
HAL Id: tel-01677249
https://pastel.hal.science/tel-01677249

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule mining in knowledge bases
Luis Galarraga del Prado

To cite this version:
Luis Galarraga del Prado. Rule mining in knowledge bases. Artificial Intelligence [cs.AI]. Télécom
ParisTech, 2016. English. �NNT : 2016ENST0050�. �tel-01677249�

https://pastel.hal.science/tel-01677249
https://hal.archives-ouvertes.fr

T

H

È

S

E

2016-ENST-0050

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique »

présentée et soutenue publiquement par

Luis Galárraga
29 septembre 2016

Rule Mining in Knowledge Bases

Directeur de thèse : Fabian Suchanek

Jury
M. Stefano CERI, Professor, Politecnico de Milano Rapporteur
M. Stéphan CLEMENÇON, Professeur, Télécom ParisTech Examinateur
M. Fabien GANDON, Directeur de Recherches, INRIA Sophia-Antipolis Examinateur
M. Tom MITCHELL, Professor, Carnegie Mellon University Rapporteur
M. Joachim NIEHREN, Directeur de Recherches, INRIA Lille Examinateur
Mme. Marie-Christine ROUSSET, Professeure, Université de Grenoble Examinatrice
M. Steffen STAAB, Professor, University of Koblenz-Landau Rapporteur
M. Fabian SUCHANEK, Maître de Conférences, Télécom ParisTech Directeur de thèse

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

3

Abstract

The continuous progress of information extraction (IE) techniques has led to the
construction of large general-purpose knowledge bases (KBs). These KBs contain mil-
lions of computer-readable facts about real-world entities such as people, organizations
and places. KBs are important nowadays because they allow computers to “understan-
d” the real world. They are used in multiple applications in Information Retrieval, Query
Answering and Automatic Reasoning, among other fields. Furthermore, the plethora of
information available in today’s KBs allows for the discovery of frequent patterns in the
data, a task known as rule mining. Such patterns or rules convey useful insights about
the data. These rules can be used in several applications ranging from data analytics
and prediction to data maintenance tasks.

The contribution of this thesis is twofold : First, it proposes a method to mine rules
on KBs. The method relies on a mining model tailored for potentially incomplete web-
extracted KBs. Second, the thesis shows the applicability of rule mining in several data-
oriented tasks in KBs, namely facts prediction, schema alignment, canonicalization of
(open) KBs and prediction of completeness.

Le développement rapide des techniques d’extraction d’information a permis de
construire de vastes bases de connaissances généralistes. Ces bases de connais-
sances contiennent des millions de faits portant sur des entités du monde réel, comme
des personnes, des lieux, ou des organisations. Ces faits sont accessibles aux ordina-
teurs, et leur permettent ainsi de “comprendre” le monde réel. Ces bases trouvent donc
de nombreuses applications, notamment pour la recherche d’information, le traitement
de requêtes, et le raisonnement automatique.

Les nombreuses informations contenues dans les bases de connaissances peuvent
également être utilisées pour découvrir des motifs intéressants et fréquents dans les
données. Cette tâche, l’extraction de règles d’association, permet de comprendre la
structure des données ; les règles ainsi obtenues peuvent être employées pour l’ana-
lyse de données, la prédiction, et la maintenance de données, entre autres applications.

Cette thèse présente deux contributions principales. En premier lieu, nous propo-
sons une nouvelle méthode pour l’extraction de règles d’association dans les bases de
connaissances. Cette méthode s’appuie sur un modèle d’extraction qui convient parti-
culièrement aux bases de connaissances potentiellement incomplètes, comme celles
qui sont extraites à partir des données du Web. En second lieu, nous montrons que

l’extraction de règles peut être utilisée sur les bases de connaissances pour effectuer
de nombreuses tâches orientées vers les données. Nous étudions notamment la pré-
diction de faits, l’alignement de schémas, la mise en forme canonique de bases de
connaissances ouvertes, et la prédiction d’annotations de complétude.

5

Acknowledgements

This thesis was accomplished thanks to the financing of the Chair Machine Learning for
Big Data of Télécom ParisTech and the Max Planck Institute for Informatics. Moreover,
with the following names cloud, I want to thank all the people, who in one way or ano-
ther, made this adventure of my doctoral studies a wonderful and enriching experience.
As the knowledge bases that are studied in this thesis, this name cloud may be partially
complete.

Esta tesis debe su término al financiamiento otorgado por la Cátedra “Machine Lear-
ning for Big Data” de Télécom ParisTech y el “Max Planck Institute for Informatics”.
Agradezco también, a través de la siguiente nube de nombres, a todas las personas
que hicieron de la aventura de mi tesis doctoral, una experiencia inigualable y enrique-
cedora. Al igual que las bases de conocimiento que son objeto de estudio en esta tesis,
esta nube podría estar parcialmente completa.

Contents 7

Table des matières

1 Introduction 13
1.1 Motivation . 13
1.2 Contribution . 14
1.3 Preliminaries . 16

1.3.1 RDF Knowledge Bases . 17
1.3.2 Closed vs. Open World Assumption 17
1.3.3 Functions . 18
1.3.4 Rules . 19
1.3.5 Language bias . 20

2 Rule Mining 23
2.1 Introduction . 23
2.2 Related Work . 26

2.2.1 Association Rule Mining . 26
2.2.2 Inductive Logic Programming . 27
2.2.3 Expert Rule Mining . 28
2.2.4 Generating Schemas . 28
2.2.5 Relational Learning . 28
2.2.6 Learning Rules From Hybrid Sources 29
2.2.7 Further Applications of Rule Mining 29

2.3 Mining Model . 30
2.3.1 Language bias . 30
2.3.2 Measures of Significance . 31
2.3.3 Measures of Correctness . 33

2.4 The Partial Completeness Assumption . 34
2.4.1 The PCA in real data . 35

2.5 AMIE . 39
2.5.1 Algorithm . 39
2.5.2 Mining Operators . 42
2.5.3 Confidence calculation . 45
2.5.4 Query Implementation Details . 45

2.6 Performance Experiments . 50
2.6.1 Experimental Setup . 50

2.6.2 AMIE vs. WARMR . 51
2.6.3 AMIE vs. ALEPH . 53
2.6.4 AMIE with Different Settings . 55

2.7 Fact Inference with AMIE . 56
2.7.1 Standard vs. PCA Confidence . 56
2.7.2 AMIE vs. ALEPH . 59

2.8 Conclusion . 60

3 Speeding Up Rule Mining 61
3.1 Speeding Up Rule Refinement . 61
3.2 Speeding up Confidence Evaluation . 63

3.2.1 Motivation . 63
3.2.2 Confidence Approximation . 64
3.2.3 Computing the Approximation . 66
3.2.4 Confidence Upper Bounds . 68

3.3 Experiments . 69
3.3.1 Experimental setup . 70

3.4 AMIE+ Demo . 72
3.4.1 Interface . 73
3.4.2 Implementation . 75

3.5 Conclusion . 75

4 Wikilinks Semantification 77
4.1 Motivation . 77
4.2 Related Work . 78
4.3 Predicting Semantics for Wikilinks . 79

4.3.1 Mining Semantification Rules . 79
4.3.2 Predicting Relations for Wikilinks . 80

4.4 Wikilinks for Rule Mining . 81
4.5 Conclusion . 83

5 Schema Alignment 85
5.1 Motivation . 85
5.2 Related work . 87
5.3 Method . 88
5.4 Experiments . 89

5.4.1 Setup . 90
5.4.2 Simple Mappings . 90
5.4.3 More complex patterns . 91

5.5 Conclusion . 93

6 Canonicalization of open KBs 95
6.1 Introduction . 95
6.2 Related Work . 96

6.2.1 Open Information Extraction . 96
6.2.2 Linking and clustering entities . 97
6.2.3 Clustering relations . 98

6.3 Canonicalizing noun phrases . 99
6.3.1 Mentions . 99
6.3.2 Clustering . 99
6.3.3 Similarity Functions . 100
6.3.4 Combined Feature . 101
6.3.5 Canonicalization . 102

6.4 Canonicalizing verbal phrases . 103
6.4.1 A semi-canonicalized KB . 103
6.4.2 Rule Mining . 103
6.4.3 Phrase Clustering . 103
6.4.4 Canonicalization . 104

6.5 Experiments . 104
6.5.1 Entity clustering . 104
6.5.2 Relation clustering . 112

6.6 Conclusions . 114

7 Predicting Completeness in Knowledge Bases 117
7.1 Introduction . 117
7.2 Related Work . 119
7.3 Preliminaries . 120
7.4 Completeness Oracles . 121

7.4.1 Simple Oracles . 121
7.4.2 Parametrized Oracles . 122

7.5 Learning Completeness . 123
7.5.1 Combining Oracles . 123
7.5.2 Enhancing AMIE . 123
7.5.3 AMIE as Completeness Oracle . 126

7.6 Experiments . 126
7.6.1 Setup . 126
7.6.2 Basic Completeness Oracles . 128
7.6.3 Learned Completeness Oracles . 129

7.7 Application . 130
7.8 Conclusion . 133

8 Vision on Numerical Rule Mining 135
8.1 Introduction . 135
8.2 Numerical Rules . 136

8.2.1 Numerical Constraints . 136

8.2.2 Descriptive and Predictive rules . 137
8.2.3 Functional notation . 138
8.2.4 Evaluation Metrics . 139

8.3 Existing Work . 141
8.4 Conclusion . 143

9 Conclusion 145
9.1 Summary . 145
9.2 Outlook . 146

Appendices 157

A Résumé en français 159
A.1 Introduction . 159
A.2 Contribution . 160
A.3 Préliminaires . 160

A.3.1 Bases de connaissances RDF . 160
A.3.2 Hypothèses du monde clos et du monde ouvert 161
A.3.3 Clauses de Horn (Règles) . 161

A.4 Extraction de règles . 162
A.4.1 Introduction . 162
A.4.2 Mesures de Significativité . 162
A.4.3 Mesures de confiance . 163
A.4.4 La Présomption de Complétude Partielle 163
A.4.5 AMIE . 164
A.4.6 Expérimentation . 166
A.4.7 Conclusion . 169

A.5 Accélérer l’extraction de règles . 169
A.5.1 Introduction . 169
A.5.2 Accélérer la phase de spécialisation 170
A.5.3 Accélérer le calcul de la confiance 170
A.5.4 Expérimentation . 171
A.5.5 Conclusion . 172

A.6 Semantification de wikilinks . 172
A.6.1 Introduction . 172
A.6.2 Méthode . 173
A.6.3 Conclusion . 173

A.7 Alignement de schémas . 174
A.7.1 Introduction . 174
A.7.2 Méthode . 174

A.8 Mise en forme canonique de bases de connaissances ouvertes 176
A.8.1 Introduction . 176
A.8.2 Canonisation de groupes nominaux 176
A.8.3 Canonisation de groupes verbaux 177

A.8.4 Experimentation . 177
A.8.5 Conclusion . 178

A.9 Prédiction de la complétude . 178
A.9.1 Introduction . 178
A.9.2 Complétude . 179
A.9.3 Expérimentation . 180
A.9.4 Conclusion . 180

A.10 Extraction de règles numériques . 180
A.10.1 Introduction . 180
A.10.2 Le langage . 181
A.10.3 Conclusion . 182

A.11 Conclusion . 182

1.1. Introduction : Motivation 13

Chapitre 1

Introduction

1.1 Motivation

Since the inception of the Semantic Web [12], knowledge bases (KBs) have become
increasingly prevalent. Initiatives such as DBpedia [7], YAGO [117], NELL [18], Cyc [78],
Wikidata [124], and the Knowledge Vault [32] aim at constructing and maintaining large
collections of machine readable information about the real world. This information takes
the form of facts such as “London is the capital of the United Kingdom", “Barack Obama
was born in Honolulu”, or “Every politician is a person". KBs find applications in multiple
scenarios such as Information Retrieval, Question Answering and Automatic Reaso-
ning. For instance, when confronted with the query “Barack Obama’s place of birth”, all
major search engines nowadays are able to understand that the string “Barack Oba-
ma” likely refers to a person and that the user is asking about an attribute (place of
birth) of that person. Today’s KBs have been constructed by means of automatic and
semi-automatic methods, spanning from Information Extraction and Machine Learning
techniques to crowd-sourcing initiatives.

In recent years, KBs have become so large that they can be mined for information.
It is possible to find patterns or rules in the KBs that describe common correlations in
the data. For example, we can mine the rule

livesIn(x, z) ∧ marriedTo(x, y) ⇒ livesIn(y, z)

This rule captures the fact that, very often, the spouse of a person lives in the same
place as the person. Such rules do not hold in all cases. Therefore, they have a confi-
dence score associated to them, i.e., the ratio of cases where the rule draws a correct
conclusion. In this example, the rule errs for all cases where the spouses reside in
different cities.

Finding such rules can serve multiple purposes : First, by applying such rules on
the data, new facts can be derived that make the KB more complete. For example, if we
know where Barack Obama lives, and if we know that Michelle Obama is his wife, then
we can deduce (with high probability) where Michelle Obama lives. Second, such rules
can identify potential errors in the knowledge base. If, for instance, the KB contains

the statement that Michelle Obama lives in a completely different place, then maybe
this statement is wrong. Third, the rules can be used for reasoning. Many reasoning
approaches rely on other parties (e.g., human experts) to provide rules [88,104]. Last,
rules describing general regularities can help us understand the data better. We can, for
instance, find out that countries often trade with countries speaking the same language,
that marriage is a symmetric relationship, that musicians who influence each other often
play the same instrument, and so on.

All of this shows that, mining rules on KBs carries a great value for data-oriented
tasks such as analytics, prediction and maintenance.

1.2 Contribution

The goal of this thesis is twofold. First, we want to mine “interesting” rules from KBs,
i.e., rules that are statistically significant and that draw correct conclusions. Such rules
convey useful insights about the data and the domain of knowledge. Our second goal is
to apply the rules in multiple KB data maintenance problems. In this thesis, we address
tasks in the areas of facts inference, integration of data from independent sources and
prediction of completeness.

The thesis is structured as follows :

Preliminaries. The remainder of this chapter is devoted to introduce the basic concepts
of KBs and logical rules.

Rule Mining. In Chapter 2 we present the design and implementation of AMIE, a sys-
tem that can learn logical rules on KBs operating under the Open World Assumption.
AMIE can learn rules on large, potentially incomplete KBs in a few minutes without the
need for parameter tuning or expert input. AMIE outperforms state-of-the-art rule mining
systems both in terms of runtime and quality of rules. The latter dimension is assessed
by using the rules for fact inference and measuring the precision of the inferred facts.
The work presented in this chapter is based on the following publication :

— Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. Association
Rule Mining Under Incomplete Evidence in Ontological Knowledge Bases. Pro-
ceedings of the 22nd International Conference on World Wide Web. pp 413–422.
Rio de Janeiro, Brazil, 2013. Awarded best student paper.

Speeding up Rule Mining. Chapter 3 presents AMIE+, an extension of AMIE that
implements a set of runtime enhancements aimed at improving the scalability of AMIE.
In addition, this chapter introduces an interactive demo that drives users through the
process of rule mining with AMIE+ . The contents of this chapter are based on the
following publications :

— Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. Fast Rule Mi-
ning in Ontological Knowledge Bases with AMIE+. International Journal on Very

Large Databases. Volume 24, Issue 6, pp 707–730. December 2015.
— Luis Galárraga. Interactive Rule Mining in Knowledge Bases. 31ème Conférence

sur la Gestion de Données. Île de Porquerolles, France, 2015.

Wikilinks Semantification. Chapter 4 shows how to apply rule mining to wikilinks. A
wikilink is a hyperlink between two Wikipedia pages. In the vast majority of cases, those
wikilinks are unsemantified, i.e., there does not exist a relation in the KB that explains
the connection between the endpoints of the wikilink. We apply rule mining to predict
semantic relations between the entities of a wikilink by mining logical rules such as
“politicians that link to a prize have usually won the prize”. We then use the rules to
predict candidate relations for the entities in unsemantified wikilinks. Such predictions
can be used, e.g., to propose new facts for KBs. This work in this chapter was presented
in the following publication :

— Luis Galárraga, Danai Symeonidou, Jean-Claude Moissinac. Rule Mining for Se-
mantifiying Wikilinks. Proceeding of the 8th Workshop on Linked Open Data. Flo-
rence, Italy, 2015.

