⊆ T if and only if S̄
is obtained from S by edge contractions. We say that S refines S̄, that S̄ coarsens S, and
we write S̄ ≺ S. Given any node s of S, we denote by Ss the subspine of S induced by all
descendants of s in S, including s itself.

5.2.3 Flips

As already mentioned, the nested complex N (G) is a sphere, which induces a natural
flip operation on maximal proper tubings on G: for any maximal proper tubing T on G
and any tube t ∈ T, there is a unique proper tube t′ /∈ T of G such that T′ := T4{t, t′}
is again a proper tubing on G. We denote this flip by T↔ T′. The flip operation is then
described by the following proposition, whose proof is left to the reader.

Proposition 5.2. Let t be a tube in a maximal tubing T on G, and let t be the in-
clusion minimal tube of T ∪ κ(G) which strictly contains t. Then the unique tube t′
such that T′ = T4{t, t′} is again a maximal tubing on G is the connected component
of G[t r λ(t,T)] containing λ(t,T).

Remark 5.3. For the same reasons as for graph associahedra, there is a notion of
flips on maximal elements of any nested complex, that can be described exactly as in
Proposition 5.2. Again we choose to state Proposition 5.2 only for graph associahedra
since we will not need it in other contexts.

This description of flips translates to spines as follows. The flip between the tu-
bings T and T′ corresponds to a rotation between the corresponding spines S and S′.
This operation is local: it only perturbs the nodes v and v′ and their children. More pre-
cisely, v is a child of v′ in S, and becomes the parent of v′ in S′. Moreover, the children
of v in S contained in t′ become children of v′ in S′. All other nodes keep their parents.
Figure 5.2 illustrates a flip both on tubings and spines.
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Figure 5.2 – The flip of a proper tube (shaded, red) in a maximal tubing seen both on
the tubings and on the corresponding spines.
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5.3 Diameter

Let δ(F(G)) denote the diameter of the flip graph F(G). For example, for the complete
graph Kn+1, the diameter of the n-dimensional permutahedron is δ(F(Kn+1)) =

(n+1
2
)
,

while for the path Pn+1, the diameter of the classical n-dimensional associahedron
is δ(F(Pn+1)) = 2n − 4 for n > 9, by results of [STT88, Pou14]. We discuss in this
section properties of the diameter δ(F(G)) and of the geodesics in the flip graph F(G).
The results of Section 5.3.1 are extended to nestohedra in Section 5.3.2. We prefer to
present the ideas first on graph associahedra as they prepare the intuition for the more
technical proofs on nestohedra.

5.3.1 Nondecreasing diameters

Our first purpose is to show that δ(F(·)) is nondecreasing.

Theorem 5.4. δ(F(Ḡ)) ≤ δ(F(G)) for any two graphs G, Ḡ such that Ḡ ⊆ G.

Remark 5.5. We could prove this statement by a geometric argument. Indeed, in
the same spirit as this of Proposition 4.5, one could show that the graph associahe-
dron Asso(G) can be obtained from the graph associahedron Asso(Ḡ) by successive face
truncations. Geometrically, this operation replaces the truncated face F by its Car-
tesian product with a simplex of codimension dim(F) + 1. Therefore, a path in the
graph of Asso(G) naturally projects to a shorter path in the graph of Asso(Ḡ). Even if
the geometric formulation is much more intuitive, our proof is a purely combinatorial
translation of it, which has the advantage to help formalizing the argument.

Observe first that deleting an isolated vertex in G does not change the nested com-
plex N (G). We can thus assume that the graphs G and Ḡ have the same vertex set
and that Ḡ = G r {(u, v)} is obtained by deleting a single edge (u, v) from G. We define
below a map Ω from tubings on G to tubings on Ḡ which induces a surjection from the
flip graph F(G) onto the flip graph F(Ḡ). For consistency, we use t and T for tubes
and tubings of G and t̄ and T̄ for tubes and tubings of Ḡ.

Given a tube t of G (proper or not), define Ω(t) to be the coarsest partition of t into
tubes of Ḡ. In other words, Ω(t) = {t} if (u, v) is not an isthmus of G[t], and otherwise
Ω(t) = {t̄u, t̄v} where t̄u and t̄v are the vertex sets of the connected components of Ḡ[t]
containing u and v respectively. For a set of tubes T of G, define Ω(T) :=

⋃
t∈T Ω(t). See

Figure 5.3 for an illustration.

Lemma 5.6. For any tubing T on G, the set Ω(T) is a tubing on Ḡ and |T| ≤ |Ω(T)|.

Proof. It is immediate to see that Ω sends tubings on G to tubings on Ḡ. We prove
by induction on |T| that |T| ≤ |Ω(T)|. Consider a nonempty tubing T, and let t be an
inclusion maximal tube of T. By induction hypothesis, |Tr {t}| ≤ |Ω(Tr {t})|. We now
distinguish two cases:

(i) If (u, v) is an isthmus of G[t], then Ω(t) = {t̄u, t̄v} 6⊆ Ω(T r {t}). Indeed, since t̄u
and t̄v are adjacent in G, two tubes of T whose images by Ω produce t̄u and t̄v must
be nested. Therefore, one of them contains both t̄u and t̄v, and thus equals t = t̄u∪t̄v
by maximality of t in T.

(ii) If (u, v) is not an isthmus of G[t], then Ω(t) = {t} 6⊆ Ω(T r {t}). Indeed, if t′ ∈ T is
such that t ∈ Ω(t′), then t ⊆ t′ and thus t = t′ by maximality of t in T.

We conclude that |Ω(T)| ≥ |Ω(T r {t})|+ 1 ≥ |T r {t}|+ 1 = |T|. �
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Figure 5.3 – Two maximal tubings (left and middle) with the same image by the map Ω
(right). The middle tubing is the preimage of the rightmost tubing obtained by the
process decribed in the proof of Corollary 5.7 with u = 6 and v = 8.

Corollary 5.7. The map Ω induces a graph surjection from the loaded flip graph F(G)
onto the loaded flip graph F(Ḡ), i.e. a surjective map from maximal tubings on G to
maximal tubings on Ḡ such that adjacent tubings on G are sent to identical or adjacent
tubings on Ḡ.

Proof. Let T̄ be a tubing on Ḡ. If all tubes of T̄ containing u also contain v (or the
opposite), then T̄ is a tubing on G and Ω(T̄) = T̄. Otherwise, let T̄u denote the set
of tubes of T̄ containing u but not v and t̄v denote the maximal tube containing v but

not u. Then (T̄ r T̄u) ∪
{

t̄u ∪ t̄v
∣∣∣ t̄u ∈ T̄u

}
is a tubing on G whose image by Ω is T̄.

See Figure 5.3 for an illustration. The map Ω is thus surjective from tubings on G to
tubings on Ḡ. Moreover, any preimage T◦ of a maximal tubing T̄ can be completed
into a maximal tubing T with Ω(T) ⊇ Ω(T◦) = T̄, and thus satisfying Ω(T) = T̄ by
maximality of T̄.

Remember that two distinct maximal tubings on G are adjacent if and only if they
share precisely |V| − 1 common tubes. Consider two adjacent maximal tubings T,T′
on G, so that |T ∩ T′| = |V| − 1. Since Ω(T∩T′) ⊆ Ω(T)∩Ω(T′) and |Ω(T∩T′)| ≥ |T∩T′|
by Lemma 5.6, we have |Ω(T) ∩Ω(T′)| ≥ |T ∩ T′| = |V| − 1. The tubings Ω(T),Ω(T′) are
thus adjacent if |Ω(T) ∩ Ω(T′)| = |T ∩ T′| and equal if |Ω(T) ∩ Ω(T′)| > |T ∩ T′|. �

Remark 5.8. We can in fact precisely describe the preimage Ω−1(T̄) of a maximal tu-
bing T̄ on Ḡ as follows. As in the previous proof, let T̄u denote the chain of tubes of T̄
containing u but not v and similarly T̄v denote the chain of tubes of T̄ containing v
but not u. Any linear extension L of these two chains defines a preimage of T̄ where
the tubes of T̄u ∪ T̄v are replaced by the tubes

⋃
{t′ ∈ L | t′ ≤L t} for t ∈ L. In terms of

spines, this translates to shuffling the two chains corresponding to T̄u and T̄v. Details
are left to the reader.

Proof of Theorem 5.4. Consider two maximal tubings T̄, T̄′ on Ḡ. Let T,T′ be maxi-
mal loaded tubings on G such that Ω(T) = T̄ and Ω(T′) = T̄′ (surjectivity of Ω), and
T = T0, . . . ,T` = T′ be a geodesic between them (` ≤ δ(F(G))). Deleting repetitions in
the sequence T̄ = Ω(T0), . . . ,Ω(T`) = T̄′ yields a path from T̄ to T̄′ (Corollary 5.7) of
length at most ` ≤ δ(F(G)). So δ(F(G)) ≥ δ(F(Ḡ)). �
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5.3.2 Extension to nestohedra

The results of the previous section can be extended to the nested complex on an ar-
bitrary building set. Although the proofs are more abstract and technical, the ideas
behind are essentially the same.

For any building set B we call proper the elements of B r Bmax, where Bmax again
denotes the set of inclusion maximal elements of B.

As before, a B-nested set N is proper if N ∩ Bmax = ∅ and loaded if Bmax ⊆ N. The
nested complex N (B) is, with this terminology the set of all proper nested sets on B.
We denote by δ(F(B)) the diameter of the dual graph F(B) of Nest(B). As previously, it
is more convenient to regard the vertices of F(B) as maximal loaded nested sets.

The spine of a nested set N is the Hasse diagram of the inclusion poset of N ∪ Bmax.
Spines are called B-forests in [Pos09]. The definitions and properties of Section 5.2.2
extend to general building sets, see [Pos09] for details.

We shall now prove the following generalization of Theorem 5.4.

Theorem 5.9. δ(F(B̄)) ≤ δ(F(B)) for any two building sets B, B̄ on V such that B̄ ⊆ B.

The proof follows the same line as that of Theorem 5.4. We first define a map Ω which
transforms elements of B to subsets of B̄ as follows: for b ∈ B (proper or not), define Ω(b)
as the coarsest partition of b into elements of B̄. Observe that Ω(b) is well-defined
since B̄ is a building set, and that the elements of Ω(b) are precisely the inclusion maxi-
mal elements of B̄ contained in b. For a nested set N on B, we define Ω(N) :=

⋃
n∈N Ω(n).

The following statement is similar to Lemma 5.6.

Lemma 5.10. For any N ∈ N (B), the image Ω(N) belongs to N (B̄) and |N| ≤ |Ω(N)|.

Proof. Consider a nested set N on B. To prove that Ω(N) is a nested set on B̄, we start
with condition (N1). Let n̄, n̄′ ∈ Ω(N) and let n, n′ ∈ N such that n̄ ∈ Ω(n) and n̄′ ∈ Ω(n′).
Since N is nested, we can distinguish two cases:

• Assume that n and n′ are disjoint. Then n̄ ∩ n̄′ = ∅ since n̄ ⊆ n and n̄′ ⊆ n′.

• Assume that n and n′ are nested, e.g. n ⊆ n′. If n̄ ∩ n̄′ 6= ∅, then n̄ ∪ n̄′ is in B̄ and
is a subset of n′. By maximality of n̄′ in n′, we obtain n̄ ∪ n̄′ = n̄′, and thus n̄ ⊆ n̄′.

To prove Condition (N2), consider pairwise disjoint elements n̄1, . . . , n̄k ∈ Ω(N) with
respective preimages n1, . . . , nk ∈ N, that is n̄i ∈ Ω(ni) for all i ∈ [k]. We assume, for
sake of contradiction, that n̄ := n̄1 ∪ · · · ∪ n̄k ∈ B̄ and we prove that n := n1 ∪ · · · ∪ nk ∈ B.
Indeed, n̄, n1, . . . , nk all belong to B and n̄ ∩ ni 6= ∅ (it contains n̄i) so that n̄ ∪ n also
belongs to B by multiple applications of Property (B1) of building sets. Moreover, n̄ ⊆ n
so that n = n̄ ∪ n ∈ B. Finally, we conclude distinguishing two cases:

• If there is i ∈ [k] such that ni contains all nj , then ni contains all n̄j and thus n̄.
This contradicts the maximality of n̄i in ni since n̄i ( n̄ ∈ B̄.

• Otherwise, merging intersecting elements allows us to assume that n1, . . . , nk are
pairwise disjoint and n := n1 ∪ · · · ∪ nk ∈ B contradicts Condition (N2) for N.

This concludes the proof that Ω(N) is a nested set on B̄.
We now prove that |N| ≤ |Ω(N)| by induction on |N|. Consider a nonempty nes-

ted set N and let n◦ be an inclusion maximal element of N. By induction hypothesis,
|N r {n◦}| ≤ |Ω(N r {n◦})|. Let Ω(n◦) = {n̄1, . . . , n̄k}. Consider n1, . . . , nk ∈ N such
that n̄i ∈ Ω(ni), and let n := n1 ∪ · · · ∪ nk. As n◦, n1, . . . , nk all belong to B and n◦ ∩ ni 6= ∅
(it contains n̄i), we have n◦ ∪ n ∈ B by multiple applications of Property (B1) of building
sets. Moreover, n◦ ⊆ n so that n = n◦ ∪ n ∈ B. It follows by Condition (N2) on N that



5.3. DIAMETER 69

there is i ∈ [k] such that ni contains all nj , and thus n◦ ⊆ ni. We obtain that n◦ = ni by
maximality of n◦. We conclude that n◦ is the only element of N such that n̄i ∈ Ω(n◦), so
that |Ω(N)| ≥ |Ω(N r {n◦})|+ 1 ≥ |N r {n◦}|+ 1 = |N|. �

Corollary 5.11. The map Ω induces a graph surjection from the loaded flip graph F(B)
onto the loaded flip graph F(B̄), i.e. a surjective map from maximal nested sets on B to
maximal nested sets on B̄ such that adjacent nested sets on B are sent to identical or
adjacent nested sets on B̄.

Proof. To prove the surjectivity, consider a nested set N̄ on B̄. The elements of N̄ all
belong to B and satisfy Condition (N1) for nested sets. It remains to transform the
elements in N̄ which violate Condition (N2). If there is no such violation, then N̄ is a
nested set on B and Ω(N̄) = N̄. Otherwise, consider pairwise disjoint elements n̄1, . . . , n̄k
of N̄ such that n := n̄1 ∪ · · · ∪ n̄k is in B and is maximal for this property. Consider the
subset N̄′ :=

(
N̄ r {n̄1}

)
∪ {n} of B. Observe that:

• N̄′ still satisfies Condition (N1). Indeed, if n̄ ∈ N̄ is such that n ∩ n̄ 6= ∅, then n̄
intersects at least one element n̄i. Since N̄ is nested, n̄ ⊆ n̄i or n̄i ⊆ n̄. In the
former case, n̄ ⊆ n and we are done. In the latter case, n̄ and the elements n̄j
disjoint from n̄ would contradict the maximality of n.

• N̄′ still satisfies Ω(N̄′) = N̄. Indeed, n̄1 ∈ Ω(n) since Ω(n) = {n̄1, . . . , n̄k}. For the
latter equality, observe that {n̄1, . . . , n̄k} is a partition of n into elements of B̄ and
that a coarser partition would contradict Condition (N2) on N̄.

• n cannot be partitioned into two or more elements of N̄′. Such a partition would
refine the partition Ω(n), and would thus contradict again Condition (N2) on N̄.
Therefore, N̄′ has strictly less violations of Condition (N2) than N̄.

• All violations of Condition (N2) in N̄′ only involve elements of B̄. Indeed, pairwise
disjoint elements n̄′1, . . . , n̄′` ∈ N̄′ disjoint from n and such that n ∪ n̄′1 ∪ · · · ∪ n̄′` ∈ B
would contradict the maximality of n.

These four points enable us to decrease the number of violations of Condition (N2) until
we reach a nested set N on B which still satisfies Ω(N) = N̄.

The second part of the proof is identical to that of Corollary 5.7. �

From Corollary 5.11, the proof of Theorem 5.9 is identical to that of Theorem 5.4.

5.3.3 Geodesic properties

In this section, we focus on properties of the geodesics in the graphs of nestohedra. We
consider three properties for a face F of a polytope P:

NLFP F has the non-leaving-face property in P if F contains all geodesics connecting
two vertices of F in the graph of P.

SNLFP F has the strong non-leaving-face property in P if any path connecting two
vertices v, w of F in the graph of P and leaving the face F has at least two more
steps than a geodesic between v and w.

EFP F has the entering-face property in P if for any vertices u, v, w of P such that u /∈ F ,
v, w ∈ F , and u and v are neighbors in the graph of P, there exists a geodesic
connecting u and w whose first edge is the edge from u to v.
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Figure 5.4 – A geodesic (of length 2n) between two maximal tubings of the star that flips
their common tube (the central vertex).

For a face F of a polytope P, we have EFP ⇐⇒ SNLFP ⇒ NLFP. However, the
reverse of the last implication is wrong: all faces of a simplex have the NLFP (all vertices
are at distance 1), but not the SNLFP. Alternative counterexamples with no simplicial
face already exist in dimension 3. Among classical polytopes the n-dimensional cube,
permutahedron, associahedron, and cyclohedron all satisfy the EFP. The NLFP is further
discussed in [CP16].

Contrarily to the classical associahedron, not all faces of a graph associahedron
have the NLFP. A counterexample is given by the star with n branches: Figure 5.4
shows a path of length 2n between two maximal tubings T,T′, while the minimal face
containing T and T′ is an (n− 1)-dimensional permutahedron (see the face description
in [CD06, Theorem 2.9]) and the graph distance between T and T′ in this face is

(n
2
)
. It

turns out however that the following faces of the graph associahedra, and more gene-
rally of nestohedra, always have the SNLFP.

Lemma 5.12. We call upper ideal face of the nestohedron Nest(B) a face corresponding
to a loaded nested set N↑ that satisfies the following equivalent properties:

(i) any element of B not in N↑ but compatible with N↑ is contained in an inclusion minimal
element of N↑,

(ii) the set λ(n,N↑) := nr
⋃{

n′ ∈ N↑
∣∣∣ n′ ( n

}
is a singleton for any inclusion nonminimal

element n of N↑,

(iii) the forest obtained by deleting all leaves of the spine S↑ of N↑ forms an upper ideal
of any spine refining S↑.

Proof. We first prove that (i)⇒(ii). Assume that n ∈ N↑ is not inclusion minimal and
that λ(n,N↑) contains two distinct elements v, w ∈ V. One can then check that the
maximal element of B contained in n and containing v but not w is compatible with N↑,
but not contained in an inclusion minimal element of N↑. This proves that (i)⇒(ii).

Conversely, assume (ii) and consider b ∈ B not in N↑ but compatible with N↑.
Since N↑ is loaded, there exists n ∈ N↑ strictly containing b and minimal for this pro-
perty. Since b is compatible with N↑, we obtain that λ(n,N↑) contains at least one
element from b and one from n r b, and is thus not a singleton. It follows by (ii) that n
is an inclusion minimal element of N↑, and it contains b.
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The equivalence (ii) ⇐⇒ (iii) follows directly from the definition of the spines and
their labelings, and the fact that a nonsingleton node in a spine can be split in a refining
spine. �

Proposition 5.13. Any upper ideal face of the nestohedron Nest(B) satisfies SNLFP.

Proof. Consider an upper ideal face F of Nest(B) corresponding to the loaded nested
set N↑. We consider the building set B̄ ⊆ B on V consisting of all elements of B (weakly)
contained in an inclusion minimal element of N↑ together with all singletons {v} for
elements v ∈ V not contained in any inclusion minimal element of N↑. The reader is
invited to check that B̄ is indeed a building set on V. It follows from Lemma 5.12 that

• λ(n,N↑) = n if n is an inclusion minimal element of N↑,

• λ(n,N↑) = {v} with v contained in no inclusion minimal element of N↑ otherwise,

and thus that the map λ(·,N↑) is a bijection from N↑ to B̄max.
Consider the surjection Ω from the maximal nested sets on B to the maximal nested

sets on B̄ as defined in the previous section: Ω(N) =
⋃

n∈N Ω(n) where Ω(n) is the
coarsest partition of n into elements of B̄. Following [STT88, CP16], we consider the
normalization Ω? on maximal nested sets on B defined by Ω?(N) :=

(
Ω(N) r B̄max

)
∪ N↑.

We claim that Ω?(N) is a maximal nested set on B:

• it is nested since both Ω(N)r B̄max and N↑ are themselves nested, and all elements
of Ω(N) r B̄max are contained in a minimal element of N↑.

• it is maximal since Ω(N) also is (Corollary 5.11) and |Ω?(N)| = |Ω(N)| for λ(·,N↑) is
a bijection from N↑ to B̄max, and B̄max ⊆ Ω(N) while

(
Ω(N) r B̄max

)
∩ N↑ = ∅.

It follows that the map Ω? combinatorially projects the nestohedron Nest(B) onto its
face F .

Let N0, . . . ,N` be a path in the loaded flip graph F(B) whose endpoints N0,N` lie
in the face F , but which leaves the face F . In other words, N↑ ⊆ N0,N` and there
are 0 ≤ i < j ≤ ` such that N↑ ⊆ Ni,Nj while N↑ 6⊆ Ni+1,Nj−1. We claim that

Ω?(N0) = N0, Ω?(N`) = N`, Ω?(Ni) = Ni = Ω?(Ni+1) and Ω?(Nj−1) = Nj = Ω?(Nj),

so that the path N0 = Ω?(N0), . . . ,Ω?(N`) = N` from N0 to N` in F has length at most `−2
after deletion of repetitions.

To prove our claim, consider a loaded nested set N on B containing a maximal proper
nested set N̄ on B̄. Then Ω(N) ⊇ Ω(N̄) = N̄ so that Ω(N) = N̄ ∪ B̄max by maximality of N̄.
This shows Ω?(N) = N̄ ∪ N↑. In particular, if N = N̄∪N↑, then Ω?(N) = N. Moreover, if N′
is adjacent to N = N̄ ∪ N↑ and does not contain N↑, then N′ contains N̄ and Ω?(N′) = N.
This shows the claim and concludes the proof. �

Proposition 5.13 specializes in particular to the non-leaving-face and entering face
properties for the upper set faces of graph associahedra.

Proposition 5.14. (i) If T and T′ are two maximal tubings on G, then any maximal
tubing on a geodesic between T and T′ in the flip graph F(G) contains any common
upper set to the inclusion posets of T and T′.

(ii) If T, T′ and T′′ are three maximal tubings on G such that T r {t} = T′ r {t′} and t′
belongs to the maximal common upper set to the inclusion poset of T′ and T′′, then
there is a geodesic between T and T′′ starting by the flip from T to T′.



72 CHAPTER 5. GRAPH PROPERTIES OF GRAPH ASSOCIAHEDRA

Proof. Using Proposition 5.13, it is enough to show that the maximal common upper
set T↑ to the inclusion posets of T and T′ defines an upper ideal face of Asso(G). For
this, we use the characterization (ii) of Lemma 5.12. Consider an inclusion nonminimal
tube t of T↑. Let t′ be a maximal tube of T↑ such that t′ ( t. Then t′ has a unique
neighbor v in G[t] and all connected components of G[t r {v}] are both in T and T′,
thus in T↑. Thus λ(t,T↑) = {v}. �

Remark 5.15. For an arbitrary building set B, the maximal common upper set N↑
to the inclusion poset of two maximal nested sets N,N′ is not always an upper ideal
face of Nest(B). A minimal example is the building set B =

{
{1}, {2}, {3}, {1, 2, 3}

}
and the nested sets N =

{
{1}, {2}, {1, 2, 3}

}
and N′ =

{
{2}, {3}, {1, 2, 3}

}
. Their max-

imal common upper set N↑ =
{
{2}, {1, 2, 3}

}
is not an upper ideal face of Nest(B)

since λ({1, 2, 3},N↑) = {1, 3} is not a singleton. Moreover, the face corresponding to N↑
does not satisfy SNLFP.

5.3.4 Diameter bounds

Using Theorem 5.4 and Proposition 5.14, the lower bound on the diameter of the associ-
ahedron [Pou14], the classical construction of graph associahedra of [CD06, Pos09] and
the diameter of graphical zonotopes, we obtain the inequalities on the diameter δ(F(G))
of F(G).

Theorem 5.16. For any connected graph G with n + 1 vertices and e edges, the diame-
ter δ(F(G)) of the flip graph F(G) is bounded by

max(e, 2n− 18) ≤ δ(F(G)) ≤
(
n+ 1

2

)
.

Proof. For the upper bound, we use that the diameter is nondecreasing (Theorem 5.4)
and that the n-dimensional permutahedron has diameter

(n+1
2
)
, the maximal number

of inversions in a permutation of Sn+1.
The lower bound consists in two parts. For the first part, we know that the normal

fan of the graph associahedron Asso(G) refines the normal fan of the graphical zonotope
of G (see e.g. [Zie95, Lect. 7] for a reference on zonotopes). Indeed, the graph asso-
ciahedron of G can be constructed as a Minkowski sum of the faces of the standard
simplex corresponding to tubes of G ([CD06, Pos09]) while the graphical zonotope of G
is the Minkowski sum of the faces of the standard simplex corresponding only to edges
of G. Since the diameter of the graphical zonotope of G is the number e of edges of G,
we obtain that the diameter δ(F(G)) is at least e. For the second part of the lower
bound, we use again Theorem 5.4 to restrict the argument to trees. Let T be a tree on
n+ 1 vertices. We first discard some basic cases:

(i) If T has precisely two leaves, then T is a path and the graph associahedron Asso(T)
is the classical n-dimensional associahedron, whose diameter is known to be larger
than 2n− 4 by L. Pournin’s result [Pou14].

(ii) If T has precisely 3 leaves, then it consists in 3 paths attached by a 3-valent
node v, see Figure 5.5 (left). Let w be a neighbor of v and P1,P2 denote the con-
nected components of T r w. Observe that P1 and P2 are both paths and denote
by p1 + 1 and p2 + 1 their respective lengths. Let T′1,T′′1 (resp. T′2,T′′2) be a di-
ametral pair of maximal tubings on P1 (resp. on P2), and consider the maximal
tubings T′ = T′1 ∪T′2 ∪ {P1,P2} and T′′ = T′′1 ∪T′′2 ∪ {P1,P2} on the tree T. Finally,
denote by T the maximal tubing on T obtained by flipping P1 in T′. Since {P1,P2}
is a common upper set to the inclusion posets of T′ and T′′, Proposition 5.14 (ii)
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Figure 5.5 – Decompositions of trees with 3 or 4 leaves.

ensures that there exists a geodesic from T to T′′ that starts by the flip from T to T′.
Moreover, Proposition 5.14 (i) ensures that the distance between T′ and T′′ is reali-
zed by a path staying in the face of Asso(T) corresponding to {P1,P2}, which is the
product of a classical p1-dimensional associahedron by a classical p2-dimensional
associahedron. We conclude that

δ(F(T)) ≥ 1+δ(F(P1))+δ(F(P2)) ≥ 1+(2p1−4)+(2p2−4) = 2(p1+p2+2)−11 = 2n−11.

(iii) If T has precisely 4 leaves, it either contains a single 4-valent node v or precisely
two 3-valent nodes u, v, see Figure 5.5 (middle and right). Define w to be a neighbor
of v, not located in the path between u and v in the latter situation. Then w
disconnects T into a path P on p + 1 nodes and a tree Y with y + 1 nodes and
precisely 3 leaves. A similar argument as in (ii) shows that

δ(F(T)) ≥ 1+δ(F(P))+δ(F(Y)) ≥ 1+(2p−4)+(2y−11) = 2(p+y+2)−18 = 2n−18.

We can now assume that the tree T has k ≥ 5 leaves l1, . . . , lk. Let V̄ = V r {l1, . . . , lk}
and T̄ = T[V̄] denote the tree obtained by deleting the leaves of T. By induction hypot-
hesis, there exist two maximal tubings T̄ and T̄′ on T̄ at distance at least 2(n− k)− 18.
Define ti := V r {l1, . . . , li} for i ∈ [k], and t′j := V r {lj , . . . , lk} for j ∈ [k]. Consider the

maximal tubings T := T̄ ∪ {t1, . . . , tk} and T′ := T̄′ ∪ {t′1, . . . , t′k} on T. We claim that the
distance between these tubings is at least 2n− 18. To see it, consider the surjection Ω
from the tubings on T onto that of T̄ t {l1, . . . , lk} as defined in Section 5.3.1. It sends
a path T = T0, . . . ,T` = T′ in the flip graph F(T) to a path

T̄ ∪ {{l1}, . . . , {lk}} = Ω(T0), . . . ,Ω(T`) = T̄′ ∪ {{l1}, . . . , {lk}}

in the flip graph F(T̄t{l1, . . . , lk}) with repeated entries. Since T̄ and T̄′ are at distance
at least 2(n − k) − 18 in the flip graph F(T̄), this path has at least 2(n − k) − 18
nontrivial steps, so we must show that it has at least 2k repetitions. These repetitions
appear whenever we flip a tube ti or t′j . Indeed, we observe that the image Ω(t) of any

tube t ∈ {ti | i ∈ [k]} ∪
{

t′j
∣∣∣ j ∈ [k]

}
is composed by V̄ together with single leaves of T.

Since all these tubes are connected components of T̄, we have Ω(T r {t}) = Ω(T) for
any maximal loaded tubing T containing t. To conclude, we distinguish three cases:

(i) If the tube tk = V̄ = t′1 is never flipped along the path T = T0, . . . ,T` = T′, then we
need at least

(k
2
)

flips to transform {t1, . . . , tk} into {t′1, . . . , t′k}. This can be seen
for example from the description of the link of tk in N (T) in [CD06, Theorem 2.9].
Finally, we use that

(k
2
)
≥ 2k since k ≥ 5.

(ii) Otherwise, we need to flip all {t1, . . . , tk} and then back all {t′1, . . . , t′k}. If no flip of
a tube ti produces a tube t′j , we need at least 2k flips which produces repetitions
in Ω(T0), . . . ,Ω(T`).
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(iii) Finally, assume that we flip precisely once all tubes in {t1, . . . , tk} and then back
all tubes in {t′1, . . . , t′k}, and that a tube ti is flipped into a tube t′j . According
to the description of flips, we have i = k − 1 and j = 2. If p ∈ [`] denotes the
position such that Tp r {tk−1} = Tp+1 r {t′2}, we moreover know that tk−1 ∈ Tq
for q ≤ p, that t′2 ∈ Tq for q > p, and that V̄ ∈ Tp ∩ Tp+1. Applying the non-leaving-
face property either to the upper set {tk−1, tk} in Asso(G[tk−1]) or to the upper
set {t′1, t′2} in Asso(G[t′2]), we conclude that it would shorten the path T0, . . . ,T` to
avoid the flip of tk = V̄ = t′1, which brings us back to Situation (i). �

Remark 5.17. We note that although asymptotically optimal, our lower bound 2n− 18
is certainly not sharp. We expect the correct lower bound to be the bound 2n − 4 for
the associahedron. Better upper bound can also be worked out for certain families
of graphs. For example, L. Pournin investigates the cyclohedra (cycle associahedra)
in [Pou17]. As far as trees are concerned, we understand better stars and their subdivi-
sions. The diameter δ(F(K1,n)) for the star K1,n is exactly 2n (for n ≥ 5), see Figure 5.4.
In fact, the diameter of the graph associahedron of any starlike tree (subdivision of a
star) on n + 1 vertices is bounded by 2n. To see it, we observe that any tubing is at
distance at most n from the tubing T◦ consisting in all tubes adjacent to the central
vertex. Indeed, we can always flip a tube in a tubing distinct from T◦ to create a new
tube adjacent to the central vertex. This argument is not valid for nonstarlike trees.

Remark 5.18. The lower bound in Theorem 5.16 shows that the diameter δ(F(G)) is at
least the number of edges of G. In view of Theorem 5.9, it is tempting to guess that the
diameter δ(F(G)) is of the same order as the number of edges of G. Adapting arguments
from Remark 5.17, we can show that the diameter of any tree associahedron δ(F(T)) is
of order at most n log n. In any case, the following question remains open.

Question 5.19. Is there a family of trees Tn on n nodes such that δ(F(Tn)) is of or-
der n log n? Even more specifically, consider the family of trees illustrated in Figure 5.6:
T1 = K1,3 (tripod) and Tk+1 is obtained by grafting two leaves to each leaf of Tk. What
is the order of the diameter δ(F(Tk))?

T1 T2 T3 T4 T5

Figure 5.6 – The family of trees Tk: the tree T1 is the tripod and Tk+1 is obtained from Tk
by connecting two new nodes to each leaf of Tk.

Remark 5.20. We ask Question 5.19 for the specific family (Tk)k∈N of trees because
we expect this family to achieve asymptotically the bound n log n that we previously
mentioned. Yet proving it seems hard. Indeed we saw that the proof of Theorem 5.16
highly relies on L. Pournin’s bound on the diameter of the associahedron. Finding an
alternative way to prove sharp lower bounds on the diameter of some tree associahedra
would on the contrary lead to new approaches to recover this very challenging result.
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Remark 5.21. The upper bound δ(F(B)) ≤
(n+1

2
)

holds for an arbitrary building set B
by Theorem 5.4 and the fact that the permutahedron is the nestohedron on the com-
plete building set. In contrast, the lower bound is not valid for arbitrary connected
building sets. For example, the nestohedron on the trivial connected building set{

{1}, . . . , {n+ 1}, {1, . . . , n+ 1}
}

is the n-dimensional simplex, whose diameter is 1.

5.4 Decomposition of nested complexes into joins

We conclude this chapter with a characterization of all nested complexes that decom-
pose as joins of smaller simplicial complexes. For a connected building set B, one
could expect that the corresponding nested complex N (B) have no immediate decom-
position into joins of other nested complexes. Yet the following construction, attri-
buted to N. Erokhovets by V. Volodin in [Vol10, see Lemma 2 and Corollary 2 in
the arXiv version], shows that any product of nested complexes is isomorphic to the
nested complex of a connected building set. Let B◦ be a building set on a ground
set V◦ = {v1, . . . , vn+1} and B1, . . . ,Bn+1 be n+ 1 connected building sets on respective
disjoint ground sets V1, . . . ,Vn+1. The composition of B◦ with B1, . . . ,Bn+1 is the set

B◦(B1, . . . ,Bn+1) := B1 ∪ · · · ∪ Bn+1 ∪

 ⊔
vi∈b

Vi

∣∣∣∣∣∣ b ∈ B◦

 .
Observe that there are in fact (n + 1)! possible compositions of B◦ with B1, . . . ,Bn+1,
corresponding to all possible ways to label the elements of V◦. It is straightforward to
check that the set B◦(B1, . . . ,Bn+1) satisfies the conditions of Definition 4.1, so that
it is a building set on the ground set V1 t · · · t Vn+1. It is moreover clear from De-
finition 4.2 that the nested complex N (B◦(B1, . . . ,Bn+1)) is isomorphic to the nested
complex N (B◦ t B1 t · · · t Bn+1) ∼= N (B◦) ∗ N (B1) ∗ · · · ∗ N (Bn+1).

Proposition 5.22 (attributed to N. Erokhovets in [Vol10]). Any nested complex is iso-
morphic to the nested complex of some connected building set.

Proof (Sketch). Assume that B is not connected and contains no inclusion maximal sing-
leton, and let b1

max, . . . , bkmax be the elements of Bmax. If ` = |b1
max| ≥ 2, then using the

composition of B|b1
max

with other elements of Bmax (and potentially adding isolated sing-
letons), we can construct a building set B′ such that |B′max| < |Bmax| andN (B) ∼= N (B′).
Since isolated singletons in B do not influence N (B), we conclude by induction. �

A building set B is trivial if it consists in a disjoint union of singletons, and it is in-
decomposable if the nested complex N (B) is not isomorphic to a join of at least two
nontrivial simplicial complexes. Observe that an indecomposable building set B need
not be connected. Indeed the disjoint union of an indecomposable building set and
of a trivial building set is indecomposable but not connected. The following statement
shows that the notion of indecomposability is the relevant one concerning potential
decompositions of nested complexes into join of smaller simplicial complexes.

Proposition 5.23. A building set B is indecomposable if and only if it is not of the
form B1 t · · · t B[n+1] or B◦(B1, . . . ,B[n+1]) for building sets B◦,B1, . . . ,Bk with disjoint
ground sets, such that at least two of them are nontrivial.
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Proof. The “only if” part directly follows from the properties of the composition of buil-
ding sets. Let B be a building set with ground set V such that Bmax contains no sing-
leton. We can assume that |Bmax| = 1 since otherwise B is already a disjoint union of
nontrivial building sets. We define the set

V̄ :=
{
b ∈ B r Bmax

∣∣ ∀b′ ∈ B, b ∩ b′ = ∅ or b ⊆ b′ or b′ ⊆ b
}

that somehow constitutes the “real combinatorial ground set” of the building set B.
Observe that V̄ contains all singletons. Consider the set V̂ = {b1, . . . , bk} of inclusion
maximal elements of V̄. It is immediate that the set B̂ defined by

B̂ :=

{bi1 , . . . , bip}
∣∣∣∣∣∣ ∀j ∈ [p], bij ∈ V̂ and

 ⋃
j∈[p]

bij

 ∈ B


is a building set with ground set V̂ and that B = B̂(B|b1 , . . . ,B|bk). Therefore B is a

composition of at least two nontrivial building sets if V̄ contains other elements than
singletons. Assume that B is not indecomposable. Then B can be partitioned into two
parts B1 and B2 which are the respective vertex sets of two simplicial complexes C1
and C2 such that N (B) ∼= C1 ∗ C2. Since the class of nested complexes is closed by links
(see for instance [Zel06, Proposition 3.2]), the complexes C1 and C2 are isomorphic to
some nontrivial nested complexes. Therefore both parts B1,B2 of B contain other ele-
ments than singletons. We can assume that V (the only element in Bmax) is contained
in B1. Let now bmax

2 be an inclusion maximal element in B2. Since N (B) is the join
of C1 and C2, for any element b1 ∈ B1, the set {bmax

2 , b1} is a B-nested set, in particu-
lar b1 ⊆ bmax

2 or bmax
2 ⊆ b1 or b1 ∩ bmax

2 = ∅. As we chose bmax
2 to be inclusion maximal

in B2, this property holds for any element in B = B1 tB2. Since V ∈ B1 63 bmax
2 , we have

that bmax
2 /∈ Bmax and so that bmax

2 ∈ V̄. The building set B is thus a composition of
building sets as the set V̄ does not only contain singletons. So any nonindecomposable
building set that is not a disjoint union of nontrivial building sets is a composition of
nontrivial building sets, which concludes the proof for the “if” part. �

Remark 5.24. After Proposition 5.23, the natural question to ask is whether there
is a relevant description of isomorphisms between two given nested complexes. This
is not an easy question, mainly because of our lack of rich combinatorial models to
describe nested complexes in general. However, this question is settled for graphical
nested complexes in Section 6.4.2 (see Theorem 6.37), where in particular nontrivial
isomorphisms (not induced by permutations of the ground set) are exhibited.



6
Compatibility fans for

graphical nested
complexes

6.1 Introduction

6.1.1 Motivations

In this chapter, we consider more geometric questions related to graphical nested com-
plexes. Although we will not use them in the remaining of this chapter, we briefly
survey some constructions of nested fans and graph associahedron in more detail than
in Chapter 4. A nested fan is constructed implicitly in [CD06] for graph associahedra,
and explicitly in [Pos09, FS05, Zel06] for arbitrary nested complexes. Let (ev)v∈V be the
canonical basis of RV, let H :=

{
x ∈ RV | ∀W ∈ κ(G),

∑
w∈W xw = 0

}
and π : RV → H

denote the orthogonal projection on H. Let g(t) :=π
(∑

v∈t ev
)

denote the projection of
the characteristic vector of a tube t of G, and define g(T) := {g(t) | t ∈ T} for a tubing T
on G. These vectors support a complete simplicial fan realization of the nested complex:

Theorem 6.1 ([CD06, Pos09, FS05, Zel06]). For any graph G, the collection of cones

G(G) := {R≥0 g(T) | T tubing on G}

is a complete simplicial fan of H, called the nested fan of G, realizing the nested com-
plex N (G).

The normal fan of the graph associahedra and nestohedra of [CD06, Dev09, Pos09,
FS05, Zel06] coarsens the type A Coxeter arrangement: its rays are the characteristic
vectors of the tubes, and its cones are generated by characteristic vectors of compatible
tubes. In particular it makes sense to consider it as an analogue of the g-vector fans of
type A cluster algebras.

Remark 6.2. The cones of G(G) can be encoded by spines (see Section 5.2.2): the
cone R≥0 g(T) is the braid cone of the spine S of T and is polar to the incidence cone
of S:

R≥0 g(T) = {x ∈ H | xv ≤ xw for all v → w ∈ S} =
(
R≥0 {ev − ew | v → w ∈ S}

)�
As we saw in Chapter 4, it is proved in [CD06, Dev09, Pos09, FS05, Zel06] that the

nested fan comes from a polytope.

77
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Theorem 6.3 ([CD06, Dev09, Pos09, FS05, Zel06]). For any graph G, the nested fan G(G)
is the normal fan of the graph associahedron Asso(G).

It is remarkable that these different papers all obtain the same geometric realization
(they all have the same normal fan) with relatively different constructions. Originally,
M. Carr and S. Devadoss constructed Asso(G) by iterative truncations of faces of the
standard simplex [CD06]. S. Devadoss then gave explicit integer coordinates for the fa-
cets in [Dev09]. A. Postnikov [Pos09] and independently E. M. Feichtner and B. Sturm-
fels [FS05] constructed nestohedra by Minkowski sums of faces of the standard simplex
(see Section 4.2). Finally, A. Zelevinsky [Zel06] realized the nested fan using a charac-
terization of all possible facet inequality descriptions.

Alternative realizations of graph associahedra with different normal fans are obtai-
ned by successive truncations of faces of the cube in [Vol10, DFRS15]. In this chapter,
we present a construction directly inspired from combinatorial and geometric proper-
ties of finite type cluster algebras and generalized associahedra, that we adapt to derive
numerous and meaningful new fan realizations of graph associahedra. As we previously
mentioned A. Zelevinsky [Zel06] already underlined the closed connection between nes-
ted complexes and cluster complexes. We use ideas from cluster algebras to obtain
results on graphical nested complexes, which in turn provide us with relevant proper-
ties of the geometry of finite type cluster algebras.

6.1.2 Overview

The chapter is organized as follows. In Section 6.2, we define the compatibility de-
gree between two tubes of a graph, review its combinatorial properties, and state our
geometric results on compatibility and dual compatibility fans.

We study various examples in Section 6.3. After an exhaustive description of the
compatibility fans of all graphs with at most 4 vertices, we study four families of
graphs: paths, cycles, complete graphs, and stars. The first two families connect
our construction to S. Fomin and A. Zelevinsky’s d-vector fans for type A, B, and
C cluster complexes.

Section 6.4 discusses various further topics. We first study the behavior of the com-
patibility fans with respect to products and links. We then describe all nested complex
isomorphisms in order to show that most compatibility fans are not linearly isomorphic.
We also discuss the question of the realization of our compatibility fans as normal fans
of convex polytopes. We extend our construction to design nested complexes [DHV11].
Finally, we discuss the connection of this chapter to LP-algebras [LP16a, LP16b].

Finally, we have chosen to gather all proofs of our results in Section 6.5 with the
hope that the properties and examples of compatibility fans treated in Sections 6.3
and 6.4 help the reader’s intuition.

6.2 Compatibility degrees, vectors, and fans

6.2.1 Complementary terminology

We first introduce two notions on tubes and tubings of graphs that we will need later. We
say that two distinct tubes t, t′ of a graph G are exchangeable if there exist two adjacent
maximal tubings T,T′ on G such that T r {t} = T′ r {t′}. Note that several such
pairs {T,T′} are possible, but they all contain certain tubes. We call forced tubes of the
exchangeable pair {t, t′} any tube which belongs to any adjacent maximal tubings T,T′
such that T r {t} = T′ r {t′}. These tubes are easy to describe: they are precisely the
tube t := t ∪ t′ and the connected components of t r (λ(t,T) ∪ λ(t′,T′)).

Here we will follow the same example graph Gex of Examples 4.6. To avoid back and
forth references with Chapter 4, we gather Figures 4.1 and 4.3 in Figure 6.1.
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Figure 6.1 – A tube t◦ex of G◦ex (top left), a maximal tubing T◦ex on G◦ex (top right) and the
flip between two maximal tubings T◦ex and T′ex on G◦ex (bottom).

Example 6.4. Figure 6.1 (bottom) illustrates the flip between two maximal tubings T◦ex
and T′ex on G◦ex. The exchangeable tubes t◦ex = {a, b, c, d, f, g, h, k, l,m} (with root g)
and t′ex = {c, d, e, h, i,m} (with root i) that are flipped are dashed red, while the forced
tubes of the exchangeable pair {t◦ex, t′ex} are blue.

6.2.2 Compatibility degree

Motivated by the compatibility degrees in finite type cluster algebras, we introduce an
analogous notion on tubes of graphical nested complexes.

Definition 6.5. For two tubes t, t′ of G, the compatibility degree of t with t′ is

(t ‖ t′) =


−1 if t = t′,
|{neighbors of t in t′ r t}| if t 6⊆ t′,
0 otherwise.

Example 6.6. On the graph G◦ex of Example 6.4, the compatibility degrees of the red
tubes t◦ex, t′ex and of the blue tube tex = t◦ex ∪ t′ex of Figure 6.1 (bottom) with the tube t◦ex
of Figure 6.1 (top left) are given by

(t◦ex ‖ t◦ex) = |{i}| = 1, (t′ex ‖ t◦ex) = |{g}| = 1, (tex ‖ t◦ex) = 0,
(t◦ex ‖ t◦ex) = |{c,m}| = 2, (t◦ex ‖ t′ex) = |{c, e,m}| = 3, (t◦ex ‖ tex) = 0.

Note that the last 0 is forced by the last line of the definition since t◦ex ( tex.

We will see in Sections 6.3.2 and 6.3.3 that our compatibility degree on tubes of
paths (resp. cycles) corresponds to the compatibility degree on cluster variables in
type A (resp. B/C) cluster algebras defined in [FZ03b]. The compatibility degree in
cluster algebras encodes compatibility and exchangeability between cluster variables.
The analogous result for the graphical compatibility degree is given by the following
proposition, proved in Section 6.5.1.
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Proposition 6.7. For any two tubes t, t′ of G,

• (t ‖ t′) < 0 ⇐⇒ (t′ ‖ t) < 0 ⇐⇒ t = t′,

• (t ‖ t′) = 0 ⇐⇒ (t′ ‖ t) = 0 ⇐⇒ t and t′ are compatible, and

• (t ‖ t′) = 1 = (t′ ‖ t) ⇐⇒ t and t′ are exchangeable.

Remark 6.8. It can happen that (t ‖ t′) = 1 while (t′ ‖ t) 6= 1, in which case t and t′ are
not exchangeable. This situation appears as soon as G contains a cycle or a trivalent
vertex. See e.g. Example 6.6.

Proposition 6.7 should be understood as follows: the compatibility degree between
two tubes measures how much they are incompatible. It is natural to use this measure
to construct fan realizations of the nested complex: intuitively, pairs of tubes with low
compatibility degrees should correspond to rays close to each other. We make this idea
precise in the next section.

6.2.3 Compatibility fans

We consider the compatibility vectors with respect to an arbitrary initial maximal tu-
bing T◦. Remember that any maximal tubing on G has precisely n := |V| − |κ(G)| tubes.

Definition 6.9. Let T◦ := {t◦1, . . . , t◦n} be any initial maximal tubing on G. The compatibi-
lity vector of a tube t of G with respect to T◦ is the vector d(T◦, t) := [(t◦1 ‖ t), . . . , (t◦n ‖ t)].
The compatibility matrix of a tubing T := {t1, . . . , tm} on G with respect to T◦ is the
matrix d(T◦,T) := [(t◦i ‖ tj)]i∈[n],j∈[m].

Remember that we denote by R≥0 M the polyhedral cone generated by the column
vectors of a matrix M. Note that the compatibility vectors of the initial tubes are given
by the negative of the basis vectors, while all other compatibility vectors lie in the
positive orthant: d(T◦,T◦) = −In and d(T◦, t) has nonnegative entries for t /∈ T◦.
Our main result asserts that these compatibility vectors support a complete simplicial
fan realization of the graphical nested complex.

Theorem 6.10. For any graph G and any maximal tubing T◦ on G, the collection of cones

D(G,T◦) := {R≥0 d(T◦,T) | T tubing on G}

is a complete simplicial fan which realizes the nested complex N (G). We call it the com-
patibility fan of G with respect to T◦.

We prove this statement in Section 6.5.3. The proof relies on the characterization
of complete simplicial fans presented in Proposition 3.7. Unfortunately, we are not
able to compute the linear dependence between the compatibility vectors involved in an
arbitrary flip. To illustrate the difficulty, we show in the following example that these
linear dependences may be complicated. In particular, they do not always involve only
the forced tubes of the flip.

Example 6.11. Consider the initial maximal tubing T◦ex of the graph G◦ex of Figure 6.1
(top right) and the flip T◦ex r {t◦ex} = T′ex r {t′ex} illustrated in Figure 6.1 (bottom).
The linear dependence between the compatibility vectors of the tubes of T◦ex ∪ T′ex with
respect to T◦ex is

2 d(T◦ex, t◦ex) + d(T◦ex, t′ex)− d(T◦ex, {d})− d(T◦ex, {e})
−3 d(T◦ex, {m}) + 4 d(T◦ex, {k, l})− 3 d(T◦ex, {c, d, h}) = 0.

Observe that the tube {d} is involved in this linear dependence although it is not a
forced tube of the exchangeable pair {t◦ex, t′ex}.
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Theorem 6.10 has the following nonobvious consequences.

Corollary 6.12. For any initial tubing T◦ on G,
• the compatibility vector map t 7→ d(T◦, t) is injective: d(T◦, t) = d(T◦, t′) ⇒ t = t′.
• the compatibility matrix d(T◦,T) of any maximal tubing T on G has full rank.

6.2.4 Dual compatibility fan

It is also interesting to consider the following dual notion of compatibility vectors, where
the roles of t and t◦1, . . . , t◦n are reversed. The results are similar, and the motivation for
this dual definition will become clear in Section 6.3.3.

Definition 6.13. Let T◦ := {t◦1, . . . , t◦n} be an arbitrary initial maximal tubing on G.
The dual compatibility vector of a tube t of G with respect to the tubing T◦ is the
integer vector d∗(t,T◦) := [(t ‖ t◦1), . . . , (t ‖ t◦n)]. The dual compatibility matrix of a tu-
bing T := {t1, . . . , tm} on G with respect to T◦ is the matrix d∗(T,T◦) := [(tj ‖ t◦i )]i∈[n],j∈[m].

The following statement is the analogue of Theorem 6.10.

Theorem 6.14. For any graph G and any maximal tubing T◦ on G, the collection of cones

D∗(G,T◦) := {R≥0 d∗(T,T◦) | T tubing on G}

is a complete simplicial fan which realizes the nested complex N (G). We call it the dual
compatibility fan of G with respect to T◦.

The proof of this statement appears in Section 6.5.4. It is a direct application of
Theorem 6.10 using duality between compatibility and dual compatibility matrices.

Example 6.15. Consider the initial maximal tubing T◦ex on the graph G◦ex of Figure 6.1
(top right) and the flip T◦ex r {t◦ex} = T′ex r {t′ex} illustrated in Figure 6.1 (bottom). The
linear dependence between the dual compatibility vectors of the tubes of T◦ex ∪T′ex with
respect to T◦ex is

2 d∗(t◦ex,T◦ex) + d∗(t′ex,T◦ex)− d∗({e},T◦ex)− d∗({c, d, h},T◦ex) = 0.

6.3 Examples for specific graphs

In this section, we provide examples of compatibility fans for particular families of
graphs. We start with graphs with few vertices to illustrate the variety of compatibility
fans. We then describe compatibility fans for paths, cycles, complete graphs and stars
using alternative combinatorial models (triangulations, lattice paths, ...). For paths and
cycles, we give an explicit connection to the compatibility degree in cluster algebras of
types A, B, and C. The examples of this section shall help the intuition for further
properties studied in Section 6.4 and for the proofs gathered in Section 6.5.

6.3.1 Graphs with few vertices

In view of Proposition 6.31 below, we restrict to connected graphs. The only connected
graphs with 3 vertices are the 3-path and the triangle, whose compatibility fans are
represented in Figure 6.2. The other possible choices for the initial tubing in these
pictures would produce the same fans: it is clear for the triangle as all maximal tubings
are obtained from one another by graph isomorphisms; for the path, it is an illustration
of the nontrivial isomorphisms between compatibility fans studied in Section 6.4.2.

The first interesting compatibility fans appear in dimension 3 for connected graphs
on 4 vertices. All possibilities up to linear transformations are represented in Fi-
gure 6.4. Instead of representing cones in the 3-dimensional space, we intersect the
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Figure 6.2 – Compatibility fans of the 3-path (left) and of the triangle (right).

compatibility vectors with the unit sphere, make a stereographic projection of the re-
sulting points on the sphere (the pole of the projection is the point of the sphere in
direction −e1 − e2 − e3), and draw the cones on the resulting planar points. Under this
projection, the three external vertices correspond to the tubes of the initial tubing, and
the external face corresponds to the initial tubing. For the sake of readability, we do not
label the remaining vertices of the projection. Their labels can be reconstructed from
the initial tubes by flips. For example, the tubes corresponding to the vertices of the
top pictures of Figure 6.4 are given in Figure 6.3.

The pictures become more complicated in dimension 4. To illustrate them, we have
represented in Figure 6.5 the stereographic projection of the compatibility fan for an
arbitrary maximal tubing on the path, cycle, complete graph, and star on 5 vertices.

Figure 6.3 – All tubes in the top pictures of Figure 6.4.
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Figure 6.4 – All possible compatibility fans up to linear isomorphism, for all connected
graphs on 4 vertices (see also the end of the picture on page 84 for the two remaining
graphs). Instead of representing the cones in the 3-dimensional space, we intersect
the compatibility vectors with the unit sphere, make a stereographic projection of the
resulting points on the sphere (the pole of the projection is the point of the sphere in
direction −e1 − e2 − e3), and draw the cones on the resulting planar points.
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Figure 6.5 – Stereographic projection of the compatibility fan for particular initial max-
imal tubings on the path, cycle, complete graph, and star on 5 vertices.

