K. P. Blan-1510-to, Ribometh ANR-13-BSV8-0012-02 to O.N), a Fondation pour la Recherche Médicale fellowship

C. Aitken and J. Lorsch, A mechanistic overview of translation initiation in eukaryotes, Nature Structural & Molecular Biology, vol.16, issue.6, pp.568-576, 2012.
DOI : 10.1186/1752-0509-5-131

H. Au and J. E. , Insights into Factorless Translational Initiation by the tRNA-Like Pseudoknot Domain of a Viral IRES, PLoS ONE, vol.321, issue.12, p.51477, 2012.
DOI : 10.1371/journal.pone.0051477.g007

A. Ben-shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The Structure of the Eukaryotic Ribosome at 3.0 A Resolution, Science, vol.25, issue.24, pp.1524-1529, 2011.
DOI : 10.1093/nar/25.24.4872

D. Boehringer, R. Thermann, A. Ostareck-lederer, J. Lewis, and H. Stark, Structure of the Hepatitis C Virus IRES Bound to the Human 80S Ribosome: Remodeling of the HCV IRES, Structure, vol.13, issue.11, pp.1695-1706, 2005.
DOI : 10.1016/j.str.2005.08.008

C. Chen, H. Zhang, S. Broitman, M. Reiche, I. Farrell et al., Dynamics of translation by single ribosomes through mRNA secondary structures, Nature Structural & Molecular Biology, vol.485, issue.5, pp.582-588, 2013.
DOI : 10.1529/biophysj.106.082487

J. Chen, A. Petrov, M. Johansson, A. Tsai, O. Leary et al., Dynamic pathways of ???1 translational frameshifting, Nature, vol.484, issue.7514, pp.328-332, 2014.
DOI : 10.1038/nature10965

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472451/pdf

P. Cornish, D. Ermolenko, H. Noller, and T. Ha, Spontaneous Intersubunit Rotation in Single Ribosomes, Molecular Cell, vol.30, issue.5, pp.578-588, 2008.
DOI : 10.1016/j.molcel.2008.05.004

URL : https://doi.org/10.1016/j.molcel.2008.05.004

D. Costantino, J. Pfingsten, R. Rambo, and J. Kieft, tRNA???mRNA mimicry drives translation initiation from a viral IRES, Nature Structural & Molecular Biology, vol.276, issue.1, pp.57-64, 2008.
DOI : 10.1261/rna.7214405

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748805/pdf

N. Deniz, E. Lenarcic, D. Landry, and S. Thompson, Translation initiation factors are not required for Dicistroviridae IRES function in vivo, RNA, vol.15, issue.5, pp.932-946, 2009.
DOI : 10.1261/rna.1315109

A. Ferguson, L. Wang, R. Altman, D. Terry, M. Juette et al., Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis, Molecular Cell, vol.60, issue.3, pp.475-486, 2015.
DOI : 10.1016/j.molcel.2015.09.013

I. Fernandez, X. Bai, G. Murshudov, S. Scheres, and V. Ramakrishnan, Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome, Cell, vol.157, issue.4, pp.823-831, 2014.
DOI : 10.1016/j.cell.2014.04.015

M. Filbin, B. Vollmar, D. Shi, T. Gonen, and J. Kieft, HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation, Nature Structural & Molecular Biology, vol.25, issue.2, pp.150-158, 2013.
DOI : 10.1002/jcc.20084

A. Firth and I. Brierley, Non-canonical translation in RNA viruses, Journal of General Virology, vol.93, issue.Pt_7, pp.1385-1409, 2012.
DOI : 10.1099/vir.0.042499-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/93/7/1385_vir042499.pdf?itemId=/content/journal/jgv/10.1099/vir.0.042499-0&mimeType=pdf&isFastTrackArticle=

G. Fuchs, A. Petrov, C. Marceau, L. Popov, J. Chen et al., Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site, Proceedings of the National Academy of Sciences, vol.246, issue.1, pp.319-325, 2015.
DOI : 10.1073/pnas.0805299105

