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Résumé
Cette thèse s’intéresse au développement de stratégies de décalage de charge pouvant être
appliquées à un parc de chauffe-eau Joule (CEJ).

On propose une modélisation entrée-sortie du système que constitue le CEJ. L’idée est
de concevoir un modèle précis et peu coûteux numériquement, qui pourrait être intégré dans
un “CEJ intelligent”. On présente notamment un modèle phénoménologique multi-période
d’évolution du profil de température dans le CEJ ainsi qu’un modèle de la demande en
eau chaude.

On étudie des stratégies d’optimisation pour un parc de CEJ dont la résistance peut
être pilotée par un gestionnaire central. Trois cas de figures sont étudiés. Le premier
concerne un petit nombre de ballons intelligents et présente une méthode de résolution
d’un problème d’optimisation en temps discret. Puis, on s’intéresse à un parc de taille
moyenne. Une heuristique gardant indivisibles les périodes de chauffe (pour minimiser
les aléas thermo-hydrauliques) est présentée. Enfin, un modèle de comportement d’un
nombre infini de ballon est présenté sous la forme d’une équation de Fokker-Planck.

Mots-clés

Chauffe-eau Joule; Stockage d’energie; Eau Chaude Sanitaire; Optimisation dynamique;
Modèle multi-période; Programmation linéaire; Heuristique; Fokker-Planck

Abstract
This thesis focuses on the development of advanced strategies for load shifting of large
groups of electric hot water tanks (EHWT).

The first part of this thesis is dedicated to representing an EHWT as an input-output
system. The idea is to design a simple, tractable and relatively accurate model that can
be implemented inside a computing unit embedded in a “smart EHWT”, for practical
applications of optimization strategies. It includes in particular a phenomenological multi-
period model of the temperature profile in the tank and a model for domestic hot water
consumption.

The second part focuses on the design of control strategies for a group of tanks. Three
use-cases are studied. The first one deals with a small number of smart and controllable
EHWT for which we propose a discrete-time optimal resolution method. The second
use-case adresses a medium-scale group of controllable tanks for which we propose a
heuristic to optimally schedule the heating periods. Finally, we present the modelling of
the behavior of an infinite population of tanks under the form of a Fokker-Planck equation.

Keywords

Electric hot water tank; Energy storage; Supply of hot water; Domestic water consumption;
Dynamic Optimization; Multi-period model; MILP; Heuristics; Fokker-Planck equation
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Notations

Notations relative to the EHWT

Greek letters

notation meaning unit
αd turbulent diffusion m2·s−1

αth thermal diffusion m2·s−1

αV volumetric coefficient of thermal expansion of water K−1

δ parameter of a Weibull distribution -
εd turbulent to thermal diffusion ratio -
εi standard distribution for the increments i -
ζ tuning parameter -
µ reserve energy J
ν kinematic viscosity of water m2·s−1

ξ tuning parameter -
θ Heavyside function -
κ scale parameter of a Weibull distribution -
Π tank perimeter m
ρ water density kg·m−3

τ delay energy J
υ normalized increments between two successive drains -
φi mean conditional duration for the normalized increment i -
φ tuning parameter m−1

Φ exchange coefficient s−1

ω0, ω1, ω2 ACD parameters -
Ω space domain -
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notation meaning unit
a available energy J
cp specific heat capacity J·kg−2K−1

Cs space-time domain for the Stefan equation -
DHWC total domestic hot water consumption m3

FI , FII , FIII multi-period mappings for each phase -
Fi filtration at the drain i -
g gravitational acceleration m·s−2

h height of the tank m
I time interval -
k heat losses to the ambient coefficient s−1

l function for the plateau height dynamics m·s−1W−1

Lc characteristic length in the tank m
M mean number of drains -
Mj magnitude of the drain number j m3

Nk number of drain for day k -
PW rescaled power injection per unit of length K·s−1

Ra Rayleygh number -
Ri Richardson number -
s function for the plateau height dynamics m·s−1

S cross-section of the tank m2

t0, tf initial and time s
T temperature in the tank oC
∆T temperature spread in the tank oC
T0 initial temperature profile oC
Ta temperature of the ambient oC
Tmax maximum temperature in the tank (set by the user) oC
Tcom comfort temperature (set by the user) oC
Tin inlet water temperature oC
Ts temperature at the surface of the heating element oC
T∞ characteristic temperature of the water in the tank oC
Tp temperature of the plateau oC
Tpt, Tpx, Tp∆ functions for the temperature of the plateau oC
Tb temperature of the Stefan homogeneous zone oC
Tmin tuning parameter oC
T u, T v, T discontinuity point sequence -
u heat injection in the tank W
Uh overall heat transfer coefficient W·m−2K−1

v tuning parameter m1−ξ·s−1K−ζξ
vd drain velocity m·s−1

vnc natural convection velocity m·s−1

vmax tuning parameter m·s−1

x height in the tank m
xp height of the plateau m
xb height of the Stefan homogeneous zone m
y time interval between two successive drains s
yc minimal height at comfort temperature m
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Acronyms

ACD autoregressive conditional duration
CDF cumulative distribution function
CEJ chauffe-eau Joule
DHW domestic hot water
DSM demand side management
DWC domestic water consumption
EACD Exponential ACD
EHWT electric hot water tank
LP linear program

MILP mixed integer linear program
MIQP mixed integer quadratic program
ODE ordinary differential equation
PDE partial differential equation
QP quadratic programs
SOS special ordered set

Notations relative to the EHWT groups

Greek letters

notation meaning unit
αsi coupling control term from status s, in domain i -
α tuning parameter -
β tuning parameter -
∆t heating starting time s
η jump distribution at boundaries -
λ comfort to maximum energy in the tank ratio -
σ standard deviation term in stochastic dynamics -
σie standard deviation on the estimator êi0 J
σiτ standard deviation on the estimator τ̂ i0 J
τ̂ i0 estimator of the initial delay energy in tank i J
φt energy flow from µ to a at time period t J
χ intensity of the Poisson process -
ω jump distribution -
Ω state domain -
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notation meaning unit
A forbidden line -
c cost function W−1

Ci total energy consumption of tank i on the horizon J
CB population braking the comfort constraints -
di heating duration of tank i s
dt total energy drain at time period t J
D diffusion -
ei energy in tank i J
êi0 estimator of the initial energy in tank i J
ep minimum energy security margin J
emax maximum energy in the tank J
eimax maximum energy in the tank i J
E edge -
fo objective load curve W
fa initial load curve W
fb final load curve W
fo objective load curve W
f ir residual load curve at step i W
f ri resting population density function -
fhi heating population density function -
F face -
p tuning parameter -
Ptot total power demand W
P1 cost minimization problem -
P2 objective load curve problem -
P probability law on Si -
q1, q2 optimality index for L1 and L2 norms -
S source terms in the Fokker-Planck representation -
Si set of admissible starting times -
St tank status at time t (heating or at rest) -
ti0, tif beginning and ending horizon time for tank i s
tc consumption time s
ui power control function for tank i W
umax maximal power injection W
uimax heating power of tank i W
U admissible power control set -
vt, wt power injection in a and µ at time period t J
V vertex -
v drift term -
Y internal state for MILP/MIQP -
Y admissible internal state for MILP/MIQP -
z three-dimensional energy state -
Z stochastic state process -



Chapter 1

Introduction

1.1 The context of demand side management
As detailed in numerous studies, the increasing share of intermittent renewable electricity
sources in the energy mix steadily complicates the management of electricity production-
consumption balance [Eur11, EPMSS11]. When used in addition to non-flexible means
of production1, these sources can even overload the grid, as witnessed during recent
negative electricity price periods on French and German day-ahead markets [EPE14]2.
Similar problems are observed at local levels in tension regulation across distribution
grids originally designed for the sole purpose of electricity delivery under relatively steady
conditions, which now have to put up photovoltaic production, causing further problems
for electricity distribution companies.

If the production of electricity is seldom flexible, then one may try to find some
flexibility in the demand. This is the purpose of Demand Side Management (DSM),
which is a collection of techniques aiming at modifying consumers’ demand. DSM has an
appealing potential [PD11]. It appears as particularly relevant nowadays, since the global
overcapacity of electricity production in Europe renders the construction of new flexible
means of production non profitable, and therefore very unlikely.

A key factor in the growth of DSM is the availability of energy storage capacities.
For this reason, network operators and electricity producers are searching and promoting
new ways of storing energy. In this context, the large groups of electric hot water tanks
(EHWT) found in homes in numerous countries3 appear as very relevant, especially for
the dominant problem of load-shifting applications. The main reasons supporting this fact
are the intrinsic qualities of large storage: the large capacity of the population of EHWT,
its geographically scattered characteristic, and its functioning.

In principle, heating of an EHWT can be freely scheduled, e.g. according to the price
of electricity. While numerous advanced pricing policies have been studied and developed,
the time-of-use pricing policy remains of dominant importance for most consumers, e.g. in
France with the “night time switch”(which can be referred to as the historical strategy)4.
Such policies define broad blocks of hours (for instance on-peak from 6:00 am to 10:00

1such as France’s nuclear installation, which represented 76,3% of the country’s electricity production
in 2015 [Bil15]

2Similar effects have been observed, worldwide
3the market share of electric heater is 35% in Canada, see [AWR05], 38% in the U.S, see [RLLL10],

45% in France, see [MSI13]
4Other examples are the Economy 7 and Economy 10 differential tariff provided by United Kingdom

electricity
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pm, and off-peak from 10:00 pm to 6:00 am) during which a predetermined fixed rate is
applied. The starting times of these periods being known, straightforward heating policies
are commonly applied to each individual EHWT. Heating is turned-on immediately after
reception of a wired communication signal broadcasted after the start of the off-peak
period. Heating is turned-off when the EHWT is fully heated. This simple strategy
increases electricity consumption in the night-time (one period when market electricity
prices are low), while hot water is used in the next daytime. At large scales, the result
is for the most part positive, but a negative effect is that the overall consumption of the
group of EHWT rapidly decreases to a low level in the middle of the night, when the
electricity production costs are the lowest, unfortunately.

This negative effect has to be addressed. With the fast-paced development of home
automation, advanced heating strategies applied on large groups of EHWT are believed
to enable further cost-reductions for both users and utilities [Lan96]. The thesis presents
works developed in this perspective, and aims at developing methods that can be key
ingredients in the so-called “smart EHWT”, which could integrate such advanced strategies.

1.2 Functioning and models of EHWT
A typical EHWT is a vertical cylindrical tank filled with water. A heating element5 is
plunged at the bottom end of the tank (see Fig. 1.1). The heating element is pole-shaped,
and relatively lengthy, up to one third of the tank. Cold water is injected at the bottom
while hot water is drained from the top at exactly the same flow-rate (under the assumption
of pressure equilibrium in the water distribution system). Therefore, the tank is always
full.

In the literature [Bla10, KBK93, ZLG91], hot water storages are modeled as vertical
columns driven by thermo-hydraulic phenomena: heat diffusion, buoyancy effects and
induced convection and mixing, forced convection induced by draining and associated
mixing, and heat losses at the walls. In the tank, layers of water with various temperature
coexist (see Fig. 5.1 and Fig. 1.3). At rest, these layers are mixed only by heat diffusion
which effects are relatively slow compared to the other phenomena [HWD09].

The fact that of a non uniform temperature profile in the tank (increasing with height)
remains in a quasi-equilibrium is called stratification [DR10, HWD09, LT77]. In practice,
this effect is beneficial for the user because hot water available for consumption is naturally
stored near the outlet of the EHWT, while the rest of the tank is heated (see Fig. 1.2).
The layer of high temperature gradient between cold and hot water (see Fig. 1.2) is
called thermocline [ZLG91]. The hot water consumption takes the form of a succession of
drains of various magnitudes corresponding to the usages of the consumer (shower, bath,
sanitation, cooking). The duration of the drains is short at the scale of the day, and their
time of occurrence are not fixed but related to the inherent stochastic behavior of the user.

Most controlling strategies for groups of electric water storage do not account for
the stratification and simply assume that the temperature in the tank is uniform [DL11,
SCV+13]. This approach is relevant for small-sized tanks, but are unable to make good
use of the stratification phenomena. As will be shown in this thesis, including stratification
modeling into those strategies can lead to non negligible performance improvements.

Early models of tanks including stratification have focused on large water storage tanks
used in building basements for heating or air conditioning purposes [OGM86]. Those

5or several nearby elements
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temperature
sensors

insulation

thermostat

heating
elements

hot watercold water

Figure 1.1: Simplified scheme of an EHWT. The temperature sensors set for experimenta-
tion have been depicted. These are not found on off-the-shelf EHWT.
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0
Thermocline h

Temperature

x
Cold water Hot water

Tmax

Tin

Figure 1.2: Example of the temperature profile inside a stratified water tank.

tanks do not include heating (respectively chilling) elements, but are simply used to store
large quantities of water heated (respectively chilled) by other means. Most authors use
the cylindrical symmetry of the system and the fact that water flow is mostly vertical
(due to the geometry of the system). The water temperature in the tank is assumed to be
homogeneous at each height of the tank and the study is limited to one-dimensional models
of various nature: convection-diffusion partial differential equations [OGM86, ZGM88],
layer models [HWD09], plug-flow models [KBK93]. More recent work encompass heating
components, such as heat exchangers in solar or thermodynamical water tanks [SFNP06,
Bla10]. Three or two-dimensional (using rotational symmetry) models, often discretized
for numerical simulation purposes such as computational fluid dynamics [Bla10, HWD09,
JFAR05] or so-called zonal models based on the software TRNSYS [JFAR05, KBM10] can
be found. These models, although accurate, are numerically intensive and mostly used in
optimal design of exchangers and pipes found in most recent tanks.

A complexity trade-off must be found to reproduce the physical phenomena whose
effects are observed in practice, while enabling fast determination of optimized strategies.
With this aim in view, one-dimensional models appear as the ideal level of complexity.
The works of modeling and control in this thesis will be limited to this case.

1.3 Control problems for EHWT
In principle, an EHWT can be seen as a two inputs, single output dynamical system (see
Fig. 1.4). The two inputs are i) the heating power (which can be seen as a control variable)
and ii) water outflow (or drain) chosen by the user. The internal state is the distribution of
temperature of water in the tank, which can be used to define, for optimization purposes,
performance indexes (outputs). The output can be loosely defined as the state of charge
of the tank. As will appear in this thesis, a more detailed definition is required.

From an optimization viewpoint, the satisfaction of the user will be seen as a constraint,
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Figure 1.3: Thermal image of an EHWT (obtained with an infrared camera).
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Heating power u(t)

Water drain

State of chargeEHWT

Figure 1.4: Input-output representation of the tank.

which prevails over electric load management. In our case, the constraints can be defined
using a comfort temperature set by the user. Water over this temperature can be blended
with cold water, while water under the comfort temperature is useless. Additionally,
functioning constraints can be considered. For instance, to prevent skin burns and EHWT
malfunctions, a maximum (safety) temperature can be defined.

The optimization problem can be defined from the electricity producer’s perspective, by
assuming that we have control of the power injection u(t) = (u1(t), ..., uk(t)) of a group of
k tanks during a time period [t0, tf ]. The electricity producer usually desires to minimize
a given objective function, while ensuring user’s needs. For a given tank i, the fact that a
strategy ui ensures user’s comfort will be noted ui ∈ U i, U i being the set of admissible
controls for tank i. A most useful problem of minimization concerns the cost of heating.
Given a price signal for electricity over time c(t, ·), an optimal control problem can be
defined as follows:

min
(u1,...,uk)∈U1×...×Uk

∫ tf

t=t0
c(t,

k∑
j=1

uj(t))
k∑
j=1

uj(t). (P1)

We call this problem P1. In this formulation, the price depends on the total demand, since
the whole population of EHWT is not negligible in the whole demand6.

Alternatively, the objective function can be defined as a quadratic distance to an
objective for the aggregated consumption fo(t). This gives

min
(u1,...,uk)∈U1×...×Uk

∫ tf

t=t0
(fo(t)−

k∑
j=1

uj(t))2. (P2)

We call this problem P2. Works from the literature on these problems (or closely-related
ones) generally consider that the temperature in the tank is uniform and neglect the
stratification ([DL11, SCV+13]). This assumption can lead to a violation of the comfort
constraints caused by the supply of cold or tepid water, and do not take advantage of the
stratification. For this reason, we wish to have a new look at these problems, and propose
new solutions for them.

6if the considered group is small, prices appear as flat and this problem splits into k distinct problems
(since the functioning constraints are readily decoupled)

min
ui∈Ui

∫ tf

t=t0

c(t)ui(t).
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1.4 Contributions of the thesis

The thesis proposes several contributions.
A first part is dedicated to representing an EHWT as an input-output system (see

Fig. 1.4). The idea is to develop a simple, numerically tractable and relatively accurate
model that can be implemented inside a computing unit embedded in a “smart EHWT” for
practical applications of optimization strategies. In Chapter 2, a physics-based partial
differential model including a natural convection term for the temperature is developed.
Its terms are defined based on our physical understanding of the 1D dynamics in the tank.
Fed with experimental recordings of data of electric consumption and water drains, the
model is able to reconstruct the temperature profile in the tank. Then, this model is
simplified in Chapter 3, into a phenomenological multi-period model which distinguishes
several functioning states. This second model is computationally cheap and accurate. It
may be integrated into the embedded chip of a smart EHWT. In the perspective of control
design, a realistic domestic hot water consumption model is developed in Chapter 4. It can
be used to randomly generate drain scenarios in near future, correlated with recent drains
event. These scenarios can be used to proof-test optimal heating strategies which should
avoid the prejudicial case of shortage of hot water. The temperature profile gives a precise
description of the state of the EHWT, but is too heavy to be manipulated for control
purposes. For this reason, we define three variables of interest that ease the handling of
comfort constraints. This is the purpose of Chapter 5. This final modeling stage completes
the definition of an input-output model for the EHWT subjected to a random hot water
demand.

The second part focuses on the design of optimal control strategies for a group of tanks.
It is assumed that the individual heating elements of the tanks can each be remotely piloted
by a decision center (they are said to be controllable). Among them, upon request, a
fraction can compute and transmit to the decision center information on their state. They
are said to be smart. Three use-cases are studied. Chapter 6 adresses the case of a small
number of smart and controllable EHWT (from 1 to 4). A discrete-time optimal resolution
method for problems P1 and P2 is defined. In the case of a single unit, the optimization
algorithm can be integrated in the chip of the tank, which will automatically define its
heating strategy against an external price signal or with self-consumption objectives. In
Chapter 7, we focus on a medium-scale group of controllable tanks (from a few hundreds
to several millions) and present a heuristic for problem P2 which keeps the heating period
undivided to minimize thermo-hydraulic hazards. This heuristic, based on the stochastic
nature of the problem, uses the statistical smoothing induced by the large number of tanks
to approach the objective curve. If a fraction of the group is constituted of smart tanks,
results are improved and can reach almost the same performance as in the case when all
the tanks are smart (in which sub-optimality is less than 1%). Finally, the modeling of
the behavior of a infinite population of tanks is presented in Chapter 8. This (prospective)
approach aims at studying the output response of the whole group subjected to global
strategies.

Perspectives and conclusions are discussed in Chapter 9.

