.. Fl-mice, 12 Absolute change of meal pattern between male and female Nav1, Figure 2.4, p.229

D. 'alessio, D. Lu, W. Sun, W. Zheng, S. Yang et al., Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system, AJP: Regulatory, Integrative and Comparative Physiology, vol.293, issue.6, pp.2163-2169, 2007.
DOI : 10.1152/ajpregu.00911.2006

M. Punjabi, M. Arnold, E. Ruttimann, M. Graber, N. Geary et al., Circulating Glucagon-like Peptide-1 (GLP-1) Inhibits Eating in Male Rats by Acting in the Hindbrain and Without Inducing Avoidance, Endocrinology, vol.155, issue.5, pp.1690-1699, 2014.
DOI : 10.1210/en.2013-1447

B. Thorens, A. Porret, L. Buhler, S. Deng, P. Morel et al., Cloning and Functional Expression of the Human Islet GLP-1 Receptor: Demonstration That Exendin-4 Is an Agonist and Exendin-(9-39) an Antagonist of the Receptor, Diabetes, vol.42, issue.11, pp.1678-1682, 1993.
DOI : 10.2337/diab.42.11.1678

B. Thorens, Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1., Proceedings of the National Academy of Sciences, vol.89, issue.18, pp.8641-8645, 1992.
DOI : 10.1073/pnas.89.18.8641

I. Merchenthaler, M. Lane, and . Shughrue, Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system, The Journal of Comparative Neurology, vol.372, issue.2, pp.261-280, 1999.
DOI : 10.1038/372425a0

M. Hayes, Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell metabolism, pp.320-330, 2011.

E. Delgado, M. Luque, A. Alcantara, M. Trapote, F. Clemente et al., Glucagon-like peptide-1 binding to rat skeletal muscle, Peptides, vol.16, issue.2, pp.225-229, 1995.
DOI : 10.1016/0196-9781(94)00175-8

M. Villanueva-penacarrillo, E. Delgado, M. Trapote, A. Alcantara, F. Clemente et al., Glucagon-like peptide-1 binding to rat hepatic membranes, Journal of Endocrinology, vol.146, issue.1, pp.183-189, 1995.
DOI : 10.1677/joe.0.1460183

M. Nauck, N. Kleine, C. Orskov, J. Holst, B. Willms et al., Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in Type 2 (non-insulin-dependent) diabetic patients, Diabetologia, vol.35, issue.Suppl 1, pp.741-744, 1993.
DOI : 10.1007/BF00401145

T. Hansotia, D. Drucker, and . Gip, GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice, Regulatory Peptides, vol.128, issue.2, pp.125-134, 2005.
DOI : 10.1016/j.regpep.2004.07.019

H. Parker, A. Habib, G. Rogers, F. Gribble, and . Reimann, Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells, Diabetologia, vol.447, issue.Suppl 1, pp.289-298, 2009.
DOI : 10.1152/ajpendo.00398.2002

M. Nauck, E. Homberger, E. Siegel, R. Allen, R. Eaton et al., Incretin Effects of Increasing Glucose Loads in Man Calculated from Venous Insulin and C-Peptide Responses*, The Journal of Clinical Endocrinology & Metabolism, vol.63, issue.2, pp.492-498, 1986.
DOI : 10.1210/jcem-63-2-492

L. Scrocchi, T. Brown, N. Maclusky, P. Brubaker, A. Auerbach et al., Glucose intolerance but normal satiety in mice with a null mutation in the glucagon???like peptide 1 receptor gene, Nature Medicine, vol.45, issue.11, pp.1254-1258, 1996.
DOI : 10.1016/0196-9781(92)90044-4

D. Flamez, A. Van-breusegem, L. Scrocchi, E. Quartier, D. Pipeleers et al., Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene, Diabetes, vol.47, issue.4, pp.646-652, 1998.
DOI : 10.2337/diabetes.47.4.646

K. Miyawaki, Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice, Proceedings of the National Academy of Sciences, vol.139, issue.7, pp.14843-14847, 1999.
DOI : 10.1210/en.139.7.3127

D. Horsch, R. Goke, R. Eissele, B. Michel, and . Goke, Reciprocal Cellular Distribution of Glucagon-like Peptide-1 (GLP-1) Immunoreactivity and GLP-1 Receptor mRNA in Pancreatic Islets of Rat, Pancreas, vol.14, issue.3, pp.290-294, 1997.
DOI : 10.1097/00006676-199704000-00012

B. Bullock, R. Heller, and J. Habener, Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor., Endocrinology, vol.137, issue.7, pp.2968-2978, 1996.
DOI : 10.1210/endo.137.7.8770921

B. Lamont, Y. Li, E. Kwan, T. Brown, H. Gaisano et al., Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice, Journal of Clinical Investigation, vol.122, issue.1, pp.388-402, 2012.
DOI : 10.1172/JCI42497DS1

L. Baggio and D. Drucker, Biology of Incretins: GLP-1 and GIP, Gastroenterology, vol.132, issue.6, pp.2131-2157, 2007.
DOI : 10.1053/j.gastro.2007.03.054

G. Holz and . Epac, Epac: A New cAMP-Binding Protein in Support of Glucagon-Like Peptide-1 Receptor-Mediated Signal Transduction in the Pancreatic ??-Cell, Diabetes, vol.53, issue.1, pp.5-13, 2004.
DOI : 10.2337/diabetes.53.1.5

C. Syme, L. Zhang, and . Bisello, Caveolin-1 Regulates Cellular Trafficking and Function of the Glucagon-Like Peptide 1 Receptor, Molecular Endocrinology, vol.20, issue.12, pp.3400-3411, 2006.
DOI : 10.1210/me.2006-0178

T. Vahl, Glucagon-Like Peptide-1 (GLP-1) Receptors Expressed on Nerve Terminals in the Portal Vein Mediate the Effects of Endogenous GLP-1 on Glucose Tolerance in Rats, Endocrinology, vol.148, issue.10, pp.4965-4973, 2007.
DOI : 10.1210/en.2006-0153

L. Kjems, J. Holst, A. Volund, and . Madsbad, The Influence of GLP-1 on Glucose-Stimulated Insulin Secretion: Effects on ??-Cell Sensitivity in Type 2 and Nondiabetic Subjects, feeding in rats. Biochemical and biophysical research communications, pp.380-38636, 2003.
DOI : 10.2337/diabetes.52.2.380

N. Neary, Inhibit Food Intake Additively, Endocrinology, vol.146, issue.12, pp.5120-5127, 2005.
DOI : 10.1210/en.2005-0237

