. Marketsandmarkets, Non volatile memory market worth 40.2 billion dollars by 2020, 2014.

. Marketsandmarkets, Next generation memory market by technology (nonvolatile memory (mram, fram, pcm, and rram), volatile memory (dram (tram, ttram, and others) and sram (zram and others), application and geography, global forecast to, 2015.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.11, issue.14, pp.3128-3131, 2001.
DOI : 10.1088/0957-4484/11/2/305

J. Feinleib, S. Moss, and . Ovshinsky, RAPID REVERSIBLE LIGHT???INDUCED CRYSTALLIZATION OF AMORPHOUS SEMICONDUCTORS, Applied Physics Letters, vol.15, issue.6, pp.254-257, 1971.
DOI : 10.1147/rd.135.0515

G. I. Meijer, Who wins the nonvolatile memory race? Science, pp.3191625-1626, 2008.
DOI : 10.1126/science.1153909

S. Sundaram and E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses, Nature Materials, vol.58, issue.110, pp.217-224, 2002.
DOI : 10.1103/PhysRevB.58.13627

S. Raoux and M. Wuttig, Phase change materials: science and applications, 2010.

S. Hudgens and B. Johnson, Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology, MRS Bulletin, vol.11, issue.11, pp.829-832, 2004.
DOI : 10.1103/PhysRevLett.37.1504

B. Stritzker, A. Pospieszczyk, and J. A. Tagle, Measurement of Lattice Temperature of Silicon during Pulsed Laser Annealing, Physical Review Letters, vol.37, issue.94, pp.356-358, 1981.
DOI : 10.1063/1.91963

A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, and P. Baeri, Transitions to Defective Crystal and the Amorphous State Induced in Elemental Si by Laser Quenching, Physical Review Letters, vol.48, issue.3, pp.219-222, 1982.
DOI : 10.1103/PhysRevLett.48.498

D. C. Poate and . Jacobson, Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation, Physical Review Letters, vol.50, issue.12, pp.896-899, 1983.

A. G. Jacobson, N. G. Cullis, and . Chew, Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation, Physical Review Letters, vol.52, issue.26, pp.2360-2363, 1984.

R. F. Wood, D. H. Lowndes, and J. Narayan, Bulk nucleation and amorphous phase formation in highly undercooled molten silicon, Applied Physics Letters, vol.13, issue.8, pp.770-772, 1984.
DOI : 10.1557/PROC-13-83

T. Sameshima and S. Usui, Pulsed laser???induced amorphization of silicon films, Journal of Applied Physics, vol.28, issue.3, pp.1281-1289, 1991.
DOI : 10.1143/JJAP.28.1789

J. S. Im, H. J. Kim, and M. O. Thompson, Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films Applied Physics Letters, pp.1969-1971, 1993.

T. Sameshima and S. Usui, Pulsed laser???induced melting followed by quenching of silicon films, Journal of Applied Physics, vol.15, issue.11, pp.6592-6598, 1993.
DOI : 10.1088/0022-3719/15/2/019

J. Bonse, . Baudach, . Kruger, M. Kautek, and . Lenzner, Femtosecond laser ablation of silicon???modification thresholds and morphology, Applied Physics A, vol.74, issue.1, pp.19-25, 2002.
DOI : 10.1007/s003390100893

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, Picosecond laser???induced melting and resolidification morphology on Si, Applied Physics Letters, vol.8, issue.12, pp.864-866, 1979.
DOI : 10.1109/T-ED.1973.17616

R. Tsu, R. T. Hodgson, Y. Teh, J. E. Tan, and . Baglin, Order-Disorder Transition in Single-Crystal Silicon Induced by Pulsed uv Laser Irradiation, Physical Review Letters, vol.32, issue.20, pp.1356-1358, 1979.
DOI : 10.1016/S0022-3697(71)80159-2

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, pp.1103-1112, 1939.
DOI : 10.1002/zaac.19332140411