Y. Hashem, A. Georges, V. Dhote, R. Langlois, H. Liao et al., Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit, Nature, vol.1, issue.7477, pp.539-543, 2013.
DOI : 10.1002/jcc.540040211

N. Ingolia, G. Brar, S. Rouskin, A. Mcgeachy, and J. Weissman, The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments, Nature Protocols, vol.470, issue.8, pp.1534-1550, 2012.
DOI : 10.1093/bioinformatics/btp352

E. Jan and P. Sarnow, Factorless Ribosome Assembly on the Internal Ribosome Entry Site of Cricket Paralysis Virus, Journal of Molecular Biology, vol.324, issue.5, pp.889-902, 2002.
DOI : 10.1016/S0022-2836(02)01099-9

A. Katranidis, D. Atta, R. Schlesinger, K. Nierhaus, T. Choli-papadopoulou et al., Fast biosynthesis of GFP molecules: a single-molecule fluorescence study, 2009.

S. Klinge, F. Voigts-hoffmann, M. Leibundgut, and N. Ban, Atomic structures of the eukaryotic ribosome, Trends in Biochemical Sciences, vol.37, issue.5, pp.189-198, 2012.
DOI : 10.1016/j.tibs.2012.02.007

P. Lukavsky, Structure and function of HCV IRES domains, Virus Research, vol.139, issue.2, pp.166-171, 2009.
DOI : 10.1016/j.virusres.2008.06.004

URL : https://doi.org/10.1016/j.virusres.2008.06.004

V. Marcel, S. Ghayad, S. Belin, G. Therizols, A. Morel et al., p53 Acts as a Safeguard of Translational Control by Regulating Fibrillarin and rRNA Methylation in Cancer, Cancer Cell, vol.24, issue.3, pp.318-330, 2013.
DOI : 10.1016/j.ccr.2013.08.013

R. Marshall, C. Aitken, M. Dorywalska, and J. Puglisi, Translation at the Single-Molecule Level, Annual Review of Biochemistry, vol.77, issue.1, pp.177-203, 2008.
DOI : 10.1146/annurev.biochem.77.070606.101431

A. Martens, J. Taylor, and V. Hilser, Ribosome A and P sites revealed by length analysis of ribosome profiling data, Nucleic Acids Research, vol.43, issue.7, pp.3680-3687, 2015.
DOI : 10.1093/nar/gkv200

T. Morisaki, K. Lyon, K. Deluca, J. Deluca, B. English et al., Real-time quantification of single RNA translation dynamics in living cells, Science, vol.7, issue.1, pp.1425-1429, 2016.
DOI : 10.1109/83.650848

M. Muhs, T. Hilal, T. Mielke, M. Skabkin, K. Sanbonmatsu et al., Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES, Molecular Cell, vol.57, issue.3, pp.422-432, 2015.
DOI : 10.1016/j.molcel.2014.12.016

J. Murray, C. Savva, B. Shin, T. Dever, V. Ramakrishnan et al., Author response, eLife, vol.108, p.13567, 2016.
DOI : 10.7554/eLife.13567.023

O. Namy, S. Moran, D. Stuart, R. Gilbert, and I. Brierley, A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting, Nature, vol.50, issue.7090, pp.244-247, 2006.
DOI : 10.1128/MCB.13.11.6931

URL : https://hal.archives-ouvertes.fr/hal-00079598

T. Pestova and C. Hellen, Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA, Genes & Development, vol.17, issue.2, pp.181-186, 2003.
DOI : 10.1101/gad.1040803

T. Pestova, I. Lomakin, and C. Hellen, Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly, EMBO reports, vol.49, issue.9, pp.906-913, 2004.
DOI : 10.1016/S0092-8674(00)00055-6

A. Petrov and J. Puglisi, Site-specific labeling of Saccharomyces cerevisiae ribosomes for single-molecule manipulations, Nucleic Acids Research, vol.38, issue.13, p.143, 2010.
DOI : 10.1093/nar/gkq390

A. Petrov, R. Grosely, J. Chen, O. Leary, S. Puglisi et al., Multiple Parallel Pathways of Translation Initiation on the CrPV IRES, Molecular Cell, vol.62, issue.1, pp.92-103, 2016.
DOI : 10.1016/j.molcel.2016.03.020

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 1995.