6.3.2 Paths

We now consider the nested complex N (Pn+1) and the compatibility fan D(Pn+1,T◦)
for the path Pn+1 on n + 1 vertices. As already mentioned in the Chapter4, the nested
complex N (Pn+1) is isomorphic to the n-dimensional simplicial associahedron, i.e. the
simplicial complex of sets of pairwise noncrossing diagonals of an (n+ 3)-gon. It is con-
venient to present the correspondence as follows. Consider an (n + 3)-gon Qn+3 with
vertices labeled from left to right by 0, 1, . . . , n+ 2 and such that all vertices 1, . . . , n+ 1
are located strictly below the boundary edge [0, n + 2]. We can therefore identify the
path Pn+1 with the path 1, . . . , n + 1 on the boundary of Qn+3. We then associate to
a diagonal δ of Qn+3 the tube tδ of Pn+1 whose vertices are located strictly below δ,
see Figures 6.6 and 4.2 (top). Finally, we associate to a set ∆ of pairwise noncrossing
internal diagonals of Qn+3 the set of tubes T∆ := {tδ | δ ∈ ∆}, see Figure 4.2 (top). The
reader can check that the map ∆ 7→ T∆ defines an isomorphism between the simpli-
cial associahedron and the nested complex N (Pn+1): two diagonals δ, δ′ of Qn+3 are
noncrossing if and only if the corresponding tubes tδ, tδ′ of Pn+1 are compatible.

It follows by classical results on the associahedron that the path Pn+1 has:

•
n(n+ 3)

2 proper tubes [OEI10, A000096] (internal diagonals of the (n+ 3)-gon),

•
1

n+ 2

(
2n+ 2
n+ 1

)
maximal tubings [OEI10, A000108] (triangulations of the (n+ 3)-gon),

https://oeis.org/A000096
https://oeis.org/A000108
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Figure 6.6 – Isomorphism between the simplicial associahedron and the nested complex
of a path: diagonals are sent to tubes (left), preserving the compatibility (middle) and
incompatibility (right). See also Figure 4.2 (top).

•
1

k + 1

(
n

k

)(
n+ k + 2

k

)
tubings with k tubes [OEI10, A033282] (dissections of the

(n+ 3)-gon into k parts).

The following statement, whose proof is left to the reader, describes the behavior of
the map δ 7→ tδ with respect to compatibility degrees.

Proposition 6.16. For any two diagonals δ, δ′ of Qn+3, the compatibility degree of the
corresponding tubes tδ and tδ′ of Pn+1 is given by

(tδ ‖ tδ′) =


−1 if δ = δ′,
0 if δ 6= δ′ do not cross,
1 if δ 6= δ′ cross.

In other words, our compatibility degree between tubes of Pn+1 coincides with the
compatibility degree between type A cluster variables defined by S. Fomin and A. Zele-
vinsky in [FZ03b], and our graphical compatibility fan coincides with the type A com-
patibility fan defined for the bipartite initial cluster in [FZ03a] and for any initial cluster
in [CSZ15, Section 5]. We thus obtain an alternative proof of F. Santos’ result [CSZ15,
Section 5].

Corollary 6.17. For type A cluster algebras, the denominator vectors (or compatibility
vectors) of all cluster variables with respect to any initial cluster support a complete sim-
plicial fan which realizes the cluster complex.

Remark 6.18 (Dual compatibility fan). The compatibility fan D(Pn+1,T◦) and the dual
compatibility fan D∗(Pn+1,T◦) coincide since the compatibility degree is symmetric for
tubes of Pn+1.

Remark 6.19 (Linear dependences). In the case of the path Pn+1, the linear dependen-
ces are explicitly described in [CSZ15]. They are derived from the case of the octagon by
edge contraction in the interpretation in terms of triangulations. They can only involve
the two flipped tubes and the forced tubes, and the coefficients are either 1 or 2 for the
flipped tubes and −1 or 0 for the forced tubes. See Section 6.5.6 for more details.

Remark 6.20. The compatibility degree for tubes of a path takes values in {−1, 0, 1}.
It is tempting to construct compatibility fans for graphical nestohedra using the naive
compatibility degree defined by (t ‖ t′) = −1 if t = t′, (t ‖ t′) = 0 if t 6= t′ are compatible,
and (t ‖ t′) = 1 if t 6= t′ are incompatible. This naive approach works for the paths
but fails for any other connected graph since two distinct tubes would get the same
compatibility vectors. See Figure 6.7 for examples on the triangle and on the tripod.

https://oeis.org/A033282
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Figure 6.7 – Counter-examples to the naive definition of compatibility degrees: both on
the triangle and on the tripod, all tubes of the initial maximal tubing on the left are
incompatible with the two distinct tubes on the right.

6.3.3 Cycles

We now consider the nested complex N (On+1) and the compatibility fan D(On+1,T◦)
for the cycle On+1 on n+ 1 vertices. As already mentioned in the Chapter 4, the nested
complex N (On+1) is isomorphic to the n-dimensional simplicial cyclohedron, i.e. the
simplicial complex of sets of pairwise noncrossings pairs of centrally symmetric internal
diagonals (including duplicated long diagonals) of a regular (2n + 2)-gon R2n+2. The
explicit correspondence works as follows. We label the vertices of R2n+2 cyclically with
two copies of [n+ 1]. We then associate

• to a duplicated long diagonal δ with vertices labeled by i the tube tδ := [n+ 1]r {i}
of On+1,

• to a pair of centrally symmetric diagonals {δ, δ̄} the tube tδ of On+1 which consists
of the labels of the vertices of R2n+2 separated from the center of R2n+2 by δ and δ̄.

Finally, we associate to a set ∆ of pairwise noncrossing pairs of centrally symmetric
internal diagonals of R2n+2 the set of tubes T∆ := {tδ | δ ∈ ∆}. See Figures 6.8 and 4.2
(middle). The reader can check that the map ∆ 7→ T∆ defines an isomorphism between
the simplicial cyclohedron and the nested complex N (On+1): two pairs of centrally
symmetric diagonals (or duplicated long diagonals) {δ, δ̄} and {δ′, δ̄′} of R2n+2 are non-
crossing if and only if the corresponding tubes tδ and tδ′ of On+1 are compatible.

5
4 3

2

6

1

1

6

2
3 4

5

3 2

1

65

4

Figure 6.8 – Isomorphism between the simplicial cyclohedron and the nested complex
of a cycle: centrally symmetric pairs of diagonals are sent to tubes, preserving the
compatibility and incompatibility. See also Figure 4.2 (middle).

It follows by classical results on the cyclohedron that the cycle On+1 has:

• n(n+ 1) proper tubes [OEI10, A002378] (centrally symmetric pairs of diagonals),

•

(
2n
n

)
maximal tubings [OEI10, A000984] (centrally symmetric triangulations),

https://oeis.org/A002378
https://oeis.org/A000984
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•

(
n

k

)(
n+ k

k

)
tubings with k tubes [OEI10, A063007] (centrally symmetric dissecti-

ons).

The following statement, whose proof is left to the reader, describes the behavior of
the map {δ, δ̄} 7→ tδ with respect to compatibility degrees.

Proposition 6.21. For any two pairs of centrally symmetric diagonals (or duplicated long
diagonals) {δ, δ̄} and {δ′, δ̄′} of R2n+2, the compatibility degree (tδ ‖ tδ′) of the correspon-
ding tubes tδ and tδ′ of On+1 is the number of crossings between the two diagonals δ
and δ̄ and the diagonal δ′.

In other words, our compatibility degree (resp. dual compatibility degree) between tu-
bes of On+1 coincides with the compatibility degree between type C (resp. type B) clus-
ter variables defined by S. Fomin and A. Zelevinsky in [FZ03b]. Moreover, our graphical
compatibility fan (resp. dual compatibility fan) coincides with the type C (resp. type B)
compatibility fan defined for an acyclic initial cluster in [FZ03a]. This extends for any
arbitrary initial cluster to the following corollary.

Corollary 6.22. For type B and C cluster algebras, the denominator vectors (or compati-
bility vectors) of all cluster variables with respect to any initial cluster support a complete
simplicial fan which realizes the cluster complex.

Remark 6.23 (Dual compatibility fan). Since the compatibility degree is not symme-
tric for tubes of On+1, the compatibility fan D(On+1,T◦) and the dual compatibility
fan D∗(On+1,T◦) do not coincide. Figures 6.9 and 6.10 show both fans for different
initial tubings on the cycles O3 and O4.

Figure 6.9 – Compatibility (left) and dual compatibility (right) fans for the triangle.

Remark 6.24 (Linear dependences). As for paths, only finitely many linear dependen-
ces occur for all cycles On+1, both on compatibility vectors as on dual compatibility
vectors. Indeed, with the interpretation of the maximal tubings in terms of centrally

https://oeis.org/A063007
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Figure 6.10 – Compatibility (top) and dual compatibility (bottom) fans for the cycle on 4
vertices with respect to different initial tubings.

symmetric triangulations, the same kind of arguments as in [CSZ15] ensure that all
these dependences can be inferred by checking the cycle O8 on 8 vertices. As for the
path, these linear dependences only involve flipped and forced tubes, and the coeffi-
cients of the flipped tubes may only be 1 or 2 and these of the forces tubes may only
be 0,−1 or −2. See Section 6.5.6 for more details.

It is easy to find an example of a maximal tubing on the tripod such that one of the
linear dependences obtained with respect to this maximal tubing does not only involve
forced tubes. It implies in particular that the paths and cycles are the only graphs that
have this property. It is then tempting to ask whether it is a coincidence that these
graphs also are the only ones whose corresponding associahedra also are generalized
associahedra.

6.3.4 Complete graphs

We now consider the nested complex N (Kn+1) and the compatibility fan D(Kn+1,T◦)
for the complete graph Kn+1 on n + 1 vertices. As already mentioned in Chapter4, the
nested complex N (Kn+1) is isomorphic to the n-dimensional simplicial permutahedron,
i.e. the simplicial complex of collections of pairwise nested subsets of [n + 1]. See
Figure 4.2 (bottom).

It follows by classical results on the permutahedron that the complete graph Kn+1
has:

• 2n − 2 proper tubes [OEI10, A000918] (proper subsets of [n]),

• n! maximal tubings [OEI10, A000142] (permutations of [n]),

https://oeis.org/A000918
https://oeis.org/A000142
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• k!S(n, k) tubings with k tubes, where S(n, k) is the Stirling number of second
kind (i.e. the number of ways to partition a set of n elements into k nonempty
subsets) [OEI10, A008277].

For two tubes t, t′ of Kn+1, the compatibility degree of t with t′ is (t ‖ t′) = −1 if t = t′,
(t ‖ t′) = 0 if t and t′ are distinct and nested, and (t ‖ t′) = |t′ r t| otherwise. This
connects the compatibility vector d(T◦, t) to an alternative combinatorial model for the
permutahedron in terms of lattice paths. Since all maximal tubings are equivalent, we
can assume that T◦ = {[i] | i ∈ [n]}. For any tube t of Kn+1, we consider the lattice
paths φ(t) and ψ(t) whose horizontal steps above abscissa [i, i + 1] lie at height |t r [i]|
and ([i] ‖ t) respectively. These lattice paths are illustrated in Figure 6.11, where φ(t)
is the plain path while ψ(t) is dotted until it meets φ(t). The proof of the following
statement is left to the reader.

Proposition 6.25. (i) For any tube t of Kn+1, the lattice path φ(t) decreases from (0, |t|)
to (n+ 1, 0) with vertical steps of height 0 or 1.

(ii) φ is surjective on the decreasing paths ending at (n + 1, 0) with vertical steps of
height 0 or 1.

(iii) For any tubes t, t′ of Kn+1, we have t ⊆ t′ if and only if φ(t′) decreases when φ(t)
decreases. In particular, the paths φ(t) and φ(t′) are then noncrossing.

(iv) For a tubing T on Kn+1, the map

σ(T) : i 7−→ | {t ∈ T | φ(t) has a descent at abscissa i} |+ 1
is a surjection from [n+ 1] to [|T|+ 1], and therefore π(T) :=

⊔
j∈[|T|+1] σ

−1(j) is an or-
dered partition of [n+1] into |T|+1 parts. The map T 7→ π(T) defines an isomorphism
form the nested complex N (Kn+1) to the refinement poset of ordered partitions.

(v) For a tube t of Kn+1 not in T◦, the path ψ(t) is obtained from the path φ(t) by replacing
the initial down stairs by an horizontal path at height 0. See Figure 6.11, where ψ(t)
is dotted until it meets φ(t).

2
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6 7

3

4
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87654321

6
5
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Figure 6.11 – The tubing {146, 12468, 123468} corresponds to three noncrossing decrea-
sing lattice paths, and to the ordered partition 57|3|28|146.

Remark 6.26 (Dual compatibility fan). As discussed in Section 6.4.2 below, the comple-
mentation t 7→ V r t defines an automorphism of the nested complex N (Kn+1), which
dualizes the compatibility degree: (t ‖ t′) = (V r t′ ‖V r t) for any tubes t, t′ of Kn+1.
Therefore, the dual compatibility fans are compatibility fans: for any maximal tu-
bing T◦ on Kn+1,

D∗(Kn+1,T◦) = D(Kn+1, {V r t◦ | t◦ ∈ T◦}).

https://oeis.org/A008277
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Remark 6.27 (Linear dependences). For the complete graph, the linear dependences
between compatibility vectors of tubes involved in a flip can already be complicated.
However, the coefficients (α, α′) of the flipped tubes in these dependences can only take
the following values:

(k, k) with k > 0, or (k, kp) with k, p > 0, or (kp+ p, kp) with k, p > 0.

6.3.5 Stars

We finally consider the nested complex N (Xn+1) and the compatibility fan D(Xn+1,T◦)
for the star Xn+1 with n+ 1 vertices, i.e. the tree with n leaves `1, . . . , `n all connected to
a central vertex denoted ∗. The graph associahedron Asso(Xn+1) is called stellohedron.
We have represented in Figure 6.12 two realizations of the 3-dimensional stellohedron.

One easily checks that the star Xn+1 has:

• 2n + n− 1 proper tubes [OEI10, A052944] (distinguish tubes containing ∗ or not),

• n!
n∑
i=0

1
i! maximal tubings [OEI10, A000522] (consider the smallest tube containing ∗),

•
∑
i∈[k]

(
n

k − i

)
(i− 1)!

(
i S(n− k + i, i) + S(n− k + i, i− 1)

)
tubings with k tubes, where

S(m, p) denotes the Stirling number of second kind (i.e. the number of ways to par-
tition a set of m elements into p nonempty subsets) [OEI10, A008277] (to see it,
sum over the number i of tubes containing ∗), and

• 4n!
∑∑
ni=n

1∏
ni
− 1 =

∑
i≥1

(i+ 1)n/2i tubings in total (including the empty tubing).

This is the number of chains in the boolean lattice on an n-element set [OEI10,
A007047] (an immediate bijection is given by the spines of the tubings).

We consider the initial maximal tubing T◦ :=
{
{`1}, . . . , {`n}

}
whose tubes are the n

leaves of Xn+1. The other 2n − 1 tubes of Xn+1 are the tubes containing the central

Figure 6.12 – Two polytopal realizations of the 3-dimensional stellohedron: their normal
fans are the nested fan (left) and a compatibility fan (right).

https://oeis.org/A052944
https://oeis.org/A000522
https://oeis.org/A008277
https://oeis.org/A007047
https://oeis.org/A007047
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Figure 6.13 – The compatibility fans D(Xn+1,T◦) for the star Xn+1 and the initial tu-
bing T◦ =

{
{`1}, . . . , {`n}

}
formed by its leaves (for n ∈ {2, 3, 4}).

vertex ∗ and some leaves (but not all). The compatibility degree of such a tube t contai-
ning ∗ with a tube {`i} is 0 if `i ∈ t and 1 if `i /∈ t. The compatibility vector d(T◦, t) of t
with respect to T◦ is thus given by the characteristic vector of the leaves of Xn+1 not
contained in t. Moreover, two tubes t, t′ /∈ T◦ are compatible if and only if they are nes-
ted (since they both contain the vertex ∗). Therefore, the compatibility fan D(Xn+1,T◦)
is obtained from the coordinate hyperplane fan by a barycentric subdivision of the po-
sitive orthant. Examples in dimension 2, 3 and 4 are gathered in Figure 6.13.

Remark 6.28 (Dual compatibility fan). Observe that the compatibility degree of any
tube of Xn+1 with any leaf of Xn+1 belongs to {−1, 0, 1}. Therefore, d(T◦, t) = d∗(t,T◦)
for any tube t, so that the compatibility and dual compatibility fans with respect to the
initial tubing T◦ coincide. This does not hold for arbitrary initial tubings on Xn+1, see
Remark 6.20 and Figure 6.7 (right).

Remark 6.29 (Linear dependences). In the special case discussed in this section, all li-
near dependences between compatibility vectors of tubes involved in a flip are inclusion-
exclusion dependences as in the beginning of the proof of Theorem 6.10 in Section 6.5.3.
The coefficients of the flipped tubes thus always equal 1 while those of the forced tubes
(not in the initial tubing T◦) always equal −1.

Remark 6.30. The stellohedron Asso(Xn+1) is also the secondary polytopes [San15] of
two concentric copies of an (n− 1)-dimensional simplex. See Figure 6.14.

Figure 6.14 – The stellohedron (left) is a secondary polytope (right).
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6.4 Further topics

In this section, we discuss several further topics in connection to compatibility fans.
Note that we only state the results for compatibility fans, but similar statements hold
for dual compatibility fans. Section 6.4.1 studies the behavior of the compatibility fans
with respect to products and links. In Section 6.4.2, we show that most compatibility
fans are not linearly isomorphic, which requires a description of all nested complex iso-
morphisms. Section 6.4.3 discusses the question of the realization of our compatibility
fans as normal fans of convex polytopes. In Section 6.4.4, we extend our construction to
design nested complexes [DHV11]. Finally, we discuss in Section 6.4.5 the connection
of this chapter to LP-algebras [LP16a, LP16b].

6.4.1 Products and restrictions

In all examples that we discussed earlier, we only considered connected graphs. Com-
patibility fans for disconnected graphs can be reconstructed from those for connected
graphs by the following statement, whose proof is left to the reader.

Proposition 6.31. If G has connected components G1, . . . ,Gk, then the nested com-
plex N (G) is the join of the nested complexes N (G1), . . . ,N (Gk). Moreover, for any max-
imal tubings T◦1, . . . ,T◦k on G1, . . . ,Gk respectively, the compatibility fan D(G,T◦) with
respect to the maximal tubing T◦ := T◦1 ∪ · · · ∪ T◦k on G is the product of the compatibility
fans D(G1,T◦1), . . . ,D(Gk,T◦k):

D(G,T◦) = D(G1,T◦1)×· · ·×D(Gk,T◦k) = {C1 × · · · × Ck | Ci ∈ D(Gi,T◦i ) for all i ∈ [k]} .

Figure 6.15 (right) illustrates Proposition 6.31 with the compatibility fan of a graph
formed by two paths. Compatibility fans of paths are discussed in Section 6.3.2. Be-
sides all compatibility vectors, the cones of three different tubings are represented in
Figure 6.15 (right).

Figure 6.15 – The compatibility fan of a disconnected graph is the product (right) of the
compatibility fans of its connected components (left and middle).

As observed in [CD06], all links of graphical nested complexes are joins of graphical
nested complexes. The following statement asserts that the compatibility fans reflect
this property on coordinate hyperplanes. To be more precise, for a tube t◦ of G, we de-
note by G[t◦] the restriction of G to t◦ and by G?t◦ the reconnected complement of t◦ in G,
i.e. the graph with vertex set Vrt◦ and edge set

{
e ∈

(Vrt◦
2
)
| e or e ∪ t◦ is connected in G

}
.
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Figure 6.16 – The red tube t◦ex = {a, b, d, f, g, h, i, k, l} in the maximal tubing T◦ (left)
yields a maximal tubing T◦ex[t◦ex] on the restriction G◦ex[t◦ex] (middle) and a maximal
tubing T◦ex

?t◦ex on the reconnected complement G◦ex
?t◦ex (right).

A maximal tubing T◦ on G containing t◦ induces maximal tubings T◦[t◦] := {t | t ∈ T◦, t ( t◦}
on the restriction G[t◦] and T◦?t◦ := {t r t◦ | t ∈ T◦, t 6⊂ t◦} on the reconnected comple-
ment G?t◦. See Figure 6.16.

Proposition 6.32. The link of a tube t◦ in the nested complex N (G) is isomorphic to
the join of the nested complexes N (G[t◦]) and N (G?t◦). Moreover, for an initial maximal
tubing T◦ containing t◦, the intersection of the compatibility fan D(G,T◦) with the coordi-
nate hyperplane orthogonal to et◦ is the product of the compatibility fans D(G[t◦],T◦[t◦])
and D(G?t◦,T◦?t◦).

This statement follows from Lemmas 6.63 and 6.64 and Theorem 6.10, proved in
Section 6.5.

6.4.2 Many compatibility fans

In this section, we show that we obtained many distinct compatibility fans. Follo-
wing [CSZ15], we classify compatibility fans up to linear isomorphisms: two fans F ,F ′
of Rn are linearly isomorphic if there exists an invertible linear map which sends the
cones of F to the cones of F ′. Observe already that if two compatibility fans D(G,T◦)
and D(G′,T′◦) are linearly isomorphic, then the two nested complexes N (G) and N (G′)
are (combinatorially) isomorphic, meaning that there is a bijection Φ from the tubes of G
to the tubes of G′ which preserves the compatibility. The converse does not always hold:
a nested complex isomorphism can preserve compatibility without preserving the com-
patibility degree. However, we prove below that the nested complex isomorphisms are
so constrained that they all either preserve the compatibility degree and thus induce li-
near isomorphisms between compatibility fans, or exchange the compatibility and dual
compatibility degrees and thus induce linear isomorphisms between compatibility and
dual compatibility fans.

In the sequel, we describe all nested complex isomorphisms. Observe first that an
isomorphism φ between two graphs G and G′ automatically induces an isomorphism Φ
between the nested complexes N (G) and N (G′) defined by Φ(t) := {φ(v) | v ∈ t} for all
tubes t on G. We say that such a nested complex isomorphism Φ is trivial. Trivial
isomorphisms clearly preserve compatibility degrees: (Φ(t) ‖Φ(t′)) = (t ‖ t′) for any tu-
bes t, t′ on G. We are interested in nontrivial nested complex isomorphisms. We first
want to underline two relevant examples.
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Figure 6.17 – The 1-vertex clockwise rotation of the (n + 3)-gon induces a nontrivial
automorphism � of the nested complex N (Pn+1).

Example 6.33. The reader can check that:

(i) The complementation t 7→ V r t is a nontrivial automorphism of the nested com-
plex N (Kn+1) of the complete graph Kn+1. It dualizes the compatibility degree:
(V r t ‖V r t′) = (t′ ‖ t) for any tubes t, t′ of Kn+1.

(ii) The map � defined for 1 ≤ j ≤ k ≤ n+ 1 by

� [j, k] :=
{

[k + 1, n+ 1] if j = 1,
[j − 1, k − 1] if j > 1,

is a nontrivial automorphism of the nested complex N (Pn+1) of the path Pn+1.
Indeed, up to conjugation by the bijection δ 7→ tδ of Section 6.3.2, the map � coin-
cides with the (combinatorial) 1-vertex clockwise rotation of the (n + 3)-gon Qn+3.
See Figure 6.17.

Therefore, � has order n+ 3, and its iterated powers are explicitly described by

�p [j, k] :=


[j − p, k − p] if 0 ≤ p < j,

[k − p+ 2, n+ j − p+ 1] if j ≤ p < k + 2,
[n+ p+ j − 2k − 1, n+ p− k − 1] if k + 2 ≤ p < n+ 3.

In fact, it is shown in [CSZ15, Lemma 2.2] that the automorphism group of the nes-
ted complex N (Pn+1) is the dihedral group generated by the nontrivial automor-
phism � (the rotation of the (n+ 3)-gon Qn+3) and the automorphism ↔: [j, k] 7→
[n + 2 − k, n + 2 − j] induced by the graph automorphism j 7→ n+ 2− j of Pn+1
(the vertical reflection of the (n + 3)-gon Qn+3). Note that since the compatibility
degree on Pn+1 is in {−1, 0, 1}, any nested complex automorphism preserves the
compatibility degree (and also dualizes it since it is symmetric).

We now generalize both cases of Example 6.33. For n := {n1, . . . , n`} ∈ N` with

n+ 1 =
∑
i∈[`](ni + 1), the spider Xn is the graph with vertices

{
vij

∣∣∣ i ∈ [`], 0 ≤ j ≤ ni
}

and edges
{{
vij−1, v

i
j

}
| i ∈ [`], j ∈ [ni]

}
∪
{{
vi0, v

i′
0
}
| i 6= i′ ∈ [`]

}
. For 0 ≤ j ≤ k ≤ ni, we

denote by
[
vij , v

i
k

]
the path between vij and vik in Xn. Informally, the spider Xn consists

in ` paths [vi1, vini ] called legs of the spider, each attached to a vertex vi0 of a clique called
body of the spider. See Figure 6.18. Note that spiders are sometimes called sunlike
graphs in the literature.

We now define a nontrivial automorphism Ω of the nested complex N (Xn) of the
spider Xn. We distinguish two kinds of tubes of N (Xn):
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Leg tubes A tube t disjoint from the body is included in a leg. The map Ω sends t into
its image by the transformation which cuts the leg containing t and glues it back
to the body by its other endpoint. Formally, for i ∈ [`] and 1 ≤ j ≤ k ≤ ni,

Ω
([
vij , v

i
k

])
:=
[
vini+1−k, v

i
ni+1−j

]
.

Note that Ω sends a leg tube t to a leg tube Ω(t) with |Ω(t)| = |t|.

Body tubes A tube t intersecting the body is the union of segments
[
vi0, v

i
ki

]
, with

−1 ≤ ki ≤ ni (with the convention that [vi0, vi−1] = ∅). We then define

Ω
( ⋃
i∈[`]

[
vi0, v

i
ki

])
:=

⋃
i∈[`]

[
vi0, v

i
ni−1−ki

]
.

Note that Ω sends a body tube t to a body tube Ω(t) with |Ω(t)| = |V| − |t|.

Figure 6.18 illustrates the map Ω on different tubes of the spider X{0,3,2,3,0,3,2,3}. Ob-
serve that Ω indeed generalizes both nontrivial nested complex automorphisms of Ex-
ample 6.33:

(i) The complete graph Kn+1 is the spider X{0}n+1 whose legs are all empty. The
automorphism Ω of N (X{0}n+1) specializes to the complementation t 7→ V r t
on N (Kn+1).

(ii) The path Pn+1 is a degenerate spider whose body can be chosen at different places.
Indeed, the path Pn+1 coincides with the spider X1 :=X{n} with body {1} and the
single leg [2, n + 1], and the automorphism Ω of N (X1) is the composition of the
rotation automorphism � with the vertical reflection automorphism ↔. Similarly,
for any 2 ≤ p ≤ n + 1, the path Pn+1 coincides with the spider Xp :=X{p−2,n+1−p}
with body {p − 1, p} and legs [1, p− 2] and [p+ 1, n+ 1], and the automorphism Ω
of N (Xp) is the composition of �p with ↔. Finally, the path Pn+1 coincides with
the spider Xn+2 :=X{n} with body {n + 1} and the single leg [n], and the automor-
phism Ω of N (Xn+2) is the composition of �n+2 with↔.

This actually suggests an alternative description of Ω on arbitrary spiders Xn. Namely,
Ω is equivalently described by the following steps: shift all leg tubes towards the body,
complement all body tubes, delete all edges

{{
vi0, v

i′
0
}
| i 6= i′ ∈ [`]

}
of the body, replace

them by the clique
{{
vini , v

i′
ni′

}
| i 6= i′ ∈ [`]

}
on the feets of the spider, and finally apply

the trivial isomorphism from the resulting spider back to the initial spider. Our original
presentation of Ω will nevertheless be easier to handle in the proofs. The following
statement is proved in Section 6.5.5.

Proposition 6.34. The map Ω is a nontrivial involutive automorphism of the nested com-
plex N (Xn) of the spider Xn dualizing the compatibility degree: (Ω(t) ‖Ω(t′)) = (t′ ‖ t).

Remark 6.35. It follows from Proposition 6.34 that all dual compatibility fans of a
spider Xn are also compatibility fans of Xn: we have D∗(Xn,T◦) = D(Xn,Ω(T◦)) for
any maximal tubing T◦ on Xn. Note that we already used this observation for complete
graphs in Remark 6.26.

In fact, these nontrivial automorphisms of the nested complexes of the spiders are
essentially the only nontrivial nested complex isomorphisms. The following statements
are proved in Section 6.5.5.
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Figure 6.18 – The spider X{0,3,2,3,0,3,2,3} and examples of the action of the nontrivial
nested complex isomorphism Ω: the tubing T on the left is sent to the tubing Ω(T) on
the right.

Proposition 6.36. A nested complex isomorphism Φ : N (G)→ N (G′) restricts to nested
complex isomorphisms N (H) → N (H′) between maximal connected subgraphs H of G
and H′ of G′.

Theorem 6.37. Let G and G′ be two connected graphs and Φ : N (G) → N (G′) be
a nontrivial nested complex isomorphism. Then G and G′ are spiders and there exists
a graph isomorphism ψ : G → G′ which induces a nested complex isomorphism Ψ :
N (G) → N (G′) (defined by Ψ(t) := {ψ(v) | v ∈ t}) such that the composition Ψ−1 ◦ Φ
coincides with the nontrivial nested complex automorphism Ω on N (G).

Corollary 6.38. For connected graphs G, G′, any nested complex isomorphism Φ :
N (G)→ N (G′) either preserves or dualizes the compatibility degree: either (Φ(t) ‖Φ(t′)) =
(t ‖ t′) for all t, t′ of G, or (Φ(t) ‖Φ(t′)) = (t′ ‖ t) for all t, t′ of G.

To finish our classification of primal and dual compatibility fans up to linear isomor-
phisms, it remains to understand when the primal and the dual compatibility fans of G
with respect to the same initial maximal tubing are linearly isomorphic. For example,
we already observed that

(i) D(Pn+1,T◦) = D∗(Pn+1,T◦) for any initial tubing T◦ on a path Pn+1, see Re-
mark 6.18,

(ii) D(Xn+1,T◦) = D∗(Xn+1,T◦) for the initial tubing T◦ :=
{
{`1}, . . . , {`n}

}
of the star

Xn+1 whose tubes are the n leaves, see Remark 6.28.

These examples extend to subdivisions of stars. Namely, for n := {n1, . . . , n`} ∈ N` with

n =
∑
i∈[`](ni + 1), the octopus Xn is the graph with vertices

{
∗
}
∪
{
vij

∣∣∣ i ∈ [`], 0 ≤ j ≤ ni
}

and edges
{{
vij−1, v

i
j

}
| i ∈ [`], j ∈ [ni]

}
∪
{{
∗, vi0

}
| i ∈ [`]

}
. Informally, the octopus Xn

consists in ` paths [vi0, vini ] called legs, each attached to a head ∗. These graphs are
often called starlike graphs in the literature, we use the term octopus to stay in the
wildlife lexical field. Note that the path Pn+1 is a degenerate octopus where the head
can be chosen at any vertex. As for stars, a tube of an octopus Xn that does not contain
its head ∗ is either compatible or exchangeable with any other tube of Xn. Therefore,
if T◦ is a maximal tubing on Xn whose tubes do not contain the head ∗, then the compa-
tibility fan D(Xn,T◦) and the dual compatibility fan D∗(Xn,T◦) coincide. The following
lemma states that this only happens in this situation.

Lemma 6.39. Let G be a connected graph and T◦ be an initial maximal tubing on G.
If D(G,T◦) and D∗(G,T◦) are linearly isomorphic, then G is an octopus whose head is
contained in no tube of T◦.
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We finally obtain our classification of primal and dual compatibility fans. We first
focus on primal compatibility fans and then conclude with both primal and dual com-
patibility fans together.

Corollary 6.40. The number of linear isomorphism classes of compatibility fans of a
connected graph G is:

(i) the number of triangulations of the regular (n+3)-gon up to the action of the dihedral
group if G = Pn+1 is a path,

(ii) the number of orbits of maximal tubings on G under graph automorphisms of G ot-
herwise.

Corollary 6.41. The number of linear isomorphism classes of primal and dual compati-
bility fans of a connected graph G is:

(i) the number of triangulations of the regular (n+3)-gon up to the action of the dihedral
group if G = Pn+1 is a path,

(ii) the number of G-automorphism orbits of maximal tubings on G if G is a spider but
not a path,

(iii) the number of G-automorphism orbits of maximal tubings on G, counted twice if not
rooted at ∗, if G is an octopus with head ∗ but not a path,

(iv) twice the number of G-automorphism orbits of maximal tubings on G otherwise.

Remark 6.42. Not only we obtain many nonisomorphic complete simplicial fan realiza-
tions for graphical nested complexes (as stated in Corollary 6.40), but these realizations
cannot be derived from the existing geometric constructions for graph associahedra.
Indeed, all previous polytopal realizations of graph associahedra can be obtained by
successive face truncations of a simplex [CD06] or of a cube [Vol10, DFRS15]. Not all
compatibility fans can be constructed in this way. For example, the leftmost compatibi-
lity fan of Figure 6.3 is not linearly isomorphic to the normal fan of a polytope obtained
by face truncations of the 3-dimensional simplex or cube.

6.4.3 Polytopality

In this section, we briefly discuss the polytopality of our compatibility fans for graphical
nested complexes. A complete polyhedral fan is said to be polytopal (or regular) if it
is the normal fan of a polytope. It is well known that not all complete polyhedral
fans (even simplicial) are polytopal. Examples are easily constructed from nonregular
triangulations, see e.g. the discussion in [DRS10, Chapter 2].

Polytopality of cluster fans. The polytopality of cluster fans has been studied since
the foundations of finite type cluster algebras. For compatibility fans, polytopality was
shown for particular initial clusters by F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02]
and in type A by F. Santos [CSZ15, Section 5].

Theorem 6.43 ([CFZ02, CSZ15]). The d-vector fan (or compatibility fan) is polytopal for

• any initial cluster in any type A cluster algebra [CSZ15, Section 5], and

• the bipartite initial cluster in any finite type cluster algebra [CFZ02].

The polytopality of g-vector fans was studied by C. Hohlweg, C. Lange and H. Thomas
in [HLT11]. Recent alternative proofs were also given by S. Stella [Ste13] and V. Pilaud
and C. Stump [PS15a].
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Theorem 6.44 ([HLT11, Ste13, PS15a]). The g-vector fan (or Cambrian fan) is polytopal
for any acyclic initial cluster in any finite type cluster algebra.

All these results rely on the characterization of polytopality for complete simplicial
fans given by Proposition 3.9.

Polytopality of compatibility fans. We have seen in Section 6.1.1 that the nested fan
is the normal fan of the graph associahedron of [CD06, Dev09, Pos09, Zel06]. For the
compatibility fan, the question of the polytopality remains open:

Conjecture 6.45. All primal and dual compatibility fans of graphical nested complexes
are polytopal.

To settle this conjecture, our hope again rely on Proposition 3.9. Besides finding an
explicit function ω on the compatibility vectors of the tubes of a graph, our main issue
is that we do not control the details of the linear dependence between the compatibility
vectors of the tubes involved in a flip. See the proof of Theorem 6.10 in Section 6.5.3.

To support Conjecture 6.45, we have studied the polytopality of the compatibility
fans of the specific families of graphs discussed in Section 6.3. We show in Section 6.5.6
that Conjecture 6.45 holds for paths and cycles.

Theorem 6.46. All compatibility and dual compatibility fans of paths and cycles are
polytopal.

Note that the case of paths is covered by the results of [CSZ15, Section 5] presented
in Theorem 6.43. For cycles, the result was unknown except for the bipartite initial
tubing by the results of [CFZ02] on type B and C cluster algebras. Via the correspon-
dences given in Propositions 6.16 and 6.21, Theorem 6.46 translates to the following
relevant property of d-vector fans.

Corollary 6.47. In types A, B and C cluster algebras, the d-vector fan with respect to
any initial cluster (acyclic or not) is polytopal.

We were not able to settle Conjecture 6.45 for arbitrary graphs. We believe that this
question is worth investigating. As already mentioned, it requires a better understan-
ding of all linear dependences between the compatibility vectors of the tubes involved in
a flip. In another direction, we checked empirically that all 3-dimensional compatibility
and dual compatibility fans of Section 6.3.1 and Figure 6.4 are polytopal. Using the
characterization given in Proposition 3.9, it boils down to check the feasibility of (many)
linear programs.

Finally, as a curiosity and to conclude this polytopality section on a recreative note,
we provide a polytopal realization of the compatibility fan for the star Xn+1 with respect
to the initial tubing T◦ :=

{
{`1}, . . . , {`n}

}
whose tubes are the n leaves of Xn+1. We first

observe that this fan is linearly isomorphic to the fan G(G) of Theorem 6.1. Therefore,
it can be realized by an affine transformation of the graph associahedra constructed
in Theorem 6.3. Here, we prefer to give a direct construction with integer coordinates.
We provide both the vertex and the facet descriptions of this realization. On the one
hand, for each maximal tubing T on Xn+1 we define a point x(T) ∈ Rn whose ith coor-
dinate is the cardinality of the inclusion minimal tube of T ∪ {V} containing the leaf `i
minus 1. The set {x(T) | T maximal tubing on Xn+1} is the orbit under permutation
coordinates of the set {

∑
i>k i ei | 0 ≤ k ≤ n}. On the other hand, for a tube t of Xn+1

containing the central vertex ∗, we observed earlier that the compatibility vector of t
with respect to T◦ is the characteristic vector of the leaves of Xn+1 not contained in t.
Let f(k) :=

∑n
j=k j = 1

2(n+ k)(n+ 1− k) and define a half-space H≥(t) of Rn by

H≥(t) :=
{

x ∈ Rn
∣∣∣∣ 〈d(T◦, t)|x〉 ≤ f(|t|)

}
=
{

x ∈ Rn
∣∣∣∣ ∑
i∈[n]
`i∈t

xi ≤ f(|t|)
}
.
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Figure 6.19 – Two Schlegel diagrams for the 4-dimensional stellohedron defined in Pro-
position 6.48. The red facet corresponds to all tubings containing the tube {∗} while
the blue facet corresponds to all tubings containing the tube {`}, where ` is the bottom
left leaf of X5.

Finally, for the tubes of the initial tubing T◦, we define

H≥({`i}) := {x ∈ Rn | 〈d(T◦, {`i})|x〉 ≤ 0} = {x ∈ Rn | xi ≥ 0} .

Proposition 6.48. The compatibility fan D(Xn+1,T◦) with respect to the initial tubing
T◦ :=

{
{`1}, . . . , {`n}

}
, whose tubes are the n leaves of Xn+1, is the normal fan of the

n-dimensional simple polytope defined equivalently as

• the convex hull of the points x(T) for all maximal tubings T on Xn+1, or

• the intersection of the half-spaces H≥(t) for all tubes t of Xn+1.

The proof of this statement is given in Section 6.5.6. As an illustration, the 3-
dimensional stellohedron defined in Proposition 6.48 is represented in Figure 6.12 (right).
Figure 6.19 represents two Schlegel diagrams (see [Zie95, Lecture 5] for definition) for
the 4-dimensional stellohedron defined in Proposition 6.48. In both pictures, we have
distinguished two particular facets:

• The red facet corresponds to all tubings containing the tube {∗}. Since the re-
connected complement of {∗} in X5 is the complete graph K4, it has the combi-
natorics of the permutahedron. In fact, by definition of our polytopal realization,
this facet is the classical permutahedron, obtained as the convex hull of the orbit
of
∑
i∈[4] i ei under permutation of the coordinates.

• The blue facet corresponds to all tubings containing the tube {`}, where ` is the
bottom left leaf of X5. This facet contains the initial tubing T◦ at the back. Note
that there are 4 isometric facets to this blue facet, corresponding to the four leaves
of X5. This is visible in Figure 6.19 (right).

The blue (resp. red) facet is the projection facet on the left (resp. right) picture.
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Remark 6.49. To conclude, observe that we could have replaced the function f in
the definition of the half-spaces H≥(t) by any concave function. This follows from
Proposition 3.9 since the linear dependence between the compatibility vectors of the
tubes of T∪T′ is given for any adjacent maximal tubings T,T′ on Xn+1 distinct from T◦
such that T r {t} = T′ r {t′} by

d(T◦, t) + d(T◦, t′) = d(T◦, t) + d(T◦, t)

where t := t ∩ t′ and t := t ∩ t′ (which are tubes of Xn+1). Details are left to the reader.

6.4.4 Design nested complex

Generalizing graphical nested complexes, S. Devadoss, T. Heath and C. Vipismakul
introduced design nested complexes in [DHV11, Section 5]. To define these complexes,
one considers design tubes of G, which are of two types:

• the round tubes are usual tubes of G (including the connecting components of G),

• the square tubes are just single nodes of G.

We denote by v� the square tube containing v, and still denote round tubes as sets. Two
design tubes are compatible if

• they are both round tubes and they are either nested, or disjoint and nonadjacent,

• or at least one of them is a square tube and they are not nested.

The design nested complex of G is the simplicial complex N �(G) of sets of pairwise
compatible design tubes of G. Examples are given in Figure 6.20. As we mentioned in
Section 4.4.2, the definition of design nested complexes can easily be extended to arbi-
trary building sets, but we do not need it here. By definition, the nested complex N (G)
is (isomorphic to) the subcomplex of the design nested complex N �(G) involving none
of the square tubes, or equivalently containing all improper round tubes.

For a design tube t of G, set

g�(t) :=
{∑

v∈t ev if t is a round tube,
−ev if t is the square tube {v}.

For a tubing T on G, define g�(T) := {g�(t) | t ∈ T}. These vectors again support a
complete simplicial fan realization of the design nested complex N �(G).

Theorem 6.50 ([DHV11]). For any graph G, the collection of cones

G�(G) := {R≥0 g�(T) | T tubing on G}

is a complete simplicial fan of RV, called design nested fan of G, which realizes N �(G).

By definition, the g� vector of a round tube t is just the characteristic vector of t.
Therefore, the nonnegative part of the design nested fan G�(G) projects to the nested
fan G(G) defined in Section 6.1.1. Using ideas similar to the construction of the graph
associahedra Asso(G) realizing G(G), S. L. Devadoss, T. Heath and C. Vipismakul prove
that G�(G) is as well polytopal.

Theorem 6.51 ([DHV11]). The design nested fan is the normal fan of a polytope obtained
from the cube by iterated face truncations.
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Figure 6.20 – Two design graph associahedra: the design P3-associahedron (left) and
the design K3-associahedron (right). For readability, round tubes are colored blue while
square tubes are colored red.

We denote this polytope by Asso�(G) and call it design graph associahedron (alt-
hough it is called graph cubeahedron in [DHV11]). Observe that the face of Asso�(G)
corresponding to the tubing formed by the connected components of G coincides with
the graph associahedron Asso(G). Figure 6.20 illustrates the design P3-associahedron
and the design K3-associahedron. In this figure, the attentive reader should recognize
different standard graph associahedra: on the one hand, the front 2-dimensional faces
of Asso�(P3) and Asso�(K3) are respectively Asso(P3) and Asso(K3), and on the other
hand, the design graph associahedra Asso�(P3) and Asso�(K3) themselves turn out to
coincide respectively with Asso(P4) and Asso(X4) (see Example 6.54). Starting from di-
mension 4, most design graph associahedra are not standard graph associahedra (see
Proposition 6.56). Figures 6.21 and 6.22 represent two Schlegel diagrams (see [Zie95,
Lecture 5] for definition) for the 4-dimensional design cycle associahedron Asso�(O4)
and design star associahedron Asso�(X4).

This section aims at showing that our compatibility fan construction extends to the
design nested complex. That is, we produce a complete simplicial fan realizing the
design nested complex from any initial maximal design tubing. Interestingly, we will
see in Remark 6.61 that the compatibility fan associated to the specific maximal design
tubing consisting of all square tubes coincides with the design nested fan. This provides
a relevant connection between our construction and the classical constructions [CD06,
FS05, Dev09, Zel06] for graph associahedra.

Observe that a square tube is compatible with all design tubes not containing it and
exchangeable with all design tubes containing it. Definition 6.5 of compatibility degree
thus naturally extends on all pairs of design tubes as follows.

Definition 6.52. For two design tubes t, t′ of G, the compatibility degree of t with t′ is

(t ‖ t′) =


−1 if t = t′,
1 if t and t′ are nested and exactly one is square,
|{neighbors of t in t′ r t}| if t and t′ are round and t 6⊆ t′,
0 otherwise.

By construction, this compatibility degree still satisfies the conclusions of Proposi-
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Figure 6.21 – Two Schlegel diagrams for the 4-dimensional design cycle associahedron.
The blue facet corresponds to all round tubings while the red facet corresponds to all
tubings containing the bottom right square tube of O4.

Figure 6.22 – Two Schlegel diagrams for the 4-dimensional design star associahedron.
The blue facet corresponds to all round tubings while the red facet corresponds to all
tubings containing the right square tube of X4.



104 CHAPTER 6. COMPATIBILITY FANS FOR GRAPH ASSOCIAHEDRA

Figure 6.23 – An isomorphism from the design nested complex of a complete graph
with 5 vertices (left) to the nested complex of a star with 6 vertices (right).

Figure 6.24 – An isomorphism from the design nested complex of a path with 5 vertices
(top) to the nested complex of a path with 6 vertices (bottom).

tion 6.7 and thus measures the incompatibility between design tubes. We then define
as usual the compatibility vector of a design tube t of G with respect to an initial maxi-
mal design tubing T◦ := {t◦1, . . . , t◦n} as the vector d(T◦, t) := [(t◦1 ‖ t), . . . , (t◦n ‖ t)] and the
compatibility matrix of a design tubing T := {t1, . . . , tm} on G with respect to T◦ as the
matrix d(T◦,T) := [(t◦i ‖ tj)]i∈[n],j∈[m]. We extend Theorem 6.10 in the following state-
ment, whose proof is sketched in Section 6.5.7.

Theorem 6.53. For any graph G and any maximal design tubing T◦ on G, the collection
of cones

D�(G,T◦) := {R≥0 d(T◦,T) | T design tubing on G}
is a complete simplicial fan which realizes the design nested complex N �(G). We call it
the design compatibility fan of G with respect to T◦.

Using the same duality trick as in the proof of Theorem 6.14, the reader can obtain
as well dual design compatibility fans.

Concerning isomorphisms, we have similar results as in Section 6.4.2. Notice first
that the conclusions of Proposition 6.36 still hold for design nested complexes. We can
thus restrict our discussion to design nested complexes of connected graphs. We first
compare design and standard nested complexes, starting with the following examples.

Example 6.54. The reader can check that:

(i) The design nested complex N �(Kn) is isomorphic to the standard nested com-
plex N (Xn+1). A natural isomorphism sends a square tube v� of Kn to the tube {v}
of Xn+1, and a round tube t of Kn to the tube {∗} ∪ ([n]r t) of Xn+1 (where ∗ is the
central vertex). See Figure 6.23.

(ii) The design nested complex N �(Pn) is isomorphic to the standard nested com-
plex N (Pn+1). A natural isomorphism sends a square tube v� of Pn to the tube
{v + 1, . . . , n+ 1} of Pn+1, and a round tube t of Pn to the tube t of Pn+1. See
Figure 6.24. We denote this isomorphism by Π : N �(Pn)→ N (Pn+1).

We now generalize both cases of Example 6.54. Consider the spiders and octopuses
defined in Section 6.4.2: for n := {n1, . . . , n`} ∈ N` with n =

∑
i∈[`](ni + 1),

• the spider Xn has ` legs [vi1, vini ] attached to its body (the complete graph on {vi0}i∈[`]),
• the octopus Xn has ` legs [vi0, vini ] attached to its head (the single vertex ∗).
We define an isomorphism Ω̄ from the design nested complexN �(Xn) of the spider Xn

to the nested complex N (Xn) of the octopus Xn. We distinguish three kinds of tubes
of N �(Xn):
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Figure 6.25 – An isomorphism from the design nested complex of the spider
X{0,3,2,3,0,3,2,3} (left) to the nested complex of the octopus X{0,3,2,3,0,3,2,3} (right).

Square tubes for i ∈ [`] and j ∈ [0, ni], Ω̄(vij
�) :=

[
vi0, v

i
ni−j

]
,

Leg tubes for i ∈ [`] and 1 ≤ j ≤ k ≤ ni, Ω̄
([
vij , v

i
k

])
:=
[
vini+1−k, v

i
ni+1−j

]
,

Body tubes for −1 ≤ ki ≤ ni (i ∈ [`]), Ω̄
( ⋃
i∈[`]

[
vi0, v

i
ki

])
:= {∗} ∪

⋃
i∈[`]

[
vi0, v

i
ni−1−ki

]
.

Figure 6.25 illustrates the map Ω̄ on different tubes of the spider X{0,3,2,3,0,3,2,3}. Ob-

serve that Ω̄ indeed generalizes both isomorphisms of Example 6.54:

(i) As Kn = X{0}n and Xn+1 = X{0}n , the isomorphism Ω̄ : N �(X{0}n) → N (X{0}n)
coincides with the isomorphism of Example 6.54 (i).

(ii) As Pn = X{n} and Pn+1 = X{n}, the isomorphism Ω̄ : N �(X{n}) → N (X{n}) coi-
ncides with the isomorphism Π of Example 6.54 (ii) up to the automorphisms �
and ↔ of the nested complex N (X{n}) described in Example 6.33 (ii). More preci-
sely if we consider the leftmost vertex of Pn as the body of X{n} and the leftmost

vertex of Pn+1 as the head of X{n}, then one can check that � ◦ Ω̄ =↔◦ Π.

The proof of the following statement is similar to that of Proposition 6.34 and therefore
left to the reader.

Proposition 6.55. The map Ω̄ is an isomorphism from the design nested complexN �(Xn)
of the spider Xn to the nested complex N (Xn) of the octopus Xn which dualizes the
compatibility degree: (Ω̄(t) ‖ Ω̄(t′)) = (t′ ‖ t).

The following proposition, proved in Section 6.5.8, states that Ω̄ is essentially the
only isomorphism between design and standard nested complexes.

Proposition 6.56. Let Ḡ and G be two connected graphs and Φ : N �(Ḡ) → N (G)
be a simplicial complex isomorphism. Then Ḡ is a spider Xn while G is an octopus Xn
and Φ coincides with Ω̄ up to composition with a nested complex automorphism of N (G)
(described in Theorem 6.37).

We now classify combinatorial isomorphisms of design nested complexes. As in the
case of standard nested complexes, any graph isomorphism φ : G → G′ induces a tri-
vial design nested complex isomorphism Φ : N �(G)→ N �(G′), defined on round tubes
by Ψ(t) := {ψ(v) | v ∈ t} and on square tubes by Ψ(v�) :=ψ(v)�, which preserves com-
patibility degrees. We again focus on nontrivial design nested complex isomorphisms.
We first underline two examples.
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Figure 6.26 – The octopus X{0,3,2,3,0,3,2,3} and examples of the action of the nontrivial
design nested complex isomorphism Ω�: the design tubing T on the left is sent to the
design tubing Ω�(T) on the right.

Example 6.57. The reader can check that:

(i) For the star Xn with central vertex ∗, the map which preserves the square tube ∗�,
exchanges the square tube v� with the round tube {v}, and exchanges any other
round tube t with the round tube ([n] r t) ∪ {∗}, is a nontrivial design nested
complex automorphism of N �(Xn).

(ii) For p ∈ [n+3], the conjugation Π ◦�p ◦Π−1 of the automorphism�p : N (Pn+1)→ N (Pn+1)
of Example 6.33 (ii) by the isomorphism Π : N �(Pn)→ N (Pn+1) of Example 6.54 (ii)
is a nontrivial design nested complex automorphism of N �(Pn).

Note that these two automorphisms send some square tubes to round tubes and thus
are nontrivial.

We now describe a generalization of both cases of Example 6.57. Namely, we de-
fine an automorphism Ω� of the design nested complex N �(Xn) of the octopus Xn for
any n := {n1, . . . , n`} ∈ N` with n =

∑
i∈[`](ni + 1) as follows:

Square tubes for i ∈ [`] and j ∈ [0, ni], Ω�(vij
�) :=

[
vi0, v

i
ni−j

]
and Ω�(∗�) := ∗�,

Leg tubes for i ∈ [`] and 0 ≤ k ≤ ni, Ω�
([
vi0, v

i
k

])
:= vini−k

�
,

for i ∈ [`] and 1 ≤ j ≤ k ≤ ni, Ω�
([
vij , v

i
k

])
:=
[
vini+1−k, v

i
ni+1−j

]
,

Head tubes for −1 ≤ ki ≤ ni (i ∈ [`]), Ω�
(
{∗} ∪

⋃
i∈[`]

[
vi0, v

i
ki

])
:= {∗} ∪

⋃
i∈[`]

[
vi0, v

i
ni−1−ki

]
.

Figure 6.26 illustrates the map Ω� on different tubes of the octopus X{0,3,2,3,0,3,2,3}. The
reader is invited to check that Ω� indeed generalizes the nontrivial automorphisms of
Example 6.57. The following statement is also left to the reader. The proof is similar to
that of Proposition 6.34.

Proposition 6.58. The map Ω� is a nontrivial involutive automorphism of the design
nested complex N (Xn) which dualizes the compatibility degree: (Ω�(t) ‖Ω�(t′)) = (t′ ‖ t).

The following theorem, proved in Section 6.5.8, states that Ω� is essentially the only
nontrivial design nested complex isomorphism.

Theorem 6.59. Let G and G′ be two connected graphs and Φ : N �(G) → N �(G′) be a
nontrivial design nested complex isomorphism. Then G and G′ are octopuses and there
exists a graph isomorphism ψ : G → G′ which induces a design nested complex isomor-
phism Ψ : N �(G)→ N �(G′) (defined by Ψ(t) := {ψ(v) | v ∈ t} and Ψ(v�) :=ψ(v)�) such
that the composition Ψ−1 ◦ Φ coincides with the nontrivial design nested complex auto-
morphism Ω� on N �(G).
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We conclude that we get many design compatibility fans (up to linear isomorphism).