Note. The works presented in this thesis have been the subject of the following publica-
tions and patents.
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Introduction

La gestion de la demande
Comme décrit dans de nombreuses études, la part grandissante des énergies renouve-
lables dans le mix énergétique complique la gestion de l’équilibre offre-demande de
l’électricité [Eur11, EPMSS11]. Les sources renouvelabes peuvent s’ajouter à des moyens de
production non-flexibles7, et provoquer des surcharges du réseau comme en témoignent les
épisodes récents de prix négatifs sur les marchés J+1 en France et en Allemagne [EPE14].
Des problématiques similaires sont observées au niveau local dans la régulation de tension
du réseau de distribution, initialement dimensionné pour acheminer de manière relative-
ment stable l’électricité au consommateur, qui doit désormais supporter une production
photovoltaïque distribuée.

Pour compenser ce déficit de flexibilité sur les moyens de production d’électricité, on
peut chercher d’autres gisements de flexibilité, notamment du cÃťté de la demande. C’est
l’objet de la gestion de la demande (GD), un ensemble de techniques visant a modifier
la demande des consommateurs. Le potentiel de la GD apparaît prometteur [PD11].
C’est d’autant plus vrai actuellement, car la situation de surcapacité de la production
d’électricité en Europe rend la construction de moyens de production flexibles non rentable
et par conséquent peu probable dans les années à venir.

Un facteur clé pour le développement de la GD est la disponibilité de capacités de
stockage. Pour cette raison, les gestionnaire de réseaux et les producteurs d’électricité
recherchent de nouveaux moyens de stockage. Dans ce contexte, les importants parcs
de chauffe-eau Joule (CEJ) domestiques de nombreux pays8 apparaissent prometteurs,
particulièrement pour le problème dominant du décalage de charge. Les principales raisons
supportant ce fait sont les qualités intrinsèques de ce stockage : la grande capacité des
parcs de CEJ, leur caractère réparti sur le territoire, et leur fonctionnement.

En principe, la chauffe d’un CEJ peut être planifiée librement, par exemple en fonction
des prix de l’électricité. Si de nombreuses politiques tarifaires ont été étudiées et élaborés,
la tarification en fonction de l’heure de consommation reste dominante pour la plupart des
consommateurs, par exemple en France avec le système d’heures pleines/heures creuses9.
Ces politiques définissent des plages horaires (par exemple des heures pleines de 6h à
22h, et des heures creuses de 22h à 6h) pendant lesquelles un tarif prédéterminé est
appliqué. Le début de ces plages étant connu, des stratégies de chauffe simples sont
généralement appliquées à chaque CEJ. La chauffe est mise en marche immédiatement

7comme le parc nucléaire français, qui représentait 76,3% de la production nationale d’électricité en
2015 [Bil15]

8la part de marché du CEJ dans les moyens de chauffe est de 35% au Canada [AWR05], de 38% aux
U.S.A [RLLL10], de 45% en France [MSI13]

9les tarifications différentielles Economy 7 et Economy 10 au Royaume-Uni sont d’autres exemples
typiques
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après réception d’un signal analogique correspondant à la plage d’heures creuses. La chauffe
est ensuite arrêtée lorsque toute l’eau du CEJ est chaude. Cette stratégie élémentaire
favorise naturellement la consommation d’électricité pendant la nuit (une période pendant
laquelle les prix de marché de l’électricité sont bas), alors que l’eau chauffe est utilisée la
journée suivante. A grande échelle, le résultat est dans l’ensemble positif, mais un effet
indésirable est que la consommation globale redescend rapidement à un bas niveau au
milieu de la nuit, lorsque les coûts de production de l’électricité sont les plus bas.

Cet effet négatif doit être corrigé. Le développement rapide de la domotique ouvre la
voie à des stratégies de chauffe nouvelles sur de grands parcs de CEJ, qui peuvent s’avérer
avantageuses à la fois pour les consommateurs et pour les producteurs d’électricité [Lan96].
Cette thèse présente des travaux développés dans cette perspective, et vise à développer
des méthodes qui pourraient être intégrées à des “CEJ intelligents” mettant en œuvre de
telles stratégies.

Fonctionnement et modèles de CEJ
Un CEJ prend usuellement la forme d’un ballon cylindrique vertical, rempli d’eau. Une
résistance chauffante10 est plongée dans le bas du ballon (voir Fig. 1.5).

La résistance est longiligne et relativement et relativement grande (elle couvre jusqu’à
un tiers de la longueur du ballon). Lorsque l’utilisateur soutire de l’eau, cette eau est
prélevée dans le haut du ballon pendant que de l’eau froide est injectée dans le bas du
ballon au même débit (sous l’effet de l’équilibre de pression du réseau de distribution
d’eau), de telle sorte que le ballon est toujours plein.

Dans la littérature [Bla10, KBK93, ZLG91], les réservoirs d’eau chaude sont modélisés
comme des colonnes verticales, régi par des phénomènes thermo-hydrauliques : diffusion
thermique, effets de flottabilité dus à la variation de densité de l’eau en fonction de sa
température et des mélanges qu’ils engendrent, convection due au soutirage et mélange
engendré, et enfin pertes thermiques vers l’extérieur. Dans le ballon, des couches d’eau
de températures différentes coexistent (voir Fig. 5.1 et Fig. 1.7). Au repos, ces couches
ne sont affectées que par la diffusion thermique, dont les effets sont relativement lents
comparés aux autres phénomènes [HWD09].

Le fait qu’un profil (croissant) de température dans le ballon, non uniforme, reste
dans un quasi-équilibre est appelé phénomène de stratification [DR10, HWD09, LT77].
En pratique, cet effet est utile pour l’utilisateur, car l’eau chaude disponible pour la
consommation est naturellement stockée près de l’évacuation du CEJ, pendant que le reste
du ballon est chauffé (voir Fig. 1.6). La zone de fort gradient de température entre l’eau
chaude et l’eau froide (voir Fig. 1.6) est appelée thermocline [ZLG91]. En pratique, la
consommation d’eau chaude prend la forme d’une succession de soutirages d’amplitudes
variables, correspondant aux usages du consommateur (douche, bain, hygiène, cuisine). La
durée de ces soutirages est courte à l’échelle de la journée, et les moments où ils ont lieu ne
sont pas fixés, mais inhérents au caractère stochastique du comportement de l’utilisateur.

La plupart des stratégies de contrôle de parcs de CEJ ne prennent pas en compte la
stratification et supposent simplement que la température dans le ballon est uniforme [DL11,
SCV+13]. Cette approche est pertinente pour les ballons de petites tailles, mais ne permet
pas de valoriser le phénomène de stratification. Comme il sera exposé dans cette thèse,
inclure un modèle de stratification dans ces stratégies peut permettre des améliorations

10ou un ensemble de plusieurs résistances rapprochées
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capteurs de
température

isolation

thermostat

résistances
chauffantes

eau chaudeeau froide

Figure 1.5: Schéma simplifié d’un CEJ. Les capteurs de température ajoutés pour les
mesures expérimentale ont été représentés, ils ne sont pas présents sur les CEJ du commerce.
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Figure 1.6: Exemple de profil de température à l’intérieur d’un ballon stratifié.

non négligeables des performances.

Dans la littÃ́ľrature, les premiers modèles de ballon incluant la stratification se sont
intéressÃ́ľs à des réservoirs de grande taille dans les sous-sols des bâtiments utilisés pour
le chauffage ou la climatisation [OGM86]. Ces réservoirs n’incluent pas de résistance
chauffante ou de système de réfrigération direct. Ils sont simplement utilisés pour stocker
de grandes quantités d’eau chauffée ou refroidie par d’autres moyens. La plupart des
auteurs utilisent la symétrie de révolution du système et le fait que l’écoulement est
principalement vertical (en raison de la géométrie du système). La température du ballon
est alors supposée homogène pour une hauteur donnée, et l’étude est limitée à des modèles
unidimensionnels de différentes natures : équations aux dérivées partielles de convection-
diffusion [OGM86, ZGM88], modèles par couches [HWD09], modèles piston [KBK93]. Les
travaux les plus récents comprennent des élements chauffants, comme des échangeurs
thermiques dans les chauffe-eau solaires ou thermodynamiques [SFNP06, Bla10]. Des
modèles tri- ou bidimensionnels (en utilisant la symétrie de révolution), souvent discrétisés
pour des objectifs de simulations numérique (comme par exemple de mécanique des fluides
numérique) [Bla10, HWD09, JFAR05], ou des modèles dits zonaux basés sur le logiciel
TRNSYS [JFAR05, KBM10] sont l’objet de certaines Ãľtudes. Ces modèles, bien que
précis, sont coûteux numériquement et principalement utilisés dans la conception optimale
(hors ligne) des échangeurs et des tuyaux dans les chauffe-eau les plus récents.

Un arbitrage entre précision et complexité doit être établi pour reproduire les phénomènes
physiques observés en pratique, tout en permettant le calcul rapide de stratégies optimisées.
Dans cette optique, les modèles unidimensionnels apparaissent comme le niveau idéal de
complexité. Les travaux de modélisation et de contrôle de cette thèse se limiteront à ce
cas.
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Figure 1.7: Image thermique d’un CEJ (obtenue à l’aide d’une caméra infrarouge).
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Puissance de chauffe u(t)

Soutirage

Etat de chargeCEJ

Figure 1.8: Représentation entrée-sortie d’un CEJ.

Problèmes de contrôle pour les parcs de CEJ
En principe, un CEJ peut être vu comme un système dynamique a deux entrées et une
sortie (voir Fig. 1.8). Les deux entrées sont i) la puissance de chauffe (qui est une variable
de contrôle) et ii) le débit d’eau sortant soutiré par l’utilisateur. L’état interne est le profil
de température de l’eau dans le ballon, qui peut être utilisé pour définir, dans un but
d’optimisation, des indices de performances (sorties). Ces sorties peuvent (pour l’instant
approximativement ) être définies comme l’état de charge du CEJ. Comme on le verra
dans cette thèse, une définition plus précise est nécessaire.

Du point de vue de l’optimisation, la satisfaction de l’utilisateur est une contrainte,
qui prévaut sur la gestion de la charge électrique. Dans notre cas, les contraintes peuvent
être définies en utilisant une température de confort réglée par l’utilisateur. L’eau au
dessus de cette température peut être mitigée, en la mélangeant avec de l’eau froide, alors
que l’eau en dessous de la température de confort est inutile. De plus, des contraintes de
fonctionnement sont a prendre en compte. Par exemple, pour éviter des brûlures cutanées
ou des dysfonctionnements du CEJ, une température maximum (de sécurité) peut-être
définie.

Le problème d’optimisation peut être défini du point de vue du producteur, en supposant
qu’on dispose du contrôle de l’injection de puissance u(t) = (u1(t), ..., uk(t)) d’un parc de
k ballons pendant une période [t0, tf ]. Le producteur d’électricité souhaite généralement
minimiser une certaine fonction objectif, toute en satisfaisant les contraintes de l’utilisateur.
Pour un ballon donné i, le fait qu’une stratégie ui garantisse le confort de l’utilisateur sera
noté ui ∈ U i, U i étant l’ensemble des contrôles admissibles pour le ballon i. Un problème
important de minimisation concerne le coût de la chauffe. Étant donné un signal prix pour
l’électricité au cours du temps c(t, ·), un problème de contrôle optimal peut être défini
comme

min
(u1,...,uk)∈U1×...×Uk

∫ tf

t=t0
c(t,

k∑
j=1

uj(t))
k∑
j=1

uj(t). (P1)

On appelle ce problème P1. Dans cette formulation, le prix dépend de la consommation
totale en électricité, dans la mesure ou la taille des parcs de CEJ n’est pas négligeable
dans la demande globale11.

11si le groupe considéré est de petite taille, étant donné que les contraintes de fonctionnement sont
découplées, les prix apparaissent comme plats et ce problème se décompose en k problèmes distincts

min
ui∈Ui

∫ tf

t=t0

c(t)ui(t).
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Alternativement, la fonction objectif peut-être définie comme une distance quadratique
à un objectif pour la consommation agrégée fo(t). Le problème est alors

min
(u1,...,uk)∈U1×...×Uk

∫ tf

t=t0
(fo(t)−

k∑
j=1

uj(t))2. (P2)

On appelle ce problème P2. Les travaux trouvés dans la littérature sur ce type de problèmes
supposent généralement que la température est uniforme dans le ballon et négligent la
stratification [DL11, SCV+13]. Cette hypothèse peut mener à une violation des contraintes
de confort en délivrant de l’eau froide ou tiède, et ne valorise pas la stratification. Pour
cette raison, nous souhaitons porter un nouveau regard sur ces problèmes, et proposer des
solutions alternatives.

Contributions de la thèse
Cette thèse propose plusieurs contributions.

Une première partie est dédiée à la représentation d’un CEJ en tant que système
entrée-sortie (voir Fig. 1.8). L’idée est de développer un modèle simple, adaptable et assez
précis, qui puisse être utilisé dans une unité de calcul embarquée dans un CEJ intelligent
pour l’application pratique des stratégies d’optimisations. Dans le chapitre 2, un modèle
physique prenant la forme d’un système d’équations aux dérivées partielles est développé,
incluant notamment un terme de convection naturelle. Les termes du modèles sont basés
sur notre compréhension physique de la dynamique 1D dans le ballon. Validé par des
données expérimentales liées à des chroniques de soutirage et de consommation électrique,
le modèle se montre capable de reconstruire le profil de température Ãă l’intérieur d’un
ballon. Dans un second temps, ce modèle est simplifié dans le chapitre 3 en un modèle
phénoménologique multi-périodes qui distingue plusieurs états de fonctionnement. Ce
second modèle est précis et peu coûteux numériquement. Il est possible de l’intégrer dans
un calculateur embarqué dans un CEJ intelligent. Dans la perspective de la conception
des stratégies de contrôle, un modèle réaliste de consommation d’eau chaude sanitaire est
développé dans le chapitre 4. Il peut être utilisé pour générer aléatoirement des scénarios de
soutirages dans le futur proche, corrélé avec l’historique récent de soutirage. Ces scénarios
peuvent être utilisés pour mettre à l’épreuve des stratégies de chauffe optimale et vérifier
qu’elles ne génèrent pas une pénurie d’eau chaude. Le profil de température offre une
description précise de l’état du CEJ, mais son caractère distribué le rend trop lourd pour
être manipulé dans un but de contrôle. Pour cette raison, on définit trois variables d’intérêt
qui facilitent la manipulation des contraintes de confort. C’est l’objet du chapitre 5. Cette
étape finale de modélisation termine la définition d’un modèle entrée-sortie pour un CEJ
soumis à une demande d’eau chaude sanitaire aléatoire.

La seconde partie de la thèse s’intéresse à la conception de stratégies de contrôle
optimal pour un parc de CEJ. On suppose que la chauffe de chaque ballon peut être pilotée
à distance par un centre de décision (les ballons étant dits contrôlables). Parmi eux, une
partie peut calculer et transmettre sur demande au centre de décision des informations
sur leurs états. Ces ballons sont dits intelligents. Trois cas de figure sont étudiés. Le
chapitre 6 s’intéresse aux cas d’un petit nombre de ballons contrôlables et intelligents (de
1 à 4). Une méthode de résolution optimale en temps discret pour P1 et P2 y est définie.
Dans le cas d’un ballon unique, l’algorithme d’optimisation peut être intégré dans le
calculateur embarqué du ballon, et définit automatiquement sa stratégie de chauffe future
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en utilisant par exemple un signal prix extérieur ou des objectifs d’auto-consommation.
Dans le chapitre 7, on étudie des parcs de tailles intermédiaires (de quelles centaines à
plusieurs millions). On propose une heuristique de résolution du problème P2, gardant
les périodes de chauffes indivisées pour minimiser les aléas thermo-hydrauliques. Cette
heuristique repose sur la nature stochastique du problème, et utilise le lissage statistique
naturel généré par le grand nombre de ballons pour se rapprocher de la courbe objectif. Si
une partie des ballons est contrôlable et intelligente, les résultats s’améliorent et la perte
d’optimalité peut descendre à moins de 1%. Enfin, un modèle de comportement d’un parc
infini de ballons est proposé dans le chapitre 8. Cette approche (prospective) vise à étudier
la réaction d’un parc soumis à des stratégies d’ensemble.

Le chapitre 9 est consacré à la conclusion, et à la présentation de perspectives.

Note. Les travaux présentés dans cette thèse ont été l’objet des publications et brevets
suivants.
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Part I

The EHWT : behaviour and
proposed representation





Chapter 2

A physics-based representation of
EHWT

Un modèle physique pour les CEJ. Dans ce chapitre, nous présentons un modèle de
CEJ prenant la forme d’un système couplé de deux equations aux dérivées partielles, suivi
de simulations et d’une validation expérimentale. Le modèle permet de reproduire le profil
de température dans le ballon au cours du temps.

In this chapter, we develop a distributed parameter model for the dynamics of the
temperature profile in an EHWT. The microscopic and macroscopic effects observed in
response to the water drain and the power injected in the tank take central roles in this
model.

The model can be seen as an extension of existing one-dimensional convection-
diffusion linear equations modeling the draining convection and mixing originally developed
in [OGM86, ZGM88, ZLG91] in the general context of storage tanks. In details, to the
classic governing equation already found in the previously cited works, we add a nonlinear
velocity term stemming from an empirical law representing turbulent natural convection
caused by heating, and we explicitly include heating power as a source term1.

The model we develop is shown to be in accordance with experimental data presented
in this chapter. These data clearly stress the following: i) heating water with an EHWT
takes time, ii) during the heating process, a zone of uniform temperature appears and
grows until it covers the whole tank, iii) draining induces a piston flow, and also causes
some internal mixing which is non negligible. As will be shown, the proposed distributed
parameter model is able to reproduce these observations.

The chapter is organized as follows. After having described the proposed model in
Section 2.1, we illustrate it by means of simulations and compare it against experimental
data in Section 2.2. A summary is given in Section 2.3.

1This model enrichment can be related to the numerics oriented works of [VKA12] who proposes to
consider an additional natural convection term in the finite difference scheme discretizing a one-dimensional
convection-diffusion equation.
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2.1 PDE for heating and draining

2.1.1 Draining model as a PDE
To emphasize the effects of stratification, our model solely uses one-dimensional partial
differential equations. The works of Zurigat on draining effects in stratified thermal storage
tanks [ZGM88, ZLG91] serves as baseline. The novelty is to introduce the heating system.
It is treated in § 2.1.2 and § 2.1.3. The equation below accounts for draining and its
induced turbulent mixing effects. It is an usual one-dimensional energy balance where the
turbulence is lumped into a diffusion term

∂tT + ∂x(vdT ) = (αth + αd)∂xxT .
In this equation, T (x, t) is the temperature at time t and height x, vd ≥ 0 is the

velocity induced by the draining (assumed to be spatially uniform but time-varying), αth
is the thermal diffusivity and αd is an additional turbulent diffusivity term representing
the mixing effects. Zurigat [ZGM88, ZLG91] considers the same equation and introduces
the ratio εd = αth+αd

αth
. An experimental correlation is shown with the Reynolds number

and the Richardson number Ri in the tank2 defined as

Ri = gαV (Tin − Ta)Lc
v2
d

(2.1)

where g is the gravitational acceleration, αV is the volumetric coefficient of thermal
expansion of the fluid (here water), Tin is the temperature of the inlet water, Ta is the
ambient temperature and Lc is a characteristic vertical length3. This correlation can be
used in our case.

A heat losses term (to the exterior of the tank assumed to be at temperature Ta) can
be added to this equation. Then, one obtains

∂tT + ∂x(vdT ) = εdαth∂xxT − k(T − Ta) (2.2)

where the factor k is defined by
k = UhΠ

Sρcp

where ρ is the density of water, cp its specific heat capacity, Uh is the overall heat transfer
coefficient based on the tank internal surface area, Π is the tank internal perimeter and S
its effective cross-section.