Schema Alignment. In Chapter 5, we propose to apply rule mining to the task of KB
schema alignment. Given several KBs with complementary information about a certain
domain, schema alignment is the process of finding mappings between the schemas
(relations and classes) of the KBs. The purpose of such mappings is to integrate the
KBs, e.g., merge them. This allows us to query the KBs as if they were a single source
of information. Our proposal is to express schema alignments as rules, and to mine
them automatically with AMIE. This idea was introduced in the following article :

— Luis Galárraga, Nicoleta Preda, Fabian Suchanek. Mining Rules to Align Know-
ledge Bases. Proceedings of the 3rd Workshop on Automated Knowledge Base
Construction. pp 43–48. San Francisco, USA, 2013.

Canonicalization of Open KBs. Chapter 6 introduces the problem of canonicalizing
open KBs. An open KB is a KB that has been constructed by extracting triples from
arbitrary text without enforcing the relations to follow a schema. This schema-free KB
may contain facts harvested from independent web sources, and therefore it can ex-
press the same fact in different ways. For instance, one web page could contain the
statement “President Obama earned a degree from Harvard University”, while a se-
cond web page could express the same idea as “Barack Obama studied at Harvard
University”. Canonicalization is the problem of identifying the multiple synonyms of a
given entity or relation, so that they are always mentioned in the same way. We pro-
pose to use machine learning techniques to cluster synonymous entity names. We then
use rule mining to canonicalize the relations. This chapter is based on the following
publication :

— Luis Galárraga, Geremy Heitz, Kevin Murphy, Fabian Suchanek. Canonicalizing
Open Knowledge Bases. Proceedings of the 23rd ACM International Conference

on Information and Knowledge Management. pp 1679–1688. Shanghai, China,
2014.

Predicting Completeness. In Chapter 7, we study the problem of predicting whether
the KB knows all the answers to a certain query. We focus on queries of the form ⟨e,
r, y⟩ such as ⟨Obama, hasParent, y⟩. Here we wish to predict whether the KB knows
all the parents (y values) of Barack Obama. We define and study a set of signals that
make predictions about the completeness of query answers. We then use rule mining
to combine those signals into logical rules that can capture completeness patterns,
such as “people with two parents in the KB do not have more parents”. Such rules can
be used to generate completeness annotations for KBs or generate explicit counter-
evidence for rule mining and fact inference. The work presented in this chapter is under
revision :

— Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian Suchanek. Predicting
Completeness in Knowledge Bases. Proceeding of the 10th International Confe-
rence on Web Search and Data Mining. Cambridge, UK, 2017.

Numerical Rule Mining. Chapter 8 takes a visionary approach and proposes a lan-
guage for numerical rule mining. This work is an attempt to reconciliate some of the
existing work in this area so that it fits within the framework provided by AMIE. The
chapter builds upon the following vision paper :

— Luis Galárraga, Fabian Suchanek. Towards a Numeric Rule Mining Language.
Proceedings of the 4th Workshop on Automated Knowledge Base Construction.
Montreal, Canada, 2014.

Conclusion. Chapter 9 concludes this thesis, by summarizing the scope of these contri-
butions and suggesting potential avenues of research.

1.3 Preliminaries

We focus on KBs such as YAGO [117], Wikidata [124] or DBpedia [7]. These KBs
store general purpose information about real world entities such as people, places
and organizations. They know, for instance, that “London is the capital of UK”, “Ba-
rack Obama is a politician”, and that “all politicians are people”. Current KBs have been
constructed in multiple ways. Some projects rely on fully automatic Information Extrac-
tion (IE) techniques [32, 117]. For instance, the YAGO KB [117] integrates information
from the Wikipedia infoboxes, the Wikipedia categories, Wordnet 1, and Geonames 2.
Other KBs extract knowledge from arbitrary web pages in the web, e.g., NELL [18].
In contrast, some KBs rely on knowledge provided by human annotators, e.g., Wiki-
data [124]. Finally, some of them may use a combination of these techniques [7,78,124].

1. https://wordnet.princeton.edu/
2. http://www.geonames.org/

https://wordnet.princeton.edu/
http://www.geonames.org/

1.3.1 RDF Knowledge Bases

Conceptually, a knowledge base (KB) is a set of computer-readable facts about a
domain of knowledge. Those facts are represented using the RDF 3 data model [128],
the standard W3C recommendation for knowledge representation. In RDF, facts take
the form of triples ⟨x, r, y⟩. Examples of facts are ⟨UK, hasCapital, London⟩, ⟨Barack,
type, Politician⟩ and ⟨Barack, fullName, ‘Barack Hussein Obama’⟩. The subject is al-
ways a resource, i.e., a real-world concept or entity 4, while the object can be either
a resource or a literal value, e.g., a string, an integer or a date. To differentiate entity
identifiers from literals, we write the first as unquoted strings starting with a capital let-
ter, e.g., London, Politician. Literal values, in contrast, are represented by single-quoted
strings, e.g., ‘Barack Hussein Obama’. There are several equivalent alternative repre-
sentations of facts ; in this thesis we borrow the notation from Datalog and represent a
fact ⟨x, r, y⟩ as r(x, y). For example, we write hasCapital(UK, London). Since we always
assume a fixed KB, we will write r(x, y) to mean r(x, y) ∈ K.

KBs normally have a schema associated to them. The schema consists of a set of
statements that define, among other things, the domains and ranges for relations and
the class hierarchy. The RDF Schema (RDFS) recommendation [103] provides the vo-
cabulary to define the schema of an RDF KB. For example, the schema of a KB about
countries and cities could contain the fact rdfs :subClassOf (EUCountry ,Country). This
fact states that every instance of the class EUCountry is also an instance of the class
Country. The facts rdfs :domain(hasCapital ,Country) and rdfs :range(hasCapital ,City)
are also typical schema facts. They state that the relation hasCapital is defined from
countries to cities. For simplicity, we write domain(r) and range(r) to refer to the do-
main and range of relation r respectively. In this thesis, we are not concerned with
finding rules in the schema of KBs, because the schema is normally defined by the KB
designers and it is usually much smaller than the actual KB. However, we may make
use of the schema information to improve the quality of the mined rules. Moreover, in
the rest of the thesis, we will use the terms knowledge bases or simply KBs to refer to
RDF KBs.

We now define a KB in a formal way. If E is a set of entities, R is a set of relations,
and L is a set of literals, a KB K is a subset of E ×R × (E ∪ L). In general, we give less
attention to the set of literal values L, because literal attributes tend to be unique for
instances. This fact makes them less interesting when mining rules that hold frequently
in the data 5.

1.3.2 Closed vs. Open World Assumption

The Closed World Assumption (CWA) is the assumption that any fact that is not
known to be true, is false. Under the CWA, e.g., if a KB does not know that Barack

3. Resource Description Framework
4. RDF also defines anonymous entities, called blank nodes. We do not consider them in this thesis.
5. Nevertheless, literal numerical values become crucial in our vision for numerical rule mining presen-

ted in Chapter 8

Obama won a Grammy Award, then we can conclude that he did not win a Grammy
Award. This is equivalent to say that the KB is complete with respect to the real world.
Conversely, the Open World Assumption (OWA) is the assumption that the truth value
of a fact is independent of whether the fact is known to be true. This means that under
the OWA, statements not present in the KB are not necessarily false, but just unknown.
Due to the limitations of human knowledge and information extraction techniques, KBs
are inherently incomplete. Hence, it is infeasible to assume a KB knows all the true
facts about a given domain of knowledge. For this reason, KBs usually operate under
the OWA.

1.3.3 Functions

A function is a relation r that has at most one object for every subject, i.e.,

∀x ∶ type(x,domain(r)) ∶ ∣{y ∶ r(x, y)}∣ ≤ 1

Similarly, a relation is an inverse function if each of its objects has at most one subject.

∀y ∶ type(y, range(r)) ∶ ∣{x ∶ r(x, y)}∣ ≤ 1

Since KBs are usually noisy, even relations that are conceptually functions (such as has-
Birthdate) may exhibit two objects for the same subject. Vice versa, there are relations
that are not functions in the strict sense, but that exhibit a similar behavior. For example,
isCitizenOf can give several citizenships to a person, but the vast majority of people
have only one citizenship. Therefore, we use a non-binary notion of functionality [116].
The functionality of a relation r is a value between 0 and 1 defined by the formula :

fun(r) ∶= #x ∶ ∃y ∶ r(x, y)
#(x, y) ∶ r(x, y)

where #x ∶X is an abbreviation for ∣{x ∶ X ∈ K}∣. The formula divides the number of
different subjects that occur in relation r by the number of facts of r. Relations will have
different functionality scores. For functional relations such as hasBirthDate or hasISBN ,
fun(r) is 1 since there are as many facts as subjects in the relation. Similarly, quasi-
functions such as isCitizenOf exhibit values close to 1. Non-functional relations such
as hasFriend , in contrast, will exhibit values close to 0 as each subject is associated to
multiple object values.

Given a relation r, we define its inverse r−1 as the relation constructed by swapping
the arguments of r, i.e., ∀r(x, y) ∶ r−1(x, y) ∶= r(y, x). For instance, isCitizenOf −1 =
hasCitizen. We define the inverse functionality ifun of a relation r as the functionality of
its inverse, that is, ifun(r) ∶= fun(r−1).

Some relations have roughly the same degree of functionality and of inverse func-
tionality. Bijections are an example. Usually, however, fun and ifun are different. Manual
inspection shows that in web-extracted common sense KBs (e.g., YAGO, DBpedia) the
functionality is usually higher than the inverse functionality. For example, a KB is more

likely to specify isCitizenOf ∶ Person → Country than hasCitizen ∶ Country → Person.
Intuitively, this allows us to consider a fact r(x, y) as a fact about x. In the following, we
will assume that for all relations r, fun(r) ≥ ifun(r). Whenever this is not the case, r
can be replaced by its inverse relation r−1. Then, fun(r−1) ≥ ifun(r−1). In the following,
we assume that all relations have been substituted with their inverses if their inverse
functionality is larger than their functionality. This trick may lead to relations with lite-
ral domains, thus slightly deviating from the RDF standard. However, it simplifies our
approaches considerably without affecting their generality.

1.3.4 Rules

An atom is a fact that allows variables at the subject and/or object position.
Examples are livesIn(x,USA) or isCitizenOf (x, y). In the rest of this thesis, we denote
variables by lowercase letters.

A Horn rule consists of a head and a body, where the head is a single atom and the
body is a logical conjunction of atoms of zero, one, or more atoms. We denote a rule
with head H and body {B1, ...,Bn} by an implication

B1 ∧B2 ∧ ... ∧Bn ⇒H

which we abbreviate as B ⇒H. An example is the rule

livesIn(x, y) ∧ isMarriedTo(x, z) ⇒ livesIn(z, y)

An instantiation σ is an assignment of variables to constants. The application of
an instantiation σ to an atom B produces a new atom σ(B) where all variables in the
instantiation have been replaced by the corresponding constants. For example given
the instantiation σ ∶= {x → Oana, y → Paris}, its application to the atom livesIn(x, y),
yields the instantiated fact livesIn(Oana,Paris). This notion is naturally extended to
conjunction and rules :

σ(B) ∶= σ(B1) ∧ σ(B2) ∧ ⋅ ⋅ ⋅ ∧ σ(Bn)

σ(B ⇒H) ∶= σ(B) ⇒ σ(H)

We say a fact r(x, y) is a prediction of a rule B ⇒H in a KB K if

∃ σ ∶ ∀Bi ∈B ∶ σ(H) = r(x, y) ∧ σ(Bi) ∈ K

In other words, a prediction of B ⇒H in K is an instantiation of the head atom such that
the corresponding instantiated body atoms are in K. For example, let us consider a KB
containing the facts livesIn(Barack, Washington) and isMarriedTo(Barack ,Michelle).
Let us also consider the rule that predicts that spouses live in the same city :

livesIn(x, y) ∧ isMarriedTo(x, z) ⇒ livesIn(z, y)

We say that the fact f ∶= livesIn(Michelle,Washington) is a prediction of this rule under
the instantiation σ ∶= {x → Barack , y → Washington, z → Michelle}. If a fact f is a
prediction of a rule B ⇒ H on a KB K, we say the rule entails f , which we denote by
K ∧ (B ⇒ H) ⊧ f . It is important to remark, that our definition of a prediction does not
require f to be in the KB or to hold in reality. This implies that rules can make predictions
outside the KB and that some of those predictions may be wrong. In Section 2.3.3 we
discuss different strategies to gauge the quality of a rule on a KB based on the number
of correct and wrong predictions it makes.

Two atoms in a rule are connected if they share a variable or constant. A rule is
connected if every atom is connected transitively to every other atom of the rule. We
restrict our search to connected rules. This restriction avoids mining rules with comple-
tely unrelated atoms, such as diedIn(x, y) ⇒ wasBornIn(w, z).

A variable in a rule is closed if it appears in at least two atoms of the rule. We say,
a rule is closed if all its variables are closed. If only the head variables are closed, we
say the rule is head-closed. Consider for instance the following rule :

hasCapital(z, y) ∧ diedIn(x, y) ⇒ wasBornIn(x, y)

This rule is head-closed because the head variables x and y are closed (in contrast to
z). Head-closed rules make concrete predictions. Thus, restricting to head-closed rules
avoids predicting the mere existence of a fact as in the rule

diedIn(x, y) ⇒ wasBornIn(x, z)

In this example, the variable z is implicitly existentially quantified, that is, the rule is
actually equivalent to diedIn(x, y) ⇒ ∃z ∶ wasBornIn(x, z). We say a rule is recursive if
the head relation occurs also in the body as in

isCitizenOf (z, y) ∧ hasChild(z, x) ⇒ isCitizenOf (x, y)

We say an atom is reflexive if it contains the same variable in both arguments, e.g.,
r(x,x).

1.3.5 Language bias

Inspired by the definitions presented in [3], we define a syntactic language bias
L as a function that maps rules of the form B ⇒ H to truth values. If the function
returns true, we say the function accepts the rule, otherwise the function rejects the
rule. Language biases are used in rule mining to restrict the size of the search space,
by focusing on particular types of rules. An example of a syntactic language bias is
the language of rules with at most n atoms, denoted by Ln. For instance, the rule
livesIn(x, y) ∧ isMarriedTo(x, z) ⇒ livesIn(z, y) is accepted by the language L3, but
rejected by L2. Other examples are the language of head-closed rules Lhclosed , the
language of closed rules Lclosed , the language of rules without reflexive atoms Lnot-reflex

or the language of rules with distinct atoms Ldistinct . Language biases can be combined

in a conjunctive fashion, e.g., Ln-closed ∶= Lclosed ∧Ln defines the language bias of closed
rules up to n atoms. We use the notation (B ⇒ H) ∈ L to denote that L accepts the
rule B ⇒H. For instance

(isCitizenOf (z, y) ∧ hasChild(z, x) ⇒ isCitizenOf (x, y)) ∈ Lclosed

On the other hand

(livesIn(x, z) ⇒ isCitizenOf (x, y)) /∈ Lclosed

This happens because the variables y and z are not closed.
In this thesis, like in other rule mining approaches, we are not interested in general

Horn clauses, but only in the rules of a certain language bias. Language biases offer a
trade-off between the expressiveness of the mined rules and the speed of the mining
process. As an example, the rules in L3 can capture more complicated correlations
than rules in L2, but come with a larger search space and thus with a much slower
performance. The less restrictive the language bias is, the more expressive the rules
can potentially be, the larger the search space grows, and the less tractable the search
becomes.