D. Williams, D. Baskin, and . Schwartz, Leptin Regulation of the Anorexic Response to Glucagon-Like Peptide-1 Receptor Stimulation, Diabetes, vol.55, issue.12, pp.3387-3393, 2006.
DOI : 10.2337/db06-0558

M. Turton, A role for glucagon-like peptide-1 in the central regulation of feeding, Nature, vol.379, issue.6560, pp.69-72, 1996.
DOI : 10.1038/379069a0

J. Donahey, G. Van-dijk, S. Woods, and . Seeley, Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats, Brain Research, vol.779, issue.1-2, pp.75-83, 1998.
DOI : 10.1016/S0006-8993(97)01057-3

D. Sandoval, J. Barrera, M. Stefater, S. Sisley, S. Woods et al., The Anorectic Effect of GLP-1 in Rats Is Nutrient Dependent, PLoS ONE, vol.150, issue.12, p.51870, 2012.
DOI : 10.1371/journal.pone.0051870.g007

C. Ronveaux, G. De-lartigue, and . Raybould, Ability of GLP-1 to decrease food intake is dependent on nutritional status, Physiology & Behavior, vol.135, 2014.
DOI : 10.1016/j.physbeh.2014.06.015

I. Baumgartner, G. Pacheco-lopez, E. Ruttimann, M. Arnold, L. Asarian et al., Hepatic-Portal Vein Infusions of Glucagon-Like Peptide-1 Reduce Meal Size and Increase c-Fos Expression in the Nucleus Tractus Solitarii, Area Postrema and Central Nucleus of the Amygdala in Rats, Journal of Neuroendocrinology, vol.50, issue.6, pp.557-563, 2010.
DOI : 10.1152/ajpregu.00732.2002

J. Parker, K. Mccullough, B. Field, J. Minnion, N. Martin et al., Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala, International Journal of Obesity, vol.58, issue.10, pp.1391-1398, 2013.
DOI : 10.1016/0031-9384(95)02121-3

C. Peters, Y. Choi, P. Brubaker, and . Anderson, GH A glucagon-like peptide-1 receptor agonist and an antagonist modify macronutrient selection by rats, The Journal of nutrition, vol.131, issue.8, pp.2164-2170, 2001.

P. Dalvi, A. Nazarians-armavil, and M. Purser, & Belsham DD Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated
DOI : 10.1210/en.2011-1795

URL : https://academic.oup.com/endo/article-pdf/153/5/2208/8978731/endo2208.pdf

F. Alen, I. Crespo, M. Ramirez-lopez, N. Jagerovic, P. Goya et al., Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism, PLoS ONE, vol.5, issue.11, p.60918, 2013.
DOI : 10.1371/journal.pone.0060918.g003

K. Toshinai, Ghrelin-Induced Food Intake Is Mediated via the Orexin Pathway, Endocrinology, vol.144, issue.4, pp.1506-1512, 2003.
DOI : 10.1210/en.2002-220788

URL : https://academic.oup.com/endo/article-pdf/144/4/1506/10805531/endo1506.pdf

W. Banks, The blood-brain barrier: Connecting the gut and the brain, Regulatory Peptides, vol.149, issue.1-3, pp.11-14, 2008.
DOI : 10.1016/j.regpep.2007.08.027

P. Chelikani, A. Haver, and . Reidelberger, Ghrelin Attenuates the Inhibitory Effects of Glucagon-Like Peptide-1 and Peptide YY(3-36) on Food Intake and Gastric Emptying in Rats, Diabetes, vol.55, issue.11, pp.3038-3046, 2006.
DOI : 10.2337/db06-0730

D. Hagemann, J. Holst, A. Gethmann, M. Banasch, W. Schmidt et al., GLP-1) suppresses ghrelin levels in humans via increased insulin secretion, Regulatory peptides, vol.1, issue.143, pp.1-364, 2007.
DOI : 10.1016/j.regpep.2007.03.002

B. Damdindorj, K. Dezaki, T. Kurashina, H. Sone, R. R. Kakei et al., Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet ??-cells, FEBS Letters, vol.124, issue.16, pp.2555-2562, 2012.
DOI : 10.1016/j.pharmthera.2009.06.002

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2012.06.034/pdf

A. Bado, The stomach is a source of leptin, Nature, vol.394, issue.6695, pp.790-793, 1998.

M. Tang-christensen, P. Havel, R. Jacobs, P. Larsen, and J. Cameron, Central Administration of Leptin Inhibits Food Intake and Activates the Sympathetic Nervous System in Rhesus Macaques, Journal of Clinical Endocrinology & Metabolism, vol.84, issue.2, pp.711-717, 1999.
DOI : 10.1210/jc.84.2.711

M. Barrachina, V. Martinez, J. Wei, and . Tache, Leptin-induced decrease in food intake is not associated with changes in gastric emptying in lean mice, The American journal of physiology, vol.272, pp.1007-1011, 1997.

J. Friedman and J. Halaas, Leptin and the regulation of body weight in mammals, Nature, vol.333, issue.2, pp.763-770, 1998.
DOI : 10.1056/NEJM199509143331101

M. Schwartz, R. Seeley, L. Campfield, P. Burn, and . Baskin, Identification of targets of leptin action in rat hypothalamus., Journal of Clinical Investigation, vol.98, issue.5, pp.1101-1106, 1996.
DOI : 10.1172/JCI118891

G. De-lartigue, C. Ronveaux, and . Raybould, Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Molecular metabolism, pp.595-607, 2014.

M. Pelleymounter, M. Cullen, M. Baker, R. Hecht, D. Winters et al., Effects of the obese gene product on body weight regulation in ob/ob mice, Science, vol.269, issue.5223, pp.540-543, 1995.
DOI : 10.1126/science.7624776

R. Elliott, Glucagon-like peptide-1(7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns, Journal of Endocrinology, vol.138, issue.1, pp.159-166, 1993.
DOI : 10.1677/joe.0.1380159

P. Richards, Identification and Characterization of GLP-1 Receptor-Expressing Cells Using a New Transgenic Mouse Model, Diabetes, vol.63, issue.4, pp.1224-1233, 2014.
DOI : 10.2337/db13-1440

J. Gutzwiller, Glucagon-like peptide-1: a potent regulator of food intake in humans, Gut, vol.44, issue.1, pp.81-86, 1999.
DOI : 10.1136/gut.44.1.81

D. Williams, D. Baskin, and M. Schwartz, Evidence that Intestinal Glucagon-Like Peptide-1 Plays a Physiological Role in Satiety, Endocrinology, vol.150, issue.4, pp.1680-1687, 2009.
DOI : 10.1210/en.2008-1045