Corollary 6.60. If a connected graph G is not an octopus, then the number of linear
isomorphism classes of primal (resp. dual) design compatibility fans of G is the number
of orbits of maximal design tubings on G under graph automorphisms of G.

Finally, as for the compatibility fan, we do not know in general whether the design
compatibility fan is or not polytopal. Nevertheless, we know it for the following initial
tubing.

Remark 6.61. Consider the maximal tubing T� of a graph G consisting of all square tu-
bes of G. By definition of the compatibility degree with square tubes, the compatibility
vector of a square tube {v} is just −ev while the compatibility vector of a round tube t
with respect to T� is just the characteristic vector of t. Therefore, the design compatibi-
lity fan D�(G,T�) coincides with the design nested fan G�(G). It follows that D�(G,T�)
is the normal fan of the design graph associahedron Asso�(G) for any graph G. In fact,
as the linear dependencies among the compatibility vectors with respect to the initial
tubing T� are simply described, a direct computation shows that the map ω defined
by ω(t) = 3|V||t| − 3|t| for a round tube and ω(v�) = C for a sufficiently large constant C
provides a suitable weight function for Condition (2) of Proposition 3.9.

6.4.5 Laurent Phenomenon algebras

To conclude, we discuss our construction with respect to the framework of LP-algebras
presented in Section 4.4. We mentioned there that graph associahedra happen to be
examples of cluster complexes of some LP-algebras so as the existence of d-vectors. In
view of the relatively bad properties of d-vectors in LP-algebra mentioned in Section 4.4.3,
the denominator vectors in the linear LP-algebraA(G) associated to a graph G in [LP16b]
cannot always coincide with our compatibility vectors on tubes of G. But despite all
these difficulties, we hope that the study of the linear LP-algebras arising from (design)
nested complexes of graphs will yield progresses towards an answer to Question 4.16.
Since nonisomorphic LP-algebra may have isomorphic cluster complexes (see again
Section 4.4.2), another simpler question would be to look for other LP-algebras whose
denominators interpret our compatibility degrees.

Question 6.62. For which graph G does there exist a LP-algebra whose cluster com-
plex is isomorphic to the nested complex Asso(G) (resp. to the design nested com-
plex Asso�(G)) and whose denominators are given by the (primal or dual) compatibility
degrees defined in this chapter?

6.5 Proofs

This section contains the proofs of our results. Some of them require additional techni-
cal steps, which motivated us to put them apart. We also hope that the many examples
treated in Section 6.3 help the reader’s intuition throughout these proofs.

6.5.1 Compatibility degree (Proposition 6.7)

We start with the proof that our graphical compatibility degree encodes compatibility
and exchangeability between tubes. We show the three points of Proposition 6.7:

• (t ‖ t′) < 0 ⇐⇒ (t′ ‖ t) < 0 ⇐⇒ t = t′.
This is immediate from the definition since the compatibility degree between two distinct
tubes is either a cardinal or 0.
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• (t ‖ t′) = 0 ⇐⇒ (t′ ‖ t) = 0 ⇐⇒ t and t′ are compatible.
Consider two distinct tubes t, t′ of G. If they are compatible, then either t ⊆ t′, or t′ ⊆ t,
or t and t′ are nonadjacent. In the first case, (t ‖ t′) = 0 by the last line of Definition 6.5
of the compatibility degree. In the last two cases, (t ‖ t′) = |{neighbors of t in t′ r t}| =
|∅| = 0. Conversely, if (t ‖ t′) = 0, then either t has no neighbor in t′, or t′ ⊆ t, or t ⊆ t′,
so that the two tubes are compatible.

• (t ‖ t′) = 1 = (t′ ‖ t) ⇐⇒ t and t′ are exchangeable.
The⇐ part follows from the explicit flip description in Proposition 5.2. Indeed, assume
that t and t′ are exchangeable, let t := t∪t′, and let T,T′ be two adjacent maximal tubings
on G such that T r {t} = T′ r {t′}. Since t′ is the connected component of G[trλ(t,T)]
containing λ(t,T), the root λ(t,T) is the unique neighbor of t in t′ r t. Therefore,
(t ‖ t′) = 1, and (t′ ‖ t) = 1 by symmetry.

Assume conversely that (t ‖ t′) = 1 = (t′ ‖ t). Since (t′ ‖ t) = 1, there exists a unique
neighbor r of t′ in t r t′. Similarly, there exists a unique neighbor r′ of t in t′ r t. We
want to find two adjacent maximal tubings T,T′ on G such that T r {t} = T′ r {t′}.
We start with the forced tubes (see the end of Section 6.2.1): we define t := t ∪ t′ and we
let s1, . . . , s` be the connected components of tr{r, r′}. We choose an arbitrary maximal
tubing Si on G[si] for each i, and an arbitrary maximal tubing S on G containing t. The
set of tubes

R := {t, s1, . . . , s`} t S1t · · · tS` t {s | s ∈ S, s 6⊆ t} .

is clearly a tubing, and is compatible with both t and t′. We now compute the cardinality
of R. Observe first that |S| = |V| − |κ(G)| so that | {s | s ∈ S, s 6⊆ t} | = |V| − |κ(G)| − |t|
since t is a tube of G. Moreover, |Si| = |si| − 1 since si is a tube, and

∑
i |si| = |

⋃
i si| =

|t r {r, r′}| = |t| − 2. We conclude that

|R| = (1 + `) + (|t| − 2− `) + (|V| − |κ(G)| − |t|) = |V| − |κ(G)| − 1

Therefore, R is a ridge of the nested complex N (G), so that T := R∪{t} and T′ := R∪{t′}
are maximal tubings related by the flip of t into t′. �

6.5.2 Restriction on coordinate hyperplanes (Proposition 6.32)

We now state two lemmas needed in the proofs of Theorem 6.10. They have essentially
the same content as Proposition 6.32, except that they focus on compatibility vectors
(rays) and not on the other cones of the compatibility fan since Theorem 6.10 is not
proved yet. In particular, they will imply Proposition 6.32 once Theorem 6.10 will be
established.

Remember that for a tube t◦ of G, we denote by G[t◦] the restriction of G to t◦
and by G?t◦ the reconnected complement of t◦ in G, defined as the graph with vertex
set V r t◦ and edge set

{
e ∈

(Vrt◦
2
)
| e or e ∪ t◦ is connected in G

}
.

Lemma 6.63 ([CD06]). For a tube t◦ of G, the map

s 7−→ s̃ :=
{

s if s ( t◦
s r t◦ if s ) t◦ or s ∩ t◦ = ∅

sending the tubes of G compatible with t◦ to the tubes of G̃ := G[t◦] t G?t◦ defines an
isomorphism between the link of t◦ in the nested complex N (G) and the nested com-
plex N (G̃).

We denote by T̃ :=
{
t̃
∣∣ t ∈ T

}
the image of a tubing T on G. This map actually

preserves the compatibility degrees between tubes and the compatibility vectors.
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Lemma 6.64. Let t◦ be a tube of G. The map s 7→ s̃ between the link of t◦ in the nes-
ted complex N (G) and the nested complex N (G̃) of the graph G̃ := G[t◦] t G?t◦ defined
in Lemma 6.63 preserves the compatibility degree: (t ‖ t′) = ( t̃ ‖ t̃′) for any tubes t, t′
of G compatible with t◦. Therefore, for any maximal tubing T◦ on G containing t◦ and
any tube t of G compatible with t◦, the compatibility vector d(T̃◦, t̃) is obtained from the
compatibility vector d(T◦, t) by deletion of its vanishing t◦-coordinate.

Proof. If t and t′ are compatible, so are t̃ and t̃′ by Lemma 6.63, thus the result follows
from Proposition 6.7. We can therefore assume that t and t′ are incompatible, so as t̃
and t̃′. Therefore, the compatibility degrees (t ‖ t′) and ( t̃ ‖ t̃′) actually count neighbors.
However, it follows immediately from the definitions of the graph G̃ and of the map s 7→ s̃
that the neighbors of t in t′ r t are precisely the neighbors of t̃ in t̃′ r t̃. This proves
the equality between the compatibility degrees. The equality between the compatibility
vectors follows coordinate by coordinate. �

6.5.3 Compatibility fan (Theorem 6.10)

In order to show that the cones of the compatibility matrices of all tubings on G form a
complete simplicial fan, we need the following refinement.

Theorem 6.65. For any graph G and any maximal tubing T◦ on G, the compatibility
vectors with respect to T◦ have the following properties.

Span Property For any tube u of G, the span of {d(T◦, s) | s ∈ T, s ⊆ u}, for a maximal
tubing T on G containing u, is independent of T.

Flip Property For any two adjacent maximal tubings T,T′ on G with Tr{t} = T′r{t′},
there exists a linear dependence

αd(T◦, t) + α′ d(T◦, t′) +
∑

s∈T∩T′
βs d(T◦, s) = 0

between the compatibility vectors of T ∪ T′ with respect to T◦ which is:

Separating the hyperplane spanned by {d(T◦, s) | s ∈ T ∩ T′} separates d(T◦, t)
and d(T◦, t′), i.e. the coefficients α and α′ have the same sign different from 0.

Local the dependence is supported by tubes included in t, i.e. βs = 0 for all s 6⊆ t.

Theorem 6.10 follows from the Separating Flip Property and the characterization
of complete simplicial fans in Proposition 3.7. The Span Property and Local Flip
Property are not required to get Theorem 6.10 but we use them to obtain the proof of
the Separating Flip Property. Observe also that we do not need to prove that the linear
dependence between the compatibility vectors of T ∪ T′ is unique: it is a consequence
of Proposition 3.7 once we know the Separating Flip Property.

Before entering details, let us sketch the general idea of the proof of Theorem 6.65.
We seek for a linear dependence between the compatibility vectors of the tubes of T∪T′
with respect to the initial tubing T◦, that is, for a linear relation satisfied by their
compatibility degrees with any tube of T◦. There are simple combinatorial relations
between the compatibility degrees of the tubes of T∪T′ with all tubes of T◦ not contained
in t. Our strategy is to start from such a relation and adapt it iteratively such that it
holds for the other tubes of T◦ as well. This transformation is done in two steps:

• We first deal with the tubes of T◦ contained in t and maximal for this property.
They determine the coefficients of the linear dependence on the forced tubes
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• For the remaining tubes of T◦, we need to make successive corrections to the
linear dependence. We first get an explicit linear dependence assuming that T∩T′
contains certain suitable tubes included in t. We then use inductively the Span
Property and the Local Flip Property to get an implicit linear dependence in
general.

The key of the proof is that our transformation increases the set of tubes of T◦ for which
the relation between the compatibility degrees of the tubes of T ∪ T′ is valid.

We now start the formal proof. We proceed by induction on the dimension of the nes-
ted complex N (G). It is immediate when this dimension is 0. We now consider an arbi-
trary graph G and assume that we have shown Theorem 6.65 and thus Corollary 6.12
for any graph H such that dim(N (H)) < dim(N (G)). Given a exchangeable pair of tu-
bes t, t′ of G, our first objective is to exhibit separating and local linear dependences for
some adjacent maximal tubings T,T′ on G such that T r {t} = T′ r {t′}. We will show
later the Span Property and use it to prove that the linear dependence is separating
and local for all adjacent maximal tubings T,T′ on G such that T r {t} = T′ r {t′}.

Lemma 6.66. For any two exchangeable tubes t, t′ of G, there exist adjacent maximal
tubings T,T′ on G such that T r {t} = T′ r {t′} and a linear dependence between the
compatibility vectors of the tubes of T ∪ T′ which is both separating and local.

Proof. We fix some notations for the forced tubes of the exchangeable pair {t, t′}. First
recall that since t and t′ are exchangeable, the tube t (resp. t′) has a single neighbor
in t′ r t (resp. in t r t′) that we denote by r (resp. r′). We set t := t ∪ t′, and we denote
by t1, . . . , tk the connected components of G[t ∩ t′], by a1, . . . , a` the connected compo-
nents of G[tr (t′∪{r})], and by a′1, . . . , a′`′ the connected components of G[t′r (t∪{r′})].
Although it is not a tube, we set t :=

⊔
i∈[k] ti and we abuse notation to write (t◦ ‖ t)

for
∑
i∈[k](t◦ ‖ ti) and similarly d(T◦, t) for

∑
i∈[k] d(T◦, ti). We will use in the same way

the notations a and a′.
We need to distinguish different cases, for which the linear dependences are slightly

different, while the proofs are essentially identical. To simplify the discussion, we as-
sume in Cases (A), (B) and (C) below that t, t′ /∈ T◦ and that no tube of T◦ is compatible
with both t and t′. At the end of the proof, Cases (D) and (E) show how to restrict to
these hypotheses.

(A) A first relation. Consider a tube t◦ of T◦ not contained in t. We claim that

(t◦ ‖ t) + (t◦ ‖ t′) = (t◦ ‖ t) + (t◦ ‖ t).

Indeed, since t◦ 6⊆ t, these four compatibility degrees actually count neighbors of t◦. The
formula thus follows from inclusion-exclusion principle since t = t ∪ t′ and t = t ∩ t′.

There are other tubes of T◦ satisfying this relation. Indeed, consider a tube t◦ in T◦
included in t which contains r but does not contain nor is adjacent to r′. Then t◦ ( t ( t
so that (t◦ ‖ t) = (t◦ ‖ t) = 0. Moreover, t◦ is incompatible with t′ and all t1, . . . , tk. Since
r′ is not adjacent to t◦, all neighbors of t◦ in t′rt◦ are in trt◦. Therefore (t◦ ‖ t′) = (t◦ ‖ t).
The relation follows. Similarly, the relation follows if t◦ contains r′ and does not contain
nor is adjacent to r.

If all tubes of T◦ included in t satisfy the previous conditions, we have obtained a
separating and local linear dependence:

d(T◦, t) + d(T◦, t′) = d(T◦, t) + d(T◦, t). (6.1)

This linear dependence would be valid for any adjacent maximal tubings T,T′ on G
such that T r {t} = T′ r {t′} since the tube t and the tubes t are forced in any such
pair. Unfortunately, these conditions do not always hold for all tubes of T◦. In this case,
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we will therefore adapt the linear dependence (6.1) to cover all possible configurations
for the tubes of T◦.
(B) No tube of T◦ contained in t contains both r and r′. Except if the linear depen-
dence (6.1) is valid, there must exist w.l.o.g. a tube t◦ ∈ T◦ contained in t, containing r
and adjacent to r′. Choose t◦ maximal for these properties. Since we have assumed that
no tube of T◦ is compatible with both t and t′, all tubes of T◦ included in t◦ contain r.
These tubes thus form a nested chain t◦ = t◦0 ) t◦1 ) · · · ) t◦p = {r}. For i ∈ [p], define t?i
to be the connected component of G[t◦i−1 r {r}] containing the singleton t◦i−1 r t◦i .

Set
α := (t◦ ‖ a) + (t◦ ‖ t′) and α′ := (t◦ ‖ t) + (t◦ ‖ a),

and define inductively β1, . . . , βp by

βi = α′ (t◦i ‖ t′)− α (t◦i ‖ t)− (α− α′)(t◦i ‖ a)−
∑

j∈[i−1]
βj (t◦i ‖ t?j ).

We claim that

αd(T◦, t)+α′ d(T◦, t′) = αd(T◦, t)+α′ d(T◦, t)+(α−α′) d(T◦, a)+
∑
i∈[p]

βi d(T◦, t?i ). (6.2)

To prove it, we check this linear dependence coordinate by coordinate.
Observe first that (t◦i ‖ t) = (t◦i ‖ t) = 0 for all 0 ≤ i ≤ p since t◦i ( t ⊆ t. Moreover, for

all i < j, we have by definition t?j ( t◦i , so that (t◦i ‖ t?j ) = 0. Finally, we have (t◦i ‖ t?i ) = 1
since t◦i and t?i are incompatible and the only neighbor of t◦i in t?i r t◦i is the single-
ton t◦i−1 r t◦i . Therefore, Relation (6.2) holds for t◦ by definition of α and α′ and for t◦i by
definition of βi.

Consider now a tube s◦ of T◦ not included in t◦. Suppose that s◦ is included in t.
Then s◦ contains precisely one of r and r′ (it cannot contain both by assumption (B),
and it cannot avoid both as it would be compatible with both t and t′). If s◦ contains r, it
contains t◦ and therefore equals t◦ by maximality of the latter. Otherwise, s◦ contains r′,
thus is adjacent to t◦, thus contains it (by compatibility), and thus contains r, a con-
tradiction. We therefore obtained that s◦ is not included in t, so that all compatibility
degrees (s◦ ‖ t), (s◦ ‖ t), (s◦ ‖ t) and (s◦ ‖ a) actually count neighbors of s◦. Observe now
that r cannot be adjacent to s◦ (except if it belongs to s◦), since r belongs to t◦ which is
compatible with s◦. Therefore, we have

(s◦ ‖ t) = (s◦ ‖ t) + (s◦ ‖ a) and (s◦ ‖ t′) = (s◦ ‖ t)− (s◦ ‖ a),

since t = t t a t {r} and t′ = t r a r {r}. Finally, since any t?i is contained in t◦, it is
compatible with s◦, so that (s◦ ‖ t?i ) = 0 by Proposition 6.7. Combining these equalities,
we obtain that Relation (6.2) holds for any s◦ ∈ T◦.

We found a linear dependence between the compatibility vectors, with respect to the
initial tubing T◦, of the tubes {t, t′, t} ∪ t ∪ a ∪ {t?i | i ∈ [p]} . Any two of these tubes,
except t and t′, are compatible:

• the forced tubes are pairwise compatible;

• each t?i is a connected component of t◦i r {r}, thus is contained in t r {r, r′},
and thus is compatible with the connected components of t r {r, r′} (i.e. all forced
tubes);

• for t◦i ⊇ t◦j , any connected component of t◦j r {r} is contained in a connected
component of t◦i r {r} and thus is compatible with all connected components of
t◦i r {r}. In particular t?i and t?j are compatible.
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Therefore, there exist adjacent maximal tubings T,T′ on G such that Tr{t} = T′r{t′}
and T ∪ T′ ⊇ {t, t′, t} ∪ t ∪ a ∪ {t?i | i ∈ [p]}. For this choice of T,T′, we thus obtained a
separating and local linear dependence (6.2) between the compatibility vectors of the
tubes of T ∪ T′.
(C) A tube of T◦ contained in t contains both r and r′. There are again two cases.

(C.1) No tube of T◦ contained in t contains r and is adjacent to r′ or conversely.
There must exist a tube t◦ ∈ T◦ included in t and containing r. Choose t◦ maximal
for these properties. With the same arguments as in Case (B), the tubes of T◦ included
in t◦ form a nested chain t◦ = t◦0 ) t◦1 ) · · · ) t◦p = {r}. For i ∈ [p], define t?i to be the
connected component of G[t◦i−1 r {r}] containing the singleton t◦i−1 r t◦i . We define the
tube t′◦, the chain t′◦ = t′◦0 ) t′◦1 ) · · · ) t′◦p′ = {r′} and the tubes t′?i for i ∈ [p′] similarly.

Consider now the inclusion minimal tube t◦ of T◦ contained in t and containing
both r and r′. Since we assumed that no tube of T◦ is compatible with both t and t′, we
have t◦ = t◦ t t′◦ t {r} where r ∈ t. Let t? be the connected component of G[t◦ r {r, r′}]
containing r.

Set
α := (t′◦ ‖ t) + (t′◦ ‖ a′) and α′ := (t◦ ‖ t) + (t◦ ‖ a),

and define inductively β1, . . . , βp and β′1, . . . , β
′
p′ by

βi = α′ (t◦i ‖ t′)− (α + α′) (t◦i ‖ t)− α (t◦i ‖ a) + αα′ (t◦i ‖ t?)−
∑

j∈[i−1]
βj (t◦i ‖ t?j ),

β′i = α (t′◦i ‖ t)− (α + α′) (t′◦i ‖ t)− α′ (t′◦i ‖ a′) + αα′ (t′◦i ‖ t?)−
∑

j∈[i−1]
β′j (t′◦i ‖ t′?j ).

We claim that

αd(T◦, t) + α′ d(T◦, t′) = (α + α′) d(T◦, t) + αd(T◦, a) + α′ d(T◦, a′)− αα′ d(T◦, t?)

(6.3)

+
∑
i∈[p]

βi d(T◦, t?i ) +
∑
i∈[p′]

β′i d(T◦, t′?i ).

To prove it, we check this linear dependence coordinate by coordinate.
We start with t◦ and t′◦. We have (t◦ ‖ t) = 0 since t◦ ( t. Moreover, (t◦ ‖ t?) =

|{r}| = 1. Finally, we have by definition t?j ( t◦ so that (t◦ ‖ t?j ) = 0 for all j ∈ [p].
Combining these equalities, Relation (6.3) follows for t◦ from the definition of α and α′.
The argument is identical for t′◦.

We now consider the tubes t◦i and t′◦i . Observe first that (t◦i ‖ t) = 0 for all 0 ≤ i ≤ p
since t◦i ( t. Moreover, for all i < j, we have by definition t?j ( t◦i , so that (t◦i ‖ t?j ) = 0. In
addition, we have (t◦i ‖ t′?j ) = 0 for all i ∈ [p] and j ∈ [p′] since t◦i and t′?j are compatible.
Finally, we have (t◦i ‖ t?i ) = 1 since t◦i and t?i are incompatible and the only neighbor of t◦i
in t?i r t◦i is the singleton t◦i−1 r t◦i . Therefore, Relation (6.3) holds for t◦i by definition
of βi. The argument is identical for t′◦i .

Finally, we consider a tube s◦ of T◦ not strictly contained in t◦. With similar argu-
ments as in Case (B), the compatibility degrees (s◦ ‖ t), (s◦ ‖ t′), (s◦ ‖ t), (s◦ ‖ a) and (s◦ ‖ a′)
actually count neighbors of s◦, and (by assumption C) satisfy

(s◦ ‖ t) = (s◦ ‖ t) + (s◦ ‖ a) and (s◦ ‖ t′) = (s◦ ‖ t) + (s◦ ‖ a′).

Moreover, since all t?i , t′?i and t? are contained in t◦, they are all compatible with s◦, so
that (s◦ ‖ t?i ) = (s◦ ‖ t′?i ) = (s◦ ‖ t?) = 0 by Proposition 6.7. Combining these equalities,
we obtain that Relation (6.3) holds for any s◦ ∈ T◦.
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With the same arguments as in Case (B), there exist adjacent maximal tubings T,T′
on G such that T r {t} = T′ r {t′} and T ∪ T′ ⊇ {t, t′, t?} ∪ t ∪ a ∪ a′ ∪ {t?i | i ∈ [p]} ∪
{t′?i | i ∈ [p]}. For this choice of T,T′, we thus obtained a separating and local linear
dependence (6.3) between the compatibility vectors of the tubes of T ∪ T′.

(C.2) A tube of T◦ contained in t contains r and is adjacent to r′ or conver-
sely. W.l.o.g., consider an inclusion maximal tube t◦ ∈ T◦ contained in t, containing r
and adjacent to r′. Since we have assumed that no tube of T◦ is compatible with
both t and t′, all tubes of T◦ included in t◦ contain r. These tubes thus form a nested
chain t◦ = t◦0 ) t◦1 ) · · · ) t◦p = {r}. For i ∈ [p], define t?i to be the connected component
of G[t◦i−1 r {r}] containing the singleton t◦i−1 r t◦i .

Set
α := (t◦ ‖ t′)− (t◦ ‖ t) = |{r′}| = 1 and α′ := (t◦ ‖ t) + (t◦ ‖ a),

and define inductively β1, . . . , βp by

βi = α′ (t◦i ‖ t′)− (1 + α′) (t◦i ‖ t)− (t◦i ‖ a)−
∑

j∈[i−1]
βj (t◦i ‖ t?j ).

We claim that

d(T◦, t) + α′ d(T◦, t′) = (1 + α′) d(T◦, t) + d(T◦, a) + α′ d(T◦, a′) +
∑
i∈[p]

βi d(T◦, t?i ). (6.4)

To prove it, we check this linear dependence coordinate by coordinate.
Observe first that (t◦i ‖ t) = 0 for all 0 ≤ i ≤ p since t◦i ( t. Moreover, for all i < j,

we have by definition t?j ( t◦i , so that (t◦i ‖ t?j ) = 0. Finally, we have (t◦i ‖ t?i ) = 1 since t◦i
and t?i are incompatible and the only neighbor of t◦i in t?i r t◦i is the singleton t◦i−1 r t◦i .
Therefore, Relation (6.2) holds for t◦ by definition of α and α′ and for t◦i by definition
of βi.

Consider now a tube s◦ of T◦ not strictly contained in t◦. With similar arguments as
in Case (B), the compatibility degrees (s◦ ‖ t), (s◦ ‖ t′), (s◦ ‖ t), (s◦ ‖ a) and (s◦ ‖ a′) actually
count neighbors of s◦, and (by assumption C) satisfy

(s◦ ‖ t) = (s◦ ‖ t) + (s◦ ‖ a) and (s◦ ‖ t′) = (s◦ ‖ t) + (s◦ ‖ a′).

Moreover, since all t?i are contained in t◦, they are all compatible with s◦, so that
(s◦ ‖ t?i ) = 0 by Proposition 6.7. Combining these equalities, we obtain that Relation (6.3)
holds for any s◦ ∈ T◦.

With the same arguments as in Case (B), there exist adjacent maximal tubings T,T′
on G such that T r {t} = T′ r {t′} and T ∪ T′ ⊇ {t, t′} ∪ t ∪ a ∪ a′ ∪ {t?i | i ∈ [p]}. For
this choice of T,T′, we thus obtained a separating and local linear dependence (6.4)
between the compatibility vectors of the tubes of T ∪ T′.

We assumed in Cases (A), (B) and (C) above that t, t′ /∈ T◦ and that no tube of T◦
is compatible with both t and t′. The remaining two cases show how to force this
assumption.

(D) A tube t◦ of T◦ is compatible with both t and t′. We treat this case by induction
on the number of tubes of T◦ compatible with both t and t′. By Lemma 6.64, the com-
patibility vectors with respect to T◦ of the tubes of G compatible with t◦ correspond to
the compatibility vectors of the tubes of G̃ := G[t◦]tG?t◦ with respect to the maximal tu-
bing T̃◦. Since there are strictly less tubes of T̃◦ compatible with both t̃ and t̃′ than tubes
of T◦ compatible with both t and t′, the induction hypothesis ensures that there exist
adjacent maximal tubings T̃, T̃′ on G̃ such that T̃ r {̃t} = T̃′ r {̃t′} and a separating
and local linear dependence between the compatibility vectors of T̃ ∪ T̃′ with respect



114 CHAPTER 6. COMPATIBILITY FANS FOR GRAPH ASSOCIAHEDRA

to T̃◦. By Lemma 6.63, the sets T := {t◦} ∪
{
s | s̃ ∈ T̃

}
and T′ := {t◦} ∪

{
s′ | s̃′ ∈ T̃′

}
are

tubings on G (since t◦ is compatible with all preimages of tubes of G̃) and they are maxi-
mal by cardinality. Moreover, Lemma 6.64 ensures that the linear dependence between
the compatibility vectors of the tubes of T ∪ T′ with respect to T◦ coincides with the
linear dependence between the compatibility vectors of the tubes of T̃ ∪ T̃′ with respect
to T̃◦. The linear dependence clearly remains separating and local, which concludes
when there is a tube t◦ ∈ T◦ compatible with both t and t′.

(E) t or t′ belongs to T◦. We can assume w.l.o.g. that t = t◦ belongs to T◦. Consider
any two adjacent maximal tubings T,T′ on G such that T r {t} = T′ r {t′}. Since
any tube s in T ∩ T′ is compatible with t = t◦, the t◦-coordinate of the compatibility
vector d(T◦, s) vanishes. The same happens for the vector v := d(T◦, t) + d(T◦, t′) since
(t◦ ‖ t) = −1 (as t = t◦) while (t◦ ‖ t′) = 1 (by Proposition 6.7). The set of vectors {v} ∪
{d(T◦, s) | s ∈ T ∩ T′} has cardinality |T◦| but is contained in the hyperplane of RT◦

orthogonal to et◦ . Therefore, there is a linear dependence between these vectors, which
translates into a linear dependence between the compatibility vectors of the tubes of
T ∪ T′ with the same coefficient on d(T◦, t) and d(T◦, t′). This coefficient cannot vanish:
otherwise, we would have a linear dependence on the compatibility vectors of T̃ with
respect to T̃◦. Since T̃ is a maximal tubing on G̃, and dim(N (G̃)) = dim(N (G))−1, this
would contradict Corollary 6.12 and thus the induction hypothesis for G̃. This linear
dependence is therefore separating. It is automatically local if t = V (all tubes are then
subsets of t). Otherwise, we prove that it is local by restriction. There are two cases.

(E.1) A tube t◦ of T◦ contains t∪{r′} and is contained in t. Consider the restricted
graph Ĝ = G[t ∪ {r′}]. Any tube s of G included in t is also a tube of Ĝ. Therefore, the
set T̂ := {s | s ∈ T, s ⊆ t} is a tubing on Ĝ for any tubing T containing t. Define also the
tube t̂′ := t′ r a′ of Ĝ. The existence of t◦ implies that (s◦ ‖ t′) = (s◦ ‖ a′) for any s◦ ∈ T◦
not included in t. It follows that the compatibility vector d(T̂◦, t̂′) is the restriction
of d(T◦, t′) − d(T◦, a′) to the coordinates indexed by T̂◦. Similarly, for any tube s ∈ T
contained in t, the compatibility vector d(T̂◦, s) is the restriction of d(T◦, s) to the coor-
dinates indexed by T̂◦. This shows that the linear dependence on

{
d(T̂◦, s) | s ∈ T̂ ∪ T̂′

}
provides a linear dependence on {d(T◦, s) | s ∈ T ∪ T′, s ⊆ t}∪{d(T◦, t′)−d(T◦, a′)}. The
resulting linear dependence on {d(T◦, s) | s ∈ T ∪ T′} is local.

(E.2) No tube of T◦ contains t ∪ {r′} and is contained in t. The proof is identical to
Case (E.1), replacing d(T◦, t′)− d(T◦, a′) by d(T◦, t′)− d(T◦, t). �

We can now prove the Span Property.

Lemma 6.67. For any tube u of G, the span of {d(T◦, s) | s ∈ T, s ⊆ u}, for a maximal
tubing T on G containing u, is independent of T.

Proof. We proceed by induction on the size of u. The result is immediate if u is a
singleton. Consider now two adjacent maximal tubings T,T′ on G containing u such
that T r {t} = T′ r {t′}. Assume first that t and t′ are contained in u. By Lemma 6.66,
there exist adjacent maximal tubings S, S′ on G containing u such that Sr{t} = S′r{t′}
and a linear dependence between the compatibility vectors of the tubes of S ∪ S′ with
respect to T◦ which is both separating and local. By definition, this implies that
there exist α > 0 and α′ > 0 such that the vector αd(T◦, t) + α′ d(T◦, t′) belongs
to vect({d(T◦, s) | s ∈ S ∩ S′, s ⊆ t}). However,{
s ∈ S ∩ S′

∣∣ s ⊆ t
}

= {t}∪
{
s ∈ S ∩ S′

∣∣ s ⊆ t
}
∪
{
s ∈ S ∩ S′

∣∣ s ⊆ a
}
∪
{
s ∈ S ∩ S′

∣∣ s ⊆ a′
}
.
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By induction hypothesis applied to each tube of t, we have

vect({d(T◦, s) | s ∈ S ∩ S′, s ⊆ t})
= vect({d(T◦, s) | s ∈ S, s ⊆ t}) (as S r (S ∩ S′) = t 6⊆ t)
= vect({d(T◦, s) | s ∈ T, s ⊆ t}) (induction hypothesis)
= vect({d(T◦, s) | s ∈ T ∩ T′, s ⊆ t}) (as T r (T ∩ T′) = t 6⊆ t)

and similarly replacing t by a or a′. It follows that the vector αd(T◦, t) + α′ d(T◦, t′) also
belongs to vect({d(T◦, s) | s ∈ T ∩ T′, s ⊆ u}). Since α 6= 0, this implies that the vector
d(T◦, t) belongs to vect({d(T◦, s) | s ∈ T′, s ⊆ u}). Similarly, the vector d(T◦, t′) belongs
to vect({d(T◦, s) | s ∈ T, s ⊆ u}). We therefore obtained that

vect({d(T◦, s) | s ∈ T, s ⊆ u}) = vect(
{
d(T◦, s)

∣∣ s ∈ T′, s ⊆ u
}
).

This also clearly holds when t and t′ are not contained in u. This concludes the proof
since the graph of flips on the maximal tubings on G containing u is connected. �

We can finally conclude the proof of Theorem 6.65 using both Lemmas 6.66 and 6.67.

Proof of Theorem 6.65. The Span Property is proved in Lemma 6.67. It only remains to
show the Flip Property for arbitrary adjacent maximal tubings. Consider two adjacent
maximal tubings T,T′ on G with Tr{t} = T′r{t′}. By Lemma 6.66, there exist adjacent
maximal tubings S, S′ on G such that S r {t} = S′ r {t′} and a linear dependence
between the compatibility vectors of the tubes of S∪ S′ with respect to T◦ which is both
separating and local. By definition, this implies that there exist α > 0 and α′ > 0
such that the vector αd(T◦, t) + α′ d(T◦, t′) belongs to vect({d(T◦, s) | s ∈ S ∩ S′, s ⊆ t}).
Lemma 6.67 applied to t ensures that

vect(
{
d(T◦, s)

∣∣ s ∈ T ∩ T′, s ⊆ t
}
) = vect(

{
d(T◦, s)

∣∣ s ∈ S ∩ S′, s ⊆ t
}
).

and similarly replacing t by a or a′. We thus conclude that

vect(
{
d(T◦, s)

∣∣ s ∈ T ∩ T′, s ⊆ t
}
) = vect(

{
d(T◦, s)

∣∣ s ∈ S ∩ S′, s ⊆ t
}
)

contains the vector αd(T◦, t) + α′ d(T◦, t′) with α > 0 and α′ > 0. In other words, we
obtained a separating and local linear dependence on {d(T◦, s) | s ∈ T ∪ T′}. �

6.5.4 Dual compatibility fan (Theorem 6.14)

The fact that dual compatibility vectors support a complete simplicial fan realizing the
nested complex is a direct consequence of Theorem 6.10, using the following duality
trick. Observe first that given n + 1 column vectors {u, v, w1, . . . , wn−1} in Rn, the
hyperplane spanned by {w1, . . . , wn−1} separates u and v if and only if

det([u|w1| . . . |wn−1]) · det([v|w1| . . . |wn−1]) < 0.

Theorem 6.10 shows this condition for primal compatibility matrices and we need to
show it for dual compatibility matrices. For this, we notice that the primal and dual
compatibility matrices are related by

d∗(T,T◦) := [(tj ‖ t◦i )]i,j∈[n] = [(ti ‖ t◦j )]ti,j∈[n] =: d(T,T◦)t, (6.5)

where M t denotes the transpose of the matrix M . Consider now two pairs of adja-
cent maximal tubings T◦,T◦′ and T,T′ on G. The Separation Flip Property of Theo-
rem 6.10, applied to the initial tubing T, implies that det(d(T,T◦)) · det(d(T,T◦′)) < 0.
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Similarly, for the initial tubing T′, we obtain that det(d(T′,T◦)) · det(d(T′,T◦′)) < 0.
Multiplying these two inequalities, we get(

det(d(T,T◦)) · det(d(T′,T◦))
)
·
(

det(d(T,T◦′)) · det(d(T′,T◦′))
)
> 0.

Since the transposition preserves the determinant, we obtain by Equation 6.5 that(
det(d∗(T,T◦)) · det(d∗(T′,T◦))

)
·
(

det(d∗(T,T◦′)) · det(d∗(T′,T◦′))
)
> 0.

This implies that det(d∗(T,T◦))·det(d∗(T′,T◦)) and det(d∗(T,T◦′))·det(d∗(T′,T◦′)) have
the same sign. Since we know that det(d∗(T,T◦)) · det(d∗(T′,T◦)) < 0 for T◦ = T, we
obtain by repeated flips in T◦ that det(d∗(T,T◦)) · det(d∗(T′,T◦)) < 0 for any initial
tubing T◦ and pair of adjacent maximal tubings T,T′ on G. This shows the Separation
Flip Property for dual compatibility vectors. We conclude again by Proposition 3.7. �

Remark 6.68. Observe that this proof does not provide us with any explicit linear
dependence between dual compatibility vectors. In particular, we do not know whether
the following analogue properties of Theorem 6.65 hold:

Dual Span Property For any tube u of G, the span of {d∗(t,T◦) | t ∈ T, t 6⊂ u}, for a
maximal tubing T on G containing u, is independent of T.

Dual Local Flip Property For any two maximal tubings T,T′ with T r {t} = T′ r {t′},
the unique linear dependence between the dual compatibility vectors of T∪T′ with
respect to T◦ is supported by tubes not strictly included in a connected component
of t = t ∩ t′.

6.5.5 Nested complex isomorphisms (Proposition 6.34, Proposition 6.36
and Theorem 6.37)

We prove various results on nested complex isomorphisms presented in Section 6.4.2.
We first show that the map Ω on the tubes of a spider Xn defines a nested complex
automorphism that dualizes the compatibility degree.

Proof of Proposition 6.34. First, Ω clearly sends tubes of Xn to tubes of Xn. We just have
to show that (Ω(t) ‖Ω(t′)) = (t′ ‖ t) for any two tubes t, t′ of Xn, and Proposition 6.7 will
imply that Ω is a nested complex automorphism. This follows from the definition of Ω
and the fact that([

vij , v
i
k

] ∥∥∥∥ [vi′j′ , vi′k′]) = δi=i′ ·
(
δj<j′≤k+1<k′+1 + δj′<j≤k′+1<k+1

)
,([

vij , v
i
k

] ∥∥∥∥ ⋃
h∈`

[
vh0 , v

h
kh

])
= δj≤ki+1≤k,

and
(⋃
i∈`

[
vi0, v

i
ki

] ∥∥∥∥ ⋃
i∈`

[
vi0, v

i
k′i

])
= |

{
i ∈ [`]

∣∣ ki < k′i
}
| · δ∃i∈[`], ki>k′i .�

Our objective is to show that these maps Ω on spiders are essentially the only nontri-
vial nested complex isomorphisms. We fix an isomorphism Φ between two nested com-
plexes N (G) and N (G′). We first show that Φ preserves connected components in the
following sense.

Lemma 6.69. Two tubes t and t′ of G belong to the same connected component of G if
and only if their images Φ(t) and Φ(t′) belong to the same connected component of G′.
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Proof. Observe first that two tubes from distinct connected components are automati-
cally compatible. Assume now that t and t′ are in the same connected component of G.
If t and t′ are incompatible, then Φ(t) and Φ(t′) are also incompatible and therefore in
the same connected component of G′. If t and t′ are compatible, then there exists a
tube t′′ incompatible with both t and t′:

• if t∩t′ = ∅, consider a path from a neighbor of t to a neighbor of t′ in G[Vr(t∪t′)];

• if t ⊆ t′, consider a path from a neighbor of t to a neighbor of t′ in G[V r t].

We obtain that Φ(t′′) is incompatible with both Φ(t) and Φ(t′), so that they all belong to
the same connected component of G′. This proves one direction. For the other direction,
the same arguments can be applied to Φ−1. �

Consequently, the nested complex N (G) records the sizes of the connected com-
ponents of the graph G. We define the connected size partition of G as the parti-
tion λ(G) := |V1|, |V2|, . . . , |Vκ| of |V|, where V1, . . . ,Vκ are the connected components
of G ordered such that |Vi| ≥ |Vi+1|.

Corollary 6.70. Two graphs whose nested complexes are isomorphic have the same
connected size partitions: N (G) ' N (G′) =⇒ λ(G) = λ(G′). In particular, they have the
same number of vertices.

Proof. Consider a maximal tubing T on G and decompose it into subtubings T1, . . . ,Tκ
on the connected components V1, . . . ,Vκ of G. Their images Φ(T1), . . . ,Φ(Tκ) de-
compose the maximal tubing Φ(T). Moreover, Lemma 6.69 ensures that two tubes
Φ(t) ∈ Φ(Ti) and Φ(t′) ∈ Φ(Ti′) belong to the same connected component of G′ if and
only if i = i′. We therefore obtain that

λ(G) = {|V1|, . . . , |Vκ|} = {|T1|+1, . . . , |Tκ|+1} = {|Φ(T1)|+1, . . . , |Φ(Tκ)|+1} = λ(G′).
�

Proposition 6.36 is another immediate consequence of Lemma 6.69: since it sends all
tubes in a connected component H of G to tubes in the same connected component H′
of G′, the map Φ induces a nested complex isomorphism between N (H) and N (H′).
From now on, we assume without loss of generality that G is connected. Our next step
is a crucial structural property of Φ.

Lemma 6.71. For any nested complex isomorphism Φ : N (G) → N (G′) and any tube t
of G, either |Φ(t)| = |t| or |Φ(t)| = |V| − |t|.

Proof. By Lemma 6.63, the link of a tube t in N (G) is isomorphic to the nested com-
plex N (G[t] tG?t) of the union of the restriction G[t] with the reconnected comple-
ment G?t. The former has |t| vertices while the latter has |V| − |t| vertices. Since Φ
induces an isomorphism from the link of t in N (G) to the link of Φ(t) in N (G′), the
result follows from Corollary 6.70. �

We say that Φ maintains the tube t if |Φ(t)| = |t| and that Φ swaps the tube t
if |Φ(t)| = |V| − |t|.

Proposition 6.72. If it maintains all tubes of G, then Φ is the trivial nested complex
isomorphism induced by the graph isomorphism ψ : G→ G′ defined by Φ({v}) = {ψ(v)}.

Proof. Two vertices v and w of G are adjacent if and only if the two tubes {v} and {w}
are incompatible. Since Φ preserves the compatibility relation, this shows that v
and w are adjacent if and only if ψ(v) and ψ(w) are, i.e. that ψ defines a graph iso-
morphism. Let Ψ denote the nested complex isomorphism induced by ψ, i.e. defined
by Ψ(t) := {ψ(v) | v ∈ t}.
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We prove by induction on |t| that Φ(t) = Ψ(t) for any tube t on G. It holds for sing-
letons. For the induction step, consider an arbitrary tube t of G. Let v ∈ V r t be
a neighbor of t. Since {v} and t are incompatible, so are Φ({v}) = {ψ(v)} and Φ(t),
and thus ψ(v) is a neighbor of Φ(t). Let w ∈ V be such that ψ(w) is a neighbor of ψ(v)
in Φ(t). If w /∈ t then it is incompatible with t∪{v}, and thus Φ({w}) = {ψ(w)} is incom-
patible with Φ(t ∪ {v}). Therefore, Φ(t ∪ {v}) is adjacent to and does not contain ψ(w)
which is in Φ(t). Since |Φ(t ∪ {v})| = |t|+ 1 = |Φ(t)|+ 1, this implies that Φ(t ∪ {v}) is
incompatible with Φ(t), a contradiction. Therefore, we know that w ∈ t. Let t1, . . . , tk
denote the connected components of G[tr {w}]. By induction hypothesis, Φ(ti) = Ψ(ti)
for all i ∈ [k]. Moreover, since Φ(ti) is compatible with Φ(t) and adjacent to ψ(w) ∈ Φ(t),
it is included in Φ(t). So we obtain Ψ(t) = {ψ(w)} ∪Ψ(t1) ∪ · · · ∪Ψ(tk) ⊆ Φ(t) and
thus Φ(t) = Ψ(t) as |Φ(t)| = |t| = |Ψ(t)|. �

Lemma 6.73. If Φ does not maintain a tube t of G (i.e. |Φ(t)| 6= |t|), then
(i) Φ swaps any tube of G containing t,
(ii) Φ maintains any tube of G disjoint from and nonadjacent to t, and
(iii) Φ swaps at least one singleton included in t.

Proof. Consider a tube s of G strictly containing t. The link of {s, t} in N (G) is isomor-
phic to the nested complex of the union of the graphs G[t], (G?t)[sr t], and G?s with |t|,
|s| − |t| and |V| − |s| vertices respectively. Therefore, Corollary 6.70 ensures that the
link of {Φ(s),Φ(t)} in N (G′) is isomorphic to the nested complex of a graph with three
connected components with |t|, |s| − |t| and |V| − |s| vertices respectively. If Φ(s) is not
contained in Φ(t), then the link of {Φ(s),Φ(t)} in N (G′) would be isomorphic to the nes-
ted complex of a graph with one connected component G′[Φ(t)] having |Φ(t)| vertices. We
reach a contradiction as |Φ(t)| = |V|− |t| is neither |t| (by assumption on t), nor |V|− |s|
(since |s| > |t|), nor |s| − |t| (since |s| < |V|). Therefore, Φ(s) is contained in Φ(t)
and the link of {Φ(s),Φ(t)} in N (G′) is isomorphic to the union of the graphs G[Φ(s)],
(G?Φ(s))[Φ(t) r Φ(s)], and G?Φ(t) with |Φ(s)|, |Φ(t)| − |Φ(s)| and |V| − |Φ(t)| vertices
respectively. If |Φ(s)| 6= |V| − |s|, then it forces |Φ(s)| = |s| − |t| = |s|, a contradiction.
This proves (i).

Consider now a tube s of G disjoint from and nonadjacent to t. Note that |s|+ |t| < |V|
as there is at least a vertex separing them. The link of {s, t} in N (G) is isomorphic
to the nested complex of the union of the graphs G[s], G[t], and (G?s)?t with |s|, |t|
and |V| − |s| − |t| vertices respectively. Again, Corollary 6.70 ensures that the link
of {Φ(s),Φ(t)} in N (G′) is isomorphic to the nested complex of a graph with three
connected components with |s|, |t| and |V| − |s| − |t| vertices respectively. If Φ(s) is not
contained in Φ(t), then the link of {Φ(s),Φ(t)} in N (G′) would be isomorphic to the nes-
ted complex of a graph with one connected component G′[Φ(t)] having |Φ(t)| vertices.
We reach a contradiction as |Φ(t)| = |V| − |t| is neither |t| (by assumption on t), nor |s|
(since |s|+ |t| < |V|), nor |V| − |s| − |t| (since |s| > 0). Therefore, Φ(s) is contained in Φ(t)
and the link of {Φ(s),Φ(t)} in N (G′) is isomorphic to the union of the graphs G[Φ(s)],
(G?Φ(s))[Φ(t) r Φ(s)], and G?Φ(t) with |Φ(s)|, |Φ(t)| − |Φ(s)| and |V| − |Φ(t)| vertices re-
spectively. If |Φ(s)| 6= |s|, then it forces |Φ(s)| = |V| − |s| − |t| = |V| − |s|, a contradiction.
This proves (ii).

Finally, to prove (iii) we can assume that t is not a singleton. Thus Φ(t) is not an
inclusion maximal tube. Let t′ be a tube of G such that Φ(t′) is a maximal tube of G′
containing Φ(t). Since Φ−1 swaps Φ(t) and Φ(t′) contains Φ(t), Φ−1 also swaps Φ(t′)
by (i). Thus, t′ is a singleton swapped by Φ and contained in t. �

Lemma 6.74. Denote by M := {v ∈ V | |Φ({v})| = 1} the set of vertices maintained by Φ
and by S := {v ∈ V | |Φ({v}|) = |V| − 1} the set of vertices swapped by Φ. Then

(i) S forms a clique of G,
(ii) any vertex in M has at most one neighbor in S, and
(iii) any vertex in S has at most one neighbor in M .
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Proof. Let s, s′ ∈ S. Since |Φ({s})| = |Φ({s′})| = |V|−1, the tubes Φ({s}) and Φ({s′}) are
incompatible. Therefore {s} and {s′} are incompatible, so that s and s′ are neighbors.
The set S thus forms a clique.

To prove (ii) and (iii), assume that some vertices m ∈ M and s ∈ S are neig-
hbors. The tubes {m} and {s} are thus incompatible, so that Φ({m}) and Φ({s})
are also incompatible. Since |Φ({m})| = 1 while |Φ({s})| = |V| − 1, this implies that
Φ({s}) = V′ r Φ({m}). It follows that m cannot have another neighbor swapped by Φ
and s cannot have another neighbor maintained by Φ. �

We are now ready to prove that any nontrivial nested complex isomorphism coin-
cides, up to composition with a trivial nested complex isomorphism, with the isomor-
phism Ω on a spider.

Proof of Theorem 6.37. The proof works by induction on the number |V| of vertices of G.
It is clear when |V| ≤ 2. For the induction step, assume that the result holds for
all graphs on less than |V| vertices and consider a nontrivial nested complex isomor-
phism Φ : N (G)→ N (G′). Then Φ does not maintain all tubes of G by Proposition 6.72,
and thus swaps at least one singleton {s} by Lemma 6.73 (iii). Let s′ denote the vertex
of G′ such that Φ({s}) = V′ r {s′}.

The map Φ induces a nested complex isomorphism between the link of {s} in N (G)
and the link of Φ({s}) in N (G′). The former is isomorphic to the nested complex of the
reconnected complement G̃ := G?{s} while the latter is isomorphic to the nested com-
plex of the restriction G̃′ := G′[Φ({s})]. Let Φ̃ : t̃ 7→ Φ(t) denote the resulting nested
complex isomorphism between N (G̃) and N (G̃′). This isomorphism Φ̃ is nontrivial: by
Lemma 6.73, Φ swaps any tube t containing {s}, so that Φ̃ swaps the tube t r {s}. It
follows by induction hypothesis that G̃ and G̃′ are spiders and that there exists a graph
isomorphism ψ̃ : G̃→ G̃′ inducing a trivial nested complex isomorphism Ψ̃ : N (G̃)→ N (G̃′)
such that Ψ̃−1 ◦ Φ̃ =: Ω̃ is the automorphism of N (G̃) described in Section 6.4.2. In
other words, we can label by ṽij the vertices of the spider G̃ and by ṽ′ij the vertices of the

spider G̃′, with i ∈ [ ˜̀] and 0 ≤ j ≤ ñi, such that

Φ̃
([
ṽij , ṽ

i
k

])
=
[
ṽ′i
ñi+1−k, ṽ

′i
ñi+1−j

]
and Φ̃

( ⋃
i∈[ ˜̀]

[
ṽi0, ṽ

i
ki

])
=
⋃
i∈[ ˜̀]

[
ṽ′i0 , ṽ

′i
ñi−1−ki

]
. (6.6)

We now claim that G and G′ are both spiders. To prove it, we distinguish two cases:

Body case all neighbors of s in G are swapped by Φ. Then they form a clique in G (by
Lemma 6.74 (i)), so that G is the spider G̃ where we add one more body vertex s with
no attached leg. Moreover, s′ is necessarily swapped by Φ−1 (otherwise Φ−1({s′})
would be a neighbor of s maintained by Φ). We conclude by symmetry that G′ is
the spider G̃′ where we add one more body vertex s′ with no attached leg.

Leg case s has a neighbor m maintained by Φ. It is unique by Lemma 6.74 (iii) and not
connected to any other vertex swapped by Φ by Lemma 6.74 (ii). Therefore, G is
the spider G̃ where we replace the edges connecting m to all other body vertices
of G̃ by a new body vertex s with an edge to m. Moreover, s′ is necessarily main-
tained by Φ−1 (otherwise Φ−1({s′}) should be Vr {s} which is not connected). We
conclude that G′ is the spider G̃′ where we add one additional leg vertex s′ to the
free endpoint of a leg.

We now label by vij the vertices of G according to the labels ṽij of G̃ and by v′ij the

vertices of G′ according to the labels ṽ′ij of G̃′. We follow the two cases above:
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Body case We set ` := ˜̀+1, ni := ñi for i ∈ [ ˜̀] and n` = 0. For any i ∈ [ ˜̀] and 0 ≤ j ≤ ni,
we label by vij the vertex of G corresponding to the vertex labeled by ṽij in G̃, and
similarly we label by v′ij the vertex of G′ corresponding to the vertex labeled by ṽ′ij
in G̃′. Finally, we label s by v`0 and s′ by v′`0 .

Leg case Assume that the neighbor of s maintained by Φ corresponds to the vertex
labeled by ṽa0 in G̃. Then the neighbor of s′ corresponds to the vertex labeled
by ṽ′a

ña
in G̃′. We set ` := ˜̀, ni := ñi for i ∈ [`] r {a} and na := ña + 1. For any i ∈ [`]

and 0 ≤ j ≤ ñi, we label by vij if i 6= a and vij+1 if i = a the vertex of G corresponding

to the vertex labeled by ṽij in G̃ and by v′ij the vertex of G′ corresponding to the

vertex labeled by ṽ′ij in G̃′. Finally, we label s by va0 and s′ by v′ana .

By our previous description of the two graphs G and G′, these labels are indeed valid
labels for the vertices of a spider, meaning that the edge set of G is indeed given by{{
vij−1, v

i
j

}
| i ∈ [`], j ∈ [ni]

}
∪
{{
vi0, v

i′
0
}
| i 6= i′ ∈ [`]

}
, and similarly for G′. We moreover

claim that Φ is given by

Φ
([
vij , v

i
k

])
=
[
vini+1−k, v

i
ni+1−j

]
and Φ

( ⋃
i∈[`]

[
vi0, v

i
ki

])
=
⋃
i∈[`]

[
vi0, v

i
ni−1−ki

]
. (6.7)

It is immediate for all tubes compatible with {s} = {va0} as it is easily transported
from (6.6). We thus only have to check it for the tubes of G adjacent to s = va0 and not
containing it. Observe first that Φ

([
va1 , v

a
k

])
is a tube with k vertices (by Lemma 6.73 (iii)),

containing s′ = v′ana since it has to be incompatible with Φ({s}) = V′ r {s′}. Therefore,
Φ
([
va1 , v

a
k

])
=
[
vana+1−k, v

a
na

]
. Consider now a tube t =

⋃
i∈[`]

[
vi0, v

i
ki

]
, not containing

s = va0 (i.e. with ka = −1). Since the nested tubes t and t ∪ {s} are both swapped, we
have Φ(t) = Φ(t∪{s})∪{s′}. Since Φ(t∪{s}) is given by Equation (6.7), so is Φ(t). This
concludes the proof that Φ is given by Equation (6.7), so that it coincides with Ω up to
the graph automorphism defined by vij 7→ v′ij . �

We now prove that if the primal and dual compatibility fans of G with respect to the
same initial maximal tubing T◦ are linearly isomorphic, then G is an octopus whose
head is contained in no tube of T◦.