X. Qu, J. Wen, L. Lancaster, H. Noller, C. Bustamante et al., The ribosome uses two active mechanisms to unwind messenger RNA during translation, Nature, vol.12, issue.7354, pp.118-121, 2011.
DOI : 10.1016/S1097-2765(03)00275-2

N. Quade, D. Boehringer, M. Leibundgut, J. Van-den-heuvel, and N. Ban, Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-?? resolution, Nature Communications, vol.515, p.7646, 2015.
DOI : 10.1038/nmeth.2727

M. Reschke, J. Clohessy, N. Seitzer, D. Goldstein, S. Breitkopf et al., Characterization and Analysis of the Composition and Dynamics of the Mammalian Riboproteome, Cell Reports, vol.4, issue.6, pp.1276-1287, 2013.
DOI : 10.1016/j.celrep.2013.08.014

G. Rosenblum, C. Chen, J. Kaur, X. Cui, H. Zhang et al., Quantifying Elongation Rhythm during Full-Length Protein Synthesis, Journal of the American Chemical Society, vol.135, issue.30, pp.11322-11329, 2013.
DOI : 10.1021/ja405205c

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768011/pdf

P. Somogyi, A. Jenner, I. Brierley, and S. Inglis, Ribosomal pausing during translation of an RNA pseudoknot., Molecular and Cellular Biology, vol.13, issue.11, pp.6931-6940, 1993.
DOI : 10.1128/MCB.13.11.6931

C. Spahn, E. Jan, A. Mulder, R. Grassucci, P. Sarnow et al., Cryo-EM Visualization of a Viral Internal Ribosome Entry Site Bound to Human Ribosomes, Cell, vol.118, issue.4, pp.465-475, 2004.
DOI : 10.1016/j.cell.2004.08.001

C. Stumpf and D. Ruggero, The cancerous translation apparatus, Current Opinion in Genetics & Development, vol.21, issue.4, pp.474-483, 2011.
DOI : 10.1016/j.gde.2011.03.007

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481834/pdf

S. Takyar, R. Hickerson, and H. Noller, mRNA Helicase Activity of the Ribosome, Cell, vol.120, issue.1, pp.49-58, 2005.
DOI : 10.1016/j.cell.2004.11.042

S. Thompson, Tricks an IRES uses to enslave ribosomes, Trends in Microbiology, vol.20, issue.11, pp.558-566, 2012.
DOI : 10.1016/j.tim.2012.08.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479354/pdf

S. Thompson, K. Gulyas, and P. Sarnow, Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element, Proceedings of the National Academy of Sciences, vol.1050, issue.1-3, pp.12972-12977, 2001.
DOI : 10.1016/0167-4781(90)90158-X

URL : http://www.pnas.org/content/98/23/12972.full.pdf

S. Uemura, C. Aitken, J. Korlach, B. Flusberg, S. Turner et al., Real-time tRNA transit on single translating ribosomes at codon resolution, Nature, vol.94, issue.7291, pp.1012-1017, 2010.
DOI : 10.1038/nature08925

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/pdf

M. Valle, A. Zavialov, J. Sengupta, U. Rawat, M. Ehrenberg et al., Locking and Unlocking of Ribosomal Motions, Cell, vol.114, issue.1, pp.123-134, 2003.
DOI : 10.1016/S0092-8674(03)00476-8

Q. Wang and H. Au, Methods for studying IRES-mediated translation of positive-strand RNA viruses, Methods, vol.59, issue.2, pp.167-179, 2013.
DOI : 10.1016/j.ymeth.2012.09.004

C. Wang, B. Han, R. Zhou, and X. Zhuang, Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells, Cell, vol.165, issue.4, pp.990-1001, 2016.
DOI : 10.1016/j.cell.2016.04.040