Note h the vertical length of the tank internal volume. Equation (2.2) is assumed to
hold over Ω× I, where I =]t0, tf ] is a time interval and Ω =]0, h[. Classically, we consider
boundary conditions of the Robin [DL93] form vd(T (0, t) − Tin) + εdαth∂xT (0, t) = 0
at x = 0, and of the Neumann [DL93] form ∂xT (h, t) = 0 in x = h, meaning that energy
is allowed to leave the system with the outlet flow but not with diffusion.

2.1.2 Including heating and buoyancy forces
Equation (2.2) integrates the most obvious phenomena taking place in an EHWT. The
effects of heating are of two types: direct and indirect. The direct effect is a source term

2The Richardson number (2.1) is a dimensionless number representing the relative importance of
natural convection compared to forced convection [ZLG91]

3This correlation is influenced by the geometry of the inlet nozzle [IFYLG14, ZLG91]
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Figure 2.1: Plumes of turbulent natural convection over an exchanger, from [Bla10].

in the balance equation. The indirect effect is buoyancy. It can be added in the model at
the expense of linearity, as is described below.

When the heating system is on, temperature of water around the heating element
starts to rise. By buoyancy, hot water replaces colder water above by a phenomenon called
Rayleigh-Bénard convection [Pet07, Gau08, Gib07]. This convection can take various
forms depending on the characteristics of the system, represented by the Rayleigh number

Ra = gαV (Ts − T∞)L3
c

ναth

where ν is the kinematic viscosity of the fluid, Ts is the temperature of the surface (here
the heating element), and T∞ is the temperature in the tank far from it. This adimensional
number scales the effects of buoyancy and conduction: if it is low, the conduction will be
the main heat transfer factor, if it is high, the natural convection will predominate. Over
a critical value (Ra = 1108 for [Pet07], Ra = 3, 5 · 104 for [Gau08]), turbulent natural
convection appears under the form of a pattern of plumes forming convection cells called
Bénard cells which can take various forms and sizes.

For any EHWT found in households, even with a small Ts−T∞ difference, the Rayleigh
number is far over the critical value, and plumes of turbulent water appears over the
heating system (see Fig. 2.1 reproduced from [Bla10]). Therefore, convection dominates
conduction. To include this effect into (2.2), we simply consider that, at each given height,
two distinct temperatures co-exist in the convection cells. Then, to our equation on T , we
append an interacting equation bearing on a new physical quantity ∆T (x, t) representing
the temperature spread at each height x over T . This gives the following system

∂tT + ∂x(vdT ) = εdαth∂xxT + Φ∆T − k(T − Ta) (2.3)
∂t∆T + ∂x((vd + vnc)∆T ) = εdαth∂xx∆T − Φ∆T + PW . (2.4)
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In the two equations above, three terms have been added: a velocity term vnc of
natural convection, which is responsible for transport of energy in the system, a heat
exchange term Φ(x, t)∆T (x, t) (representing at each height the mixing induced by natural
convection being proportional to the temperature spread), and the spatially distributed
source term PW (representing the power injected in the tank all along the element, generally
from the bottom of the tank to one third of its height), which drives the dynamic of ∆T .
The boundary conditions for (2.3) remain unchanged, while the boundary conditions
for (2.4), as a temperature spread, are vd∆T (0, t) + εdαth∂x(∆T )(0, t) = 0 at x = 0
and ∂x(∆T )(h, t) = 0 at x = h.

2.1.3 Model for natural convection and internal heat transfer
We now introduce a model for the transport velocity appearing in (2.4). This veloc-
ity vnc(x, t) is non-constant. It is non-zero at a given altitude x only if there exists colder
water over the height x (i.e. downstream). We give to vnc the following integral form

vnc(x, t) = v(
∫ h

x
[T (x, t) + ∆T (y, t)− T (y, t)]ζ+dy)ξ (2.5)

where [z]+ is the positive part of z and v is a positive factor, and where 0 < ζ < 1 and
0 < ξ < 1 are tuning parameters the value of which are chosen to fit experimental data.
These parameters reduce the impact of the downstream temperatures differences and
smooth the velocity when it is nonzero. The exchange coefficient Φ between the two
equations is also non-constant and we model it as

Φ(x, t) = φ[vmax − vnc(x, t)]+ (2.6)

where φ and vmax are two tuning parameters. The rationale behind this expression is that
the horizontal mixing is stronger when the natural convection flow reaches the upper part
of the tank and has a lower speed.

2.1.4 Summary of the model
According to the previous discussion, the EHWT can be represented by two distributed
state variables, T and ∆T , governed by (2.3) and (2.4). In those governing equations
two velocities appear: vd which is spatially uniform and is equal to the output flowrate
(drain) of the system, and vnc which is defined in (2.5) to model the effects of natural
convection. Heat is injected into the system through a distributed source term PW and the
heat exchange between the two equations is proportional to ∆T with a coefficient (variable
in space) defined in (2.6). Finally, αth, εd, k, v, ζ, ξ, φ and vmax are constant parameters
depending on physical constants and the geometry of the tank. Typical values for the
EHWT defined in Table 2.1 are given in Table 2.2. They result from an identification
procedure.

2.2 Model validation

2.2.1 Experimental setup
To validate the model, experiments have been conducted in the facilities of EDF Lab
Research Center, on an Atlantis ATLANTIC VMRSEL 200L water tank. The power
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is injected via three nearby elements permitting a power injection up to 2200W. The
dimensions of the water tank are specified in Table 2.1.

Volume L 200
Length m 1.37
Maximal power W 2200
Heat losses coefficient W·m−2K−1 0.66

Table 2.1: Specifications of the EHWT used in experiments.

αth m2s−1 1.43 · 10−7

εd - 13
k s−1 1.43 · 10− 6
v m1−ξ·s−1K−ζξ 10−3

ζ - 0.2
ξ - 0.5
φ m−1 0.03
vmax ms−1 0.35

Table 2.2: Parameters of the model for the associated EHWT.

The water tank has been equipped with internal temperature sensors recording temper-
ature at 15 locations of different heights, 15 cm deep inside the water tank (see Fig. 1.1).
This depth is sufficient to bypass the insulation of the tank. It is assumed that the sensors
have no effect on the flows (e.g. that they do not induce significant drag). Besides, the
following quantities have been recorded with external sensors: injected power, water flow
at the inlet, water temperature at the inlet. These three quantities feed the model, the
output of which can be compared with the temperature measured by the sensors. The
comparisons are directed into an optimization procedure identifying the coefficients given
in Table 2.2. Conducted experiments took the form of fourteen 24 h runs with a sampling
rate of 1Hz. Histories for drain are taken from the normative sheets emitted by the French
norm organism [NF 11] for a tank of such capacity, associated with a classical night-time
heating policy until total load. Subsequent experiments consider similar total consumption
but with different drain/heat combinations and overlaps to test the model under various
situations.

2.2.2 Results
For sake of illustration, several operating conditions are reported next. Simulations have
been conducted on a quad-core Intel Core i7-4712HQ processor equipped with 16Go
of memory. Numerically, this system of equations can be solved with finite difference
schemes. We use a Crank-Nicholson scheme (see [All07]) for the diffusive term, and
an upwind scheme for the convective part. The later is stable only conditionally to a
Courant-Friedrichs-Lewy condition [All07]. In our case, due to the non-linear nature of
vnc, short time-steps must be chosen. In turn, this increases the computational load which
is already high due to the evaluation of the integral appearing in vnc, for each space-step.
This can lead to long computation times (see Table 2.3). Fig. 2.2 (a) shows the variation
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Figure 2.2: Variations of the temperature profile during a heating period (a) and during a
draining period (b) (blue: model prediction, black: experimental values).

of the temperature during a heating period for a tank initially completely cold. Fig. 2.2
(b) shows the response to draining of a heated tank. The results are quite satisfactory.
Some mismatch appears in the lower part of the tank during draining, and in upper parts
during heating. They can be due to the chosen one-dimensional representation, since the
neglected effects of radial inhomogeneity may be stronger near the ends of the tank, and to
some mixing effects that have not be taken into account. However, the results show that
the model is accurate enough, even in 24 h open-loop runs. To support this statement, the
distribution of the absolute difference between experimental value and model prediction is
given in Table 2.3 (produced over the whole set of data).
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Err. 0-2 oC 2-4 oC 4-6 oC 6-8 oC 8 oC+ Time
Distr. 53.9% 22.9% 10.7% 5.1% 7.4% 2435.6 s

Table 2.3: Comparison of absolute difference between experimental results and model
predictions. Percentage of sample for each error interval.

2.3 Summary
In this chapter, we have presented a first model for an EHWT with consumed water
and injected power as inputs. This model accounts for the direct and indirect effect
of heating. Comparisons with experimental data reveal that the model is capable of
reproducing with a relative degree of accuracy the transient behaviors. A closer look at
both numerical simulations and experimental results highlight the formation of a spatially
uniform temperature distribution which gradually extends itself upwards to the top of the
tank (see Fig. 2.2 (b)). We consider that buoyancy induced forces, by generating a local
natural convection phenomenon, are the root cause for this. The homogeneous zone is
followed by an increasing profile of temperature in the upper part of the tank, staying
untouched due to stratification if heat diffusion is neglected. This property suggests an
alternative model focused on the dynamics of the uniform temperature of the zone with an
ordinary differential equation (ODE). This simplification is presented next, in Chapter 3.





Chapter 3

Multi-period dynamical modeling for
electric hot water tank

Modèlisation dynamique multi-periode des CEJ. Dans ce chapitre, nous simplifions
le modèle précédent en distinguant trois régimes de fonctionnement. Pour chaque régime,
la dynamique est décrite sous la forme d’une equation aux dérivées partielles ou aux
dérivées ordinaires. La présentation du modèle est suivie d’une validation expérimentale.

The physics-based model presented earlier in Chapter 2 is concise and relatively
satisfactory. However, the accuracy, and, above all, the computational cost associated to
its numerical resolution can be seen as strong limitations if one desires to embed it in a
“smart EHWT”. In this chapter, we decouple heating and draining effects and develop a
new model, based on the decomposition of the dynamics according to the dominant effect
at stake. We distinguish three phases (periods): heating, draining and rest.

For heating, we reproduce the behavior observed earlier in the experimental data
in which the temperature increases first at the bottom of the tank forming a spatially
uniform temperature distribution which gradually extends itself upwards to the top of the
tank. This homogeneous zone is followed by an increasing profile of temperature in the
upper part of the tank, remaining untouched due to stratification (heat diffusion being
neglected in this case). As previously, draining is treated as a convection parameter and
its associated mixing effects are reproduced by a diffusion term. However, combined to
the convection-diffusion equation, we model the effects of the water nozzle which creates a
mixing zone of varying temperature and volume. The cascade represents a typical Stefan
problem [FP77a, FP77b]. Finally, rest phases are simply driven by diffusion and losses.
Sequencing the three phases constitutes a multi-period model. This multi-period model is
the main contribution of this chapter.

The chapter is organized as follows. Preliminary observations are displayed in Sec-
tion 3.1. Section 3.2 is dedicated to the presentation of the multi-period model which is the
main contribution of the chapter. Comparative studies reported in Section 3.3 conclude
that this multi-period model is more accurate and more computationally efficient than the
physics-based model presented in Chapter 2. A summary is given in Section 3.4.
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3.1 Preliminary observations
The comparison of the physics-based model of § 2.1.4 against experimental data is overall
satisfactory even in 24 h open-loop runs, but close-up inspections have revealed some
possibilities of improvement. We now detail these.

Firstly, numerical results of this model and experimental data concur and clearly show,
during heating, the creation of a temperature “plateau” starting from the bottom of the
tank (see Fig. 3.4 (a.1)). In numerical simulations, this plateau has increasing temperature
and length as heating goes on, but leaves temperatures at greater heights untouched and
only progressively covers the whole of the tank. This phenomena is seen in experimental
data in the exact same way at the exception of a small temperature backward flow observed
in the highest region of plateau (see Fig. 3.4 (a.1)). These observations support the validity
of the model, but they also suggest some simplifications could be performed.

Secondly, a mismatch appears during draining in the lower part of the tank. This
mismatch consists of an underestimation of the injected water temperature and a shift
of the location of the thermocline (see Fig. 3.4 (a.2)). It is believed that the mismatch
arises from a local mixing in the bottom of the tank, such as the one coming from a strong
squirt out of the water injection nozzle. In turn, the dynamics of such mixing and its
effect on the thermocline location have a strong effect on the temperature profile that
cannot be easily reproduced by the simple convection-diffusion equation in a fixed domain.
Accounting for them calls for a transformation of the fixed domain into a time-dependent
one and an adaptation of boundary conditions.

In practice, it appears that draining and heating effects on the tank are mostly taking
place over disjoint periods. Therefore, the time interval during which the system is
considered can be split into distinct subintervals, or periods. Introducing distinct dynamics
for each period offers the double advantage of reducing the computational burden (enabling
tailoring numerical schemes for each dynamics) and of bringing significantly improved
flexibility compared to a single system of PDE.

We now present the multi-period model we propose.

3.2 Multi-period model for heating, draining and heat
losses

3.2.1 Separations into non overlapping periods
Consider an initial time t0, an initial temperature profile T0(x), and a time tf at which
one wants to determine the temperature profile T (·, tf ). On [t0, tf ], the tank is submitted
to draining and heating, characterized by the draining velocity vd(t) and the injected
power u(t) (related to the previously defined PW via the relation u(t) =

∫ h
0 PW (y, t)dy).

We assume that vd and u are piecewise constant and left-continuous (at each discontinuity
point).

Let us define T u = (tu0 = t0, ..., t
u
mu

= tf ) and T v = (tv0 = t0, ..., t
v
mv

= tf ) the sequence
of discontinuity points respectively of u and vd, and T = T u∪T v = (t0, ..., tm) the sequence
of discontinuity points of u and vd, such that t0 < t1 < ... < tm = tf . This sequence T
defines a succession of m time intervals ]ti, ti+1] of length ∆ti. In each time interval, the
tank is in one (and only one) of the phases I, II, IIIa, IIIb defined below. Over each time
interval, u(t) and vd(t) are constant (as illustrated in Fig. 3.1).
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Draining
vd(t) = 0 vd(t) > 0

Heating u(t) = 0 I IIIa
u(t) > 0 II IIIb

Draining velocity vd (m · s−1)

Heating power u (W )

Configuration

Time

Time

Time

tv0

t0

umax

I I II IIIIIa IIIa IIIb IIIb II

t1 t2 t3 t4 t5 t6 t7 t8 t9 = tf

tv1 tv2 tv3 tv4 tv5 tv6 tv8 = tf

tu1 tu2 = tftu0

tv7

Figure 3.1: Definition of the timeline.

Over each interval ]ti, ti+1], we desire to determine the temperature profile as a function
of time, in particular at final time ti+1. The profile at the end of a phase serves as initial
condition for the following phase. Three functions FI , FII , FIII (accounting for both IIIa
and IIIb) map an initial profile and working conditions to temperature profiles for future
times. We note,

• T (·, ti+1) = FI(T (·, ti),∆ti)

• T (·, ti+1) = FII(T (·, ti),∆ti, u)

• T (·, ti+1) = FIII(T (·, ti),∆ti, vd, u).

Clearly, if one wishes to compute the temperature profile at any time of interest tf ,
one only needs to compute the sequence of intermediate profiles T (·, ti), i = 1, ...,m− 1 as
a function of the previous ones by a chain rule. Note that for the computation on a short
interval [t0, tf ] (e.g. if one considers a succession of nearby times of interest), T can be
reduced to a short list of events. Interestingly, a comparable split is developed in [KBM08]
for the case of a water storage tank with external heating.

We now detail these mappings, for any index i.

3.2.2 Phase I: Rest
In this part, we consider periods without any draining or heating.



46 Chapter 3. Multi-period dynamical modeling

Physical considerations

The only phenomena driving the temperature profile are diffusion and heat losses.

Dynamics

The input variables of FI are the initial profile, say T0(·), and the duration ∆ti. They
serve in the following diffusion-heat losses one-dimensional system:

∂tT = αth∂xxT − k(T − Ta) on Ω× I
∂xT (0, t) = 0 on I
∂xT (h, t) = 0 on I
T (x, 0) = T0(x) on Ω


(3.1)

where I =]0,∆t] and Ω = [0, h].
We have FI(T (·, ti),∆ti) = T (·, ti+1).

Numerical considerations

Numerically, this system can be solved relatively easily with finite difference schemes. We
use a Crank-Nicholson scheme [All07] on a linearly spaced mesh.

3.2.3 Phase II: Heating
Physical considerations

Heating modeling can be simplified thanks to the plateau discussed earlier. Turbulence
generated by buoyancy effects during the heating process is the cause of a local mixing.
Here, we consider that this mixing is perfect on the plateau which is an area [0, xp(t)], and
that the buoyancy effects do not affect stratification in heights above xp(t). For sake of
simplicity of presentation, only the case without heat losses is exposed here, but losses can
be included without too much difficulty (this is actually done for the simulation presented
in Section 3.3). To simplify the dynamics, the diffusion phenomena have to be neglected.
Then, the governing equations take the form of an ODE that we derive below.

Dynamics

The input variables of FII are the initial profile T0(·), the duration ∆ti, and the constant
value u of the heating power. The plateau temperature is noted Tp(t). It is related to xp(t)
by the equation

Tp(t) = T0(xp(t)) (3.2)

corresponding to the continuity assumption at the interface between the plateau and the
(untouched) initial profile (see Fig. 3.2).

An energy balance (illustrated in Fig. 3.2) gives

Tp(t)xp(t) =
∫ xp(t)

0
T0(x)dx+

∫ t

0

u(s)
Sρcp

ds. (3.3)

Denoting T ′0 the derivative of T0, relations (3.2) and (3.3) yield the dynamics of xp(t)
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Temperature

0

Height

h

Tp(t)

T0(x)

Injected energy

xp(t)

Energy initially present

Figure 3.2: Energy balance for the integral form heating model.

dxp
dt = u

SρcpxpT ′0(xp)
, xp(0) = 0, t ∈]0,∆t] (3.4)

which directly gives Tp(t) using (3.2).
For completeness, other phenomena can be included:
• Heat losses at walls (with losses coefficient k) is a local phenomena that does not

alter the shape of a plateau. Its effects are some decrease of T0(·) towards ambient
temperature Ta in the form of a exponential factor e−kt of the initial profile and a
additional term in the dynamics of xp(t).

• If the plateau is not exactly uniform but a trend can be observed (for instance
repeatable variations around the heating elements), one can separate the temperature
of the plateau in two components with distinct arguments Tp(x, t) = Tpt(t) + Tpx(x)
and then study the dynamics of Tpt(t).

• Finally, the small backward energy flow that is always observed (see Fig. 3.4 (a.1)) at
the interface (in a stronger way at the top of the tank) can be modeled by relaxing
the continuity hypothesis (3.2) and replacing it with

Tp(xp(t), t) + Tp∆(xp(t)) = T0(xp(t)) (3.5)
where the continuity gap Tp∆ depends on the geometry of the tank (and has to be
identified).

Integration of such optimal features defines the dynamics of xp(t) under the general form
(which is slightly more complex than (3.4))

dxp
dt = l(xp, t)u+ s(xp, t) (3.6)

where the nonlinear functions l and s are constructed from the functions T0, Tpx, Tp∆ and
their derivative or reciprocal function, and parameters S, ρ, cp, Ta and k. Simple examples
for l and s are reported in (3.4).