Proof of Lemma 6.39. Consider a graph G and an initial tubing T◦ on G such that the
fans D(G,T◦) and D∗(G,T◦) are linearly isomorphic. Notice that they both contain
precisely n pairs of opposite rays, given by the vectors ei of the canonical basis and their
opposites −ei. Therefore, the fans D(G,T◦) and D∗(G,T◦) have the same rays, which
implies that the compatibility vector d(T◦, t) and dual compatibility vector d∗(t,T◦) are
collinear for any tube t of G. In other words, we have (t◦1 ‖ t)(t ‖ t◦2) = (t ‖ t◦1)(t◦2 ‖ t) for
all tubes t of G and t◦1, t◦2 ∈ T◦.

We now prove by induction that this condition implies that G is an octopus whose
head is contained in no tube of T◦. The result is clear when |V| ≤ 3. Consider thus a
connected graph G on more than 4 vertices and a maximal tubing T◦ on G with root u
(i.e. u is the only vertex of V contained in no proper tube of T◦). The graph G[V r {u}]
has connected components G1, . . . ,Gk and T◦ induces a maximal tubing T◦i on each
component Gi. We know that G1 is an octopus whose head v is contained in no tube
of T◦. Otherwise, by induction hypothesis, we could find three tubes t, t◦1, t◦2 of G1
such that (t◦1 ‖ t)(t ‖ t◦2) 6= (t ‖ t◦1)(t◦2 ‖ t), which would contradict our assumption on T◦
since t, t◦1, t◦2 are also tubes of G. Assume that G1 is not a path, there are four cases:

• Suppose that v is the unique vertex of G1 adjacent to u. Let t = {u, v}, t◦1 = G1 and
t◦2 be a leg of G1. Then (t ‖ t◦1) ≥ 2 and (t◦1 ‖ t) = (t ‖ t◦2) = (t◦2 ‖ t) = 1.
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• Suppose that u is adjacent to v and at least another vertex w of G1. Let t = {u},
t◦1 = G1 and t◦2 be the leg of G1 containing w. Then (t◦1 ‖ t) = (t◦2 ‖ t) = 1 and (t ‖ t◦2) < (t ‖ t◦1).

• Suppose that u is adjacent to at least two legs of G1. Let t = {u}, t◦1 = G1 and t◦2
be a leg of G1 adjacent to u. Then (t◦1 ‖ t) = (t◦2 ‖ t) = 1 and (t ‖ t◦2) < (t ‖ t◦1).

• Suppose that u is adjacent to a single leg H of G1r{v} but not to v. Let t = {u, v}∪
H, t◦1 = G1 and t◦2 be a leg of G1 distinct from H. Then (t ‖ t◦1) ≥ 2 and (t◦1 ‖ t) =
(t ‖ t◦2) = (t◦2 ‖ t) = 1.

In all cases, we have (t◦1 ‖ t)(t ‖ t◦2) 6= (t ‖ t◦1)(t◦2 ‖ t), contradicting our assumption on T◦.
Thus, G1 is a path. A similar case analysis shows that G1 is attached to u only by
one of its endpoints. By symmetry, all components G1, . . . ,Gk of G r {u} are paths
attached to u only by an endpoint, and G is an octopus whose head is contained in no
tube of T◦. �

Proof of Corollaries 6.40 and 6.41. Consider the compatibility fans on all maximal tu-
bings on G. Two maximal tubings related by a graph automorphism of G clearly produce
the same primal and dual compatibility fans. Reciprocally, consider two compatibility
fans D(G,T◦1) and D(G,T◦2) of the graph G. As already observed in the introduction
of Section 6.4.2, a linear isomorphism between D(G,T◦1) and D(G,T◦2) induces a nes-
ted complex automorphism Φ of N (G). If Φ is not trivial, then Theorem 6.37 ensures
that G is a spider and Φ dualizes the compatibility degree. Therefore, G is an octopus
by Lemma 6.39. This concludes the proof of Corollary 6.40 since the path is the only
graph which is simultaneously a spider and an octopus. The proof of Corollary 6.41
follows the same lines, distinguishing the cases of spiders and octopuses. �

6.5.6 Polytopality of compatibility fans (Theorem 6.46 and
Proposition 6.48)

This section provides the proof of the polytopality results presented in Section 6.4.3.
Using a similar method as [CSZ15, Section 5] based on Proposition 3.9, we first prove
that all compatibility and dual compatibility fans of paths and cycles are polytopal.

Proof of Theorem 6.46. We use the characterization of polytopality of complete simpli-
cial fans given in Proposition 3.9. For this, we need to understand better the linear
dependences on compatibility vectors for paths and cycles.

We specialize the notations introduced in the beginning of the proof of Lemma 6.66
to the setting of paths and cycles. Let t and t′ be the exchanged tubes, let r (resp. r′)
be the unique neighbor of t (resp. t′) in t′ r t (resp. in t r t′), and let t1, . . . , tk be the
connected components of G[t ∩ t′] (where G is a path or a cycle). We then consider

t := t ∪ t′, t :=
⊔
i∈[k]

ti, a := t r (t′ ∪ {r}) and a′ = t′ r (t ∪ {r′}).

Consider first the case of the path. When (T ∪ T′) ∩ T◦ = ∅, the linear dependences
can only be of the form

d(T◦, t) + d(T◦, t′) = d(T◦, t) + d(T◦, t),
d(T◦, t) + d(T◦, t′) = d(T◦, a) + d(T◦, a′),

2 d(T◦, t) + d(T◦, t′) = d(T◦, t) + d(T◦, a),
2 d(T◦, t) + d(T◦, t′) = d(T◦, t) + d(T◦, a′),
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up to exchanging simultaneously t with t′ and a with a′. If T∩T′ contains a tube t◦ ∈ T◦,
then the compatibility degree of all tubes of (T∪T′)r {t◦} with t◦ vanishes, so that the
tube t◦ cannot appear in the linear dependence. When t, t′ /∈ T◦ but (T ∩ T′) ∩ T◦ 6= ∅,
the relations are thus obtained from the ones above by deleting terms in their right
hand sides. The dependences when t or t′ belong to T◦ will be treated separately.

We now define a height function ω on tubes on Pn+1 by

ω(t) =
{
f(|t|) if t /∈ T◦,
Ω otherwise,

where f : R → R>0 is any strictly concave increasing positive function and Ω ∈ R is a
large enough constant. When (T∪T′)∩T◦ = ∅, we obtain by definition of t, t, a and a′,
and using that f is concave and increasing, that

ω(t) + ω(t′) > ω(t) + ω(t),
ω(t) + ω(t′) > ω(a) + ω(a′),

2ω(t) + ω(t′) > ω(t) + ω(a),
2ω(t) + ω(t′) > ω(t) + ω(a′).

Moreover, the inequalities still hold when we delete terms in their right hand sides
since ω is positive. Therefore, ω satisfies Condition (2) of Proposition 3.9 when we
do not flip an initial tube. Finally, initial tubes only appear in the left hand sides
of linear dependences, so choosing ω(t◦) = Ω large enough ensures that ω satisfies
Condition (2) of Proposition 3.9 for any flip. Observe that this is essentially the same
proof as in [CSZ15, Section 5].

We now adapt this proof for the cycle On+1. Clearly, the dependences described
above for the path also appear for the cycle (as cycles contain paths). Beside those,
when (T ∪ T′) ∩ T◦ = ∅, a straightforward case analysis shows that the linear depen-
dences can only be of the form

d(T◦, t) + d(T◦, t′) = 2 d(T◦, t1), where t1 ∈ t.

Again, no tube of T◦ can appear in their right hand sides of the linear dependences.
Therefore, when t, t′ /∈ T◦ but (T∩T′)∩T◦ 6= ∅, the linear dependences are obtained from
the generic ones above by deleting terms in their right hand sides. The dependences
when t or t′ belong to T◦ will again be treated separately.

We choose the same height function ω as before. For the same reasons, the linear
dependences for the path are again transformed to strict inequalities on ω. Moreover,
as t1 ⊆ t ∩ t′ and f is increasing, we have

ω(t) + ω(t′) > 2ω(t1).

We conclude as before by choosing Ω large enough that ω satisfies the Condition (2) of
Proposition 3.9 for any flip.

Finally, for dual compatibility vectors, a straightforward case analysis shows that
the linear dependences are all of the form

d∗(t,T◦) + d∗(t′,T◦) = d∗(t,T◦) + d∗(t,T◦),
d∗(t,T◦) + d∗(t′,T◦) = d∗(a,T◦) + d∗(a′,T◦),

2 d∗(t,T◦) + d∗(t′,T◦) = d∗(t,T◦) + d∗(a,T◦),
2 d∗(t,T◦) + d∗(t′,T◦) = d∗(t,T◦) + d∗(a′,T◦),
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when none of t, t′ and t have n vertices. We can also have the linear dependences

d∗(t,T◦) + d∗(t′,T◦) = 2 d∗(t,T◦) + d∗(t,T◦),
2 d∗(t,T◦) + d∗(t′,T◦) = 2 d∗(t,T◦) + d∗(a,T◦),

when |t| = n and

d∗(t,T◦) + d∗(t′,T◦) = d∗(t1,T◦), where t1 ∈ t,

when |t| = |t′| = n. Again, no tube of T◦ can appear in the right hand sides of the linear
dependences. Therefore, when t, t′ /∈ T◦ but (T ∩ T′) ∩ T◦ 6= ∅, the linear dependences
are obtained from the generic ones above by deleting terms in their right hand sides.

We now define a height function ω on tubes on On+1 by

ω(t) =


f(|t|) if t /∈ T◦ and |t| 6= n,
f(|t|)

2 if t /∈ T◦ and |t| = n,

Ω otherwise,

where f : R → R>0 is any strictly concave increasing positive function and Ω ∈ R is a
large enough constant. By definition of t, t, a and a′, and using that f is concave and in-
creasing, we obtain that ω satisfies a strict inequality for each linear dependence above.
We conclude as before by choosing Ω large enough that ω satisfies the Condition (2) of
Proposition 3.9 for any flip. �

Our last proof concerns the polytopality of the compatibility fan for the star, for
which we have presented a candidate in Section 6.4.3.

Proof of Proposition 6.48. We just have to show that for any tube t and any maximal
tubing T on Xn+1, the point x(T) belongs to the half-space H≥(t) and to the boundary
of this half-space if and only if t ∈ T.

Consider first a tube t not in T◦. Let t denote the inclusion minimal tube of T ∪
V containing the central vertex ∗. Then the other tubes of T are all leaves of Xn+1
contained in t and a nested chain of tubes t = t|t| ( t|t|+1 ( · · · ( tn+1 = V of Xn+1.
Therefore, we have x(T)i = 0 if {`i} ⊆ t and x(T)i = j−1 if {`i} = tjrtj−1. We conclude
that

〈d(T◦, t)|x(T)〉 =
∑
i∈[n]
`i∈t

x(t)i =
∑

|t|≤j≤n+1
tjrtj−1 6⊆t

(j − 1) ≤
n∑

j=|t|
j = f(|t|),

with equality if and only if tj r tj−1 6⊆ t for all |t| ≤ j ≤ n + 1, i.e. if and only if t = t|t|.
Finally, for any i ∈ [n], we have 〈d(T◦, {`i})|x(T)〉 = −x(T)i ≤ 0, with equality if
and only if the inclusion minimal tube of T ∪ V containing i is {`i}, i.e. if and only
if {`i} ∈ T. �

6.5.7 Design compatibility fan (Theorem 6.53)

The proof of Theorem 6.53 still relies on Proposition 3.7, that is on the understanding
of the linear dependences of the compatibility vectors of the tubes involved in a flip. We
now need to distinguish two kinds of flips: we call round flips those exchanging two
round tubes, and square flips those exchanging a square to a round tube.

We claim that Theorem 6.65 still holds for round flips. Indeed, a coordinate-wise
verification shows that the linear dependences exhibited in Section 6.5.3 still hold for
initial maximal design tubings: the arguments are identical for coordinates correspon-
ding to round tubes and straightforward for coordinates corresponding to square tubes.
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It thus remains to show the Separating Flip Property for square flips. It turns out
that the proof for square flips is much easier as the linear dependences only involve
compatibility vectors of forced tubes. Using the duality trick presented in Section 6.5.4
and the fact that any two maximal design tubings are connected by a sequence of
square flips, it is equivalent to prove the Separating Flip Property for the primal or for
the dual compatibility fan. In the sequel, we prefer to work with the dual compatibility
vectors.

Fix an initial maximal design tubing T◦ on a graph G. Consider a round tube t
exchangeable with a square tube v�, that is v is contained in t. The forced tubes of this
square flip (i.e. the tubes contained in all flips exchanging t and v�) are the following:

• the square tubes w1
�, . . . wk

� for the neighbors w1, . . . , wk of t in G,

• the round tubes a1, . . . , a` given by the connected components of G[t r {v}].

Let p be number of wi’s which are roots of initial round tubes in T◦ and let q be the
number of ai’s containing an initial square tube of T◦. Suppose that

• the wi’s are ordered such that w1, . . . , wp are roots of tubes t◦1, . . . , t◦p in T◦ with
t◦i 6⊇ t◦j for 1 ≤ i < j ≤ p, while wp+1

�, . . . , wk
� are square tubes of T◦,

• the ai’s are ordered such that a1, . . . , aq contain an initial square tube of T◦ while
aq+1, . . . , a` do not.

With these notations, the reader can check that if p = 0 and q > 0, then the dual
compatibility vectors of these forced tubes satisfy the dependence

d∗(t,T◦) =
∑
j∈[q]

(
d∗(aj ,T◦)− d∗(v�,T◦)

)
(6.8)

We now adapt this linear dependence to case when p ≥ 0 and q > 0. We claim that

d∗(t,T◦) =
∑
j∈[q]

(
d∗(aj ,T◦)− d∗(v�,T◦)

)
+
∑
i∈[p]

βi d∗(wi�,T◦)

where the coefficients β1, . . . , βp are recursively defined by

βi = (t ‖ t◦i )−
( ∑
j∈[q]

(
(aj ‖ t◦i )− (v� ‖ t◦i )

)
+

∑
r∈[i−1]

βr (wr� ‖ t◦i )
)
. (6.9)

To prove it, we check this linear dependence coordinate by coordinate. It boils down to
Equation (6.8) for initial tubes contained in t. It is also clear for the initial square tubes
not contained in t as all dual compatibility degrees involved in (6.9) vanish. Moreover,
the coefficients β1, . . . , βp are defined in order to compensate for the default of the initial
tubes t◦1, . . . , t◦p in Equation (6.8). Finally, we proceed by induction for the remaining
initial tubes of T◦, that is the initial round tubes not contained in t and whose root is
not one of the wi’s. Namely, since q > 0 and thanks to our special ordering on the wi’s,
the coordinate corresponding to such a tube in all terms of Equality (6.9) is a linear
combination of the coordinates corresponding to its predecessors in the spine of T◦
(i.e. the inclusion poset on round tubes of T◦).

Finally, we still have to check the case where q = 0, meaning where t is contained
in an initial round tube of T◦. We denote by t◦ the inclusion minimal initial round tube
of T◦ containing t and by z◦ its root in T◦. We then have to distinguish whether or
not z◦ = v:
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• If z◦ = v, call w1, . . . , wr (r ≥ 1) the neighbors of t that also belong to t◦. We then
claim that the following linear dependence holds:

d∗(t,T◦) + r d∗(v�,T◦) =
∑
i∈[r]

d∗(wi�,T◦).

Indeed an initial tube s◦ of T◦ either contains t and thus all the vertices v, w1, . . . , wr,
or does not contain v so that the equality holds by counting the vertices w1, . . . , wr
in s◦.

• If z◦ 6= v, then z◦ belongs to one of the tubes a1, . . . , a`, say a1. Let w1, . . . , wr be
the neighbors of t contained in t◦ that are also neighbors of a1, and wr+1, . . . , ws
be the other neighbors of t contained in t◦. Observe that s ≥ 1 since t ⊂ t◦. One
can then check that the linear dependence we look for is

(s− r + 1) d∗(t,T◦) = s

(
d∗(a1,T◦)− d∗(v�,T◦)−

s∑
i=r+1

d∗(wi�,T◦)
)

+ (s− r + 1)
s∑
i=1

d∗(wi�,T◦).

It clearly holds for tubes not contained in t◦ and for t◦ itself. Consider thus an
initial round tube s◦ of T◦ contained in t◦. Since z◦ ∈ a1, s◦ cannot contain a1. Thus
the first term of the right hand side vanishes for s◦, while (t ‖ s◦) =

∑
i∈[s](wi� ‖ s◦),

concluding the proof. �

6.5.8 Design nested complex isomorphisms (Proposition 6.56 and
Theorem 6.59)

We now prove our characterization of the design nested complex isomorphisms an-
nounced in Section 6.4.4. In both proofs, we will use the following description of links
in design nested complexes, similar to that of [CD06] for links in nested complexes. We
leave this proof to the reader.

Lemma 6.75. The link of a tube t in the design nested complex N �(G) is isomorphic,

• for a square tube t = v�, to the join N �(G1) ∗ · · · ∗ N �(G`) of the design nested
complexes of the connected components G1, . . . ,G` of G[V r {v}].

• for a round tube t, to the join of the nested complexN (G[t]) of the restriction of G to t
with the design nested complex N �(G?t) of the reconnected complement of t in G.

Before proving Proposition 6.56 and Theorem 6.59, we need a technical result.

Lemma 6.76. Let Ḡ and G be connected graphs with vertex sets V̄ and V respecti-
vely. Let Φ be an isomorphism from the design nested complex N �(Ḡ) of Ḡ to the design
(resp. standard) nested complex N �(G) (resp. N (G)) of G. If there exists a vertex v ∈ V
such that all tubes of G incompatible with Φ(V̄) are round tubes containing v, then Ḡ
and G are paths.

Proof. Since Φ is an isomorphism, it induces a bijection between the design tubes of Ḡ
incompatible with V̄ and the tubes of G incompatible with Φ(V̄). The former are pre-
cisely the square tubes of Ḡ (by definition of the compatibility of design tubes) while
the later are some round tubes of G containing v (by assumption). Since all the square
tubes of Ḡ are compatible, it follows that their images by Φ are nested in G. Let ū, v̄ ∈ V̄
be the only vertices such that |Φ(ū�)| = 1 and |Φ(v̄�)| = |V| − 1. For any other ver-
tex w̄ ∈ V̄, the link of the tube Φ(w̄�) is the join of two nontrivial design or standard
nested complexes by Lemma 6.75. Since Φ is an isomorphism, so is the link of the
square tube w̄�, so that w̄ disconnects Ḡ again by Lemma 6.75. We conclude that all
but two vertices of Ḡ disconnect Ḡ, which implies that Ḡ is a path. In order to show
that G is also a path, we now distinguish two situations:
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(i) Suppose first that Φ is an isomorphism from the design nested complexN �(Ḡ) of Ḡ
to the standard nested complex N (G) of G. Then the composition of Φ−1 with the
isomorphism Π of Example 6.54 (ii) is an isomorphism between the standard nested
complex N (G) of G and the standard nested complex of a path, which implies by
Theorem 6.37 that G itself is a path.

(ii) Suppose now that Φ is an isomorphism from the design nested complex N �(Ḡ)
of Ḡ to the design nested complex N �(G) of G. Using Lemma 6.75 and a similar
argument as in the proof of Lemma 6.69, the image Φ(V̄) of V̄ is either a square
tube v� of G, or a singleton round tube {v} of G, or the round tube V of G. The last
two cases are discarded by our assumption since the square tube v� is incompatible
with {v} and with V. Therefore, we obtain that Φ(V̄) = v� and the tubes of G
incompatible with Φ(V̄) = v� are exactly the round tubes containing v. So the
square tubes of Ḡ are in bijection with the tubes of G containing v. Since |V̄| = |V|
(dimensions of isomorphic simplicial complexes), an immediate induction shows
that G is a path. �

We are now ready to prove our classification of design nested complex isomorphisms.

Proof of Proposition 6.56. We show the result by induction on |V̄|, the cases |V̄| ≤ 2
being trivial. Assume that |V̄| ≥ 3 and consider an isomorphism Φ : N �(Ḡ)→ N (G).

We first consider the image Φ(V̄) of the round tube V̄ of Ḡ. It is either a singleton,
or the complement of a singleton. Otherwise, its link would be the join of two nontrivial
complexes by Lemma 6.75, which yields a contradiction using a similar argument as
in the proof of Lemma 6.69. We claim that we can assume that Φ(V̄) is a singleton
adjacent to at least two vertices in G. Indeed,

• if Φ(V̄) = V r {v}, then all tubes incompatible with Φ(V̄) = V r {v} contain v,

• if Φ(V̄) = {v} where v has a unique neighbor w in G, then all tubes incompatible
with Φ(V̄) = {v} contain w,

In both cases, Lemma 6.76 ensures that Ḡ and G are paths, and we can compose Φ
with a rotation �p to ensure that Φ(V̄) is a singleton adjacent to at least two vertices
in G.

We now consider a vertex w̄ ∈ V̄ which does not disconnect Ḡ (such a vertex always
exists). By Lemma 6.75, the link of the square tube w̄� is not the join of two nontrivial
nested complexes. Since Φ is an isomorphism, so is the link of Φ(w̄�), so that Φ(w̄�)
is either a singleton or the complement of a singleton again by Lemma 6.75. Moreo-
ver, since w̄� is incompatible with V̄ and Φ is an isomorphism, Φ(w̄�) is incompatible
with Φ(V̄) = {v}. Therefore, Φ(w̄�) is either a singleton {w} adjacent to {v}, or the com-
plement V r {v} of the singleton {v}. Now, since V̄ contains at least two vertices w̄, w̄′

which do not disconnect G and since Φ(w̄�) 6= Φ(w̄′�), we can assume that Φ(w̄�) is a
singleton {w} adjacent to {v}. It implies that Φ induces an isomorphism from the design
nested complex N �(Ḡ[V̄ r {w̄}]) to the nested complex N (G?{w}) of the reconnected
complement of the tube {w} in G. The induction hypothesis implies that

• the graph Ḡ[V̄ r {w̄}] is isomorphic to the spider Xn and the graph G?{w} is iso-
morphic to the octopus Xn (with head denoted v), for some n = {n1, . . . , n`} ∈ N`.

• the image Φ(V̄ r {w̄}) of V̄ r {w̄} is the pair {v, w} containing the central vertex
of G?{w},

• the description of the images of the tubes of Ḡ not containing w̄ is given by Ω̄, in
particular Φ(w̄′�) is a singleton adjacent to v in G?{w}. As Φ(w̄′�) cannot be an
edge in G, it has to be a singleton {w′} in G, nonadjacent to w for compatibility.
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Since G?{w} is an octopus with head v, it follows by definition of the reconnected
complement that G is either an octopus with head v or an octopus with head v with
an additional edge of the form {v, v1

i } for a certain i ∈ [`]. We can now apply the
same reasoning to w̄′ and since Φ(w̄�) and Φ(w̄′�) are nonadjacent singletons in G, we
conclude that G is an octopus. Since Φ(V̄) = {v}, the graph Ḡ is a spider and the reader
can check that the restriction of Φ to the link of V̄ in the design nested complex N �(Ḡ)
is the nontrivial isomorphism Ω : N (Ḡ)→ N (G?{v}) defined in Section 6.4.2. It follows
that Φ coincides with Ω̄. �

Proof of Theorem 6.59. If G is the path Pn, then its design nested complex N �(G) is
isomorphic to the nested complex N (Pn+1) by Example 6.54 (ii). Therefore, the design
nested complex N �(G′) is also isomorphic to the nested complex N (Pn+1), which im-
plies that G′ is the path Pn by Proposition 6.56. We can therefore assume that G and G′
are not paths.

Let V and V′ denote the vertex sets of G and G′. By Lemma 6.75, the link of V
in N �(G) is the nested complex N (G). With a similar argument as in the proof of
Lemma 6.69, it follows that its image Φ(V) is either a square tube of G′, or a singleton
round tube of G′, or the round tube V′ of G′. We treat these situations separately.

if Φ(V) = v′� All tubes of G′ incompatible with Φ(V) = v′� are round tubes contai-
ning v′. Thus by Lemma 6.76, the graphs G and G′ are paths, which we already
excluded.

if Φ(V) = V′ By Lemma 6.75, Φ induces a nontrivial nested complex isomorphism Ψ
from N (G) to N (G′). It follows from Theorem 6.37 that G and G′ are isomor-
phic spiders and Ψ coincides with the nontrivial nested complex isomorphism Ω
described in Section 6.4.2. It thus suffices to show that the nested complex iso-
morphism Ω cannot be extended to design nested complexes. For this observe first
that such an extension would send square tubes to square tubes. Now consider
a singleton {v} of G swapped by Ω. This singleton {v} is incompatible with the
square tube v� and compatible with all other square tubes of G. Yet its image is
incompatible with more than one square tube, a contradiction.

if Φ(V) = {v′} The link of {v′} in the design nested complex N �(G′) is a design nested
complex isomorphic to the nested complex N (G). By Proposition 6.56, we obtain
that G is an octopus and Φ−1(V′) is the singleton containing its central vertex.
Since Φ−1(V′) 6= V, the same argument applies to Φ−1 and shows that G′ is also
an octopus with the same legs as G. Moreover Proposition 6.56 describes the
images of round tubes of G by Φ and of round tubes of G′ by Φ−1, which together
forces Φ to coincide with the map Ω�. �
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7
Context and motivations

7.1 Introduction

The main concern of this second part is the study of subword complexes introduced
by A. Knutson and E. Miller [KM04, KM05]. Similarly to nested complexes and graph
associahedra, they are related to cluster algebras, as generalized associahedra are very
natural instances of subword complexes. The main issue though is that no geometric
realization is known in general for them, in spite of several attempts (see Section 10.1.1).
Moreover the (type A) associahedron and, as a byproduct, the cyclohedron (type B as-
sociahedron) are the only serious combinatorial connections between (type A) subword
complexes and nested complexes so far. Therefore this part is oriented toward two na-
tural ideas. First study potential geometric properties of subword complexes; second
look for common properties shared by subword complexes and nested complexes.

As mentioned, the first problem is hard in general and has resisted to investigations
for about a decade. A tentative and say “semi-fruitful” approach is proposed in Chap-
ter 10. A problem a bit easier, and going simultaneously in both directions, is to find
a d-vector-like construction for flag subword complexes (we discuss it in Section 7.4).
Yet the combinatorial models for subword complexes are too poor so far to describe li-
near dependences along the flips. It is from this lack that our interest came to accordion
complexes, when F. Chapoton made us notice that some subword complexes appear as
instances of them. Their combinatorics is described by dissections and is thus much
more tractable than subword complexes’. Chapters 8 and 9 answer specific questions
about accordion complexes, among which we propose a d-vector construction.

In the rest of this chapter, we present subword complexes in Section 7.2 and discuss
the class of root-independent subword complexes in Section 7.3.

In Chapter 8, we define accordion complexes and settle two enumerative conjectures
of F. Chapoton. In particular the serpent nest conjecture is to appear in [Man17b].

In Chapter 9 we give geometric realizations of accordion complexes both as fans
and polytopes, using g-vector and d-vector-like constructions inspired from cluster
algebras. The results of this chapter are gathered in an article to appear [MP17b].

Finally we present in Chapter 10 the family of multiassociahedra and give a con-
struction for some 2-associahedra, based on combinatorial transformations on subword
complexes. We delay this chapter to the end as it is more experimental than the rest of
the thesis. The result presented there can be found in [Man17a].

131



132 CHAPTER 7. CONTEXT AND MOTIVATIONS

7.2 Subword complexes

Subword complexes were introduced by A. Knutson and E. Miller in [KM04, KM05]. We
refer the reader to the same papers for the original motivations. The definition in [KM04]
describes a family of simplicial complexes for each (not necessarily finite) Coxeter group.
For our concerns, we only need the definition of type A spherical subword complexes,
that we however abbreviate to subword complexes from now on.

We denote the symmetric group of permutations of [n+ 1] by Sn+1, and by S the set
of simple transpositions si := (i i + 1) (for i ≤ n), that we consider as an alphabet. To
avoid confusion, a simple transposition will be referred to with an italic letter si when
considered as an element of Sn+1, and with a sans serif letter si when considered as a
letter in S. Since simple transpositions generate Sn+1, any permutation π ∈ Sn+1 can
be written as a product π = si1 · · · si` . The word si1 . . . si` is then called an expression
of the permutation π. It is a reduced expression of π if ` is smallest possible among all
expressions, in which case ` is called the length of π. We denote by w◦ := [n+ 1, n, . . . , 1]
the unique longest element in Sn+1, also referred to as the maximal permutation.

Given a word Q = q1 . . . qp in S∗, a subword of Q is a subsequence qi1 . . . qir (with 1 ≤
i1 < · · · < ir ≤ p) of its letters. A factor of Q is a subword of Q consisting in consecutive
letters and a prefix (resp. suffix) of Q is a factor containing its first (resp. last) letter.
For any set J ⊆ [p], we denote by QJ the subword of Q consisting in the letters with
index in J . Let Q be a word containing a reduced expression of w◦ as a subword.
Following [KM04], we define the subword complex of Q as the simplicial complex

S(Q) := {J ⊆ [p] |Q[p]rJ contains a reduced expression of w◦ as a subword}.

We always consider a letter qr in a word Q as both data of its position r in Q and of
the actual letter si in the alphabet S such that qr = si. We identify the vertices of the
subword complex S(Q) to the letters of Q whose position is contained in a facet of the
complex and denote their set by VQ. Observe that the vertices of S(Q) are the letters
of Q which are not contained in all reduced expressions of w◦ contained in Q. The other
letters of the word Q are the nonvertices of S(Q). A convenient way to think about a
subword complex S(Q) consists in encoding the underlying word Q = q1 . . . qp with a
set of segments NQ := {Ir | r ∈ [p]} called its corresponding sorting network (we follow
the presentation of [PP12, PS12]). Each letter qr = si (r ∈ [p], i ∈ [n]) is represented by
a vertical segment Ir whose extremities are the points (r, i) and (r, i + 1) in the plane.
As we are interested in combinatorics, we consider the sorting network up to horizontal
moves of its segments such that no two of them ever touch each other (see Figure 7.1
left). With this “relaxed” definition, the order on the abscissa of the segments is not
well-defined any more, so that the sorting network NQ does not determine the word Q.

s1 s1

s2 s2 s2 s2

s3 s3

1 3

2
y = 1

y = 2

y = 3

y = 4

4

Figure 7.1 – The sorting network NQ (or n = 3) of the word Q = s1s3s2s2s3s2s1s2 =
q1q2q3q4q5q6q7q8 (left) and the pseudo-line arrangement A corresponding to the fa-
cet {q2, q3} of the subword complex S(Q) (right). The subword complex S(Q) is root-
independent since the contact graph of A is a path with edges {1, 3} and {3, 4}.
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Asso(1) : Asso(2) : Asso(3) :

Figure 7.2 – Sorting networks of subword complexes isomorphic to the simplicial asso-
ciahedron of dimension 1 (left), of dimension 2 (middle) and of dimension 3 (right).

However it still fully describes the combinatorics of the subword complex S(Q). Indeed
since si and sj commute when |i − j| ≥ 2, if Q′ is obtained from Q by replacing a
factor sisj by sjsi, then the subword complexes S(Q) and S(Q′) are clearly isomorphic.

Sorting networks give us a way to visualize the facets in subword complexes: a pseudo-
line on NQ is an abscissa-increasing curve included in the union of the segments in NQ
together with the lines of equations y = i (i ∈ [n+ 1]). A pseudo-line arrangement on NQ
is a set A of n+ 1 pseudo-lines on NQ labeled form 1 to n+ 1 such that

• the pseudo-line labeled i stays on the line of equation y = i when abscissa go
to −∞ and on the line of equation y = n+ 2− i when abscissa go to +∞, and

• the intersection of any two pseudo-lines in A is exactly one of the segments in NQ.
Given a pseudo-line arrangementA, the contacts ofA are the letters of Q represented

by the segments in NQ whose interior intersects no pseudo-line of A. The facets of the
subword complex S(Q) are then identified with the sets of contacts of all pseudo-line
arrangements on NQ (see Figure 7.1 right, and [PP12, PS12] for details).

As mentioned in Section 7.1, the simplicial associahedron is an instance of subword
complex. Figure 7.2 illustrates the sorting networks of subword complexes isomorphic
to the first associahedra. A more complete and general description of the correspon-
dence is given in Theorem 10.5 and illustrated in Figure 10.5.

Spherical subword complexes [KM04] are conjectured to have polytopal realizations.
A way to attack this problem consists in restricting the study to well-chosen families.
This idea relies on the fact that subword complexes are closed under links: on the
corresponding networks, taking the link of a face just consists in forgetting the corre-
sponding segments. This yields that some subfamilies of subword complexes are “uni-
versal”, in the sense that finding realizations as fans or polytopes for them is enough
to obtain realizations for any subword complex. This was already observed in [PS12,
Corollary 5.8] and [CLS14, Corollary 2.16] for the family of multiassociahedra discussed
in Chapter 10, which admit other combinatorial models than sorting networks.

7.3 Root-independent subword complexes

If no geometric realization is known in general for subword complexes, there is a class
of them realized by brick polytopes, introduced by V. Pilaud and F. Santos in [PS12] for
type A spherical subword complexes, and later extended by V. Pilaud and C. Stump to
arbitrary spherical subword complexes [PS15a]. The subword complexes in this class
are called root-independent in [PS15a].They are interesting in our context because they
seem to fully describe all flag subword complexes, and therefore are the only ones for
which a d-vector approach makes sense (see Section 3.2.3).

Let Q = q1 . . . qp be a word in S∗, let {qr1 , . . . , qr`} be a facet of the subword com-
plex S(Q) represented by a pseudo-line arrangement A on NQ. Following [PS12], we de-
fine the contact graph of A as the multigraph whose vertices are the pseudo-lines in A,
and with one edge for each contact qri of A, relating the two pseudo-lines of A that con-
tain the endpoints of the segment Iri . The subword complex S(Q) is root-independent if
the contact graph of one (equivalently any) pseudo-line arrangement on NQ is a forest.

Theorem 7.1 ([PS12, Theorem 3.26],[PS15a, Theorems 1.1 and 4.8]). Root-independent
subword complexes can be realized as boundary complexes of convex polytopes.
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7.4 Towards a d-vector construction

As we mentioned, root-independent subword complexes seem to essentially describe
those subword complexes that are flag. Following the same lines as in the proof of
Lemma 10.10, where we show that two vertices of a subword complex are either compa-
tible (they belong to a common face), or exchangeable (they are exchanged along a ridge
of the complex), or both, one could expect to prove the following conjecture.

Conjecture 7.2. Flag subword complexes are exactly those subword complexes that
decompose into joins of root-independent subword complexes.

Since d-vectors are well-behaved with respect to joins, finding a best possible d-
vector construction for subword complexes boils down, up to Conjecture 7.2, to find
suitable d-vectors in root-independent subword complexes.

In [CP15, Definition 2.15], C. Ceballos and V. Pilaud rephrased the compatibility de-
gree of cluster complexes to the subword complexes context. Their definition naturally
extends to arbitrary subword complexes and thus provides natural candidate d-vectors
for any root-independent subword complex. However the definition is so far hard to deal
with and only allows to derive few properties of Proposition G. Namely let Q = q1 . . . qp
be a word such that S(Q) is root-independent. The compatibility degree (. ‖ .) on the
vertices of S(Q), defined as in [CP15, Definition 2.15], has the following properties.

1. For any vertex qr ∈ VQ, we have (qr ‖ qr) = −1.

2. If two vertices qr, qt ∈ VQ are compatible, then (qr ‖ qt) = (qt ‖ qr) = 0.

3. If two vertices qr, qt ∈ VQ are exchangeable, then (qr ‖ qt) = (qt ‖ qr) = 1.

For general (not only in type A) spherical subword complexes, it is not even known
whether (qr ‖ qt) is nonnegative if r 6= t. Moreover the reverse implications of (2) and (3)
are not known either. Nevertheless we can prove all these properties in our context
(namely in type A), using similar argument as in the proof of Lemma 10.10. Finally
computational experiments indicate that the d-vectors defined from this compatibility
degree support fans realizing root-independent subword complexes, at least in type A,
attesting that the definition is promising.



8
Combinatorial properties

of accordion complexes

8.1 Introduction

In this chapter and in Chapter 9, we concentrate on specific properties of accordion
complexes defined by A. Garver and T. McConville [GM16]. We underline the connecti-
ons with flag subword complexes in Section 8.4.

8.1.1 Motivations

Y. Baryshnikov introduced in [Bar01] the simplicial complex of crossing-free subsets of
the set of diagonals of a polygon that are in some sense compatible with a reference
quadrangulation Q◦. Although the precise definition of compatibility is a bit technical
in [Bar01], it turns out that a diagonal is compatible with Q◦ if and only if it cros-
ses a connected subset of diagonals of Q◦ that we call accordion of Q◦. We thus call
Y. Baryshnikov’s simplicial complex the accordion complex AC(Q◦). For instance, this
complex coincides with the classical associahedron when all the diagonals of the refe-
rence quadrangulation Q◦ have a common endpoint. A polytopal realization of AC(Q◦)
was announced in [Bar01], but the proof was never published as far as we know. Re-
visiting some combinatorial and algebraic properties of AC(Q◦), F. Chapoton [Cha16]
raised three explicit challenges: first prove that the dual graph of AC(Q◦), endowed
with a certain orientation, has a lattice structure extending the Tamari and Cambrian
lattices [MHPS12, Rea06]; second construct geometric realizations of AC(Q◦) as fans
and polytopes generalizing the known constructions of the associahedron; third show
enumerative properties of the faces of AC(Q◦), in particular a bijection between the
facets of AC(Q◦) and other combinatorial objects called serpent nests.

In [GM16], A. Garver and T. McConville defined and studied the accordion com-
plex AC(D◦) of any reference dissection D◦ (our presentation slightly differs from theirs
as they use a compatibility condition on the dual tree of the dissection D◦, but the sim-
plicial complex is the same). In this context, they settled F. Chapoton’s lattice question,
using lattice quotients of a lattice of biclosed sets. In Chapter 9, geometric realizati-
ons (as fans and convex polytopes) of AC(D◦) are given for any reference dissection D◦,
providing in particular an answer to F. Chapoton’s geometric question. This chapter
settles some of F. Chapoton’s enumerative questions [Cha16]. In particular we prove
the serpent nest conjecture, in the general context of accordion complexes.

135
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8.1.2 Overview

The chapter is organized as follows. Section 8.2 introduces the accordion complex and
accordion lattice of a dissection D◦. We essentially follow the definitions and argu-
ments of A. Garver and T. McConville [GM16], except that we prefer to work on the
dissection D◦ rather than on its dual graph. We present in Section 8.3 bijective proofs
of enumerative conjectures stated in [Cha16]. This includes a bijection between ser-
pent nests and maximal D◦-accordion dissections of a reference dissection D◦. Finally
we make some quick link between accordion complexes and root-independent subword
complexes in Section 8.4.

8.2 The accordion complex and the accordion lattice

In this section, we define the accordion complex AC(D◦) of a dissection D◦, show that
it is a pseudo-manifold, and define an orientation of its dual graph. Our definitions
and proofs are essentially translations of the arguments of A. Garver and T. McCon-
ville [GM16] given in terms of the dual tree of the dissection D◦. However our presenta-
tion in terms of dissections is more convenient for our latter purposes.

8.2.1 The accordion complex

Let P be a convex polygon. Here by a diagonal of P, we mean either an internal diagonal
or an external diagonal (a boundary edge) of P, but a dissection D of P is still a set of
noncrossing internal diagonals of P. The cells of D are the closures of the connected
components of P minus the diagonals of D. We denote by D̄ the dissection D together
with all boundary edges of P. An accordion of D is a subset of D̄ which contains either
no or two consecutive diagonals in each cell of D. A subaccordion of D is a subset of D
formed by the diagonals between two given internal diagonals in an accordion of D.
A zigzag of D is a subset {δ0, . . . , δp+1} of D where δi shares distinct endpoints with and
separates δi−1 and δi+1 for any i ∈ [p]. The zigzag of an accordion A is the subset of the
diagonals of A which disconnect A. Note that we include boundary edges of P in the
accordions of D, but not in the subaccordions nor in the zigzags of D. See Figure 8.1.

We consider 2n points on the unit circle labeled clockwise by 1◦, 2•, 3◦, 4•, . . . ,
(2n− 1)◦, (2n)•. We say that 1◦, . . . , (2n− 1)◦ are the hollow vertices while 2•, . . . , (2n)•
are the solid vertices. The hollow polygon is the convex hull P◦ of 1◦, . . . , (2n − 1)◦
while the solid polygon is the convex hull P• of 2•, . . . , (2n)•. We simultaneously consi-
der hollow diagonals δ◦ (with two hollow vertices) and solid diagonals δ• (with two solid
vertices), but we never consider diagonals with one hollow vertex and one solid vertex.
Similarly, we consider hollow dissections D◦ (with only hollow diagonals) and solid dis-
sections D• (with only solid diagonals), but never mix hollow and solid diagonals in a
dissection. To help distinguishing them, hollow vertices and diagonals appear red while
solid vertices and diagonals appear blue in all pictures.

Figure 8.1 – A dissection (left) and three accordions with bold zigzags (middle and right).
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Figure 8.2 – A hollow dissection Dex
◦ , a solid Dex

◦ -accordion diagonal whose correspon-
ding hollow accordion is bold, and two maximal solid Dex

◦ -accordion dissections.

We fix an arbitrary reference hollow dissection D◦. A solid diagonal δ• is a D◦-
accordion diagonal if the hollow diagonals of D̄◦ crossed by δ• form an accordion of D◦.
In other words, δ• cannot enter and exit a cell of D◦ using two nonincident diago-
nals. For example, note that for any hollow diagonal (i◦, j◦) ∈ D̄◦, the solid diago-
nals ((i − 1)•, (j − 1)•) and ((i + 1)•, (j + 1)•) are D◦-accordion diagonals (labels are
considered modulo 2n). In particular, all boundary edges of the solid polygon are D◦-
accordion diagonals. A D◦-accordion dissection is a set of pairwise noncrossing internal
D◦-accordion diagonals. We call accordion complex of D◦ the simplicial complex AC(D◦)
of D◦-accordion dissections.

Example 8.1. Consider the reference dissection Dex
◦ of Figure 8.2 (left). Examples of

maximal Dex
◦ -accordion dissections are given in Figure 8.2 (right). The accordion com-

plex of Dex
◦ is illustrated in Figure 8.3 (left).

Remark 8.2. Special reference hollow dissections D◦ give rise to special accordion com-
plexes AC(D◦):

(i) If D◦ is the empty dissection with the whole hollow polygon as unique cell, then the
D◦-accordion complex AC(D◦) is reduced to the empty D◦-accordion dissection.

(ii) If D◦ has a unique diagonal, then the accordion complex AC(D◦) is a segment.
(iii) For any hollow triangulation T◦, all solid diagonals are T◦-accordions, so that

the T◦-accordion complex AC(T◦) is the simplicial associahedron.
(iv) For any hollow quadrangulation Q◦, a solid diagonal is a Q◦-accordion if and only

if it never crosses two opposite edges of a quadrangle of Q◦, so that the accor-
dion complex AC(Q◦) is the Stokes complex defined by Y. Baryshnikov [Bar01] and
studied by F. Chapoton [Cha16].

Figure 8.3 – The accordion complex of Dex
◦ (left) and the Dex

◦ -accordion lattice (right),
oriented from bottom to top, for the reference hollow dissection Dex

◦ of Figure 8.2 (left).
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Remark 8.3. Following the original definition of the noncrossing complex of A. Garver
and T. McConville [GM16], the accordion complex could equivalently be defined in terms
of the dual tree D?

◦ of D◦ (with one node in each cell of D and one edge connecting two
adjacent cells). For example, a diagonal (u•, v•) is a D◦-accordion diagonal if and only
if any two consecutive edges of the (unique) path between u• and v• in D?

◦ belong to the
boundary of a face of the complement of D?

◦ in the unit disk. The g-, c- and d-vectors
defined in Section 9.2.1 could as well be defined in terms of D?

◦.

8.2.2 Links in accordion complexes

Let us quickly deal with links in accordion complexes. As we will see in Section 8.3.1,
the following descriptions are the main tools to prove the serpent nest conjecture.

Remark 8.4. Assume that D◦ has a cell C◦ containing p boundary edges of the hollow
polygon P◦. Let C1

◦, . . . ,C
p
◦ denote the p (possibly empty) connected components of the

hollow polygon minus C◦. For i ∈ [p], let Di
◦ denote the dissection formed by the cell C◦

together with the cells of D◦ in Ci
◦. Since no D◦-accordion can contain internal diagonals

crossing diagonals of distinct dissections Di
◦ and Dj

◦ (with i 6= j), the accordion complex
of D◦ decomposes as the join: AC(D◦) = AC(D1

◦) ∗ · · · ∗ AC(D
p
◦). In particular, we have

the following reductions:
(i) If a nontriangular cell of D◦ has two consecutive boundary edges γ◦, δ◦ of the hol-

low polygon, then contracting γ◦ and δ◦ to a single boundary edge preserves the
accordion complex of D◦.

(ii) If a cell of D◦ has two nonconsecutive boundary edges of the hollow polygon, then
the accordion complex of D◦ is a join of smaller accordion complexes.

In all the examples of this chapter, we therefore only consider dissections where any
cell of D◦ has at most two boundary edges and that two boundary edges in a common
cell of D◦ are consecutive. All our constructions work in general, but are just obtained
as joins of the nondegenerate situation.

Remark 8.5. The links in an accordion complex are joins of accordion complexes. Na-
mely, consider a D◦-accordion dissection D• with cells C1

•, . . . ,C
p
•. Let Di

◦ denote the
hollow dissection obtained from D◦ by contracting all hollow (internal and external) di-
agonals which do not cross an edge of Ci

•. Then the link of D• in AC(D◦) is clearly
isomorphic to the join AC(D1

◦) ∗ · · · ∗ AC(D
p
◦).

Following F. Chapoton [Cha16], we define a bridge in D◦ as a cell of D◦ containing
two nonconsecutive external diagonals of D◦. Remark 8.4 states that if D◦ contains a
bridge, the accordion complex AC(D◦) is the join of smaller complexes.

Proposition 8.6. The accordion complex AC(D◦) decomposes into a join of other simpli-
cial complexes if and only if it contains a bridge.

Observe that by Remarks 8.4 and 8.5, accordion complexes form a class of com-
plexes closed by links, so that if AC(D◦) decomposes into a join of other simplicial
complexes, then all these complexes are themselves accordion complexes.

Proof. A quick induction on the number of cells of D◦ shows that if it contains no bridge,
then for any two D◦-accordion diagonals δ• and δ′•, there is a sequence of D◦-accordion
(internal) diagonals δ• = δ1

• , . . . , δ
`
• = δ′• such that δi• and δi+1

• cross for i ∈ [` − 1]. In
particular if AC(D◦) decomposes into a join of other nonempty simplicial complexes,
the diagonals δi• and δi+1

• have to belong to the same one, as they are vertices of AC(D◦)
not forming an edge of the complex. By transitivity δ• and δ′• also belong to the same
complex. As it is true for any pair of D◦-accordion diagonals, all diagonals are the
vertices of a same term in the decomposition of AC(D◦) as a join, a contradiction. �
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8.2.3 Pseudo-manifold

We now prove that the accordion complex AC(D◦) is a pseudo-manifold. We follow here
the arguments of A. Garver and T. McConville [GM16] (except that they work on the dual
tree of the dissection D◦). A much more concise but less instructive proof of the pseudo-
manifold property will be derived from geometric considerations in Remark 9.43.

Recall that we denote by D̄◦ the set formed by D◦ together with all boundary edges of
the hollow polygon. An angle u◦v◦w◦ of D̄◦ is a pair {(u◦, v◦), (v◦, w◦)} of two consecutive
diagonals of D̄◦ around a common vertex v◦, called apex (that is, no diagonal of D◦
crosses the diagonal u◦w◦). Note that D̄◦ has 2|D◦|+ n = 2|D̄◦| − n angles. We say that
a solid vertex p• belongs to a hollow angle u◦v◦w◦ if it lies in the cone generated by the
diagonals (v◦, u◦) and (v◦, w◦) of the angle. The key observation is the following.

Lemma 8.7. Let D• be a maximal D◦-accordion dissection, and let p•, q•, r•, s• denote
four consecutive vertices around a cell C• of D• (with possibly p• = s• if C• is a triangle).
Then p• and s• belong to the same angle of the accordion of D̄◦ crossed by (q•, r•).

Proof. Let A◦ be the accordion of D̄◦ crossed by (q•, r•). Assume that p• and s• be-
long to distinct angles of A◦. Then they are separated by a diagonal ε◦ of A◦. The-
refore, there are two boundary edges (q•, r•) and (u•, v•) of C• with distinct vertices
such that the hollow diagonal ε◦ separates the vertices q•, u• from the vertices r•, v•.
Let γ1

◦ , . . . , γ
i
◦ = ε◦, . . . , γ

a
◦ (resp. δ1

◦ , . . . , δ
j
◦ = ε◦, . . . , δ

b
◦) denote the diagonals of D◦ cros-

sed by (q•, r•) from q• to r• (resp. crossed by (u•, v•) from u• to v•). Then the hollow
diagonals γ1

◦ , . . . , γ
i
◦ = ε◦ = δj◦, . . . , δb◦ which are crossed by (q•, v•) also form an accor-

dion. It follows that D• is not maximal as we can still include (q•, v•). �

Consider an angle u◦v◦w◦ of D̄◦. In any maximal D◦-accordion dissection D•, the
set X• of diagonals of D̄• crossing both (u◦, v◦) and (v◦, w◦) is nonempty (it contains the
boundary edge ((v − 1)•, (v + 1)•)) and totally ordered (as the diagonals of D• do not
cross). We say that the angle u◦v◦w◦ is closed by the farthest diagonal of X• from v◦ in
the dissection D̄•. Note that each angle of D̄◦ is closed by precisely one diagonal of D̄•.
The following lemma is stated in [GM16] in terms of the dual tree D?

◦ of the dissection D◦.

Lemma 8.8 ([GM16]). In any maximal D◦-accordion dissection, each internal diagonal
closes two angles of D̄◦ (one apex on each side) and each boundary edge of the solid poly-
gon closes one angle of D̄◦. The accordion complexAC(D◦) is thus pure of dimension |D◦|.

Proof. The first sentence is a consequence of Lemma 8.7: for any four consecutive
vertices p•, q•, r•, s• in a cell of D̄•, the diagonal (q•, r•) closes the unique angle of the
accordion of D̄◦ crossed by (q•, r•) that contains the vertices p• and s•. Therefore, (q•, r•)
closes precisely two angles (resp. one angle) of D◦ if it is an internal (resp. external) solid
diagonal. We obtain by double-counting that 2|D◦| + n = |{angles of D̄◦}| = 2|D•| + n
and thus |D•| = |D◦| for any maximal D◦-accordion dissection D•. �

We can now prove that the accordion complex of D◦ is thin (any internal diagonal of
a maximal D◦-accordion dissection can be flipped into a unique other one to form a new
maximal D◦-accordion dissection). The following statement is illustrated in Figure 8.4.

Lemma 8.9 ([GM16]). Let D• be a maximal D◦-accordion dissection and δ• be a diagonal
of D•. Let u◦ and v◦ be the apices of the angles of D◦ closed by δ•, let µ• and ν• denote
the edges of the cells of D• incident to δ• which separate δ• from u◦ and v◦ respectively,
and let Q• denote the quadrilateral defined by the four vertices of µ• and ν•. Note that
δ• is a diagonal of Q•, and let δ′• denote the other diagonal. Then D′• := D•4{δ•, δ′•} is
a maximal D◦-accordion dissection, and D• and D′• are the only maximal D◦-accordion
dissections containing D• r {δ•}. In other words, the accordion complex AC(D◦) is thin.
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increasing
flip

Figure 8.4 – Two maximal D◦-accordion dissections D• (left) and D′• (right) related by
the flip of δ• to δ′•. The angles of D◦ closed by δ• and δ′• are shaded. The flip is oriented
from D• to D′•.

Proof. We first observe that δ′• is a D◦-accordion diagonal, since the edges of D̄◦ crossed
by δ′• are obtained by merging three subaccordions of D◦: the subaccordion formed by
the diagonals of D̄◦ crossed by µ• but not δ• nor ν•, the subaccordion formed by the
diagonals of D̄◦ crossed by δ•, µ• and ν•, and the subaccordion formed by the diagonals
of D̄◦ crossed by ν• but not δ• nor µ•. Moreover, δ• and δ′• are the only D◦-accordion
diagonals compatible with D• r {δ•}. Indeed, any other such diagonal would cross δ•
and δ′• (by maximality of D• and D′•), and thus also the subaccordion A◦ of D◦ crossed
by δ• and δ′• (because it cannot cross µ and ν). But it would then improperly intersect
the two cells of D◦ containing precisely one diagonal of A◦. �

The D◦-accordion flip graph is the dual graph AFG(D◦) of the accordion complex
of D◦: its vertices are the maximal D◦-accordion dissections, and its edges are the
flips between them, that is the pairs {D•,D′•} of maximal D◦-accordion dissections
with D• r {δ•} = D′• r {δ′•}. See Figure 8.3 (right).

8.2.4 The accordion lattice

We now define a natural orientation on the D◦-accordion flip graph. We use the no-
tations of Lemma 8.9, where D• r {δ•} = D′• r {δ′•} and δ•, δ

′
• are the two diagonals

of the quadrilateral defined by µ•, ν•. Observe that one of the path µ•δ•ν• and µ•δ
′
•ν•

forms a Zwhile the other forms a Z, see Figure 8.4 (right). We then orient the flip from
the dissection containing the Zto that containing the Z. Figure 8.3 (right) illustrates a
D◦-accordion oriented flip graph (where the graph is oriented from bottom to top).