G. Lee, The quest for a universal memory, IEEE Spectrum, 2012.

J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nature Nanotechnology, vol.7, issue.1, pp.13-24, 2013.
DOI : 10.1109/TCAD.2012.2185930

H. Wong, S. Raoux, S. Kim, J. Liang, P. John et al., Phase Change Memory, Proceedings of the IEEE, vol.98, issue.12, pp.2201-2227, 2010.
DOI : 10.1109/JPROC.2010.2070050

H. S. Wong, L. Heng-yuan, Y. Shimeng, C. Yu-sheng, W. Yi et al., Metal???Oxide RRAM, Proceedings of the IEEE, pp.1951-1970, 2012.
DOI : 10.1109/JPROC.2012.2190369

R. Stanford and . Ovshinsky, Reversible electrical switching phenomena in disordered structures, Physical Review Letters, vol.21, issue.20, p.1450, 1968.

M. Wuttig, Phase-change materials: Towards a universal memory?, Nature Materials, vol.50, issue.4, pp.265-266, 2005.
DOI : 10.1038/nmat1359

M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nature Materials, vol.6, issue.11, pp.824-832, 2007.
DOI : 10.1557/mrs2004.236

URL : http://www.nature.com/nmat/journal/v6/n12/pdf/nmat2077.pdf

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao et al., Breaking the Speed Limits of Phase-Change Memory, Science, vol.42, issue.46, pp.1566-1569
DOI : 10.1143/JJAP.42.800

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes, Science, vol.93, issue.24, pp.568-570, 2011.
DOI : 10.1063/1.2963196

B. Fanning, S. Qawami, S. Raymond, . Tetrick, T. Frank et al., Multilevel memory with direct access, 2011.

R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nature Materials, vol.18, issue.11, pp.833-840, 2007.
DOI : 10.1155/APEC.3.217

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol.18, issue.25-26
DOI : 10.1002/cta.223

L. Chua, Memristor-The missing circuit element, IEEE Transactions on Circuit Theory, vol.18, issue.5, pp.507-519, 1971.
DOI : 10.1109/TCT.1971.1083337

C. Yang-yin, L. Goux, S. Clima, B. Govoreanu, R. Degraeve et al., Endurance retention trade off on hfo2 metal cap 1t1r bipolar rram. Electron Devices, IEEE Transactions on, vol.60, issue.3, pp.1114-1121, 2013.

C. B. Myoung-jae-lee, D. Lee, . Lee, M. Lee, J. H. Chang et al., A fast, high-endurance and scalable non volatile memory device made from asymmetric ta2o5-x tao2-x bilayer structures

K. L. Wang, J. G. Alzate, and P. K. Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond, Journal of Physics D: Applied Physics, vol.46, issue.7
DOI : 10.1088/0022-3727/46/7/074003

D. Zhitao, L. Zhanjie, W. Shengyuang, D. Yunfei, P. Alex et al., Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory, Journal of Physics: Condensed Matter, vol.19, issue.16i=16, pp.1652090953-8984, 2007.

R. Brian, . Tull, E. James, E. Carey, . Mazur et al., Silicon surface morphologies after femtosecond laser irradiation, Mrs Bulletin, issue.08, pp.31626-633, 2006.

A. Miotello and R. Kelly, Critical assessment of thermal models for laser sputtering at high fluences, Applied Physics Letters, vol.11, issue.24, pp.3535-3537, 1995.
DOI : 10.1063/1.114912

R. F. Service, MATERIALS SCIENCE: Is Silicon's Reign Nearing Its End?, Science, vol.323, issue.5917, pp.1000-1002, 2009.
DOI : 10.1126/science.323.5917.1000

S. Anthony, Intel forges ahead to 10nm, will move away from silicon at 7nm, 2015. URL http://arstechnica.com/gadgets/2015/02/intel-forges- ahead-to-10nm-will-move-away-from-silicon-at-7nm

S. Paul and . Peercy, The drive to miniaturization, Nature, vol.406, issue.6799, pp.1023-1026, 2000.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, pp.183-191, 2007.
DOI : 10.1038/nmat1849