At any instant t ∈]0,∆t], the temperature inside the tank is defined as the profile
constituted by the plateau (on the lower part) and the initial profile updated by the heat
losses factor (on the upper part).

This defines FII(T (·, ti),∆ti, u) = T (·, ti+1).
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Numerical considerations

In principle, the extra features added to the dynamics could render (3.6) difficult to identify
and even more difficult to integrate. However, an integral form similar to the energy
balance (3.3) gives an easy way to determine the profile at the end of the heating phase.
This method is used in practice to numerically compute the profile in Section 3.3.

3.2.4 Phase IIIa and IIIb: Drain as a Stefan problem
Physical considerations

During draining periods, the model of § 2.1.4 inspired by Zurigat’s convection-diffusion
model appears to be globally valid at the light of experimental data. However, examination
of recordings reveals that the injected water seems to be of higher temperature than the
one coming from the water system, and the injection seems to be located not at x = 0 but
at higher heights (see Fig. 3.4 (a.2)). Below, we propose an explanation for this.

As we have described it in Section 3.1, the water nozzle mixes the injected water in a
neighboring volume, raising the temperature in a zone of varying size. The Zurigat-inspired
model does not account for this effect and tends to neglect the water at the bottom of the
tank. This results in a undesirable shift of the thermocline (see Fig. 3.4 (a.2)). A similar
effect is studied for large storage tanks (having capacity larger than 30 m3) when injecting
hot water on top of the tank in [OGM86] and [NST88]. In these works, buffer zones
have been introduced in the proposed models with respectively constant and constantly
increasing (with time) lengths. These buffer models do not yield conclusive results in our
case, even though interesting similarities in the spirit of derivation can be seen with our
work.

For these reasons, we introduce another homogeneous zone characterized with tem-
perature Tb(t) and length xb(t). Their dynamics are driven by the water injection. In
case of simultaneous heating and draining (case IIIb), draining effects are predominant.
We simply assume that the heating elements all belong to this zone and concentrate the
effects of the heating power u on Tb(t).

Dynamics

We still consider Zurigat’s convection-diffusion PDE on the interval [xb(t), h], but with a
Dirichlet boundary condition T (xb(t), t) = Tb(t) which is now located at the end of the
mixing area (xb in Fig. 3.3), and thus constitutes a time-varying boundary condition.

The input variables of FIII are the initial profile, say T0(·), the duration ∆ti, and the
constant values of the heating power u and draining velocity vd. Then, we consider the
Stefan problem (3.7)-(3.8)-(3.9)

∂tT + vd∂xT = εdαth∂xxT − k(T − Ta) on Cs
T (xb(t), t) = Tb(t) on I
∂xT (h, t) = 0 on I

Tb(0) = T 0
b , xb(0) = x0

b

T (x, 0) = T0(x) on ]xb(0), h]


(3.7)

over the domain Cs = {(x, t)|t ∈ I, xb(t) ≤ x ≤ h} (where I =]0,∆t]).



3.2. Multi-period model for heating, draining and heat losses 49

ti Height

h

xb(t)

0

ti+1

Time

T (x, t) = Tb(t)

In this domain:
Convection-diffusion equation vd, αd

In this domain:

xb(ti)

Figure 3.3: The Stefan problem (with moving boundary) for modeling draining.

The dynamics of Tb derive from the energy balance

xb(t)
dTb
dt (t) = vd[Tin − Tb(t)] + εdαth∂xT (xb(t), t)− kxb(t)(Tb(t)− Ta) + u

Sρcp
. (3.8)

The dynamics of the moving interface xb(t) are defined as follows. Experimental data
suggests that the mixing zone is larger when its temperature is low. Then, we choose the
general formulation

xb(t) = q(Tb(t)) (3.9)
where q is a positive, continuously decreasing function to be identified. For the simulation,
we use the nonlinear expression

q(T ) = min(h, A

T − Tmin
) (3.10)

where A and Tmin < Tin are subject to an identification procedure. More generally, q
represents the mixing effects of water injection and therefore is strongly connected with
the typology of the nozzle. This definition is consistent with the observation that large
values of vd induces rapid decrease of Tb and increase of xb.

The initial conditions x0
b and T 0

b are defined as follows. The homogeneous domain is
initialized with

x0
b = argmin{xb|q

(∫ xb

0
T0(x)dx

)
= xb} (3.11)

and T 0
b = min{T |q(T ) = x0

b}. As defined in (3.11), if {xb|q (
∫ xb

0 T0(x)dx) = xb} is not
empty, x0

b is unique as the minimum of a closed set (due to the continuity of q and of the
integral). An empty set corresponds to the case where very few energy is in the tank and
the temperature in the tank is close to Tin. We consider then that the mixing zone covers
the whole tank and set x0

b = h. This completes the definition of the dynamics.
Remark 1. Generally, existence and uniqueness of such time-varying boundary conditions
problem is not straightforward. Here, relating to the so-called Stefan one-phase prob-
lem [FP77a, FP77b, Can84] (which models the temperature of water next to a melting layer
of ice and other crystal growth problems), under additional assumptions on q and u, we
can prove not only that the problem is well-defined but also that for any time t ∈ I, T (·, t)
is an increasing function. This directly follows from the general result of [FP77a, FP77b].
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(a.1) Plateau and backward flow (b.1) Plateau and backward flow
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(a.2) Single thermocline (b.2) Single thermocline
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(a.3) General scenario (b.3) General scenario

Figure 3.4: Comparisons of the physics-based model in § 2.1.4 (a) and the proposed
multi-period model (b), against experimental data (black), simulation are in blue.

Remark 2. If ∃t ∈ [0,∆t] s.t. xb(t) = h, the previously defined dynamics is halted and is
replaced for later times by

h
dTb
dt (t) = vd[Tin − Tb(t)]− kh(Tb(t)− Ta) + u

Sρcp

xb(t) = h

 (3.12)

defining T (·, t) = Tb(t) over the whole tank.
The description above defines the function FIII : given a constant draining vd and

heating u, FIII is the mapping from T0(·),∆ti, vd and u to the solution T (·, s) of (3.7),
(3.8), (3.9) at time ti+1. In other words

FIII(T (·, ti),∆ti, u, vd) = T (·, ti+1).
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Numerical considerations

As in § 3.2.2, this system can be solved numerically with finite difference schemes, jointly
with an ODE solver for the state Tb with the same time-step.

3.2.5 Summary of the multi-period model
The definitions of functions FI , FII , FIII above allow an easy computation of the tem-
perature profile at any final time tf : given a succession of phases separated by times
T = (t0, t1, ..., tm = tf) and an initial profile T (·, t0), intermediary profiles T (·, ti) are
computed by successive applications of these functions, using the constant values of u and
vd during each phase.
Remark 3. Denote E ⊂ L∞(Ω) the set of increasing, piecewise continuous and continuously
piecewise differentiable functions. Each of FI , FII , FIII maps the profiles from E to E,
ensuring that our problem is well-defined.

3.3 Comparison against experimental data and
physics-based model

The multi-period model has been compared against experimental data under the same
conditions as in Chapter 2. Comparisons with previously obtained numerical results (using
the model from § 2.1.4) show clear improvements both during draining periods (with the
vanishing of the temperature and thermocline shifts) (see Fig. 3.4 (a.2)(b.2)) and during
heating periods (with an improved estimation of the plateau distribution and the backward
flow) (see Fig. 3.4 (a.1)(b.1)). The changes have a positive impact on the accuracy of the
model, as is reported in Table 3.1, in which the statistics of the absolute difference between
simulation and experimental data has been used as a quality index (for the whole set of
data): with the multi-period model, 96.8% of predicted temperatures have an error lower
than 4 oC. Most importantly, a significant speedup is obtained. The low computational
complexity of the multi-period model enables its implementation in the envisioned “smart
EHWT” applications.

Err. 0-2 oC 2-4 oC 4-6 oC 6-8 oC 8 oC+ Time
Physic-based model 53.9% 22.9% 10.7% 5.1% 7.4% 2435.6 s
Multi-period model 82.3% 14.5% 2.0% 0.6% 0.6% 4.6 s

Table 3.1: Comparison of absolute difference between experimental value and model
prediction; computational time. Percentage of sample for each error interval.

3.4 Summary
In this chapter, we have proposed a new model for an EHWT. This model is based on
experimental observations. It has the advantages of being accurate and computationally
light.

Thanks to these performance improvements, the multi-period model can be used to
address the optimization problems P1, P2 considered in the thesis.
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Very generally, in the context of “smart EHWT”, this model can be used to estimate
the temperature profile of the water contained in the tank, from an initial profile, heating
and draining histories. In practice, this requires a flow sensor (either at the input or
output of the tank), and means for logging the power injected via the heating element.
To estimate the initial condition, an internal temperature sensor can be used. In most
EHWT installed in the French market, such a sensor is already installed at the bottom of
the tank in the thermostat. It is coupled with the heating element (see Fig. 1.1): heating
goes on until this sensor detects a temperature of Tmax. The description of the thermostat,
and the properties of the two models introduced earlier suggest that, when the sensed
temperature equals Tmax, the temperature of the water is uniformly equal to Tmax.

When coupled with the flow sensor, the thermostat sensor allows us to identify an open-
loop model with occasional resetting of the profile. Starting with a uniform temperature
profile Tmax, we compute the subsequent profiles using the model and the data of the
injected power and drained water. At each occurrence of Tmax measured by the sensor,
we replace the profile by an uniform profile to ensure that the profile is calibrated on a
regular basis. These can form the basis of a general state observer for this distributed
parameter system.



Chapter 4

Autoregressive modeling for
domestic hot water consumption

Modèlisation autoregressive de la consommation d’eau chaude sanitaire. Dans
ce chapitre, nous étudions les propriété statistiques de la consommation d’eau chaude
sanitaire au cours du temps. Sont étudiés : la distribution des amplitudes des soutirages,
le comportement du consommateur sur une journée, et les durées entre deux soutirages
successifs. Un résultat marquant est que la durée entre deux soutirages successifs suit une
distribution de Weibull. Un modèle conditionnel autorégressif est proposé pour la suite de
ces durées, il est validé par des données expérimentales.

In this chapter we study one of the inputs of the previously introduced model: the
consumption of domestic hot water.

Users drain hot water from their EHWT at various times of the day. For comfort,
delivery of hot water at all times is a constraint that must be satisfied at best. In advanced
heating control strategies, a model of the user demand can be used, through the multi-
period model developed in Chapter 3 to estimate, at any time, the state of charge of the
tank as a function of heating and domestic hot water consumption. This states serves to
evaluate (and guarantee) the availability of hot water for the user. In this chapter, we
perform some investigations on the dynamics of domestic hot water (DHW) consumption,
which has a random nature.

In the literature, many studies have focused on describing weekly or seasonal consump-
tion patterns, or have presented hour-per-hour mean consumptions [VDS87, MT97, PPS95].
At smaller times scales, the water drains appear as a sequence of quasi-instantaneous
drains (see Fig. 4.1). As can be observed on experimental data, the time of occurrence
of these drains is not fixed, but is stochastic. Some models representing drains as point
process have been developed. One such typical approach can be found in [JV00], in which
an approach based on aggregation of types of uses allows to generate minute-per-minute
load profiles, in [PG01], in which forecast over 2 days are generated using the Kalman
filter, and in [HB10] which distribute clusters of drains following a hour-per-hour mean
consumption pattern. Nevertheless, more advanced stochastic modeling of the temporal
correlation in the sequence, based on data analysis, would represent some valuable ways of
improvement, especially in our context of heating strategy design. This chapter aims at
establishing such statistical properties. We develop an autoregressive model for domestic
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Figure 4.1: An example of sequence of drains for an household over 48 h. (experimental
results)

hot water consumption.
Domestic hot water consumption aggregates various uses in a household: baths, cleaning,

cooking, etc. The durations of resulting drains range from a few seconds to a few minutes.
They can be represented as quasi-instantaneous events of various magnitudes in the scale
of the day. These drains can be described as a volume of hot water or a quantity of energy
taken from the tank (the energy contained in hot water being defined with respect to a
cold water temperature reference). To model the drain sequence, one needs to describe
when the drain happens, and how much hot water is consumed during those drains (we
make the assumption that two drains occurring within a single minute correspond to a
single bigger drain). The following statistical properties are considered: i) the distribution
of the magnitude of the drains, ii) a daily pattern of the start times of consumptions, iii)
the time between two successive drains. This defines a stochastic process for the total hot
water consumption DHWC(t) at time t of the form

DHWC(t) =
+∞∑
j=1

Mjθ(t− tj) (4.1)

where tj andMj are the time of occurrence and the magnitude of the drain j, resp., and θ(t)
is the Heaviside function: θ(t) = 0 if t < 0 and θ(t) = 1 if t ≥ 0. Classically, the magnitude
of the drains can be characterized through frequentist inference [Ney37], by estimating a
probability density function from the frequency of the data. Results obtained with this
approach are presented in Section 4.1. The times of occurrence of the drains are more
complex to describe. The consumption start times are related to the number of persons
in the household and their domestic habits. As will be shown in Section 4.2, they are
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distributed according to an average daily pattern. Then, the time between two successive
drains follows a Weibull distribution. This is shown in Section 4.3. This observation
allows to define a Weibull Autoregressive Conditional model for DHW consumption, which
is presented in Section 4.4. There, a validation is performed using data gathered in 11
distinct households with EHWT equipped with flow meters and temperature sensors, over
periods ranging from 292 to 337 days, with a sampling time of one minute.

4.1 Frequentist inference for the water drains distri-
bution law

A simple way to model the diversity of magnitude of the drains is to represent the
drains as random variables governed by the same probability law. Since the drains are
positive, this probability law can be represented with a probability density function
on [0,+∞[ (see Fig. 4.2). The probability distribution reported in Fig. 4.2 has been
estimated with a frequentist approach, for all households and all measurements. The
displayed distribution law is the frequency of occurrence of each drain for a large number
of measurements. An interesting observation is that four distinct peaks are visible in
the filtered distribution function. This is in accordance with the results presented in
[JV00], obtained by considering four types of uses (small and medium drains, shower bath
and bath tub). If needed, these results could be refined by taking into account that the
measurements are strongly related to the habits of the households (e.g. baths), the time of
the day and the season. For households equipped with additional sensors, the conditional
distribution could be estimated online. However, we do not consider this refinement here.

4.2 Daily pattern for the start times of drains
The hot water consumption is strongly related to the habits of the house occupants. Also,
it is clearly visible in the data (as could be expected) that the drains mostly take place at
certain times of the day (see Fig. 4.1). In fact, a daily pattern can be defined. For this,
one can simply consider the mean value of the number of drains at a given time of the
day, for each household. The procedure is as follows. This procedure is commonly used in
statistics (e.g. to determine the intensity function of a non-homogeneous Poisson process
[Ruw07]). Given a household, we represent each of its n set of 24 h measurements (labeled
by k = 1...n) with a function Nk(t) that represents the number of drains having occurred
in this day over the interval [0, t], for t ∈ [0, 24h]. In other words, consider any day k and
the sorted drain times tk1, ..., tkm, then Nk(t) is defined as

Nk(t) =
m∑
j=1

θ(t− tkj ). (4.2)

Then, we define the daily pattern as the mean of these functions

M(t) = 1
n

n∑
k=1

Nk(t). (4.3)

This function, defined over the time interval [0, 24h], gives, for any household, the
average (expected) number of drains that should have occurred at time t (see Fig. 4.3): it
is representative of the habits of this household in terms of frequency of the drain. The
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Figure 4.2: Experimental probability distribution of drain magnitudes (over the whole
recorded sequences). The smoothed plot highlights 4 distinct peaks. (experimental results)

function (4.3) obtained with the discussed dataset is reported in Fig. 4.3. The presence
of sharp transients between low slope regions shows that the average function (4.2) is
representative of the individual behaviors in each household. High slopes correspond to
periods with frequent drains.

4.3 Distribution of the time between two successive
drains

The time between two successive drains yki = tki − tki−1 (during a day k) is also related to
the habits of the house occupants. Therefore, we isolate data accordingly. In the case
when the number of drains over time Nk(t) are samples of a non-homogeneous Poisson
process (i.e. the drains are not correlated), it is possible to construct adjusted increments
with the mean value function M(t), that must follow an exponential distribution. As will
appear, this assumption is not valid in our case, but we still perform the same analysis,
yielding different conclusions. The construction is done the following way. For each period
k of 24 h, a set is constructed by taking the image of each drain time tk1, ..., tkm, through
the function M (see Fig. 4.4). The M(tki ) are then used to define the set of successive
increments

υki = M(tki )−M(tki−1).
These variables have an interpretation: for any day k, υki is the average increment of

the number of drains from tki−1 to tki . Its expected value (for all possible k) is 1. These
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Figure 4.3: Two examples of averaged daily cumulative number of drains. Experimental
results are in blue, and and smoothed version is in orange.
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Figure 4.4: Construction of the adjusted increments.

normalized increments (represented in the ordinate axis in Fig. 4.4) are assumed to be
independent from the choice of the households. They are representative of the correlation
between successive drains. The υki are distributed in the [0,+∞[ interval. Using the whole
dataset, an experimental cumulative distribution function (CDF) can be obtained. It is
reported in Fig. 4.5. Remarkably, this function shows a good fit to h(υ) = 1− exp(υδ/κ),
which corresponds to the CDF of the Weibull distribution of shape parameter δ and
scale parameter κ [MXJ04]. Among other possibilities (exponential distribution, Gamma
distribution, Beta distribution), this is (by far) the best fit. In the literature, the Weibull
distribution is commonly used to model failure rates over time, the parameter δ defining
the nature of the process. The case δ = 1 corresponds to an exponential distribution. If
δ < 1, then the occurrence of an event raises the probability of a closely following event
(cases of immediately consecutive events are frequent). On the contrary, the case δ > 1
corresponds to the case when successive events are spaced out.

To establish that the experimental data follow the assumed distribution, a graphical
method can be employed. The probability plot consists in plotting two CDF, one against
the other: if the two distributions are similar, the points of the probability plot should
lie on a straight line. Further, for the Weibull distribution, the shape parameter δ can
simply be deduced from the slope [MXJ04]. Such a plot is reported in Fig. 4.6, where
the distribution of the experimental adjusted increment set is plotted in logarithmic scale
against a generated data set following a normalized Weibull distribution. The apparition of
a straight line in the plot suggests that the Weibull model is relevant. Typically, δ = 0.53.
However, the linearity is not perfect for small increments, and a jerky character of the
line can be observed for small increments. A reduction of the sampling time can increase
the accuracy (here the one minute sampling time is in conflict with the very shorts time
intervals separating two successive drains).
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Figure 4.5: Experimental CDF for the adjusted increments compared to the Weibull and
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4.4 An autoregressive model for domestic hot water
consumption

Given the studies above, we incorporate the Weibull distribution in a point process
model for the drains. In the literature, the Weibull distribution is often associated with
Autoregressive Conditional Duration (ACD) models [Cro13], initially developed by Engle
and Russels [ER98]1.

ACD models are based on an autoregressive structure for the conditional duration of
time lapses between two events [ER98]. The idea is to generate a sequence of n durations
with an autoregressive law depending of preceding duration. The duration number i, seen
as a stochastic variable υi, is given by the mean equation

υi = ψiεi,

in which the εi are independent and identically distributed following a given probability
law, with mean value equal to 1, and

ψi = E[υi|Fi−1]

is the mean duration conditionally to the information available after the last event
represented by the filtration Fi−1. A filtration is an increasing (in the set theory sense)
sequence of σ-fields. It is used to represent the (increasing) information available at a each
step. Here, the Fi is the natural filtration generated by the sequence of the εi. For more
information on filtration, see e.g. [RW00].