A. Garver and T. McConville introduced a natural closure on sets of D◦-subaccordions,
and showed that the inclusion poset of biclosed sets of D◦-subaccordions is a well-
behaved lattice (namely, semidistributive, congruence-uniform and polygonal). Then,
they introduced a lattice congruence map from biclosed sets of D◦-subaccordions to
maximal D◦-accordion dissections, which imply the following statement.

Theorem 8.10 ([GM16]). The D◦-accordion oriented flip graph is the Hasse diagram of a
lattice, that we call the D◦-accordion lattice and denote by AL(D◦).

The D◦-accordion oriented flip graph is thus connected and acyclic. It has a unique
source D−• :={((i− 1)•,(j − 1)•) |(i◦, j◦)∈ D◦} obtained by rotating D◦ counterclockwise,
and a unique sink D+

• :={((i+ 1)•,(j + 1)•) |(i◦, j◦)∈ D◦} obtained by rotating D◦clockwise.
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Remark 8.11. Following Remark 8.2, note that special reference hollow dissections D◦
give rise to special accordion lattices AL(D◦), as it was already observed in [GM16]:
� For a comb triangulation T◦ (where all internal diagonals are incident to a common

vertex), the T◦-accordion lattice AL(T◦) is the Tamari lattice [Tam51, MHPS12].
� More generally, for any accordion triangulation A◦ (with no interior triangle), the A◦-

accordion latticeAL(A◦) is a type A Cambrian lattice defined by N. Reading [Rea06].
� For an arbitrary triangulation T◦, the T◦-accordion oriented flip graph AFG(A◦)

is the poset originally defined by T. Brüstle, G. Dupont and M. Pérotin [BDP14].
� For a quadrangulation Q◦, the Q◦-accordion lattice AL(Q◦) is the Stokes poset

on Q◦-compatible quadrangulations studied by F.Chapoton [Cha16].

Remark 8.12. Following Remark 8.4, assume that D◦ has a cell containing p boun-
dary edges of the hollow polygon, and consider the dissections D1

◦, . . . ,D
p
◦ as in Re-

mark 8.4. Then the D◦-accordion lattice is the Cartesian product of the Di
◦-accordion

lattices: AL(D◦) = AL(D1
◦)× · · · × AL(Dp

◦). In particular, if two consecutive boundary
edges of the hollow polygon belong to the same nontriangular cell of D◦, then con-
tracting them to a single boundary edge preserves the D◦-accordion lattice. This shows
in particular that the D◦-accordion lattice of a ribbon dissection D◦ is a Cambrian lat-
tice, as conjectured for quadrangulations in [Cha16] and proved in [BMP17].

Remark 8.13. Call cell-sequence of a dissection the sequence whose i-th entry is
its number of (i + 2)-cells. For example, the cell-sequence of the dissection of Fi-
gure 8.2 (left) is 3, 1, 0∞ and this of any (p+ 2)-angulation of a (pm+ 2)-gon is 0p,m, 0∞.
Observe that the flip preserves the cell-sequence so that all maximal D◦-accordion dis-
sections have the same cell-sequence as D◦.

We conclude this section with a reciprocity result on accordion dissections.

Proposition 8.14. Let D◦ be a hollow dissection and D• be a solid dissection. Then D• is
a maximal D◦-accordion dissection if and only if D◦ is a maximal D•-accordion dissection.

Proof. Since D+
• := {((i− 1)•, (j − 1)•) | (i◦, j◦) ∈ D◦} is a D◦-accordion dissection, we

already know that D◦ is a D−• -accordion dissection. Observe now in Figure 8.4 that
if D• and D′• are maximal D◦-accordion dissections connected by a flip, then D◦ is a D•-
accordion dissection if and only if it is a D′•-accordion dissection. Indeed, if δ• belongs
to the zigzag of the D•-accordion A• of a hollow diagonal δ◦, then δ◦ crosses both µ•
and ν•, so that it also crosses δ′•, and thus the D′•-accordion A•4{δ•, δ′•}. Since the D◦-
accordion flip graph is connected, we obtain that D◦ is a D•-accordion dissection for
any maximal D◦-accordion dissection D•. It is maximal since all maximal D◦-accordion
dissections have |D◦| diagonals. The equivalence follows by symmetry. �

8.3 Enumerative questions

We are now interested in conjectures stated by F. Chapoton in [Cha16] in the context
of Stokes complexes, namely the accordion complexes of quadrangulations. We prove
these conjectures for arbitrary reference dissections. Before this we need some preci-
sions on the labels of the (hollow and solid) vertices. They are meant modulo 2n, so
as the results of algebraic operations on them. However we denote hollow and solid
diagonals by (u, v) with u, v ∈ [2n] and u < v, and consider them as elements of the
Cartesian product [2n] × [2n] =: [2n]2. Moreover for arbitrary vertices represented by
residues modulo 2n, we mean by u < v < w that u, v and w are positioned in this order
in clockwise cyclic order. In this chapter, we abuse notations and keep denoting cyclic
intervals by [u, v] := {w |u ≤ w ≤ v}, and cyclic hollow (resp. solid) intervals by [u◦, v◦]◦
(resp. [u•, v•]•). Finally it will be convenient for us to denote by P the polygon whose
vertices are all (hollow or solid) vertices.
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8.3.1 The serpent nest conjecture

We first focus on objects called serpent nests in [Cha16]. Recall that we denote by D?
◦

the dual tree of a reference hollow dissection D◦, whose vertices are the cells of D◦ and
whose edges are the pairs of cells of D◦ that share a common diagonal of D◦. From now
on we identify the edges of D?

◦ with the diagonals of D◦ in the natural way. A serpent
of D◦ is an nonempty undirected dual path S in D?

◦ whose edges (considered as hollow
diagonals of D◦) form a subaccordion of D◦. Informally S is a path in D◦ going through
cells of D◦ by incident diagonals. The edges of S not disconnecting it as a path (its “end
edges”) are its final edges (see Figure 8.5 left for an illustration).
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Figure 8.5 – A serpent S with final edges (5◦, 25◦) and (7◦, 19◦) in a hollow dissection D◦,
with the subaccordion crossed by S being bold (left), and a serpent nest in D◦ (right).

Two serpents S1, S2 are incompatible if they intersect, so that S1 ∩ S2 is a serpent
whose final edges are diagonals (uh◦ , vh◦ ) and (ut◦, vt◦) of D◦ with uh◦ < vh◦ ≤ ut◦ < vt◦, and
if they satisfy either of the following conditions, where S1 and S2 may be exchanged, so
as (uh◦ , vh◦ ) and (ut◦, vt◦).

1. The serpents S1 and S2 have a common final edge (Figure 8.6 left).

2. The serpents S1 and S2 “cross”. Formally S1 simultaneously contains two diagonals
incident to uh◦ and two diagonals incident to ut◦, and S2 simultaneously contains
two diagonals incident to vh◦ and two diagonals incident to vt◦ (Figure 8.6 middle left).

3. The diagonal (uh◦ , vh◦ ) is a final edge of the serpent S2, and the serpent S1 simulta-
neously contains two diagonals of D◦ incident to uh◦ (resp. vh◦ ) and two diagonals
of D◦ incident to ut◦ (resp. vt◦) (Figure 8.6 middle right).

4. The diagonal (uh◦ , vh◦ ) is a final edge of S1, the diagonal (ut◦, vt◦) is a final edge of S2,
S1 contains two diagonals incident to ut◦ (resp. vt◦), and S2 contains two diagonals
incident to vh◦ (resp. ut◦) (Figure 8.6 right).

Serpents S1 and S2 are compatible if they are not incompatible and a serpent nest
of D◦ is a (potentially empty) set of pairwise compatible serpents (see Figures 8.5 right).

S2 S2 S2 S2

S1 S1 S1

S1uh◦

vh◦ut◦

vt◦ uh◦

vh◦ut◦

vt◦ uh◦

vh◦ut◦

vt◦ uh◦

vh◦ut◦

vt◦

Figure 8.6 – Pairs of serpents S1 (yellow) and S2 (green) incompatible because of Condi-
tion 1 (left), Condition 2 (middle left), Condition 3 (middle right) or Condition 4 (right).
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C◦ C◦ C◦ C◦

δ◦ δ◦ δ◦ δ◦

Figure 8.7 – A valid serpent nest pattern at an internal diagonal δ◦ of a cell C◦ in a
hollow dissection (left) and the three obstructions to valid patterns (middle and right).

Informally a set of serpents is a serpent nest if all its serpents can be simultaneously
drawn as pairwise noncrossing dual paths in D◦ (Figure 8.6 middle left), with the addi-
tional conditions that no two of them “end up in the same cell by entering it through a
same diagonal of D◦” (Figure 8.6 left) and that no serpent “goes over the head of another
serpent” (Figure 8.6 middle right and right). To see that this description is indeed equi-
valent to the actual definition, observe that a serpent nest induces a unique valid1 local
pattern at each side of each internal diagonal of D◦, which immediately describes how
to suitably draw all serpents. Figure 8.7 (left) illustrates what such a local valid pat-
tern typically looks like while Figure 8.7 (middle and right) describes the forbidden local
patterns. The following statement confirms a prediction in the introduction of [Cha16].

Theorem 8.15. For any hollow dissection D◦, there is a bijection between the serpent
nests of D◦ and the maximal D◦-accordion dissections.

We need the following observation to prove Theorem 8.15.

Lemma 8.16. Let D◦ be a hollow dissection, let C◦ be a triangular cell of D◦ which is a
leaf of D?

◦, whose unique internal diagonal of D◦ is (1◦, 5◦). For any maximal D◦-accordion
dissection D•, there exists a unique solid vertex x• > 4• such that both solid (internal or
external) diagonals (2•, x•) and (4•, x•) belong to D̄•.

Proof. For any two solid vertices 4• < x• < x′•, the solid diagonals (2•, x•) and (4•, x′•)
cross, which settles the uniqueness part. Let x• be the smallest element in [6•, (2n)•]•
such that (2•, x•) is a (internal or external) diagonal of D̄•. Then observe that the solid
diagonal (4•, x•) crosses no diagonal of D•. Indeed such a diagonal should be of the
form (2•, y•) with y• < x•, contradicting the minimality of x•. Moreover, the diago-
nal (4•, x•) crosses the same set of hollow diagonals as (2•, x•) but with the external
diagonal (1◦, 3◦) replaced by (3◦, 5◦), so that it is a D◦-accordion solid diagonal. This
concludes the proof since then (4•, x•) ∈ D• by maximality of D•. �

The assumptions in Lemma 8.16 do not introduce any real restriction on the number
of vertices of C◦ nor on its unique internal diagonal. Indeed Remark 8.4 allows us to
assume that C◦ is triangular as soon as it is a dual leaf, and we may rotate the labels
of the vertices of the polygon P in order that the internal diagonal of C◦ is (1◦, 5◦). We
thus keep these assumptions in the proof of Theorem 8.15. It consists in an induction
relying on Lemma 8.16 and the description of links in accordion complexes given in
Remark 8.5. Informally we decompose any maximal D◦-accordion dissection D• into
two parts, according to its distinguished vertex x• given by Lemma 8.16 (Figure 8.8
left and middle left), and find a corresponding serpent nest inductively in each of them
(Figure 8.8 middle right). One must then remark that the two serpent nests in these two
parts can be “unfolded” and gathered into a valid serpent nest N of D◦ (nonbold serpents
in Figure 8.8 right). We then add a last serpent to N, whose final edges are (1◦, 5◦) and
the farthest possible diagonal of the “zigzag crossed by both (2•, x•) and (4•, x•)” such
that the new serpent (bold in Figure 8.8 right) does not create a validity obstruction in
the local patterns inherited from N.

1Informally a pattern “avoiding” Conditions 1, 2 , 3 and 4.
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Figure 8.8 – A hollow dissection D◦ and a maximal D◦-accordion dissection D• (left),
and the serpent nest ΦD◦(D•) of D◦ defined in the proof of Theorem 8.15 (right). Here
the solid vertex x• given by Lemma 8.16 is 18• and the zigzag Z◦ defined in the proof
of Theorem 8.15 contains 3 diagonals (appearing bold). The bijection Φ. is applied
inductively in each part of the link of {(2•, 18•), (4•, 18•)} in AC(D◦) to obtain serpent
nests whose serpents do not cross the diagonals (2•, 18•) and (4•, 18•) (middle). All
these serpents are “unfolded” into a valid serpent nest in D◦ (right), to which a (bold)
serpent “lying between the diagonals (2•, 18•) and (4•, 18•)” is added. The final edges
of this additional serpent are (1◦, 5◦) and (5◦, 25◦), which is the farthest diagonal of Z◦
after which it can end in order to be compatible with the serpents inductively obtained.

Proof of Theorem 8.15. The proof is by induction on the number of diagonals in D◦. If D◦
is empty, then the unique D◦-accordion dissection is the empty set and the unique
serpent nest in D◦ is also the empty set. Now as previously explained, we can assume
for the induction step that D◦ contains the diagonal (1◦, 5◦) (since its dual tree has
a leaf). Let ACmax(D◦) be the set of maximal D◦-accordion dissections and SN (D◦)
be the set of serpent nests of D◦. We define bijections ΦD◦ : ACmax(D◦) → SN (D◦)
and ΨD◦ : SN (D◦)→ ACmax(D◦) that are reverse to each other as follows.

Let D• ∈ ACmax(D◦) and let x• be the solid vertex, given by Lemma 8.16, such
that {(2•, x•), (4•, x•)} ⊆ D•. Let D>x•

◦ (resp D<x•
◦ ) be the hollow dissection obtained by

contracting all diagonals of D◦ with both endpoints in [3◦, (x− 1)◦]◦ (resp. [(x+ 1)◦, 3◦]◦)
into a single vertex c1◦ (resp. c2◦). Let D>x•

• ∈ ACmax(D>x•
◦ ) (resp. D<x•

• ∈ ACmax(D<x•
◦ ))

be the dissection obtained by keeping only the diagonals of D• with both endpoints
in [x•, 2•]• (resp. [4•, x•]•). Since they have less diagonals than D◦, we can apply the
induction hypothesis to both dissections D>x•

◦ and D<x•
◦ in order to obtain two bi-

jections ΦD>x•◦ : ACmax(D>x•
◦ ) → SN (D>x•

◦ ) and ΦD<x•◦ : ACmax(D<x•
◦ ) → SN (D<x•

◦ ),
whose respective reverse functions we denote by ΨD>x•◦ : SN (D>x•

◦ ) → ACmax(D>x•
◦ )

and ΨD<x•◦ : SN (D<x•
◦ )→ ACmax(D<x•

◦ ). We then define

N1 := ΦD>x•◦ (D>x•
• ) and N2 := ΦD<x•◦ (D<x•

• ).

Observe that a cell of D◦ different from (1◦, 3◦, 5◦) either contains at least two verti-
ces in [3◦, (x − 1)◦]◦ and at most one in [(x + 1)◦, 3◦]◦ or conversely, as both diago-
nals (2•, x•) and (4•, x•) cross accordions of D◦. The cells of D◦ are thus naturally
partitioned and identified into the cells of D>x•

◦ and D<x•
◦ . Moreover a subaccordion

of D>x•
◦ (resp. D<x•

◦ ) naturally extends to a subaccordion of D◦ by replacing its diago-
nals (a1

◦, c
1
◦) (resp. (a2

◦, c
2
◦)) by the set of all diagonals of the accordion crossed by (2•, x•)

with a1
◦ (resp. a2

◦) as an endpoint. So serpents in D>x•
◦ (resp. D<x•

◦ ) are also naturally
identified to some serpents in D◦. It is moreover clear that compatible serpents in D>x•

◦
(resp. D<x•

◦ ) extend to compatible serpents in D◦, and that any serpent in D>x•
◦ extends

to a serpent in D◦ that is compatible with any serpent obtained by extending a serpent
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of D<x•
◦ . We therefore abuse notations and still denote by N1 t N2 the corresponding

serpent nests in D◦. We first settle two degenerate cases.

� If x• = (2n)•, then we define ΦD◦(D•) = N1 t N2.

� If x• = 6•, then we define ΦD◦(D•) = N1 t N2 t {S} where S is the serpent of D◦
whose single edge corresponds to (1◦, 5◦). It is clear that this serpent is compatible
with all those in N1 t N2 since it does not share any common edge with them.

We are left with the case where both solid diagonals (2•, x•) and (4•, x•) are internal.
Let Z◦ = {δ1

◦ , . . . δ
`
◦} denote the zigzag of the accordion crossed by (2•, x•), where the

diagonal (1◦, 5◦) is considered as a boundary edge (and therefore not in Z◦), and such
that δi◦ is incident to δi−1

◦ and δi+1
◦ for i ∈ [2, ` − 1]. As we already dealt with the cases

where x• ∈ {6•, (2n)•}, the zigzag Z◦ is not empty, and we can assume by symmetry
that 5◦ is an endpoint of δ1

◦. Let S be the serpent of D◦ with final edges (1◦, 5◦) and the
diagonal δimax

◦ , where imax is the maximal index in [`] such that S is compatible with all
serpents in N1 t N2. It is well-defined since

� all dual paths in D◦ with final edges (1◦, 5◦) and δi◦ (i ∈ [`]) are serpents of D◦, and

� the serpent with final edges (1◦, 5◦) and δ1
◦ is compatible with all serpents in

N1 t N2, by a quick case analysis.

We finally define
ΦD◦(D•) := N1 t N2 t {S}.

To show that ΦD◦ is a bijection, we define its reverse bijection ΨD◦ . For this, we
only need to show how to determine, given a serpent nest N of D◦, the distinguished
vertex x• of the maximal D◦-accordion dissection ΨD◦(N) that we want to define. This
vertex x• should be chosen such that the serpents in N then separate on each sides of
the diagonals (2•, x•) and (4•, x•), in order for us to conclude the proof using the reverse
bijections ΨD>x•◦ : SN (D>x•

◦ ) → ACmax(D>x•
◦ ) and ΨD<x•◦ : SN (D<x•

◦ ) → ACmax(D<x•
◦ ).

The way we determine the vertex x• is illustrated in Figure 8.9.
The two “degenerate” cases where N either contains no serpent containing (1◦, 5◦)

or the serpent whose unique edge is (1◦, 5◦) are easily settled, as we also dealt with
them separately when defining ΦD◦ . Suppose that N contains a serpent S with final
edges (1◦, 5◦) and a hollow diagonal δ◦. As (1◦, 5◦) is incident to a dual leaf, there is no
other serpent than S in N that contains it, since otherwise it would fulfill Condition 1
together with S. We now inductively define a sequence of hollow diagonals (γi◦)i≥1, such
that for i ≥ 1, the dual path from (1◦, 5◦) to γi◦ is a serpent, that we denote by Si. In
what follows, we denote by ui◦ the endpoint of γi◦ contained in another edge of Si.

� Let C1
◦ be the cell which is the endpoint (as dual node in D?

◦) of S (as dual path
in D?

◦) incident to δ◦. We let u1
◦ be the endpoint of δ◦ not contained in another edge

of S and γ1
◦ be the diagonal of C1

◦ incident to δ◦ at u1
◦. The edges of S1 are then the

edges of S together with γ1
◦ , so that γ1

◦ and u1
◦ satisfy the required property.

� For i > 1, we consider the cell Ci
◦ which is the endpoint (as dual node in D?

◦)
of Si−1 (as dual path in D?

◦) incident to γi−1
◦ . Let λi◦ be the other diagonal of Ci

◦
containing ui−1

◦ . The dual path with final edges (1◦, 5◦) and λi◦ is then a serpent,
that we denote by S+

i−1. We distinguish two cases.

(i) If S+
i−1 is compatible with all serpents of N r {S} not containing λi◦, then we

define γi◦ :=λi◦ and ui◦ :=ui−1
◦ .

(ii) If a serpent in N r {S} not containing λi◦ is incompatible with S+
i−1, then we

let γi◦ be the diagonal of Ci
◦ incident to γi−1

◦ different from λi◦, which fulfills the
required condition. Observe that in this case we necessarily have ui◦ 6= ui−1

◦ .
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Figure 8.9 – Illustration of the algorithm used to determine the image ΨD◦(N) of a
serpent nest N of a hollow dissection D◦ (top left). In the successive pictures, the
diagonals γi’s appear bold, the currently defined one being double bold. At the end of
the process, we are left with a vertex x• (18• here) which allows to suitably separate the
serpents of N at each sides of the diagonals (2•, 18•) and (4•, 18•) (bottom left).

Observe that any serpent Si (i ≥ 1) is compatible with all serpents of N r {S} not
containing λi◦. This is clear for serpents Si obtained from Case (i), and it follows from
straightforward case analyses for S1 and for serpents Si obtained from Case (ii). The
sequence (γi◦)i≥1 cannot be infinite for there are finitely many hollow diagonals in D◦.
It thus stops when the new diagonal γj◦ (for some j ≥ 1) that we want to define is
an external hollow diagonal ((x − 1)◦, (x + 1)◦) for some x• ∈ [2•, (2n)•]•. In fact it is
immediate that x• ∈ [8•, (2n − 2)•]•. Notice that the solid diagonal (2•, x•) crosses an
accordion whose diagonals are those of Sj−1 (with S0 = S by convention) together with
the external hollow diagonals (1◦, 3◦) and ((x−1)◦, (x+1)◦). Moreover the vertices of the
zigzag of (2•, x•) are some vertices of edges of the serpent S together with the vertices

in {ui◦ | i ≥ 0}, that we denote {ui1◦ , . . . , u
ip
◦ } without repetition. Observe finally that the

compatibility conditions on Sj imply that any serpent of N r {S} can be obtained by
extending either a serpent of D>x•

◦ or of D<x•
◦ to D◦. Therefore N r {S} splits into two

serpent nests N1 and N2 in the hollow dissections D>x•
◦ and D<x•

◦ obtained from x•. Let

ΨD◦(N) := ΨD>x•◦ (N1) tΨD<x•◦ (N2) t {(2•, x•), (4•, x•)}.

It remains to check that ΨD◦ ◦ ΦD◦ is the identity function on ACmax(D◦). It is clear,
from the definition in Cases (i) and (ii), that if ui◦ 6= ui−1

◦ for some 2 ≤ i ≤ j, then the
serpent Si−1 is incompatible with at least one serpent in N r {S}. Thus S is the only
serpent, among all serpents Si for i ∈ {0, i1, . . . , ip}, that is compatible with all serpents
in N r {S} and whose final edge different from (1◦, 5◦) belongs to the zigzag of (2•, x•)
(where (1◦, 5◦) is considered as a boundary edge). This concludes the proof since it
implies that the vertex x• given by Lemma 8.16 is the same for D• and ΨD◦◦ΦD◦(D•). �
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8.3.2 Twists and F -triangle

To prove our second enumerative result, we need a few more definitions. We call rotati-
ons (resp. mirror symmetries) the functions i 7→ α+ i (resp. i 7→ α− i), for some α ∈ 2N,
on both hollow and solid vertices of P. These functions extend to diagonals and sets
of diagonals. Rotations and mirror symmetries send hollow (resp. solid) dissections
to hollow (resp. solid) dissections and induce isomorphisms of accordion complexes.
Finally we will call minimal (resp. maximal) solid diagonals of AC(D◦) the diagonals
in D−• = {((i−1)•, (j−1)•) | (i◦, j◦) ∈ D◦} (resp. D+

• = {((i+1)•, (j+1)•) | (i◦, j◦) ∈ D◦}).
Rotations (resp. mirror symmetries) clearly send minimal solid diagonals to minimal
(resp. maximal) solid diagonals (see Figure 8.10 for mirror symmetries).

We now define the twist operation on dissections as follows. Let D◦ be any hollow
dissection and e◦ be a (internal or external) diagonal of D̄◦. Up to a canonical clockwise
rotation, we can assume that the endpoints of e◦ are 1◦ and j◦ ≥ 3◦. For any hollow
diagonal δ◦ = (k◦, `◦) (with 1◦ ≤ k◦ < `◦ ≤ (2n)◦) of D◦, we define

twe◦(δ◦) :=
{

((j − k + 1)◦, (j − `+ 1)◦) if `◦ ≤ j◦,
(k◦, `◦) otherwise.

The hollow dissection twe◦(D◦) := {twe◦(δ◦) | δ◦ ∈ D◦} is obtained by twisting D◦ along e◦.
Informally, it consists in "cutting D◦ along e◦, reflecting one of the two resulting parts,
and gluing it back to the preserved part along e◦" (see Figure 8.11 for an illustration).

Remark 8.17. Observe that there are two degenerate situations when twisting a dis-
section along a diagonal, namely when this diagonal is an external one.
� If e◦ = (1◦, 3◦), then twe◦(D◦) = D◦.
� If e◦ = (1◦, (2n − 1)◦), then twe◦(D◦) is the image of D◦ by the mirror symme-

try i 7→ −i (see Figure 8.10).

We are interested in the properties of AC(D◦) preserved by the twist operation. Ori-
ginally, F. Chapoton asked whether the two complexes AC(D◦) and AC(twe◦(D◦)) were
isomorphic. One can computationally check that the pair of reference hollow dissecti-
ons of Figure 8.11 is the minimal (in terms of the number of diagonals) counterexample
to such statement in full generality. F. Chapoton conjectures that it however holds,
provided that the dissection D◦ and the diagonal e◦ fulfill additional conditions [Cha16,
Conjecture 2.7]. We prove this conjecture in the following statement.
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Figure 8.10 – The isomorphism between the accordion complexes of a hollow dis-
section D◦ (left) and its image Φ(D◦) by the mirror symmetry Φ : i 7→ −i (right). This
isomorphism sends minimal D◦-accordion solid diagonals (bold in the left picture) to
maximal Φ(D◦)-accordion solid diagonals (bold in the right picture).
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D◦ twe◦(D◦)

e◦ e◦

Figure 8.11 – A pair of hollow dissections (D◦, twe◦(D◦)) related by a twist along the
diagonal e◦ = (1◦, 15◦). The left part is preserved while the right part is reflected. The
accordion complexes AC(D◦) and AC(twe◦(D◦)) are not isomorphic.

Proposition 8.18. Let D◦ be a hollow dissection and let e◦ be any (internal or external)
diagonal of D̄◦. Suppose that the dual tree of one of the two hollow dissections obtained
by cutting D◦ at e◦ is a path and that e◦ is contained in a cell that is an endpoint of this
path. Then the two accordion complexes AC(D◦) and AC(twe◦(D◦)) are isomorphic.

Proof. We already noticed that the complexes of two hollow dissections obtained from
each other by a mirror symmetry are isomorphic. This allows to choose "which side
of e◦ is twisted" in the proof. Let j◦ be a hollow vertex such that e◦ = (1◦, j◦) (up
to relabeling). As we saw, we only need to do the proof in the case where the dual
tree of the dissection D′◦ induced by D◦ on the hollow vertices 1◦, 3◦, . . . , j◦ is a path
and the hollow diagonals (1◦, 3◦) and (1◦, j◦) belong to a common cell of D′◦. We can
moreover assume that any cell of the dissection D′◦ is adjacent to its two neighbors
by incident edges, for otherwise the complex would decompose into a join of smaller
complexes and we could conclude by induction on the number of cells of D◦. Therefore
the internal diagonals of D′◦ form an accordion and Remark 8.4 allows us to assume
that D′◦ is in fact an accordion triangulation. In this situation one easily sees that the
two complexes AC(D◦) and AC(twe◦(D◦)) are equal. Indeed a solid diagonal δ• is a D◦
accordion if and only if it crosses an accordion of D◦ r D′◦, which moreover contains e◦
if δ• crosses e◦. This description concludes the proof as it is independent of the shape
of the dual path of D′◦. �

If the twist operation need not preserve accordion complexes, we wonder whether it
satisfies some weaker properties, as for instance preserving their f -vectors (the vectors
whose entries are the number of faces in each dimension). We define the following
refined statistic, introduced in [Cha16]. For a hollow dissection D◦ and to integers r
and d, let F dr (D◦) denote the number of D◦-accordion dissections with d diagonals,
among which exactly r belong to D−• . Observe that

∑
0≤r≤d F

d
r (D◦) is the d-th entry

of the f-vector of the accordion complex AC(D◦). Following F. Chapoton [Cha16], we
call F -triangle of D◦ the triangle of numbers (F dr (D◦))0≤r≤d.

The following statement is the generalization of Conjecture 2.6 in [Cha16].

Theorem 8.19. For any hollow dissection D◦ and any (internal or external) diagonal e◦
of D̄◦, the hollow dissections D◦ and twe◦(D◦) have the same F -triangle.

As F -triangles refine f-vectors, Theorem 8.19 directly implies the following result.
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Corollary 8.20. For any hollow dissection D◦ and any (internal or external) diagonal e◦
of D̄◦, the accordion complexes AC(D◦) and AC(twe◦(D◦)) have the same f -vector.

To prove Theorem 8.19 , we need some notations. For a subset S◦ ⊆ D◦, we denote
by S−• := {((i−1)•, (j−1)•) | (i◦, j◦) ∈ S◦} (resp. S+

• := {((i+1)•, (j+1)•) | (i◦, j◦) ∈ S◦}) the
corresponding subset in D−• (resp. D+

• ). We also denote by twe◦(S◦) := {twe◦(δ◦) | δ◦ ∈ S◦}
the set of diagonals (of twe◦(D◦)) obtained by twisting S◦ along e◦ and by twe◦(S•)−
(resp. twe◦(S•)+) the corresponding set in twe◦(D•)− (resp. twe◦(D•)+). We now fix an
integer d ≥ 0 and define, for any D◦-accordion dissection S•, the quantity

FS•(D◦) := # (D◦-accordion dissections D• such that |D•| = d and S• ⊆ D•) .

The proof of Theorem 8.19 relies on the following intermediary statement.

Lemma 8.21. Let D◦ be any hollow dissection and e◦ be any (internal or external) dia-
gonal of D̄◦. For any subset S◦ of (internal) diagonals of D◦, there holds

FS−•
(D◦) = Ftwe◦ (S•)+(twe◦(D◦)).

We show Lemma 8.21 bijectively. If e◦ = (1◦, (2n− 1)◦), then the twist along e◦ is the
mirror symmetry Φ : i 7→ −i and the result is a given by the basic properties of mirror
symmetries (see Figure 8.10 again). Before giving the actual proof of Lemma 8.21,
we informally describe the bijection that we use in the other “degenerate” case, where
the twist induces the identity on D◦. This shall prepare the reader’s intuition as the
bijection that we define in the generic case “interpolates” between the “degenerate” ones.

Suppose that e◦ = (1◦, 3◦), so that twe◦(D◦) = D◦, and let D• be a D◦-accordion dis-
section with d diagonals containing a set S−• , for a certain S◦ ⊆ D◦. We associate to D•
the D◦-accordion dissection Ψ(D•) defined as follows. Consider separately the dissecti-
ons induced by D• in all cells of the solid dissection S̄−• . Let C• be one of these cells.
We denote by (i1•, j1

•), . . . , (ir•, jr•) the boundary diagonals of C• that are in S−• . Let φC•
be the function on the vertices of C• sending a solid vertex v• to itself if it does not
belong to {j1

• , . . . , j
r
•} and to the solid vertex (i` + 2)• if v• = j`•. Then Ψ(D•) contains

all solid diagonals (φC•(i•), φC•(j•)), for all solid diagonals (i•, j•) of D• contained in
any cell C• of the dissection S̄−• , together with S+

• . More visually, the dissection Ψ(D•)
is obtained by letting simultaneously, at the neighborhood of each diagonal δ−• in S−• ,
each "semi-diagonal" of D• in a cell bounded by δ−• and which crosses δ+

• "slide along
the corresponding reference hollow diagonal δ◦ and attach itself, at the opposite ex-
tremity of δ◦, on the corresponding endpoint of δ+

• " (Figure 8.12 illustrates this local
transformation). The function Ψ is then a bijection between the D◦-accordion dissecti-
ons with d diagonals containing S−• and the D◦-accordion dissections with d diagonals
containing S+

• (see Figure 8.13 for an illustration).
The proof of Lemma 8.21 essentially consists in two steps:

� apply the “degenerate” bijections respectively to the twisted and the nontwisted
parts of D◦, forgetting the potential diagonals of D•rS−• that cross e◦ between two
diagonals of S−• also crossing e◦, and

� insert the forgotten diagonals of D•rS−• after the first operation in the natural way
“preserving the shape of the union of subaccordions initially formed by them”.

The reason why our first step is well-defined is that the “degenerate” operations on
the twisted and nontwisted parts agree on the “common frontier” of these parts. For
the second step, observe that the two “degenerate” operations both work pointwise in
each cell, and that all initially forgotten diagonals lie in a common cell of the dissection
formed by the remaining ones. Therefore the vertices on which we reproduce the men-
tioned “union of subaccordions” are naturally identified with some endpoints of the
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Figure 8.12 – The local transformation on "semi-diagonals" to show Lemma 8.21
when e◦ = (1◦, 3◦). Both pictures illustrate the neighborhood of a diagonal (u◦, v◦) in
a hollow dissection D◦ with a distinguished subset of diagonals S◦ containing (u◦, v◦),
and potentially other diagonals incident to u◦ or v◦. The diagonals of S◦ that appear in
the neighborhood of (u◦, v◦) are bold red. In the left picture, we represent the diagonals
of a D◦-accordion dissection D• containing S−• , with the diagonals of S−• bold blue. In
the right picture, we represent the diagonals of the dissection Ψ(D•), where Ψ is defined
with respect to S◦. The diagonals of Ψ(D•) ∩ S+

• are bold blue. In both pictures, the
sets Ti

• (i ∈ [6]) are disjoint and contain the other endpoints of the nonbold solid dia-
gonals that appear. The transformation Ψ lets the diagonals with endpoints in T1

• t T4
•

disappear of the neighborhood of (u◦, v◦). Those with endpoints in T5
• tT6

• appear from
the same transformation applied at the neighborhood of other diagonals in S◦.
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{(14•,28•), (24•,28•)}⊆D• {(2•,16•), (2•,26•)}⊆ Ψ(D•)
Figure 8.13 – A hollow dissection D◦, with a distinguished set S◦ = {(1◦, 15◦), (1◦, 25◦)}
of (bold) diagonals. The bijection Ψ defined with respect to S◦ sends the D◦-
accordion dissection D• with 5 diagonals and containing S−• = {(14•, 28•), (24•, 28•)}
(left) to the D◦-accordion dissection Ψ(D•) with 5 diagonals and containing S+

• =
{(2•, 16•), (2•, 26•)} (right). Notice that D• also contains the diagonal (14•, 22•) which is
in D−• , but that Ψ(D•) does not contain (16•, 24•). Conversely observe that Ψ(D•) con-
tains the diagonal (12•, 16•) which is in D+

• while D• does not contain the corresponding
diagonal (10•, 14•) of D−• . This is because Ψ is specifically defined with respect to the
set S◦.
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{(8•,28•), (24•,28•), (14•,22•)}⊆D• {(2•,26•), (8•,16•), (16•,24•)} ⊆ ΨΓ◦(D•)
Figure 8.14 – A hollow dissection D◦ containing the diagonal e◦ = (1◦, 15◦) and the dis-
tinguished (bold) subset S◦={(1◦, 9◦), (1◦, 25◦), (15◦, 23◦)}, together with a D◦-accordion
dissections D• containing the (bold) set S−• ={(8•, 28•), (24•, 28•), (14•, 22•)} (left); and
the hollow dissection twe◦(D◦) together with the twe◦(D◦)-accordion dissection ΨΓ◦(D•)
defined in the proof of Lemma 8.21 (right). The solid dissection ΨΓ◦(D•) has 7 = |D•|
diagonals and contains the (bold) set twe◦(S•)+ ={(2•, 26•), (8•, 16•), (16•, 24•)}.

initially forgotten diagonals. Our bijection is self-reverse, up to conjugation with a mir-
ror symmetry. This can be checked on Figure 8.14, which illustrates this bijection in
the generic case where the twist is done along an internal diagonal of D◦.

For the proof of Lemma 8.21, we recall that two diagonals cross if and only if they
satisfy a (purely combinatorial) condition on the cyclic ordering of their vertices. All
case analyses omitted in the proof rely on this description.

Proof of Lemma 8.21. Let j◦ be the hollow vertex such that e◦ = (1◦, j◦) and S◦ ⊆ D◦ be
a subset of hollow diagonals of D◦. We denote by Γ◦ the triple (D◦, e◦, S◦) and define a
bijection ΨΓ◦ between the D◦-accordion dissections with d diagonals containing S−• and
the twe◦(D◦)-accordion dissections with d diagonals containing twe◦(S•)+ as follows.

Let D• be a D◦-accordion dissection with d diagonals containing S−• . Let x• (resp. y•)
be the greatest vertex in [2•, (j − 1)•]• (resp. in [(j + 1)•, (2n)•]•) such that (x•, (2n)•) ∈
S−• ∪ {(2•, (2n)•)} (resp. ((j − 1)•, y•) ∈ S−• ∪ {((j − 1)•, (j + 1)•)}). We then define

Drev
• :=

(
D• r S−•

)⋂ (
[2•, (j − 1)•]2•

⋃
[2•, x•]• × {(2n)•}

)
,

Did
• :=

(
D• r S−•

)⋂ (
[(j + 1)•, (2n)•]2•

⋃
{(j − 1)•} × [(j + 1)•, y•]•

)
, and

Dcr
• := D• r

(
S−• ∪Drev

• ∪Did
•

)
so that D• = S−• t Drev

• t Did
• t Dcr

• . We define ΨΓ◦ separately on each of these sets of
diagonals, starting with

ΨΓ◦(S−• ) := twe◦(S•)+ and ΨΓ◦(Drev
• ) := {((j−`+1)•, (j−k+1)•) | (k•, `•) ∈ Drev

• }.

Let now
Lid

Γ◦(D•) := {[k1
•, {`1,1• , . . . , `1,i1• }], . . . , [kr•, {`r,1• , . . . , `r,ir• }]} (8.1)
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and
Rid

Γ◦(D•) := {[q1
•, {p1,1

• , . . . , p1,j1
• }], . . . , [qs•, {p1,1

• , . . . , p1,js
• }]} (8.2)

be the two lexicographic descriptions of the diagonals of S−• ∩ [(j − 1)•, (2n)•]2• by their
smallest and greatest endpoints respectively. Namely we require

� that kt• < `t,i• for t ∈ [r] and i ∈ [it],

� that `t,α• < `t,β• for t ∈ [r] and 1 ≤ α < β ≤ it,

� that pt,j• < qt• for t ∈ [s] and j ∈ [jt],

� that pt,α• < pt,β• for t ∈ [s] and 1 ≤ α < β ≤ jt and

� that S−• ∩ [(j − 1)•, (2n)•]2• = {(kt•, `
t,i
• ) | t ∈ [r], i ∈ [it]} = {(pt,j• , qt•) | t ∈ [s], j ∈ [jt]}.

For a diagonal (a•, b•) (with a• < b•) in Did
• , let ϕid(a•, b•) := (φ0,id(a•), φ1,id(b•)) where

φ0,id(a•) :=


(pt,1 + 2)• if a• = qt• and qt• /∈ {kα• |α ∈ [r]},
(pt,1 + 2)• if a• = qt• = kα• and `α,iα• < b•,

(`t,i + 2)• if a• = kt• and `t,i−1
• < b• < `t,i• (with the convention `t,0• = kt•),

a• otherwise

and

φ1,id(b•) :=
{

(pt,i + 2)• if b• = qt• and pt,i−1
• < a• < pt,i• (with the convention pt,0• = 2•),

b• otherwise.

A case analysis shows that the pairs (φ0,id(a•), φ1,id(b•)) for (a•, b•) ∈ Did
• are distinct

noncrossing internal solid diagonals with endpoints in {2•} ∪ [(j + 1)•, (2n)•]•. We let

ΨΓ◦(Did
• ) := {ϕid(a•, b•) | (a•, b•) ∈ Did

• }.

Finally let x• = u0
• < · · · < uλ+1

• = (j − 1)• and y• = vη+1
• < · · · < v0

• = (2n)• be the
vertices such that {ui• | i ∈ [λ]} ∪ {vi• | i ∈ [η]} are the endpoints of diagonals in Dcr

• . The
dissection Dcr

• is characterized by these endpoints together with the numbers cα and dβ

of its diagonals respectively incident to uα• and vβ• for all α ∈ [0, λ+ 1] and β ∈ [0, η + 1].
For i ∈ [0, η + 1] let

φcr(vi•) :=
{

(pt,1 + 2)• if vi• = qt•,
vi• otherwise.

Then we define ΨΓ(Dcr
• ) to be the dissection containing cα diagonals incident to (j+ 1−

uλ+1−α)• and dβ diagonals incident to φcr(vβ• ) for all α ∈ [0, λ+ 1] and β ∈ [0, η + 1].
We finally set

ΨΓ◦(D•) := ΨΓ◦(S−• ) ∪ΨΓ◦(Drev
• ) ∪ΨΓ◦(Did

• ) ∪ΨΓ◦(Dcr
• ).

Observe that the way we defined ΨΓ◦(D•) induces a natural function from the diago-
nals of D• onto those of ΨΓ◦(D•). A case analysis shows that the four sets that we use
to define ΨΓ◦(D•) are disjoint dissections, and that diagonals between two of them also
do not cross, so that ΨΓ◦(D•) is a dissection. Moreover the function from the diagonals
of D• onto those of ΨΓ◦(D•) is clearly into on each of these four sets, so that ΨΓ◦(D•)
has d diagonals and contains twe◦(S•)+. Therefore, we only need to show that any dia-
gonal of ΨΓ◦(D•) is a twe◦(D•)-accordion to conclude that ΨΓ◦ is well-defined. It is trivial
for ΨΓ◦(S−• ) and easily settled for diagonals in ΨΓ◦(Drev

• ) and ΨΓ◦(Did
• ), by two straight-

forward case analyses. Observe finally that the diagonals of ΨΓ◦(Dcr
• ) cross accordions
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obtained by gluing together (along their common diagonal e◦) “halves” of accordions,
that are obtained by applying either a mirror symmetry or an operation similar to this
applied to Did

• to the diagonals of Dcr
• .

Let Φ : i 7→ j + 1 − i. We define the triple Γ̄◦ := (Φ(twe◦(D◦)), e◦,Φ(twe◦(S◦))) and
claim that Φ◦ΨΓ̄◦ ◦Φ is the reverse function Ψ−1

Γ◦ . This can be shown separately by case
analyses on each set Drev

• ,Did
• and Dcr

• , remarking that Φ(ΨΓ◦(Drev
• )) = Φ(ΨΓ◦(D•))rev,

that Φ(ΨΓ◦(Did
• )) = Φ(ΨΓ◦(D•))id and that Φ(ΨΓ◦(Dcr

• )) = Φ(ΨΓ◦(D•))cr. The claim is
clear for Drev

• and Dcr
• , and the argument for the set Did

• is based on the observation that
the sets defined in Equations (8.1) and (8.2) in this case are respectively given by

Lid
Γ̄◦(Φ(ΨΓ◦(D•))) = ρ ◦ Φ(Rid

Γ̄◦(D•)) and Rid
Γ̄◦(Φ(ΨΓ◦(D•))) = ρ ◦ Φ(Lid

Γ̄◦(D•))

where ρ denotes the rotation i 7→ i− 2. �

Theorem 8.19 follows from Lemma 8.21 and inclusion-exclusion principle. For a
hollow dissection D◦ and a set S−• of minimal D◦-accordion diagonals, we define

F
=

S−•
(D◦) := #

(
D◦-accordion dissections D• such that |D•| = d and D• ∩D−• = S−•

)
.

Proof of Theorem 8.19. For S◦ ⊆ D◦, we can apply Lemma 8.21 to the diagonal (1◦, 3◦)
of any hollow dissection D◦. We obtain by Remark 8.17 that

FS−•
(D◦) = FS+

•
(D◦).

As twisting along a diagonal is self-reverse, applying Lemma 8.21 to twe◦(D◦) thus yields

FS+
•

(D◦) = Ftwe◦ (S•)−(twe◦(D◦)),

so that
FS−•

(D◦) = Ftwe◦ (S•)−(twe◦(D◦)). (8.3)

Now by inclusion-exclusion principle, we have that

F
=

S−•
(D◦) =

∑
S◦ ⊆ S′◦ ⊆ D◦
|S′◦ r S◦| = k

(−1)k FS′−•
(D◦).

Applying this equation also to twe◦(D◦), we obtain by Equation (8.3) that

F
=

S−•
(D◦) = F

=
twe◦ (S•)−(twe◦(D◦)). (8.4)

Notice then that for any integer r, we have

F dr (D◦) =
∑

S◦ ⊆ D◦
|S◦| = r

F
=

S−•
(D◦) and F dr (twe◦(D◦)) =

∑
S◦ ⊆ D◦
|S◦| = r

F
=

twe◦ (S•)−(D◦).

By Equation (8.4), this finally implies that

F dr (D◦) = F dr (twe◦(D◦)). �
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8.4 Connections with subword complexes

As mentioned in Chapter 7, our original motivation for looking at accordion complexes is
a question of F. Chapoton, who asked whether Stokes complexes (accordion complexes
of reference quadrangulations) were subword complexes. It first seemed to be the case
for an important subfamily, but it appears now quite clearly that the intersection is not
as big as we initially expected. We would now be interested in a simple characterization
of this intersection. We conclude this chapter with a few connections.

We originally expected accordion complexes of quadrangulations without interior
quadrangle to be root-independent subword complexes (see Section 7.4). It is the case
in small dimensions. On the other hand one can computationally check that the ac-
cordion complex of the unique quadrangulation Qint of an 12-gon with an interior qua-
drangle is not a subword complex, so that neither is any quadrangulation with an
interior quadrangle. Indeed the accordion complex AC(Qint) is the join of a face in
any accordion complex AC(Q) of such a quadrangulation Q, while root-independent
subword complexes are closed by joins. Our first experiments thus initially indicated
a new combinatorial representation for a subfamily of flag subword complexes. Anot-
her relevant support for this idea was the fact that the only class of quadrangulations
not encoding subword complexes would in addition have been the only one for which
the d-vector construction of Section 9.3 does not work. However we have now strong
evidences that the accordion complex of the quadrangulation of Figure 8.15 is not iso-
morphic to any subword complex, for the following reasons.

As explained in Chapter 10, there are natural operations on words whose effects
induced on the corresponding subword complexes are stellar subdivisions and reverse
stellar subdivisions of edges (see Theorem 10.9 due to M. Gorsky [Gor14]). So it is
tempting to look for analogous operations on dissections that induce analogous effects
on the corresponding accordion complexes. We expect the two operations on quadran-
gulations informally illustrated in Figure 8.16 to be the only ones with this property.
Observe that none of them can be applied to the quadrangulation of Figure 8.15.

Conjecture 8.22. If a quadrangulation Q◦ is obtained from another one Q, whose dual
tree is a path, by a sequence of successive operations described in Figure 8.16, then the
accordion complex AC(Q◦) is isomorphic to a root-independent subword complex.

In view of Theorem 9.33, a proof of Conjecture 8.22 would provide us with new seri-
ous insights towards a d-vector construction for root-independent subword complexes.

1◦ 2•
3◦

4•

5◦

6•

7◦

8•

9◦

10•

11◦

12•

13◦

14•
15◦

16•17◦18•
19◦

20•

21◦

22•

23◦

24•

25◦

26•

27◦

28•

29◦

31◦
30•

32•

Figure 8.15 – A quadrangulation Q◦ without interior quadrangle for which we conjecture
that AC(Q◦) is not isomorphic to a flag subword complex.
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D◦

D◦

D′◦

D′◦

D1
◦

D2
◦

D3
◦

D1
◦

D2
◦

D3
◦

D1
◦

D2
◦

D3
◦

D1
◦

D2
◦ D3

◦

δ1
•

δ2
•

δ1
•

δ2
•

δ1
•

δ2
•

δ?•

δ1
•

δ2
•

δ?•

Figure 8.16 – Two operations on hollow quadrangulations inducing stellar subdivisions
on the corresponding accordion complexes. For both operations the complex AC(D′◦) is
isomorphic to the stellar subdivision of the edge {δ1

• , δ
2
•} in AC(D◦), where the introdu-

ced subdivision vertex is identified to the diagonal δ?•.





9
Geometric realizations of

accordion complexes

9.1 Introduction

9.1.1 Motivations

In this chapter, we settle the geometric challenge of F. Chapoton on accordion complexes
studied in Chapter 8, namely we provide polytopal and fan realizations for them. The
original reasons that lead us to look at these complexes are discussed in Sections 7.1
and the interest that they have by themselves is given in Section 8.1.1. We present three
methods to realize accordion complexes, based on constructions of the associahedron.

Our first construction generalizes the g-vector fan. It belongs to a series of con-
structions of associahedra initiated by S. Shnider and S. Sternberg [SS93], popularised
by J.-L. Loday [Lod04], and developed by C. Hohlweg, C. Lange and H. Thomas [HL07,
HLT11] using works of N. Reading and D. Speyer [Rea06, Rea07, RS09]. It was revisi-
ted by S. Stella [Ste13] and by V. Pilaud, F. Santos, and C. Stump [PS12, PS15a]. It
was extended by C. Hohlweg, V. Pilaud, and S. Stella [HPS16] to construct an associ-
ahedron parametrized by any initial triangulation. We extend to accordion complexes
the g-vectors and c-vectors, defined in the context of cluster algebras by S. Fomin and
A. Zelevinski [FZ07], and show that the g-vectors with respect to a dissection D◦ sup-
port a complete simplicial fan realizing the accordion complex AC(D◦). It is the normal
fan of a polytope obtained by deleting facets of the Minkowski sum of all c-vectors.

Our second method generalizes the d-vector fan. For any dissection D◦, we associate
to each diagonal a d-vector which records the crossings of this diagonal with those
of D−• . The d-vectors then support a complete simplicial fan realizing AC(D◦) if and
only if D◦ contains no even interior cell. The polytopality of the resulting fan is known
for initial triangulations [CSZ15], but remains open in general.

Finally, our third method is based on projections of associahedra. Namely, for any
dissection D◦ and triangulation T◦ such that D◦ ⊆ T◦, the accordion complex AC(D◦)
is a subcomplex of the simplicial associahedron AC(T◦) and the g-vector fan reali-
zing AC(D◦) can be obtained as a section of the classical g-vector fan of T◦ by a coordi-
nate subspace. Therefore, the accordion complex AC(D◦) is realized by a projection of
an associahedron realized in [HPS16]. This leads to more concise proofs of combinato-
rial properties of accordion complexes, and to natural conjectures on cluster algebras,
subcomplexes of cluster complexes, and sections of the g-vector fan.

157
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9.1.2 Overview

The chapter is organized as follows. Section 9.2 is devoted to the generalization of the
g-vector fan and the associahedra of [HL07, HPS16]. Section 9.3 discusses the gene-
ralization of the construction of the d-vector fan and associahedra of [FZ03a, CSZ15].
Finally, Section 9.4 shows that the accordion complex is realized by a projection of a
well-chosen associahedron and presents related conjectures on cluster algebras.

9.2 The g-vector fan

In this Section, we construct accordiohedra using g- and c-vectors. Our construction
is in the same spirit as the Cambrian fans of N. Reading and D. Speyer [Rea06, Rea07,
RS09] and their polytopal realizations by C. Hohlweg, C. Lange and H. Thomas [HL07,
HLT11], recently extended in [HPS16] to any initial triangulation, acyclic or not. A
different approach to the g-vector fan together with an alternative polytopal realization
will be presented in Section 9.4.

9.2.1 g- and c-vectors

Consider a hollow dissection D◦ and a solid dissection D• that are maximal accordion
dissection of each other (see Proposition 8.14), and let δ◦ ∈ D◦ and δ• ∈ D•. When δ◦
crosses δ•, we let µ◦ and ν◦ be the other diagonals of D̄◦ crossed by δ• in the two cells
of D◦ containing δ◦. We say that δ• slaloms on δ◦ if µ◦δ◦ν◦ forms a path, and we de-
fine ε◦

(
δ◦ ∈ D◦ | δ•

)
to be 1, −1, or 0 depending on whether µ◦δ◦ν◦ forms a Z, a Z, or

a VI . Similarly we let µ• and ν• be the other diagonals of D̄• crossed by δ◦ in the two
cells of D• containing δ•, we say that δ◦ slaloms on δ• if µ•δ•ν• forms a path, and we
define ε•

(
δ◦ | δ• ∈ D•

)
to be 1, −1, or 0 depending on whether µ•δ•ν• forms a Z, a Z, or

a VI . Note that the sign convention for ε◦
(
δ◦ ∈ D◦ | δ•

)
and ε•

(
δ◦ | δ• ∈ D•

)
is opposite:

the reciprocity already observed in Proposition 8.14 naturally reverses the orientation.
More informally, we exchange the role of hollow and solid dissections by looking at the
picture from the opposite side of the blackboard, which of course reverses the orienta-
tion. Finally, if δ◦ and δ• do not cross, then we let ε◦

(
δ◦ ∈ D◦ | δ•

)
= ε•

(
δ◦ | δ• ∈ D•

)
= 0.

Let (eδ◦)δ◦∈D◦ denote the canonical basis of RD◦ . As in [HPS16], we define the following
vectors:

(i) the g-vector of δ• with respect to D◦ is g
(
D◦ | δ•

)
:=
∑
δ◦∈D◦ ε◦

(
δ◦ ∈ D◦ | δ•

)
eδ◦ . We

also define g
(
D◦ |D•

)
:=
{
g
(
D◦ | δ•

)
| δ• ∈ D•

}
.

(ii) the c-vector of δ• ∈ D• with respect to D◦ is c
(
D◦ | δ• ∈ D•

)
:=
∑
δ◦∈D◦ ε•

(
δ◦ | δ• ∈ D•

)
eδ◦ .

We denote by c
(
D◦ |D•

)
:=
{
c
(
D◦ | δ• ∈ D•

)
| δ• ∈ D•

}
the set of c-vectors of the di-

agonals of D• and by C(D◦) :=
⋃

D• c
(
D◦ |D•

)
the set of all c-vectors with respect

to D◦.