J. Wilson, T. Pestova, C. Hellen, and P. Sarnow, Initiation of Protein Synthesis from the A Site of the Ribosome, Cell, vol.102, issue.4, pp.511-520, 2000.
DOI : 10.1016/S0092-8674(00)00055-6

B. Wu, C. Eliscovich, Y. Yoon, and R. Singer, Translation dynamics of single mRNAs in live cells and neurons, Science, vol.64, issue.44, pp.1430-1435, 2016.
DOI : 10.1016/0025-5564(83)90028-7

X. Yan, T. Hoek, R. Vale, and M. Tanenbaum, Dynamics of Translation of Single mRNA Molecules In??Vivo, Cell, vol.165, issue.4, pp.976-989, 2016.
DOI : 10.1016/j.cell.2016.04.034

M. Yusupov, G. Yusupova, A. Baucom, K. Lieberman, T. Earnest et al., Crystal Structure of the Ribosome at 5.5 A Resolution, Science, vol.292, issue.5518, pp.883-896, 2001.
DOI : 10.1126/science.1060089

G. Yusupova, M. Yusupov, J. Cate, and H. Noller, The Path of Messenger RNA through the Ribosome, Cell, vol.106, issue.2, pp.233-241, 2001.
DOI : 10.1016/S0092-8674(01)00435-4

H. Zhang, M. Ng, Y. Chen, and B. Cooperman, Author response, eLife, vol.117, 2016.
DOI : 10.7554/eLife.13429.018

S. Bibliographie, T. Adio, F. Senyushkina, N. Peske, W. Fischer et al., Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome, Nature communications, vol.6, p.2015, 2015.

X. Agirrezabala, J. Lei, J. L. Brunelle, R. F. Ortiz-meoz, R. Green et al., Visualization of the Hybrid State of tRNA Binding Promoted by Spontaneous Ratcheting of the Ribosome, Molecular Cell, vol.32, issue.2, pp.190-197, 2008.
DOI : 10.1016/j.molcel.2008.10.001

B. Roger, . Altman, S. Daniel, Z. Terry, Q. Zhou et al., Cyanine fluorophore derivatives with enhanced photostability, Nature methods, vol.9, issue.1, pp.68-71, 2012.

I. Asashima, I. Ikeuchi, . Ide, K. Ohya, . Kamimura et al., A comprehensive approach to lifescience, pp.5-8, 2011.

F. John, G. Atkins, . Loughran, R. Pramod, . Bhatt et al., Ribosomal frameshifting and transcriptional slippage : From genetic steganography and cryptography to adventitious use. Nucleic acids research, pp.530-2016, 2016.

N. Ban, P. Nissen, J. Hansen, B. Peter, . Moore et al., The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 A Resolution, Science, vol.289, issue.5481, pp.905-920, 2000.
DOI : 10.1126/science.289.5481.905

N. Ben-shem-adam-ben-shem, S. Garreau-de-loubresse, L. Melnikov, G. Jenner, M. Yusupova et al., The Structure of the Eukaryotic Ribosome at 3.0 A Resolution, Science, vol.25, issue.24, pp.1524-1529, 2011.
DOI : 10.1093/nar/25.24.4872

]. Bharill, C. Chen, B. Stevens, J. Kaur, Z. Smilansky et al., Enhancement of Single-Molecule Fluorescence Signals by Colloidal Silver Nanoparticles in Studies of Protein Translation, ACS Nano, vol.5, issue.1, pp.399-2011, 2011.
DOI : 10.1021/nn101839t

G. Bidou, B. Stahl, . Grima, M. Liu, J. Cassan et al., In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal, Rna, vol.3, issue.10, p.1153, 1997.

]. Bidou, J. Rousset, and O. Namy, Translational errors: from yeast to new therapeutic targets, FEMS Yeast Research, vol.10, issue.8, pp.1070-1082, 2010.
DOI : 10.1111/j.1567-1364.2010.00684.x

URL : https://academic.oup.com/femsyr/article-pdf/10/8/1070/17939879/10-8-1070.pdf

V. Lars, C. Bock, . Blau, F. Gunnar, . Schröder et al., Energy barriers and driving forces in tRNA translocation through the ribosome, Nature structural & molecular biology, vol.20, issue.12, pp.1390-1396, 2013.