The linear ACD(1, 1) model is given by the equation

ψi = ω0 + ω1υi−1 + ω2ψi−1

for ω0 > 0, ω1, ω2 ≥ 0.
Several distribution can be given to the εi. The most classical are the Exponential ACD

(EACD) and Weibull ACD (WACD). ACD(p, q) models can be defined by extending the
autoregressive character to order p for the υi and q for the ψi, but we will limit ourselves
to the case (p, q) = (1, 1). For a given household, identification of parameters ω0, ω1, ω2
and shape parameter δ of the Weibull distribution is needed. For this problem, we use
the off-the-shelf Estimation and Simulation of ACD models Matlab code produced by M.
Perlin (see [Per12]).

Then, the identification procedure to model drain occurrence for a given household is
the following.

1. Gather historical data on the occurrence time of the drains in the the household.

2. Using this data, compute the daily pattern M(t) and the distribution law of the
magnitude of the drains as described in Section 4.1 and Section 4.2 .

3. Using the occurrence time and the daily pattern, construct the set of increments υi.

4. Identify parameters ω0, ω1, ω2 and δ (for instance with the software package [Per12]).
1It was initially used to model seismic aftershocks and to forecast the distribution of a succession of

duration times between two transactions in stock market [Tsa07]
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This procedure permits to represent each household with model parameters

M(·), ω0, ω1, ω2, δ.

The WACD parameters are used to generate sets of increments υi, which are then used to
construct time of occurrence of drains using the relation

ti = M−1(υi +M(ti−1)).

Finally, the magnitude of the drain can be drawn from the distribution law previously
defined.

Model validation
To validate the model, we apply the identification procedure for each households of
the dataset described earlier. Then, the obtained parameters are used to generate sets
of increments. Finally, both experimental and simulated increments are compared in
a probability plot in Fig. 4.7. The results are satisfactory, at the exception of long
experimental durations that are not well represented in the model. A possible explanation
is that those duration may correspond to vacation periods (holidays), and represent outliers
that we could not isolate from the dataset. This stresses the necessity to add an overlay
to account for exceptional events in future studies. As a mean of comparison, probability
plot against duration stemming from uniform distribution of drains on a 24 h period, and
against an EACD model are depicted in Fig. 4.8 and Fig. 4.9. The conclusion of this
analysis is that the Weibull distribution is, by far, the best standard distribution for an
ACD model at the light of the data under consideration.

4.5 Summary
In this chapter, an autoregressive time series model for DWC consumption has been
developed. Interestingly, the model stresses that if the user is draining water, then he
is very likely to drain more water shortly. Consequently, an online computing of the
conditional mean duration ψi gives a representative index of the drain general trend. A
small value indicates a general increase of consumption, and piloting strategies can be
updated online to take into account the high probability of future drains. Very generally,
this model can be used for “smart EHWT” piloting applications. Indeed, it can be used
to generate realistic scenarios of consumption, subsequently used to test the robustness of
piloting strategies. At large scales, for a large number of EHWT, stochastic modelling of
the consumption can be generalized into models for the distribution of the state of charge
of the tanks, using e.g. Fokker-Planck equations. This will be shown in Chapter 8.
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Figure 4.7: Probability plot of the WACD simulation increments against experimental
increments, for the whole set of data. (our proposed model)
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Figure 4.8: Probability plot of the simulation increments when the uniform distribution is
used, against experimental increments, for the whole set of data. (alternative model)
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Figure 4.9: Probability plot of the EACD simulation increments against experimental
increments, for the whole set of data. (alternative model)





Chapter 5

Input-output representation of
EHWT

Représentation entrée-sortie d’un CEJ. Dans ce chapitre, on propose une représen-
tation entrée-sortie d’un CEJ. Elle repose notamment sur la définition de trois variables
d’intérêt : l’énergie disponible dans le ballon, l’énergie de délai et l’énergie non disponible,
chacune Ãľtant définie grâce au profil de température dans le ballon. Ces définitions
permettent de représenter l’état du ballon avec trois variables, et ouvrent la voie à la
conception d’un “CEJ connecté”.

To design control and optimization advanced strategies, we define key indicators
representing the state of each EHWT. By proceeding this way, we reduce a distributed
state (the temperature profile in the tank) into a finite number of well-chosen variables
directly useable to evaluate comfort constraints. A focus is put on the supply of water
to consumers when piloting the heating of the tank. Considering that the temperature
profile defined above is increasing with height because of stratification (see Chapter 2
and 3), further simplifications are possible. One can define two variables representing the
energy contained in the water of temperature above a comfort temperature set by the
user (i.e. an energy which can be used for consumption), and a energy that represents
the functioning delay of EHWT for hot water production. The delay energy represents
the energy necessary for the plateau introduced earlier to reach the comfort temperature.
Once this level is reached (after the so-called “delay”), further heating raises the energy
available for consumption. A third variable of interest is used to represent the energy in
the tank unavailable for consumption, i.e. contained in water heated below the comfort
temperature.

This triplet of variables offers a simple representation of an EHWT. Interestingly,
the complex variation of the temperature profile is well represented by the dynamics of
this low-dimensional state. This representation is an intermediate solution between the
distributed parameter models developed earlier in the thesis and single integrator models
commonly found in the literature. It models the complex dynamics of the comfort variables
and the lag observed in the production of hot water, in a simple yet non-simplistic manner.
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Temperature

h

Tcom

Tin

aτ

µ

Tmax

yc
Figure 5.1: Temperature profile inside an EHWT after a drain. Available, delay and
reserve energies correspond to area defined by the profile.

5.1 Definition of user comfort
Following the description above, the temperature T of the tank is a continuously increasing
function of height. We assume that the water injected in the tank is at constant temperature
Tin, which constitutes a lower bound of the temperature profile, and that the heating
process is driven by turbulence generated by buoyancy effects during the heating process,
which is the cause of a local mixing in the bottom of the tank. We consider that this mixing
is perfect on the plateau, and does not affect the temperature profile in the upper part
of the tank. During the process, the plateau grows and gradually covers the whole tank.
Thanks to a thermostat, the user specifies a temperature Tmax at which the heating has to
be stopped to prevent overheating. As a result of the heating process, if the temperature
at the bottom of the tank is Tmax, then the temperature in the tank is uniformly at Tmax.
The user also specifies a comfort temperature Tcom. Water having temperature higher than
Tcom can be blended with cold water to reach Tcom and is therefore useful, while water
having temperature lower than Tcom is useless.

5.2 Definition of variables of interest: available, delay
and reserve energies

We simplify the system using the 3 following state variables, depicted in Fig. 5.1,
The available energy a is defined as the energy contained in the zones having temperature

greater than the comfort temperature Tcom. This constitutes a direct comfort index for the
user. The situation when a reaches the value 0 and a water drain is applied corresponds
to the fact that the consumer is trying to consume hot water when none is available, and
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therefore that the comfort constraints are broken.
The delay energy τ is defined as the energy required by the plateau to reach the

temperature Tcom. If the tank is heated at constant maximum power, and without
accounting for drains and heat losses, τ is proportional to the time necessary to reach a
state in which a can effectively be increased by the heating process.

The reserve energy µ is defined as the energy contained in the tank that is currently
unavailable for consumption, i.e. the energy contained in the water under Tcom. When,
during the heating process, τ reaches the value 0, the energy µ becomes available to
consumption: this generates an immediate (discontinuous) increase of a, and µ is reset
to 0.

The rationale behind these definitions is that to plan the heating, we account for the
time left before the energy reserve embodied by a (in the total energy a+ µ) is consumed,
and the time necessary to provide new hot water, embodied by τ .

Fig. 5.2 reports examples of the dynamics of these variables. A drain (shown in Fig. 5.2
(a) and (e)(f)) is mainly characterized by a decrease of a and an increase of τ , with a slight
raise of µ due to an energy transfer from a. On the other hand, in the heating reported
in Fig. 5.2(b)(c)(d), τ decreases at the same rate as µ rises, and after a gap at τ = 0
characterized by an energy transfer from µ to a, a progressively increases.

Given T (·) the (non necessarily strictly) increasing temperature profile of the water
defined on [0, h], the above definitions yield the following expressions of a, τ , µ as

a = Sρcp

∫ h

yc

T (y)dy

τ = Sρcp

∫ yc

0
(Tcom − T (y))dy

µ = Sρcp

∫ yc

0
T (y)dy

where ρ and cp are the density and the heat capacity of water, respectively, and yc is
defined as

yc , min{y|T (y) = Tcom}.
In the sequence, we will use the notation

z , (a, τ, µ).

The triplet z is a low-dimensional representation of the tank. This representation
comes at the cost of a loss of information in comparison to a distributed profile. However,
due to the increasing nature of the profile and the fact that the thermocline is often steep,
the triplet gives a satisfactory schematic view of the distributed profile (see Fig. 5.3).
Moreover, it captures well the information necessary to design control strategies.

An example of the variation of z over a 24 h run with given drains and heating is
presented in Fig. 5.4. In this figure, the variations of the three variables are computed with
experimental data (in blue) and compared with simulation with the multi-period model
(in red) and a simple single-zone model (in black). The figure highlights the accuracy of
the multi-period model that is able to kindly reproduce the evolution of z.

5.3 Summary: towards the “smart EHWT”
The definition of the variable of interest concludes the modeling efforts conducted so far. At
this stage we can now formulate an input-output representation of the EHWT, presented
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Figure 5.2: Schematic variation of the state z during heating and draining.

in Fig. 1.4. These works allows to design the architecture of a “smart EHWT” equipped
with a chip set as depicted in Fig. 5.5.

In such tanks, histories of electricity consumption and water drains allow to compute,
thanks to the multi-period model, the distributed temperature profile of the water in
the tank. Variables of interest derived from the profile are transmitted to an external
decision center, which, in return, transmits a heating strategy back to the “smart EHWT”.
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Figure 5.3: Available, delay and reserve energies and schematic reconstruction of the
original temperature profile.

If necessary, this strategy can even be test-proven by the “smart EHWT” itself, using the
domestic hot water consumption model and the multi-period model numerically treated
by the onboard chipset. Eventually, the strategy can be applied in real-time (up to
communication and computation lags).
Remark 4. Alternative architectures are possible. For instance, an intermediate decision
center can also be integrated to the chipset to generate heating strategies for the EHWT
with respect to a price signal.

If such smart tanks are to be developed and deployed, their use in coordinated strategies
have to be designed to solve P1 and P2. The second part of this thesis focus on such
problems.
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Control of groups of EHWT





Chapter 6

Small-scale groups: discrete-time
optimization

Optimisation discrete pour un parc de petite taille. Dans ce chapitre, nous
proposons un modèle discret d’évolution de l’état du ballon représenté par les trois
variables d’intérêt définies précédemment. Ce modèle permet de formuler un problème
d’optimisation du fonctionnement du ballon sous contraintes de confort. Ce problème
peut lui-même se ré-écrire comme un programme linéaire en nombre entiers, de telle sorte
que la résolution est réalisable avec des logiciels standards. Des résultats numériques sont
présentés et comparés avec la stratégie historique d’heures pleines/heures creuses.

In this chapter, we propose an optimal heating strategy for a first use-case focused on
a small group of “smart EHWT” (from 1 to 4, typically). Using the variables of interest
introduced in Chapter 5, we set up a discrete-time model for the dynamics of the triplet,
as well as an optimization framework to solve problems P1 and P2. This framework
takes the form of a mixed integer linear program (MILP) for problem P1, or a mixed
integer quadratic program (MIQP) for problem P2. In the case of P1, the computation
of the optimal solution is light and may be directly embedded in the chipset of a “smart
EHWT”(which could embed mildly powerful processor such as ARM Cortex-A7 MPCore).

The chapter is organized as follows. Section 6.1 is dedicated to the discrete-time model.
The dynamics serve to formulate P1 and P2 in discrete time. Section 6.2 shows how
to recast such problems as mixed integer linear/quadratic programs, which yields easy
numerical solution. Numerical results are presented in Section 6.3.

6.1 Discrete-time dynamics and optimization prob-
lems

6.1.1 Discretization and notations
For a given tank, we consider the variation of z = (a, τ, µ) over a finite time horizon
that we discretize into uniform time-steps [0, ..., n]. We note (a0, ..., an), (τ0, ...τn) and
(µ0, ..., µn) the values of a, τ , µ at each of these time-steps.

At each time t ∈ [0, ..., n− 1], energy is consumed by the user (through draining) by an
amount dt that we consider as known. Energy is introduced via the heating element by an
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amount ut ∈ [0, umax]. We divide the later into two parts vt and wt, representing the share
introduced in at and in µt, respectively. Finally, we define the variable φt which represents
a flow of energy from µt to at+1, taking place in conditions that will be described below.

6.1.2 Dynamics and constraints
Balance equations

For any index t, the dynamics of zt is given by the energy balances

at+1 = (1− p)at − αdt + vt + φt (At)
τt+1 = τt + pµt + βdt − wt (Bt)
µt+1 = (1− p)µt − (1− α)dt + wt − φt. (Ct)

The various phenomena described earlier appear in the righthand side of these equations.
Heat losses, modeled with an exponential decay, are characterized by the decrease of a
and µ at a rate p, the energy from the later contributing to a raise of τ (see Fig. 5.1).
The energy consumed by the user during one time step is split between a and µ with a
ratio α, 1− α and affects τ with a coefficient β.

Definition of the heat source terms vt, wt

As has been seen before, the energy is injected at the bottom of the tank via the heating
element. As a consequence, the heating has no impact on the available energy a when τ > 0,
but, instead, tends to reduce τ and increase µ. When the value of τ is 0, the injected
energy becomes immediately available. This can be modeled by dividing ut into two
shares vt and wt representing, respectively, the part of the injected energy going into a
and µ, and subject to the following conditions

ut = vt + wt (Dt)
0 = vtτt+1 (Et)
0 ≤ vt, wt ≤ umax. (Ft)

Given the balance equations (Dt)-(Ft), if τt+1 > 0 then no energy can be introduced
in at+1 (i.e. vt = 0 and wt = ut) and, if τt+1 = 0 the value of wt has to compensate for
heat losses pµt and/or energy drain from the user βdt, while the remainder is introduced
in at+1.

Definition of internal energy flow φt

The flow φ is always equal to 0, except when τ reaches the value 0. Then, the value
of φ is defined by the fact that all the energy µ suddenly becomes available. This can be
described as follows

0 = φtτt+1 (Gt)
0 ≤ φt (Ht)

τt+1 = 0⇒ µt+1 = 0. (It)

Remark 5. Given a state zt, a drain dt and a heat injection ut, relations (At)-(It) uniquely
define vt, wt, φt and therefore the future state zt+1 (under the assumption that τt+1 has to
be nonnegative).
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Bounds and comfort constraints

Here, we determine some constraints zt is subject to for all t. This defines the admissible
controls that allow each zt to respect these constraints.

By definition, the delay energy is positive. We impose τt ≥ 0 for all t, in order to
impose a heat injection with vt if τ reaches 0.

Define emax = Sρcp(Tmax− Tin) the maximal energy that can be contained in the tank,
and

λ ,
Tcom − Tin
Tmax − Tin

. (6.1)

To ensure that no energy is drained more that the tank can provide, we require at ≥ 0
and µt ≥ 0 for all t, and that the tank is not overheated, we require at ≤ emax, τt ≤ λemax,
and µt ≤ λemax for all t.

Finally, physical constraints on the total energy imply

λat + τt + µt ≤ λemax

λemax ≤ at + τt + µt. (6.2)

Given these relations, we define the following domain

Ω = {(a, τ, µ) ∈ R3
+|λemax ≤ a+ τ + µ and λa+ τ + µ ≤ λemax}.

Then, ∀t, zt is subject to the constraint

zt ∈ Ω. (Jt)

Admissible controls

For any given (a0, τ0, µ0) ∈ Ω and d = (d0, ..., dn−1) ∈ Rn
+, and for any chosen con-

trol sequence u = (u0, ..., un−1) the relations (At)-(It) for t ∈ [0, ..., n − 1] uniquely
define (a, τ, µ, v, w, φ)t for all subsequent t. This allows us to define the admissible set U :

U(a0, τ0, µ0, d) = {u ∈ Rn|the a, τ, µ, v, w, φ implicitly defined by (At)-(It)t∈[0,...,n−1]

satisfy (Jt) ∀t ∈ [0, ..., n]}.

In a practical sense, given initial conditions and a drain sequence, it constitutes the set of
heating sequences that do not break the comfort constraints of the user.

6.1.3 Objective function and formulation of the optimization
problem

We consider that a0, τ0, µ0 and d are given and that a flat discrete-time price signal for
electricity over time (c0, ..., cn−1) is known. The optimization problem P1 can be written
(for each tank) as

min
u∈U(a0,τ0,µ0,d)

n−1∑
t=0

ctut. (6.3)

This problem is therefore to search, for an EHWT, the heating strategy that minimizes
the cost of heating while ensuring a required supply of hot water to the user.
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In cases when several tanks can simultaneously be controlled with controls u1, ..., uk,
and one can introduce the discrete-time objective for aggregated consumption (Pt)t∈[0,...,n−1].
Then, the optimization problem P2 takes the form

min
(u1,...,uk)∈U(a1

0,τ
1
0 ,µ

1
0,d

1)×...×U(ak
0 ,τ

k
0 ,µ

k
0 ,d

1)

n−1∑
t=0

(Pt −
k∑
j=1

ujt)2. (6.4)

6.2 Mixed integer representation of the constraints
and dynamics

With the exception of the two product conditions (Et) and (Gt), and the condition (It), the
relations (At)-(Jt) are linear equalities and inequalities in the variables (ut, at, τt, µt, vt, wt, φt)
and therefore define a polytope of R7n, for each tank. Thus, we adapt (Et), (Gt) and (It)
to give to problems (6.3) and (6.4) the structure of a linear and a quadratic program,
respectively, that can efficiently be solved with commercial software (see e.g. [Gur15] or
[IBM09]).

Strengthening of (It)

Given the set
A = {(τ, µ) ∈ [0, λemax]2|τ = 0⇒ µ = 0},

then, equivalently,

A = [0, λemax]2\{(τ, µ) ∈ [0, λm]2|τ = 0, µ > 0}.

A possible strengthening is

{(τ, µ) ∈ [0, λemax]2|Mτt ≥ µt} ⊂ A

where M > 0 (see Fig. 6.1). Instead of considering (It) we (conservatively) consider (I ′t)
which has the linear form

Mτt ≥ µt, (I ′t)
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chosing M > 0. This new relation has the linear form required in linear programming
formulations, and if emax is sufficiently large, only a small feasible regime (see Fig. 6.1) is
left out of the optimization problem.

Given this new relation, we define the polytope

Y(a0, τ0, µ0, d) = {Y = (u, a, τ, µ, v, w, φ) ∈ R7n|
(At)-(Dt), (Ft), (Ht), (I ′t) ∀t ∈ [0, ..., n− 1]

and (Jt) ∀t ∈ [0, ..., n] are satisfied}.