T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Letters, vol.4, issue.1, pp.35-39, 2004.
DOI : 10.1021/nl034841q

S. Berber, Y. Kwon, and D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.28, issue.20, pp.4613-4616, 2000.
DOI : 10.1051/jphys:019670028011-12095100

P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, vol.4, issue.10, pp.605-615, 2007.
DOI : 10.1038/nature06037

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

URL : http://arxiv.org/pdf/cond-mat/0410550

A. Castro-neto, F. Guinea, and . Peres, Drawing conclusions from graphene, Physics World, vol.19, issue.11, p.33, 2006.
DOI : 10.1088/2058-7058/19/11/34

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, vol.146, issue.8, pp.491-495, 0199.
DOI : 10.1038/nnano.2008.199

URL : http://arxiv.org/pdf/0802.2933

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, vol.8, issue.3, pp.902-907, 2008.
DOI : 10.1021/nl0731872

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.104, issue.22, pp.385-388, 2008.
DOI : 10.1073/pnas.0703337104

M. Shakerzadeh, . Xu, . Bosman, . Tay, . Wang et al., Field emission enhancement and microstructural changes of carbon films by single pulse laser irradiation, Carbon, vol.49, issue.3, pp.1018-1024, 2011.
DOI : 10.1016/j.carbon.2010.11.010

M. Shakerzadeh, . Loh, . Xu, . Chow, . Tan et al., Re-ordering Chaotic Carbon: Origins and Application of Textured Carbon, Advanced Materials, vol.4, issue.30, pp.4112-4123, 2012.
DOI : 10.1016/S0022-3093(87)80373-3

M. Shakerzadeh, N. Samani, E. H. Khosravian, T. Teo, B. Bosman et al., Thermal conductivity of nanocrystalline carbon films studied by pulsed photothermal reflectance, Carbon, vol.50, issue.3, pp.1428-1431, 2012.
DOI : 10.1016/j.carbon.2011.10.015

M. Shakerzadeh, E. H. Teo, A. Sorkin, M. Bosman, B. K. Tay et al., Plasma density induced formation of nanocrystals in physical vapor deposited carbon films, Carbon, vol.49, issue.5, pp.1733-1744, 2011.
DOI : 10.1016/j.carbon.2010.12.059

E. Teo, . Bolker, C. Kalish, and . Saguy, Nano-patterning of through-film conductivity in anisotropic amorphous carbon induced using conductive atomic force microscopy, Carbon, vol.49, issue.8, pp.492679-2682, 2011.
DOI : 10.1016/j.carbon.2011.02.055

X. Shi, T. Y. Qiang, T. H. Siang, B. Kang-tay, and W. I. Milne, Simulation of plasma flow in toroidal solenoid filters. Plasma Science, IEEE Transactions on, vol.24, issue.6, pp.1309-1318, 1996.

X. David-ian-flynn, H. S. Shi, B. Tan, and . Tay, Ignition means for a cathodic arc source, 2001.

. Siu-hon-tsang, X. Naiyun, H. T. , E. Teo, and B. Tay, Apparatus for the generation of nanocluster films and methods for doing the same, 2015.

X. Shi, B. K. Tay, and S. P. Lau, THE DOUBLE BEND FILTERED CATHODIC ARC TECHNOLOGY AND ITS APPLICATIONS, International Journal of Modern Physics B, vol.5, issue.9, pp.136-153, 2000.
DOI : 10.1109/27.553196

D. Lau, . Mcculloch, . Taylor, . Partridge, N. Mckenzie et al., Abrupt Stress Induced Transformation in Amorphous Carbon Films with a Highly Conductive Transition Phase, Physical Review Letters, vol.4, issue.17, p.176101, 2008.
DOI : 10.1063/1.364000

Q. Zhang, S. F. Yoon, H. Rusli, J. Yang, and . Ahn, Influence of oxygen on the thermal stability of amorphous hydrogenated carbon films, Journal of Applied Physics, vol.83, issue.3, pp.1349-1353, 1998.
DOI : 10.1103/PhysRevB.53.16