We remark that syntactic language biases are oblivious to the content of the KB
on which the rules are mined. For example, one may want to accept rules that make
a minimal number of predictions occurring in a given KB. Since no syntactic language
bias could enforce such a requirement, we define a semantic language bias LK as a
function that accepts or rejects rules of the form B ⇒ H, given a KB K. As we will
show in Chapter 2, semantic language biases can also have a great impact in the
performance of rule mining. All existing rule mining systems resort to a combination of
syntactic and semantic language biases to drive the search space exploration.

2.1. Rule Mining : Introduction 23

Chapitre 2

Rule Mining

In this chapter, we present AMIE (Association Rule Mining Under Incomplete Evi-
dence), a system designed to mine Horn rules on KBs. Unlike state-of-the-art ap-
proaches, AMIE is tailored for potentially incomplete KBs operating under the Open
World Assumption (OWA). This is possible thanks to a novel mining model that esti-
mates the confidence of a rule in the presence of incompleteness. AMIE also relies on
a highly concurrent implemention that allows the system to scale to KBs up to 6M facts.

This chapter is structured as follows. Section 2.1 introduces the problem of rule
mining in KBs in a formal fashion. Section 2.2 discusses the related work in the area of
rule mining on structured data. Section 2.3 describes the AMIE mining model. This is
followed by the introduction and study of the Partial Completeness Assumption (PCA) in
Section 2.4. The PCA plays a central role in the generation of counter-evidence under
the OWA and the definition of confidence for rules. In Section 2.5 we describe the AMIE
core algorithm and its implementation. The performance of AMIE and its applicability in
the task of data inference are covered in Sections 2.6 and 2.7. Section 2.8 concludes
the chapter.

This chapter is based on the following publication :

— Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. Association
Rule Mining Under Incomplete Evidence in Ontological Knowledge Bases. Pro-
ceedings of the 22nd International Conference on World Wide Web. pp 413–422.
Rio de Janeiro, Brazil, 2013. Awarded best student paper.

2.1 Introduction

Goal. The goal of our work with AMIE is to mine high quality Horn rules from large,
potentially incomplete KBs operating under the OWA. In addition, we aim at rules that
can predict correct facts beyond the KB. As explained later in this section, these goals
pose multiple challenges.

Learning Horn rules. The problem of inducing Horn rules from a set of facts is the

central topic of Inductive Logic Programming (ILP). In a standard ILP setting, the facts
of a KB K are divided into two (potentially overlapping) sets : the evidence set Ke and
background knowledge Kb. The set Ke contains facts about a fixed target relation r and
is divided into two disjoint subsets : K+e , the set of positive examples, and K−e , the set of
negative examples. Given a syntatic language bias L, and an input KB K, the problem
of inductive logic programming consists of finding a hypothesis (rule) B ⇒ H, such
that :

1. (B ⇒H) ∈ L
2. ∀e ∈ K+e ∶ (Kb ∧B ⇒H) ⊧ e
3. ∀e ∈ K−e ∶ (Kb ∧B ⇒H) /⊧ e

In other words, ILP searches for a rule, that based on the background knowledge, (1)
meets the given syntactic language bias, (2) predicts all the positive examples in the
evidence set and (3) predicts none of the negative examples. Conditions 2 and 3 define
the standard ILP semantic language bias, which we denote by LKILP . As an example,
consider a KB K and the syntactic language bias L3−closed with

K+e ∶= {isCitizenOf (Malia,USA)}
K−e ∶= {isCitizenOf (Malia,UK)}
Kb ∶= {isCitizenOf (Barack ,USA),hasChild(Barack ,Malia), visited(Barack ,UK)}

Based on the background knowledge in Kb, a standard ILP approach should learn the
rule

isCitizenOf (z, y) ∧ hasChild(z, x) ⇒ isCitizenOf (x, y)

because it meets L3−closed and LKILP , that is, it entails the positive example
isCitizenOf (Malia,USA) (Condition 2) and not the negative example isCitizenOf (Malia,UK)
(Condition 3). Conversely, it would be inacceptable to learn the rule visited(z, y) ∧
hasChild(z, x) ⇒ isCitizenOf (x, y) because it does not meet LKILP , in particular it pre-
dicts the given negative example.

Since real-world data is usually noisy, finding rules that match the definition perfectly
may be infeasible. For this reason, ILP approaches normally relax LILP , allowing rules
to cover a subset of the positive examples and hopefully few of the negative examples.
We discuss approaches to this problem further down.

Complexity of Rule Mining. Inducing Horn rules from a KB is an inherently hard pro-
blem. In [47] it is shown that given a KB K ∶= {Kb,Ke} and a syntactic language bias Ln
for some n polynomially bounded on ∣K∣, the problem of deciding whether there exists
a Horn rule B ⇒ H that satisfies Ln and LKILP is ΣP

2 -complete, with ΣP
2 = NPNP . To

understand the extent of such level of complexity, let us define an oracle machine as a
Turing machine that contains an oracle capable of solving a specific problem in unit time.
The oracle resembles a blackbox or function that can be called an arbitrary number of
times and provides an answer instantly. We say a decision problem p belongs to a com-
plexity class NPC , if p can be solved in polynomial time by a non-deterministic oracle

machine whose oracle solves a problem in complexity class C. This means NPNP

defines the set of problems solvable in polynomial time by a non-deterministic Turing
machine equipped with an oracle with complexity in NP . In addition, since rule mining
is NPNP -complete, any problem in NPNP can be transformed to rule mining via a po-
lynomial time transformation.

While the problem of rule mining remains intractable in theory, recent ap-
proaches [20, 42, 43, 133] have proved it is tractable in practice. Those approaches
resort in one way or the other to syntactic language biases and relaxations of the ori-
ginal LILP semantic bias, in order to prune uninteresting regions of the search space.
In AMIE [43], for instance, we use a support threshold to reduce the size of the search
space by avoiding rules with low statistical significance.

Challenges. Mining rules on KBs poses several challenges. First, KBs contain only
positive statements and no negations. For instance, they cannot express the fact that
Barack Obama does not hold German citizenship. This makes the standard ILP setting
inapplicable to KBs because counter-examples for rules are not available, i.e., K−e = ∅.
Furthermore, the basic ILP formulation does not deal with the predictions of the rule that
are outside the KB and the evidence set. We can therefore claim that basic ILP is not
concerned with prediction of facts, but with the description of the KB and the explanation
of evidence set. This is incompatible with our goal of predicting facts beyond the KB.

A second challenge comes from the fact that KBs operate under the Open World
Assumption (OWA, see Section 1.3.2). Under the OWA, a statement that is not contai-
ned in the KB is not necessarily false ; it is just unknown. This means that absent facts
cannot take the role of counter-examples. This is a crucial difference to many standard
database settings that operate under the Closed World Assumption (CWA). Consider
an example KB that does not contain the information that Barack Obama is a citizen of
the USA. Under the CWA we would conclude that he is not American. Under the OWA,
however, he could be American. It follows that if a rule predicts that Barack Obama is
American, rule mining systems do not have a way to know whether this prediction is
true or false. This also implies that we cannot accurately measure the correcteness of
rules.

Another challenge originates from the size of current KBs. As of 2016, the latest
version of the YAGO KB [117] contains 120M facts, about 10M entities and 100 rela-
tions. Furthermore, the Knowledge Vault (Google’s KB) has been reported to contain
1.6B facts and more than 4000 relations [32]. In particular, learning rules on KBs trig-
gers an instance of the ILP problem formulation for every target relation r in the KB.
In such a setting, the evidence set consists of all the facts of the target relation, i.e.,
K+e = {r(x, y) ∶ r(x, y) ∈ K}, while the background knowledge comprises all the facts of
the KB, i.e., Kb = K. Since the classical ILP problem is NPNP -complete, it is impossible
to solve the problem on KBs of this size.

With our work on AMIE, we address all the aforementioned challenges.

Transaction Label Transaction Items

⟨Elvis, Lisa, Priscilla⟩ {mother(x3,x2), father(x1,x2), marriedTo(x1,x3)}
⟨Barack, Malia, Michelle⟩ {mother(x3,x2),father(x1,x2),marriedTo(x1,x3)}
⟨François, Flora, Ségolène⟩ {mother(x3,x2),father(x1,x2)}

TABLE 2.1 – Mining Rules with 3 Variables

2.2 Related Work

Rule mining has been an area of active research during the last 25 years. Some
approaches mine association rules, some mine logical rules, others mine a schema for
the KB, and again others use rule mining for application purposes. In the following, we
survey the most pertinent related work along these lines.

2.2.1 Association Rule Mining

Association Rule Mining [4] discovers correlations in shopping transactions. A tran-
saction is a set of items. For example, in the context of sales analysis, a transaction is
the set of products bought together by a customer in a specific event. The mined rules
are of the form {Bread, Wine}⇒ {Cheese}, meaning that people who bought bread and
wine usually also bought cheese. However, these are not the kind of rules that we aim
to mine in this thesis ; we aim at mining Horn rules as defined in Section 1.3. Thus, as-
sociation rules are different in nature from the Horn rules we aim at. Still, we can show
some similarities between the two approaches. Let us define one transaction for every
set of k entities that are connected in the KB. For example, in Table 2.1, we will define a
transaction for the entities Elvis, Lisa and Priscilla, because they are connected through
the facts mother(Priscilla,Lisa), father(Elvis,Lisa), marriedTo(Elvis, Priscilla). We label
the transaction with the set of these entities. Each atom r(xi, xj) on variables indexed
by 1 ≤ i, j ≤ n corresponds to an item. A transaction with label ⟨C1, . . . ,Cn⟩ contains an
item r(xi, xj) if r(Ci,Cj) is in the KB. For example, the transaction ⟨Elvis, Lisa, Priscilla⟩
contains the items {mother(x3,x2), father(x1,x2), marriedTo(x1,x3)}, since the ground
atoms mother(Priscilla,Lisa), father(Elvis,Lisa) and marriedTo(Elvis, Priscilla) are in the
KB. In this representation, association rules are Horn rules. In the example, we can
mine the association rule

{mother(x3, x2),marriedTo(x1, x3)} ⇒ {father(x1, x2)}

which corresponds to the Horn rule

mother(x3, x2) ∧marriedTo(x1, x3) ⇒ father(x1, x2)

Constructing such a table with all possible combinations of entities is practically not
viable. If we see a KB as graph with entities as nodes and relations as directed edges,
building the table is equivalent to enumerating all connected subgraphs of k nodes,

where k is also the number of variables in the rule. Such an enumeration is exponen-
tial in k. To see this, consider a fully connected graph (the worst case) with n = ∣E∣. In
that case, there are (n

k
) > (nk)

k subgraphs [122]. Apart from that, enumerating all the
transactions faces a number of design issues, e.g., how to deal with transactions that
contain the same entities in different orderings. Therefore, association rule mining can-
not be used directly to mine Horn rules. However, we take inspiration from the parallels
between the two types of mining for our system, AMIE.

2.2.2 Inductive Logic Programming

Sherlock [109] is an unsupervised ILP method to learn first-order Horn clauses from
open domain facts. Sherlock uses probabilistic graphical models (PGMs) to infer new
facts. It tackles the noise of the extracted facts by extensive filtering in a preprocessing
step and by penalizing longer rules in the inference part. For mining the rules, Sherlock
uses two heuristics : statistical significance and statistical relevance. The statistical si-
gnificance of a clause A⇒ B measures the number of positive examples of the clause
in the extracted corpus, i.e., the cases where both A and B hold. The statistical rele-
vance, on the other hand, measures the divergence between P (B∣A), i.e., the probabi-
lity of the succedent given the antecedent, and P (B), the probability of the succedent
per se. Unlike AMIE, it works on facts extracted from free text that are not mapped to
crisp relations. Besides, Sherlock works under the Closed World Assumption.

QuickFOIL [133] is a standard ILP system based on a generic top-down greedy al-
gorithm and implemented on top of the QuickStep in-memory storage engine [19]. It
learns a set of hypotheses (Horn rules) from positive and negative examples of a tar-
get relation and a collection of background facts. When refining a rule, the QuickFOIL
algorithm greedily picks the clause that maximizes a scoring function depending on the
support and the confidence gain of the new rule. Once a rule is mined, the algorithm re-
moves the positive examples covered by the rule and starts the induction process on the
remaining facts. QuickFOIL can scale to problem instances with millions of background
facts thanks to a set of aggressive pruning heuristics and multiple database optimiza-
tions. However, it is not suitable for mining rules under the Open World Assumption,
since it requires explicit negative examples.

A very recent approach called Ontological Pathfinding (OP) [20], exploits the in-
formation of the T-Box (specifically relation domains and ranges) to mine all potential
candidate rules in a first phase. In a second phase, the support and confidence of the
candidates is evaluated in the A-box. The OP algorithm relies on smart data-partitioning
and a highly parallel implementation on top of Apache Spark 1, to find rules on a set of
388M facts from Freebase [120]. Like AMIE, OP aims at Horn rules, it does not require
explicit counter-examples, and it uses the same definition of support for rules. However,
OP resorts to a Closed World Assumption (CWA) to generate counter-examples. The
authors compare their approach with AMIE in terms of runtime performance and infe-
rence capabilities. In the first category, their implementation provides an important gain

1. http://spark.apache.org/

http://spark.apache.org/

in runtime for very large datasets such as Freebase and YAGO2s, remaining compa-
rable for smaller datasets such as YAGO2. In contrast, OP achieves lower precision at
data inference in YAGO2 due to its notion of confidence based on the CWA.

The WARMR system [28, 29] mines patterns in databases that correspond to
conjunctive queries. It uses a declarative language bias to reduce the search space. An
extension of the system, WARMER [46], modified the approach to support a broader
range of conjunctive queries and increase the efficiency of the search space explora-
tion.

ALEPH 2 is a general purpose ILP system that implements Muggleton’s Inverse En-
tailment algorithm [86] in Prolog. It employs a variety of evaluation functions for the
rules as well as a variety of search strategies. WARMER and ALEPH are not tailored
to deal with large KBs under the Open World Assumption. We compare AMIE to these
two systems, which are the only ones available for download. Our experiments do not
only show that these systems mine less sensible rules than our approach, but also that
they take more time to do so.

2.2.3 Expert Rule Mining

Another rule mining approach over RDF data [90] was proposed to discover causal
relations in RDF-based medical data. It requires a domain expert who defines targets
and contexts of the mining process, so that the correct transactions are generated. Our
approach, in contrast, does not rely on the user to define any context or target. It works
out-of-the-box.

2.2.4 Generating Schemas

In this chapter, we aim to generate Horn rules on a KB. Other approaches use
rule mining to generate the schema or taxonomy of a KB. [22] applies clustering tech-
niques based on context vectors and formal concept analysis to construct taxonomies.
Other approaches use clustering [73] and ILP-based approaches [25]. For the friend-
of-a-friend network on the Semantic Web, [49] applies clustering to identify classes of
people and ILP to learn descriptions of these groups. Another example of an ILP-based
approach is the DL-Learner [67], which has successfully been applied [53] to generate
OWL class expressions from YAGO [117]. As an alternative to ILP techniques, [123]
proposes a statistical method that does not require negative examples. In contrast to
our approach, these techniques aim at generating a schema for a given RDF repository,
not logical rules in general.

2.2.5 Relational Learning

Some approaches learn new associations from semantic data without mining explicit
logical rules. This task is often referred as relational machine learning or link prediction.

2. http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html

Methods such as RESCAL [92], among others [93,112] represent KBs as matrices
or tensors. Under this paradigm, for instance, a KB can be represented as a three-
dimensional tensor where the fact r(x, y) is encoded as 1 in the cell with coordinates
(r, x, y). These methods resort to tensor factorization and latent factor analysis on the
matrix representation of the KB, in order to estimate the confidence of the missing cells,
i.e., how likely the missing facts are true based on the latent features in the data. Even
though the scores are often given a probabilistic interpretation, they are not probabilities
in a strict sense.