Reformulation of (Et) and (Gt)

The product conditions (Et) and (Gt) correspond to 2n couples (vt, τt+1) and (vt, φt)
consisting of two elements that cannot simultaneously be positive. These constraints have
the form of complementarity conditions (see [CD68]). In practical terms, each of these
cases can be encoded with binary or integer constraints and problems (6.3) and (6.4)
written as a collection of linear programs (LP), respectively quadratic programs (QP),
taking the form of a mixed-inter linear program (MILP) and a mixed integer quadratic
program (MIQP).

A more careful look at the situation reveals that these kinds of sets are in fact frequently
encountered in discrete optimization under the name of Special Ordered Set (SOS), and
are associated with branch and bound strategies (see [BT70]). This considerably eases
the resolution for instances having reasonable dimensions. These strategies are often
implemented in linear programming solvers, see [Zus11].

As a result of the reformulation of (Et) and (Gt), and the strengthening of (It), we can
propose the following solution method.

Solution method

Given initial conditions (a0, τ0, µ0) and the drain sequence d, one can now solve by any
appropriate numerical method (e.g. branching strategies) the collection of LP/QP

min
Y ∈Y(a0,τ0,µ0,d)

n−1∑
t=0

ctut (6.5)

or
min

Y 1,...,Y k∈Y(a0,τ0,µ0,d)

n−1∑
t=0

(Pt −
k∑
j=1

ujt)2. (6.6)

indexed by the 2nk SOS on τ and µ.

6.3 Simulation results

6.3.1 Identification of the parameters
In the previously defined problems, values for most of the parameters are easy to deter-
mine: Tcom, Tin, Tmax and therefore λ are either chosen by the user, or directly measured
from the water distribution network. On the other hand, the values of emax, p and umax
depend on the type of EHWT. These data are provided by the manufacturer, and are
reported in Table 2.1.
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The main difficulty is to determine the coefficients (α, β) of our model. They represent
the effects of the energy drains (d0, ..., dn−1) on z.

In theory, the values of these two parameters depend on x, which breaks the linearity.
In practice, their variations are small, except in some parts of the domain Ω, where the
temperature in a is close to Tcom (close to the border a + τ + µ = λm). Therefore, to
keep the linearity of the constraints, we assume that the two parameters are constant. To
reduce the cost of this assumption in terms of accuracy, we replace the constraint (6.2)
with a+τ +µ ≥ λemax+ep, with ep appropriately chosen (for instance ep = 1

10emax). Using
the model presented in Chapter 3 for identification purposes, we set the values α ' 1.2
and β ' 0.4.

6.3.2 Simulations results
To test the relevance of our predictions, simulations with realistic parameters have been
conducted on simple cases that can readily be interpreted. The parameters correspond
to the tank used for experimentation. The computations have been performed using the
SCIP solver (see [Zus11]).

Several cases have been considered. We now detail the obtained results.

Two prices signal

In Fig. 6.2, we report the values of the control and the associated available water for
problem (6.5) with those prices. The optimization has been performed over a 48 h horizon
with 20min time step for a 24 h application of the control signal, to avoid side effects. The
results show a reasonably smooth control signal, which heats the tank at the end of low
prices period, to limit consumption at high prices and reduce heat losses. This strategy is
more efficient than the heating at the beginning of the off-peak period, usually set up in
practice (the so-called night time switch). For this typical case, the gain for the consumer
is of 13.2%, due to a heating strategy that limits heat loss while heating at the end of
low-price periods, and avoids overheating of the tank.

Spot prices

In Fig. 6.3, we report the values of the control and the associated amount of available
water for problem (6.6) with the spot prices in Europe for a typical winter day, taken from
the EPEX Spot Market (see [EPE14]). Again, the results show a sensible control, which
heats the tank at the end of low prices period, to limit consumption at high prices and
reduce heat losses. The gain for the producer, in this case, is of 36.1% compared to the
night time switch strategy.

Peak shaving for several tanks

As an extension, we can also solve a problem of practical interest. We have run simulations
on a set of several tanks with various initial conditions, with a problem defined as weighted
sum of the criteria of problem (6.5) and problem (6.6): each tank is optimized against a
price signal, individually, and a global consumption is favored in the middle of the day in
the form of an additional load curve objective in the [10 h, 13 h] time window that may,
for instance, answer to an upward adjustment request. The results of these simulations
are reported in Fig. 6.4, where each tank is represented with a different color.
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Figure 6.2: Optimization for a two price scenario.
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Figure 6.3: Optimization for a spot prices scenario.
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6.4 Summary
This chapter has proposed numerical methods to address the optimization problem P1 and
P2 at stake in the thesis. The method is capable of handling a single or a small group
of EHWT. For this a simple dynamics for the 3 states representation of the EHWT, and
a framework to optimally heat it with off-the-shelf solvers has been derived. We have
processed the optimization problems in deterministic cases, under perfect knowledge of
consumptions over the optimization horizons. Practical online computation of heating
strategies should account for the inherent stochasticity of users consumptions. The
definition of a set of realistic scenarios of drains for a given household using the model
presented in Chapter 4 allows one to define a worst-case heating strategy. Stochastic
programming also appear as promising solution but has not been explored.

If necessary, some sort of closed-loop feedback model predictive control could be
employed. Typically, in the envisioned “smart EHWT”, heating strategy could be computed
on a 48 h horizon, with 15 min closed-loop intervals.

The method scales reasonably up to a number of 4 tanks. Typical computational loads
are reported in Table 6.1. Generalization to arbitrary numbers of tanks does not seem
feasible, as-is. The computational cost seems to increase exponentially with the number
of tanks. Thus, a global piloting using a single centralized optimization program does

Number of tanks Computational time (s)
1 2.0
2 9.4
3 754.2
4 4756.4

Table 6.1: Computational times.

not appear as a viable solution. However, the tanks having separable constraints, the
optimization problem under consideration is compliant with decomposition-coordination
techniques. In particular, the so-called price coordination (see [MMT71]) seems to apply
well to the formulations considered in this chapter.



Chapter 7

Medium-scale groups: optimization
algorithm for load-shifting

Algorithme d’optimisation du décalage de charge pour les parc de taille in-
termédiaire. Dans ce chapitre, nous proposons la formulation du problème P2 dans le
cas ou les périodes de chauffe restent indivisées, tout en prenant en compte l’effet des
pertes thermiques. Dans un second temps, une heuristique pour ce problème est proposée.
Cette heuristique est testée sur huit instances représentatives des problèmes rencontrés en
pratique.

In this chapter, we focus on a medium-sized groups of EHWT (from a few hundreds to
several millions), each being characterized by its electric power and heat losses coefficient.
We assume that they are remotely controllable.

As described in the introduction of the thesis, a consequence of the night time switch us-
ing wired remote control of the group of EHWT in France is an overall decrease of the
consumption in the middle of the night when the electricity production costs are low. This
is a detrimental effect for the electricity producer.

Instead of finely piloting each tank, we consider a rescheduling of each EHWT heating
in the night time, while keeping the heating period undivided, to attain a desired load
curve for the whole set of EHWT, while ensuring individual users comfort. The idea is to
minimize the malicious impact of complex dynamic effects taking place inside each EHWT
described in Chapters 2 and 3, while heating during periods of low general consumption,
and to propose a robust strategy which does not divide the heating during the day.

The first contribution of this chapter is to formulate the rescheduling of the set of
EHWT heating with comfort constraints as an optimal control problem of the form P2, in
the case where every tank is remotely controllable and smart (i.e. capable of computing and
transmitting information on their current state to the decision center). The optimization
problem considers hot water consumptions, production objectives and comfort constraints.
Initially, a certain heating starting time is assigned to each EHWT having a uniquely
defined duration for the subsequent indivisible heating period. Each duration is scaled
according to next day hot water consumptions. The sum of all the power consumptions
defines the initial load curve, as a function of time. The optimal control formulation is the
first contribution of the chapter. It is discussed in Section 7.1.

A heuristic specifically designed to solve the considered discrete-time quadratic for-
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mulation is proposed. This is the second contribution of the chapter. The design of any
such heuristic strongly depends on the distribution of the durations of the un-dividable
heating. Here, a reference distribution obtained from data measured in a vast set of French
households is presented and studied. The dataset contains heating periods lasting up to
8 h. The definition of the proposed heuristic stems from the following considerations. First,
one notes that the scheduling of EHWT with long heating durations is the most likely to
generate high consumption in on-peak period. Secondly, a rigid individual scheduling for
a high number of EHWT is prone to generating singularities resulting in undesirable high
consumption peaks in the load curve. The heuristic is designed to reduce singularities
while generating a high diversity in the distribution. For this purpose, we introduce
some stochasticity. Its governing principle is to sort the EHWT by decreasing order of
duration times, and, then, to randomly schedule them one-by-one according to an adaptive
distribution law. Each duration is compensated to account for heat losses. For a given
EHWT, this distribution law depends on the residual load curve, which is obtained by
constructing the objective load curve minus the power consumption of the tanks already
scheduled. To maximize diversity, the distribution law favors scheduling within time
periods containing only few previously rescheduled EHWT. Optimization results produced
with real data are given. Objective load curves have been provided by the French utility
EDF, and several distribution laws have been tested. They lead to an optimality loss of
less than 1%.

In a second phase, we extend the formulation of the optimization problem in the case
when only a fraction of the set of EHWT is smart. For these, noisy (unbiased) estimates are
assumed to replace the missing information. The formulation intends to make use of the
flexibility of each tank while ensuring comfort even for tanks from which few information
is available from. The same heuristic is used to produce a second round of simulations, in
which the effects of uncertainty are quantified.

The chapter is organized as follows. In Section 7.1, the optimization problem is
formulated. Then, in Section 7.2 , the heuristic is presented. Simulation results are
reported in Section 7.3, while Section 7.4 focuses on the extension to the uncertain case.
Conclusions and perspectives are given in Section 7.5.

7.1 Formulation of the problem

7.1.1 Nature of the problem
In this section, we consider a pool of n tanks. Each tank starts with a given energy content,
and has to be heated during an undivided period of time to reach a given final energy
content (which is the one it will have reached with the night time switch strategy). The
energy in each tank is subjected to heat loss.

Here, we formulate a problem taking the form of P2that includes these requirements.

7.1.2 Electric water heating
We represent each tank (labeled with i ∈ [1, ..., n]) using the energy ei(t) = ai(t) + µi(t) of
the water contained in the tank at time t (defined relative to the energy of cold water). This
energy ranges between 0 and a maximum value eim. It shall be noticed that eim depends on
the volume of the tank, and also on the maximal acceptable temperature in the tank Tmax
set by the user. We lump energy losses to the ambient into a heat losses coefficient ki,
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Figure 7.1: Day-ahead SPOT market price of electricity in France on 2/9/16. The shaded
regions corresponds to the peak consumption of EHWT in France. The zone of lowest
prices lies out of this region.

representing the heat losses per unit of time (as a percentage of the total energy). We note
uimax the power of the heating element. We assume that this power cannot be modulated,
i.e. that if the tank is heating, then it is with the (constant) injected power uimax. We
focus on a time interval [t0, tf ] in which the tanks are heated, usually during the night.
For each tank i, we define a time interval [ti0, tif ] ⊂ [t0, tf ] during which heating the tank i
is allowed. For instance, in France, households benefit in the night-time of block of hours
during which the electricity price is reduced to promote electricity consumption when
the prices are low, and EHWT heating has to be performed only during these off-peak
periods. Further, we define for each tank i the time tic of the first (earliest) consumption
of hot water, at which a certain quantity of hot water must be contained in the tank. The
state-of-the-art heating policy (so-called night time switch) is to switch-on each EHWT
at the beginning of its off-peak period until it is fully heated. This strategy leads to an
aggregated load curve that rapidly decreases in the middle of the night, when the prices of
electricity are the lowest. Depending on the season and the market prices, various load
curves can bring substantial savings for the electricity producer (see Fig. 7.1 where peak
consumption of EHWT is represented along market prices during a typical day). The
application of the night time switch does not necessarily generate such a desirable load
curve.

Generally, one can describe one of the goals of the electricity provider as follows: given
a reference load curve fa : [t0, tf ]→ R+ corresponding to the heating of the tanks from
the energy ei(t0) = ei0 to ei(tf) = eif for all i describing the group of tanks, how can all
the heatings be rescheduled to approach an objective load curve fo : [t0, tf ]→ R+?
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Figure 7.2: Heating starting times and durations.

7.1.3 Preliminary: time of heating compensation and feasibility
of load curves

Any rescheduling of the heating of any EHWT has to take into account comfort constraints.
Due to heat losses, the duration of heating must compensate changes in the starting time.
If the EHWT is heated sooner (respectively later), heat losses are increased and more
(respectively less) energy has to be injected into the EHWT. For any EHWT, a change in
heating time can be analytically computed as a function of its heating starting time. We
address the effect in the following way.

For any given tank i ∈ [1, ..., n] that, in the so-called reference scenario, starts its
heating at time t0 + ∆tia for a period of length dia, we wish to estimate the heating duration
di(∆ti) that is needed if one chooses to start the heating at time t0 + ∆ti, without altering
the energy of the tank obtained at final time tf (see Fig. 7.2).

If we consider that the ambient temperature Ta is equal to the injection temperature
Tin, space integration of the temperature in the tank given by the dynamics in Section 2.1
or 3.2 leads to

dei
dt = −kiei + ui − ci,

where ci(t) is the energy consumption in the tank at time t (assumed to be independent
from the state).

Then, Duhamel’s formula yields

eif = exp(−ki(tf − t0))ei0 +
∫ tf

t0
exp(−ki(tf − s))uimax1[t0+∆tia,t0+∆tia+di

a](s)ds− Ci (7.1)

and

eif = exp(−ki(tf − t0))ei0 +
∫ tf

t0
exp(−ki(tf − s))uimax1[t0+∆ti,t0+∆ti+di(∆ti)](s)ds−Ci (7.2)

where 1[x,y](s) = 1 if s ∈ [x, y] and 0 otherwise, and

Ci =
∫ tf

t0
exp(−ki(tf − s))ci(t)ds

is the total energy consumption on [t0, tf ] for the tank i. Subtracting (7.2) to (7.1) leads
to ∫ ∆tia+di

a

∆tia
exp(kis)ds =

∫ ∆ti+di(∆ti)

∆ti
exp(kis)ds, (7.3)

and, finally,

di(∆ti) = dia + 1
ki

ln(exp(ki(∆ti − dia)) + exp(ki∆tia)− exp(ki(∆tia − dia)))−∆ti. (7.4)
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Then, if ∆ti > ∆tia, we have di(∆ti) < dia, and if ∆ti < ∆tia, we have di(∆ti) > dia (see
Fig. 7.2).

This delay effect has an impact on the global load curve. Indeed, to reschedule the
time of heating of tanks from a reference load curve fa to an objective load curve fo, one
needs to ensure that the energy injection is compensated. For a set of tanks with initial
starting times t0 + ∆tia and heating durations dia, we have

fa =
n∑
i=1

uimax1[t0+∆tia,t0+∆tia+di
a].

If we consider that the heat losses coefficients of the tanks are all close to their average
k (i.e ki ' k), the same reasoning as before leads to

n∑
i=1

eif = exp(−k(tf − t0))
n∑
i=1

ei0 +
∫ tf

t0
exp(k(tf − s))fw(s)ds−

n∑
i=1

Ci

for w = a, o and then to the following “feasibility” condition for fo∫ tf

t0
exp(ks)(fo(s)− fa(s))ds = 0. (7.5)

7.1.4 Problem formulation
In this first case, we assume that all the tanks are smart. In this case, for each tank i the
values of ei(t0) = ai(t0) + µi(t0), and of τ i(t0) are known. To guarantee the availability of
hot water during the earliest consumption, we consider the additional constraint that, at
this time, the plateau formed during the heating process must have already reached the
comfort temperature. This constraint, for a heating starting time ∆t, takes the form

∆t+ exp(ki∆t)τ i(t0) ≤ tc

because at rest, the delay energy increases exponentially at rate ki as has been seen
in § 6.1.2.

We now define our optimization problem. Given n EHWT characterized by their heat
losses coefficients ki, their powers uimax, their allowed time intervals [ti0, tif ], their first
consumption time tic, and given an initial load curve fa and an objective load curve fo
verifying (7.5), we desire to solve

min
∆t1

b
,...,∆tn

b

∫ tf

t0
(
n∑
i=1

uimax1[t0+∆ti
b
,t0+∆ti

b
+di

b
](s)− fo(s))2ds (7.6)

s.t. ∀i = 1, ..., n, the couple (∆tib, dib) satisfies

dib = di(∆tib), (7.7)

with di as defined in (7.4),

t0 + ∆tib ≥ ti0, t0 + ∆tib + dib ≤ tif , (7.8)

and
∆tib + exp(ki∆tib)τ i(t0) ≤ tc. (7.9)
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7.2 Solution method
We propose here a resolution method for (7.6) under the constraints (7.7)-(7.8)-(7.9), with
a discretization of the time window [t0, tf ] into p time-steps. In discrete time, the problem
formulation presented in § 7.1.4 does not change, but starting times have to be chosen
among the p possibilities. Mathematically, the problem defined above can be related to
capacity scheduling problems [VJW62] or cumulative non preemptive scheduling [CP04].
However the large number of optimization variables, the flexibility yielded by the cumulative
nature of power1 are not accounted for in classical resolution techniques. Moreover, the
problem is also specific: i) the power consumed in one tank is very small compared to the
whole set, because the set is large; ii) the duration of the longest heating (up to 7 h) is
relatively bulky compared to the time horizon (10 to 12 h). In discrete-time, determining
whether such a problem admits an optimum solution is equivalent to the classical exact
cover problem [JMT04], which consists in exactly covering a set with a sub-collection of
its subsets. Due to the high complexity of solving this problem (shown to be NP-complete
in 1972 by R. Karp [Kar72]), and more generally, to the difficulty of minimizing such a
criteria with a large number of decision variables (the number of tanks can be up to several
hundreds of thousands, or millions), we propose in this section a heuristic in the form of a
stochastic sequence of rescheduling.

The proposed heuristic is based on the following observations:

• The tanks with long heating durations are more difficult to allocate. On the contrary,
short durations yield flexibility to our problem.

• A rigid rescheduling of heating times according to a deterministic procedure is prone
to generate singularities in the resulting load curves. Indeed, depending on the
shape of the objective load curve, a deterministic rescheduling is very likely to create
patterns which generate undesirable high consumptions peaks. On the contrary, due
to the large number of tanks, a stochastic heuristic can take advantage of the natural
smoothing induced by introducing diversity in the reallocation.

The heuristic we propose is based on successive updates of a residual load curve f ir(t)
representing the objective load curve minus all powers from the tanks that have been
already rescheduled (see Fig. 7.3). The steps are:

1. Compensate all durations as if the tanks were all starting heating at t0, using equation
(7.4).

2. Sort the tanks by decreasing compensated durations.

3. Initialize f 0
r (t) = fo(t).

4. For all tanks, from i = 1 (which heats the longest) to i = n (which heats the shortest),
apply the following steps

(a) Using f i−1
r (t), define a (finite) set of admissible starting times Si, which is the

set in which the starting times can be chosen. In practice, Si ⊂ [ti0, tif − di(0)],
and overloaded periods are excluded from the set.

(b) Using f i−1
r (t), define a (discrete) probability distribution law Li on Si that

promotes rescheduling in under-loaded periods.
1usually in scheduling problems, the assignment of a job to a machine is required
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Figure 7.3: Detailed process of the heuristic. (a) at the start of an iteration, a cumulative
curve has been determined by scheduling some of the heatings. (b) a new heating is
to be scheduled, considering its duration, some intervals of possible starting times are
determined from the residual curve. (c) along these intervals, probability density functions
are defined, they favor the boundaries of the intervals. (d) randomly, a starting time is
selected and a new cumulative curve is computed.