Example 9.1. Consider the hollow dissection Dex
◦ = {(3◦, 7◦), (3◦, 13◦), (9◦, 13◦)} and

the rightmost solid dissection Dex
• = {(2•, 6•), (2•, 10•), (10•, 14•)} of Figure 8.2. Then

we have for example

� ε◦
(
(3◦, 13◦) ∈ Dex

◦ | (2•, 10•)
)

= 1 since the path 1◦ − 3◦ − 13◦ − 9◦ forms a Z,

� ε◦
(
(9◦, 13◦) ∈ Dex

◦ | (2•, 10•)
)

= −1 since the path 3◦−13◦−9◦−11◦ forms a Z, and

� ε◦
(
(3◦, 13◦) ∈ Dex

◦ | (2•, 6•)
)

= 0 since 3◦ connects 1◦, 13◦, 7◦ as a VI .
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Moreover, we have

g
(
Dex
◦ | (2•, 6•)

)
= e(3◦,7◦), c

(
Dex
◦ | (2•, 6•) ∈ Dex

•
)

= e(3◦,7◦),
g
(
Dex
◦ | (2•, 10•)

)
= e(3◦,13◦) − e(9◦,13◦), c

(
Dex
◦ | (2•, 10•) ∈ Dex

•
)

= e(3◦,13◦),
g
(
Dex
◦ | (10•, 14•)

)
= −e(9◦,13◦), c

(
Dex
◦ | (10•, 14•) ∈ Dex

•
)

= −e(3◦,13◦) − e(9◦,13◦).

Example 9.2. For any hollow diagonal (i◦, j◦) ∈ D◦, we have

g
(
D◦ | ((i− 1)•, (j − 1)•)

)
= −e(i◦,j◦), c

(
D◦ | ((i− 1)•, (j − 1)•) ∈ D−•

)
= −e(i◦,j◦),

g
(
D◦ | ((i+ 1)•, (j + 1)•)

)
= e(i◦,j◦), c

(
D◦ | ((i+ 1)•, (j + 1)•) ∈ D+

•
)

= e(i◦,j◦).

Remark 9.3. For a hollow triangulation T◦, our definitions of g- and c-vectors coincide
with the shear coordinates of S. Fomin and D. Thurston [FT12] (defined in the much
more general context of triangulations and laminations on marked surfaces).

Remark 9.4. Consider the quiver Q(D◦) of the reference dissection D◦, with one node
on each internal diagonal of D◦ and one arrow between two diagonals counterclockwise
consecutive around a cell of D◦. Let W(D◦) be the reflection group with Dynkin dia-
gram Q(D◦). Then all g-vectors of the D◦-accordion diagonals are weights of W(D◦) and
all c-vectors of C(D◦) are roots of W(D◦).

Remark 9.5. Informally, the g- and c-vectors can be interpreted as follows:

(i) The g-vector g(D◦ | δ•) has coordinate 1 and −1 alternating along the zigzag of the
accordion crossed by δ• in D◦, and coordinate 0 on all other diagonals of D◦.

(ii) The c-vector c(D◦ | δ• ∈ D•) is, up to a sign, the characteristic vector of the di-
agonals of the subaccordion of D◦ crossed by both µ• and ν• of Lemma 8.9 (see
Figure 8.4). Thus, any c-vector is either positive (only nonnegative coordinates) or
negative (only nonpositive coordinates).

In fact, the g-vectors are clearly in bijection with the accordions and with the zig-
zags in D◦. In contrast, many δ• ∈ D• produce the same c-vector c(D◦ | δ• ∈ D•). For
example, if two dissections D•,D′• contain δ• and have the same cells incident to δ•,
then c(D◦ | δ• ∈ D•) = c(D◦ | δ• ∈ D′•). The set of c-vectors C(D◦) without repetitions
can be understood as follows.

Lemma 9.6. There are bijections between:

� the negative (resp. positive) c-vectors of C(D◦),

� the subaccordions of D◦,

� the D◦-accordion diagonals not in D−• := {((i− 1)•, (j − 1)•) | (i◦, j◦) ∈ D◦} (resp. not
in D+

• := {((i+ 1)•, (j + 1)•) | (i◦, j◦) ∈ D◦}).

Proof. By Remark 9.5 (ii), the support of any c-vector is a subaccordion of D◦. Recipro-
cally, let A◦ be a subaccordion of D◦, let C◦ and C′◦ denote the two cells of D◦ contai-
ning exactly one diagonal of A◦, and let p◦, q◦, r◦, s◦ (resp. p′◦, q

′
◦, r
′
◦, s
′
◦) denote the four

consecutive vertices in clockwise order around C◦ (resp. around C′◦) such that (q◦, r◦)
(resp. (q′◦, r′◦)) is the diagonal of A◦ in C◦ (resp. in C′◦). Let δ• := ((s − 1)•, (s′ − 1)•),
µ• := ((p+ 1)•, (s′ − 1)•) and ν• := ((p′ + 1)•, (s − 1)•) and consider any D◦-accordion
dissection D• containing {µ•, δ•, ν•}. Then A◦ is precisely the support of the negative
c-vector c(D◦ | δ• ∈ D•). Finally, we have associated to the subaccordion A◦ of D◦ a
D◦-diagonal δ• = ((s− 1)•, (s′ − 1)•) which cannot be in D−• as otherwise (s◦, s′◦) would
cross (q◦, r◦). Reciprocally, A◦ is precisely the set of diagonals of D◦ crossed by δ• and
not incident to s◦ or s′◦. �
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The g-vectors and c-vectors are connected in the following two statements, inspired
and motivated by a classical analogy in cluster algebra theory.

Proposition 9.7. For any maximal D◦-accordion dissection D•, the set of g-vectors g(D◦ |D•)
and the set of c-vectors c(D◦ |D•) form dual bases.

Proof. For solid diagonals γ•, δ• of D•, we compute 〈g(D◦ | γ•)|c(D◦ | δ• ∈ D•)〉. By Re-
mark 9.5 (i), the g-vector g(D◦ | γ•) has coordinate ±1 alternating along the zigzag Z◦ of
the accordion crossed by γ• in D◦, and coordinate 0 on all other diagonals of D◦. More-
over, by Remark 9.5 (ii), the c-vector c(D◦ | δ• ∈ D•) has coordinate ±1 on the diagonals
of D◦ which slalom on δ• in D•, and coordinate 0 on all other diagonals of D◦. We thus
need to understand how the diagonals of Z◦ slalom on δ• in D•. Observe that there is
an even (resp. odd) number of hollow diagonals of Z◦ that slalom on δ• when δ• 6= γ•
(resp. when δ• = γ•). Moreover, since they are noncrossing, all hollow diagonals of Z◦
slaloming on δ• do it the same way (either all as a Zor all as a Z). Finally, when γ• = δ•,
consider the first hollow diagonal δ◦ of the zigzag Z◦ which slaloms on δ•. Then δ◦
slaloms on δ• in the opposite way as δ• slaloms on δ◦. This shows that

〈g
(
D◦ | γ•

)
|c
(
D◦ | δ• ∈ D•

)
〉 =

∑
δ◦∈D◦

ε◦
(
δ◦ ∈ D◦ | γ•

)
· ε•
(
δ◦ | δ• ∈ D•

)
= 11γ=δ,

since we sum an even number of alternating ±1 when γ• 6= δ•, and an odd number of
alternating ±1 starting by a 1 when γ• 6= δ•. In other words, g(D◦ |D•) and c(D◦ |D•)
form dual bases. �

Proposition 9.8. Let D◦ be a hollow dissection and D• be a solid dissection such that D◦
and D• are maximal accordion dissection of each other (see Proposition 8.14). Then

g
(
D◦ |D•

)
= −c

(
D• |D◦

)t
and c

(
D◦ |D•

)
= −g

(
D• |D◦

)t
,

where we consider the sets of g-vectors g(D◦ |D•) and c-vectors c(D◦ |D•) as matrices
in RD◦×D• , and M t denotes the transpose of a matrix M .

Proof. We immediately derive from the definitions that for any δ◦ ∈ D◦ and δ• ∈ D•,

g
(
D◦ |D•

)
(δ◦,δ•) = ε◦

(
δ◦ ∈ D◦ | δ•

)
= −ε•

(
δ• | δ◦ ∈ D◦

)
= −c

(
D• |D◦

)
(δ•,δ◦),

which shows g(D◦ |D•) = −c(D• |D◦)t. The other equality follows by exchanging D◦ and D•.
�

Corollary 9.9. For any maximal D◦-accordion dissection D•, we have the following sign
coherence:

(i) for any δ• ∈ D•, all coordinates of the c-vector c(D◦ | δ• ∈ D•) have the same sign,

(ii) for any δ◦ ∈ D◦, the δ◦-coordinate of all g-vectors g(D◦ | δ•) for δ• ∈ D• have the same sign.

Proof. Point (i) is Remark 9.5 (ii), and Point (ii) follows by Proposition 9.8. �

9.2.2 c-vector fan and D◦-zonotope

Call c-vector fan of D◦ the complete polyhedral fan Fc(D◦) defined by the arrangement
of the linear hyperplanes orthogonal to the c-vectors of C(D◦). Be careful: contrarily to
the g- and d-vector fans defined later, the c-vectors are not the rays of Fc(D◦) but the
normal vectors of the hyperplanes supporting the facets of Fc(D◦).
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We call D◦-zonotope the Minkowski sum Zono(D◦) of all c-vectors:

Zono(D◦) :=
∑

c∈C(D◦)
c.

The normal fan of the D◦-zonotope Zono(D◦) is the c-vector fan Fc(D◦). Note that the
c-vector fan is not always simplicial, and thus the D◦-zonotope Zono(D◦) is not always
simple. See Figure 9.2.

Example 9.10. Consider an accordion dissection A◦ = {δ1
◦ , . . . , δ

|A◦|
◦ }, with diagonals

labeled such that δk◦ and δk+1
◦ belong to the same cell of A◦ for all k. Identifying eδk◦ to

the simple root fk − fk+1 of type A|A◦|, the c-vectors of C(A◦) are all roots ±(fi − fj) =
±
∑
i≤k≤j eδk◦ of type type A|A◦|. Therefore, the c-vector fan is the type An Coxeter fan

and the A◦-zonotope is the permutahedron Perm(|A◦|) := conv
{∑

i∈[|A◦|+1] σ(i) fi
∣∣∣ σ ∈ S|A◦|+1

}
.

The vertices of Zono(D◦) correspond to separable subsets of C(D◦). Although we
could work out all facets of Zono(D◦), we will only need the following inequalities.

Proposition 9.11. For any D◦-accordion diagonal γ•, the D◦-zonotope Zono(D◦) has a
facet defined by the inequality

〈g
(
D◦ | γ•

)
|x〉 ≤ ω

(
D◦ | γ•

)
,

where ω(D◦ | γ•) is the D◦-height of γ•, i.e. the number of D◦-accordion diagonals that
cross γ•.

Proof. Let ω(D◦ | γ•) denote the maximum of 〈g(D◦ | γ•)|x〉 over Zono(D◦). As Zono(D◦)
is the Minkowski sum of all c-vectors, we have

ω
(
D◦ | γ•

)
=

∑
c∈C(D◦)

〈g(D◦ | γ•)|c〉>0

〈g
(
D◦ | γ•

)
|c〉.

By Remark 9.5, we have 〈g(D◦ | γ•)|c〉 ∈ {−1, 0, 1} for any c ∈ C(D◦). We thus just
need to count the distinct c-vectors c such that 〈g(D◦ | γ•)|c〉 > 0. It turns out that
it is more convenient and equivalent (since C(D◦) = −C(D◦)) to count the distinct c-
vectors c such that 〈g(D◦ | γ•)|c〉 < 0. For that, let Z◦ denote the zigzag of the accordion
crossed by γ• in D◦, and decompose Z◦ = Z−◦ t Z+

◦ such that g(D◦ | γ•) = 11Z+
◦
− 11Z−◦

(where 11X◦ :=
∑
δ◦∈X◦ eδ◦ for X◦ ⊆ D◦). Let δ• be a D◦-accordion diagonal. Let A−◦

(resp. A+
◦ ) denote the accordion crossed by δ• = u•v• in D◦ and not incident to (u+ 1)◦

or (v + 1)◦ (resp. to (u − 1)◦ or (v − 1)◦). Recall from Lemma 9.6 that the negative
(resp. positive) c-vectors of C(D◦) are given by c−(δ•) := − 11A−◦ (resp. c+(δ•) := 11A+

◦
) for

all D◦-accordion diagonal δ• not in D−• (resp. D+
• ). We let the reader check that:

� If γ• and δ• do not cross and have no common endpoint, both |Z◦∩A−◦ | and |Z◦∩A+
◦ |

are even. Thus 〈g(D◦ | γ•)|c−(δ•)〉 = 〈g(D◦ | γ•)|c+(δ•)〉 = 0.

� If γ• and δ• have a common endpoint, and γ•δ• form a counterclockwise angle,
then |Z◦ ∩ A−◦ | is even while Z◦ ∩ A+

◦ is empty or starts and ends in Z+
◦ . Thus

〈g(D◦ | γ•)|c−(δ•)〉 = 0 while 〈g(D◦ | γ•)|c+(δ•)〉 ≥ 0. The situation is similar if γ•δ•
form a clockwise angle.

� If γ• and δ• cross, Z◦ ∩ A−◦ and Z◦ ∩ A+
◦ are empty or start and end both in Z−◦

or both in Z+
◦ . Thus, either〈g(D◦ | γ•)|c−(δ•)〉 < 0 and 〈g(D◦ | γ•)|c+(δ•)〉 ≥ 0 or

conversely.
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We conclude from this case analysis that

ω(D◦ | γ•) = | {c ∈ C(D◦) | 〈g(D◦ | γ•)|c〉 < 0} | = |{D◦-accordion diagonals crossing γ•}|.

Finally, the inequality 〈g(D◦ | γ•)|x〉 ≤ ω(D◦ | γ•) defines a priori a face F (γ•) of the
zonotope Zono(D◦). This face F (γ•) is the Minkowski sum of the c-vectors of C(D◦)
orthogonal to g(D◦ | γ•). Proposition 9.7 ensures that any D◦-accordion dissection D•
containing γ• already provides |D•| − 1 linearly independent such c-vectors c(D◦ | δ• ∈
D•) for δ• ∈ D• r {γ•}. We obtain that F (γ•) has dimension |D•| − 1 = |D◦| − 1 and is
therefore a facet of the zonotope Zono(D◦). �

Let the half-space and the hyperplane associated to a D◦-accordion diagonal γ• be

H≤
(
D◦ | γ•

)
:=
{
x ∈ RD◦ | 〈g

(
D◦ | γ•

)
|x〉 ≤ ω

(
D◦ | γ•

)}
,

and H=(D◦ | γ•) :=
{
x ∈ RD◦ | 〈g

(
D◦ | γ•

)
|x〉 = ω

(
D◦ | γ•

)}
respectively.

9.2.3 g-vector fan and D◦-accordiohedron

In this section, we give a geometric realization of the accordion complex of D◦. We start
by realizing this simplicial complex as a complete simplicial fan in RD◦ . We denote
by R≥0R the positive span of a set R of vectors in RD◦ .

Theorem 9.12. The collection of cones

Fg(D◦) :=
{
R≥0g

(
D◦ |D•

)
| D• any D◦-accordion dissection

}
forms a complete simplicial fan, that we call the g-vector fan of D◦.

The proof still uses the characterization of complete simplicial fans of Proposition 3.7.
We will provide an alternative proof in Remark 9.43 based on sections of Cambrian fans.

Proof. Observe first that R≥0g(D◦ |D−• ) is the only cone of Fg(D◦) which intersects the
interior of the positive orthant. Consider now two adjacent maximal D◦-accordion dis-
sections D•,D′•. Let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}, and let µ•
and ν• be the other diagonals of Figure 8.4 as defined in Lemma 8.9 (describing the
flips in AC(D◦)). Note that a diagonal of D◦ crosses none of (resp. one of, resp. both)
the diagonals δ•, δ

′
• if and only if it crosses none of (resp. one of, resp. both) the di-

agonals µ•, ν•. The same holds for a Z or a Zof D◦. Therefore, we have the linear
dependence g(D◦ | δ•) + g(D◦ | δ′•) = g(D◦ |µ•) + g(D◦ |µ•). This shows that Fg(D◦)
satisfies the two conditions of Proposition 3.7, and thus concludes the proof. �

Remark 9.13. Let D•,D′•, with D• r {δ•} = D′• r {δ′•}, be two adjacent maximal D◦-
accordion dissections. The linear dependence g(D◦ | δ•) + g(D◦ | δ′•) = g(D◦ |µ•) +
g(D◦ |µ•) shows that det

(
g(D◦ |D•)

)
= − det

(
g(D◦ |D′•)

)
. Since the cone R≥0g(D◦ |D−• )

is generated by the coordinate vectors (see Example 9.2), we obtain that det
(
g(D◦ |D•)

)
=

±1 for all D◦-accordion dissection D•, so that the g-vector fan Fg(D◦) is always smooth.

Remark 9.14. By Proposition 9.7, any nonmaximal cone of Fg(D◦) is supported by an
hyperplane orthogonal to a c-vector of C(D◦). The g-vector fan Fg(D◦) thus coarsens
the c-vector fan Fc(D◦).

Remark 9.15. Following Remark 8.2, we observe that special reference dissections give
rise to the following relevant fans:
� For an accordion triangulation A◦ (i.e. with no interior triangle), the g-vector

fan Fg(A◦) coincides with the type A Cambrian fan of N. Reading and D. Speyer [RS09].
� For any triangulation T◦ (with or without interior triangle), the g-vector fan Fg(T◦)

was recently constructed in [HPS16].
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Figure 9.1 – Stereographic projections of the g-vector fans Fg(D◦) for various reference
hollow dissections D◦. See Figure 9.4 for alternative simplicial fan realizations of these
accordion complexes.

Example 9.16. Figure 9.1 illustrates the g-vector fans Fd(D◦) for various reference
dissections D◦: the fan, the snake, and the cyclic triangulation of the hexagon, and
a dissection of the heptagon. More precisely, we have represented the stereographic
projection of the fans from the point [ 1, 1, 1 ]. Therefore, the external face of the pro-
jection corresponds to the D◦-accordion dissection D−• . We have labeled all vertices of
the projection (i.e. the rays of the fan) by the corresponding D◦-accordion diagonals.

We now provide a first polytopal realization of the g-vector fan Fg(D◦) (see also
Section 9.4). This fan has a maximal cone for each maximal D◦-accordion dissection
and a ray for each D◦-accordion diagonal. For a maximal D◦-accordion dissection D•,
we define a point p

(
D◦ |D•

)
∈ RD◦ by

p
(
D◦ |D•

)
:=

∑
δ•∈D•

ω
(
D◦ | δ•

)
· c
(
D◦ | δ• ∈ D•

)
,
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where ω(D◦ | δ•) still denotes the D◦-height of δ• defined as the number of D◦-accordion
diagonals that cross δ•. We will need the following lemmas in the proof of Theorem 9.19.

Lemma 9.17. For any maximal D◦-accordion dissection D•, the point p(D◦ |D•) is the
intersection of the hyperplanes H=(D◦ | δ•) for δ• ∈ D•.

Proof. Since g(D◦ |D•) and c(D◦ |D•) form dual bases by Proposition 9.7, we have for
any γ• ∈ D•:

〈g
(
D◦ | γ•

)
|p
(
D◦ |D•

)
〉 =

∑
δ•∈D• ω

(
D◦ | δ•

)
· 〈g

(
D◦ | γ•

)
|c
(
D◦ | δ• ∈ D•

)
〉

=
∑
δ•∈D• ω

(
D◦ | δ•

)
· 11γ•=δ• = ω

(
D◦ | γ•

)
. �

Lemma 9.18. If D•,D′• are two adjacent maximal D◦-accordion dissections, and δ• ∈ D•
and δ′• ∈ D′• are such that D• r {δ•} = D′• r {δ′•}, then

c
(
D◦ | δ• ∈ D•

)
= −c

(
D◦ | δ′• ∈ D′•

)
and p

(
D◦ |D′•

)
−p

(
D◦ |D•

)
∈ Z<0 · c

(
D◦ | δ• ∈ D•

)
.

Proof. Let D•,D′• be two adjacent maximal D◦-accordion dissections, let δ• ∈ D• and
δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}, and let µ• and ν• be the other diagonals of
Figure 8.4 as defined in Lemma 8.9. A quick case analysis then shows that

c
(
D◦ | γ• ∈ D′•

)
=


c
(
D◦ | γ• ∈ D•

)
for all diagonal γ• ∈ D• r {δ•, µ•, ν•},

−c
(
D◦ | δ• ∈ D•

)
if γ• = δ′•,

c
(
D◦ | γ• ∈ D•

)
+ c

(
D◦ | δ• ∈ D•

)
if γ• ∈ {µ•, ν•}.

Summing the contribution of all c-vectors with their coefficients ω(D◦ | γ•), we obtain

p
(
D◦ |D′•

)
−p

(
D◦ |D•

)
=
(
ω
(
D◦ |µ•

)
+ω

(
D◦ | ν•

)
−ω

(
D◦ | δ•

)
−ω

(
D◦ | δ′•

))
·c
(
D◦ | δ• ∈ D•

)
.

Finally, note that any diagonal of P• that crosses one of (resp. both) the diagonals µ•, ν′•
also crosses one of (resp. both) the diagonals δ•, δ′•. Moreover, δ• and δ′• cross each other
but do not cross µ• and ν•. It follows that ω(D◦ |µ•)+ω(D◦ | ν•)−ω(D◦ | δ•)−ω(D◦ | δ′•) ≤
−2 < 0. �

Theorem 9.19. The two sets given by

� the convex hull of the points p(D◦ |D•) for all maximal D◦-accordion dissection D•,

� the intersection of the half-spaces H≤(D◦ | γ•) for all D◦-accordion diagonals γ•,

define the same polytope, that we call D◦-accordiohedron and denote by Acco(D◦). Its
normal fan is the g-vector fan Fg(D◦). Thus, Acco(D◦) is a polytopal realization of the
accordion complex of D◦.

The proof of Theorem 9.19 is based on the following characterization of polytopal
realizations of complete simplicial fan, proven for instance in [HLT11, Theorem 4.1].

Theorem 9.20 ([HLT11, Theorem 4.1]). Given a complete simplicial fan F in Rd, consider
for each ray r of F a half-space H≤r of Rd containing the origin and defined by a hyper-
plane H=

r orthogonal to r. For each maximal cone C of F , let a(C) ∈ Rd be the intersection
of the hyperplanes H=

r for r ∈ C. Then the following assertions are equivalent:

(i) The vector a(C′) − a(C) points from C to C′ for any two adjacent maximal cones C,
C′ of F .
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(ii) The polytopes

conv {a(C) | C maximal cone of F} and
⋂

r ray of F
H≤r

coincide and their normal fan is F .

Proof of Theorem 9.19. The g-vector fan Fg(D◦) has a ray g(D◦ | δ•) for each D◦-accordion
diagonal δ• and a maximal cone C(D•) = R≥0g(D◦ |D•) for each maximal D◦-accordion
dissection D•. Consider the half-spaces H≤(D◦ | γ•) for all D◦-accordion diagonals δ•.
Lemma 9.17 ensures that the point a(C(D•)) coincides with p(D◦ |D•) for each max-
imal D◦-accordion dissection D•. Finally, Lemma 9.18 shows that the conditions of
application of Theorem 9.20 are fulfilled. �

Remark 9.21. Following Remark 8.2, observe that special reference hollow dissections
give rise to the following relevant polytopes, illustrated in Figure 9.2:
� For a fan triangulation T◦, the T◦-accordiohedron Acco(T◦) is the classical as-

sociahedron constructed by S. Shnider and S. Sternberg [SS93] and J.-L. Lo-
day [Lod04].
� The A◦-associahedra Acco(A◦) for all accordion triangulations A◦ are precisely the

associahedra constructed by C. Hohlweg and C. Lange in [HL07].
� For a triangulation T◦ with an interior triangle, the T◦-accordiohedron Acco(T◦)

was recently constructed in [HPS16]. For example, for the triangulation of the
hexagon with an interior triangle, this associahedron appeared as a mysterious
realization in [CSZ15].
� For a quadrangulation Q◦, the Q◦-accordiohedron Acco(Q◦) is a realization of the

Stokes polytope announced by S. Baryshnikov [Bar01] and discussed by F. Cha-
poton in [Cha16].

9.2.4 Some properties of Acco(D◦)
We conclude this section by pointing out some relevant combinatorial and geometric
properties and observations on the D◦-accordiohedron.

Proposition 9.22. The graph of the D◦-accordiohedron Acco(D◦) linearly oriented in the
direction −11 := −

∑
δ◦∈D◦ eδ◦ is the Hasse diagram of the accordion lattice AL(D◦).

Proof. Consider two adjacent maximal D◦-accordion dissections D•,D′• such that the
flip from D• to D′• is increasing. Let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}.
As observed in Remark 9.5 (ii), the c-vector c(D◦ | δ• ∈ D•) is the characteristic vec-
tor 11A◦ of the set A◦ of diagonals of D◦ crossed by both δ• and δ′•. Applying Lemma 9.18,
we therefore obtain that

〈−11|p
(
D◦ |D′•

)
− p

(
D◦ |D•

)
〉 = 〈−11|λ · c

(
D◦ | δ• ∈ D•

)
〉 = λ · 〈−11|11A◦〉 = −λ · |A◦|,

for some λ ∈ Z<0. The edge [p(D◦ |D•),p(D◦ |D′•)] is therefore indeed oriented from its
vertex p(D◦ |D•) to its vertex p(D◦ |D′•) by the linear functional −11. �

Remark 9.23. Since the c-vector fan Fc(D◦) refines the g-vector fan Fg(D◦), there is
a natural projection π from the vertices of the D◦-zonotope Zono(D◦) to that of the D◦-
accordiohedron Acco(D◦). In analogy to the acyclic case, one could hope to obtain the
accordion lattice as a lattice quotient through this projection. However, the transitive
closure of the graph of the D◦-zonotope Zono(D◦) oriented in the direction −11 is not
a lattice in general (the first counter-example is the dissection with a central square
surrounded by 4 triangles). As shown in [GM16], the right objects are not the separable
subsets of c-vectors (i.e. the vertices of Zono(D◦)) but the biclosed subsets of c-vectors.
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Figure 9.2 – The zonotope Zono(D◦), D◦-accordiohedron Acco(D◦) and parallelepi-
ped Para(D◦) for different reference dissections D◦. The first column is J.-L. Loday’s
associahedron [Lod04], the second column is one of C. Hohlweg and C. Lange’s associ-
ahedra [HL07], the third column appeared in a discussion in C. Ceballos, F. Santos and
G. Ziegler’s survey on associahedra [CSZ15, Figure 3] and was explained in C. Hohlweg,
V. Pilaud and S. Stella’s recent paper [HPS16], and the last column is a Stokes complex
discussed by F. Chapoton in [Cha16] and illustrated in Figure 8.3.



9.2. THE g-VECTOR FAN 167

Proposition 9.24. The accordiohedron Acco(D◦) has precisely |D◦| pairs of parallel fa-
cets.

Proof. Two facets of Acco(D◦) are parallel if and only if the corresponding g-vectors are
opposite. We therefore want to prove that the pairs of opposite coordinate vectors are the
only pairs of opposite g-vectors. Assume that there exist two hollow diagonals δ◦, δ′◦ ∈
D◦ and two solid D◦-diagonals δ•, δ

′
• such that g(D◦ | δ•) and g(D◦ | δ′•) have nonzero

opposite coordinate both on δ◦ and δ′◦. Then both δ• and δ′• cross both δ◦ and δ′◦. This
implies that they both slalom on δ◦ (and on δ′◦) in the same way, a contradiction. �

Consider the D◦-parallelepiped

Para(D◦) :=
{
x ∈ RD◦

∣∣∣ |〈eδ◦ |x〉| ≤ ω(D◦ | (i•, j•)) for all δ◦ = (i◦, j◦) ∈ D◦
}

defined by the inequalities of the D◦-zonotope Zono(D◦) corresponding to the positive
and negative basis vectors. Our next statement follows from Proposition 9.24 and is
illustrated in Figure 9.2.

Corollary 9.25. For any D◦, we have matriochka polytopes.

Zono(D◦) ⊆ Acco(D◦) ⊆ Para(D◦).

Each polytope in this chain is obtained by deleting facets from the previous one.
Consider now an isometry σ of the plane that preserves the hollow polygon P◦ and

the solid polygon P•. For any diagonals and dissections δ• ∈ D• and δ◦ ∈ D◦, we have

� δ• is a D◦-accordion diagonal ⇐⇒ σ(δ•) is a σ(D◦)-accordion diagonal,

� D• is a D◦-accordion dissection ⇐⇒ σ(D•) is a σ(D◦)-accordion dissection,

� if Σ : RD◦ → Rσ(D◦) denotes the isometry defined by
(
Σ(x)

)
σ(δ◦)

:= ε(σ) · xδ◦ ,
(where ε(σ) = 1 if σ is direct and −1 if σ is indirect), then we have

g
(
σ(D◦) |σ(δ•)

)
= Σ

(
g(D◦ | δ•)

)
, c

(
σ(D◦) |σ(δ•) ∈ σ(D•)

)
= Σ

(
c(D◦ | δ• ∈ D•)

)
,

ω
(
σ(D◦) |σ(δ•)

)
= ω

(
D◦ | δ•

)
, and p

(
σ(D◦) |σ(D•)

)
= Σ

(
p(D◦ |D•)

)
.

This immediately implies the following statement.

Proposition 9.26. Any P◦-preserving isometry σ : R2 → R2 induces an isometry Σ :
RD◦ → Rσ(D◦) with Σ

(
Zono(D◦)

)
= Zono

(
σ(D◦)

)
, Σ
(
Acco(D◦)

)
= Acco

(
σ(D◦)

)
and Σ

(
Para(D◦)

)
=

Para
(
σ(D◦)

)
.

We say that a dissection D is σ-invariant when σ(D) = D. Assume now that σ is a
rotation and D◦ is σ-invariant. We call σ-invariant accordion complex of D◦ the simplicial
complex ACσ(D◦) whose vertices are the crossing-free σ-orbits of D◦-accordion diago-
nals, and whose faces are sets of such orbits whose union is crossing-free. In other
words, the faces of ACσ(D◦) are σ-invariant D◦-accordion dissections, seen as sets of
σ-orbits of diagonals.

Lemma 9.27. The σ-invariant accordion complex ACσ(D◦) is a pseudo-manifold.

Proof. Assume first that σ is the central symmetry. In this case, there are two possible
types of orbits: the long D◦-accordion diagonals and the centrally symmetric pairs of
D◦-accordion diagonals. One can check that any facet of ACσ(D◦) has a long diagonal
if and only if D◦ has, and has as many centrally symmetric pairs of diagonals as D◦.
Finally, any orbit in any facet of ACσ(D◦) can be flipped: long diagonals can already be
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flipped in AC(D◦), and a centrally symmetric pair of diagonals can be flipped by flipping
one after the other its two diagonals in AC(D◦).

Finally, the general statement follows from this special case. Indeed, if σ is not a cen-
tral symmetry, let C◦ denote the cell of D◦ containing the center of P◦, let u◦ be a vertex
of C◦, let D◦ be the set of diagonals of D◦ whose endpoints are between u◦ and σ(u◦),
and let ρ be the central symmetry around the middle of u◦σ(u◦). Then ACσ(D◦) is
isomorphic to ACρ

(
D◦ ∪ ρ(D◦)

)
. �

Let Σ : RD◦ → Rσ(D◦) denote the isometry defined by
(
Σ(x)

)
σ(δ◦)

:= xδ◦ and Fix(Σ)
denote the linear subspace of fixed points of Σ. According to the previous discussion,
a maximal D◦-accordion dissection D• is σ-invariant if and only if p(D◦ |D•) ∈ Fix(Σ).
We obtain the following statement.

Proposition 9.28. For a σ-invariant dissection D◦, the polytope Accoσ(D◦) defined equi-
valently as

� the convex hull of p(D◦ |D•) for all σ-invariant maximal D◦-accordion dissections D•,

� the intersection of the D◦-accordiohedron Acco(D◦) with the fixed space Fix(Σ),

is a polytopal realization of the σ-invariant accordion complex ACσ(D◦).

Proof. We let P := conv {p(D◦ |D•) | σ-invariant maximal D◦-accordion dissections D•}
and Q := Acco(D◦) ∩ Fix(Σ). The inclusion P ⊆ Q is clear since D• is σ-invariant if
and only if p(D◦ |D•) ∈ Fix(Σ). We now prove the reverse inclusion. For that, con-
sider an arbitrary σ-invariant maximal D◦-accordion dissection D•. Its corresponding
point p(D◦ |D•) is a common vertex P and Q. Moreover, any edge e of Q incident
to p(D◦ |D•) is the intersection of Fix(Σ) with a face F of Acco(D◦) that corresponds to
a σ-invariant D◦-dissection. Since ACσ(D◦) is a pseudo-manifold, this dissection can be
refined into another maximal D◦-accordion dissection D′•. The point p(D◦ |D′•) belongs
to F and to Fix(Σ) and thus to e. We conclude that if v is a common vertex of P and Q,
then so are all neighbors of v in the graph of Q. Propagating this property, we obtain
that all vertices of Q are also vertices of Q, so that P = Q. Finally, we proved that the
graph of P = Q is the flip graph of ACσ(D◦). Since P and Q are simple, this proves that
the boundary complex of P = Q is ACσ(D◦). �

9.3 The d-vector fan

In this section, we discuss the generalization to the accordion complex of D◦ of another
classical geometric realization of the associahedron coming from the theory of cluster
algebras [FZ02, FZ03a, CFZ02, CSZ15]. Namely, we define compatibility vectors in ana-
logy with the denominator vectors of cluster variables, and we characterize the reference
dissections D◦ for which these vectors support a complete simplicial fan realizing the
accordion complex of D◦.

9.3.1 d-vectors

Fix a dissection D◦ of the hollow n-gon. For a hollow diagonal δ◦ = (i◦, j◦) and a solid
diagonal δ•, we denote by

(δ◦ | δ•) :=


−1 if δ• = ((i− 1)•, (j − 1)•),
0 if δ• and ((i− 1)•, (j − 1)•) do not cross,
1 if δ• and ((i− 1)•, (j − 1)•) cross.



9.3. THE d-VECTOR FAN 169

For any D◦-accordion diagonal δ•, the d-vector of δ• with respect to D◦ is the vector

d
(
D◦ | δ•

)
=

∑
δ◦∈D◦

(δ◦ | δ•) eδ◦ .

In other words, our d-vector d(D◦ | δ•) records the compatibility of the diagonal δ• with
the dissection D−• . For a D◦-accordion dissection D•, we define

d
(
D◦ |D•

)
:=
{
d
(
D◦ | δ•

)
| δ• ∈ D•

}
.

Example 9.29. Consider the hollow dissection Dex
◦ = {(3◦, 7◦), (3◦, 13◦), (9◦, 13◦)} and

the (right) solid dissection Dex
• = {(2•, 6•), (2•, 10•), (10•, 14•)} of Figure 8.2. The d-

vectors of the diagonals of Dex
• are

d
(
Dex
◦ | (2•, 6•)

)
= −e(3◦,7◦),d

(
Dex
◦ | (2•, 10•)

)
= e(9◦,13◦), and d

(
Dex
◦ | (10•, 14•)

)
= e(3◦,13◦)+e(9◦,13◦).

Remark 9.30. By definition, the d-vectors of D−• = {((i− 1)•, (j − 1)•) | (i◦, j◦) ∈ D◦}
are given by the opposite coordinate vectors d(D◦ |D−• ) = {−eδ◦ | δ◦ ∈ D◦}.

9.3.2 d-vector fan

We now consider the set of cones{
R≥0d

(
D◦ |D•

)
| D• any D◦-accordion dissection

}
generated by the d-vectors of the D◦-accordion dissections. We want to characterize the
reference hollow dissections D◦ for which these cones form a complete simplicial fan
realizing the accordion complex of D◦. We start with a negative result.

Remark 9.31. Assume that the reference hollow dissection D◦ contains an even interior
cell C◦, with an even number of edges which are all internal diagonals of D◦. Denote its
vertices by i1◦, . . . , i

2p
◦ (in counterclockwise order) and its edges δk◦ := (ik◦, ik+1

◦ ) for k ∈ [2p]
(where i2p+1 = i1 by convention). Denote by Dk

◦ the set of diagonals of D◦ separa-

ted from C◦ by δk◦ (including δk◦ itself), and let Dk
• :=

{
((i− 1)•, (j − 1)•)

∣∣∣ (i◦, j◦) ∈ Dk
◦

}
.

Consider the solid diagonals δk• := ((ik + 1)•, (ik+1 + 1)•) for k ∈ [2p]. Observe that δk•
only crosses diagonals of Dk−1

• and Dk
•, and that δk• and δk+1

• cross precisely the same
diagonals of Dk

•. Since the cell is even, it ensures that the d-vectors of the diagonals δk•
for k ∈ [2p] satisfy the linear dependence∑

k∈[2p]
k even

d
(
D◦ | δk•

)
=

∑
k∈[2p]
k odd

d
(
D◦ | δk•

)
.

However, as already mentioned in Section 8.2.4, the diagonals δk• for k ∈ [2p] all be-
long to the D◦-accordion dissection D+

• := {((i+ 1)•, (j + 1)•) | i◦j◦ ∈ D◦}. Therefore,
the cone R≥0d(D◦ |D+

• ) is degenerate, so that the d-vectors cannot realize the accor-
dion complex of D◦.
Example 9.32. Consider the reference dissection D◦ := {(1◦, 5◦), (5◦, 9◦), (9◦, 13◦), (13◦, 1◦)}
in a hollow octagon. It has an interior square cell 1◦5◦9◦13◦ and we have

d
(
D◦ | (2•, 6•)

)
= e(1◦,5◦) + e(5◦,9◦) d

(
D◦ | (6•, 10•)

)
= e(5◦,9◦) + e(9◦,13◦)

d
(
D◦ | (10•, 14•)

)
= e(9◦,13◦) + e(13◦,1◦) d

(
D◦ | (14•, 2•)

)
= e(13◦,1◦) + e(1◦,5◦)

so that there is a linear dependence

d
(
D◦ | (2•, 6•)

)
+ d

(
D◦ | (10•, 14•)

)
= d

(
D◦ | (6•, 10•)

)
+ d

(
D◦ | (14•, 2•)

)
among the d-vectors of the D◦-accordion dissection D+

• = {(2•, 6•), (6•, 10•), (10•, 14•), (14•, 2•)}.
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On the negative side, even interior cells are crippling for the d-vector fan. The posi-
tive side is that even interior cells are the only obstructions to our construction.

Theorem 9.33. The collection of cones

Fd(D◦) :=
{
R≥0d

(
D◦ |D•

)
| D• any D◦-accordion dissection

}
forms a complete simplicial fan, that we call the d-vector fan of D◦, if and only if D◦
contains no even interior cell.

Proof. We still use the characterization of complete simplicial fans in Proposition 3.7.
Observe first that d(D◦ |D−• ) = (R≤0)D◦ is the only cone of Fd(D◦) intersecting the open
negative orthant (R>0)D◦ . Therefore, Fd(D◦) fulfills Condition (1) of Proposition 3.7.

To check Condition (2), consider two adjacent maximal D◦-accordion dissections D•
and D′• and let δ• ∈ D• and δ′• ∈ D′• be such that D• r {δ•} = D′• r {δ′•}. Let µ• and ν•
be the diagonals of D̄• ∩ D̄′• as defined in Lemma 8.9. In other words, µ• and ν• are
incident to both δ• and δ′•, and they are crossed by the hollow diagonal which intersect
δ• and δ′•. Let γ◦ = (i◦, j◦) be such a hollow diagonal crossing δ•, δ

′
•, µ• and ν•, and

let γ• = ((i− 1)•, (j − 1)•). We now distinguish three cases:
� Assume that γ• still crosses µ• and ν•. In this case, any diagonal of D−• cros-

sing both (resp. either) δ• and (resp. or) δ′• also crosses both (resp. either) µ• and
(resp. or) ν•. See Figure 9.3 (left). Therefore, the d-vectors of D• ∪ D′• satisfy the
linear dependence

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) + d(D◦ | ν•).

� Assume that γ• crosses neither µ• nor ν•. Then γ• is incident to both µ• and ν•,
and therefore is either δ• or δ′•, say γ• = δ•. Then d(γ◦ | δ•) = −1 while d(γ◦ | δ′•) = 1
(since δ′• crosses δ• = γ•), so that d(γ◦ | δ•) + d(γ◦ | δ′•) = 0. Moreover d(γ◦ | δ′•) = 0
for any diagonal ε• ∈ D• ∩ D′• since δ• = γ• cannot cross ε• as they both belongs
to D•. Therefore, the set

{
d(D◦ | δ•)+d(D◦ | δ•)

}
∪d(D◦ |D•∩D′•) contains |D◦| vec-

tors of RD◦ whose γ◦-coordinate all vanish, so that it admits a linear dependence.

� Otherwise, we can assume that γ• crosses µ• but not ν•. Then γ• has a common
endpoint with ν• and δ• (or δ′•, but we then permute notations). Changing our
initial choice of γ◦, we can assume that no diagonal of D−• separates γ• from δ•.
We now denote clockwise

– by ν• =: λ0
•, λ

1
•, . . . , λ

`
• := δ• the edges of the cell C• of D• containing ν• and δ•,

– by γ• =: λ0
•, γ

1
• , . . . , γ

k
• the edges of the cell C−• of D−• containing γ• and crossed

by ν•.
These notations are illustrated on Figure 9.3. We still distinguish two subcases as
in Figure 9.3:

– If γi• crosses λi• for all i as in Figure 9.3 (middle), then ` = k and we have the
linear dependence

2d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) +
∑

i∈[`−1]
(−1)(i−1)d(D◦ |λi•).

It is essential here that ` = k is even. This is guarantied by the assump-
tion that D◦ (and thus D−• ) has no even interior cell, since C−• is an interior
cell of D−• of size k.

– Otherwise, we are in a situation similar to Figure 9.3 (right). Consider the in-
dex m :=

{
i ∈ [min(`, k)]

∣∣ γi• crosses λi•
}
, and we have the linear dependence

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ |µ•) +
∑
i∈[m]

(−1)(i−1)d(D◦ |λi•). �
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Figure 9.3 – Illustration of the notations and cases in the proof of Theorem 9.33.

Remark 9.34. Following Remark 8.2, we observe that special reference dissections give
rise to the following relevant fans:

� For a snake triangulation Z◦, the d-vector fan Fd( Z◦) coincides with the type A
cluster fan of S. Fomin and A. Zelevinsky [FZ03a].

� For any triangulation T◦, the d-vector fan Fd(T◦) was already constructed in [CSZ15].

� For a quadrangulation Q◦ with no interior quadrangle (equivalently, with no cross),
we obtain a realization of the Stokes complexes studied in [Bar01, Cha16].

Figure 9.4 illustrates the d-vector fans Fd(D◦) for the same reference dissections D◦
as in Figure 9.1. More precisely, we have represented the stereographic projection of
the fans from the point [−1,−1,−1 ]. Therefore, the external face of the projection
corresponds to the D◦-accordion dissection D−• . We have labeled all vertices of the
projection (that is the rays of the fan) by the corresponding D◦-accordion diagonals.

Remark 9.35. To prove that the d-fan Fd(D◦) is polytopal, we would need to find
suitable hyperplanes orthogonal to their rays in order to apply Theorem 9.20. For
the g-vector fan, these hyperplanes were defined using the height function ω(D◦ | δ•). It
would be natural to use the same height function for the d-vector fan as well. Unfortu-
nately, we can only prove Condition (i) of Theorem 9.20 when D◦ is a triangulation (see
also [CSZ15]).

Remark 9.36. Our d-vectors records the compatibility with the dissection D−• . A priori,
we could compute compatibility vectors with respect to any other maximal D◦-accordion
dissection Dini

• . Experiments suggest that the d-vector construction provides a complete
simplicial fan as soon as either D◦ or Dini

• contain no even interior cell. We checked it
for reference quadrangulations with at most 5 diagonals.

9.4 Sections and projections

Recall that for a fan F of Rd and a linear subspace V of Rd, the section of F by V is
the fan F

∣∣
V

:= {C ∩ V | C ∈ F}. For a polytope P ⊆ Rd and a projection π : Rd → V ,
the normal fan of the projected polytope π(P ) is the section of the normal fan of P
by V [Zie95, Lemma 7.11]. We now consider sections of the g- and d-vector fans by
coordinate subspaces. For two dissections D◦ ⊂ D′◦, we naturally identify RD◦ with the
subspace spanned by {eδ◦ | δ◦ ∈ D◦} in RD′◦ .
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Figure 9.4 – Stereographic projections of the d-vector fans Fd(D◦) for various reference
hollow dissections D◦. See Figure 9.1 for alternative simplicial fan realizations of these
accordion complexes.

9.4.1 Coordinate sections of the d-vector fan

We start by sections of the d-vector fan which are not very surprising. The following
lemma is immediate from the definition of d-vectors.

Lemma 9.37. For dissections D◦ ⊂ D′◦ and a D′◦-accordion diagonal δ•, we have d(D◦ | δ•) ∈ RD◦

if and only if δ• does not cross any diagonal of D−• = {((i− 1)•, (j − 1)•) | (i◦, j◦) ∈ D◦}.

Corollary 9.38. For two dissections D◦ ⊂ D′◦, the section of the d-vector fan Fd(D′◦)
by RD◦ has the combinatorics of the link of the dissection D−• in the accordion com-
plex AC(D′◦), thus of a join of smaller accordion complexes (see Remark 8.5).

9.4.2 Coordinate sections of the g-vector fan

More relevant are the sections of the g-vector fan. They provide an alternative approach
to polytopal realizations of the accordion complex based projected associahedra. This
approach relies on the following crucial observation.
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Figure 9.5 – Projecting accordiohedra on coordinate planes yields smaller accordiohedra.

Lemma 9.39. Consider two dissections D◦ ⊂ D′◦, and a D′◦-accordion diagonal δ•. Then
we have g(D′◦ | δ•) ∈ RD◦ if and only if δ• is a D◦-accordion diagonal. Moreover, in this
case, the g-vectors g(D◦ | δ•) and g(D′◦ | δ•) coincide.

Proof. Let δ◦ ∈ D′◦ r D◦. By definition, δ• slaloms on δ◦ if and only if g(D◦ | δ•)δ◦ =
ε◦
(
δ◦ ∈ D◦ | δ•

)
6= 0. Therefore, δ• is a D◦-accordion diagonal if and only if it slaloms on

none of the diagonals of D′◦rD◦, i.e. if and only if g(D′◦ | δ•)δ◦ = 0 for all δ◦ ∈ D′◦rD◦. �

Based on this lemma, we obtain in the following statement an alternative realization
on the g-vector fan, which is illustrated on Figure 9.5.

Theorem 9.40. Consider two dissections D◦ ⊂ D′◦. Then the g-vector fan Fg(D◦) is
given by Fg(D◦) = {C ∈ Fg(D′◦) |C ⊂ RD◦} and coincides with the section of the g-
vector fan Fg(D′◦) by RD◦ . Thus Fg(D◦) is realized by the orthogonal projection of the
D′◦-accordiohedron Acco(D′◦) on RD◦ , which is equivalently described by:
� the convex hull of the points

∑
δ•∈D• ω(D′◦ | δ•) · c(D◦ | δ• ∈ D•) for all D◦-accordion

dissections D•,
� the intersection of the half-spaces

{
x ∈ RD◦

∣∣∣ 〈g(D◦ | γ•)|x〉 ≤ ω(D′◦ | δ◦)
}

for all D◦-accor-
dion diagonals γ•.

Proof. Lemma 9.39 immediately implies that Fg(D◦) =
{
C ∈ Fg(D′◦)

∣∣∣ C ⊂ RD◦
}

. A

priori, it is a subfan of the section Fg(D′◦)
∣∣
RD◦ =

{
C ∩ RD◦

∣∣∣ C ∈ Fg(D′◦)
}

. However,

since Fg(D◦) is already a complete simplicial fan of RD◦ , it coincides with Fg(D′◦)
∣∣
RD◦ .

Since Fg(D′◦) is the normal fan of Acco(D′◦), this shows that Fg(D◦) = Fg(D′◦)
∣∣
RD◦ is

the normal fan of the orthogonal projection of Acco(D′◦) on RD◦ [Zie95, Lemma 7.11].
To conclude, we prove the given vertex and facet descriptions of this projection. Since

Fg(D◦) = Fg(D′◦)
∣∣
RD◦ , the inequalities of the projection of Acco(D′◦) on RD◦ are just the

inequalities of Acco(D′◦) whose normal vectors are in RD◦ . The vertex description follow
from the inequality description using the same argument as in Lemma 9.17. �

Remark 9.41. The projection of the accordiohedron Acco(D′◦) on RD◦ differs from the
accordiohedron Acco(D◦): they have both Fg(D◦) as normal fan, but their precise geo-
metry is different.

Corollary 9.42. For any hollow dissection D◦, the g-vector fan Fg(D◦) is realized by a
projection of an associahedron of [HPS16].

Proof. Apply Corollary 9.40 to any triangulation T◦ that refines D◦. �
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Remark 9.43. Approaching accordion complexes as coordinate sections of g-vector
fans actually provides more concise (but also less instructive) proofs for Sections 8.2.3
and 9.2.3. Namely, consider any dissection D◦ and let T◦ be a triangulation that re-
fines D◦. For the triangulation T◦, it is known that the normal fan of the associahe-
dron Asso(T◦) (i.e. the g-vector fan Fg(T◦)) refines the fan defined by the coordinate
hyperplane arrangement. This implies that the section Fg(T◦)

∣∣
RD◦ actually coincides

with {C ∈ Fg(T◦) |C ⊂ RD◦} and gives an alternative concise proof that the collection of
cones {C ∈ Fg(T◦) |C ⊂ RD◦} forms a complete simplicial fan. Moreover, this fan has
the same combinatorics as the accordion complex AC(D◦) by Lemma 9.39. We conclude
directly that AC(D◦) is a pseudo-manifold realized by the fan {C ∈ Fg(T◦) |C ⊂ RD◦}
and by the orthogonal projection of the associahedron Asso(T◦) on RD◦ .

9.4.3 Cluster algebra analogues

The perspective on accordion complexes developed in this section also opens the door
to generalizations on arbitrary cluster algebras (finite type or not). Namely, consider an
arbitrary cluster X◦ = (x1

◦, . . . , x
m
◦ ) in an arbitrary cluster algebra A. For any cluster

variable y ∈ A, we denote by g(X◦ | y) ∈ Rm and d(X◦ | y) ∈ Rm the g- and d-vectors
of y computed with respect to X◦, see [FZ02, FZ07]. Fix a nonempty proper subset I
of [m]. We consider two natural subcomplexes of the cluster complex of A:
� the subcomplex ∆d(X◦, I) induced by the variables y with d(X◦ | y)i = 0 for i ∈ I,
� the subcomplex ∆g(X◦, I) induced by the variables y with g(X◦ | y)i = 0 for i ∈ I.

It is well-known that the subcomplex ∆d(X◦, I) is the cluster complex obtained by
freezing all variables xi for i ∈ I. For example in type A, it is a join of simplicial associ-
ahedra and it can therefore be realized by a product of smaller simplicial associahedra.
In contrast, we are not aware of the subcomplex ∆g(X◦, I) being investigated.

Example 9.44. Let T◦ be a triangulation, with internal diagonals labeled by 1, . . . ,m.
Consider the corresponding type Am clusterX◦. Then for any nonempty proper subset I
of [m], the subcomplex ∆g(X◦, I) is isomorphic to the D◦ accordion complex, where D◦
is the dissection obtained by deleting in T◦ the diagonals labeled by I.

This example should extend to cluster algebras on surfaces [FT12]. Motivated by
the results of this chapter and preliminary computational investigations, we point out
some observations and questions on arbitrary cluster algebras. First, consider the
subset {C ∈ Fg(X◦) |C ⊆ R[m]rI} of the g-vector fan of X◦. Since it is a downward-
closed subset of cones of a fan, it provides a simplicial fan realization of ∆g(X◦, I). Is it
always also the section of Fg(X◦) by R[m]rI?

Assume now that A is a finite type cluster algebra, and X◦ is an acyclic seed. The
g-vector fan Fg(X◦) is then a Cambrian fan of N. Reading and D. Speyer [RS09], and
it is realized by a generalized associahedron Asso(X◦) of C. Hohlweg, C. Lange and
H. Thomas [HLT11]. Similar arguments as in Remark 9.43 indeed show that the set
of cones {C ∈ Fg(X◦) |C ⊆ R[m]rI} is a section of Fg(X◦) by R[m]rI in this case.
Therefore, the orthogonal projection of Asso(X◦) on R[m]rI is a realization of ∆g(X◦, I).
Is there an analogue for an arbitrary seed X◦ (acyclic or not)?

Finally, when oriented in the suitable direction v (the sum of the positive roots,
or equivalently of the fundamental weights), the graph of the generalized associahe-
dron Asso(X◦) is the Hasse diagram of a Cambrian lattice [Rea06]. One can similarly
orient the graph of the projection of Asso(X◦) on R[m]rI in the direction of the projection
of v on R[m]rI . Is the resulting graph the Hasse diagram of a lattice? The results
of [GM16] and that of the present chapter show that this property holds in type A. We
also computationally verified the statement in types B4, B5, D4 and D5.



10
Fan realizing

some 2-associahedra

10.1 Introduction

10.1.1 Motivations

In this last chapter, we develop a new approach towards geometric realizations of multi-
associahedra. As mentioned in Section 7.2, they form a universal subfamily of subword
complexes admitting another combinatorial model, namely multitriangulations.

For integers k and n, we consider a convex polygon P with n+2k+1 vertices and call
a k-triangulation (or multitriangulation for unspecified k) of P any inclusion maximal set
of diagonals such that no k + 1 of them mutually cross (see Figure 10.1). As any diago-
nal with at most k − 1 vertices of P on one side belongs to any k-triangulation, we only
consider the other diagonals, called k-relevant diagonals, as part of a k-triangulation.
The k-associahedron ∆k,n (or multiassociahedron for unspecified k) is then the simpli-
cial complex whose facets are the k-triangulations of P. It was introduced by V. Ca-
poyleas and J. Pach in [CP92] where multitriangulations were studied as geometric
graphs, after which the complex itself was independently shown to be pure by T. Naka-
migawa [Nak00], and A. W. M. Dress, J. H. Koolen and V. Moulton [DKM02]. It was also
proved to be a piecewise linear sphere of dimension (kn−1) in an unpublished paper of
J. Jonsson [Jon03]. Many structural aspects of multitriangulations, in particular their
decomposition into stars, were then studied by V. Pilaud and F. Santos [PS09] in order
to approach several open problems. Among them V. Pilaud and F. Santos recall a que-
stion asked by J. Jonsson [Jon05] about geometric realizations of multiassociahedra.