N. M. Conway, A. C. Ferrari, A. J. Flewitt, J. Robertson, W. I. Milne et al., Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon, Diamond and Related Materials, vol.9, issue.3-6, pp.765-770, 2000.
DOI : 10.1016/S0925-9635(99)00271-X

V. Kulikovsky, P. Bohac, C. Vorli, A. Deineka, D. Chvostova et al., Oxidation of graphite-like carbon films with different microhardness and density, Surface and Coatings Technology, vol.174, issue.175, pp.175290-295, 2003.
DOI : 10.1016/S0257-8972(03)00593-0

K. Takai, M. Oga, H. Sato, T. Enoki, Y. Ohki et al., Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects, Physical Review B, vol.86, issue.21, p.214202, 2003.
DOI : 10.1103/PhysRev.86.1056.3

. Tay, Mechanisms for the behavior of carbon films during annealing, Phys. Rev

A. C. Ferrari, B. Kleinsorge, N. A. Morrison, A. Hart, V. Stolojan et al., Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon, Journal of Applied Physics, vol.4, issue.10, pp.7191-7197, 1999.
DOI : 10.1063/1.361081

A. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963???2003), Carbon, vol.43, issue.6, pp.1115-1142, 2005.
DOI : 10.1016/j.carbon.2004.12.027

J. O. Orwa, I. Andrienko, J. L. Peng, S. Prawer, Y. B. Zhang et al., Thermally induced sp2 clustering in tetrahedral amorphous carbon (tac) films, J. Appl. Phys, vol.9610, issue.1196111, pp.6286-6297, 1063.
DOI : 10.1063/1.1808918

M. Bowden, D. J. Gardiner, and J. M. Southall, Raman analysis of laser???annealed amorphous carbon films, Journal of Applied Physics, vol.75, issue.1, pp.521-523, 1992.
DOI : 10.1016/0038-1098(90)90232-Z

A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan et al., fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Physical Review B, vol.2, issue.77, pp.11089-11103, 2000.
DOI : 10.1103/PhysRevB.2.973

R. W. Lamberton, S. M. Morley, P. D. Maguire, and J. A. Mclaughlin, Monitoring laser-induced microstructural changes of thin film hydrogenated amorphous carbon (a-C:H) using Raman spectroscopy, Thin Solid Films, vol.333, issue.1-2, pp.114-125, 1998.
DOI : 10.1016/S0040-6090(98)00848-7

J. Z. Wan, F. H. Pollak, and B. F. Dorfman, Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing, Journal of Applied Physics, vol.78, issue.9
DOI : 10.1063/1.359707

T. Venkatesan, D. C. Jacobson, J. M. Gibson, B. S. Elman, G. Braunstein et al., Measurement of Thermodynamic Parameters of Graphite by Pulsed-Laser Melting and Ion Channeling, Physical Review Letters, vol.39, issue.4, pp.360-363, 1984.
DOI : 10.1063/1.92843

A. M. Malvezzi, N. Bloembergen, and C. Y. Huang, Time-resolved picosecond optical measurements of laser-excited graphite, Physical Review Letters, vol.38, issue.1, pp.146-149, 1986.
DOI : 10.1063/1.1733715

D. H. Reitze, . Wang, M. Ahn, and . Downer, Femtosecond laser melting of graphite, Physical Review B, vol.7, issue.17, p.11986, 1989.
DOI : 10.1364/OL.7.000196

J. Steinbeck-speck, M. Steinbeck, and . Dresselhaus, Microstructural studies of laser irradiated graphite surfaces, Journal of Materials Research, vol.l, issue.05, pp.980-988, 1990.
DOI : 10.1016/0168-583X(84)90083-1

C. Leona, . Nistor, . Van-landuyt, . Vg-ralchenko, . Kononenko et al., Direct observation of laser-induced crystallization of ac: H films, Applied Physics A, vol.58, issue.2, pp.137-144, 1994.