T. Kieffer, C. Mcintosh, and R. Pederson, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV., Endocrinology, vol.136, issue.8, pp.3585-3596, 1995.
DOI : 10.1210/endo.136.8.7628397

C. Ronveaux, G. De-lartigue, and H. Raybould, Ability of GLP-1 to decrease food intake is dependent on nutritional status, Physiology & Behavior, vol.135, 2014.
DOI : 10.1016/j.physbeh.2014.06.015

T. Vahl, Glucagon-Like Peptide-1 (GLP-1) Receptors Expressed on Nerve Terminals in the Portal Vein Mediate the Effects of Endogenous GLP-1 on Glucose Tolerance in Rats, Endocrinology, vol.148, issue.10, pp.4965-4973, 2007.
DOI : 10.1210/en.2006-0153

C. Abbott, The inhibitory effects of peripheral administration of peptide YY3???36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal???brainstem???hypothalamic pathway, Brain Research, vol.1044, issue.1, pp.127-131, 2005.
DOI : 10.1016/j.brainres.2005.03.011

C. Delporte, Structure and Physiological Actions of Ghrelin, Scientifica, vol.26, issue.8, supplement, p.518909, 2013.
DOI : 10.1016/j.bone.2007.05.006

URL : https://doi.org/10.1155/2013/518909

Y. Date, The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats, Gastroenterology, vol.123, issue.4, pp.1120-1128, 2002.
DOI : 10.1053/gast.2002.35954

G. De-lartigue, Is a Target for Cooperative Interactions between Cholecystokinin and Leptin, and Inhibition by Ghrelin, in Vagal Afferent Neurons, Endocrinology, vol.151, issue.8, pp.3589-3599, 2010.
DOI : 10.1210/en.2010-0106

P. Chelikani, A. Haver, and R. Reidelberger, Ghrelin Attenuates the Inhibitory Effects of Glucagon-Like Peptide-1 and Peptide YY(3-36) on Food Intake and Gastric Emptying in Rats, Diabetes, vol.55, issue.11, pp.3038-3046, 2006.
DOI : 10.2337/db06-0730

G. Dockray and G. Burdyga, Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance*, Acta Physiologica, vol.52, issue.3, pp.313-321, 2011.
DOI : 10.1016/S0301-0082(97)00003-8

G. De-lartigue, R. Dimaline, A. Varro, and G. Dockray, Cocaine- and Amphetamine-Regulated Transcript: Stimulation of Expression in Rat Vagal Afferent Neurons by Cholecystokinin and Suppression by Ghrelin, Journal of Neuroscience, vol.27, issue.11, pp.2876-2882, 2007.
DOI : 10.1523/JNEUROSCI.5508-06.2007

J. Gutzwiller, L. Degen, D. Matzinger, S. Prestin, and C. Beglinger, Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men, AJP: Regulatory, Integrative and Comparative Physiology, vol.287, issue.3, pp.562-567, 2004.
DOI : 10.1152/ajpregu.00599.2003

J. Lee, E. Martin, G. Paulino, G. De-lartigue, and H. Raybould, Effect of ghrelin receptor antagonist on meal patterns in cholecystokinin type 1 receptor null mice, Physiology & Behavior, vol.103, issue.2, pp.181-187, 2011.
DOI : 10.1016/j.physbeh.2011.01.018

S. Freeman, Ligand-Induced 5-HT3 Receptor Internalization in Enteric Neurons in Rat Ileum, Gastroenterology, vol.131, issue.1, pp.97-107, 2006.
DOI : 10.1053/j.gastro.2006.04.013

G. Sutton, L. Patterson, and H. Berthoud, Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway in Solitary Nucleus Mediates Cholecystokinin-Induced Suppression of Food Intake in Rats, Journal of Neuroscience, vol.24, issue.45, pp.10240-10247, 2004.
DOI : 10.1523/JNEUROSCI.2764-04.2004

S. Piro, Chronic Exposure to GLP-1 Increases GLP-1 Synthesis and Release in a Pancreatic Alpha Cell Line (??-TC1): Evidence of a Direct Effect of GLP-1 on Pancreatic Alpha Cells, PLoS ONE, vol.109, issue.2, p.90093, 2014.
DOI : 10.1371/journal.pone.0090093.g008

E. Gomez, C. Pritchard, and T. Herbert, Influx through L-type Voltage-gated Calcium Channels Mediate Raf-independent Activation of Extracellular Regulated Kinase in Response to Glucagon-like Peptide-1 in Pancreatic ??-Cells, Journal of Biological Chemistry, vol.277, issue.50, pp.48146-48151, 2002.
DOI : 10.1083/jcb.147.6.1129

V. Tretter, The Clustering of GABAA Receptor Subtypes at Inhibitory Synapses is Facilitated via the Direct Binding of Receptor ??2 Subunits to Gephyrin, Journal of Neuroscience, vol.28, issue.6, pp.1356-1365, 2008.
DOI : 10.1523/JNEUROSCI.5050-07.2008

C. Connolly, B. Krishek, B. Mcdonald, T. Smart, and S. Moss, Assembly and Cell Surface Expression of Heteromeric and Homomeric -Aminobutyric Acid Type A Receptors, Journal of Biological Chemistry, vol.3, issue.1, pp.89-96, 1996.
DOI : 10.1016/0959-4388(92)90113-Y

J. Gagnon and Y. Anini, Glucagon Stimulates Ghrelin Secretion Through the Activation of MAPK and EPAC and Potentiates the Effect of Norepinephrine, Endocrinology, vol.154, issue.2, pp.666-674, 2013.
DOI : 10.1210/en.2012-1994

L. Martins, Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin, PLoS ONE, vol.7, issue.10, p.46923, 2012.
DOI : 10.1371/journal.pone.0046923.g006

M. Hayes, Intracellular Signals Mediating the Food Intake-Suppressive Effects of Hindbrain Glucagon-like Peptide-1 Receptor Activation, Cell Metabolism, vol.13, issue.3, pp.320-330, 2011.
DOI : 10.1016/j.cmet.2011.02.001

D. Perez-tilve, Exendin-4 Potently Decreases Ghrelin Levels in Fasting Rats, Diabetes, vol.56, issue.1, pp.143-151, 2007.
DOI : 10.2337/db05-0996

URL : http://diabetes.diabetesjournals.org/content/diabetes/56/1/143.full.pdf

B. Avau, Ghrelin is involved in the paracrine communication between neurons and glial cells, Neurogastroenterology & Motility, vol.104, issue.9, pp.599-608, 2013.
DOI : 10.1161/hc4201.097836

M. Myers, J. Leibel, R. Seeley, R. Schwartz, and M. , Obesity and leptin resistance: distinguishing cause from effect. Trends in endocrinology and metabolism, pp.21643-651, 2010.
DOI : 10.1016/j.tem.2010.08.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967652/pdf

F. Meye and R. Adan, Feelings about food: the ventral tegmental area in food reward and emotional eating, Trends in Pharmacological Sciences, vol.35, issue.1, pp.31-40, 2014.
DOI : 10.1016/j.tips.2013.11.003

C. Monteiro, J. Moubarac, G. Cannon, S. Ng, and B. Popkin, Ultraprocessed products are becoming dominant in the global food system. Obesity reviews : an official journal of the International Association for the Study of Obesity 14 Suppl, pp.21-28, 2013.