Question 10.1. Are multiassociahedra boundary complexes of some convex polytopes?

Some instances of multiassociahedra turn out to be classical in polytope theory and
therefore give a positive answer to this question in the following cases (see [PS09]).
• For n = 0, the complex ∆k,0 is reduced to a single point (the empty set).
• For n = 1, the complex ∆k,1 is the boundary of a k-simplex.
• For n = 2, the complex ∆k,2 is the boundary complex of a cyclic polytope.
• For k = 1, the complex ∆1,n is the (classical) associahedron Asso(n), as 1-triangulations

are just usual triangulations.
Apart from these classical realizations, a first oriented matroid theory approach al-

lowed J. Bokowski and V. Pilaud to realize ∆2,3 as a convex polytope in [BP09]. Using

175
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Figure 10.1 – Three 2-triangulations of a 9-gon (2-relevant diagonals appear red).

the framework of sorting networks as introduced by V. Pilaud and M. Pocchiola [PP12],
V. Pilaud and F. Santos then constructed brick polytopes in [PS12] as an attempt to
realize multiassociahedra, and more generally type A spherical subword complexes. If
these objects turned out to be interesting by themselves, none of them realized more
multiassociahedra. That multiassociahedra appear as instances of subword complexes
was observed by V. Pilaud and M. Pocchiola [PP12] and by C. Stump [Stu11] (see Theo-
rem 10.5). C. Ceballos, J.-P. Labbé and C. Stump extended multiassociahedra to multi
cluster complexes in any Coxeter type and developed combinatorial tools for subword
complexes in [CLS14]. Finally N. Bergeron, C. Ceballos and J.-P. Labbé used Gale
duality in [BCL15] to realize as fans all complexes ∆k,3 for k ∈ N, so as ∆2,4 and ∆3,4.

Using recently discovered operations on subword complexes, we provide the first
fan realizations of the complexes ∆2,n for n ∈ {5, 6, 7, 8} and conjectural rays for any
complex ∆2,n for n ∈ N (Question 10.3). All computations involved in this work were
done with the software Sagemath [Dev15] (with available source code1). We consider a
convex (n+5)-gon with vertices cyclically labeled from 1 to n+5 and denote the diagonal
between i ∈ [n+ 5] and j ≥ i by (i, j). We denote by (e1, . . . , en, f1, . . . , fn) the canonical
basis of R2n and associate to each 2-relevant diagonal (i, j) a vector v(i,j) in R2n as
follows (see Theorem 10.5 and Figure 10.5, and Figure 10.14).
a) v(1,4) = en − fn and v(1,j+4) = (2n+ 2− j)(ej − ej+1) + en + fj − fn for j ∈ [n− 1];
b) v(2,j+4) = ej + (2n+ 2− j)(ej − ej+1) + fj for j ∈ [n− 1] and v(2,n+4) = en + fn;
c) v(3,j+5) = −ej for j ∈ [n];
d) v(4,j+6) = ej + (2n+ 2− j)(ej − ej+1)− fj for j ∈ [n− 1];
e) v(i+4,i+j+6) = j ei−(j−1)(ei+j+ei+j+1)+(2n+4−i)(ei+j−ei+1)+fi−fi+j for i ∈ [n−2]

and j ∈ [n− i− 1].

Theorem 10.2. The vectors v(i,j) are the rays of a complete simplicial fan in R2n which
realizes the multiassociahedron ∆2,n for n ∈ [8].

Question 10.3. Are the vectors v(i,j) the rays of a complete simplicial fan in R2n which
realizes the multiassociahedron ∆2,n for any n ≥ 1?

10.1.2 Overview

Theorem 10.2 is the main result of this chapter and was checked computationally using
the characterization of complete simplicial fans of Proposition 3.7. The rest of the chap-
ter will therefore mostly be a report on the heuristic process leading to the candidate
rays. We describe in Section 10.2 complementary notions on simplicial complexes,
polyhedral geometry and subword complexes that we need for our presentation. In
particular we state Theorem 10.5 describing the identification of multiassociahedra to
some subword complexes. In Section 10.3 we obtain by a new method the realization
of the associahedron by J.-L. Loday [Lod04]. This method is the starting point of our
heuristic construction of 2-associahedra as fans, which is presented in Section 10.4.
Finally we briefly discuss some further aspects of our work in Section 10.5.

1https://arxiv.org/abs/1608.08491

https://arxiv.org/abs/1608.08491
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10.2 Preliminaries

Our work relies on the interpretation of multiassociahedra as subword complexes (The-
orem 10.5 in Section 10.2.3). Our main tools will be combinatorial operations on them
studied by M. Gorsky in [Gor13, Gor14], that we try to translate geometrically. We pre-
sent the complementary notions that we need on simplicial complexes, polyhedral geo-
metry and subword complexes in Sections 10.2.1, 10.2.2 and 10.2.3 respectively. The
operations on subword complexes due to M. Gorsky are described in Section 10.2.4.

10.2.1 Simplicial complexes

Recall that given two complexes C1 and C2, the join of C1 and C2 is the complex

C1 ∗ C2 := {f t f ′ | f ∈ C1, f
′ ∈ C2}

where the complexes C1 and C2 are considered with disjoint sets of vertices and t de-
notes the disjoint union. The suspension of a complex C is the join of C with a complex
consisting in two singletons, called suspension vertices. Given a vertex x of C, the one-
point-suspension of C with respect to x is the complex

opsC(x) :=
(

delC(x) ∗ {x0, x1}
)
∪
(

lkC(x) ∗ x0x1
)

where x0 and x1 are two new vertices, also called suspension vertices in opsC(x). This
operation extends the usual suspension: in the particular case where the vertex x is
only contained in the face {x} of C, then we consider by convention that the right part
of the union is empty and the left part is just the suspension of the complex where the
disconnected vertex x has been forgotten. So the suspension of a complex is obtained
by adding an artificial disconnected vertex to it and taking the one-point-suspension
with respect to this vertex. Figure 10.2 illustrates the one-point-suspension operation
on two complexes. We finally recall that for a complex C and a face f of C, the stellar
subdivision of the face f in C is the complex

stellC(f) := delC(f) ∪ {f ′ ∪ {a} | f 6⊆ f ′ ∈ stC(f)} = delC∪stC(f)∗{a}(f)

where a is a new vertex, called subdivision vertex (see Figure 10.3 for examples).

x

x0

x1

C1 = opsC1
(x) =

x
C2 = opsC2

(x) =

x0

x1

Figure 10.2 – Two 1-dimensional complexes C1 and C2 (left) and their one-point-
suspensions opsC1(x) and opsC2(x) with respect to a given vertex x (right).
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Figure 10.3 – A 2-dimensional complex C1 = {{1, 2, 3}, {1, 3, 4}} (top left) and the
stellar subdivision of the facet {1, 2, 3} in it (top right), and a 3-dimensional com-
plex C2 = {{1, 2, 3, 4}, {1, 3, 4, 5}, {1, 4, 5, 6}} (bottom left) and the stellar subdivision of
the edge {1, 3} in it (bottom right).

10.2.2 Polyhedral geometry

We recall that given a simplicial fan F , we denote by CF the abstract simplicial complex
whose vertices are the rays of F and whose faces are the subsets of rays generating
the cones of F . In this chapter we will use the following realizability results on the
operations defined in Section 10.2.1.

Lemma 10.4 (folklore). One-point-suspensions and stellar subdivisions of simplicial com-
plexes realizable as polytopes (resp. complete simplicial fans, resp. spheres) still are
realizable as simplicial polytopes (resp. complete simplicial fans, resp. spheres).

Lemma 10.4 is classical and its proof is left to the reader. We only describe the actual
transformation on the rays of a complete simplicial fan allowing to realize as well the
stellar subdivisions and the one-point-suspensions of the corresponding complex. We
will indeed need them to derive the coordinates of Question 10.3. Let F be a complete
simplicial fan in Rn and let R be a set of vectors in Rn such that for each ray ρ of F
there is exactly one vector v ∈ R such that ρ = R≥0v. The vertex set of the simplicial
complex CF associated to the fan F can then naturally be identified with the set R.
Let f = {v1, . . . ,v`} be a face of the complex CF . Then the complex stellCF (f) can be
realized as a complete simplicial fan by adding a ray to the fan F , generated by any
vector of the form α1v1 + · · · + α`v` with α1 > 0, . . . , α` > 0. This new ray corresponds
to the subdivision vertex of the stellar subdivision. The generic choice consists to set
all αi’s equal to 1 (see Figure 10.4). Let v be a vector in R, then the complex opsCF (v) is
of dimension one more than the complex CF . We consider the vector space Rn+1 :=Rn⊕
Ren+1 and associate to a vector v′ ∈ Rr{v} the vector v′⊕0. The suspensions vertices
obtained from v are associated to two vectors v ⊕ αen+1 and v ⊕ βen+1, with αβ < 0.
The generic choice for us will be α = −1 and β = 1. The set of rays that we obtain
in Rn+1 then supports a complete simplicial fan realizing opsCF (v) (see Figure 10.4).
In the particular case of a suspension, one can artificially add the zero vector 0 to the
set R and choose v = 0 in the previous construction (see Figure 10.4). The previous
descriptions give valid coordinates but certainly not all of them. Yet these realizations
are easy to implement and they will be enough for our purposes.
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v1

v2

f

F =

opsCF (v1) ∼=

stellCF (f) ∼=

CF ∗ {u1, u2} ∼=

Figure 10.4 – A complete 2-dimensional simplicial fan F with a distinguished face f =
R≥0{v1,v2} (top left), a complete 2-dimensional simplicial fan realizing the com-
plex stellCF (f) (top right), a complete 3-dimensional simplicial fan realizing the com-
plex opsCF (v1) (bottom left), and a complete 3-dimensional simplicial fan realizing the
suspension of the complex CF (bottom right). The new fans are obtained by the generic
transformations on F described after Lemma 10.4.

10.2.3 Subword complexes

Recall that, for n ≥ 1, we denote by S the set of simple transpositions si := (i i + 1)
(for i ≤ n), that we consider as an alphabet. To avoid confusion, a simple transposition
is referred to with an italic letter si when considered as an element of the symmetric
group Sn+1, and with a sans serif letter si when considered as a letter in the alphabet S.
Finally we recall the definition of the subword complex S(Q) of a word Q = q1 . . . qp in S∗

given in Section 7.2.

S(Q) := {J ⊆ [p] |Q[p]rJ contains a reduced expression of w◦ as a subword}.

Let c := s1 . . . sn, the c-sorted expression of w◦ (see [Rea06]) is the word

w◦(c) :=
n∏
i=1

n+1−i∏
j=1

sj

 (10.1)

where the product symbol denotes the concatenation on words in increasing order of
indexes, that is w◦(c) = s1s2 . . . sn s1 . . . sn−1 . . . s1s2 s1. We will also use the nota-
tion c[i] := s1 . . . si, so that w◦(c) =

∏n
i=1 c[n + 1 − i]. The c-sorted expression w◦(c) is a

reduced expression of w◦. It will be convenient to consider smaller symmetric groups Sp

(with p ≤ n + 1) as embedded in Sn+1 and still denote by w◦(c[p]) the c-sorted expres-
sion of their longest element. The following statement describes how multiassociahedra
arise as instances of subword complexes.
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Figure 10.5 – The identification of Theorem 10.5, for n = 4 and k = 2, between the 2-
relevant diagonals (of length at least 2) of a convex polygon with 9 vertices and the
letters of the word c2w◦(c) seen on the corresponding sorting network.

Theorem 10.5 ([PP12, Stu11]). For k ≥ 0 and n ≥ 1, the multiassociahedron ∆k,n

is isomorphic to the subword complex S(ckw◦(c)). Given a convex polygon Pn+2k+1
with n+2k+1 vertices cyclically labeled from 1 to n+2k+1, an isomorphism between the
complexes ∆k,n and S(ckw◦(c)) is given by the following identification of the k-relevant
diagonals of Pn+2k+1 with the letters of ckw◦(c).
• for i ≤ k and j ∈ [n], the diagonal (i, i+j+k) is associated to the letter at position (i−

1)n+ j in the word ckw◦(c), namely its i-th letter sj ;
• for i+ k ≥ k + 1 and j ∈ [n+ 1− i], the diagonal (i+ k, i+ j + 2k) is associated to

the letter in position (k + i − 1)n − (i − 1)(i − 2)/2 + j in the word ckw◦(c), namely
the letter sj whose indices are i and j in the factor w◦(c) of the word ckw◦(c), seen
as the product in Equation (10.1).

The identification given in Theorem 10.5 is illustrated in Figure 10.5. Multiassocia-
hedra form a universal family, as discussed in Section 7.2. So giving geometric realiza-
tions for them is equivalent to giving geometric realizations for any subword complex.

We conclude this section with useful properties of subword complexes. Let Q = si1 . . . si`
be a word, the rotated word of Q is the word Q	 := sn+1−i`si1 . . . si`−1 .

Theorem 10.6 (rotation map [CLS14]). For any word Q, the subword complexes S(Q)
and S(Q	) are isomorphic. An isomorphism is obtained by identifying all letters in the
common factor of Q and Q	, and the two letters by which they differ.

Let Q−1 denote the mirror image of a word Q and Q−i the concatenation of i co-
pies of Q−1. Theorems 10.5 and 10.6 imply that the multiassociahedron is isomorphic
to all complexes of the form S(ck−iw◦(c)c−i) (for i ∈ [k]). Finally basic properties of
sorting networks imply that any subword complex S(Q) is isomorphic to S(Q−1) with
identification of the vertices given by the mirror symmetry (see [PP12, PS12]).
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10.2.4 Operations on subword complexes

We now focus on three natural operations on subword complexes. A word Q is obtai-
ned by a commutation move from a word Q′ if there exist two words U1,U2 ∈ S∗ and
i, j ∈ [n] such that |i − j| ≥ 2 and Q = U1 sisj U2 and Q′ = U1 sjsi U2. As mentioned
in Section 10.2.3 the subword complexes S(Q) and S(Q′) are then isomorphic since si
and sj commute in the symmetric group Sn+1. We also consider two operations studied
by M. Gorsky in [Gor13, Gor14], which are our main combinatorial tools.
• A word Q is obtained by a 0-Hecke move from a word Q′ if there exist words

U1,U2 ∈ S∗ and i ∈ [n] such that Q = U1 si U2 and Q′ = U1 s2
i U2. In this case Q′

is obtained by a reverse 0-Hecke move from Q. Alternatively we will also say that Q′
is obtained by doubling a letter in Q.
• A word Q is obtained by a braid move from a word Q′ if there exist words U1,U2 ∈ S∗

and i, j ∈ [n], with |i− j| = 1, such that Q = U1 sisjsi U2 and Q′ = U1 sjsisj U2.

Remark 10.7. Commutation and braid moves are natural operations to consider since
the corresponding relations sisj = sjsi for |i− j| ≥ 2, and sisjsi = sjsisj for |i− j| = 1,
hold in the symmetric group Sn+1, and can be completed into a presentation of Sn+1
by adding the relations s2

i = Id for i ∈ [n]. Here the corresponding operation on words
is replaced by s2

i = si, which is in fact the last relation in the classical presentation of
the 0-Hecke algebra of the symmetric group Sn+1, hence the name of the correspon-
ding transformation. M. Gorsky calls these moves nil-Hecke moves in [Gor13] but the
corresponding relation in the nil-Hecke algebra would be s2

i = 0.

We say that we apply a braid (resp. 0-Hecke, resp. commutation) move to a subword
complex S(Q) when we consider the subword complex S(Q′), where Q and Q′ are related
by the same operation. The combinatorial effect of these operations on the subword
complex S(Q) depend on the vertex status of the letters implied in the transformation
(see Figure 10.6) and were described by M. Gorsky as follows.

Theorem 10.8 ([Gor13]). Suppose that a word Q′ = U1 q′rq′r+1 U2 is obtained from a
word Q = U1 qr U2 by doubling the letter qr. If qr is a vertex of the subword complex S(Q),
then the subword complex S(Q′) is isomorphic to the one-point-suspension opsS(Q)(qr)
of S(Q) with respect to qr. Otherwise S(Q′) is isomorphic to the suspension of S(Q). The
suspension vertices in S(Q′) are q′r and q′r+1.

x

x

x

x

x

x

y

y y

y

z z′

z

(1) (2) (3) (4) (5)

0-Hecke move Braid move
Figure 10.6 – The evolution of the vertex status of letters implied in 0-Hecke and braid
moves, seen on the corresponding part of the sorting network NQ. Two red dashed
segments denote vertices not belonging to a common edge while empty red segment
denote vertices in all faces not forbidden by dashed segments. Black plain segments
represent nonvertices. The letters x, y, z and z′ give the identifications of the exchanged
letters by a braid move in the topological realizations of the corresponding complexes.
The numbers for braid moves correspond to the different Cases in Theorem 10.9.
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x

y
z

xzy = qrqr+1qr+2 ↔ q′rq
′
r+1q

′
r+2 = yz′x

y

x

z′

Figure 10.7 – The effect of a braid move in Case (5) of Theorem 10.9, seen as a local
transformation on the topological realization of a 3-dimensional subword complex S(Q).
Only the parts of the complex affected by the transformation are depicted, namely the
star stS(Q)(qr+1) of the vertex qr+1 in S(Q) and the star stS(Q)(qrqr+2) of the edge qrqr+2
in S(Q). As in Figure 10.6, the letters x, y, z and z′ describe the identifications of the
exchanged letters in the topological realizations of the two subword complexes.

Theorem 10.9 ([Gor14]). Suppose that a word Q′ = U1 q′rq′r+1q′r+2 U2 is obtained from a
word Q = U1 qrqr+1qr+2 U2 by applying a braid move.

1. If none of the letters qr, qr+1 and qr+2 is a vertex of S(Q), then S(Q) and S(Q′) have
the same vertices and are isomorphic.

2. If exactly one of the letters qr, qr+1 and qr+2 is a vertex of S(Q), then it is either qr
or qr+2, say qr without loss of generality2. In this case S(Q) and S(Q′) are isomor-
phic and an isomorphism is given by identifying their common vertices and identi-
fying qr to q′r+2. In particular q′r and q′r+1 are nonvertices in S(Q′).

3. If exactly two of the letters qr, qr+1 and qr+2 are vertices of S(Q), then these letters
are qr and qr+2. If moreover qrqr+2 is an edge of the complex S(Q), then the com-
plex S(Q′) is isomorphic to the stellar subdivision stellS(Q)(qrqr+2) of the edge qrqr+2
in S(Q). In S(Q′), the subdivision vertex is q′r+1, the vertex q′r (resp. q′r+2) is identi-
fied to the vertex qr+2 (resp. qr) of S(Q), and all common vertices are identified.

4. If all letters qr, qr+1 and qr+2 are vertices of S(Q) but do not all belong to a common
facet, and if qrqr+1 is an edge of the subword complex S(Q), then the roles of S(Q)
and S(Q′) are exchanged in the previous case. That is S(Q) is obtained from S(Q′)
by applying a stellar subdivision of the edge q′rq′r+2.

5. If all letters qr, qr+1 and qr+2 are vertices of S(Q) and belong to a common facet,
then it is also the case for q′r, q′r+1 and q′r+2 in S(Q), and the two stellar subdivisi-
ons stellS(Q)(qrqr+2) and stellS(Q′)(q′rq′r+2) are isomorphic. The vertex qr (resp. qr+2)
of the complex stellS(Q)(qrqr+2) is identified to the vertex q′r+2 (resp. q′r) of the com-
plex stellS(Q′)(q′rq′r+2), the subdivisions vertex in stellS(Q)(qrqr+2) (resp. stellS(Q′)(q′rq′r+2))
is identified to q′r+1 (resp. qr+1) and all common vertices are identified.

Theorem 10.9 does not seem to cover all possible cases because of the additional
condition that the edge qrqr+2 (resp qrqr+1) exists in Case (3) (resp. (4)). The following
statement implies that this condition is in fact always satisfied3.

2Since S(Q) and S(Q−1) are isomorphic.
3Lemma 10.10 is true for type A subword complexes, but needs not be in other types.
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Lemma 10.10. Any two vertices of a subword complex S(Q) either form an edge of S(Q),
or belong to adjacent facets of S(Q), or have these two properties simultaneously.

Proof. The word property (see e.g. [BB05, Theorem 3.3.1]) asserts that any expression
containing a reduced expression of w◦ can be transformed into a reduced expression
of w◦ by a sequence of braid moves and simplifications s2 = Id. This allows to prove the
result by induction on the length of such a sequence. The property is clear when Q is
already a reduced expression of w◦ since the complex is then empty. Now for any word Q
strictly containing a reduced expression of w◦, we can applying the induction hypothesis
and Theorems 10.8 and 10.9 to the sequence provided by the word property. The
induction hypothesis is indeed preserved by reverse one-point-suspension and basic
arguments on sorting networks (see [PP12, PS12]) imply, by a quick case analysis, that
it is also preserved by braid moves. �

Finally it is standard to check that the letters qr and qr+2 (resp. qr+1) are not ex-
changeable in Case (3) (resp (4)) of Theorem 10.9 (see [PP12, PS12]), so that qrqr+2
(resp qrqr+1) is in fact automatically an edge of the complex. Figure 10.6 sums up all
cases of Theorems 10.8 and 10.9 more visually than with their actual descriptions.

The effects of 0-Hecke and braid moves are already illustrated on the complex it-
self in Figures 10.2 and 10.3, except for Case (5) of Theorem 10.9. Indeed we have
described a relation between the subword complexes S(Q) and S(Q′), but not in terms
of “transforming S(Q) into S(Q′)”. In this case S(Q′) is obtained from S(Q) by a stel-
lar subdivision of the edge qrqr+2 with subdivision vertex q′r+1, followed by a reverse
stellar subdivision of the same edge where the disappearing vertex is qr+1. This can
somehow be geometrically interpreted as “moving” the vertex qr+1 “from one side” of the
edge qrqr+2 “to the other side” and relabeling it q′r+1 (see Figure 10.7). Reverse stellar
subdivision is bad behaved with respect to geometry, and we present in the next secti-
ons a tentative construction of 2-associahedra based on commutation moves, 0-Hecke
moves and braid moves avoiding Case (4) of Theorem 10.9, and as much as possible
Case (5) of Theorem 10.9. The key is that the effect induced by moves on the complex
both only depends on vertex status of the implied letters, and is topologically local.

10.3 Loday associahedron by suspensions and stellar subdivisions

We keep the product notation
∏ν
j=µ Qj to denote the concatenation of a sequence of

words (Qj)µ≤j≤ν , with the convention that empty products represent the empty word.
We will use the notation c[µ, ν] =

∏ν
j=µ sj for 1 ≤ µ ≤ ν ≤ n. Recall that with this

notation, we have c[µ] = c[1, µ] for µ ∈ N and w◦(c) =
∏n
i=1 c[n + 1 − i]. Moreover

in any word, we will from now on denote the positions of the letters of a distinguis-
hed factor w◦(c) by the corresponding pair (i, j) of indices in the double product for-

mula w◦(c) Eq (10.1)
=

∏n
i=1

∏n+1−i
j=1 sj . A word Q can be moved to a word Q′ if Q can be

transformed into Q′ by applying a sequence of commutation, 0-Hecke, reverse 0-Hecke
and braid moves. If Q can be moved to Q′ using only commutations moves, then Q
and Q′ are equivalent under commutation (or simply equivalent) and we use the nota-
tion Q ∼ Q′. Recall that then, the subword complexes S(Q) and S(Q′) are isomorphic.

Lemma 10.11. For ` ∈ [n], the c-sorted word w◦(c) can be moved to the word w◦(c)s` by
doubling its letter s1 at position (`, 1) (that is its `-th letter s1) and applying a sequence
of `− 1 braid moves interlaced with some commutation moves.

Proof. For k ∈ [`−1], we can let the second letter sk of the word skc[k+1, `]c[k, `−1] com-
mute as much as possible to the left to obtain that it is equivalent to the word sksk+1skc[k+
2, `]c[k + 1, ` − 1]. We can then apply a braid move on the prefix sksk+1sk of this last
word to obtain the word sk+1sksk+1c[k + 2, `]c[k + 1, `− 1]. Therefore a straightforward
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induction on k shows that the word s1c[`]c[`− 1] can be moved to the word c[`]c[`− 1]s`
applying `− 1 braid moves interlaced with some commutation moves. Multiplying both
words by w◦(c[` − 2]) on the right, the identity w◦(c[`]) = c[`]c[` − 1]w◦(c[` − 2]) yields
that the word s1w◦(c[`]) can be moved to the word c[`]c[`− 1]s`w◦(c[`− 2]) by a sequence
of `− 1 braid moves interlaced with some commutation moves. Since the letter s` com-
mutes to all letters of the word w◦(c[` − 2]), we obtain by the same identity that the
word s1w◦(c[`]) can be moved to the word w◦(c[`])s` by a sequence of ` − 1 braid mo-
ves interlaced with some commutation moves. This is the result for ` = n since the
word s1w◦(c[`]) is obtained from the word w◦(c[`]) by doubling its first letter s1. Since
any word w◦(c[`]) (for ` ∈ [n]) is a suffix of the word w◦(c[n]), the result for any ` ∈ [n]
finally follows by multiplying on the left by the suitable prefix. �

Applying Lemma 10.11 repeatedly, we obtain the following more specific statement.

Corollary 10.12 (fattening a triangle). The c-sorted word w◦(c) can be moved to the
word w◦(c)c−1 = w◦(c) sn sn−1 . . . s1 by doubling all its letters s1 and applying a sequence
of n(n− 1)/2 braid moves interlaced with some commutation moves.

Proof. We check by induction on n ≥ 1 that all the letters s1 in the word w◦(c) can be
doubled at first before applying the other moves of Lemma 10.11. The word s1w◦(c) can
be obtained from the word w◦(c) by doubling its first letter s1. We apply the induction
hypothesis to the suffix w◦(c[n − 1]) of the word s1w◦(c) = s1c w◦(c[n − 1]) to find a
sequence of moves starting by doubling all the letters s1 in this factor and transforming
the word s1w◦(c) into the word s1w◦(c)(c[n − 1])−1. We finally apply Lemma 10.11 to
the prefix s1w◦(c) of this last word, omitting the initial doubling, into moving it to the
word s1w◦(c)sn. Since c−1 = sn(c[n− 1])−1, we are done. �

We will now refer to a distinguished factor w◦(c) in a word Q = U1 w◦(c) U2 as a tri-
angle in Q, because of the shape of the corresponding sorting network. We say that
we fatten a triangle in Q when we consider a word Q′ = U1 w◦(c)c−1 U2 obtained from Q
by applying the sequence of moves of Corollary 10.12 to its distinguished triangle.
Let Q = Q1, . . . ,Q` = Q′ be the successive words obtained in this sequence of moves,
where we write Qk = U1TkU2 for k ∈ [`]. Notice that T1 = w◦(c) and T` = w◦(c)c−1. The
operation of fattening a triangle comes together with a natural correspondence between
the letters in the word Q and those in the word Q′. The letters in the common factors U1
and U2 are indeed naturally identified, and the letters of the middle factor w◦(c)c−1 of Q′
can be associated to these of the middle factor w◦(c) of Q using the following labeling
rules along moves.
• The letters in the distinguished factor w◦(c) of the word Q are labeled with their

position (given by a pair of indices) in w◦(c) (see Figure 10.8 left).
• After doubling a letter s1 at position (i, 1) in a distinguished factor Tk of a word Qk,

for some k ∈ [`−1], we label the two resulting letters s1 in Qk+1 with (i, 1) and (i, 1)′.
Indeed Theorem 10.8 asserts that the new subword complex S(Qk+1) is somehow
the same as the previous subword complex S(Qk), but with two copies of its initial
letters s1 (see Figure 10.8 middle).
• After a braid move on a factor qrqr+1qr+2 of a word Qk (k ∈ [` − 1]) producing a

factor q′rq′r+1q′r+2 in the word Qk+1, we label the letter q′r (resp. q′r+1, resp. q′r+2) in
the word Qk+1 with the same label as that of the letter qr+2 (resp. qr+1, resp. qr)
in the word Qk (see Figure 10.8 right). This corresponds to the identifications
suggested by Theorem 10.9 (see Figure 10.6).

Notice that even if there are cases in Theorem 10.9, the identification between the
letters implied in a braid move always follows ours, independently of their vertex status
(see Figure 10.6). The letters qr and q′r+2 (resp qr+2 and q′r) are indeed always identified,
and in each case the letter q′r+1 is obtained by some transformation of the letter qr+1.
Figure 10.9 illustrates the labeling evolution rules on an example.
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Figure 10.8 – The evolution of the labels of the letters in a sequence of moves to fatten
a triangle w◦(c), seen on the corresponding sorting networks. The initial letters of the
triangle w◦(c) are labeled with their position (i, j) (with i ∈ [n], j ∈ [n+ 1− j]) (left). After
doubling a letter s1 labeled (i, 1) (top middle), the two new letters s1 are labeled (i, 1)
and (i, 1)′ (bottom middle). The letters obtained by braid moves are labeled following
the identification in Theorem 10.9 (right).
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(1, 1)′(1, 1) (2, 1)′(2, 1) (3, 1)′(3, 1) (1, 1)′(1, 1) (2, 1) (2, 2) (3, 1)′ (1, 1) (1, 2) (1, 1) (1, 2) (2, 2) (3, 1)′(2, 2) (3, 1)′

(3, 1) (2, 1)′ (2, 1) (1, 1)′ (2, 1) (1, 3) (2, 1)′(3, 1) (2, 1)′
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Figure 10.9 – The evolution of the vertex status and labels of the letters along
a sequence to fatten a triangle s1s2s3s1s2s1, seen on the sorting networks of the
words in the sequence. After doubling all letters s1, one obtains successively the
words s1s1s2s3s1s2s1s2s1 , s1s2s1s2s3s2s1s2s1 and s1s2s3s1s2s3s1s2s1 by applying three braid
moves and several commutation moves. The red empty (resp. black plain) segments
denote vertices (resp. nonvertices) of the current subword complex.

Lemma 10.13. Let Q = U1w◦(c)U2 be a word with a distinguished triangle and let
Q = Q1, . . . ,Q` (with Qk = U1TkU2 for k ∈ [`]) be a fattening sequence of this triangle.
• The labels of the letters of T` = w◦(c)c−1 = cw◦(c[n − 1])c−1, obtained by the iden-

tification rules, are these of Figure 10.10. Namely the letter at position i ∈ [n] in
the c prefix is labeled (i, 1), the letter indexed (i, j) (with i ∈ [n − 1], j ∈ [n − i]) in
the factor w◦(c[n − 1]) =

∏
1≤i≤n−1

∏
1≤j≤n−i sj is labeled (i, j + 1) and the letter in

position i ∈ [n] in the c−1 suffix is labeled (n− i+ 1, 1)′.
• If the word Qk (for k ∈ [`]) contains a factor qrqr+1qr+2 implied in a braid move, then

the labels of qr, qr+1 and qr+2 in Qk are (i, 1)′, (i, j + 1) and (i + j, 1) respectively
for some i ∈ [n − 1], j ∈ [n − i + 1]. Moreover qrqr+2 is an edge of the subword
complex S(Qk), and qr+1 is a vertex of S(Qk) if and only if the letter with label
(i, j + 1) in T1 is a vertex of S(Q).

Lemma 10.13 translates obvious phenomena that can be observed on the example in
Figure 10.9. The proof is an easy but technical refinement of the proofs of Lemma 10.11
and Corollary 10.12. We only give a sketch of it and leave the details to the reader.
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Figure 10.10 – The identification pattern of the letters of a word w◦(c)c−1 (right) obtained
by fattening a triangle w◦(c) (left) by following the labeling rules. The pattern is given
by the labeling on the sorting networks of the two words.

Proof (sketch). The proof is by induction on n ≥ 1, the case n = 1 being trivial. Given a
triangle w◦(c) = cw◦(c[n− 1]) in a word Q, we first fatten its subfactor w◦(c[n− 1]) into
transforming w◦(c) into the factor cw◦(c[n− 1])(c(n− 1])−1. In this last factor, the labels
of the letters in the prefix c are still the initial ones, while the labels of the other letters
are described by the induction hypothesis. Moreover, the vertex status of the letters in
the prefix c is the same as in the word Q since the effect of reverse 0-Hecke and braid
moves is local, by Theorems 10.8 and 10.9. To move the factor cw◦(c[n−1])(c[n−1])−1 =
w◦(c)(c(n−1])−1 to the factor w◦(c)c−1, we apply Lemma 10.11 to its w◦(c) prefix in order
to insert a new letter sn. It is then straightforward to adapt the induction in the proof of
Lemma 10.11 into keeping track of the labels and vertex status of the letters in the final
factor w◦(c)c−1, so as of the prescribed edges. The key point for the induction step is
that doubling the first letter s1 creates an edge between any of the two resulting letters
and any other vertex q of the current subword complex (by Theorem 10.8), and that
this edge is never affected by the stellar subdivisions and reverse stellar subdivisions
corresponding to the braid moves (by Theorem 10.9) which do not imply both letters. �

Observe that Lemma 10.13 implies that all the braid moves implied in a fattening
sequence either induce Case (3) or Case (5) of Theorem 10.9. Therefore Lemma 10.13
yields a new construction for the classical associahedron, choosing the word Q to be
simply a triangle Q = w◦(c). Indeed no letter is a vertex in S(Q) = {∅}, and so no letter
with label (i, j+1) (for i ∈ [n−1], j ∈ [n−i+1]) is a vertex in the subword complex S(Q′),
where the Q′ is obtained from the word Q by doubling all its s1 letters. Since those letters
are nonvertices in the subword complex S(Q), all corresponding reverse 0-Hecke moves
induce suspensions by Theorem 10.8 so that the subword complex S(Q′) is isomorphic
to the boundary complex of the n-dimensional cross-polytope. Finally Lemma 10.13
implies that all braid moves in the fattening sequence induce stellar subdivisions of
edges, by Theorem 10.9. We obtain by Lemma 10.4 a construction of the classical
associahedron by successive stellar subdivisions of edges of the cross-polytope.

Corollary 10.14. The simplicial n-associahedron can be obtained by successive stellar
subdivisions of edges of the n-dimensional cross-polytope. Equivalently its polar dual can
be obtained by successive truncations of codimension-2 faces of the n-dimensional cube.

This is a special case of a result by V. Volodin [Vol10] stating that any flag nestohe-
dron can be obtained by successive such truncations of a cube. The last figure in [Vol10]
depicts a 3-dimensional associahedron geometrically equivalent to the realization by J.-
L. Loday [Lod04] (see Figure 2.5 left). Corollary 10.14 shows that the realization by
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Figure 10.11 – The pattern of coordinates obtained for the associahedron (right) after
fattening a triangle (left). The obtained rays are these of the realization of the associa-
hedron by J.-L. Loday [Lod04] (see Figures 2.5 left and 2.6 left).

J.-L. Loday can be obtained that way in all dimensions. Indeed while following the se-
quence Q = Q1, . . . ,Q` to fatten the triangle, we can apply the generic transformations
described after Lemma 10.4 to realize the successive suspensions and stellar subdi-
visions of edges of the current subword complex. We first associate to each letter of
the word Q the zero vector 0 in R0, and we take the convention that when applying a
reverse 0-Hecke move to a letter q = s1 labeled (i, 1) in the word Qr, and associated to
a ray v in the current fan realizing S(Qr) (say of dimension d ∈ N), the resulting letters
labeled (i, 1) and (i, 1)′ are respectively associated to the vectors v⊕(−f) and v⊕f in the
new fan realizing the suspension S(Qr+1) ∼= S(Qr)∗{u1, u2}, where Rd+1 = Rd⊕R f . Af-
ter fattening the triangle, we therefore obtain the pattern of coordinates of Figure 10.11
which provides rays supporting a complete simplicial fan realizing the associahedron.
The reader can refer to [PS12] to check that this fan is isomorphic to the normal fan of
the realization of the associahedron as a convex polytope by J.-L Loday [Lod04].

10.4 The construction continued to 2-associahedra

10.4.1 Heuristic construction

Cases (1), (2) and (4) of Theorem 10.9 are always avoided by the braid moves of a
fattening sequence, by Lemma 10.13. But we need a geometric transformation imple-
menting the topological effect induced by Case (5), similar to these after Lemma 10.4.
Consider a braid move changing a factor qrqr+1qr+2 of a word Q to a factor q′rq′r+1q′r+2 of
a word Q′. Suppose that the subword complex S(Q) is realized by a fan FQ in which the
vertices qr, qr+1 and qr+2 of S(Q) are associated to rays generated by vectors vr,vr+1
and vr+2 respectively, that we identify to the rays themselves. Recall that we described
the topological effect in Case (5) of Theorem 10.9 as “moving the vertex qr+1 from one
side of the edge qrqr+2 to the other” (see Figure 10.7). In fan words, it heuristically
means that the cone R≥0{vr,vr+2} should separate the ray vr+1, associated to qr+1 in
the fan FQ, and the ray v′r+1 associated to q′r+1 in a potential fan realizing the subword
complex S(Q′). This intuitive description can be geometrically translated as follows.
• take any vector v in the interior of the cone R≥0{vr,vr+2}, that is v can be written

in the form αvr + β vr+2 for some α, β > 0;
• move vr+1 in the direction of v in order to cross the cone R≥0{vr,vr+2}.

For the last point, the ray vr+1 should be moved “not to far” from v in order to ensure
it to cross the cone R≥0{vr,vr+2}, but no other cone of the fan. Since the direction
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vr + vr+2
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vr + vr+2
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Figure 10.12 – The geometric transformation on the rays of a complete simplicial fan
corresponding to a braid move in Case (5) of Theorem 10.9. In this figure only the
relevant rays and cones are represented. The dotted vectors are represented in order to
help understanding the figure but they are not rays of the fan.

from vr+1 to v is v − vr+1, our intuitive description suggests to replace the ray vr+1 by
the ray v′r+1 := v + ε (v − vr+1), with ε > 0 small enough. As we are interested in rays,
we can consider their generators up to rescaling and therefore replace the ray generated
by vr+1 by the ray generated by v′r+1 := v − εvr+1. In other words, any vector of the
form αvr + β vr+2 − εvr+1 with α, β, ε > 0 and ε small enough would be a legitimate
candidate for v′r+1. We generically choose α = 1, β = 1 and ε = 1 (see Figure 10.12 for
an illustration). Finally, following the identifications between the letters of Q and Q′,
the letter q′r (resp. q′r+2) is associated to the ray vr+2 (resp. vr).

In the sequel, we will consider vectors vq ∈ Rd associated to the letters q of some
words Q (with d = dim(S(Q)) + 1), that we will then abusively call the rays of the
subword complex S(Q), even if the rays in {vq | q is a letter in Q} may not support a
complete simplicial fan realizing S(Q). If they do, we say that these rays are realizing
for S(Q). We only require that nonvertices are associated to the zero vector 0. The pre-
vious description allows to derive a general heuristic formula for the rays obtained after
a fattening sequence. Notice that we already gave after Lemma 10.4 some transforma-
tions on rays associated to one-point-suspensions and stellar subdivisions, that corre-
spond to the effect of moves described in Theorem 10.8 and Case (3) of Theorem 10.9.
Observe that the transformation that we defined for Case (5) of Theorem 10.9 is in fact
also valid for Case (3), since we impose that nonvertices are associated to the zero vec-
tor. So given a word Q = U1w◦(c)U2 containing a distinguished triangle, and to which
letters some rays are associated, we can use Lemma 10.13 and the transformations cor-
responding to moves to derive rays associated to the letters of a word Q′ = U1w◦(c)c−1U2
obtained by fattening the distinguished triangle of Q. The rays corresponding to the let-
ters of the word Q span a vector space isomorphic to Rd (with d = dim(S(Q)) + 1), and
we consider a basis f1, . . . , fn of Rn in direct sum with this vector space, so that each
reverse 0-Hecke move of a fattening sequence lets a coordinate corresponding to one of
the fi appear in the rays of the current subword complex. The resulting pattern for the
rays of the letters in the factor w◦(c)c−1 of the word Q′ is presented in Figure 10.13.

The pattern of Figure 10.13 gives an algorithmic way to produce candidates rays
for a fan realization of the subword complex S(Q′) whenever we already know that the
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Figure 10.13 – The sorting network of a triangle in a word Q, in which the letter in
position (i, j) is labeled with its associated ray v(i,j) ∈ Rd, for d = dim(S(Q))−1 (left) and
the sorting network of the factor w◦(c)c−1 in the word Q′ obtained from Q by fattening
the triangle (right). The letters in this factor are again labeled with their associated ray,
obtained from these in the initial triangle following the geometric transformations along
the fattening sequence.

s1 : [−1 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 ]
s1 : [ 1 −1 0 0 −1 0 0 0 ]
s2 : [ 0 1 −1 0 0 −1 0 0 ]
s3 : [ 0 0 1 −1 0 0 −1 0 ]
s4 : [ 0 0 0 1 0 0 0 −1]
s1 : [ 0 0 0 0 1 −1 0 0 ]
s2 : [ 0 −1 1 0 1 0 −1 0 ]
s3 : [ 0 −1 0 1 1 0 0 −1]
s4 : [ 1 −1 0 0 1 0 0 0 ]
s1 : [ 0 0 0 0 0 1 −1 0 ]
s2 : [ 0 0 −1 1 0 1 0 −1]
s3 : [ 0 1 −1 0 0 1 0 0 ]
s1 : [ 0 0 0 0 0 0 1 −1]
s2 : [ 0 0 1 −1 0 0 1 0 ]
s1 : [ 0 0 0 1 0 0 0 1 ]

Table 10.1 – The coordinates of the rays associated to the letters of the word c2w◦(c)
obtained by fattening twice a triangle for n = 4. These first candidate rays yet do not
support a complete simplicial fan realizing the 2-associahedron ∆2,4.

set of rays we started with for the subword complex S(Q) support a complete simpli-
cial fan realizing it. For 2-associahedra, we only need to fatten twice a triangle. In-
deed, the word w◦(c) can be fattened into the word w◦(c)c−1, which is equivalent to the
word cw◦(c), in which we can fatten the suffix triangle into obtaining the word cw◦(c)c−1,
which is equivalent to c2w◦(c). The resulting rays for the subword complex S(c2w◦(c))
are illustrated in Table 10.1 for n = 4.

We now wonder whether the rays we obtained support a complete simplicial fan
realizing the subword complexes S(c2w◦(c)), and if not “how close” it is to be so. For
this we consider the set Fn of all cones generated by any set of rays which corresponds
to a face of the subword complex S(c2w◦(c)). We recall that a ridge of the subword
complex S(c2w◦(c)) is a face which is the intersection of exactly two facets. We will
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n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 0
# degenerate ridges 0 0 11 282 5, 058 78, 904 1, 144, 499 15, 909, 182

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 4.37 11.87 21.44 32.15 43.11 53.57

# degenerate cones 0 0 2 48 782 10, 992 143, 838 1, 811, 972
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 2.38 8.08 16.57 26.88 37.93 48.82

minimal dimension 2 4 5 6 7 8 9 10

Table 10.2 – The statistics for the sets of cones Fn.

abusively refer to the cones of Fn corresponding to facets (resp. ridges) of the subword
complex S(c2w◦(c)) as to the facets (resp. ridges) of Fn. The rays of Fn lie in R2n and
any ridge is contained in two facets, each generated by 2n vectors, that differ by a single
generator. Therefore a ridge R defines exactly 2n + 1 rays, and thus at least one linear
dependence between them. If the rays associated to the ridge R are link by a single (up
to rescaling) linear dependence not satisfying Condition (2) of Proposition 3.7, we say
that R is a bad ridge of Fn. If the space of linear dependences on the rays defined by R
has dimension greater than 1, we say that R is a degenerate ridge of Fn. In this case
at least one of the facets containing the ridge R is not full dimensional. We call such a
facet a degenerate cone of Fn. Proposition 3.7 suggests to look at the following statistics
on the set of cones Fn.
• The rate of bad ridges in Fn, which sort of measures “nontractable issues”.
• The rates of degenerate cones and ridges in Fn, which describe the “global dege-

neracy” in Fn. Since the dual graph of the complex S(c2w◦(c)) is regular, they also
give the number of pairs of adjacent degenerate cones.
• The minimal dimension of a facet in Fn, which measures “local degeneracy”.
We gather these statistics in Table 10.2 for n ≤ 8.

Observation 10.15. The empirical data suggest that fattening twice a triangle produce
rays that do not realize the 2-associahedron, but “only” up to degeneracies. Indeed the
process does not seem to let bad ridges appear. Yet the indicators for degeneracy are
high, so that the rays we obtain should not be perturbed easily into realizing ones.

10.4.2 Degrees of freedom

In view of Observation 10.15, we need a less naive construction to obtain realizing rays
for 2-associahedra. We derive it from making the one presented in Section 10.4.1 less
generic. Indeed we always used “generic” coefficients in the geometric translations for
the different topological effects of the braid moves. But as we notice after Lemma 10.4
and at the beginning of Section 10.4.1, we may let some of them vary for the new rays
of the letters implied in a reverse 0-Hecke move or in a braid move. This belongs to the
following many degrees of freedom that we could consider for the construction.

coefficients for reverse 0-Hecke moves For any reverse 0-Hecke move, we can turn
the ray v of the doubled letter into v ⊕ α f and v ⊕ β f , for any α and β sa-
tisfying αβ < 0, to realize the corresponding one-point-suspension. The con-
struction of Section 10.4.1 generically keeps α = −1 and β = 1.

coefficients for braid moves According to Lemma 10.13, a braid move in a fattening
sequence always implies a factor qrqr+1qr+2 with letters qr, qr+1 and qr+2 respecti-
vely labeled (i, 1)′, (i, j + 1) and (i+ j, 1) (for i ∈ [n− 1], j ∈ [n− i]). We denote the
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respective rays associated to these letters vr,vr+1 and vr+2, and by q′rq′r+1q′r+2 the
factor by which qrqr+1qr+2 is replaced by the braid move. We chose in Section 10.4.1
to associate the letter q′r+1 to any ray of the form αvr + β vr+2 − εvr+1 with α >
0, β > 0, ε > 0 and ε small enough. In our construction of Section 10.4.1, we
fatten twice a triangle. The first fattening sequence only contains braid move
inducing stellar subdivisions while the second one only contains braid move in-
ducing Case (5) of Theorem 10.9. In the first case there is in fact only two choi-
ces of coefficients since the ray associated to the letter qr+1 is the zero vector.
We will denote by λ(i,j) and ρ(i,j) the respective coefficients of vr and vr+2 in
the first fattening sequence, and by α(i,j), β(i,j) and ε(i,j) the respective coeffi-
cients of vr,vr+1 and vr+2 in the second fattening sequence of the construction.
Since the effect of braid moves are local, we can a priori choose all these coeffi-
cients independently whereas the initial construction of Section 10.4.1 generically
set λ(i,j) = ρ(i,j) = α(i,j) = β(i,j) = ε(i,j) = 1.

choice of the triangle We did not insist on the triangle that we fatten in the con-
struction. There is indeed only one choice for the initial word, which is itself a
triangle, but the second fattening sequence is applied to the suffix triangle of the
word cw◦(c). This word can be moved to the word w◦(c)c−1 by commutation moves
so that we could also apply the second fattening sequence to the prefix triangle
of this new word. It is easy to check that the two sets of rays obtained by both
methods are linearly equivalent. Yet we can use the rotation map described in The-
orem 10.6 to obtain other nonequivalent constructions. Denoting by Q	k the word
obtained by applying k times the rotation map to a word Q, we see that any word
of the form (cw◦(c))	k.n, for k ∈ N, can be moved back to cw◦(c) by commutation
moves. Therefore we could choose a lot of triangles to fatten (in fact n+ 1) instead
of always taking the suffix one without applying any rotation to the current word,
as in the construction of Section 10.4.1.

starting associahedron Finally we observe that we could start from any realizing rays
for the subword complex S(cw◦(c)) to apply the second fattening sequence of the
construction. In view of the numerous fan realizations for the usual associahe-
dron, this is a wide additional degree of freedom.

We did not test exhaustively all the possibilities allowed by these multiple degrees of
freedom. Since the initial motivation of this project was to realize as fans one of the first
unrealized multiassociahedra ∆2,5 and ∆4,4, we mostly made some kind of “depth first
search testing” in that direction. Therefore we will not mention all combinations that
failed out and concentrate on this that actually provided results. It turns out that letting
the coefficients λ(i,j) and ρ(i,j) vary was somehow successful. So from now on we will
denote by Fn(λ(i,j), ρ(i,j)) the set of cones obtained by fattening twice a suffix triangle
of an initial triangle, where the first fattening is done with coefficients λ(i,j) and ρ(i,j),
and the second one with coefficients α(i,j) = β(i,j) = ε(i,j) = 1. The choice λ(i,j) = 5
and ρ(i,j) = 3 was the best one among these not letting the coefficients depend on
the position of the corresponding letter. Table 10.3 gathers the statistics for the set
of cones Fn(5, 3) for n ≤ 8. Observe that the rates of degenerate ridges and cones
decreases by a factor of about 2 with this simple change in the coefficients. In particular
we obtain new realizing rays for the 2-associahedron ∆2,3 (see Table 10.4). We came out
with such coefficients mostly because we observed that having λ(i,j) and ρ(i,j) relatively
prime helped reducing degeneracies. Finally it turns out that letting them be moreover
linear in (i, j) yielded us the best results, namely when letting λ(i,j) = 2n + 4 − i − j
and ρ(i,j) = λ(i,j)− 1. The statistics of the sets of cones Fn(2n+ 4− i− j, 2n+ 3− i− j),
for n ≤ 8, are gathered in Table 10.5 .
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n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 0
# degenerate ridges 0 0 0 78 2, 216 43, 298 724, 546 11, 150, 457

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 0 3.28 9.39 17.63 27.29 37.55

# degenerate cones 0 0 0 12 320 5, 742 87, 714 1, 233, 154
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 0 2.02 6.78 14.04 23.13 33.22

minimal dimension 2 4 6 7 8 9 10 11

Table 10.3 – The statistics for the sets of cones Fn(5, 3).

s1 : [−1 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 ]
s1 : [ 5 −3 0 −1 0 0 ]
s2 : [ 0 5 −3 0 −1 0 ]
s3 : [ 0 0 1 0 0 −1 ]
s1 : [ 0 2 0 1 −1 0 ]
s2 : [ 4 −3 1 1 0 −1 ]
s3 : [ 5 −3 0 1 0 0 ]
s1 : [ 0 4 −2 0 1 −1 ]
s2 : [ 0 5 −3 0 1 0 ]
s1 : [ 0 0 1 0 0 1 ]

Table 10.4 – The rays supporting the set of cones F3(5, 3), associated to each letter of
the word c2w◦(c) for n = 3. These rays are realizing, that is the set of cones F3(5, 3) is a
complete simplicial fan realizing the 2-associahedron ∆2,3.

n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 20
# degenerate ridges 0 0 0 39 1, 122 22, 317 381, 533 6, 026, 814

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 0 1.64 4.76 9.09 14.37 20.30

# degenerate cones 0 0 0 6 160 2, 904 45, 173 650, 734
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 0 1.01 3.39 7.10 11.91 17.53

minimal dimension 2 4 6 7 8 9 10 11

Table 10.5 – The statistics for the sets of cones Fn(2n + 4− i − j, 2n + 3− i − j). With
this choice of coefficients, some bad ridges appear in the construction for n = 8.

Observation 10.16. It is possible to let the coefficients λ(i,j) and ρ(i,j) vary in order to
still obtain sets of cones Fn(λ(i,j), ρ(i,j)) with degeneracies but almost no bad ridges.
Moreover some choices let the degeneracy indicator decrease remarkably. Indeed the
choice λ(i,j) = 2n + 4 − i − j and ρ(i,j) = 2n + 3 − i − j again decreases by a factor of
about 2 these indicators by comparison to the choice λ(i,j) = 5 and ρ(i,j) = 3.
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10.4.3 Perturbations

As a particular case of Observation 10.16, we noticed that F5(14 − i − j, 13 − i − j)
seemed really close of realizing the 2-associahedron ∆2,5. So we stopped our experi-
ments on the coefficients λ(i,j) and ρ(i,j) and tried to perturb the rays randomly with
the hope of killing the last remaining degeneracies. Again there is some freedom in
this idea of “perturbing” the rays. Indeed we tried to add a random and small enough
term to each of their coordinate, unsuccessfully. But then, applying the perturbations
to the coefficients λ(i,j) and ρ(i,j) themselves finally gave us realizing rays for the 2-
associahedron ∆2,5 (see Table 10.6). Of course not all perturbations terms that appear
in these rays are necessary. So working on the coordinates in Table 10.6, we found
the simpler ones in Table 10.7. Notice that these rays now have integer coordinates
between −10 and 10. Moreover the number of perturbation terms is now reduced to 3.

Observing the pattern formed on the sorting network of the word c2w5(c) by these
perturbation terms, we derived the conjectural pattern for realizing rays for any 2-
associahedron of Figure 10.14, and described in Section 10.1. There we stated Que-
stion 10.3 as a question rather than as a conjecture, because of the 20 bad ridges
appearing with our choice of coefficients for n = 8. This is a priori not a problem since
the number of perturbations grows quadratically with n and our candidate pattern of
rays is still realizing for n = 8. Moreover the other tries we made seemed to indicate
that more random integer perturbations failed realizing 2-associahedra before n = 6.
Yet these bad ridges may grow quickly with n and let our pattern finally fail being re-
alizing for all n. But we still obtain realizations for some 2-associahedra with integer
coordinates between −(2n+ 1) and (2n+ 2), for n ≤ 8.