(c) Randomly allocate ∆tib with respect to Li.
(d) Update f ir(t) = f i−1

r (t)− uimax1[t0+∆ti
b
,t0+∆ti

b
+di

b
](t), s.t. dib = di(∆tib).

In the heuristic above, the choices of Si and Li are important. In practice, we give Si the
form of a union of disjoint intervals (pictured in green in Fig. 7.3 (a) and (b)), corresponding
to starting times ∆ti for which the duration di(∆ti) is entirely included in times such that
f i−1
r (t) > 0 (see Fig. 7.3 (b)). This allows to prevent scheduling in already fully-loaded
periods. Several types of laws can be considered, and have various efficiencies depending
on the shape of the objective load curve. From simulations performed to investigate this
point, we note that if very high slopes are present in the objective load curve, heavy
weight should be placed on the boundary of the interval, to promote rescheduling near the
boundaries. For this purpose, a parabolic distribution law can be proposed. The law can
also directly be defined as a weighted integral of f i−1

r (t) (see Fig. 7.3 (c) and examples of
distribution laws in Fig. 7.4).

7.3 Simulations results

7.3.1 Dataset
The efficiency of the heuristic strongly depends on the shape of the objective curve, the
time intervals, and the flexibility yielded by the diversity of the durations among the
population of the tanks. For this reason, realistic data have been gathered for testing. The
distribution of compensated durations has been constructed based on data gathered on a
panel of 267 representative households whose EHWT have been equipped with sensors
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Figure 7.4: Example of three possible parabolic distribution used in practice on the
admissible intervals.

(see Fig. 7.5). The characteristics of the EHWT (heat coefficient, power of the heating
elements) are taken from representative products available on the market. The restrictive
time intervals have been defined using the distribution of peak hours in France. The 18
distinct peak hours in France each correspond to a distinct proportion of the households.
Finally, 8 realistic reference objective load curves have been considered.

7.3.2 Simulation results
Simulations have been conducted on the previously described dataset. The exact objective
load curve have been employed but are omitted for confidentiality reasons. For illustration,
examples for two fictional but representative different objective load curves are reported
in Fig. 7.6.

To quantify optimality losses, given the obtained load curve fb (t), we propose two
following adimensional indexes, respectively corresponding to L1 and L2 norms.

q1 =
∫ tf
t0 |fb(s)− fo(s)|ds∫ tf

t0 |fo(s)|ds
, q2 =

∫ tf
t0 (fb(s)− fo(s))2ds∫ tf

t0 (fo(s))2ds
.

Results for the various reference objective load curves (with the best results among various
probability law) and various values of n (number of tanks) and p (number of time-steps)
are reported in Table 7.1 and Table 7.2. The presented heuristic has been implemented in
Matlab R15a, and run on a Intel Core i7 (3.3GHz) with 16GB of RAM, using a single
core and 25MB of memory.

The simulations show satisfactory results and highlight the relevance of favoring
diversity during the rescheduling procedure. Indeed, results with a high number of tanks
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Figure 7.5: Typical distribution of durations derived from a representative panel of users,
(normalized scale).

have better optimality index that the one of the small instances. On the contrary, quality
of the results is not increasing with the number of time-steps (when the number of tanks
is too small)2.

Interestingly, the proposed heuristic is computed in approx. linear time (with respect
to the number of EHWT), and can be applied to very large sets of tanks. However, it is
to be noticed that efficiency of a given probability law, and quality of the results depend
on the shape of the objective curve and the flexibility yielded by the duration distribution.
In our case, with realistic sets of tanks and reference objective curve, the flexibility is
sufficient, except for the objective load curve 6 (see Table 7.2) in which steep increases and
decreases of the consumption make optimization difficult. An example of the occurring
phenomena (the actual curve being omitted for confidentiality reasons) is pictured in
Fig. 7.7. This type of objective curve may require to split heating durations into two
disjoint periods, to bring some additional flexibility.

Some trial-and-error procedure may be necessary to address other problems, but this
task has not been particularly tedious in the cases reported in the thesis.

2In fact, a discrete time-mesh refinement brings significant additional performance only with an
increasing number of tank. This point should require additional investigations.
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Figure 7.6: Two examples of objective load curve (blue) and final realisations (orange).
(a) n=500, p=100 (b) n=5000, p=1000.
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Number of tanks n Number of time-steps p q1 q2 Computation time (s)
500 500 0.0166 0.0162 1.8
500 1000 0.0126 0.0122 2.1
500 2000 0.0186 0.0179 4.0
5000 500 0.0032 0.0031 17.6
5000 1000 0.0028 0.0029 22.3
5000 2000 0.0030 0.0032 33.9
50000 500 0.0024 0.0021 131.5
50000 1000 0.0018 0.0017 201.0

Table 7.1: Results for objective load curve 1.

Objective load curve q1 q2 Computation time (s)
1 0.0028 0.0029 22.3
2 0.0036 0.0041 18.6
3 0.0039 0.0042 18.5
4 0.0037 0.0044 17.9
5 0.0032 0.0030 25.6
6 0.0233 0.0245 20.3
7 0.0038 0.0042 15.4
8 0.0049 0.0065 17.2

Table 7.2: Results for objective load curves 1 to 8 (5000 tanks, 1000 time-steps).

7.4 Optimization with uncertainty

7.4.1 Formulation of the problem when only a fraction of EHWT
are smart

The first problem (7.6) adresses the case when all tanks are smart so that they transmit
information about their own state. In this section, we extend the problem to the case
when only a fraction of the EHWT are smart3.

For each of the non-smart tanks, we assume that we can use an unbiased estimator êi0
of ei(t0) with standard deviation σie, and an unbiased estimator τ̂ i0 of τ i(t0) with standard
deviation σiτ . We use the standard deviation to strengthen constraints (7.8) and (7.9) as

t0 + ∆tib ≥ ti0, t0 + ∆tib + dib + 2σie ≤ tif , (7.10)

and
∆tib + exp(ki∆tib)(τ̂ i0 + 2σiτ ) ≤ tc. (7.11)

The rationale behind these constraints is that unfavorable cases when EHWT are heated
during peak-hour or when not enough water has been heated at time tc are unlikely. Then,
the problem considering uncertainty has the same formulation as (7.6), but the constraints
are (7.7), (7.8) and (7.9) for smart and remotely controllable tanks, and (7.7), (7.10)
and (7.11) for tanks that are only remotely controllable.

3By definition, all the tanks under consideration are remotely controllable
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Figure 7.7: Unsuccessful scheduling for steep increase and decrease of the consumption.
n=5000, p=1000.

7.4.2 Simulations

Simulations have been conducted under the same conditions as in Section 7.3, with a 0%
ratio of “smart EHWT”, and with a Gaussian distribution centered about the estimator
value of the tank energy, and with a (relatively large) standard deviation equal to one
fourth of the estimator value. An example is shown in Fig. 7.8 and quantitative results
are reported in Table 7.3.

Objective load curve q1 q2 Computation time (s)
1 0.0338 0.0365 23.2
2 0.0426 0.0446 17.8
3 0.0336 0.0370 18.3
4 0.0372 0.0376 16.9
5 0.0319 0.0397 17.6
6 0.0410 0.0609 20.6
7 0.0335 0.0437 18.0
8 0.0470 0.0544 16.9

Table 7.3: Results for objective load curves 1 to 8 (5000 tanks, 1000 time-steps), with
uncertainty.

Simulation results show a good level of robustness, using either criteria q1 and q2.
Analysis of Fig. 7.8 reveals that a spreading effect takes place in the right edge of the load
curve. This phenomena, that looks like heat dynamics will be the subject of future works.
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Figure 7.8: Uncertain case: example of objective load curve (blue) and scheduling prevision
(orange) and final realization when the duration of each tank is known (yellow). n=5000,
p=1000.
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7.5 Summary
In this chapter, we have formulated an optimization problem and proposed a resolution
method in the form of a heuristic for the optimal rescheduling of heating of large sets
of EHWT. Numerical experiments conducted on real data stress the relevance of this
method for parameters corresponding to French houses. The method is only marginally
sub-optimal and appears to scale linearly with the dimension of the problem.

Similar studies should focus on parameters for other countries. Depending on the load
curve, which relates to electricity producers constraints, the heuristic may require further
developments. A main tuning parameters is the choice of the probability density employed
in the iterative scheduling procedure. In particular, if sharp transients are to be considered
in the load curve, the choice of the probability function may require further investigations.

On the numerical side, the approach could benefit from various classic techniques. In
fact, parallelization, semi-lumping are possible ways to explore. This could help speed up
the method, which is already reasonably fast, but can be important for large instances.
A straightforward implementation of the presented methodology treats a representative
set of one million EHWT in 6000 seconds. A satisfactory rescheduling is obtained after 3
random runs.



Chapter 8

Large-scale groups: modeling
populations of EHWT with
Fokker-Planck equations

Modélisation de grande populations de ballons en utilisant les équations de
Fokker-Planck. Dans ce chapitre, nous proposons un modèle de comportement d’un
parc (grand nombre) de ballons sous la forme d’un système d’équations aux dérivées
partielles. Ces équations proviennent du comportement stochastique individuel de chaque
ballon (décrit ici), qui permettent de décrire le comportement global de la population à
l’aide des équations de Fokker-Planck, lorsque le nombre de ballons tend vers l’infini.

The approaches developed in Chapter 6 and 7 carefully coordinate the individual
controls of the tanks. The coordinated decisions are to be sent to the automation devices
embedded in every tank in the group. Leaving out laboratory experiments, this might seem
unrealistic, since almost no existing EHWT is equipped with such automation devices. In
the future, “smart EHWT”will be deployed and will gradually represent a non negligible
part of the market but it will be a long time until every EHWT is smart. Interestingly,
this is not really necessary. One can use only a subset of the whole group and expect
the optimal strategy to simply smooth out the load curve, in a spirit similar to the
observation made in Chapter 7 where it was stressed that for large number of tanks, the
smoothing of the load curve induced by stochastic individual behavior is sufficient to solve
the optimization problem at stake.

In this chapter, we model the behavior of the whole group of EHWT as a system
submitted to external forcing terms. In the limit, we obtain a population dynamics. This
approach can be used to test various kinds of strategies. For instance, effect of new
schedule for time-of-use pricing can be quantified. Other perspectives are possible. They
will be sketched in the conclusion of the thesis.

Interestingly, it is possible to recast the heating policies of a large set of EHWT
into a distributed parameter framework. Following the works of [MC85] (recently used
by [MRB13]), we consider that the local (individual) control variables of EHWT are each
defined according to stochastic processes. Then, we combine i) this randomness, ii) the
diversity in the distribution of the states of the EHWT, iii) the randomness of the water
consumptions, and we develop a PDE for a large group of EHWT. Classically, this takes
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the form of Fokker-Planck equations (see [Ris96]) governing the probability distributions
of the population of EHWT. The work of Malhamé and Chong was originally focused
on a mitigated load represented by a single state. For smart piloting applications under
consideration here, extensions are necessary. The result are a rich system of PDE, which
constitutes the main contribution of this chapter.

The chapter is organized as follows. In the group of EHWT, a single EHWT is a
macroscopic but small compared to the whole group subsystem described by three state
variables. Notations are given in Section 8.1. To account for the randomness of water
consumption, we propose to represent single EHWT using a Markovian stochastic process
in Section 8.2. Then, we introduce probability density functions of the population of
EHWT and derive the Fokker-Planck equations in Section 8.3. A summary of the obtained
input-output description of the EHWT group is reported in Section 8.4. Conclusions and
perspectives are given in Section 8.5.

8.1 Model statement

8.1.1 Domains of definition of state variables
We recall (6.1), λ = Tcom−Tin

Tmax−Tin
. Let emax be the maximal energy that can be contained in

the tank under the temperature Tmax. Then, by definition, the states a, τ , µ are subject
to the following inequalities :

0 ≤ a ≤ emax, 0 ≤ τ ≤ λemax, 0 ≤ µ ≤ λemax,

a+ 1
λ

(τ + µ) ≤ emax, λemax ≤ a+ τ + µ

from which we define Ω0 the following open polyhedron of R3 and its faces (see Fig. 8.1):

Ω0 ={(a, τ, µ)|a, τ, µ > 0, λemax < a+ τ + µ, a+ 1
λ

(τ + µ) < emax}

F1 =Ω̄0 ∩ {(a, τ, µ)|µ = 0}
F2 =Ω̄0 ∩ {(a, τ, µ)|τ = 0}
F3 =Ω̄0 ∩ {(a, τ, µ)|λemax = a+ τ + µ}

F4 =Ω̄0 ∩ {(a, τ, µ)|a+ 1
λ

(τ + µ) = emax}.

The following edges and vertices are considered

E1 =F1 ∩ F2 E2 =F3 ∩ F4

V1 ={(λemax, 0, 0)} V2 ={(emax, 0, 0)}
V3 ={(0, λemax, 0)} V4 ={(0, 0, λemax)}.

In practice, z = (a, τ, µ) can only belong to E2 (low energy edge, e.g. Fig. 5.2 (f)),
Ω0 (medium energy domain, e.g. Fig. 5.2 (a), (b) and (e)) and E1 (high energy edge, e.g.
Fig. 5.2 (c) and (d)). Faces F1 to F4, and vertices V1 to V4 constitute boundaries of these
three domains. Note that uniformly cold tanks can also stack in V3.

In the following, we note Ω = Ω0 ∪ E1 ∪ E2 ∪ V3. Any index i = 0, 1, 2, 3 will refer to
these sub-domains, respectively.
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Figure 8.1: Domains of definition of the state variables: F1 to F4 are the four faces of the
open domain Ω0. V1 to V4 are its vertex, and E1 and E2 are two interesting edges. The
tank state z belongs to Ω0, E1 or E2.
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Figure 8.2: Transient between sub-domains.

8.1.2 Transient behavior
The transient behavior of z is driven by the physical phenomena in the tank. The dynamics
is similar to the discrete one described in Section 6.1.2.

Heating mostly induces a continuous variation of z. If τ, µ > 0 (i.e. z ∈ Ω0), then
the heating yields a decrease of τ and an increase of µ (see Fig. 5.2 (b)). Under certain
conditions, a threshold effect can be observed: when τ reaches 0 (i.e. when z reaches F2),
then suddenly, all the unavailable energy µ becomes available, µ takes the value 0 and
all its energy is transferred into a. This effect constitutes the evolution from Fig. 5.2 (b)
to (c). This induces a discontinuity, transferring z to E1 in which the heating has again a
continuous effect on z, increasing the available energy a (see Fig. 5.2 (c) and (d)).

Heat losses also mostly induce a continuous variation of z, during which a and µ
decrease while τ increases. The reverse threshold effect can also be observed: when z
reaches F3, an entire layer of water goes under the temperature Tcom, which causes a to
take the value 0 and z to jump in E2 in which it will again vary continuously. This case
can, for instance, be encountered with the rest of the profile displayed in Fig. 5.2 (d):
when the uniform temperature in the tank reaches Tcom, a takes the value 0.

The drains have a very short duration compared to heating and heat losses. They yield
quasi-instantaneous decrease of a and µ and increase of τ , having time of occurrence and
magnitude depending on the user’s habits. We model them as jumps only. Very large
decreases can cause z to jump from E1 to Ω0 (or even to E2), or from Ω0 to E2.

A summary of jump dynamics is pictured in Fig. 8.2.

8.2 EHWT as a hybrid-state stochastic process

8.2.1 Stochastic process representation
The times of occurrence and magnitude of the drains are user-dependent. We model this
dependency under the form of a stochastic process. This results in a model similar in
spirit to the one-dimensional representation originally proposed by [MC85].
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In our stochastic model, each EHWT is defined by the state vector

Zt =

atτt
µt

 ∈ Ω (8.1)

and its heating status St ∈ {r, h}, which is also of stochastic nature. From now-on, the
indexes {r, h} refer to “rest” and “heating”, respectively.

The dynamics of Zt is governed by the phenomena described in Section 8.1.2. In each
domain Ω0, E1, E2, the state vector Zt changes continuously (due to heating and heat
losses) or discontinuously (due to drains), with respect to a stochastic differential equation,
constituting the flow map, that will be stated below. A jump of hybrid nature1 appears
when Zt reaches F2, F3, V1 or V4. This discontinuity, in accordance with the terminology
of [GST12], constitutes the jump map. A correspondence between the phenomena and
their stochastic/hybrid counterparts is detailed in Table 8.1.

8.2.2 Flow map: Stochastic process dynamics on each domain

Phenomenon Hybrid Stochastic
representation Fokker-Planck equation

Heat losses Drift Convection
Heating Drift Convection
Drain Poisson process Integral source term

Threshold effect
on the comfort Hybrid jump Free boundary condition

and source term
Control Poisson process Coupling source term

Uncertainty Brownian motion Diffusion

Table 8.1: Correspondence between each phenomenon, its hybrid stochastic counterpart,
and the term in the Fokker-Planck PDE.

The stochastic differential equations of Zt and St are
dZt = v(Zt)dt+ dJt + σ(Zt)dWt

dSt = dNt

}
(8.2)

where, using the arbitrary choice we propose,
• v(Zt)dt is the drift component which represents the heat losses and/or heating effects;

• dJt is the infinitesimal integration with respect to a 3-dimensional compound Poisson
process Jt representing the jump effects of drains on at, τt and µt;

• uncertainties are lumped into a standard deviation term σ(Zt), integrated with
respect to a Wiener process (or standard Brownian motion) Wt;

• dNt is the infinitesimal integration with respect to a one-dimensional Poisson process
Nt representing the status switch between h and r.

Expressions of v, σ and of the random characteristics of Jt depend on the domain and the
status of the EHWT. We now detail them and discuss the choices.

1hybrid systems are dynamical systems that are subjected to discontinuities in their state in certain
parts of their domain. A complete framework for hybrid system is presented in [GST12].
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Heat losses and heating modeling as a drift

Under the assumption that the ambient temperature Ta is equal to Tin, the heat losses
per unit of time for at are equal to − k

Sρcp
at, where S is the cross-section of the tank, ρ

and cp are the density and heat capacity of water, and k is the heat losses coefficient of
the tank per unit of height (see again Fig. 5.2).

Likewise, for µt, the heat losses is equal to − k
Sρcp

µt. The heat losses generate a positive
effect on τt which increases with the rate k

Sρcp
µt. One has

vr(Zt) = k

Sρcp

−1 0 0
0 −1 0
0 1 0

Zt.
To this heat losses drift we add a drift vh(Zt) due to power injection for tanks subjected
to heating. In Ω0 and E2, power injection p lowers τt and increases µt, so that one
has vh(Zt) = p

[
0 −1 1

]T
. In E1, the injected power only affects at, and therefore

vh(Zt) =
[
p 0 0

]T
. Finally, when the tank is heating,

v(Zt) = vr(Zt) + vh(Zt)

and otherwise v(Zt) = vr(Zt).

Drain as a Poisson process

The drains appear as a sequence of quasi-instantaneous events of various magnitudes. For
this reason, we choose to model them as a non homogeneous compound Poisson process Jt
(see e.g. [App04]). This assumption is questioned by the results in Chapter 4 that highlight
an autocorrelation in the DHW consumption. However, the daily pattern represented by
the mean consumption shows similarities with the intensity function of a Poisson process,
and we assume that the temporal correlation fades out as the number of tanks grows.