H. Berthoud and H. Zheng, Modulation of taste responsiveness and food preference by obesity and weight loss, Physiology & Behavior, vol.107, issue.4, pp.527-532, 2012.
DOI : 10.1016/j.physbeh.2012.04.004

P. Hellstrom, Satiety signals and obesity, Current Opinion in Gastroenterology, vol.29, issue.2, pp.222-227, 2013.
DOI : 10.1097/MOG.0b013e32835d9ff8

J. Friedman and J. Halaas, Leptin and the regulation of body weight in mammals, Nature, vol.333, issue.2, pp.763-770, 1998.
DOI : 10.1056/NEJM199509143331101

J. Elmquist, C. Elias, and C. Saper, From Lesions to Leptin, Neuron, vol.22, issue.2, pp.221-232, 1999.
DOI : 10.1016/S0896-6273(00)81084-3

URL : https://doi.org/10.1016/s0896-6273(00)81084-3

S. Bates, M. Myers, and J. , The role of leptin receptor signaling in feeding and neuroendocrine function. Trends in endocrinology and metabolism, pp.14447-452, 2003.

H. Chen, Evidence That the Diabetes Gene Encodes the Leptin Receptor: Identification of a Mutation in the Leptin Receptor Gene in db/db Mice, Cell, vol.84, issue.3, pp.491-495, 1996.
DOI : 10.1016/S0092-8674(00)81294-5

L. Tartaglia, Identification and expression cloning of a leptin receptor, OB-R, Cell, vol.83, issue.7, pp.1263-1271, 1995.
DOI : 10.1016/0092-8674(95)90151-5

G. Lee, Abnormal splicing of the leptin receptor in diabetic mice, Nature, vol.379, issue.6566, pp.632-635, 1996.
DOI : 10.1038/379632a0

C. Montague, Congenital leptin deficiency is associated with severe early-onset obesity in humans, Nature, vol.35, issue.6636, pp.903-908, 1997.
DOI : 10.1038/382250a0

I. Farooqi, Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency, Journal of Clinical Investigation, vol.110, issue.8, pp.1093-1103, 0199.
DOI : 10.1172/JCI0215693

R. Frederich, Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action, Nature Medicine, vol.9, issue.12, pp.1311-1314, 1995.
DOI : 10.1038/366740a0

M. Myers, M. Cowley, and H. Munzberg, Mechanisms of Leptin Action and Leptin Resistance, Annual Review of Physiology, vol.70, issue.1, pp.537-556, 2008.
DOI : 10.1146/annurev.physiol.70.113006.100707

G. Burdyga, Expression of the leptin receptor in rat and human nodose ganglion neurones, Neuroscience, vol.109, issue.2, pp.339-347, 2002.
DOI : 10.1016/S0306-4522(01)00474-2

C. Peiser, Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus, Neuroscience Letters, vol.320, issue.1-2, pp.41-44, 2002.
DOI : 10.1016/S0304-3940(02)00023-X

H. Grill, Leptin and the systems neuroscience of meal size control, Frontiers in Neuroendocrinology, vol.31, issue.1, pp.61-78, 2010.
DOI : 10.1016/j.yfrne.2009.10.005

G. De-lartigue, C. Barbier-de-la-serre, E. Espero, J. Lee, and H. Raybould, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons, AJP: Endocrinology and Metabolism, vol.301, issue.1, pp.187-195, 2011.
DOI : 10.1152/ajpendo.00056.2011

C. Confavreux, R. Levine, and G. Karsenty, A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms, Molecular and Cellular Endocrinology, vol.310, issue.1-2, pp.21-29, 2009.
DOI : 10.1016/j.mce.2009.04.004

URL : https://hal.archives-ouvertes.fr/hal-00512215

M. Wang, Y. Zhou, C. Newgard, and R. Unger, A novel leptin receptor isoform in rat, FEBS Letters, vol.76, issue.2, pp.87-90, 1996.
DOI : 10.1016/0092-8674(94)90333-6

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(96)00790-9/pdf

C. Bjorbaek and B. Kahn, Leptin Signaling in the Central Nervous System and the Periphery, Recent Progress in Hormone Research, vol.59, issue.1, pp.305-331, 2004.
DOI : 10.1210/rp.59.1.305

Q. Gao, Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation, Proceedings of the National Academy of Sciences, vol.392, issue.6674, pp.4661-4666, 2004.
DOI : 10.1038/32911

H. Raybould, Nutrient sensing in the gastrointestinal tract: Possible role for nutrient transporters, Journal of Physiology and Biochemistry, vol.507, issue.Pt 3, pp.349-356, 2008.
DOI : 10.1111/j.1469-7793.1998.697bs.x

R. Ritter and E. Ladenheim, Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin, The American journal of physiology, vol.248, issue.4, pp.501-504, 1985.

T. Moran, A. Baldessarini, C. Salorio, T. Lowery, and G. Schwartz, Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin, The American journal of physiology, vol.272, pp.1245-1251, 1997.

L. Stirling, Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice, Pain, vol.113, issue.1, pp.27-36, 2005.
DOI : 10.1016/j.pain.2004.08.015

P. Cohen, Selective deletion of leptin receptor in neurons leads to obesity, Journal of Clinical Investigation, vol.108, issue.8, pp.1113-1121, 2001.
DOI : 10.1172/JCI200113914

A. Bado, The stomach is a source of leptin, Nature, vol.394, issue.6695, pp.790-793, 1998.

G. De-lartigue, C. Barbier-de-la-serre, E. Espero, J. Lee, and H. Raybould, Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats, PLoS ONE, vol.299, issue.3, p.32967, 2012.
DOI : 10.1371/journal.pone.0032967.g006

A. Akopian, L. Sivilotti, and J. Wood, A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons, Nature, vol.379, issue.6562, pp.257-262, 1996.
DOI : 10.1038/379257a0

K. Murphy, Leptin-sensitive sensory nerves innervate white fat, AJP: Endocrinology and Metabolism, vol.304, issue.12, 2013.
DOI : 10.1152/ajpendo.00021.2013