M. Andrew, J. Borman, M. Bailly, . Girard, M. Katherine et al., Picornavirus internal ribosome entry segments : comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro, Nucleic acids research, vol.23, issue.18, pp.3656-3663, 1995.

M. Andrew, P. L. Borman, M. Mercier, . Girard, M. Katherine et al., Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins, Nucleic acids research, vol.25, issue.5, pp.925-932, 1997.

J. Kenneth, R. Breslauer, H. Frank, . Blöcker, A. Luis et al., Predicting DNA duplex stability from the base sequence, Proceedings of the National Academy of Sciences, pp.3746-3750, 1986.

]. Brierley, P. Digard, C. Stephen, and . Inglis, Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot, Cell, vol.57, issue.4, pp.537-547, 1989.
DOI : 10.1016/0092-8674(89)90124-4

I. Brierley, R. Michayla, A. J. Meredith, . Bloys, G. Tord et al., Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting, Journal of Molecular Biology, vol.270, issue.3, pp.360-373, 1997.
DOI : 10.1006/jmbi.1997.1134

I. Brierley, J. Francisco, and . Ramos, Programmed ribosomal frameshifting in HIV-1 and the SARS???CoV, Virus Research, vol.119, issue.1, pp.29-42, 2006.
DOI : 10.1016/j.virusres.2005.10.008

N. Caliskan, I. Vladimir, R. Katunin, F. Belardinelli, . Peske et al., Programmed ???1 Frameshifting by Kinetic Partitioning during Impeded Translocation, Cell, vol.157, issue.7, pp.1619-1631, 2014.
DOI : 10.1016/j.cell.2014.04.041

URL : https://doi.org/10.1016/j.cell.2014.04.041

N. Caliskan, F. Peske, V. Marina, and . Rodnina, Changed in translation: mRNA recoding by ???1 programmed ribosomal frameshifting, Trends in Biochemical Sciences, vol.40, issue.5, pp.265-274, 2015.
DOI : 10.1016/j.tibs.2015.03.006

L. Jonathan, . Chen, L. Abigael, . Dishler, D. Scott et al., Testing the nearest neighbor model for canonical RNA base pairs : revision of GU parameters, Biochemistry, vol.51, issue.16, pp.3508-3522, 2012.

]. Chen, H. Zhang, L. Steven, M. Broitman, I. Reiche et al., Dynamics of translation by single ribosomes through mRNA secondary structures, Nature Structural & Molecular Biology, vol.485, issue.5, pp.582-588, 2013.
DOI : 10.1529/biophysj.106.082487

J. Chen, A. Petrov, M. Johansson, A. Tsai, E. Seán et al., Dynamic pathways of ???1 translational frameshifting, Nature, vol.484, issue.7514, pp.328-332, 2014.
DOI : 10.1038/nature10965

Y. Chen, K. Chang, H. Hu, Y. Chen, Y. Lin et al., Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot. Nucleic acids research, p.2017, 2017.

M. Timothy, . Colussi, A. David, J. Costantino, J. P. Zhu et al., Initiation of translation in bacteria by a structured eukaryotic IRES RNA, Nature, vol.519, issue.7541, pp.110-113, 2015.

M. Dorywalska, C. Scott, . Blanchard, L. Ruben, . Gonzalez et al., Site-specific labeling of the ribosome for single-molecule spectroscopy, Nucleic Acids Research, vol.33, issue.1, pp.182-189, 2005.
DOI : 10.1093/nar/gki151

]. Dulin, Observation de l'activité traductionnelle d'un ribosome unique par microscopie de fluorescence couplée à un système microfluidique, pp.61-63, 2009.