Another family of approaches [14,45,125] resorts to embedding models to formulate
the link prediction problem. In [125], entities are represented as vectors in an embed-
ding space, while relations are defined as transformations on those vectors, e.g., the
transformation nationality maps the vector of Barack Obama to the vector of USA. Me-
thods based on embedding methods are very effective at predicting values for functional
relations, e.g., place of birth and still perform fairly well for one-to-many relations, e.g.,
children. In a similar fashion, [56] uses multivariate prediction techniques to learn new
links on a social graph.

The approach proposed in [65] relies on a graph representation for KBs and applies
random walks and path ranking methods to discover new facts in large KBs. In a similar
fashion [81] mines frequent meta-paths on data graphs, i.e., sequences of data types
connected by labeled edges, and uses them to predict links between entities.

In all these approaches, however, the predictions are opaque. It is possible to gene-
rate predictions, but not to derive general structural knowledge about the data that can
explain the reasons why the predictions were made. For example, these approaches
will tell us that Michelle Obama most likely lives in Washington, but they will not tell us
that this is because her husband lives in Washington and people tend to live in same
place as their spouses. Our approach, in contrast, aims at mining explicit logical rules
that capture the correlations in the data. These can then be used to derive new facts
and also to explain why these facts were derived.

2.2.6 Learning Rules From Hybrid Sources

[24] proposes to learn association rules from hybrid sources (RDBMS and Ontolo-
gies) under the OWA. For this purpose, the definition of frequency (and thus of support
and confidence) is changed so that unknown statements contribute with half of the
weight of the true statements. Another approach [70] makes use of an ontology and a
constraint Datalog program. The goal is to learn association rules at different levels of
granularity w.r.t. the type hierarchy of the ontology. While these approaches focus more
on the benefits of combining hybrid sources, our approach focuses on pure RDFS KBs.

2.2.7 Further Applications of Rule Mining

[58] proposes an algorithm for frequent pattern mining in KBs that uses DL-safe
rules. Such KBs can be transformed into a disjunctive Datalog program, which allows
seeing patterns as queries. This approach does not mine the Horn rules that we aim at.

Some approaches use rule mining for ontology merging and alignment [27,80,94]. The
AROMA system [27], for instance, uses association rules on extracted terms to find
subsumption relations between classes and properties of different ontologies. Again,
these systems do not mine the kind of rules we are interested in.

In [1] association rules and frequency analysis are used to identify and classify
common misusage patterns for relations in DBpedia. In the same fashion, [2] applies
association rules to find synonym predicates in DBpedia. The matched synonyms are
then used for predicate expansion in the spirit of data integration. This is a vital task in
manually populated KBs where the users may not use canonical names for relations, or
for cases when the data is produced by independent providers. In contrast to our work,
these approaches do not mine logical rules, but association rules on the co-occurrence
of values.

Since RDF data can be seen as a graph, mining frequent subtrees [21,62] is another
related field of research. However, as the URIs of resources in knowledge bases are
unique, these techniques are limited to mining frequent combinations of classes.

Several approaches, such as Markov Logic [104] or URDF [88] use Horn rules to
perform reasoning. These rules are normally provided by human experts, therefore
such approaches could be consumers of the rules we mine with AMIE.

2.3 Mining Model

In this section we introduce AMIE’s mining model. This encompasses its language
bias and the definitions of the metrics used to evaluate the quality of rules. Moreover,
we elaborate on the problem of predicting facts in a KB under the OWA and induce a
mining model for this setup.

2.3.1 Language bias

Syntactic bias. We are interested in rules that can make concrete predictions (Sec-
tion 1.3.4), therefore we force the head variables of the rules to be closed, i.e., rules
must be in Lhclosed . Still Lhclosed allows for existentially quantified variables in the body
of rules. For instance Lhclosed would accept the rule

isLocatedIn(y, z) ∧ livesIn(x, y) ⇒ isCitizenOf (x , y)

which is an extension of the simpler rule

livesIn(x, y) ⇒ isCitizenOf (x , y)

Actually Lhclosed would allow any extension of the second rule that contains atoms with
existentially quantified variables (z in the first rule). While some of those rules may
still be interesting, the vast majority of them are redundant extensions of closed rules.
Therefore we restrict the language bias of AMIE to Lclosed .

We do not explore reflexive atoms, e.g., r(x,x), since they are of little use in our
setting. Moreover, we enforce the atoms in a rule to be distinct. Thus, AMIE actually ap-
plies the language LAMIE ∶= Lclosed∧Lnot-reflex ∧Ldistinct . Conversely, we allow recursive
rules.

Semantic bias. AMIE’s semantic bias evaluates the quality of the rule in the input KB.
We rely on statistical evidence and correcteness as criteria to accept or reject a rule.
We define metrics to evaluate those dimensions and enforce minimum thresholds. That
is, if a rule is below the given thresholds, it is rejected. The next sections are devoted to
explain the metrics applied by AMIE.

2.3.2 Measures of Significance

Normally, data mining systems define a notion of significance or support for rules,
which quantifies the amount of evidence for the rule in the data. If a rule applies only to
a few instances, it is too risky to use it to draw conclusions. For this reason, data mining
systems frequently report only rules above a given support threshold. In the following,
we define this metric for AMIE’s setting and introduce another notion of significance,
the head coverage.

2.3.2.1 Support

In our context, the support of a rule quantifies the number of correct predictions in
the existing data. One desired property for support is monotonicity, that is, the addition
of more atoms and constraints to the rule should always decrease its support. As we
will show in Section 2.5, such property is crucial for pruning. There are several ways to
define the support : it can be the number of instantiations of a rule that appear in the
KB. This measure, however, is not monotonic if we add atoms to the body. Consider, for
example, the rule

livesIn(x, y) ⇒ wasBornIn(x, y)

If we add the atom hasGender(x, male) to the body, the number of instantiations x,
y in the KB decreases. In contrast, if we add an atom with a fresh variable, e.g., has-
Friend(x, z), to the body, the number of instantiations x, y, z increases for every friend
of x. This is true even if we add another atom with z to obtain a closed rule. Alternati-
vely, we can count the number of facts in one particular body atom. Under this definition,
however, the same rule can have different support values depending on the selected
body atom. We can also count the number of facts of the head atom. This measure de-
creases monotonically if more body atoms are added and avoids equivalent rules with
different support values. With this in mind, we define the support of a rule as the number
of distinct pairs of subjects and objects in the head of all instantiations that appear in
the KB :

supp(B ⇒H) ∶= #(vars(H)) ∶ ∃z1, ..., zm ∶B ∧H

livesIn wasBornIn

(Jean, Paris) (Jean, Paris)
(Thomas, Munich) (Thomas, Munich)

(Antoine, Paris) (Antoine, Colmar)
(Danai, Marseille)

TABLE 2.2 – An example KB containing two relations between people and cities.

where vars(H) is the set of variables occurring in the head of the rule and {z1, ..., zm} =
vars(B) − vars(H) are the variables of the rule apart from the head variables. For our
example rule the formula becomes :

supp(livesIn(x, y) ⇒ wasBornIn(x, y)) ∶= #(x, y) ∶ livesIn(x, y) ∧wasBornIn(x, y)

Table 2.2 shows an example KB with 2 relations and 7 facts. For this KB, our
example rule has support 2, because of the cases :

1. livesIn(Jean,Paris), wasBornIn(Jean,Paris)
2. livesIn(Thomas,Munich), wasBornIn(Thomas,Munich)
Note that the support is defined even for rules that are not yet closed. This allows

for early pruning of unpromising candidate rules. For example, consider the rule

livesIn(x, y) ⇒ wasBornIn(y, z)

This rule is obviously unpromising, because it postulates a birth place for y, which is
not a person. The rule is not yet closed (x and z appear only once). Yet, it has support
0. Thus, it can be pruned away and does not need further refinement.

2.3.2.2 Head Coverage

Support is an absolute number. This means that a user has to know the absolute
size of the KB in order to define a meaningful threshold. Moreover, if the support thre-
shold is higher than the size of some relation, this relation will be disregarded as head
relation for rule mining. To avoid this, we propose a proportional version of support. A
naive way would be to use the absolute number of support (as defined in the previous
paragraph) over the size of the KB. This definition, however, does not solve the problem
for small relations. Therefore, we propose to use the notion of head coverage :

hc(B ⇒H) ∶= supp(B ⇒H)
size(r)

with size(r) ∶= #(x′, y′) ∶ r(x′, y′) denoting the number of facts in relation r. Head
coverage quantifies the ratio of the known true facts that are implied by the rule. For the
example KB presented in Table 2.2, hc(livesIn(x, y) ⇒ wasBornIn(x, y)) = 2/3, because
the rule predicts 2 out of the 3 facts in the head relation wasBornIn.

2.3.3 Measures of Correctness

The support of a rule quantifies the number of known correct predictions of the rule.
However, it does not take into account the false predictions of the rule. We will now
describe measures that judge the quality of a rule. Since KBs do not encode negative
information, all existing measures of quality assume counter-evidence for rules in one
way or another. We first discuss two existing approaches : the standard confidence
and positives-only learning function [113]. Then, we introduce our own measure : the
confidence under the assumption of partial completeness.

2.3.3.1 The CWA and Standard Confidence

The standard confidence measure takes all facts that are not in the KB as negative
evidence. Thus, the standard confidence of a rule is the ratio of its predictions that are
in the KB :

conf (B ⇒H) ∶= supp(B ⇒H)
#(vars(H)) ∶ ∃z1, ..., zm ∶B (2.1)

For example, consider again the KB given in Table 2.2 together with the rule

livesIn(x, y) ⇒ wasBornIn(x, y)
This rule has 50% confidence, i.e., conf (livesIn(x, y) ⇒ wasBornIn(x, y)) = 2/4, be-
cause (1) there are two positive examples for the rule, namely wasBornIn(Jean,Paris),
wasBornIn(Thomas,Munich) and (2) the predictions wasBornIn(Antoine,Paris) and
wasBornIn(Danai ,Marseille) are counted as negative examples since they do not ap-
pear in the KB.

Standard confidence is the measure traditionally used in association rule mining and
market basket analysis, where the Closed World Assumption (CWA) is used : if there
is no evidence in any of the transactions of the database that a user bought a speci-
fic product, then this user did not buy the product. Albeit natural for the market basket
analysis scenario, standard confidence fails to distinguish between “false” and “unk-
nown” facts, which makes it inappropriate for a scenario with Open World semantics
like ours. Moreover, we also pursue a different goal than market basket analysis : we
aim to maximize the number of true predictions that go beyond the current knowledge,
whereas market basket analysis usually tries to mine rules that can describe data that
is already known. In that scenario is natural to assume that predictions outside the da-
tabase are false. In contrast, in our example the standard confidence punishes the rule
for inferring the fact wasBornIn(Danai ,Marseille), even though our goal is to predict it.

2.3.3.2 Positives-Only Learning

For cases where the KB does not contain negative examples, Muggleton has deve-
loped a positives-only evaluation score for ILP [75,87]. It takes random facts as negative
evidence :

Score ∶= log(P) + log
Rsize + 2

R + 1
− L
P

(2.2)

Here, P is the number of known true facts covered, R is the number of random
examples covered, Rsize is the total number of random examples, and L is the number
of atoms in the hypothesis. The intuition is that a good rule should cover many positive
examples, and few or no randomly generated examples. This ensures that the rule is
not overly general. Furthermore, in the spirit of Occam’s razor 3 the rule should use as
few atoms as possible, and thus achieve the best possible compression. This measure
is implemented (among others) in the ALEPH system.

The disadvantage of this measure is that it “guesses” negative examples at ran-
dom, whereas rules usually create false predictions in a non-random way. Even if a
rule produces many false predictions, the intersection of these false predictions and
the random counter-examples may be very small. Consider again our example rule
livesIn(x, y) ⇒ wasBornIn(x, y), which produces false predictions for persons who
have moved to a different place during their life. By considering random person-location
pairs as counter-examples, we might not produce any case for which the rule will give
a false prediction. In the example KB from Table 2.2, this method may fail at genera-
ting the counter-example wasBornIn(Antoine,Paris) simply because such a negative
example will have a relatively small probability to be generated. This phenomenon be-
comes more prevalent as the size of the KB increases. We remark however, that the
second term in Muggleton’s formula tries to alleviate this phenomenon by giving more
weight to scenarios with bigger random samples (Rsize). In particular, if the set of ran-
dom negative examples contains all possible missing facts for the head relation, the
formula behaves similarly to the standard confidence (plus a penalizing factor for lon-
ger rules). In Section 2.6, we compare this measure to our proposed metric, which we
introduce next.

2.4 The Partial Completeness Assumption

In AMIE, we generate negative examples for a rule by means of the Partial Comple-
teness Assumption (PCA). The PCA is the assumption that

r(x, y) ∈ K ⇒ ∀ y′ ∶ r(x, y′) ∉ K ∶ r(x, y′) is false

In other words, we assume that if we know at least one y for a given x and r, then we
know all y that hold in reality for that x and r. This assumption allow us to generate
counter-examples in a way that is less restrictive than the standard confidence. In our
example from Table 2.2, the PCA will assume that any other place of birth for Jean,
Thomas and Antoine is false. Conversely, the PCA will not assume anything about the
place of birth of Danai, because the KB does not know any. With this notion in mind,
we define a new notion of confidence for rules. Under the PCA, the denominator of the
confidence formula is not the size of the entire set of conclusions derived from the body
of the rule, but the number of facts that we know to be true together with the facts that

3. Among competing hypotheses, the one with the fewest assumptions should be selected

we assume to be false. The PCA is defined according to the following formula :

confpca(B ⇒ r(x, y)) ∶= supp(B ⇒H)
#(vars(H)) ∶ ∃z1, ..., zm, y′ ∶B ∧ r(x, y′) (2.3)

This formula is defined only for head-closed rules and is also applicable when the
head atom contains a constant, i.e., for rules of the form B ⇒ r(x,C). The PCA
confidence normalizes the support of the rule by the number of bindings of the
head variables for which there exists a y′ with r(x, y′). Consider again the KB given
in Table 2.2. In this example KB, confpca(livesIn(x, y) ⇒ wasBornIn(x, y)) = 2/3. This
is because (a) there are 2 positive examples for the rule, wasBornIn(Jean,Paris),
wasBornIn(Thomas,Munich), and (b) the prediction wasBornIn(Antoine,Paris) is
counted as negative example, because we already know a different place of birth for
Antoine. The prediction wasBornIn(Danai ,Marseille) is completely disregarded as evi-
dence, because we neither know where Danai was born nor where she was not born.

We notice that Equation 2.3 fixes x and r and implies that rules will try to always
predict values for y. In Section 1.3.3 we re-write all relations so that their functionality is
larger than their inverse functionality, hence, the most functional direction will be always
to predict y given x. To see why this makes sense, recall that it is more intuitive to
predict the birthplace of a specific person than predict all the people that were born in
a specific city. For this reason, AMIE always predicts in the most functional direction.

In spite of being an assumption, the PCA is certainly true for functions, such as
birthdate and gender. The PCA also holds for relations that are not functions but that
have a high functionality, as we shall see in our qualitative analysis of the PCA in next
section. The PCA has been picked up by the Google Knowledge Vault [32] and used
under the name “local completeness assumption”.

2.4.1 The PCA in real data

The PCA is one of the basic ingredients of AMIE’s mining model, therefore studying
its accuracy is vital for the purpose of this chapter. In this section we investigate to what
extent the PCA holds in a real-world KB. We chose the YAGO2 [55] KB.

Setup. We looked into each of the 31 relations between entities in YAGO2. For each
relation r, we randomly sampled 30 subjects. For each subject x, we checked whether
the KB knows all y with r(x, y). We measured precision as the ratio of entities in the
sample for which the PCA holds, i.e., the ratio of entities for which there are no additional
y values in reality. If the relation is more inverse functional than functional (ifun(r) >
fun(r), see Section 1.3.3), we considered r−1 instead.