URL : http://ajpendo.physiology.org/content/ajpendo/304/12/E1338.full.pdf

G. Doherty, C. Oldreive, and J. Harvey, Neuroprotective actions of leptin on central and peripheral neurons in vitro, Neuroscience, vol.154, issue.4, pp.1297-1307, 2008.
DOI : 10.1016/j.neuroscience.2008.04.052

L. Turtzo, R. Marx, and M. Lane, Cross-talk between sympathetic neurons and adipocytes in coculture, Proceedings of the National Academy of Sciences, vol.130, issue.6, pp.12385-12390, 2001.
DOI : 10.1210/en.130.6.3608

C. Buettner, Critical role of STAT3 in leptin's metabolic actions, Cell Metabolism, vol.4, issue.1, pp.49-60, 2006.
DOI : 10.1016/j.cmet.2006.04.014

S. Bates, STAT3 signalling is required for leptin regulation of energy balance but not reproduction, Nature, vol.132, issue.6925, pp.856-859, 2003.
DOI : 10.1038/35101657

A. Ingalls, M. Dickie, and G. Snell, OBESE, A NEW MUTATION IN THE HOUSE MOUSE*, Journal of Heredity, vol.41, issue.12, pp.317-318, 1950.
DOI : 10.1093/oxfordjournals.jhered.a106073

M. Winzell and B. Ahren, The High-Fat Diet-Fed Mouse: A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes, Diabetes, vol.53, issue.Supplement 3, pp.215-219, 2004.
DOI : 10.2337/diabetes.53.suppl_3.S215

A. Stearns, Relative Contributions of Afferent Vagal Fibers to Resistance to Diet-Induced Obesity, Digestive Diseases and Sciences, vol.582, issue.5, pp.1281-1290, 2012.
DOI : 10.1016/j.febslet.2008.05.021

S. Banni, Vagus Nerve Stimulation Reduces Body Weight and Fat Mass in Rats, PLoS ONE, vol.7, issue.9, p.44813, 2012.
DOI : 10.1371/journal.pone.0044813.g009

URL : https://doi.org/10.1371/journal.pone.0044813

H. Miyato, J. Kitayama, and H. Nagawa, Vagus nerve preservation results in visceral fat maintenance after distal gastrectomy, Hepato-gastroenterology, vol.59, issue.116, pp.1299-1301, 2012.

A. Giordano, White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation, AJP: Regulatory, Integrative and Comparative Physiology, vol.291, issue.5, pp.1243-1255, 2006.
DOI : 10.1152/ajpregu.00679.2005

URL : http://ajpregu.physiology.org/content/ajpregu/291/5/R1243.full.pdf

D. Ainslie, J. Proietto, B. Fam, and A. Thorburn, Short-term, high-fat diets lower circulating leptin concentrations in rats, The American journal of clinical nutrition, vol.71, issue.2, pp.438-442, 2000.

D. Cummings and J. Overduin, Gastrointestinal regulation of food intake, Journal of Clinical Investigation, vol.117, issue.1, pp.13-23, 2007.
DOI : 10.1172/JCI30227

URL : http://www.jci.org/articles/view/30227/files/pdf

C. Matson, M. Wiater, J. Kuijper, and D. Weigle, Synergy Between Leptin and Cholecystokinin (CCK) to Control Daily Caloric Intake, Peptides, vol.18, issue.8, pp.1275-1278, 1997.
DOI : 10.1016/S0196-9781(97)00138-1

M. Barrachina, V. Martinez, L. Wang, J. Wei, and . Tache, Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice, Proceedings of the National Academy of Sciences, vol.28, issue.12, pp.10455-10460, 1997.
DOI : 10.1055/s-2007-979867

URL : http://www.pnas.org/content/94/19/10455.full.pdf

T. Hokfelt, X. Zhang, and Z. Wiesenfeld-hallin, Messenger plasticity in primary sensory neurons following axotomy and its functional implications, Trends in Neurosciences, vol.17, issue.1, pp.22-30, 1994.
DOI : 10.1016/0166-2236(94)90031-0

X. Zhang, Expression of peptides, nitric oxide synthase and NPY receptor in trigeminal and nodose ganglia after nerve lesions. Experimental brain research, Experimentelle Hirnforschung. Experimentation cerebrale, vol.111, issue.3, pp.393-404, 1996.

X. Zhang, Expression and regulation of the neuropeptide Y Y2 receptor in sensory and autonomic ganglia, Proceedings of the National Academy of Sciences, vol.669, issue.2, pp.729-734, 1997.
DOI : 10.1016/0006-8993(94)01265-J

G. Dockray, The versatility of the vagus, Physiology & Behavior, vol.97, issue.5, pp.531-536, 2009.
DOI : 10.1016/j.physbeh.2009.01.009

G. Burdyga, Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach, Journal of Neuroscience, vol.28, issue.45, pp.11583-11592, 2008.
DOI : 10.1523/JNEUROSCI.2493-08.2008

G. Burdyga, Expression of Cannabinoid CB1 Receptors by Vagal Afferent Neurons Is Inhibited by Cholecystokinin, Journal of Neuroscience, vol.24, issue.11, pp.2708-2715, 2004.
DOI : 10.1523/JNEUROSCI.5404-03.2004

G. De-lartigue, R. Dimaline, A. Varro, and G. Dockray, Cocaine- and Amphetamine-Regulated Transcript: Stimulation of Expression in Rat Vagal Afferent Neurons by Cholecystokinin and Suppression by Ghrelin, Journal of Neuroscience, vol.27, issue.11, pp.2876-2882, 2007.
DOI : 10.1523/JNEUROSCI.5508-06.2007

M. Buyse, Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve, European Journal of Neuroscience, vol.372, issue.1, pp.64-72, 2001.
DOI : 10.1038/372425a0

L. Gautron, Genetic tracing of Nav1.8-expressing vagal afferents in the mouse, The Journal of Comparative Neurology, vol.447, issue.Suppl 1, pp.3085-3101, 2011.
DOI : 10.1038/nature05880

T. Green and G. Dockray, Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig, Neuroscience, vol.25, issue.1, pp.181-193, 1988.