D. Dulude, A. Yamina, K. Berchiche, L. Gendron, N. Brakier-gingras et al., Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1, Virology, vol.345, issue.1, pp.127-136, 2006.
DOI : 10.1016/j.virol.2005.08.048

F. Olivier and M. Prère, Programmed ribosomal-1 frameshifting as a tradition : the bacterial transposable elements of the IS3 family, Recoding : Expansion of Decoding Rules Enriches Gene Expression, pp.259-280, 2010.

]. Fei, P. Kosuri, D. Daniel, . Macdougall, L. Ruben et al., Coupling of Ribosomal L1 Stalk and tRNA Dynamics during Translation Elongation, Molecular Cell, vol.30, issue.3, pp.348-359, 2008.
DOI : 10.1016/j.molcel.2008.03.012

]. Fei, J. Wang, H. Samuel, . Sternberg, D. Daniel et al., A Highly Purified, Fluorescently Labeled In Vitro Translation System for Single-Molecule Studies of Protein Synthesis, Methods in enzymology, vol.472, pp.221-259, 2010.
DOI : 10.1016/S0076-6879(10)72008-5

S. Israel, X. Fernández, G. Bai, . Murshudov, H. Sjors et al., Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome, Cell, vol.157, issue.37, pp.823-831, 2014.

]. Fischer, A. L. Konevega, W. Wintermeyer, V. Marina, H. Rodnina et al., Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy, Nature, vol.143, issue.7304, pp.329-333, 2010.
DOI : 10.1038/nature09206

]. Fiszman, Etude de cinétique de la traduction eucaryote à l'échelle de la molécule unique, pp.70-92, 2013.

]. and F. Et-rajendra-kumar-agrawal, A ratchet-like inter-subunit reorganization of the ribosome during translocation, Nature, vol.406, issue.6793, pp.318-322, 2000.

]. Fuchs, N. Alexey, C. D. Petrov, . Marceau, M. Lauren et al., Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site, Proceedings of the National Academy of Sciences, pp.319-325, 2015.
DOI : 10.1073/pnas.0805299105

R. Rf-gesteland, . Weiss, F. John, and . Atkins, Recoding: reprogrammed genetic decoding, Science, vol.257, issue.5077, pp.1640-1642, 1992.
DOI : 10.1126/science.1529352

P. David, . Giedroc, V. Peter, and . Cornish, Frameshifting RNA pseudoknots : structure and mechanism, Virus research, vol.139, issue.2, pp.193-208, 2009.

. Tyler-jacks, D. Hiten, . Madhani, R. Frank, . Masiarz et al., Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region, Cell, vol.55, issue.3, pp.447-458, 1988.
DOI : 10.1016/0092-8674(88)90031-1

J. Christopher, E. Jang, and . Jan, Modular domains of the Dicistroviridae intergenic internal ribosome entry site, Rna, vol.16, issue.6, pp.1182-1195, 2010.

B. Lasse, N. Jenner, G. Demeshkina, M. Yusupova, and . Yusupov, Structural aspects of messenger RNA reading frame maintenance by the ribosome, Nature structural & molecular biology, vol.17, issue.5, pp.555-560, 2010.

P. Julián, L. Andrey, . Konevega, H. Sjors, M. Scheres et al., Structure of ratcheted ribosomes with tRNAs in hybrid states, Proceedings of the National Academy of Sciences, vol.25, issue.13, pp.16924-16927, 2008.
DOI : 10.1002/jcc.20084

T. Kaminishi, N. Daniel, C. Wilson, . Takemoto, M. Joerg et al., A Snapshot of the 30S Ribosomal Subunit Capturing mRNA via the Shine-Dalgarno Interaction, Structure, vol.15, issue.3, pp.289-297, 2007.
DOI : 10.1016/j.str.2006.12.008

A. Katranidis, D. Atta, R. Schlesinger, H. Knud, T. Nierhaus et al., Fast Biosynthesis of GFP Molecules: A Single-Molecule Fluorescence Study, Angewandte Chemie International Edition, vol.5, issue.10, pp.1758-1761, 2009.
DOI : 10.1007/978-3-662-03966-3

B. Zachary, . Katz, P. Brian, T. English, . Lionnet et al., Mapping translation'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes, Elife, vol.5, pp.10415-2016, 2016.