Y. Miyajima, A. A. Adikaari, S. J. Henley, J. M. Shannon, and S. R. Silva, Electrical properties of pulsed UV laser irradiated amorphous carbon, Applied Physics Letters, vol.92, issue.15
DOI : 10.1016/j.diamond.2005.02.009

E. Cappelli, C. Scilletta, S. Orlando, V. Valentini, and M. Servidori, Laser annealing of amorphous carbon films, Applied Surface Science, vol.255, issue.10, pp.5620-5625, 2009.
DOI : 10.1016/j.apsusc.2008.10.062

N. Xu, H. Tong-edwin-teo, M. Shakerzadeh, X. Wang, C. Ng et al., Electrical properties of textured carbon film formed by pulsed laser annealing, Diamond and Related Materials, vol.23, pp.135-139, 2012.
DOI : 10.1016/j.diamond.2012.01.016

B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau et al., Graphene-Based Atomic-Scale Switches, Nano Letters, vol.8, issue.10, pp.3345-3349, 2008.
DOI : 10.1021/nl801774a

C. He, Z. Shi, L. Zhang, W. Yang, R. Yang et al., Nanogap Structures, ACS Nano, vol.6, issue.5, pp.4214-4221, 2012.
DOI : 10.1021/nn300735s

H. Zhang, W. Bao, Z. Zhao, J. Huang, B. Standley et al., Visualizing Electrical Breakdown and ON/OFF States in Electrically Switchable Suspended Graphene Break Junctions, Nano Letters, vol.12, issue.4, pp.1772-1775, 2012.
DOI : 10.1021/nl203160x

URL : http://arxiv.org/pdf/1205.0292

H. Seo, J. Chung, S. Heo, K. L. Seo, and . Wang, Robust bi-stable memory operation in single-layer graphene ferroelectric memory, Applied Physics Letters, vol.99, issue.4

S. Ruoff and . Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Letters, vol.10, issue.11, pp.4381-4386, 2010.

C. L. He, F. Zhuge, X. F. Zhou, M. Li, G. C. Zhou et al., Nonvolatile resistive switching in graphene oxide thin films, Applied Physics Letters, vol.95, issue.23, p.95
DOI : 10.1088/0022-3727/42/13/135109

H. Seul-ki, K. J. Eun, K. S. Ouk, C. Sung-yool, and B. J. Cho, Flexible resistive switching memory device based on graphene oxide. Electron Device Letters, IEEE, issue.9, pp.311005-1007, 2010.

S. Bertolazzi, D. Krasnozhon, and A. Kis, /Graphene Heterostructures, ACS Nano, vol.7, issue.4, pp.3246-3252, 2013.
DOI : 10.1021/nn3059136

B. H. Kaner, K. L. Weiller, and . Wang, Graphene flash memory, ACS Nano, vol.5, issue.10, pp.7812-7817, 2011.

T. J. Echtermeyer, M. C. Lemme, M. Baus, B. N. Szafranek, A. K. Geim et al., Nonvolatile switching in graphene field-effect devices. Electron Device Letters, IEEE, issue.8, pp.29952-954, 2008.
DOI : 10.1109/led.2008.2001179

URL : http://arxiv.org/pdf/0805.4095

M. Kaveh, M. A. Milaninia, A. Baldo, J. Reina, and . Kong, All graphene electromechanical switch fabricated by chemical vapor deposition Applied Physics Letters, p.183105, 2009.

S. M. Kim, E. B. Song, S. Lee, S. Seo, D. H. Seo et al., Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current, Applied Physics Letters, vol.2001, issue.2
DOI : 10.1109/JMEMS.2007.907782

P. Li, Z. You, and T. Cui, Graphene cantilever beams for nano switches, Applied Physics Letters, vol.101, issue.9, p.4738891, 1063.
DOI : 10.1103/PhysRevLett.56.930

Z. Shi, H. Lu, L. Zhang, R. Yang, Y. Wang et al., Studies of graphene-based nanoelectromechanical switches, Nano Research, vol.11, issue.2, pp.82-87, 2012.
DOI : 10.1166/jnn.2011.3154

Y. Chai, Y. Wu, K. Takei, H. Chen, S. Yu et al., Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon. Electron Devices, IEEE Transactions on, issue.11, pp.583933-3939, 2011.
DOI : 10.1109/ted.2011.2164615

URL : http://nano.eecs.berkeley.edu/publications/TED_2011_RRAM.pdf

F. Di, X. Dan, F. Tingting, C. Zhang, J. Niu et al., Unipolar resistive switching properties of diamondlike carbon-based rram devices. Electron Device Letters, IEEE, vol.32, issue.6, pp.803-805, 2011.