Theorem 10.17. The rays of the pattern in Figure 10.14 support a complete simplicial
fan in R2n which realizes the multiassociahedron ∆2,n for n ∈ [8].

s1 : [ −1 0 0 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 0 0 ]
s5 : [ 0 0 0 0 −1 0 0 0 0 0 ]
s1 : [11.995220082449654 −11.002018603888557 0 0 0 −1 0 0 0 0 ]
s2 : [ 0 10.998025890846899 −10.000386365505443 0 0 0 −1 0 0 0 ]
s3 : [ 0 0 9.995777402249201 −8.998111068535287 0 0 0 −1 0 0 ]
s4 : [ 0 0 0 9.00229715779829 −8.001163693705028 0 0 0 −1 0 ]
s5 : [ 0 0 0 0 1 0 0 0 0 −1]
s1 : [0.9957828222479908 −0.003992713041657936 −0.0014994963267600525 0 0 1 −1 0 0 0 ]
s2 : [1.9999160791264572 −11.002018603888557 9.995777402249201 −0.0030142895687461646 0 1 0 −1 0 0 ]
s3 : [2.9965399682572844 −11.002018603888557 0 9.00229715779829 −0.0040464541747882166 1 0 0 −1 0 ]
s4 : [10.995220082449654 −11.002018603888557 0 0 1 1 0 0 0 −1]
s5 : [11.995220082449654 −11.002018603888557 0 0 0 1 0 0 0 0 ]
s1 : [ 0 0.9936127652497042 −0.004608963256242049 0.0012209718570073136 0 0 1 −1 0 0 ]
s2 : [ 0 2.001435184525553 −10.000386365505443 9.00229715779829 −0.0008415764775513424 0 1 0 −1 0 ]
s3 : [ 0 9.998025890846899 −10.000386365505443 0 1.0 0 1 0 0 −1]
s4 : [ 0 10.998025890846899 −10.000386365505443 0 0 0 1 0 0 0 ]
s1 : [ 0 0 0.9945133005526081 0.004186089263003012 0.0007304432600054866 0 0 1 −1 0 ]
s2 : [ 0 0 8.995777402249201 −8.998111068535287 1 0 0 1 0 −1]
s3 : [ 0 0 9.995777402249201 −8.998111068535287 0 0 0 1 0 0 ]
s1 : [ 0 0 0 8.00229715779829 −7.001163693705028 0 0 0 1 −1]
s2 : [ 0 0 0 9.00229715779829 −8.001163693705028 0 0 0 1 0 ]
s1 : [ 0 0 0 0 1 0 0 0 0 1 ]

Table 10.6 – Realizing rays of the 2-associahedron ∆2,5, associated to each letter of
the word c2w◦(c) for n = 5. These rays were obtained by fattening twice the suffix
triangle of an initial triangle with coefficients λ(i,j) = 14 − i − j + ε`(i,j) and ρ(i,j) =
13 − i − j + εr(i,j), where ε`(i,j) and εr(i,j) were uniform independent random variables
in [−0.001, 0.001] for i ∈ [4] and j ∈ [5− i].
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s1 : [−1 0 0 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 0 0 ]
s5 : [ 0 0 0 0 −1 0 0 0 0 0 ]
s1 : [ 12 −11 0 0 0 −1 0 0 0 0 ]
s2 : [ 0 11 −10 0 0 0 −1 0 0 0 ]
s3 : [ 0 0 10 −9 0 0 0 −1 0 0 ]
s4 : [ 0 0 0 9 −8 0 0 0 −1 0 ]
s5 : [ 0 0 0 0 1 0 0 0 0 −1]
s1 : [ 1 0 0 0 0 1 −1 0 0 0 ]
s2 : [ 2 −11 10 −1 0 1 0 −1 0 0 ]

s3 : [ 3 −11 0 9 −2 1 0 0 −1 0 ]
s4 : [ 11 −11 0 0 1 1 0 0 0 −1]
s5 : [ 12 −11 0 0 0 1 0 0 0 0 ]
s1 : [ 0 1 0 0 0 0 1 −1 0 0 ]
s2 : [ 0 2 −10 9 −1 0 1 0 −1 0 ]
s3 : [ 0 10 −10 0 1 0 1 0 0 −1]
s4 : [ 0 11 −10 0 0 0 1 0 0 0 ]
s1 : [ 0 0 1 0 0 0 0 1 −1 0 ]
s2 : [ 0 0 9 −9 1 0 0 1 0 −1]
s3 : [ 0 0 10 −9 0 0 0 1 0 0 ]
s1 : [ 0 0 0 8 −7 0 0 0 1 −1]
s2 : [ 0 0 0 9 −8 0 0 0 1 0 ]
s1 : [ 0 0 0 0 1 0 0 0 0 1 ]

Table 10.7 – Realizing rays of the 2-associahedron ∆2,5, associated to each letter of
the word c2w◦(c) for n = 5. These rays were obtained by working on the coordinates
of these in Table 10.6. The perturbation terms, that is the coordinates that are diffe-
rent from these obtained by fattening twice a suffix triangle in an initial triangle with
coefficients λ(i,j) = 14 − i − j and ρ(i,j) = 13 − i − j, appear boxed and red. In the
nonperturbed set of rays, all the corresponding terms are equal to zero. Observe finally
that all perturbation terms are negative integers.
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Figure 10.14 – The candidate pattern for integer rays supporting a fan realizing 2-
associahedra. We denote the n first vectors of the canonical basis of R2n by (ei)i∈[n]
and the n last ones by (fi)i∈[n]. The perturbation terms appear boxed and red. They
are negative and replace zero coordinates of the nonperturbed construction. This pat-
tern is the one we obtain after applying 2n times the rotation map to the underlying
word c2w◦(c) to have a better presentation.
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10.5 Discussion

10.5.1 Polytopality

Unfortunately none of the new fans we produce happens to be the normal fan of a
polytope. Not even in the case of the 2-associahedron ∆2,3 which is known to have a
polytopal realization by J. Bokowski and V. Pilaud [BP09], although our transformations
are intuitively chosen to fit with geometric constraints. This confirms4 that the way
from combinatorics to geometry is very tight and how hard it is to handle with in the
case of multiassociahedra.

10.5.2 Further k’s

The few tries we made towards more general k than 2 did not work successfully and
quickly produced sets of cones with many bad ridges, in contrast with Section 10.4.1.
We tried to fatten three times a triangle, which produced really bad objects, and then
tried to fatten a triangle starting from the valid rays we had obtained after perturbing,
which was not better. But our experiments lack exhaustive tries and the main issue
with our method somehow comes from the fact that we have too many and too wide
degrees of freedom to apply it.

4If ever it was still needed...





A
Hamiltonicity of graph

associahedra

In this appendix, we prove that the flip graph F(G) is Hamiltonian for any graph G with
at least 2 edges. This extends the result of H. Steinhaus [Ste64], S. Johnson [Joh63],
and H. Trotter [Tro62] for the permutahedron, and of J. Lucas [Luc87] for the associ-
ahedron (see also [HN99]). For all the proof, it is more convenient to work with spines
than with tubings. We invite the reader to remind Sections 5.2.2 and 5.2.3, were spi-
nes were defines as the Hasse diagrams of the inclusion posets of tubings, with nodes
labeled by sets of the form λ(t,T). We first sketch the strategy of our proof.

A.1 Strategy

For any vertex v of G, we denote by Fv(G) the graph of flips on all spines on G where v
is a root. We call fixed-root subgraphs of F(G) the subgraphs Fv(G) for v ∈ V. Note
that the fixed-root subgraph Fv(G) is isomorphic to the flip graph F(G[v̂]), where G[v̂]
is the subgraph of G induced by v̂ := V r {v}.

We now distinguish two extreme types of flips. Consider two maximal tubings T,T′
on G and tubes t ∈ T and t′ ∈ T′ such that T̄ := T r {t} = T′ r {t′}. Let S, S′ and S̄
denote the corresponding spines and {v} = λ(t,T) and {v′} = λ(t′,T′). We say that the
flip T̄ (or equivalently S̄) is

(i) a short flip if both t and t′ are singletons, that is, if {v, v′} is a leaf of S̄;

(ii) a long flip if t and t′ are maximal proper tubes in T and T′, that is, if {v, v′} is a
root of S̄.

Note that in a short flip, the vertices v, v′ are necessarily adjacent in G. In the short
flip S̄, we call short leaf the leaf labeled by {v, v′} of S̄, short root the root of the tree of S̄
containing the short leaf, and short child the child w of the short root on the path to the
short leaf. If the short leaf is already a child of the short root, then it coincides with the
short child. Moreover, the short root, short child and short leaf all coincide if they form
an isolated edge of G. In the long flip S̄, we call long root the root labeled by {v, v′}.

We define a bridge to be a square B in the flip graph F(G) formed by two short and
two long flips. We say that these two short (resp. long) flips are parallel, and we borrow
the terms long root and short leaf for the bridge B. Figure A.1 illustrates the notions of
bridge, long flips and short flips.
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In terms of spines, a bridge can equivalently be defined as a spine B of G where all
labels are singletons, except the label {r, r′} of a root and the label {s, s′} of a leaf. We
denote by B[r] the short flip of B where r is a root, by B[s] the long flip of B where s is
a leaf, and by B[rs] the maximal spine on G refining both B[r] and B[s], i.e. where r is
a root and s a leaf. The flips B[r′] and B[s′] as well as the maximal spines B[r′s],B[rs′],
and B[r′s′] are defined similarly. These notations are summarized below

To obtain a Hamiltonian cycle H of the flip graph F(G), we proceed as follows. The
idea is to construct by induction a Hamiltonian cycle Hv̂ of each flip graph F(G[v̂]),
which is isomorphic to a Hamiltonian cycle Hv in each fixed-root subgraph Fv(G).
We then select an ordering v1, . . . , vn+1 of V, such that two consecutive Hamiltonian
cycles Hvi and Hvi+1 meet the parallel short flips of a bridge Bi for all i ∈ [n]. The
Hamiltonian cycle of F(G) is then obtained from the union of the cycles Hv1 , . . . ,Hvn+1
by exchanging the short flips with the long flips of all bridges B1, . . . ,Bn, as illustrated
in Figure A.2.

Of course, this description is a simplified and naive approach. The difficulty lies in
that, given the Hamiltonian cycles Hv of the fixed-root subgraphs Fv(G), the existence
of a suitable ordering v1, . . . , vn+1 of V and of the bridges B1, . . . ,Bn connecting the
consecutive Hamiltonian cycles Hvi and Hvi+1 is not guaranteed. To overpass this
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Figure A.1 – A bridge, with two long flips (horizontal, red) and two short flips (vertical,
blue).
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Figure A.2 – The strategy for the proof of the hamiltonicity of the flip graph F(G).
The circles above the short flips in the flip graphs F(G[v̂i]) on top indicate that they
are obtained by deleting the root vi in the corresponding short flip of the fixed-root
subgraph Fvi(G) on bottom. See also Theorem A.1.

issue, we need to impose the presence of two forced short flips in each Hamiltonian
cycle Hv. We include this condition in the induction hypothesis and prove the following
sharper version of Theorem 5.1.

Theorem A.1. For any graph G, any pair of short flips of F(G) with distinct short roots
is contained in a Hamiltonian cycle of the flip graph F(G).

Note that for any graph G with at least 2 edges, the flip graph F(G) always contains
two short flips with distinct short roots. Theorem 5.1 thus follows from the formulation
of Theorem A.1.

The issue in our inductive approach is that the fixed-root subgraphs of F(G) do not
always contain two edges, and therefore cannot be treated by Theorem A.1. Indeed, it
can happen that:

• G[v̂] has a single edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is redu-
ced to a single (short) flip. This case can still be treated with the same strategy:
we consider this single flip Fv(G) as a degenerate Hamiltonian cycle and we can
concatenate two bridges containing this short flip.

• G[v̂] has no edge and thus the fixed-root subgraph Fv(G) ∼ F(G[v̂]) is a point.
This is the case when G is a star with central vertex v together with some isolated
vertices. We need to make a special and independent treatment for this particular
case. See Section A.4.

A.2 Disconnected graphs

We first show how to restrict the proof to connected graphs using some basic results on
products of cycles. We need the following lemmas.

Lemma A.2. For any two cycles H,H′ and any two edges e, e′ of H×H′, there exists a
Hamiltonian cycle of H×H′ containing both e and e′.

Proof. The idea is illustrated in Figure A.3. The precise proof is left to the reader. �

Lemma A.3. For any cycle H, any isolated edge e◦ and any two edges e, e′ of H × e◦,
there exists a Hamiltonian cycle containing both e and e′, as soon as one of the following
conditions hold:
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Figure A.3 – An idea for the proof of Lemma A.2. Any pair of edges is contained in a
Hamiltonian cycle similar to those. The pictures represent Cartesian products of the
cycle H with the path obtained by deleting one edge in H′.

1. the edges e, e′ are not both of the form {v} × e◦ with v ∈ H;

2. e = {v} × e◦ and e′ = {v′} × e◦ where {v, v′} is an edge de H;

3. H has an even number of edges.

Proof. The idea is illustrated in Figure A.4. The precise proof is left to the reader. �

Figure A.4 – An idea for the proof of Lemma A.3. The right picture only works for even
cycles.

Corollary A.4. If two graphs G,G′ both have the property that any pair of short flips of
their flip graph with distinct short roots is contained in a Hamiltonian cycle of their flip
graph, then G tG′ fulfills the same property.

Proof. We have seen that the flip graph of the disjoint union of two graphs G1 and G2 is
the product of their flip graphs F(G1) and F(G2). The statement thus follows from the
previous lemmas. �

A.3 Generic proof

We now present an inductive proof of Theorem A.1. Corollary A.4 allows us to restrict
to the case where G is connected. For technical reasons, the stars and the graphs
with at most 6 vertices will be treated separately. We thus assume here that G is not
a star and has at least 7 vertices, which ensures that any fixed root subgraph of the
flip graph F(G) has at least one short flip. Fix two short flips f , f ′ of F(G) with distinct
short roots v1, vn+1 respectively.

We follow the strategy described in Section A.1 and illustrated in Figure A.2. To
apply Theorem A.1 by induction on G[v̂i], the short flips Bi−1[vi] and Bi[vi] should have
distinct short children. This forbids certain positions for vi+1 in Bi−1[vi] illustrated in
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Figure A.5, and motivates the following definition. We say that a vertex w and a short
flip g with root v are in conflict if either of the following happens:

(A) {w} is the short child of g and all other children of v in g are isolated in G[v̂];
(B) the graph G[v̂] has at least three edges, the graph G r {v, w} has exactly one edge

which is the short leaf of g;

(C) the graph G[v̂] has exactly two edges, the graph G r {v, w} has exactly one edge
which is the short leaf of g, and w is a child of v.

It is immediate that a short flip is in conflict with at most one vertex. Observe also that
if w is in the short leaf of g, then w and g cannot be in conflict.

w

v v

w

v

w

v

w

(A) (B) (C)
Figure A.5 – Short flips in conflict with vertex w. The short leaf is shaded. The second
short flip of Case (B) is in conflict with w only if the connected component of G[v̂]
containing w is a star with central vertex w.

We now show how we order the vertices v1, . . . , vn+1 such that for each i ∈ [n] there
exists a bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1(G).
Lemma A.5. There exists an ordering v1, . . . , vn+1 of the vertices of G (provided |V| ≥ 7)
satisfying the following properties:

• v2 and f are not in conflict, and vn and f ′ are not in conflict, and

• for any i ∈ [n], the graph G contains an edge disjoint from {vi, vi+1}.

Proof. Let a and a′ denote the vertices in conflict with f and f ′ if any. Let D denote
the set of totally disconnecting pairs of G, i.e. of pairs {x, y} such that G r {x, y} has
no edge. We want to show that there exists an ordering on the vertices of G in which
neither {v1, a} nor {a′, vn+1}, nor any pair of D are consecutive. For this, we prove
that if G has at least 5 vertices and is not a star (i.e. all edges contain a central vertex),
then |D| ≤ 2 and the pairs in D are not disjoint.

Suppose by contradiction that D contains two disjoint pairs {x1, y1} and {x2, y2}.
Then any edge of G intersects both pairs, so that x1, x2, y1, y2 are the only vertices in G
(by connectivity), contradicting that G has at least 5 vertices. Suppose now that D
contains three pairwise distinct pairs {x, y1}, {x, y2} and {x, y3}. Then any edge of G
contains x since it cannot contain y1, y2 and y3 together. It follows that G is a star with
central vertex x.

Since |D| ≤ 2, at most 4 pairs of vertices of G cannot be consecutive in our ordering.
It is thus clear that if there are enough other vertices, we can find a suitable ordering.
In fact, it turns out that it is already possible as soon as G has 7 vertices. It is easy to
prove by a boring case analysis. We just treat the worst case below.

Assume that D = {{x, y}, {x, z}} where x, y, z /∈ {v1, vn+1} and that x is in con-
flict with both short flips f and f ′. Since |V| ≥ 7, there exist two distinct vertices
u, v /∈ {v1, vn+1, x, y, z} and we set v2 = z, v3 = y, v4 = u, v5 = x, v6 = v and choose any
ordering for the remaining vertices. This order satisfies the requested conditions. �
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Remark A.6. In fact, using similar arguments, one can easily check that the result of
Lemma A.5 holds in the following situations:
• |V| = 6, and either |D| ≤ 1 or D = {{x, y}, {x, z}} where x is not in conflict with

both f , f ′.
• |V| = 5, and either D = ∅ or D = {{x, y}} where neither x nor y is in con-

flict with both f , f ′.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z} ∩ {v1, v5}| = 2.
• |V| = 5, and D = {{x, y}, {x, z}} and |{x, y, z} ∩ {v1, v5}| = 1 and neither of x, y, z

is in conflict with any of f and f ′.

Given such an ordering v1, . . . , vn+1, we choose bridges B1, . . . ,Bn connecting the
fixed-root subgraphs Fv1(G), . . . ,Fvn+1(G). We start with the choice of B1.

Lemma A.7. There exists a bridge B1 with root {v1, v2} such that

• if Fv1(G) is a square, the short flips f and B1[v1] are distinct,

• if Fv1(G) is not reduced to a single flip nor to a square, the short flips f and B1[v1]
have distinct short children,

• B1[v2] and v3 are not in conflict, and

• the singleton {v3} is a child of v2 in B1[v2] only if v3 is isolated in G r {v1, v2}.

Proof. The proof is an intricate case analysis. In each case, we will provide a suitable
choice for B1, but the verification that this bridge exists and satisfies the conditions
of the statement is immediate and left to the reader. We denote by κ the connected
component of G[v̂1] containing v2. The following cases cover all possibilities:

♠ κ = {v2}:

♥ G r {v1, v2} has only one edge: the fixed root subgraph Fv1(G) is reduced to the
short flip f and the bridge obtained by contracting {v1, v2} in f suits for B1.

♥ G r {v1, v2} has at least two edges: we choose for B1 any bridge with root {v1, v2}
and with a short child different from that of f .

♠ κ 6= {v2}, so that κ has at least one edge:

♥ G[v̂1] r κ has no edge: Condition (A) on f and v2 ensures that v2 is not the short
child of f . Since the short leaf of f has to be in κ, the short children of f and B1[v1]
will automatically be different.

♦ v3 /∈ κ: any bridge with root {v1, v2} suits for B1.
♦ v3 ∈ κ:
♣ v3 is isolated in κr {v2}: any bridge with root {v1, v2} suits for B1.
♣ v3 is not isolated in κr{v2}: we choose for B1 a bridge with root {v1, v2} and

whose short leaf contains v3.

♥ G[v̂1] r κ has precisely one edge e:

♦ e is not the short leaf of f : we choose for B1 any bridge with root {v1, v2}, short
leaf e and in which {v3} is a child of the root only if it is isolated in Gr{v1, v2}.

♦ e is the short leaf of f :
♣ κ is a single edge: we choose for B1 the bridge obtained by contracting {v1, v2}

in the short flip opposite to f in the square Fv1(G) (which suits by Condi-
tion (C)).

♣ κ has at least two edges: Condition (B) ensures that κ r {v2} has at least
one edge.
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◦ v3 /∈ κ: any bridge with root {v1, v2} and short leaf in κ suits for B1.
◦ v3 ∈ κ:
? v3 is isolated in κr{v2}: any bridge with root {v1, v2} and short leaf in κ

suits.
? v3 is not isolated in κr{v2}: we choose for B1 a bridge with root {v1, v2}

and whose short leaf contains v3.

♥ G[v̂1] r κ has at least two edges:

♦ G[v̂1] r κ has only one nontrivial connected component: we choose for B1 a
bridge with root {v1, v2}, with short leaf containing the nonisolated child of v1
in f which is not in κ, and in which {v3} is a child of the root only if it is either
isolated in G r {v1, v2} or the short child of B1[v1].

♦ G[v̂1]r κ has at least two nontrivial connected components: we choose for B1 a
bridge with root {v1, v2}, with short leaf in a connected component of G[v̂1] r κ
not containing the short leaf of f , and in which {v3} is a child of the root only
if it is either isolated in G r {v1, v2} or the short child of B1[v1]. �

The choice of Bn is similar to that of B1, replacing v1, v2, v3 and f by vn+1, vn, vn−1
and f ′ respectively. For choosing the other bridges B2, . . . ,Bn−1, we first observe the
existence of certain special vertices in G.

We say that a vertex distinct from v1 and vn+1 which disconnects at most one vertex
is an almost leaf of G. Observe that G contains at least one almost leaf: Consider a
spanning tree T of G. If T is a path from v1 to vn+1, the neighbor of v1 in T is an almost
leaf of G. Otherwise, any leaf of T distinct from v1 and vn+1 is an almost leaf of G.

Choose an almost leaf vi of G which disconnects no vertex if possible, and any
almost leaf otherwise. We sequentially construct the bridges B2, . . . ,Bi−1: once Bj
is constructed, we choose Bj+1 using Lemma A.7 where we replace v1, v2, v3 and f
by vj+1, vj+2, vj+3 and Bj [vj+1]. Similarly, we choose the bridges Bn−1, . . . ,Bi+1: once
Bj+1 is constructed, we choose Bj using Lemma A.7 where we replace v1, v2, v3 and f
by vj+1, vj , vj−1 and Bj+1[vj+1]. Note that the conditions on B1 required in Lemma A.7
ensure that the hypothesizes in Lemma A.5 can be propagated.

It remains to properly choose the last bridge Bi. This is done by the following state-
ment.

Lemma A.8. Let g,h be two short flips on G with distinct roots v, w respectively. Assume
that

(i) G r {v, w} has at least one edge;

(ii) g and w are not in conflict, and h and v are not in conflict;

(iii) {v} is a child of w in h only if v is isolated in G[ŵ];

(iv) v disconnects at most one vertex of G and this vertex is not w.

Then there exists a bridge B with root {v, w} such that g and B[v] are distinct if Fv[G] is
not reduced to a single flip and have distinct short children if Fv[G] is not a square, and
similarly for h and B[w].

Proof. Condition (iv) implies that {w} is the short child of B[v] for any bridge B with
root {v, w}. In contrast, Condition (iv) and Condition (A) for g and w ensure that {w} is
not the short child of g. Therefore, the conclusion of the lemma holds for g and B[v],
for any bridge B with root {v, w}. The difficulty is to choose B in order to satisfy the
conclusion for h and B[w]. For this, we distinguish various cases, in a similar manner as
in Lemma A.7. Again, we provide in each case a suitable choice for B, but the verification
that this bridge exists and satisfies the conditions of the statement is immediate and
left to the reader.
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♠ G r {v, w} has exactly one edge e: this edge e has to be the short leaf of any bridge
with root {v, w}, thus Condition (A) for h and v ensures that e is isolated in G[ŵ].
♥ e is the short leaf of h: Condition (B) for h and v ensures that Fw(G) is either a

single flip or a square (because v disconnects at most one vertex from G).
♦ Fw(G) is a single flip: B is obtained by contracting {v, w} in h.
♦ Fw(G) is a square: Condition (C) for h and v ensures that v is not a child of w

in h and B is obtained by contracting {v, w} in the short flip opposite to h in
the square Fw(G).

♥ e is not the short leaf of h: we choose for B any bridge with root {v, w} and short
leaf e.

♠ G r {v, w} has at least two edges:

♥ the short leaf and the short child of h coincide: any bridge with root {v, w} and a
short leaf distinct from that of h suits for B.

♥ the short leaf and the short child of h are distinct: we choose for B a bridge with
root {v, w} whose short leaf contains the short child of h. �

We have now chosen the order on the vertices v1, . . . , vn+1 and chosen for each i ∈ [n]
a bridge Bi connecting the fixed-root subgraphs Fvi(G) and Fvi+1(G). Our choice forces
the short flips Bi−1[vi] and Bi[vi] (as well as the short flips f and B1[v1] and the short
flips Bn[vn+1] and f ′) to be distinct if Fvi [G] is not reduced to a single flip and have
distinct short children if Fvi [G] is not a square. We then construct a Hamiltonian
cycle Hi in each fixed-root subgraph Fvi(G) such that H1 contains the short flips f
and B1[v1], Hn+1 contains the short flips Bn[vn+1] and f ′, and Hi contains the short
flips Bi−1[vi] and Bi[vi] for all 2 ≤ i ≤ n. Note that

• when Fvi(G) is reduced to a single flip, we just set Hi = Fvi(G) and consider it as
a degenerate Hamiltonian cycle;

• when Fvi(G) is a square, it is already a cyle;

• otherwise, we apply Theorem A.1 by induction to G[v̂i] and obtain the Hamiltonian
cycle Hi. The theorem applies since the short flips Bi−1[vi] and Bi[vi] have distinct
short children, so that the corresponding short flips in F(G[v̂i]) have distinct short
roots.

Finally, we obtain a Hamiltonian cycle of F(G) containing f and f ′ by gluing the cy-
cles H1, . . . ,Hn+1 together using the bridges B1, . . . ,Bn as explained in Section A.1.
This is possible since the short flips Bi−1[vi] and Bi[vi] both belong to the Hamiltonian
cycle Hi, and are distinct when Fvi(G) is not reduced to a single flip. This concludes
the proof for all generic cases. The remaining of the paper deals with the special cases
of stars and graphs with at most 6 vertices.

A.4 Stars

We now treat the particular case of stars. Consider a ground set V where a vertex ∗
is distinguished. The star on V is the tree XV where all vertices of V r {∗} are leaves
connected to ∗. The flip graph F(XV) has two kinds of fixed-root subgraphs:

• F∗(XV) is reduced to a single spine ~ with root ∗ and n leaves;

• for any other vertex v ∈ V r {∗}, the fixed-root subgraph Fv(XV) is isomorphic
to the flip graph F(Xv̂) of the star Xv̂, where ∗ is still the distinguished vertex
in v̂ = V r {v}. For a spine S ∈ Fv(XV), we denote by S̊ the unique subspine of S,
and we write in column S = v

S̊.
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To find a Hamiltonian cycle passing through forced short flips and through the
spine ~ we need to refine again the induction hypothesis of Theorem A.1 as follows.

Proposition A.9. Assume that |V| ≥ 3, and fix two short flips f , f ′ of F(XV) with distinct
roots r 6= r′ and a long flip g of F(XV) with root {r′′, ∗}. Then the flip graph F(XV) has a
Hamiltonian cycle containing f , f ′,g.

Proof. The proof works by induction on |V|. If |V| = 3, then XV is a 3-path and its
flip graph is a pentagon. The case |V| = 4 is solved by Figure A.6 up to relabeling
of V. Namely, whatever triple f , f ′,g is imposed, there is a permutation of the leaves
of X{1,2,3,∗} which sends the Hamiltonian cycle of Figure A.6 to a Hamiltonian cycle
passing through f , f ′,g. Assume now that |V| ≥ 5. We distinguish two cases.

Case 1:. r′′ ∈ {r, r′}, say for instance r′′ = r. Let w′ denote the child of r′ in the short
flip f ′. Let v1, . . . , vn−2 be an arbitrary ordering of Vr {∗, r, r′} such that v1 6= w′ (this is
possible since |V| ≥ 5), and B1, . . . ,Bn−2 any bridges such that the root of Bi is {vi−1, vi}
(where we set v0 = r′). We now choose inductively a Hamiltonian cycle Hv̂ in each flip
graph F(Xv̂) for all v ∈ V r {∗} as follows.

(i) In F(Xr̂), we choose a cycle Hr̂ containing the short flip f̊ and the long flip ~↔ r′
~ .

(ii) In F(Xr̂′), we choose a cycle Hr̂′ containing the short flips f̊ ′ and B̊1[r′] and the
long flip ~↔ r

~.

(iii) In F(Xv̂i) for i ∈ [n − 3], we choose a cycle Hv̂i containing the short flips B̊i[vi]
and B̊i+1[vi].

(iv) In F(Xv̂n−2), we choose a cycle Hv̂n−2 containing the short flip B̊n−2[vn−2].

Note that these Hamiltonian cycles exist by induction hypothesis. Indeed, the short
flips B̊i[vi] and B̊i+1[vi] have distinct roots vi−1 and vi+1. The only delicate case is

thus Point (ii): the short flips f̊ ′ and B̊1[r′] have distinct roots since we forced v1 to
be different from w′. Each Hamiltonian cycle Hv̂ on F(Xv̂) induces a Hamiltonian
cycleHv on Fv(XV) (just add v at the root in all spines). From these Hamiltonian cycles,
we construct a Hamiltonian cycle for F(XV) as illustrated in Figure A.7. We join Hr
with Hr′ by deleting the flips r

~↔
r
r′
~

and r′
~ ↔

r′
r
~

while inserting the long flips r
~↔ ~↔ r′

~

1

∗

2 3
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∗
2 3

∗
1 2 3
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∗
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∗
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∗
3
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3
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3
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2

∗

3
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∗

3
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3

1

2

1

∗
2

3

∗

3

1

2
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1

2

∗

1

2
3

Figure A.6 – A Hamiltonian cycle in the flip graph F(X{1,2,3,∗}). Up to permutations of
the leaves {1, 2, 3}, this cycle contains all possible triples f , f ′,g considered in Proposi-
tion A.9.
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and
r
r′
~
↔ r′

r
~

. Finally, we use the bridges B1, . . . ,Bn−2 to connect the resulting cycle to

the cycles Hv1 , . . . ,Hvn−2 by exchanging their short flips with their long flips.

Hr̂

∗

∗r
′

f̊

F(Xr̂)

∗

∗r
Hr̂′

F(Xr̂′)

f̊ ′

∗r
′

∗r
r′

∗r
′r

∗r ∗
g

Hr Hr′

f f ′

Fr(XV) Fr′(XV)

B̊1[r
′] B̊1[v1] Hv̂1 B̊2[v1]

F(Xv̂1)

Hv1

Fv1(XV)

B1[r
′] B1[v1]B1 B2[v1] B2

F(Xv̂n−2)

Hv̂n−2B̊n−2[vn−2]

Hvn−2

Fvn−2(XV)

Bn−2[vn−2]Bn−2

↓o ↓o ↓o ↓o

Figure A.7 – Construction of a Hamiltonian cycle in F(XV) when r′′ = r.

Case 2:. r′′ /∈ {r, r′}. Let v1, . . . , vn−3 be an arbitrary ordering of V r {∗, r, r′, r′′},
and B1, . . . ,Bn−3 any bridges such that the root of Bi is {vi−1, vi} (where we set v0 =
r′′). We now choose inductively a Hamiltonian cycle Hv̂ in each flip graph F(Xv̂) for
all v ∈ V r {∗, r′} as follows.

(i) In F(Xr̂), we choose a cycle Hr̂ containing the short flip f̊ and the long flip ~↔ r′′
~ .

(ii) In F(Xr̂′′), we choose a cycle Hr̂′′ containing a short flip h̊ with root r′, the short
flip B̊1[r′′] and the long flip ~↔ r

~.

(iii) In F(Xv̂i) for i ∈ [n − 4], we choose a cycle Hv̂i containing the short flips B̊i[vi]
and B̊i+1[vi].

(iv) In F(Xv̂n−3), we choose a cycle Hv̂n−3 containing the short flip B̊n−3[vn−3] and a

short flip k̊ with root r′.

Hr̂

∗

∗r
′′

f̊

F(Xr̂)

∗

∗r
Hr̂′′

F(Xr̂′′)

h̊

∗r
r′′r

∗r ∗
g

Hr Hr′′

f h

Fr(XV) Fr′′(XV)

B̊1[r
′′] B̊1[v1] Hv̂1 B̊2[v1]

F(Xv̂1)

Hv1

Fv1(XV)

B1[r
′′] B1[v1]B1 B2[v1] B2

F(Xv̂n−3)

Hv̂n−3B̊n−3[vn−3]

Hvn−3

Fvn−3(XV)

Bn−3[vn−3]Bn−3

↓o ↓o ↓o ↓o

∗r
′′

∗r
′′

k̊

k

Figure A.8 – Construction of a Hamiltonian cycle in F(XV) when r′′ /∈ {r, r′}.

Each Hamiltonian cycle Hv̂ on F(Xv̂) induces a Hamiltonian cycle Hv on Fv(XV) (just
add v at the root in all spines). From these Hamiltonian cycles, we construct the cycle
illustrated in Figure A.8. We still have to enlarge this cycle to cover Fr′(XV). Let h′
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and k′ denote the short flips in Fr′(XV) parallel to the short flips h and k respecti-

vely. Since r′′ 6= vn−3, the root w′ of f̊ ′ cannot coincide with both. Assume for example
that w′ 6= r′′. By induction, we can then find a Hamiltonian cycle Hr̂′ of F(Xr̂′) con-

taining both f̊ ′ and h̊′. This cycle induces a Hamiltonian cycle Hr′ of Fr′(XV) passing
through f ′ and h′. We can then connect this cycle to the cycle of Figure A.8 by exchan-
ging the parallel short flips h and h′ by the corresponding parallel long flips. In the
situation when w′ = r′′, we have w′ 6= vn−3 and we argue similarly by attaching Fr′(XV)
to k instead of h. �

A.5 Graph with at most 6 vertices

Again we will focus on connected graphs because of Corollary A.4. The analysis for
graphs with at most 3 vertices is immediate. We now treat separately the graphs with 4, 5
and 6 vertices, which are not stars (stars have been treated in the previous section).

A.5.1 Graphs with 4 vertices

We consider all possible connected graphs on 4 vertices and exhibit explicit Hamilto-
nian cycles of their flip graphs. To do so, we could draw a cycle of spines as in Fi-
gure A.6 (middle). Instead, we rather draw the Hamiltonian cycle on the flip graph F(G)
represented as the 1-skeleton of the graph associahedron Asso(G) as in Figure A.6 (right).
Let us remind from [CD06] that the graph associahedron Asso(G) is obtained from the
standard simplex 4V := conv {ev | v ∈ V} (where (ev)v∈V denotes the canonical basis
of RV) by successive truncations of the faces 4Vrt = conv {ev | v ∈ V r t} for the tu-
bes t of G, in decreasing order of dimension. Each tube t of G corresponds to a facet Ft
of Asso(G), and each maximal tubing T corresponds to the vertex of Asso(G) which be-
longs to all facets Ft for t ∈ T. In Figure A.9 (right), we label the positions of the vertices
of 4V before the truncations. The fixed-root subgraphs appear as the 1-skeleta of the
four shaded faces of G, and the bridges are the five thin parallelograms (the short flips
correspond to their short sides, and the long flips correspond to their long sides).

3

2

3

1 4
G =

2

3

1
4

Asso(G) =

1 2

3 4

1

4

11

2
Figure A.9 – Correspondence between vertices of Asso(G) and spines on G.

Using these conventions, Figure A.10 represents Hamiltonian cycles for the flip
graphs on all connected graphs on 4 vertices (the 4-star was already treated in Fi-
gure A.6). The Hamiltonian cycles, together with their orbits under the action of the
isomorphism group of the corresponding graph, prove the following statements, which
imply Theorem A.1 for all graphs on 4 vertices.

Proposition A.10. (a) For any graph G on at most 4 vertices, any pair of short flips (even
with the same root) is contained in a Hamiltonian cycle of F(G).
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Figure A.10 – Hamiltonian cycles showing Proposition A.10. Each vertex of the graph
associahedra corresponds to a spine as explained in Figure A.9.

(b) For the stars on 3 and 4 vertices, each triple consisting of two short flips (even with
the same root) and one long flip as in Proposition A.9 is contained in a Hamiltonian
cycle of F(G).

(c) For the classical 3-dimensional (path) associahedron, there exists a Hamiltonian cycle
containing simultaneously all short flips.

(d) For all connected graphs on 4 vertices, there is a Hamiltonian cycle of F(G) containing
at least one short flip in each fixed-root subgraph. We can even preserve this property
if we impose the Hamiltonian cycle to pass through one distinguished short flip.

A.5.2 Graphs with 5 vertices

Graphs on 5 vertices are treated by a case analysis. As in the proof of Lemma A.5, we
will denote by D the set of totally disconnecting pairs of G, i.e. pairs {x, y} of vertices
of G such that G r {x, y} has no edge. Recall from the proof of Lemma A.5 that D has
at most two elements and that they are not disjoint.

Consider now a graph G on 5 vertices. According to Remark A.6, the proof of
Section A.3 applies in various configurations. We treat here the remaining cases. As we
observed in Proposition A.10 (a) that for any connected graph G on at most 4 vertices,
any pair of short flips (even with the same root) is contained in a Hamiltonian cycle
of F(G), we can ignore Condition (A) in the definition of conflict. We therefore say that
a vertex w and a short flip g with root v are in conflict if G r {v, w} has a single edge
which is the short leaf of g, and w is a child of v. With this definition, there is only one
bridge connecting Fv(G) and Fw(G), but we cannot use it if we want the short flip g to
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belong to the Hamiltonian cycle. One can check that the conclusions of Lemmas A.7
and A.8 still hold in this situation.

We first suppose that D = {{x, y}} is a singleton and that either x or y is in conflict
with both f and f ′. Checking all connected graphs on five vertices, we see that this
situation can only happen for the following graphs:

G1 =
v w

u
x

y

G2 =
v w

u
x

y

G3 =
v w

u
x

y

G4 =
v w

u
x

y

.

For each one, we explain how to prove Theorem A.1.

G = G1 The only possible conflicts are between x and a short flip with root v or w.
Thus, up to isomorphism of the graph, the only instance of Theorem A.1 fitting to
the configuration we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exist bridges Bv,Bu,By with respective roots {w, v}, {w, u}, {w, y}
and a bridge B with root {u, x}. Notice that the fixed root subgraph Fw(G1) is iso-
morphic to the classical (path) associahedron so that Proposition A.10 (c) ensures
that there exists a Hamiltonian cycleHw of the flip graph Fw(G1) containing all the
short flips f ,Bv[w],Bu[w],By[w]. Moreover Proposition A.10 (a) ensures that there
exists a Hamiltonian cycle Hy (resp. Hx) of the flip graph Fy(G1) (resp. Fx(G1) )
containing the short flip By[y] (resp. B[x]). Proposition A.10 (a) again gives us a
Hamiltonian cycle Hu (resp. Hv) of the flip graph Fu(G1) (resp. Fv(G1)) containing
the two short flips Bu[u] and B[u] (resp. f ′ and Bv[v]). Note that the short flips of
the bridges are all distinct since u, v and w do no disconnect the graph. Gluing all
the Hamiltonian cycles of the fixed root subgraphs along the bridges as explained
in Section A.1 gives a Hamiltonian cycle of F(G1) containing f and f ′.

G = G2 The only possible conflicts are between x and a short flip with root v or w.
Thus, up to isomorphism of the graph, the only instance of Theorem A.1 fitting to
the configuration we are looking at is given by

f =

v

x

yw u

and f ′ =

w

x

yv u

.

Observe that there exists a bridge B with root {u, x}. Notice that the fixed root
subgraph Fw(G1) is isomorphic to the graph associahedron of a connected graph
on 4 vertices so that Proposition A.10 (d) ensures that there exists a Hamilto-
nian cycle Hw of the flip graph Fw(G2) containing the short flip f and three
short flips Bv[w],Bu[w],By[w] of some bridges Bv,Bu,By whose respective roots
are {w, v}, {w, u}, {w, y}. Moreover Proposition A.10 (a) ensures that there exists a
Hamiltonian cycle Hy (resp. Hx) of the flip graph Fy(G2) (resp. Fx(G2)) containing
the short flip By[y] (resp. B[x]). Proposition A.10 (a) again gives us a Hamiltonian
cycle Hu (resp. Hv) of the flip graph Fu(G2) (resp. Fv(G2)) containing the two
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short flips Bu[u] and B[u] (resp. f ′ and Bv[v]). Note that the short flips of the brid-
ges are all distinct since u, v and w do no disconnect the graph. Gluing all the
Hamiltonian cycles of the fixed root subgraphs along the bridges as explained in
Section A.1 gives a Hamiltonian cycle of F(G2) containing f and f ′.

G = G3 The analysis is identical to the case G = G1.

G = G4 The analysis is identical to the case G = G2.

We now suppose that G has 5 vertices and that D = {{x, y}, {x, z}}. Since all edges
either contain x or both y and z, G is one of the following graphs:

G5 =
vu

x
zy

G6 =
vu

x
zy

.

We note that in both of them, the only possible conflicts are between x and short flips
with root either u or v. Indeed, {x, u} and {x, v} are the only pairs of vertices disjoint
from exactly one edge, and the fixed-root subgraphs Fx(G5) and Fx(G6) are reduced to
single flips. Using Remark A.6, we can restrict to the cases in which x /∈ {v1, v5}. Again
we treat separately the two graphs:

G = G5 Notice that the fixed-root subgraphs Fy(G5) and Fz(G5) both are isomorphic
to the flip graph of a star on 4 vertices with central vertex x. So given a short flip h
(resp. k) with roots y (resp. z), Proposition A.9 provides us with a Hamiltonian
cycle Hy (resp. Hz) of Fy(G5) (resp. Fz(G5)) containing h (resp. k) and the flip
of Fy(G5) (resp. Fz(G5)) corresponding to the long flip of F(G5[ŷ]) (resp. F(G5[ŷ]))
with root {x, z} (resp. {x, y}). Then gluing together the cycles Hy and Hz and
the fixed-root subgraph Fx(G5) as in Figure A.11 gives a tool to deal with the
remaining configurations, always with the strategy of gluing Hamiltonian cycles of
the fixed-root subgraphs along bridges.

Fy(G5) Fz(G5)

Hy Hz

Fx(G5)

kh

y

y

y

y

y

y

x

u v z

x x

x

xx

u u

u

uu v v

v

vv

z

z

z
z

z

Figure A.11 – How to glue together the flip graphs Fy(G5),Fx(G5) and Fz(G5).

G = G6 Observe that both fixed-root subgraphs Fu(G6) and Fv(G6) are isomorphic to
the classical (path) associahedron. Thus as soon as one of the short flips f and f ′
is not in conflict with x, one can find an arrangement of the vertices in the same
way as when we treated the graph G2 and G4 (without the intermediary of the
vertex u) which always makes our strategy work. We thus only need to deal with
the case where x is in conflict with both f and f ′, which corresponds to a single
instance of Theorem A.1, checked by hand in Figure A.12.
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Figure A.12 – The flip graph F(G6) represented as the 1-skeleton of the graph asso-
ciahedron Asso(G6), visualized by its Schlegel diagram. The (blue) Hamiltonian cycle
passes through the only two short flips in conflict with x (in red).

A.5.3 Graphs with 6 vertices

To finish, we need to deal with the case where G has 6 vertices, D = {{x, y}, {x, z}}
and x is in conflict with both f and f ′. Again G can only be one of the two following
graphs:

G7 =
wvu

x
zy

G8 =
wvu

x
zy

.

The graph G7 is treated exactly as G5, using Remark A.6 instead of Proposition A.10 to
restrict the number of cases to analyze. In the case of G8, there is again a single difficult
instance which can be treated by hand (since the graph associahedron Asso(G8) has 236
vertices, we do not include here the resulting picture).





Bibliography

[Bar01] Yuliy Baryshnikov. On Stokes sets. In New developments in singularity the-
ory (Cambridge, 2000), volume 21 of NATO Sci. Ser. II Math. Phys. Chem.,
pages 65–86. Kluwer Acad. Publ., Dordrecht, 2001.

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, vo-
lume 231 of Grad. Texts in Math. Springer-Verlag, Berlin Heidelberg, 2005.

[BCL15] Nantel Bergeron, Cesar Ceballos, and Jean-Philippe Labbé. Fan realizations
of type A subword complexes and multi-associahedra of rank 3. Discrete
Comput. Geom., 54(1):195–231, 2015.

[BDP14] Thomas Brüstle, Grégoire Dupont, and Matthieu Pérotin. On maximal green
sequences. Int. Math. Res. Not. IMRN, (16):4547–4586, 2014.

[Ber58] Claude Berge. Théorie des graphes et ses applications, volume 2 of Collection
Universitaire de Mathématiques. Dunod, second edition, 1958.

[BFS90] Louis J. Billera, Paul Filliman, and Bernd Sturmfels. Constructions and
complexity of secondary polytopes. Adv. Math., 83(2):155–179, 1990.

[BFZ05] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. Cluster algebras.
III. Upper bounds and double Bruhat cells. Duke Math. J., 126(1):1–52,
2005.

[BHLT09] Nantel Bergeron, Christophe Hohlweg, Carsten Lange, and Hugh Thomas.
Isometry classes of generalized associahedra. Sém. Lothar. Combin., 61A:Art.
B61Aa, 13, 2009.

[BM87] Roswitha Blind and Peter Mani-Levistka. On puzzles and polytope isomor-
phisms. Aequationes Math., 34(2):287–297, 1987.

[BMP17] Amir-Hossein Bateni, Thibault Manneville, and Vincent Pilaud. A note on
quadrangulations and Stokes complexes. to appear in the proceedings of
Eurocomb 2017, Electron. Notes Discrete Math., 2017.

[BP80] Louis J. Billera and J. Scott Provan. Decompositions of simplicial complexes
related to diameters of convex polyhedra. Math. Oper. Res., 5(4):576–594,
1980.

213



214 BIBLIOGRAPHY

[BP09] Jürgen Bokowski and Vincent Pilaud. On symmetric realizations of the
simplicial complex of 3-crossing-free sets of diagonals of the octagon. In
Proceedings of the 21st Canadian Conference on Computational Geometry
(CCCG2009), pages 41–44, 2009.

[BP15] Victor M. Buchstaber and Taras E. Panov. Toric Topology, volume 204 of
Math. Surveys Monogr. Amer. Math. Soc., 2015.

[BW97] Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and
posets II. Trans. Amer. Math. Soc., 349(10):3945–3975, 1997.

[CD06] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-
associahedra. Topology Appl., 153(12):2155–2168, 2006.

[CFZ02] Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky. Polytopal realiza-
tions of generalized associahedra. Canad. Math. Bull., 45(4):537–566, 2002.

[Cha00] Frédéric Chapoton. Algèbres de Hopf des permutahèdres, associahèdres et
hypercubes. Adv. Math., 150(2):264–275, 2000.

[Cha16] Frédéric Chapoton. Stokes posets and serpent nests. Discrete Math. Theor.
Comput. Sci., 18(3), 2016.

[CLS14] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump. Subword com-
plexes, cluster complexes and generalized multi-associahedra. J. Alge-
braic Combin., 39(1):17–51, 2014.

[CP92] Vasilis Capoyleas and János Pach. A Turán-type problem on chords of a
convex polygon. J. Combin. Theory Ser. B, 56(1):9–15, 1992.

[CP15] Cesar Ceballos and Vincent Pilaud. Denominator vectors and compatibility
degrees in cluster algebras of finite types. Trans. Amer. Math. Soc., 367:1421–
1439, 2015.

[CP16] Cesar Ceballos and Vincent Pilaud. The diameter of type D associahedra and
the non-leaving-face property. European J. Combin., 51:109–124, 2016.

[CP17] Grégory Chatel and Vincent Pilaud. Cambrian Hopf algebras. Adv. Math.,
311:598–633, 2017.

[CSZ15] Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-
equivalent realizations of the associahedron. Combinatorica, 35(5):513–551,
2015.

[Deh10] Patrick Dehornoy. On the rotation distance between binary trees. Adv.
Math., 223(4):1316–1355, 2010.

[Dev09] Satyan L. Devadoss. A realization of graph associahedra. Discrete Math.,
309(1):271–276, 2009.

[Dev15] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 6.8.beta2), 2015. sagemath.org.

[DFRS15] Satyan L. Devadoss, Stefan Forcey, Stephen Reisdorf, and Patrick Showers.
Convex polytopes from nested posets. European J. Combin., 43:229–248,
2015.

[DHV11] Satyan L. Devadoss, Timothy Heath, and Wasin Vipismakul. Deformations of
bordered surfaces and convex polytopes. Notices Amer. Math. Soc., 58(4):530–
541, 2011.

http://www.sagemath.org


BIBLIOGRAPHY 215

[Die10] Reinhard Diestel. Graph Theory, volume 173 of Grad. Texts in Math.
Springer-Verlag, Berlin Heidelberg, 4 edition, 2010.

[DKM02] Andreas. W. M. Dress, Jacobus H. Koolen, and Vincent Moulton. On line
arrangements in the hyperbolic plane. European J. Combin., 23(5):549–557,
2002.

[DP95] Conrado De Concini and Claudio Procesi. Wonderful models of subspace
arrangements. Selecta Math. (N.S.), 1(3):459–494, 1995.

[DRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations –
Structures for Algorithms and Applications, volume 25 of Algorithms Comput.
Math. Springer-Verlag, Berlin Heidelberg, 2010.

[Ewa96] Günter Ewald. Combinatorial Convexity and Algebraic Geometry, volume 168
of Grad. Texts in Math. Springer-Verlag, New York, 1996.

[FK04] Eva Maria Feichtner and Dmitry N. Kozlov. Incidence combinatorics of reso-
lutions. Selecta. Math. (N.S.), 10:37–60, 2004.

[FM94] William E. Fulton and Robert MacPherson. A compactification of configura-
tion spaces. Ann. of Math. (2), 139:183–225, 1994.

[FM04] Eva Maria Feichtner and Irene Müller. On the topology of nested set com-
plexes. Proc. Amer. Math. Soc., 133(4):999–1006, 2004.

[FS05] Eva Maria Feichtner and Bernd Sturmfels. Matroid polytopes, nested sets
and Bergman fans. Portugal. Math. (N.S.), 62(4):437–468, 2005.

[FT12] Sergey Fomin and Dylan Thurston. Cluster algebras and triangulated sur-
faces. part ii: Lambda lengths. Preprint, arXiv:1210.5569, 2012.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J.
Amer. Math. Soc., 15(2):497–529 (electronic), 2002.

[FZ03a] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classi-
fication. Invent. Math., 154(1):63–121, 2003.

[FZ03b] Sergey Fomin and Andrei Zelevinsky. Y -systems and generalized associahe-
dra. Ann. of Math. (2), 158(3):977–1018, 2003.

[FZ04] Sergey Fomin and Andrei Zelevinsky. Cluster algebras: Notes for the CDM-
03 conference. In Current Developments in Mathematics, 2003, pages 1–34,
Cambridge, MA, 2004. International Press of Boston, Inc.

[FZ07] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Com-
positio Math., 143(1):112–164, 2007.

[GKZ08] Israel Gelfand, Mikhail M. Kapranov, and Andrei Zelevinsky. Discriminants,
resultants and multidimensional determinants. Mod. Birkhäuser Class. Birk-
häuser Boston, Inc., 2008. Reprint of the 1994 edition.
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Titre : Généralisations géométriques et combinatoires de l’associaèdre

Mots-clefs : associaèdre, éventail, algèbres amassées, graphe, polytope, triangulation

Résumé : L’associaèdre se situe à l’interface de
plusieurs domaines mathématiques. Combina-
toirement, il s’agit du complexe simplicial des
dissections d’un polygone convexe (ensembles
de diagonales ne se croisant pas deux à deux).
Géométriquement, il s’agit d’un polytope dont
les sommets et les arêtes encodent le graphe
dual du complexe des dissections. Enfin l’as-
sociaèdre décrit la structure combinatoire qui
définit la présentation par générateurs et rela-
tions de certaines algèbres, dites « amassées ».
Du fait de son omniprésence, de nouvelles fa-
milles généralisant cet objet sont régulièrement
découvertes. Cependant elles n’ont souvent que
de faibles interactions. Leurs études respectives
présentent de notre point de vue deux enjeux
majeurs : chercher à les relier en se basant sur
les propriétés connues de l’associaèdre ; et cher-
cher pour chacune des cadres combinatoire,
géométrique et algébrique dans le même esprit.

Dans cette thèse, nous traitons le lien entre
combinatoire et géométrie pour certaines de ces
généralisations : les associaèdres de graphes,
les complexes de sous-mots et les complexes
d’accordéons. Nous suivons un fil rouge consis-
tant à adapter, à ces trois familles, une mé-
thode de construction des associaèdres comme
éventails (ensembles de cônes polyédraux), dite
méthode des d-vecteurs et issue de la théorie
des algèbres amassées. De manière plus large,
notre problématique principale consiste à réali-
ser, c’est-à-dire plonger géométriquement dans
un espace vectoriel, des complexes abstraits.
Nous obtenons trois familles de nouvelles réa-
lisations, ainsi qu’une quatrième encore conjec-
turale dont les premières instances constituent
déjà des avancées significatives.
Enfin, en sus des résultats géométriques, nous
démontrons des propriétés combinatoires spéci-
fiques à chaque complexe simplicial abordé.

Title: Geometric and combinatorial generalizations of the associahedron

Keywords: associahedron, fan, cluster algebras, graph, polytope, triangulation

Abstract: The associahedron is at the interface
between several mathematical fields. Combina-
torially, it is the simplicial complex of dissecti-
ons of a convex polygon (sets of mutually non-
crossing diagonals). Geometrically, it is a poly-
tope whose vertices and edges encode the dual
graph of the complex of dissections. Finally
the associahedron describes the combinatorial
structure defining a presentation by generators
and relations of certain algebras, called “cluster
algebras”. Because of its ubiquity, we regularly
come up with new families generalizing this ob-
ject. However there often are only few interacti-
ons between them. From our perspective, there
are two main issues when studying them: look-
ing for relations on the basis of known proper-
ties of the associahedron; and, for each, looking
for combinatorial, geometric and algebraic fra-

meworks in the same spirit.
In this thesis, we deal with the link between
combinatorics and geometry for some of these
generalizations: graph associahedra, subword
complexes and accordion complexes. We fol-
low a guidelight consisting in adapting, to these
three families, a method for constructing asso-
ciahedra as fans (sets of polyhedral cones), cal-
led the d-vector method and coming from clus-
ter algebra theory. More generally, our main
concern is to realize, that is geometrically em-
bed in a vector space, abstract complexes. We
obtain three new families of generalizations, and
a fourth conjectural one whose first instances
already constitute significant advances.
Finally in addition to the geometric results, we
prove combinatorial properties specific to each
encountered simplicial complex.
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