S. Jeffrey and . Kieft, Viral IRES RNA structures and ribosome interactions, Trends in biochemical sciences, vol.33, issue.6, pp.274-283, 2008.

A. Korostelev, S. Trakhanov, H. Asahara, M. Laurberg, L. Lancaster et al., Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome, Proceedings of the National Academy of Sciences, pp.16840-16843, 2007.
DOI : 10.1107/S0907444998003254

J. Barry, R. Lamphear, T. Kirchweger, . Skern, E. Robert et al., Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases Implications for cap-dependent and cap-independent translational initiation, Journal of Biological Chemistry, vol.270, issue.37, pp.21975-21983, 1995.

R. F. Bente-larsen, . Gesteland, F. John, and . Atkins, Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%, Journal of Molecular Biology, vol.271, issue.1, pp.47-60, 1997.
DOI : 10.1006/jmbi.1997.1162

J. Michael, J. Levene, . Korlach, W. Stephen, M. Turner et al., Zero-mode waveguides for single-molecule analysis at high concentrations, Science, vol.299, issue.5607, pp.682-686, 2003.

A. Marshall, M. Dorywalska, D. Joseph, and . Puglisi, Irreversible chemical steps control intersubunit dynamics during translation, Proceedings of the National Academy of Sciences, pp.15364-15369, 2008.
DOI : 10.1016/j.chemphys.2004.05.017

URL : http://www.pnas.org/content/105/40/15364.full.pdf

M. Xavier and S. Weiss, Single-molecule spectroscopy and microscopy, Comptes Rendus Physique, vol.3, issue.5, pp.619-644, 2002.

M. Mokrej?, V. Vopálensk-`-vopálensk-`-y, O. Kolenat-`-kolenat-`-y, T. Ma?ek, Z. Feketová et al., IRESite: the database of experimentally verified IRES structures (www.iresite.org), Nucleic Acids Research, vol.34, issue.90001, pp.125-130, 2006.
DOI : 10.1093/nar/gkj081

L. Loren and . Looger, Real-time quantification of single RNA translation dynamics in living cells, Science, vol.352, issue.6292, pp.1425-1429

O. Namy, G. Duchateau-nguyen, I. Hatin, S. Hermann-le-denmat, M. Termier et al., Identification of stop codon readthrough genes in Saccharomyces cerevisiae, Nucleic Acids Research, vol.31, issue.9, pp.2289-2296, 2003.
DOI : 10.1093/nar/gkg330

. Olivier-namy, J. Stephen, . Moran, I. David, . Stuart et al., A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting, Nature, vol.50, issue.7090, pp.244-247, 2006.
DOI : 10.1128/MCB.13.11.6931

]. Panthu, Développement d'un nouveau système hybride de traduction in vitro et étude du rôle traductionnel de la protéine NS1 de l'Influenza A, p.2013, 2013.

J. Pérard, R. R. Medenbach, I. Ayala, J. Boisbouvier, E. Drouet et al., Human initiation factor eIF3 subunit b interacts with HCV IRES RNA through its N-terminal RNA recognition motif, FEBS Letters, vol.26, issue.1, pp.70-74, 2009.
DOI : 10.1016/j.molcel.2007.05.019

J. Pérard, E. Drouet, and F. Baudin, Le rôle des IRES dans l'initiation de la traduction, Virologie, vol.14, issue.12, pp.241-253, 2010.

V. Tatyana, . Pestova, U. Christopher, and . Hellen, Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA, Genes & development, vol.17, issue.2, pp.181-186, 2003.

V. Tatyana, . Pestova, B. Ivan, . Lomakin, U. Christopher et al., Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly, EMBO reports, vol.5, issue.9, pp.906-913, 2004.