A. Sebastian, A. Pauza, C. Rossel, M. Robert, A. Shelby et al., Resistance switching at the nanometre scale in amorphous carbon, New Journal of Physics, vol.13, issue.1, p.13020, 2011.
DOI : 10.1088/1367-2630/13/1/013020

F. Kreupl, R. Bruchhaus, P. Majewski, B. Philipp, R. Symanczyk et al., Carbon based resistive memory. arXiv preprint, 2009.
DOI : 10.1109/iedm.2008.4796740

URL : http://arxiv.org/abs/0901.4439

H. Dadgour, M. M. Hussain, and K. Banerjee, A new paradigm in the design of energy-efficient digital circuits using laterally-actuated double-gate NEMs, Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design, ISLPED '10, 2010.
DOI : 10.1145/1840845.1840848

H. F. Dadgour and K. Banerjee, Hybrid NEMS???CMOS integrated circuits: a novel strategy for energy-efficient designs, IET Computers & Digital Techniques, vol.3, issue.6, 2009.
DOI : 10.1049/iet-cdt.2008.0148

T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, pp.94-97, 2000.
DOI : 10.1126/science.289.5476.94

R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, Breakdown current density of graphene nanoribbons, Applied Physics Letters, vol.94, issue.24
DOI : 10.1103/PhysRevB.79.155413

URL : http://arxiv.org/pdf/0906.4156

L. Kyeongjae, A. P. Chandrakasan, and J. Kong, Breakdown current density of cvd-grown multilayer graphene interconnects. Electron Device Letters, IEEE, vol.32, issue.4, pp.557-559, 2011.

A. Liao, R. Alizadegan, Z. Ong, S. Dutta, F. Xiong et al., Thermal dissipation and variability in electrical breakdown of carbon nanotube devices, Physical Review B, vol.82, issue.20, p.205406, 2010.
DOI : 10.1021/nl803835z

P. G. Collins, M. S. Arnold, and P. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, vol.292, issue.5517, pp.706-709, 2001.
DOI : 10.1126/science.1058782

URL : http://www.cc.gatech.edu/computing/nano/documents/Avouris - Engineering Carbon Nanotubes Gates and Nanotube C.pdf

J. Yao, L. Zhong, Z. Zhang, T. He, Z. Jin et al., Resistive Switching in Nanogap Systems on SiO2 Substrates, Small, vol.7, issue.24, pp.2910-2915, 2009.
DOI : 10.1002/smll.200901100

URL : http://arxiv.org/pdf/0906.5100

J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Resistive Switches and Memories from Silicon Oxide, Nano Letters, vol.10, issue.10, pp.4105-4110, 2010.
DOI : 10.1021/nl102255r

J. Yao, L. Zhong, D. Natelson, and J. M. Tour, Silicon Oxide: A Non-innocent Surface for Molecular Electronics and Nanoelectronics Studies, Journal of the American Chemical Society, vol.133, issue.4, pp.941-948, 2011.
DOI : 10.1021/ja108277r

URL : http://arxiv.org/pdf/1010.4853

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan et al., Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene, Nature Communications, vol.29
DOI : 10.1557/mrs2004.236

URL : http://www.nature.com/articles/ncomms2110.pdf

J. Yao, L. Zhong, D. Natelson, and J. M. Tour, In situ imaging of the conducting filament in a silicon oxide resistive switch Scientific Reports