C. Sternini, Expression of cholecystokinin a receptors in neurons innervating the rat stomach and intestine, Gastroenterology, vol.117, issue.5, pp.1136-1146, 1999.
DOI : 10.1016/S0016-5085(99)70399-9

H. Berthoud, Vagal and hormonal gut-brain communication: from satiation to satisfaction, Neurogastroenterology & Motility, vol.251, issue.1, pp.64-72, 2008.
DOI : 10.1152/ajpregu.00646.2003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617963/pdf

J. Peters, A. Karpiel, R. Ritter, and S. Simasko, Cooperative Activation of Cultured Vagal Afferent Neurons by Leptin and Cholecystokinin, Endocrinology, vol.145, issue.8, pp.3652-3657, 2004.
DOI : 10.1210/en.2004-0221

G. De-lartigue, Cocaine- and Amphetamine-Regulated Transcript Mediates the Actions of Cholecystokinin on Rat Vagal Afferent Neurons, Gastroenterology, vol.138, issue.4, pp.1479-1490, 2010.
DOI : 10.1053/j.gastro.2009.10.034

A. Heldsinger, Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats, AJP: Gastrointestinal and Liver Physiology, vol.303, issue.9, pp.1042-1051, 2012.
DOI : 10.1152/ajpgi.00231.2012

K. Browning, T. Babic, G. Holmes, E. Swartz, and R. Travagli, A critical re-evaluation of the specificity of action of perivagal capsaicin, The Journal of Physiology, vol.31, issue.6, pp.1563-1580, 2013.
DOI : 10.1523/JNEUROSCI.2081-11.2011

C. Liu, PPAR?? in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis, Cell Metabolism, vol.19, issue.4, pp.722-730, 2014.
DOI : 10.1016/j.cmet.2014.01.021

URL : https://doi.org/10.1016/j.cmet.2014.01.021

C. Vianna, Cannabinoid Receptor 1 in the Vagus Nerve Is Dispensable for Body Weight Homeostasis But Required for Normal Gastrointestinal Motility, Journal of Neuroscience, vol.32, issue.30, pp.10331-10337, 2012.
DOI : 10.1523/JNEUROSCI.4507-11.2012

H. Young, A Single Rostrocaudal Colonization of the Rodent Intestine by Enteric Neuron Precursors Is Revealed by the Expression of Phox2b, Ret, and p75 and by Explants Grown under the Kidney Capsule or in Organ Culture, Developmental Biology, vol.202, issue.1, pp.67-84, 1998.
DOI : 10.1006/dbio.1998.8987

A. Pattyn, X. Morin, H. Cremer, C. Goridis, and J. Brunet, Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis, Development, vol.124, issue.20, pp.4065-4075, 1997.

M. Scott, K. Williams, J. Rossi, C. Lee, and J. Elmquist, Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice, Journal of Clinical Investigation, vol.121, issue.6, pp.2413-2421, 2011.
DOI : 10.1172/JCI43703DS1

URL : http://www.jci.org/articles/view/43703/files/pdf

G. Dockray, Cholecystokinin. Current opinion in endocrinology, diabetes, and obesity, vol.19, issue.1, pp.8-12, 2012.

. Interestingly, LepR fl/fl mice tended to eat more at the end of the light phase and beginning of the dark phase compared to their control littermates although the difference did not reach statistical significance (Fig 2.4, 4C), while males ate more the first few hours after the onset of the dark phase (data in Chapter

. Furthermore, LepR fl/fl mice had shorter intermeal interval compared to WT mice (p<0.05, Fig 2.4.6D-F). Altogether, the data indicates that female Nav1, LepR fl/fl mice eat more meals more frequently than their control littermates

K. Flegal, M. Carroll, C. Ogden, and L. Curtin, Prevalence and Trends in Obesity Among US Adults, 1999-2008, JAMA, vol.303, issue.3, pp.235-241, 1999.
DOI : 10.1001/jama.2009.2014

E. Atlantis and M. Baker, Obesity effects on depression: systematic review of epidemiological studies, International Journal of Obesity, vol.8, issue.6, pp.881-891, 2008.
DOI : 10.1111/j.1601-5215.2006.00130.x

G. Bray, Medical Consequences of Obesity, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2583-2589, 2004.
DOI : 10.1210/jc.2004-0535

G. Pratt, C. Learn, G. Hughes, B. Clark, M. Warthen et al., Demographics and outcomes at American Society for Metabolic and Bariatric Surgery Centers of Excellence, Surgical Endoscopy, vol.292, issue.4, pp.795-799, 2009.
DOI : 10.1007/s00464-008-0077-8

S. Woods, K. Gotoh, and D. Clegg, Gender Differences in the Control of Energy Homeostasis, Experimental Biology and Medicine, vol.133, issue.1, pp.1175-1180, 2003.
DOI : 10.1126/science.1079857

M. Hickey, R. Israel, S. Gardiner, R. Considine, M. Mccammon et al., Gender Differences in Serum Leptin Levels in Humans, Biochemical and Molecular Medicine, vol.59, issue.1, pp.1-6, 1996.
DOI : 10.1006/bmme.1996.0056

A. Laviano, M. Meguid, J. Gleason, Z. Yang, and T. Renvyle, Comparison of long-term feeding pattern between male and female Fischer 344 rats: influence of estrous cycle, The American journal of physiology, vol.270, issue.2 2, pp.413-419, 1996.

A. Strohmayer and G. Smith, The meal pattern of genetically obese (ob/ob) mice, Appetite, vol.8, issue.2, pp.111-123, 1987.
DOI : 10.1016/S0195-6663(87)80004-1

P. Butera, Estradiol and the control of food intake, Physiology & Behavior, vol.99, issue.2, pp.175-180, 2010.
DOI : 10.1016/j.physbeh.2009.06.010

A. Tchernof, E. Poehlman, and J. Despres, Body fat distribution, the menopause transition, and hormone replacement therapy, Diabetes & metabolism, vol.26, issue.1, pp.12-20, 2000.

A. Tchernof and E. Poehlman, Effects of the Menopause Transition on Body Fatness and Body Fat Distribution, Obesity Research, vol.35, issue.Suppl 1, pp.246-254, 1998.
DOI : 10.1016/0026-0495(86)90217-9

S. Mitra, Immunolocalization of Estrogen Receptor ?? in the Mouse Brain: Comparison with Estrogen Receptor ??, Endocrinology, vol.144, issue.5, pp.2055-2067, 2003.
DOI : 10.1210/en.2002-221069

G. Kuiper, B. Carlsson, K. Grandien, E. Enmark, J. Haggblad et al., Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors ?? and ??, Endocrinology, vol.138, issue.3, pp.863-870, 1997.
DOI : 10.1210/endo.138.3.4979

R. Papka, M. Storey-workley, P. Shughrue, I. Merchenthaler, J. Collins et al., Estrogen receptor-?? and -?? immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord, Cell and Tissue Research, vol.304, issue.2, pp.193-214, 2001.
DOI : 10.1007/s004410100363