As a consequence, the time between jumps follows an exponential law of parameter
χ(t), and the magnitude of jumps is characterized by a probability density function ω :
Ω2 × R+ → R+. In words, a jump from the state z at time t maps to the rest of Ω with a
distribution characterized by ω(z, ·, t).

EHWT variability as a Wiener process

Some phenomena are not taken into account in the description above (e.g. diffusion). We
choose to lump these into into a standard deviation parameter σ(Zt) acting through a
Wiener process. However, the closer Zt is to the boundary of Ω, the smaller the uncertainty
should be on some of variables. Thus, certain components of σ(Zt) must vanish at the
boundaries of domains. Additionally, the heating increases uncertainty on the dynamics.
In summary, the standard deviation takes the form

σ(Zt) = σr(Zt) + σh(Zt)

for heating tanks, and σ(Zt) = σr(Zt) otherwise.
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On/off heating switch modeled with a Poisson process

The switchings between the two statuses h and r constitute a sequence of instantaneous
events that can be controlled. We choose to also model it with a Poisson process of
intensity α(Zt, t, St) = αSt(Zt, t) (indexed on St for transition from St to the opposite one).
This means that instead of exactly setting the switching times, two functions αr, αh define
a probability to switch from one status to another, depending on the state Zt and time t.

8.2.3 Jump map: hybrid system modeling of the domain switch
The threshold jumps during heating (and in theory possibly during the rest phases)
constitute hybrid deterministic jumps. When reaching a certain boundary, it maps a
domain to another, depending on the status. The transition, in the framework of [GST12],
gives z+ (the value after the jump) as a function of z (the value before the jump). For the
sake of clarity, a summary is given in Table 8.2. The maximal energy emax that can be
contained in the tank is reached at point V2, when heating. We assume that the heating
automatically switches off at this point for security reasons, which is characterized by a
hybrid jump for the status from h to r. This jump is also presented in the jump map.

8.3 Fokker-Planck PDE for a large group of EHWT

8.3.1 EHWT group population representation
Representing a large group of tanks each having a 3-dimensional state leads to an unnec-
essarily large finite-dimensional system, which can be difficult to design controllers for.
Rather, a probability density functions representation can be employed.

The main idea is to define 7 functions f r0 , fh0 , f r1 , fh1 , f r2 , fh2 , f r3 (one for each domain
Ω0, E1, E2 and V3, one for each status r or h at the exception of V3 in which only resting
tanks can stack) which represent the population density of the tanks of a given status in a
certain domain. These positive functions are subject to the balance∫∫∫

Ω0
(fh0 + f r0 ) +

∫
E1

(fh1 + f r1 ) +
∫
E2

(fh2 + f r2 ) + f r3 = 1.

The dynamics governing these probability functions are obtained from the preceding
dynamics. We now detail them.

8.3.2 Fokker-Planck equation for a stochastic process
Population distribution can often be studied through the Fokker-Planck equation (see
[Ris96]). For a set of independent Markov process in a state space Ω following the same
generic stochastic equation

dZt = v(Zt, t)dt+ σ(Zt, t)dWt + dJt (8.3)

where v(Zt, t), σ(Zt, t) ∈ R6, dWt is the integration with respect to a one-dimensional
Wiener process Wt, and dJt is the integration with respect to a compound Poisson process
of intensity χ(t) and whose compound distribution is represented with the probability
density function ω (i.e. when a jump occurs on state z, the probability density function of
transition to state y is represented with ω(z, y, t) at time t), the probability density function
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Table 8.2: Jump map.
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(when the number of stochastic processes tends to infinity) is given by the Fokker-Planck
equation (see e.g. [App04])

∂tf(z, t) = −∇z · [v(z, t)f(z, t)] +∇z · [D(z, t)∇zf(z, t)]

+ χ(t)
∫

Ω
(f(y, t)− f(z, t))ω(z, y, t)dy

(8.4)

for (z, t) ∈ Ω× R+, where

D(z, t) = 1
2σ(z, t) · σt(z, t) ∈ R3×3. (8.5)

8.3.3 Detailed expressions for the dynamics
Several observations can be made on the stochastic model presented in Section 8.2. First,
for each tank, the stochastic process Zt defined by (8.2) constitutes a Markov process.
Moreover, given a group of tanks, the independence of the stochastic process of each
tank appears as a reasonable assumption, given that hot water consumptions of distinct
households are usually not related.

Therefore, we follow the work of [MC85], and derive the Fokker-Planck equations. In
our case, for each domain and each status, this equation takes the form of a parabolic
PDE. The hybrid nature of the stochastic process appears in the boundary conditions and
yields an additional integral source term.

On each domain i = 0, 1, 2 (for Ω0, E1, and E2), f ri and fhi are driven by a system of
the form

∂tf
r
i +∇z · [vrf ri ] = ∇z · [Dr

i∇zf
r
i ]− (αri + χ)f ri + αhi · fhi + Sri (f(·, t), z, t)

∂tf
h
i +∇z · [(vr + vhi )fhi ] = ∇z · [(Dr

i +Dh
i )∇zf

h
i ]

− (αhi + χ)fhi + αri · f ri + Shi (f(·, t), z, t)

 (8.6)

while f r3 follows an ODE that will be stated later in (8.7).

8.3.4 Definition of parameters in each domain
Each term in the stochastic differential equation has a matching term in the partial
differential equation (see e.g. [EK05, Sat11]). For the sake of clarity, in Table 8.1, we give
each stochastic term under consideration and its corresponding term in the PDE. The
necessary steps of computations are omitted for brevity.

The heat losses drift in the PDE has the same form as the one in the stochastic
equation, i.e.

vr(z) = k

Sρcp

−1 0 0
0 −1 0
0 1 0

 z ∈ R3.

In each domain, the drift vhi ∈ R3, the diffusion Dr
i (z, t), Dh

i (z, t) ∈ R3×3
+ , and the

source terms Ssi (f(·, t), z, t) ∈ R+ for s = r, h have to be defined. The term caused
by the Poisson process leads to source terms of various integral forms, depending on
the probability density function ωi on each domain (e.g. ω0 = ω|Ω0). Source terms
can also appear due to hybrid transfer from other domains in the form of an integral
flow. For this reason, on F2 and F3, we introduce the functions η2 and η3 defined as
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follows: η2(y, z) = 1 if
[
az τz µz

]T
=
[
ay + µy τy 0

]T
and 0 otherwise; and η3(y, z) = 1

if
[
az τz µz

]T
=
[
0 τy ay + µy

]T
and 0 otherwise.

Details are reported in Table 8.3. Finally, the exchange terms αsi (z, t) can be chosen as
they are control-dependent, while χ(t) does not depend on space.

8.3.5 Boundary conditions
The domain Ω0 has 4 boundaries (F1 to F4), while E1 and E2 have 2 boundaries, each
in the form of vertices. Boundary conditions stem from the behavior of the stochastic
process. A special case is the boundary V3 where uniformly cold tanks stack.

On the boundaries of the domain, we have :
• dτ (z), dµ(z)→ 0 when z → F1 or F2,

• da(z)→ 0 when z → F3 or F4,

• d1(z)→ 0 when z → V1 or V2,

• d2(z)→ 0 when z → V3 or V4.
This allows to define boundary conditions of the Dirichlet or free boundary types, except in
V3. Their definitions stem from exchange between the domains: free boundary corresponds
to the case where tanks flowing outside the domain flow inside another domain as a source
term (hybrid jumps). On the contrary, the zero Dirichlet boundary conditions correspond
to the fact that no new tank can enter the system (the population is fixed). A summary is
presented in Table 8.4.

The vertex V3 constitutes a free boundary for f r2 , in which the population of completely
cold tanks can stack. The population f r3 (t) at this point can be heated and constitutes the
input flow for fh2 through the boundary condition (vh2 + vτ2 (V3))fh2 (V3, t) = αr2(V3, t)f r3 (t).
Therefore, f r3 (t) is driven by

df r3
dt (t) =− αr2(V3, t)f r3 (t) + vτ2 (V3)f r2 (V3, t) +

∫
E2
f r2 (y)ω2(y,V3, t)dy. (8.7)

Remark 6. In (8.7), for ease of notation, the integration along E2 is denoted with a
3-dimensional element dy to avoid the introduction of a parametrization function of E2.
When no ambiguity is possible, similar notational simplifications are used in the rest of
the chapter.

8.4 Input-output model
The input of the system is the set of functions (defined over space and time)

α = [αr0, αh0 , αr1, αh1 , αr2, αh2 ]T

which determine the intra-domain migration between the populations of heating and
resting tanks.

To control the group of tanks, several indicators can be interesting. They are the
output of the proposed model. Among them, the mass (number) of tanks breaking the
comfort constraints is

CB(t) =
∫
E2

(fh2 + f r2 )(z, t)dz + f r3 (t) (8.8)
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Table 8.3: Definition of distributed parameter equation term on each domain.
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Domain Boundary Boundary condition

Ω0

F1 f r0 (z, t) = 0 and fh0 (z, t) = 0
F2 f r0 (z, t) = 0 and fh0 (z, t) free
F3 f r0 (z, t) free and fh0 (z, t) free
F4 f r0 (z, t) = 0 and fh0 (z, t) = 0

E1
V1 f r1 (z, t) free and fh1 (z, t) = fh2 (V4, t)
V2 f r1 (z, t) = fh1 (V2, t) and fh1 (z, t) free

E2
V3 f r2 (z, t) free and (vh2 + vr(z))fh2 (z), t) = αr2(z), t)f r3 (t)
V4 f r2 (z, t) = 0 and fh2 (z, t) free

Table 8.4: Boundary conditions.

α(·, t)
CB(t)

Ptot(t)

PDE system

on f

Figure 8.3: Input-output representation of the group of EHWT.

and the total power demand is

Ptot(t) =
2∑
i=0

∫∫∫
Ω
fhi (z, t)dz. (8.9)

They constitute valuable performance indexes for the system.
In summary, the system admits the input-output representation depicted in Fig. 8.3.
A natural goal is then to design controls (α(·, t) : Ω → R6

+) s.t. CB is as low as
possible, while the total power demand Ptot follows a given objective function.

As a mean of illustration, the probability density functions on E1, E2, and a representa-
tive segment of Ω0 from the middle of E2 to V2 are shown in Fig. 8.4. Two profiles are
shown. A fictional initial one, and the one subsequent to the following heating policy. We
choose to promote heating (i.e. αri high and αhi low) on E1, E2, and V3, and let the tanks
rest (i.e. αri low and αhi high) on Ω0. The profile varies as is shown in the figure, and
tends to spread due to diffusion and integral drains. After some time, due to diffusion
effects, a stationary profile representative of the cycle E2 → E1 → Ω0 → E2 should take
place. Numerical treatment of the Fokker-Planck equations derived in this chapter will be
the subject of further works.

8.5 Summary
In this chapter, we have explained the derivation of a model for a large group of EHWT.
The input is a parameter defining the stochastic process of heating of each individual
EHWT in the group. The outputs are the overall comfort variable defined in (8.8) and
the total power demand (8.9). The dynamics are a collection of Fokker-Planck partial
differential equations.
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Figure 8.4: Variation of probability density function, given a heating policy (red: heating,
blue: resting).
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Chapter 9

Conclusions and perspectives

Conclusions et perspectives. Dans cette partie, nous résumons les travaux effectués
jusqu’ici en les mettant en relation. Les architectures de contrôle possibles pour chacune des
méthodes abordées sont présentées. Enfin, des perspectives d’amélioration sont décrites.

In this thesis we have studied two central questions that we believe could be of interest
for the development of prototypes of “smart EHWT”. These questions focus on modeling
and control.

On the modeling side, the model obtained in Chapter 3 has some interesting properties:
it is computationally light and relatively accurate. Together with the domestic water
consumption model of Chapter 4, it constitutes the basis for the input-output representation
of Chapter 5, which could be implemented in a “smart EHWT”.

On the optimal control side, we have considered three typical use-cases, sorted by
ascending sizes. Very generally, several possible decisional architecture can be considered;
they are pictured in Fig. 9.1. For small size the proposed reformulation as a MILP/MIQP
yields to relatively light computational efforts, so that embedded resolution of optimal
strategies is doable. This case requires that all tanks should be smart (see Fig. 9.2),
and corresponds to cases (b) and (c) in Fig. 9.1. For medium size, it has been shown
that even with large dimension, the problem of optimal scheduling can be solved with
little sub-optimality thanks to a carefully designed heuristic. This case only requires that
the tanks are controllable (see cases (a) and (b) in Fig. 9.1). When the dimension gets
sufficiently large, the limit case can be approached by a partial differential equation, of
the Fokker-Planck type, which opens new perspectives.

We now wish to draw some perspectives on the presented work.

1. The modeling efforts could, at little expense, be generalized to the case of ther-
modynamics and solar tanks, which are important systems in the context of DSM.
However, it is likely that no plateau will be observed, despite the positive impact
of stratification. The culprit is the spatially distributed nature of the internal heat
exchangers. For this reason, no straightforward derivation of a multi-period model
can be determined at this stage. However, some similar simplifications could be
done, but investigations are needed.

2. The MILP/MIQP approach developed in this thesis yields good results but is strongly
limited by the dimensionality of the problem. At this stage, we cannot address groups
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controllable EHWT

decision center

. . .

u1 u2 u3 un

smart EHWT

decision center

. . .

u1 u2 u3 un

z1 z2 z3 zn

smart EHWT

decision center

. . .

c1 c2 c3 cn

(a) (b) (c)

Figure 9.1: Three possible architecture for control of groups of tanks. Case (a): controllable
tanks receiving direct control signals from a decision center. Case (b): smart tank
transmitting information on their state to a decision center and receiving control in return.
Case (c): smart tanks making their own heating decision against a (real or fictional) price
signal transmitted by a decision center.

all EHWT

smart EHWT

controllable EHWT

Figure 9.2: The population of smart, controllable and classic EHWT.

of EHWT having more than 4 elements. Fortunately, the constraints are decoupled
and the resolution of single-EHWT problems is easy and fast. This naturally stresses
that decomposition-coordination methods [Coh78] are well suited for this extension.
A promising type of decomposition is the “price-decomposition”.

3. The heuristic proposed in this thesis can be the subject of numerous practical
refinements. In particular, if the profiles to be attained are less smooth than the one
presented in the thesis (e.g. featuring steep descents followed by sharp ascents), or if
it is desired to address the problem on 48 h with two successive load curves, then
more advanced heuristics are needed. In this direction, we have already developed
refined strategies for cases of practical industrial interest. These remain out-of-the
scope of the thesis. The questions at stake are mostly of computational nature.

4. In the case when not all the EHWT are “smart EHWT”, the application of the
heuristic for medium-scale groups lead to a subsidence (sinking) of the realized load
curve compared to the desired one. The subsidence features a diffusion comparable
to the heat equation. To attain the objective load curve, it may be useful to aim
for a pre-processed load curve (e.g. with some sort of anti-diffusion) to sharpen the
realized load curve. To address this problem, the effect of uncertainty on the load
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curve has to be quantified, formally.

5. At last, we believe that the Fokker-Planck approach has a lot of potential, even
for real applications. The developments presented here are just a first step. We
expect that exploiting the whole class of methods of the Fokker-Planck type can be
a most effective way of representing and solving optimal control problems for the
population of EHWT, partially blended with “smart EHWT”, already installed in
France. Our choice of modeling is still arbitrary, and numerous other possibilities
must be explored. The next steps should address the control problems based on this
input-output description. A question to be solved can be formulated as follows: how
to design α(·, t) so that the power demand approaches some desirable profile while
limiting or minimizing the discomfort? This problem belongs to the class of optimal
control (tracking) of distributed parameter systems with in-domain actuation.
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Résumé 
 

Cette thèse s'intéresse au développement de 

stratégies de décalage de charge pouvant 

être appliquées à un parc de chauffe-eau 

Joule (CEJ). 

 

On propose une modélisation entrée-sortie du 

système que constitue le CEJ. L'idée est de 

concevoir un modèle précis et peu coûteux 

numériquement, qui pourrait être intégré dans 

un « CEJ intelligent ». On présente 

notamment un modèle phénoménologique 

multi-période d'évolution du profil de 

température dans le CEJ ainsi qu'un modèle 

de la demande en eau chaude. 

 

On étudie des stratégies d'optimisation pour 

un parc de CEJ dont la résistance peut être 

pilotée par un gestionnaire central. Trois cas 

de figures sont étudiés. Le premier concerne 

un petit nombre de ballons intelligents et 

présente une méthode de résolution d'un 

problème d'optimisation en temps discret. 

Puis, on s'intéresse à un parc de taille 

moyenne. Une heuristique gardant indivisible 

les périodes de chauffe  (pour minimiser les 

aléas thermo-hydrauliques) est présentée. 

Enfin, un modèle de comportement d'un 

nombre infini de ballon est présenté sous la 

forme d'une équation de Fokker-Planck. 
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Abstract 
 

This thesis focuses on the development of 

advanced strategies for load shifting of large 

groups of electric hot water tanks (EHWT). 

 

The first part of this thesis is dedicated to 

representing an EHWT as an input-output 

system. The idea is to design a simple, 

tractable and relatively accurate model that 

can be implemented inside a computing unit 

embedded in a “smart EHWT”, for practical 

applications of optimization strategies. It 

includes in particular a phenomenological 

multi-period model of the temperature profile 

in the tank and a model for domestic hot 

water consumption. 

 

The second part focuses on the design of 

control strategies for a group of tanks. Three 

use-cases are studied. The first one deals 

with a small number of smart and controllable 

EHWT for which we propose a discrete-time 

optimal resolution method. The second use-

case addresses a medium-scale group of 

controllable tanks for which we propose a 

heuristic to optimally schedule the heating 

periods. Finally, we present the modeling of 

the behavior of an infinite population of tanks 

under the form of a Fokker-Planck equation. 

 

 

 

 

 

 

 

 

 

 

Keywords 
 

Electric hot water tank; Energy storage; 

Supply of hot water; Domestic water 

consumption; Dynamic Optimization; Multi-

period model; MILP; Heuristics; Fokker-

Planck 

 


	Cover
	Abstract
	Remerciements
	Table of contents
	Introduction
	The context of demand side management
	Functioning and models of EHWT
	Control problems for EHWT
	Contributions of the thesis

	List of conference papers
	List of patents
	Liste des papiers de conférence
	Liste des brevets
	I The EHWT : behaviour and proposed representation
	A physics-based representation of EHWT
	PDE for heating and draining
	Model validation
	Summary

	Multi-period dynamical modeling
	Preliminary observations
	Multi-period model for heating, draining and heat losses
	99993em.5Comparison against experimental data and physics-based model
	Summary

	Model for hot water consumption
	Frequentist inference for the water drains distribution law
	Daily pattern for the start times of drains
	Distribution of the time between two successive drains
	An autoregressive model for domestic hot water consumption
	Summary

	Input-output representation of EHWT
	Definition of user comfort
	Definition of variables of interest: available, delay and reserve energies
	Summary: towards the "smart EHWT"


	II Control of groups of EHWT
	Small-scale groups
	Discrete-time dynamics and optimization problems
	Mixed integer representation of the constraints and dynamics
	Simulation results
	Summary

	Medium-scale groups
	Formulation of the problem
	Solution method
	Simulations results
	Optimization with uncertainty
	Summary

	Large-scale groups
	Model statement
	EHWT as a hybrid-state stochastic process
	Fokker-Planck PDE for a large group of EHWT
	Input-output model
	Summary


	III Conclusions and perspectives
	Conclusions and perspectives
	Bibliography
	Page de garde