A. D. Liao, P. T. Araujo, R. Xu, and M. S. Dresselhaus, Carbon nanotube network-silicon oxide non-volatile switches, Nature Communications, vol.2
DOI : 10.1103/PhysRevLett.106.256801

URL : http://www.nature.com/articles/ncomms6673.pdf

B. K. Tay, Z. W. Zhao, and D. H. Chua, Review of metal oxide films deposited by filtered cathodic vacuum arc technique, Materials Science and Engineering: R: Reports, vol.52, issue.1-3, p.521
DOI : 10.1016/j.mser.2006.04.003

N. Xu, S. H. Tsang, E. H. Teo, and B. K. Tay, Formation of thick textured carbon film using filtered cathodic vacuum arc technique, Nanoelectronics Conference (INEC), 2013 IEEE 5th International, pp.78-80, 2013.
DOI : 10.1109/inec.2013.6465959

X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.5, issue.4, pp.1312-1314, 2009.
DOI : 10.1038/nnano.2008.67

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, vol.9, issue.12, pp.4359-4363, 2009.
DOI : 10.1021/nl902623y

M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen et al., Energy Dissipation in Graphene Field-Effect Transistors, Nano Letters, vol.9, issue.5, pp.1883-1888, 2009.
DOI : 10.1021/nl803883h

URL : http://arxiv.org/pdf/0912.0531

F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.24, issue.3, pp.1126-1130, 1970.
DOI : 10.1063/1.1712428

A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1824
DOI : 10.1098/rsta.2004.1452

B. Frank, A. Rinaldi, R. Blume, R. Schlã, and D. Su, Oxidation Stability of Multiwalled Carbon Nanotubes for Catalytic Applications, Chemistry of Materials, vol.22, issue.15, pp.4462-4470, 2010.
DOI : 10.1021/cm101234d

S. Osswald, M. Havel, and Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy, Journal of Raman Spectroscopy, vol.21, issue.465, pp.728-736, 2007.
DOI : 10.1002/jrs.1686

. Scilab, Logiciel open source gratuit de calcul numerique

B. Efron and R. Tibshirani, Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Statistical Science, vol.1, issue.1, pp.54-75, 1986.
DOI : 10.1214/ss/1177013815

D. Shindo and H. Kenji, High-resolution electron microscopy for materials science, 2012.
DOI : 10.1007/978-4-431-68422-0

V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson et al., Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature, The Journal of Physical Chemistry Letters, vol.1, issue.19, pp.2804-2809, 2010.
DOI : 10.1021/jz1011143

L. Huang, Y. Liu, L. Ji, Y. Xie, T. Wang et al., Pulsed laser assisted reduction of graphene oxide, Carbon, vol.49, issue.7, pp.2431-2436, 2011.
DOI : 10.1016/j.carbon.2011.01.067

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia et al., Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, Nano Today, vol.5, issue.1, pp.15-20, 2010.
DOI : 10.1016/j.nantod.2009.12.009

C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer et al., Integrated allphotonic non-volatile multi-level memory, Nature Photon, 2015.

V. Strong, S. Dubin, F. Maher, A. El-kady, Y. Lech et al., Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices, ACS Nano, vol.6, issue.2, pp.1395-1403
DOI : 10.1021/nn204200w

D. A. Sokolov, K. R. Shepperd, and T. M. Orlando, Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide, The Journal of Physical Chemistry Letters, vol.1, issue.18
DOI : 10.1021/jz100790y

N. Bulgakova and A. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion, Applied Physics A Materials Science & Processing, vol.73, issue.2, pp.199-208, 2001.
DOI : 10.1007/s003390000686

B. J. Stagg and T. T. Charalampopoulos, Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25?? to 600??C, Combustion and Flame, vol.94, issue.4, pp.381-396, 1993.
DOI : 10.1016/0010-2180(93)90121-I

J. Steinbeck, G. Dresselhaus, and M. S. Dresselhaus, The properties of liquid carbon, International Journal of Thermophysics, vol.11, issue.4, pp.789-796, 1990.
DOI : 10.1007/BF01184345