As ground truth, we took the Wikipedia page of x and what we could find on the
Web by a search engine. It is obvious that such an evaluation cannot be done strictly
quantitatively. For example, a person might have worked for a company, but this fact
might appear nowhere on Wikipedia – or even on the Web. Or a musician might play
10 instruments at different levels of proficiency, but Wikipedia mentions only the 4 main
instruments. Even a search on the Web might not tell us that there are more than 4

instruments. Therefore, we resorted to a qualitative analysis. We analyzed each of the
relations manually, and grouped the relations into categories. Some relations fall into
multiple categories.

Functions and Quasi-Functions. Table 2.3 shows our results for functions and quasi-
functions. By definition, the PCA holds for functions. Our manual analysis, however,
did not result in 100% precision for functional relations in Table 2.3. This is because
our analysis also counts the cases where the KB contains bugs. If, for instance, YAGO
knows the wrong place of death of a person, then there exists another value outside
YAGO that is the right value. However the PCA would reject it. Hence, we count this
case as a miss. Nevertheless, bugs are rare in YAGO since it guarantees a precision of
95% precision [117].

The PCA extends well to relations that are strictly speaking not functions, but that
have a high functionality. These are relations that usually have one object per subject,
even though there could be several objects. For example, a person can graduate from
several universities, but most people graduate from a single university. We call these re-
lations quasi-functions. As shown in Table 2.4, the PCA worked very well also on these,
and predicted completeness correctly for 73% − 100% of the subjects under investiga-
tion. Since the PCA takes into account the direction of the functionality, the PCA also
holds for quasi inverse-functional relations such as directed.

Relation % of hits

wasBornIn 96.67
diedIn 96.42
hasCapital 93.33

TABLE 2.3 – Validity of the PCA for functions in YAGO2

Relation % of hits

hasCurrency 75.00
hasOfficialLanguage 73.33
graduatedFrom 64.29
isCitizenOf 96.42
directed−1 90.00
hasAcademicAdvisor 88.89
created−1 86.67
isLeaderOf 89.47
isPoliticianOf 100
isAffiliatedTo 89.47

TABLE 2.4 – Validity of the PCA for quasi-functions in YAGO2

Granularity Differences. Some relations, such as locatedIn and livesIn (Table 2.5),
hold between an entity and a geographical region. In that case, the region can be given
at the granularity of a city, a region, a country, or a continent. Naturally, if YAGO contains
one of these, the others are possible options. Hence, the PCA fails and we find rather
low precision values. However, these cases could be addressed if one restricts the
range of the relation (say, to cities). With such a restriction, the relations become func-
tions or quasi-functions, which lifts them into the category where the PCA works well. As
we will see in Section 2.7.1, the use of types can significantly improve the performance
of AMIE for facts inference.

Implicit Assumptions. Some statements can be inferred from the Wikipedia page even
if the page does not mention them. People usually do not state information that can
easily be inferred by what they have stated before (following Grice’s Maxim of quantity
and manner [48]). For example, if someone graduated from a university, people usually
do not feel obliged to mention that this person used to live in the country in which the
university is located, because this can easily be inferred by the reader. Only less obvious
residences will be explicitly mentioned. Therefore, the PCA does not always hold. Note
that rules such as graduatedFrom(x, z) ∧ isLocatedIn(z, y) ⇒ livesIn(x, y) can only be
mined if Grice’s maxims are occasionally violated by the authors of the articles. If the
authors always follow the maxims, then such rules cannot be mined, because there are
not even positive examples for which the rule holds (for lack of support). In the case of
YAGO, the only relation that we found in this category is livesIn, for which the PCA held
in 20.83% of the studied cases.

Relation % of hits

isLocatedIn 50.00
livesIn 20.83

TABLE 2.5 – Validity of the PCA for relations suffering from granularity differences in
YAGO2

Source Incompleteness. For many relations, the source itself (Wikipedia) is incom-
plete (see Table 2.6). Usually, these relations have, for each subject, some objects that
are undisputed. For example, it is undisputed that Albert Einstein is interested in phy-
sics. However, these relations also have objects that are less important, disputed, or
unknown. For example, Albert Einstein might also be interested in music (he played the
violin), but maybe also in pancakes. These less prominent objects are a lot less likely to
appear in Wikipedia, or indeed on any Web page. Even if they do, we can never be sure
whether there is still something else that Einstein was interested in. For these relations,
the knowledge sources are often incomplete by nature. For example, not every single
product that a country imports and exports is explicitly mentioned. This phenomenon
results in 0% precision for such relations in Table 2.6. The same phenomenon can be
observed for the relation actedIn−1, since Wikipedia does not include the entire list of

actors that played in a movie. Whether or not this poses a problem depends on the
application. If ground truth is defined as what is universally true, then source incomple-
teness is a problem. If ground truth is the source of the KB (i.e., Wikipedia in this case),
then source incompleteness is not an issue.

Relation % of hits

influences−1 34.78
imports 0
exports 0
actedIn−1 0
worksAt 89.66
hasMusicalRole 22.22
dealsWith 10.00

TABLE 2.6 – Validity of the PCA for relations suffering from source incompleteness in
YAGO2

Extraction Incompleteness. For a large number of relations, the Wikipedia page
contains more objects for a given subject than the KB. These are cases where the
extraction process was incomplete. In the case of YAGO, this is due to a strong focus
on accuracy, which causes the extraction to discard any extracted fact that cannot be
type checked or linked to an entity. This class of relations is the most sensitive cate-
gory for the PCA. The success of the PCA will depend on how many relations and to
what extent they are affected by incomplete extractions. The performance of the PCA
for those relations is shown in Table 2.7.

Relation % of hits

participatedIn−1 48.14
isMarriedTo 79.31
produced−1 56.67
actedIn−1 0
playsFor 20.00
holdsPoliticalPosition 26.67
hasChild−1 26.67
hasWonPrize 31.03
dealsWith 10.00
influences−1 34.78
hasMusicalRole 22.22

TABLE 2.7 – Validity of the PCA for relations suffering from extraction incompleteness
in YAGO2

Discussion. In summary, our analysis shows that it depends on the nature of the rela-
tion and on its type signature whether the PCA holds or not. There is a large number
of relations for which the PCA is reasonable. These are not just functions and inverse
functions, but also relations that exhibit a similar behavior.

For many other cases, the PCA does not hold. In these cases, the PCA will falsely
assume that a rule is making incorrect predictions – although, in reality, the predictions
might be correct. Thus, when the PCA does not hold, we will err on the side of caution.
This means that, even if the PCA is not always correct, it is a safe way to underestimate
confidence.

At the same time, the PCA is not as restrictive as the Closed World Assumption
(CWA) : the PCA admits that there can be facts that are true, but not known to the KB.
For example, if a person has a birth date, then both the CWA and PCA would not admit
another birth date. However, if a person does not have a birth date, then the PCA will
admit that there can be a birth date, while the CWA will assume that there cannot be a
birth date. Thus, the PCA is more permissive than the CWA. This encourages us to use
the PCA confidence to estimate the correcteness of rules. In Section 2.7.1, we show
that this definition of confidence produces more predictive and more accurate rules than
the standard confidence, which is based on the CWA.

2.5 AMIE

We now outline the core algorithm of AMIE and its implementation. We follow the
description in [43] and extend it with further explanations and details.

2.5.1 Algorithm

Algorithm. Algorithm 1 shows our approach to mine rules. It takes as input a KB K, a
maximum rule length l, a threshold minHC on the head coverage of the mined rules,
and a threshold minConf on the confidence. We discuss the choice of parameter values
later in this section. The algorithm maintains a queue of rules (line 1), which initially
contains all possible head atoms, that is, all rules of size 1. It then iteratively dequeues
a rule from this queue. If the rule meets certain criteria (line 5), it is pushed to the output.
If the rule does not exceed the maximum number of atoms l (line 7), it goes through a
refinement process (described below) which expands the rule (the parent) to produce
a set of new rules (the children). These new rules, if neither duplicates nor pruned by
the head coverage threshold (line 10), are also pushed into the queue. This process
is repeated until the queue is empty. In the following, we will see in more detail the
different phases of the algorithm.

Refinement. One of the major challenges of rule mining is to find an efficient way to
explore the search space. The naive algorithm of enumerating all possible combinations
of conjunctions of atoms is infeasible for large KBs. Hence, we explore the search space
by iteratively extending rules using a set of mining operators (line 8 of Algorithm 1). We

Algorithm 1: AMIE
Input: a KB : K, maximum rule length : l, head coverage threshold : minHC ,

confidence threshold : minConf
Output: set of Horn rules : rules

1 q = [r1(x, y), r2(x, y) . . . rm(x, y)]
2 rules = ⟨⟩
3 while ¬q.isEmpty() do
4 r = q.dequeue()
5 if AcceptedForOutput(r,out ,minConf) then
6 rules.add(r)
7 if length(r) < l then
8 R(r) = Refine(r)
9 for each rule rc ∈ R(r) do

10 if hc(rc) ≥minHC ∧ rc ∉ q then
11 q.enqueue(rc)

12 return rules

see a rule as a sequence of atoms. The first atom is the head atom and the others are
the body atoms. In the process of traversing the search space, we can extend a rule by
using one of the following operators :

1. Add Dangling Atom (OD)
This operator adds a new atom to the body of a rule. The new atom uses a fresh
variable for one of its two arguments. The other argument is a variable that is
shared with the rule, i.e., it occurs in some other atom of the rule.

2. Add Instantiated Atom (OI)
This operator adds a new atom to the body of the rule. This atoms uses an entity
for one argument and shares the other argument (variable) with the rule.

3. Add Closing Atom (OC)
This operator adds a new atom with two variables to the body of a rule so that
both of its arguments are shared with the rule.

Note that all above operators create connected rules without reflexive atoms. In ad-
dition, they do not add atoms that are already in the rule. By repeated application of
these operators, we can generate the entire space of rules in the syntactic language
LAMIE (Section 2.3.1) with head coverage greater or equal than minHC . In Section
2.5.2 we describe how these operators are implemented and executed on the KB. It is
worth mentioning that the operator OD always generates non-closed rules (rules out-
side Lclosed), therefore AMIE must check, among other requirements, whether a rule is
closed before outputing it. We describe this step next.

When to Output. Not every rule that the mining algorithm dequeues is output. This

Algorithm 2: Decide whether to output a rule
Input: a rule : r, maximum rule length : l, rules output so far : rules, confidence

threshold : minConf
Output: true or false

1 if r /∈ Lclosed ∨ conf pca(r) < minConf then
2 return false

3 parents = parentsOfRule(r, rules)
4 for each rp ∈ parents do
5 if conf pca(r) ≤ conf pca(rp) then
6 return false

7 return true

is because some rules may not be closed, or may not be better than rules that have
already been output. Algorithm 2 explains how we decide if a rule should be output
or not once it has been dequeued. The refinement operators used by AMIE always
produce connected rules. So, at this point, the algorithm only checks if the rule is closed.
Then, the algorithm calculates the confidence of the rule and performs a quality check.
The rule should have a confidence value that (i) passes the confidence threshold (line 1)
and (ii) improves over the confidence of all its parents (line 5). The latter condition
implies that the refinements of a rule (B1 ∧ ... ∧ Bn ∧ Bn+1 ⇒ H) must bring some
confidence gain with respect to the parent rule (B1 ∧ ... ∧Bn ⇒ H). Since support and
head coverage are monotonic metrics, we know that the child rule will never have a
higher score than its parent rule. If the child rule has also lower confidence, then its
quality is worse in all aspects than the parent rule. Hence, there is no reason to output
it.

A rule can have several parents. For example, the rule

actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y)

can be derived by either adding directed(x, y) to actedIn(x, y) ⇒ created(x, y) or by
adding actedIn(x, y) to directed(x, y) ⇒ created(x, y). AMIE requires a confidence gain
over all parents of a rule.

Note that the decisions made at this point affect only the output. They do not in-
fluence the refinement process, i.e., a rule with low confidence can still be refined to
obtain new rules. This is because confidence is a non-monotonic measure, i.e., we
might get good rules with further refinement of bad rules.

Duplicate Elimination. As just mentioned, a rule can be derived in multiple ways. For
example, the rule actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) can result from the ap-
plication of the operator OC to both actedIn(x, y) ⇒ created(x, y) and directed(x, y) ⇒
created(x, y). For this reason, AMIE checks for the existence of duplicate rules (line 12)
in order to avoid queuing the same rule multiple times. While checking two rules for

equality is expensive (it is a graph isomorphism verification task), we observe that two
rules can only be equal if they have the same head relation, the same number of atoms
and the same head coverage (or support). This reduces drastically the set of rules that
have to be checked and therefore the time invested in this task.

Multithreading. To speed up the process, our implementation parallelizes Algorithm 1,
that is, the main loop (lines 4 to 17) runs in multiple threads. This is achieved by syn-
chronizing the access to the centralized queue from which the threads dequeue and
enqueue and the access to the output.

Parameters and Pruning. If executed naively, Algorithm 1 will have prohibitively high
runtimes. The instantiation operator OI , in particular, generates atoms in the order of
∣R∣×∣E∪L∣. For this reason the algorithm defines some parameters that determine when
to stop with the exploration of the space. These are the minimal head coverage minHC ,
the maximal length l and the minimal confidence minConf . Choosing larger thresholds
on head coverage, and choosing a shorter maximum rule length will make the algorithm
stop earlier and output fewer rules. Relaxing the values will make the algorithm output
the very same rules as before, and find also rules with a smaller head coverage or a
larger number of atoms. Thus, these parameters define a trade-off between the runtime
and the number of rules.

Interestingly, a larger number of rules is not necessarily a good thing. For instance, a
rule that covers only 1% or less of the instances of a relation is probably not interesting.
It simply lacks statistical significance. Assuming that a user is not interested in such
spurious rules, we set minHC = 0.01 by default.

The operatorOI can drastically increase the size of the search space and the output
for certain types of atoms. For instance, an atom of the form livesIn(x,C) may produce
a number of candidates proportional to the number of cities in the KB. By default OI is
disabled in AMIE, even though it can be enabled by the user. In Section 2.6 we show
the performance of AMIE with and without this feature.

Additionally, we show in our experiments that rules with more than 3 atoms tend to
be very convoluted and not insightful. Hence, we set l = 3 by default.

Likewise, rules with low confidence will not be of much use to the application. For
example, a rule with confidence 10% will make correct predictions in only one out of ten
cases. Assuming that a user is not interested in such kind of rules, we set minConf = 0.1
by default.

While the user can change these thresholds, we believe that there is no good reason
to deviate from the default values. In particular, relaxing these values will not output
better rules. This makes AMIE a system that can be run off the shelf, without the need
for parameter tuning.

2.5.2 Mining Operators

AMIE tries to expand a given rule by applying all mining operators defined in the last
section. We now explain how the operators are implemented and executed on a KB.

Count Projection Queries. Assume that AMIE needs to add the atom r(x, y) to a rule
B1 ∧ ...∧Bn−1 ⇒H. For efficiency reasons, we do not blindly try all possible relations in
the place of r. Instead, we first find all relations that lead to a new rule that passes the
head-coverage threshold. In other words, we first fire a count projection query of the
form

SELECT r, COUNT(H)
WHERE H ∧B1 ∧ ... ∧Bn−1 ∧ r(X,Y)
SUCH THAT COUNT(H)≥ k

where k ∶= minHC × size(H) (see Section 2.3.2.2) is the translation of the head cove-
rage threshold into an absolute support threshold and the expression COUNT(⋅) has
COUNT(DISTINCT ⋅) semantics (also for the rest of this section). The placeholders X
and Y can represent constants or variables that are either fresh or already present in
the rule. The results for r are the relations that, once bound in the query, ensure that
the head coverage of the rule B1 ∧ ... ∧ Bn−1 ∧ r(X,Y) ⇒ H is greater or equal
than minHC . Notice also that for each value of r, the expression COUNT(H) gives us
the support of the new rule. We now discuss the instantiation of this query for all three
operators.