A. Petrov, D. Joseph, and . Puglisi, Site-specific labeling of Saccharomyces cerevisiae ribosomes for single-molecule manipulations, Nucleic Acids Research, vol.38, issue.13, pp.143-143, 2010.
DOI : 10.1093/nar/gkq390

A. Petrov, R. Grosely, J. Chen, E. Seán, . Leary et al., Multiple Parallel Pathways of Translation Initiation on the CrPV IRES, Molecular Cell, vol.62, issue.1, pp.92-103, 2016.
DOI : 10.1016/j.molcel.2016.03.020

P. Ewan, . Plant, D. Jonathan, and . Dinman, The role of programmed-1 ribosomal frameshifting in coronavirus propagation Frontiers in bioscience : a journal and virtual library, p.4873, 2008.

D. Nick-quade, M. Boehringer, and . Leibundgut, Joop Van Den Heuvel et Nenad Ban. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-A resolution, Nature communications, vol.6, p.2015, 2015.

B. Dustin, . Ritchie, A. Daniel, . Foster, T. Michael et al., Programmed-1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding, Proceedings of the National Academy of Sciences, pp.16167-16172, 2012.

R. Sophia and R. Lipowsky, Protein Synthesis in E. coli : Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage, PloS one, vol.10, issue.8, pp.134994-2015, 2015.

J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels et al., François Franceschiet al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution, Cell, vol.102, issue.5, pp.615-623, 2000.

R. P. Seyedtaghi-takyar, . Hickerson, F. Harry, and . Noller, mRNA Helicase Activity of the Ribosome, Cell, vol.120, issue.1, pp.49-58, 2005.
DOI : 10.1016/j.cell.2004.11.042

E. Marvin, . Tanenbaum, A. Luke, . Gilbert, S. Lei et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, vol.159, issue.3, pp.635-646, 2014.

M. Sotaro-uemura, T. Dorywalska, . Lee, D. Harold, . Kim et al., Peptide bond formation destabilizes Shine???Dalgarno interaction on the ribosome, Nature, vol.406, issue.7134, pp.454-457, 2007.
DOI : 10.1038/nature05625

S. Uemura, C. E. Aitken, J. Korlach, A. Benjamin, . Flusberg et al., Real-time tRNA transit on single translating ribosomes at codon resolution, Nature, vol.94, issue.7291, pp.1012-1017, 2010.
DOI : 10.1038/nature08925

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/pdf

N. Viphakone, F. Voisinet-hakil, and L. Minvielle-sebastia, Molecular dissection of mRNA poly(A) tail length control in yeast, Nucleic Acids Research, vol.36, issue.7, pp.2418-2433, 2008.
DOI : 10.1093/nar/gkn080

URL : https://hal.archives-ouvertes.fr/hal-00260904

. Nicolas-von-ahsen, T. Carl, E. Wittwer, and . Schütz, Oligonucleotide melting temperatures under PCR conditions : nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas, Clinical Chemistry, vol.47, issue.11, pp.1956-1961, 2001.

N. Daniel and . Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nature Reviews Microbiology, vol.12, issue.1, pp.35-48, 2014.

]. Wu, C. Eliscovich, J. Young, . Yoon, H. Robert et al., Translation dynamics of single mRNAs in live cells and neurons, Science, vol.64, issue.44, pp.1430-1435, 2016.
DOI : 10.1016/0025-5564(83)90028-7

J. Shannon-yan, C. Wen, I. Bustamante, and . Tinoco, Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways, Cell, vol.160, issue.5, pp.870-881, 2015.

. Xiaowei-yan, A. Tim, . Hoek, D. Ronald, . Vale et al., Dynamics of translation of single mRNA molecules in vivo, Cell, vol.165, issue.44, pp.976-989, 2016.

M. Marat, G. Yusupov, A. Zh-yusupova, K. Baucom, . Lieberman et al., Crystal structure of the ribosome at 5.5 Å resolution, science, vol.292, issue.5518, pp.883-896, 2001.

M. Y. Zhang, Y. Ng, . Chen, S. Barry, and . Cooperman, Author response, eLife, vol.117, pp.13429-2016, 2016.
DOI : 10.7554/eLife.13429.018