D. B. Fischbach and M. Couzi, Temperature dependence of Raman scattering by disordered carbon materials, Carbon, vol.24, issue.3, pp.365-369, 1986.
DOI : 10.1016/0008-6223(86)90239-3

C. Li and T. C. Brown, Carbon oxidation kinetics from evolved carbon oxide analysis during temperature-programmed oxidation, Carbon, vol.39, issue.5, pp.725-732, 2001.
DOI : 10.1016/S0008-6223(00)00189-5

N. Xu, S. H. Tsang, E. H. , T. Teo, X. Wang et al., Effect of initial sp3 content on bonding structure evolution of amorphous carbon upon pulsed laser annealing, Diamond and Related Materials, vol.30, issue.0, pp.48-52, 2012.
DOI : 10.1016/j.diamond.2012.09.008

J. Steinbeck, . Braunstein, . Ms-dresselhaus, D. Venkatesan, and . Jacobson, A model for pulsed laser melting of graphite, Journal of Applied Physics, vol.18, issue.11, pp.4374-4382, 1985.
DOI : 10.1103/PhysRevB.21.2415

Z. Du, A. F. Sarofim, J. P. Longwell, and C. A. Mims, Kinetic measurement and modeling of carbon oxidation, Energy & Fuels, vol.5, issue.1, pp.214-221, 1991.
DOI : 10.1021/ef00025a035

P. Saeta, J. K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, Ultrafast electronic disordering during femtosecond laser melting of GaAs, Physical Review Letters, vol.31, issue.8, pp.1023-1026, 1991.
DOI : 10.1016/0038-1101(88)90306-1

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban et al., Nonthermal melting in semiconductors measured at femtosecond resolution, Nature, issue.6824, pp.41065-68, 2001.
DOI : 10.1038/35065045

URL : https://hal.archives-ouvertes.fr/hal-00523521

E. Vitali, A. S. Grudzev, and . Gruzdeva, Thermal and nonthermal effects in femtosecond laser ablation and damage of transparent materials, 2000.

J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16, p.163513, 2007.
DOI : 10.1038/nature05555

Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. Johnson, Intrinsic Response of Graphene Vapor Sensors, Nano Letters, vol.9, issue.4, pp.1472-1475, 2009.
DOI : 10.1021/nl8033637

C. Gomez-navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews et al., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets, Nano Letters, vol.7, issue.11, pp.3499-3503, 2007.
DOI : 10.1021/nl072090c

J. G. Simmons, Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film, Journal of Applied Physics, vol.16, issue.6, pp.1793-1803, 1963.
DOI : 10.1063/1.1753783

F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-alcalde et al., Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Electrodes, Nano Letters, vol.11, issue.11, pp.4607-4611, 2011.
DOI : 10.1021/nl202065x

C. Nef, L. Posa, P. Makk, W. Fu, A. Halbritter et al., High-yield fabrication of nm-size gaps in monolayer CVD graphene, Nanoscale, vol.34, issue.13, pp.7249-7254
DOI : 10.1063/1.1702682

D. Yoon, Y. Son, and H. Cheong, Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy, Nano Letters, vol.11, issue.8, pp.3227-3231, 2011.
DOI : 10.1021/nl201488g

Z. Xiao, J. She, S. Deng, Z. Tang, Z. Li et al., Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene, ACS Nano, vol.4, issue.11, pp.6332-6336, 2010.
DOI : 10.1021/nn101719r

C. J. Edgcombe and U. Valdrã¨, Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. i. experiments and computation, Philosophical Magazine Part B, vol.82, issue.9, pp.987-1007, 2002.

J. Cumings, P. G. Collins, and A. Zettl, Materials: Peeling and sharpening multiwall nanotubes, Nature, vol.397, issue.6796, pp.586-586, 2000.
DOI : 10.1038/17755

A. Barreiro, F. Borrnert, M. H. Rummeli, B. Buchner, and L. M. Vandersypen, Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing, Nano Letters, vol.12, issue.4, pp.1873-1878
DOI : 10.1021/nl204236u