Dangling Atom Operator. As an example, assume that Algorithm 1 dequeues the
following intermediate non-closed rule for further specialization :

marriedTo(x, z) ⇒ livesIn(x, y)

The application of the operator OD will fire queries of the form :

SELECT r, COUNT(livesIn(x, y))
WHERE livesIn(x, y) ∧ marriedTo(x, z) ∧ r(X,Y)
SUCH THAT COUNT(livesIn(x, y))≥ k

with r(X,Y) ∈ {r(y,w),r(z,w),r(w,y),r(w, z)}. That is, r(X,Y) binds to each pos-
sible join combination of a new dangling atom, where w is an arbitrary fresh variable.
For intermediate rules, dangling atoms are joined on the non-closed variables ; z and
y in this example. If the rule is already closed, dangling atoms are joined on all the
variables appearing in the rule.

Closing Atom Operator. The OC operator works in the same fashion. In our example,
the atom r(X,Y) can take values in {r(z, y),r(y, z)}. The method will produce new
atoms so that all non-closed variables are closed. In this example, the method produces
the minimum number of specializations required to close the variables y and z. If there is
only one closed variable, the method will produce atoms between the open variable and
all the other variables. If the rule is already closed, the operator tries with all possible
pairs of variables in the rule.

Instantiated Atom Operator. The operator OI is implemented in two steps. We first
apply the operator OD to produce a set of intermediate rules with a new dangling atom
and a new fresh variable. Then for each rule, we fire a count-projection query on the
fresh variable. This step provides bindings for one of the arguments of the relation. For
instance, the application of the OI operator to our example rule

marriedTo(x, z) ⇒ livesIn(x, y)

will first add all possible dangling atoms to the rule. Let us consider one group of such
atoms, e.g., those of the form r(x,w). Then for each value of r that keeps the rule
above the head coverage threshold minHC , the algorithm finds the best bindings for w.
For example, imagine we bind r to the relation citizenOf . The second step will fire a
query of the form :

SELECT w, COUNT(livesIn(x, y))
WHERE livesIn(x, y) ∧marriedTo(x, z) ∧ citizenOf (x,w)
SUCH THAT COUNT(livesIn(x, y))≥ k

Each binding of w forms a new rule that will be enqueued and later evaluated for output.
In some cases, however, AMIE may exclude some of the newly produced rules. This
happens when the join variable of the instantiated atom binds only to one entity in
the KB. Such cases induce a quasi-binding of the join variable, meaning that there is
a shorter equivalent rule where the variable has been replaced by the constant. For
example, imagine AMIE applies the OI operator to the following rule :

neighbour(x, y) ⇒ dealsWith(x , y)

One way to extend the rule is to add the atom officialLanguage(y,Romansh), which
leads to :

officialLanguage(y,Romansh) ∧ neighbour(x, y) ⇒ dealsWith(x , y)

This rule is not interesting because y can bind only to Switzerland, even if the support
of the rule surpasses the given threshold. AMIE does not output this rule because it is
equivalent to the simpler rule :

neighbour(x,Switzerland) ⇒ dealsWith(x ,Switzerland)

As stated in Section 7, AMIE disables the OI operator by default. Its activation
changes the initialization step of Algorithm 1. In particular for every atom r(x, y) in
the queue, AMIE will also add atoms of the form r(x,C), for every constant C such that
the head coverage threshold is met, i.e.,

#x ∶ r(x,C)
size(r) ≥ minHC

This allows AMIE to mine rules with instantiated atoms in the head, like in our last
example. Note that in such cases, both support and confidence are counted on a single
variable.

Count-projection queries allow us to choose the relationships and entities for the
operators in such a way that the head coverage for the new rules is above minHC .

2.5.3 Confidence calculation

Recall from Formula 2.3 that given the support of a rule B ⇒ H, the calculation of
the PCA confidence requires to compute the number of bindings for

#vars(H) ∶ ∃z1, . . . zn, y′ ∶B ∧H ′

In this expression, H ′ is a variant of the head H where the least functional argument
(see Section 1.3.3) has been replaced by a fresh variable y′, i.e., H ′ ∶= rh(x, y′). For
our refined rules, such expression translates into a count query of the form

SELECT COUNT(H) WHERE H ′ ∧B1 ∧ ⋅ ⋅ ⋅ ∧Bn

Likewise, the calculation of the standard confidence (Formula 2.1) relies on the cal-
culation of the expression #vars(H) ∶ ∃z1, . . . zn, y′ ∶B ; what we call the body size. This
translates into a query of the form

SELECT COUNT(H) WHERE B1 ∧ ⋅ ⋅ ⋅ ∧Bn

We observe that count queries are actually a less-constrained case of the count-
projection queries already introduced. Thus, we focus on the implementation of count-
projection queries. This is addressed in the next section.

2.5.4 Query Implementation Details

AMIE relies on count-projection queries to determine the relations and instances for
new atoms in rules and their support. For a rule B1 ∧ ... ∧ Bn−1 ⇒ H, count-projection
queries have the form :

SELECT r, COUNT(H)
WHERE H ∧B1 ∧ ... ∧Bn−1 ∧ r(X,Y)
SUCH THAT COUNT(H)≥ k

where each answer corresponds to a relation r and the support of the refined rule
B1 ∧ ... ∧ Bn−1 ∧ r(X,Y) ⇒H.

SQL and SPARQL. Count-projection queries are essential for the efficiency of our sys-
tem. Yet, standard database implementations do not provide special support for these
types of queries. Assuming that the KB K is stored as a three-columns table, i.e., each
fact is a row with three columns ⟨s, r, o⟩, the count-projection query template in SQL
would be :

SELECT C.c, COUNT(∗) FROM K AS H,
(SELECT DISTINCT c FROM K) AS C
WHERE P (H) AND EXISTS

(SELECT * FROM K AS B1, . . . , K AS Bn

WHERE P ′(H,B1, . . .Bn))
GROUP BY C.c HAVING COUNT(∗) >= k

Here, Bn is the new atom added to the query and c ∈ {s, r, o}. The temporary table
C contains the target values for the new atom, e.g., relations if c = r. The function
P (H) represents the conditions imposed by the head atom, e.g., for a rule of the form
B ⇒ livesIn(x,USA), P (H) is translated into H.r = “livesIn” AND H.o = “USA”.
Likewise, the function P ′(H,B1, . . .Bn) is replaced by the join conditions between the
head and body atoms. If we apply this scheme to the addition of a closing atom r(z, y)
in our example rule marriedTo(x, z) ⇒ livesIn(x, y), we would generate the query

SELECT R.r, COUNT(∗) FROM K AS H,
(SELECT DISTINCT r FROM K) AS R
WHERE H.r = “livesIn” AND EXISTS

(SELECT * FROM K AS B1, K AS B2,
WHERE H.s = B1.s AND H.o = B2.o

AND B2.s = B1.o AND B1.r = “marriedTo”
AND B2.r = R.r)

GROUP BY R.r HAVING COUNT(∗) >= k

The query stores all possible relations for the new atom in the temporary table R and
applies a semi-join with the head atom H. The semi-join is constrained to those bin-
dings of R for which there exists at least one binding in the rule. The results are then
grouped (GROUP BY), aggregated (COUNT(*)) and thresholded (HAVING) per binding
of the new atom. Our experience shows that for a KB of a few million facts, such kind of
queries can easily take several minutes on an off-the-shelf relational database mana-
gement system (RDBMS). Hence, efficient SPARQL engines such as RDF-3X [91] are
an alternative option. In SPARQL 1.1, the count-projection query template is :

SELECT c, SUM(?supp) WHERE {
SELECT c (COUNT(DISTINCT *) AS ?supp)
WHERE {

SELECT c ?sH ?oH WHERE {
?sH rH ?oH .
?s1 r1 ?o1 .
. . .
?sn ?rn ?on .

}
} GROUP BY c ?sH ?oH

} GROUP BY c HAVING SUM(?supp) >= k

where c ∈ {?sn, ?rn, ?on} is a variable associated to new atom added to the rule and
the triple pattern ⟨?sH rH ?oH⟩ corresponds to the head atom. This particular template

models the case where the head atom does not contain constants. If this is not the
case, as in B ⇒ livesIn(x,USA), we simply replace the argument variables ?sH or
?oH by the corresponding constant and remove it from the GROUP BY condition. As
grouping and aggregate functions have only recently become part of the SPARQL 1.1
standard, many existing SPARQL engines do not yet efficiently support the extension.
In particular, RDF-3X does not support aggregate functions in this way. Thus, we would
need extensive postprocessing of query results to compute a projection query.

Since neither relational databases nor RDF triple stores offer a satisfactory solution
for count-projection queries, we resort to a custom implementation.

In-Memory Database. We have implemented an in-memory database that is speci-
fically geared towards count-projection queries. Our implementation indexes the facts
aggressively with one index for each permutation of the columns subject (S), relation
(R), and object (O). This means that there are six indexes, namely SRO, SOR, RSO, ROS,
OSR and ORS. We call them fact indexes. Each fact index is a hash table, which maps
elements of the first column to a nested hash table. This nested hash table maps ele-
ments of the second column to a set of elements of the third column. For example, the
index ORS has as keys the objects of all triples in the KB. It maps each object o to a hash
table. This hash table has as keys all possible relations of the KB. It maps each relation
r to a set of subjects {s1, ..., sn}, such that r(si, o) for i = 1...n. Fact indexes allow us to
check the existence of a triple in constant time. They also allow us to efficiently fetch
the instantiations of an atom.

In addition to the fact indexes, our database relies on three aggregated indexes S,
P, O. These store the aggregated number of facts for each key of the fact indexes. For
example, the aggregated index P stores the number of triples for each relation in the KB,
whereas the aggregated index S stores the number of triples where each entity appears
as subject.

Size Queries. Fact indexes in combination with aggregated indexes can be used to de-
termine the size of an atom (size(a,K)), i.e., its number of bindings in the KB K. We call
this operation a size query. Size queries are the building blocks for the implementation
of more complex types of queries and can be used to calculate the size of relations
and the support of single atom queries. For example, the size (or support) of the atom
livesIn(x, y) can be retrieved by a simple look-up in the aggregated index P. The size
of the atom livesIn(x,USA) requires two lookups in the fact index ROS : the first lookup
to get the object values of livesIn and the second to retrieve the list of subjects for the
object value USA.

Existence Queries. One of the central tasks of the in-memory database is to determine
whether there exists a binding for a conjunctive query. Algorithm 3 shows how this can
be implemented. The algorithm requires as input a conjunctive query and a KB K. If the
query is a single atom (line 2), we can directly verify if its size is greater than zero using
the indexes (line 3). Otherwise, we select the atom Bs with fewest instantiations using

the indexes (line 5), and run through all of its instantiations (lines 7 to 10). We apply
such instantiations to the remaining atoms (line 8) and repeat this process recursively
(line 9) until we end up with a single atom. Since rules are connected query patterns,
the atom Bs must share at least one variable with the remaining atoms. This means
that by instantiating Bs, some variables in the remaining atoms become instantiated,
making the atoms more selective with every recursive step.

Algorithm 3: Existence Queries
Input: a query : B1 ∧ ... ∧Bn, a KB : K
Output: true or false

1 q ∶= B1 ∧ ... ∧Bn

2 if n = 1 then
3 return size(B1, K) > 0

4 else
5 s ∶= argmini {size(Bi,K)}
6 q ∶= q ∖ {Bs}
7 for each instantiation σs ∈ Bs do
8 q′ ∶= σs(q)
9 if Exists(q′, K) then

10 return true

11 return false

Select Queries. Algorithm 4 describes the implementation of SELECT DISTINCT que-
ries on one projection variable for a conjunction of atoms. The algorithm starts finding
the atom with the fewest number of instantiations Bs. If the projection variable x is
in Bs (lines 4 to 8), the algorithm goes through all the instantiations x̂ of variable x,
instantiates the query accordingly and checks whether there exists a solution for the
instantiated query pattern in the KB (line 7). If there is, the solution x̂ is added to the
result set. In contrast, if the projection variable is not in the most restrictive atom Bs

(lines 10 to 13), the algorithm iterates through the instantiations of Bs and recursively
selects the distinct bindings of x in the remaining atoms (line 13).

Count Queries. To compute the PCA confidence of a rule B ⇒ rh(x, y) or B ⇒
rh(x,C) for some constant C, AMIE must fire a count query to estimate the denomina-
tor of the confidence formula. For the PCA confidence, such queries have the form :

SELECT COUNT(x, y) WHERE rh(x, y′) ∧B

SELECT COUNT(x) WHERE rh(x, y′) ∧B

depending on the number of variables of the head atom. B = B1 ∧ B2 . . . ∧ Bn are
the body atoms, and rh(x, y′) is a variant of the head atom where the least functional

Algorithm 4: Select Distinct Queries
Input: a variable : x, a query : B1 ∧ ... ∧Bn, a KB : K
Output: Set of bindings for variable x that match the query

1 q ∶= B1 ∧ ... ∧Bn

2 s ∶= argmini {size(Bi,K)}
3 result ∶= {}
4 if x ∈ Bs then
5 for each instantiation x̂ ∈ x do
6 q′ ∶= q instantiated with x← x̂
7 if Exists(q′, K) then
8 result .add(x̂)

9 else
10 q ∶= q ∖ {Bs}
11 for each instantiation σs ∈ Bs do
12 q′ ∶= σs(q)
13 result .add(Select(x, q′,K))

14 return result

argument has been replaced by a fresh variable y′ (see Section 2.4). These queries
return the number of distinct bindings of the head variables that fulfill the pattern B ∧
r(x, y′). They are used to calculate the confidence of rules. For the two variables case,
the in-memory database first fires a SELECT query on variable x :

SELECT DISTINCT x WHERE B ∧ r(x, y′)

Then, for each binding of x, it instantiates the query and fires another select query on
variable y, adding up the number of instantiations.

Count Projection Queries. Count projection queries take the form

SELECT x, COUNT(H)
WHERE H ∧B1 ∧ ... ∧Bn

SUCH THAT COUNT(H)≥ k

These are the types of queries used to determine the relations and instances for
new atoms in the refinement phase of AMIE. Algorithm 5 shows how we answer
these queries. The algorithm takes as input a selection variable x, a projection atom
H ∶= R(X,Y), remaining atoms B1, ...,Bn, the support threshold k, and a KB K. The
algorithm returns a hash table with each instantiation of the selection variable x as key
and the number of distinct bindings of the projection atom H as value.

We first check whether x appears in the projection atom (line 3). If that is the case
(lines 4 to 7), we run through all instantiations of the projection atom, instantiate the

query accordingly (line 5), and check for existence (line 6). Each existing instantiation
increases the counter for the respective value of the selection variable x (line 7). If the
selection variable does not appear in the projection atom (lines 9 to 13), we iterate
through all instantiations of the projection atom. We instantiate the query accordingly,
and fire a SELECT DISTINCT query for x (line 11). We then increase the counter for
each value of x (line 13).

Algorithm 5: Count Projection Queries
Input: the projection variable : x, a query : R(X,Y) ∧B1 ∧ ... ∧Bn, minimum

support threshold : k, a KB : K,
Output: A map ⟨x̂→ k⟩ for each binding of the projection variable x

1 map ∶= {}
2 q ∶= B1 ∧ ... ∧Bn

3 if x ∈ {R,X,Y } then
4 for each instantiation (σ ∶= {R ← r,X ← x,Y ← y}) ∈ R(X,Y) do
5 q′ ∶= σ(q)
6 if Exists(q′, K) then
7 map[x] + +

8 else
9 for each instantiation (σ ∶= {R ← r,X ← x,Y ← y}) ∈ R(X,Y) do

10 q′ ∶= σ(q)
11 X ∶= Select(x, q′, K)
12 forall the x ∈ X do
13 map[x] + +

14 map ∶= {⟨x→ n⟩ ∈ map ∶ n ≥ k}
15 return map

2.6 Performance Experiments

In this section we evaluate the runtime performance of AMIE by comparing it with
two competitor rule mining systems, namely ALEPH [113] and WARMR [28, 29] (Sec-
tions 2.6.2 and 2.6.3 respectively). We also measure the runtime of AMIE with different
settings on YAGO and DBpedia.