M. Estacio, H. Tsukamura, S. Yamada, S. Tsukahara, K. Hirunagi et al., Vagus nerve mediates the increase in estrogen receptors in the hypothalamic paraventricular nucleus and nucleus of the solitary tract during fasting in ovariectomized rats, Neuroscience Letters, vol.208, issue.1, pp.25-28, 1996.
DOI : 10.1016/0304-3940(96)12534-9

Q. Gao, Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals, Nature Medicine, vol.26, issue.1, pp.89-94, 2007.
DOI : 10.3181/00379727-180-42204

S. Diano, S. Kalra, H. Sakamoto, and T. Horvath, Leptin receptors in estrogen receptor-containing neurons of the female rat hypothalamus, Brain Research, vol.812, issue.1-2, pp.256-259, 1998.
DOI : 10.1016/S0006-8993(98)00936-6

Q. Gao and T. Horvath, Cross-talk between estrogen and leptin signaling in the hypothalamus, AJP: Endocrinology and Metabolism, vol.294, issue.5, pp.817-826, 2008.
DOI : 10.1152/ajpendo.00733.2007

Y. Xu, Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction, Cell Metabolism, vol.14, issue.4, pp.453-465, 2011.
DOI : 10.1016/j.cmet.2011.08.009

URL : https://doi.org/10.1016/j.cmet.2011.08.009

L. Brown and D. Clegg, Central effects of estradiol in the regulation of food intake, body weight, and adiposity, The Journal of Steroid Biochemistry and Molecular Biology, vol.122, issue.1-3, pp.1-365, 2010.
DOI : 10.1016/j.jsbmb.2009.12.005

M. Cowley, J. Smart, M. Rubinstein, M. Cerdan, S. Diano et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, vol.411, issue.6836, pp.480-484, 2001.
DOI : 10.1038/35078085

G. De-lartigue, C. Barbier-de-la-serre, E. Espero, J. Lee, and H. Raybould, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons, AJP: Endocrinology and Metabolism, vol.301, issue.1, pp.187-195, 2011.
DOI : 10.1152/ajpendo.00056.2011

G. De-lartigue, C. Ronveaux, and H. Raybould, Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity, Molecular Metabolism, vol.3, issue.6, pp.595-607, 2014.
DOI : 10.1016/j.molmet.2014.06.003

L. Stirling, G. Forlani, M. Baker, J. Wood, E. Matthews et al., Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice, Pain, vol.113, issue.1, pp.27-36, 2005.
DOI : 10.1016/j.pain.2004.08.015

G. De-lartigue, G. Lur, R. Dimaline, A. Varro, H. Raybould et al., Is a Target for Cooperative Interactions between Cholecystokinin and Leptin, and Inhibition by Ghrelin, in Vagal Afferent Neurons, Endocrinology, vol.151, issue.8, pp.3589-3599, 2010.
DOI : 10.1210/en.2010-0106

R. Buffenstein, S. Poppitt, R. Mcdevitt, and A. Prentice, Food intake and the menstrual cycle: A retrospective analysis, with implications for appetite research, Physiology & Behavior, vol.58, issue.6, pp.1067-1077, 1995.
DOI : 10.1016/0031-9384(95)02003-9

J. Blaustein, R. Gentry, E. Roy, and G. Wade, Effects of ovariectomy and estradiol on body weight and food intake in gold thioglucose-treated mice, Physiology & Behavior, vol.17, issue.6, pp.1027-1030, 1976.
DOI : 10.1016/0031-9384(76)90028-7

K. Palmer and J. Gray, Central vs. peripheral effects of estrogen on food intake and lipoprotein lipase activity in ovariectomized rats, Physiology & Behavior, vol.37, issue.1, pp.187-189, 1986.
DOI : 10.1016/0031-9384(86)90404-X

D. Clegg, L. Brown, S. Woods, and S. Benoit, Gonadal Hormones Determine Sensitivity to Central Leptin and Insulin, Diabetes, vol.55, issue.4, pp.978-987, 2006.
DOI : 10.2337/diabetes.55.04.06.db05-1339

URL : http://diabetes.diabetesjournals.org/content/diabetes/55/4/978.full.pdf

M. Grasa, R. Vila, M. Esteve, C. Cabot, J. Fernandez-lopez et al., Oleoyl-estrone lowers the body weight of both ob/ob and db/db mice. Hormone and metabolic research = Hormon-und Stoffwechselforschung = Hormones et metabolisme, pp.32246-250, 2000.

S. Litwak, J. Wilson, W. Chen, C. Garcia-rudaz, M. Khaksari et al., Estradiol Prevents Fat Accumulation and Overcomes Leptin Resistance in Female High-Fat Diet Mice, Endocrinology, vol.155, issue.11, p.20141342, 2014.
DOI : 10.1210/en.2014-1342

URL : https://academic.oup.com/endo/article-pdf/155/11/4447/10828244/endo4447.pdf

S. Chakraborty, A. Sachdev, S. Salton, and T. Chakraborty, Stereological analysis of estrogen receptor expression in the hypothalamic arcuate nucleus of ob/ob and agouti mice, Brain Research, vol.1217, pp.86-95, 2008.
DOI : 10.1016/j.brainres.2008.04.031

L. Asarian and N. Geary, Modulation of appetite by gonadal steroid hormones, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.4, issue.10, pp.3611251-1263, 1471.
DOI : 10.1079/PNS2003314

L. Eckel, The ovarian hormone estradiol plays a crucial role in the control of food intake in females, Physiology & Behavior, vol.104, issue.4, pp.517-524, 2011.
DOI : 10.1016/j.physbeh.2011.04.014

R. Chipman and K. Fox, OESTROUS SYNCHRONIZATION AND PREGNANCY BLOCKING IN WILD HOUSE MICE (MUS MUSCULUS), Reproduction, vol.12, issue.1, pp.233-236, 1966.
DOI : 10.1530/jrf.0.0120233

G. Qiao, B. Li, Y. Lu, Y. Fu, and J. Schild, 17??-Estradiol restores excitability of a sexually dimorphic subset of myelinated vagal afferents in ovariectomized rats, AJP: Cell Physiology, vol.297, issue.3, pp.654-664, 2009.
DOI : 10.1152/ajpcell.00059.2009

G. De-lartigue, C. Barbier-de-la-serre, E. Espero, J. Lee, and H. Raybould, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons, AJP: Endocrinology and Metabolism, vol.301, issue.1, pp.187-195, 2011.
DOI : 10.1152/ajpendo.00056.2011

T. Lutz and M. Bueter, The physiology underlying Roux-en-Y gastric bypass: a status report, AJP: Regulatory, Integrative and Comparative Physiology, vol.307, issue.11, 2014.
DOI : 10.1152/ajpregu.00185.2014

K. Joyner, G. Smith, and J. Gibbs, Abdominal vagotomy decreases the satiating potency of CCK-8 in sham and real feeding, The American journal of physiology, vol.264, pp.912-916, 1993.

