Skip to Main content Skip to Navigation

Contributions à l'étude du comportement thermo-hydro-mécanique de l'argilite du Callovo-Oxfordien (France) et de l'argile à Opalinus (Suisse)

Abstract : Deep low permeability claystones (10-20 m2), such as Callovo-Oxfordian claystone (COx) in France or the Opalinus Clay in Switzerland, are potential host rocks for deep geological radioactive waste disposal. During the various phases of the storage, these rocks will be subjected to thermo-hydro-mechanical (THM) coupled effects. The determination of their THM parameters remains to be completed for a better understanding of the near-field response of the storage galleries.The experimental study of low permeability geomaterials is difficult and several questions about their THM behavior still remain. In this context, two original experimental systems with high precision local strain measurements and reduced drainage lengths (H) were developed and used for saturated drained tests: an isotropic compression cell (H = 10 mm) and a standard triaxial cell with a reduced drainage length using a geotextile placed around the sample (H = 19 mm).A detailed poroelastic characterization of the COx argillite in the isotropic cell provided a set of compatible transverse isotropic poroelastic parameters of the material, identified in a theoretical framework allowing to determine the Biot tensor components (coefficients b1 and b2, perpendicular and parallel to bedding plans, respectively). A key parameter not well documented to date is the unjacketed modulus that was determined by means of an unjacketed compression test (Ks = 21.7 GPa).A temperature control and an accurate calibration of thermal parasite effects allowed the investigation of the thermal volumetric response of the COx argillite during a drainage test under constant isotropic confining stress close in-situ state conditions. A thermoelastic expansion followed by a thermoplastic contraction was observed, with a transition at a temperature of 48 °C, close to the highest temperature supported during the geological history of the claystone. It is thus confirmed that such claystones keep in memory the maximum supported geological temperature. The precision of the deformation measurements also made it possible to identify a volumetric creep that is enhanced at 80 °C.Poroelastic calculations with the boundary conditions of the improved drainage system allowed to determine the magnitude of axial strain rates allowing good drainage during triaxial drained shearing (6.6×10-8 s-1). The drained tests carried out on the COx claystone showed a good compatibility with a criterion already published. Coherent data were also obtained on the Opalinus Clay failure criterion, that were compared to those of uniaxial compression tests at different speeds on samples equilibrated at 94% relative humidity, that exhibited a dependence of the peak strength on the shear rate.These results make it possible to reduce the uncertainties concerning the THM properties of claystones and should allow a better estimation of the response of the near field close to the galleries during the different phases of their service period.Key words: claystone, permeability, drainage, saturation, poroelasticity, Biot coefficient, transverse isotropy, triaxial testing, heating, creep
Document type :
Complete list of metadatas

Cited literature [167 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, November 7, 2017 - 4:42:09 PM
Last modification on : Tuesday, December 8, 2020 - 10:20:37 AM
Long-term archiving on: : Thursday, February 8, 2018 - 1:47:00 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01630492, version 1



Malik Belmokhtar. Contributions à l'étude du comportement thermo-hydro-mécanique de l'argilite du Callovo-Oxfordien (France) et de l'argile à Opalinus (Suisse). Géotechnique. Université Paris-Est, 2017. Français. ⟨NNT : 2017PESC1026⟩. ⟨tel-01630492⟩



Record views


Files downloads