2.6.1 Experimental Setup

Hardware. All experiments were run on a server with 48GB of RAM, 8 physical CPUs
(Intel Xeon at 2.4GHz, 32 threads) and using Fedora 21.

Datasets. For the purpose of comparing AMIE with its competitors, we used a subset

of YAGO2 consisting of 948K facts about 470K entities and 32 relations. We also tested
AMIE on a subset of DBpedia containing 13.7M facts about 1.4M entities and 1595
relations. These subsets were obtained by removing all facts with literals (numbers and
strings). Literal values, such as geographical coordinates, are shared by only very few
entities, therefore they are less interesting for rule mining.

Settings. In its default settings, AMIE uses a 1% head coverage threshold (i.e.,
minHC = 0.01), and a maximum of 3 atoms for rules (i.e., l = 3, see Section 2.5).
By default, AMIE does not impose a confidence threshold, i.e., minConf = 0. Unless ex-
plicitly mentioned, the instantiation operator OI is disabled. (“without constants”). The
system uses as many threads as available logical cores in the system (32 in our hard-
ware platform). Any deviation from these settings will be explicitly stated.

Metrics. We compared AMIE in terms of output quality and runtime to two popular
state-of-the-art systems : WARMR [28, 29] and ALEPH2. To have an equal basis for
the comparison with these systems, we made AMIE simulate their metrics. AMIE can
threshold on support, head coverage, standard confidence, and PCA confidence, and
can rank by any of these. She can also deviate from the default setting and count
support on one of the head variables (like WARMR). In that case, AMIE counts on the
most functional variable of the relation (see Section 1.3.3 about functions). Again, any
such deviation from the default behavior will be mentioned explicitly.

All rules and all experimental results are available at http://www.mpi-inf.mpg.de/
departments/ontologies/projects/amie/.

2.6.2 AMIE vs. WARMR

WARMR is a system that unifies ILP and association rule mining. Similar to
APRIORI algorithms [5], it performs a breadth-first search in order to find frequent pat-
terns. WARMR generates Datalog queries of the form “? −A1,A2, ...,An”, where Ai are
logical atoms. WARMR applies a closed world assumption for assessing the quality of
the produced rules.

Usability. To discover frequent patterns (as in association rule mining), the user must
provide WARMR a notion of frequency (support). Given that WARMR considers que-
ries as patterns and that queries can have variables, it is not immediately obvious what
the frequency of a given query is. Therefore, the user needs to specify the predicate
that is being counted by the system (the key predicate). In the usual scenario of market
basket analysis, e.g., the system counts customer transactions. In a scenario in which
the database is a KB, one solution is to count entities. Since the key predicate deter-
mines what is counted, it must be present in all queries. Therefore, we add a predicate
entity(x), which we fill with all entities of the KB. AMIE does not require such a choice.

For WARMR, the user needs to provide specific information about which predicates
can be added to a query, which of their variables can be fresh, and which arguments

http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/
http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/

of predicates are allowed to be unified (type declarations). In contrast, AMIE requires
none of these. AMIE simply takes as input the KB in triple format.

WARMR is also able to mine rules with constants. The user can define which predi-
cates and arguments should be instantiated with constants (we call this mode MODE1).
WARMR then checks all the constants appearing in the facts of that specific predicate
and argument and afterwards uses them in the queries. MODE1 naturally entails an
increase of the branching factor in the search space and an explosion in the number
of candidates that need to be evaluated. Alternatively, WARMR allows the user to set a
maximum number of constants to be used for each predicate and argument (MODE2).
Unfortunately, though, it does not provide a way for the user to influence the selection of
these constants. In other words, there is no guarantee that the constants that WARMR
will use are the most promising ones.

WARMR produces rules as output. These rules are not necessarily connected. For
example, WARMR mines

isMarriedTo(b, c) ∧ isLeaderOf (a, d) ⇒ hasAcademicAdvisor(c, e)
This rule is not only nonsensical from a semantic perspective, but also redundant, be-
cause the second atom does not influence the implication. Therefore, the user has to fil-
ter out these rules from the output. Thus, we conclude that the broader mission and the
broader applicability of WARMR entails that much more configuration, acquaintance,
and expert knowledge is needed to make it mine Horn rules on semantic KBs.

Runtime. We first compare WARMR with AMIE in terms of runtime only. For a fair
comparison, we have to make sure that both systems run in the same settings. Hence,
we tweaked AMIE to simulate WARMR’s notion of support. We run all systems with an
absolute support threshold of 5 entities. We also use the standard confidence as quality
metric for rules, instead of the PCA confidence.

In our initial experiment, WARMR was not able to terminate on YAGO2 in a time per-
iod of 1 day. Therefore, we created a random sample of YAGO2. We first recall that a
KB can be seen as a graph with nodes as entities and facts as directed edges from the
subject to the object. We also observe that sampling facts randomly from a KB is equi-
valent to sample edges (and their endpoints) in a graph. Since this strategy could break
the interesting links between entities in the resulting sample, we randomly selected 10K
nodes (we call them seed entities) from the graph and then collected their directed 3-
hop neighborhood. This yielded 47K facts about 14K entities. This sample contains all
available information in a radius of 3 hops around the seed entities, but much less infor-
mation about the entities at the periphery of the subgraph. For this reason, we restricted
the values for the key predicate to the seed entities only.

Table 2.8 summarizes the runtime results for WARMR and AMIE on this dataset. We
see that AMIE mines her rules in 6.02 seconds. WARMR, in contrast, took 18 hours.

We also ran both systems in a mode that allows them to mine rules with constants.
For AMIE, this means enabling the instantiation operator OI (see Section 12). For
WARMR, this corresponds to MODE1. AMIE completed the task in less than 2 mi-
nutes. WARMR, in contrast, did not terminate in 3 days. Therefore, we ran it only for

Constants WARMR AMIE

no 18h 6.02s
yes (48h) 1.43min

TABLE 2.8 – Runtimes on YAGO2 sample

the relations diedIn, livesIn, wasBornIn, for which it took 48h. To understand this drastic
difference, one has to take into account that WARMR is an ILP algorithm written in a
logic programming environment, which makes the evaluation of all candidate queries
inefficient.

Results. After filtering out non-connected rules, WARMR mined 41 closed rules. AMIE,
in contrast, mined 75 closed rules, which included the ones mined by WARMR. We
checked back with the WARMR team and learned that for a given set of atoms
B1, . . . ,Bn, WARMR will mine only one rule, picking one of the atoms as head atom
(e.g., B1 ∧ ... ∧ Bn−1 ⇒ Bn). AMIE, in contrast, will mine one rule for each possible
choice of head atom (as long as the thresholds are met). In other words, AMIE with
the standard support and confidence measures simulates WARMR, but mines more
rules. Furthermore, it runs orders of magnitude faster. Especially for large datasets for
which the user would have needed to use complicated sampling schemes in order to
use WARMR, AMIE can be a very attractive alternative. Even for smaller datasets with
rules with constants, AMIE can provide results while WARMR cannot. Moreover, AMIE
does not make a closed world assumption as WARMR does. In Section 2.7.1 we show
that the PCA confidence defined by AMIE is more suitable than the standard confidence
to identify predictive rules in a web-extracted KB designed under the Open World As-
sumption.

2.6.3 AMIE vs. ALEPH

ALEPH is an ILP system that implements a variety of scoring functions for mea-
suring a rule’s quality. For our experiments we used the Positives-only evaluation func-
tion [75,87] described by Equation 2.2 which is the most interesting for our setting, since
it does not require the existence of explicit negative examples. ALEPH’s positives-only
learning function rewards rules that cover many positive examples, and few or no ran-
domly generated examples. It also benefits rules evaluated on larger sets of negative
examples and that use as few atoms as possible.

Usability. ALEPH can be run with different commands that influence the search stra-
tegy. We chose the induce command, which runs fastest. To run ALEPH, the user has
to specify the target predicate for learning (the head predicate of the rules). In the follo-
wing, we ran ALEPH successively with all predicates of the KB as targets. In addition,
the user has to specify a series of type and mode declarations (similar to WARMR),

KB ALEPH AMIE

YAGO2 full 4.96s to > 1 day 4.41min
YAGO2 Sample 0.05s to > 1 day 5.65s

TABLE 2.9 – Runtimes ALEPH vs. AMIE

Relations Runtime

isPoliticianOf, hasCapital, hasCurrency < 5min
dealsWith, hasOfficialLanguage, imports < 5min
isInterested, hasMusicalRole <19min
hasAcademicAdvisor, hasChild > 1 day
isMarriedTo, livesIn, worksAt, isLocatedIn > 1 day

TABLE 2.10 – Runtimes of ALEPH on YAGO2

which will be used as a language bias in order to restrict the search space. Also, the
user needs to provide ALEPH with files containing the background knowledge and po-
sitive examples for the target predicate (in the spirit of the original ILP formulation, see
Section 2.1). In contrast, AMIE requires no such input. It will run on a KB without any
prespecified choices of predicates.

Runtime. We ran AMIE and ALEPH on YAGO2. For ALEPH, we used the positives-
only evaluation function with Rsize = 50 and we considered only clauses that were able
to explain at least 2 positive examples, so that we will not get grounded facts as rules
in the output. For a fair comparison, we also instructed AMIE to run with a support
threshold of 2 facts.

Table 2.9 shows the results on YAGO2 and the sample of 47K facts we constructed
for WARMR. AMIE terminated in 4.41 minutes on YAGO2 and 5.65s on the sample
and found rules for all relations. ALEPH runs for one head relation at a time. For some
relations (e.g., isPoliticianOf), it terminated in a few seconds. For others, however, we
had to abort the system after 1 day without results as Tables 2.10 and 2.11 show. For
each relation, ALEPH treats one positive example at a time. Some examples need little
processing time, others block the system for hours.

Results. We compared the output of ALEPH with the positives-only evaluation function
to the output of AMIE using the PCA confidence on the sample of YAGO2 used for the
runtime experiments. Since ALEPH required more than one day for some relations, we
used only rules for which the head relation runs in less than one day. ALEPH mined 56
rules, while AMIE mined 302 rules including the ones mined by ALEPH.

Summary. Our experimental results show that AMIE can be up to 3 orders of magnitude

Relations Runtime

diedIn, directed, hasAcademicAdvisor < 2min
graduatedFrom, isPoliticianOf, playsFor < 2min
wasBornIn, worksAt, isLeaderOf < 2min
exports, livesIn, isCitizenOf < 1.4h
actedIn, produced, hasChild, isMarriedTo > 1 day

TABLE 2.11 – Runtimes of ALEPH on YAGO2 sample

Dataset Runtime Rules

YAGO2 3.62min 138
YAGO2 (l = 4) 27.14min 645
YAGO2 const 17.76min 18886
DBpedia 2.0 (l = 2) 2.89min 6963

TABLE 2.12 – AMIE on Different Datasets

faster than other state-of-the-art systems, namely WARMR [46] and ALEPH [87].

2.6.4 AMIE with Different Settings

As a proof of concept, we ran AMIE in its default settings, with constants, and with
maximum rule length l = 4 on YAGO2. We also ran the system on DBpedia 2.0. Due to
the large number of relations in this dataset, there is an enormous number of rules to
be found. We therefore show the time taken to mine rules with 2 atoms. As Table 2.12
shows, AMIE can produce rules with or without constants in a reasonable amount of
time. We also show some of those rules in Table 2.13. In particular, rules with 4 atoms
motivate us to keep the default rule length at 3 atoms.

y :isMarriedTo(x, y)∧ y :livesIn(x, z) ⇒ y :livesIn(y, z)
y :hasAdvisor(x, y)∧ y :graduatedFrom(x, z) ⇒ y :worksAt(y, z)
y :wasBornIn(x, y)∧ y :isLocatedIn(y, z) ⇒ y :isCitizenOf (x, z)
y :hasWonPrize(x,G . W . Leibniz) ⇒ y :livesIn(x,Germany)
y :hasWonPrize(x,Grammy) ⇒ y :hasMusicalRole(x,Guitar)
y :advisor(z,w) ∧ y :citizenOf (w,y) ∧ y :livesIn(z, x) ⇒ y :deals(x, y)
y :diedIn(x, z) ∧ y :locatedIn(z, y) ∧ y :livesIn(x, z) ⇒ y :politician(x, y)
d :capital(x, y) ⇒ d :largestCity(x, y)
d :nationality(x, y) ⇒ d :residence(x, y)

TABLE 2.13 – Some Rules by AMIE on YAGO (y :) and DBpedia (d :)

2.7 Fact Inference with AMIE

In Section 2.6 we showed the performance of AMIE in terms of runtime. However,
we did not analyze the quality of the output rules. This section evaluates AMIE in terms
of the produced rules, more specifically, in how correct are the conclusions drawn by
those rules. In Section 2.1 we stated that, one of the goals of the AMIE mining model is
to learn rules that make correct predictions, in and beyond the KB. The task of predicting
facts outside the KB is often referred in the literature as link prediction [14, 45, 65, 81,
93, 112, 125] because it aims at finding semantic links (relations) between entities in
the KB. This is a difficult endeavor : It amounts to guessing the places of residence for
people, their birth place, or even their death place. Naturally, we may not assume a high
precision in the prediction of the future. We may only expect educated guesses.

To evaluate the precision of these guesses for the studied rule mining systems, we
proceeded as follows : We ran the system on the YAGO2 dataset and ranked the ob-
tained rules by confidence. For each rule, we evaluated whether the predictions that go
beyond YAGO2 were true. We did this by either checking if the prediction appears in a
newer version of the KB (YAGO2s), or by manually checking them in Wikipedia. If we
could find the predicted fact in neither, we evaluated it as false. Since the number of pre-
dictions can be large, we conducted the evaluation of the precision on a random sample
of the predictions. We applied this experimental setup to assess the precision of the
predictions for AMIE using the standard confidence, AMIE using the PCA confidence
(Section 2.7.1) and ALEPH using the positives-only learning function (Section 2.7.2).

2.7.1 Standard vs. PCA Confidence

Our first goal is to see whether the PCA confidence or the standard confidence per-
form better for the task of fact prediction. For this purpose, we ran AMIE on YAGO2, and
sorted the resulting rules first by descending PCA confidence, and then by descending
standard confidence. We looked at the top ranked rules in each case, and evaluated the
precision of the predictions. The two bottom curves of Figure 2.1 plot the aggregated
predictions versus the aggregated precision for the standard and the PCA confidence.
The n-th dot from the left represents the total number of unique predictions and the
total precision of these predictions (ratio of correct predictions), aggregated over the
first n rules. As we see, ranking the rules by standard confidence is a very conservative
approach : It identifies rules with reasonable precision, but these do not produce many
predictions. Going down in the list of ranked rules, the rules produce more predictions
– but at lower precision. The top 30 rules produce 113K predictions at an aggregated
precision of 34%. In contrast, if we rank the rules by PCA confidence, we quickly get
large numbers of predictions. The top 10 rules already produce 135K predictions – at
a precision of 45%. The top 30 rules produce 3 times more predictions than the top
30 rules by standard confidence – at comparable precision. This is because the PCA
confidence is less conservative than the standard confidence. We thus conclude that
the PCA confidence is better suited for making predictions than the standard confi-
dence. In addition, we investigate how the confidence metrics correlate with the actual

Top 20 rules Top 30 rules All rules

Confidence 0.76 0.63 0.33
PCA Confidence 0.32 0.29 0.29

TABLE 2.14 – Average Absolute Error to Precision

0.
4

0.
6

0.
8

1.
0

Aggregated Predictions (beyond the initial KB)

A
gg

re
ga

te
d

P
re

ci
si

on

●
●●●
● ●

●
●● ● ●●●●●

●

●

● ●

●
●

●

●

●

●

PCA+types+inference
PCA confidence (rules 1−30)
Std confidence (rules 1−30)
Std confidence (rules 31−46)

0 50000 150000 250000 350000

FIGURE 2.1 – Std. confidence vs. PCA confidence

precision of the rule, e.g., in case we want to use them as estimators of the real pre-
cision. Table 2.14 summarizes our findings. We rank the mined rules by their precision
and report the average absolute error of the standard and PCA confidence weighted
by the number of predictions produced by the rules. We can observe that, on average,
the PCA confidence estimates the precision of the rules better than the standard confi-
dence. Thus, reasoning approaches could use the PCA confidence as a weight for the
rule.