T. Moran, A. Baldessarini, C. Salorio, T. Lowery, and G. Schwartz, Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin, The American journal of physiology, vol.272, pp.1245-1251, 1997.

H. Raybould, Mechanisms of CCK signaling from gut to brain, Current Opinion in Pharmacology, vol.7, issue.6, pp.570-574, 2007.
DOI : 10.1016/j.coph.2007.09.006

F. Duca, L. Zhong, and M. Covasa, Reduced CCK signaling in obese-prone rats fed a high fat diet, Hormones and Behavior, vol.64, issue.5, pp.812-817, 2013.
DOI : 10.1016/j.yhbeh.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01204282

D. Williams, D. Baskin, and M. Schwartz, Evidence that Intestinal Glucagon-Like Peptide-1 Plays a Physiological Role in Satiety, Endocrinology, vol.150, issue.4, pp.1680-1687, 2009.
DOI : 10.1210/en.2008-1045

URL : https://academic.oup.com/endo/article-pdf/150/4/1680/9003644/endo1680.pdf

J. Gutzwiller, Glucagon-like peptide-1: a potent regulator of food intake in humans, Gut, vol.44, issue.1, pp.81-86, 1999.
DOI : 10.1136/gut.44.1.81

E. Naslund, Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men., International Journal of Obesity, vol.23, issue.3, pp.304-311, 1999.
DOI : 10.1038/sj.ijo.0800818

M. Myers, M. Cowley, and H. Munzberg, Mechanisms of Leptin Action and Leptin Resistance, Annual Review of Physiology, vol.70, issue.1, pp.537-556, 2008.
DOI : 10.1146/annurev.physiol.70.113006.100707

C. Clemmensen, GLP-1/Glucagon Coagonism Restores Leptin Responsiveness in Obese Mice Chronically Maintained on an Obesogenic Diet, Diabetes, vol.63, issue.4, pp.1422-1427, 2014.
DOI : 10.2337/db13-1609

G. Dockray and G. Burdyga, Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance*, Acta Physiologica, vol.52, issue.3, pp.313-321, 2011.
DOI : 10.1016/S0301-0082(97)00003-8

G. Burdyga, Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach, Journal of Neuroscience, vol.28, issue.45, pp.11583-11592, 2008.
DOI : 10.1523/JNEUROSCI.2493-08.2008

P. Chelikani, A. Haver, and R. Reidelberger, Ghrelin Attenuates the Inhibitory Effects of Glucagon-Like Peptide-1 and Peptide YY(3-36) on Food Intake and Gastric Emptying in Rats, Diabetes, vol.55, issue.11, pp.3038-3046, 2006.
DOI : 10.2337/db06-0730

D. Williams, D. Baskin, and M. Schwartz, Leptin Regulation of the Anorexic Response to Glucagon-Like Peptide-1 Receptor Stimulation, Diabetes, vol.55, issue.12, pp.3387-3393, 2006.
DOI : 10.2337/db06-0558

M. Schwartz, R. Seeley, L. Campfield, P. Burn, and D. Baskin, Identification of targets of leptin action in rat hypothalamus., Journal of Clinical Investigation, vol.98, issue.5, pp.1101-1106, 1996.
DOI : 10.1172/JCI118891

M. Myers, J. Leibel, R. Seeley, R. Schwartz, and M. , Obesity and leptin resistance: distinguishing cause from effect. Trends in endocrinology and metabolism, pp.21643-651, 2010.
DOI : 10.1016/j.tem.2010.08.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967652/pdf

T. Powley, M. Chi, E. Baronowsky, and R. Phillips, Gastrointestinal tract innervation of the mouse: afferent regeneration and meal patterning after vagotomy, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.2, pp.563-574, 2005.
DOI : 10.1152/ajpregu.00167.2005

C. Snowdon and R. Wampler, Effects of lateral hypothalamic lesions and vagotomy on meal patterns in rats., Journal of Comparative and Physiological Psychology, vol.87, issue.3, pp.399-409, 1974.
DOI : 10.1037/h0036979

M. Pelleymounter, Effects of the obese gene product on body weight regulation in ob/ob mice, Science, vol.269, issue.5223, pp.540-543, 1995.
DOI : 10.1126/science.7624776

E. Atlantis and M. Baker, Obesity effects on depression: systematic review of epidemiological studies, International Journal of Obesity, vol.8, issue.6, pp.881-891, 2008.
DOI : 10.1111/j.1601-5215.2006.00130.x

G. Pratt, Demographics and outcomes at American Society for Metabolic and Bariatric Surgery Centers of Excellence, Surgical Endoscopy, vol.292, issue.4, pp.795-799, 2009.
DOI : 10.1007/s00464-008-0077-8

A. Beery and I. Zucker, Sex bias in neuroscience and biomedical research, Neuroscience & Biobehavioral Reviews, vol.35, issue.3, pp.565-572, 2011.
DOI : 10.1016/j.neubiorev.2010.07.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008499/pdf

E. Fox, Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF, Clinical Autonomic Research, vol.38, issue.1, pp.15-31, 2013.
DOI : 10.1016/0169-328X(95)00313-H

R. Buffenstein, S. Poppitt, R. Mcdevitt, and A. Prentice, Food intake and the menstrual cycle: A retrospective analysis, with implications for appetite research, Physiology & Behavior, vol.58, issue.6, pp.1067-1077, 1995.
DOI : 10.1016/0031-9384(95)02003-9

P. Turnbaugh, F. Backhed, L. Fulton, and J. Gordon, Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome, Cell Host & Microbe, vol.3, issue.4, pp.213-223, 2008.
DOI : 10.1016/j.chom.2008.02.015

F. Backhed, J. Manchester, C. Semenkovich, and J. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-984, 2007.
DOI : 10.1073/pnas.0602187103

P. Forsythe, J. Bienenstock, and W. Kunze, Vagal Pathways for Microbiome-Brain-Gut Axis Communication, Advances in experimental medicine and biology, vol.817, pp.115-133, 2014.
DOI : 10.1007/978-1-4939-0897-4_5

P. Enriori, Diet-Induced Obesity Causes Severe but Reversible Leptin Resistance in Arcuate Melanocortin Neurons, Cell Metabolism, vol.5, issue.3, pp.181-194, 2007.
DOI : 10.1016/j.cmet.2007.02.004

URL : https://doi.org/10.1016/j.cmet.2007.02.004