Using Type Information. The previous experiment showed us the precision of indi-
vidual rules for prediction. To make more accurate predictions, we have to combine
these rules with more signals. We proceed as follows. In Section 2.4.1 we discussed
the granularity differences in relations. For instance, the relation livesIn is used to ex-
press a person’s city or country of residence. This implies that, for example, the rule
livesIn(x, y) ⇒ isCitizenOf (x, y) can predict that some people are citizens of cities.
Such spurious predictions decrease the precision of the inference process. Therefore,
we configured AMIE to mine typed rules. These have the form :

B ∧ rdf :type(x,D) ∧ rdf :type(y,R) ⇒ r(x, y)

where D ∶= domain(r) and R ∶= range(r) correspond to the domain and range of the
head relation r in the schema of YAGO3. We resorted to the YAGO3 [74] types and

schema because the type signatures in older versions of YAGO are too general. For
instance, the relation livesIn is defined from person to location in YAGO2, whereas in
YAGO3 it is defined from person to city. To allow AMIE to find such rules, we augmented
the YAGO2 dataset by adding the rdf :type statements about the subjects and objects
of the triples in YAGO3. In addition we configured AMIE to enforce the type atoms
rdf :type(x,D) ∧ rdf :type(y,R) right after the creation of the head atom.

Joint Prediction. We observe that a prediction can be fired from multiple rules. If we
consider rules as signals of evidence, then facts predicted by more rules should get a
higher confidence score. In YAGO2, 9% of the predictions are fired by more than one
rule (with a PCA confidence threshold of 0.1). To take this into account, we changed the
way predictions are ranked. In the original experimental setup, if multiple rules R1, . . .Rk

made a prediction p, the prediction was only counted the first time it was fired. Since
the rules were ranked by decreasing PCA confidence, this was equivalent to ranking
the predictions according to their highest PCA confidence :

score(p) ∶= max{confpca(R1), . . . , confpca(Rk)}
where K ∧Ri ⊧ p and i = 1...k. We propose an alternative score instead :

score∗(p) ∶= 1 −
k

∏
i=1

(1 − confpca(Ri)) (2.4)

Equation 2.4 aggregates the PCA confidence of the rules so that the predictions conclu-
ded by multiple rules are ranked higher. It also confers a probabilistic interpretation to
the PCA confidence. The score of a prediction is the probability that at least one of the
rules in R1, . . .Rk concludes p. This is computed as 1 minus the probability that none of
the rules concludes p. The probability of a rule not concluding p is defined as 1 minus
the PCA confidence of the rule. The probability that none of the rules concludes p is the
product of the individual probabilities. Although this scoring-scheme is very simplistic
(it assumes independence of the rules, and confers a probabilistic interpretation to the
confidence), it can still serve as a proof of concept. In real applications, more involved
methods [88,104] can be used for joint prediction.

Results. The upper curve in Figure 2.1 shows the precision of the predictions made
with both heuristics. We proceeded as in the previous experiment, that is, we first used
the rules to fire predictions, and then we ranked these predictions by descending score
and computed their cumulative precision. Unlike in the original experimental setup, the
n-th point from the left in the new curve corresponds to the cumulative precision of the
predictions up to the n-th bucket. We bucketized the predictions by score using a bucket
size of 0.1, i.e., the first point corresponds to the predictions with score between 1 and
0.9, the next one accounts for the predictions with score between 0.9 and 0.8 and so
on.

As we can observe, our heuristics have a significant effect on the precision of the
predictions. The precision is much higher at each level of recall, compared to the ori-
ginal experiment. We can make 100,000 predictions at a precision of 70%. At 400K

Top n Predictions Precision
Positives-only 7 2997 27%
PCA Confidence 12 2629 62%
Positives-only 9 5031 26%
PCA Confidence 22 4512 46%
Positives-only 17 8457 30%
PCA Confidence 23 13927 43%

TABLE 2.15 – PCA confidence vs. positives-only score : aggregated precision of rules
mined on YAGO2 sample.

predictions, we still achieve a precision of 60%. While these predictions should not be
added directly to a KB, they could be sent to human evaluators to check their correct-
ness. It is much easier for a person to check fact candidates for their correctness than
to invent them from scratch. In addition, this experimental setup can serve as a baseline
for more sophisticated inference approaches.

2.7.2 AMIE vs. ALEPH

In Section 2.7.1, we showed empirically that the PCA confidence outdoes the stan-
dard confidence as a ranking metric for rules and predictions in a web-extracted KB,
namely YAGO2. In this section we compare AMIE and the PCA confidence with ALEPH
and its positives-only learning function (see Section 2.3.3.2). We build upon the experi-
mental setup introduced in Section 2.6.3 where we compared the runtime of AMIE and
ALEPH on YAGO2. We ran both systems on our sample of YAGO2 with a minimum
support of 2 facts and without a confidence threshold, that is, minConf = 0 for AMIE.
ALEPH generates a random set of facts as counter-examples for rules. The size of the
counter-examples set is provided as an argument by the user (Rsize in Equation 2.2).
We chose Rsize = 50 since this argument has a direct impact in ALEPH’s runtime. The
higher the value of Rsize, the more accurate is the estimation of the confidence of the
rule and the slower the system performs.

As we did in Section 2.7.1, we ordered the rules by decreasing score (ALEPH)
and decreasing PCA confidence (AMIE). We computed the precision of the rules by
evaluating whether a prediction made by the rule is correct or not. Table 2.15 shows
the number of predictions and their total precision. We show the aggregated values at
the points where both approaches have produced around 3K, 5K, and 8K predictions.
AMIE’s PCA confidence succeeds in sorting the rules roughly by descending precision,
so that the initial rules have an extraordinary precision compared to ALEPH’s. AMIE
needs more rules to produce the same number of predictions as ALEPH (but she also
mines more).

We suspect that ALEPH’s positives-only evaluation function manages to filter out
overly general rules only to some extent. The reason is that this measure “guesses”

negative examples at random (Section 2.3.3.2), whereas rules usually create false pre-
dictions in a non-random way.

2.8 Conclusion

In this chapter, we have presented AMIE, an approach to mine Horn rules on large
RDFS knowledge bases. AMIE is based on a formal model for rule mining under the
Open World Assumption, a method to simulate counter-examples, and a scalable mi-
ning algorithm and implementation. In contrast to traditional ILP systems, AMIE requires
no input other than the KB and does not need configurations or parameter tuning. As
our experiments have shown, AMIE outperforms state-of-the-art approaches not only
in terms of runtime, but also in terms of the number and quality of the output rules. If
we combine these rules with simple heuristics for type checking and joint prediction, we
can use them to predict facts with a precision of about 70%.

3.1. Speeding Up Rule Mining : Speeding Up Rule Refinement 61

Chapitre 3

Speeding Up Rule Mining

The performance experiments presented in Section 2.6 show the suitability of AMIE
for rule mining on a KB with 1M facts. In this chapter, we present AMIE+, an extension
of AMIE that implements a set of heuristics that improve the scability of the system.
Our extensions to the basic AMIE algorithm aim at speeding up two phases of the main
rule mining algorithm introduced in Section 2.5 : (i) the refinement phase and (ii) the
confidence evaluation.

The contents of this chapter are structured as follows : Section 3.1 describes three
strategies that optimize the refinement phase of the AMIE algorithm. Section 3.2 des-
cribes two heuristics to efficiently identify low quality rules before computing their actual
confidence. By identifying such rules in advance, we can discard them without investing
time in calculating their confidence. In Section 3.3 we evaluate the runtime gain car-
ried by our heuristics by comparing AMIE+ with AMIE. In Section 3.4 we introduce an
interactive demo that illustrates the inner workings of AMIE+ to end users. Section 3.5
concludes the chapter.

The work presented in this chapter is based on the following publications :

— Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian Suchanek. Fast Rule Mi-
ning in Ontological Knowledge Bases with AMIE+. International Journal on Very
Large Databases. Volume 24, Issue 6, pp 707–730. December 2015.

— Luis Galárraga. Interactive Rule Mining in Knowledge Bases. 31ème Conférence
sur la Gestion de Données. Île de Porquerolles, France, 2015.

3.1 Speeding Up Rule Refinement

In this section, we discuss how AMIE+ speeds up the rule refinement phase for
specific kinds of rules. These techniques do not alter AMIE’s output in any way.

Maximum Rule Length. Recall from Section 2.5 that the maximum rule length l is an
input parameter for our system. AMIE stops exploring the search space as soon as
all rules with a length of at most l have been produced. During the mining process,

AMIE creates connected rules by applying all possible mining operators (line 10 in
Algorithm 1) on previously created rules. Given a maximum rule length l and a non-
closed Horn rule of length l− 1, AMIE+ will refine it only if it is possible to close it before
exceeding the length constraint. This means that for a not-yet-closed rule of length l−1,
AMIE+ will not apply the add-dangling-atom operator OD, because this results in a non-
closed rule, which will be neither output nor refined. In the same spirit, if the same rule
contains more than two non-closed variables (see Section 2.5.2), AMIE+ will skip the
application of the add-closing atom operator OC . This happens because an application
of the operator OC can close at most two variables with one atom. This reasoning also
applies to OI , the instantiation operator : rules with more than one non-closed variable
are not refined with instantiated atoms, because the addition of an instantiated atom
can close at most one variable.

Perfect Rules. By definition, a rule cannot achieve a PCA confidence that is higher
than 100%. Thus, once a rule has achieved 100% PCA confidence, we can stop adding
new atoms. This is because the confidence cannot increase and the support can only
decrease. Hence, any refinement is futile and will be discarded by the output routine
described in Algorithm 2. We call rules with 100% PCA confidence perfect rules.

Simplifying Projection Queries. Support is by definition monotonically decreasing
with the length of the rule (Section. 2.3.2.1). Hence, whenever we apply an add-
dangling-atom operator to a rule Rp (the parent rule) to produce a new rule Rc (the
child rule), the support of Rc will likely be smaller than the support of Rp. However,
there is one case in which the addition of a dangling atom cannot reduce the support.
This happens when Rc (i) already contains atoms with the same relation as the dan-
gling atom and (ii) these atoms have a variable in common with the dangling atom. An
example is the parent rule

Rp ∶ ⇒ isCitizenOf (x, y)
and the child rule

Rc ∶ isCitizenOf (z, y) ⇒ isCitizenOf (x, y)
We observe that the addition of the dangling atom isCitizenOf(z, y) cannot further res-
trict the support of Rp because the new atom is a less restrictive version of the atom
isCitizenOf (x, y). This means that z will always bind to the same values as x. From this
observation, it follows that the support of Rc can be rewritten as

supp(Rc) = #(x, y) ∶ isCitizenOf (x, y) ∧ isCitizenOf (x, y)

supp(Rc) = #(x, y) ∶ isCitizenOf (x, y)
which is the same as supp(Rp). Thus both Rp and Rc have the same support. This
observation can be leveraged to speed up projection queries. In particular, the appli-
cation of the dangling atom operator OD to Rc requires to fire count projection queries

of the form r(X,Y) ∧Rc with r(X,Y) ∈ {r(z,w),r(w, z),r(x,w),r(w,x)} for an arbi-
trary fresh variable w. Since Rc has the same support as Rp, we can replace Rc by Rp

resulting in an equivalent query with fewer atoms. We remark, though, that this rewri-
ting is not applicable to all cases, e.g., r(z,w) ∧ isCitizenOf (z, y) ⇒ isCitizenOf (x, y).
In general, if the dangling atom contains the originally replaceable variable (z in our
example), AMIE cannot replace Rc with Rp. In our example this happens because the
atom isCitizenOf(z, y) becomes mandatory due to the additional constraints imposed
on variable z in r(z,w). Conversely, in this example the rewriting is valid for the dangling
atoms r(x,w) and r(w,x).

3.2 Speeding up Confidence Evaluation

3.2.1 Motivation

A significant part of the runtime of Algorithm 1 is spent on computing confidence
scores (up to 35% in our experiments). The reason is that the calculation of confidence
(both PCA and standard) requires the calculation of the number of instantiations of the
rule body. If the body contains atoms with many instantiations, the joins can be very
expensive to compute.

At the same time, we will not output rules with a confidence below the threshold
minConf (Section 2.5). This means that the system might spend a significant amount
of time evaluating expensive confidence queries only to find out that the rule was of low
confidence and will not be output. An example of such a rule is :

directed(x, z) ∧ hasActor(z, y) ⇒ marriedTo(x, y)

This rule concludes that a director is married to all the actors that acted in his/her
movies, producing a total of 74249 married couples in YAGO2. AMIE needs more than
500ms (more than twice the average cost : 200ms) to calculate the confidence of this
intuitively bad rule.

We have developed a method to approximate the confidence value of such a rule
very quickly. Our approximation is based on statistics, such as the functionalities of the
atoms, or the size of the joins between two relations. We pre-compute these quantities,
so that they can be accessed in constant time. As a result, AMIE+ prunes the example-
rule above in less than 1ms. In addition, our approximation is designed such that it
is more likely to overestimate confidence than to underestimate it. This is important,
because we use it to prune rules, and we want to avoid pruning rules that have a higher
confidence in reality.

In Section 3.2.2, we provide an overview of the confidence approximation and we
explain for which form of rules we use it. Section 3.2.3 discusses the underlying as-
sumptions, how to compute the approximation and how AMIE+ uses it. Finally, Sec-
tion 3.2.4 derives upper bounds for the confidence of a particular class of rules.

3.2.2 Confidence Approximation

Recall that the standard confidence and the PCA confidence (see Sections 2.3.3.1
and 2.4) for a rule of the form B ⇒ rh(x, y) are defined as :

conf (B ⇒ rh(x, y)) ∶=
supp(B ⇒ rh(x, y))

#(x, y) ∶ ∃z1, . . . , zm ∶B

and

conf pca(B ⇒ rh(x, y)) ∶=
supp(B ⇒ rh(x, y))

#(x, y) ∶ ∃z1, . . . , zm, y′ ∶B ∧ rh(x, y′)
We restrict our analysis to rules with two variables in the head because count que-
ries on a single variable are cheap to compute. By the time AMIE has to calculate the
confidence of a rule, the system already knows the support of the rule. Hence, the re-
maining step is to fire the queries for the denominators of the confidence expressions.
We denote them by dstd and dpca :

dstd(B ⇒ rh(x, y)) ∶= #(x, y) ∶ ∃z1, . . . , zm ∶B (3.1)

dpca(B ⇒ rh(x, y)) ∶= #(x, y) ∶ ∃z1, . . . , zm, y′ ∶B ∧ rh(x, y′) (3.2)

Our aim is to derive a conservative approximation for dpca and dstd denoted by d̂pca and
d̂std respectively. By plugging this expression into the PCA confidence formula, we get

ĉonf pca(R) ∶= supp(R)
d̂pca(R)

(3.3)

Let us reconsider Equation 3.2 and rewrite it as follows :

dpca(B(x, y) ⇒ rh(x, y)) ∶= #(x, y) ∶ ∃z1, . . . , zm, y′ ∶B(x, y) ∧ rh(x, y′)

Here, we resort to an abstraction that treats the body of the rule B as a relation B(x, y)
on the head variables, i.e., B(x, y) ∶= {x, y ∶ ∃z1, . . . zn ∶ B}. If B has functionality
fun(B), on average each entity in variable x relates to #yper x = 1/fun(B) bindings in y.
Let us define the effective domain and range of a relation r as :

dom(r) ∶= {x ∶ ∃y ∶ r(x, y) ∈ K}

rng(r) ∶= {y ∶ ∃x ∶ r(x, y) ∈ K}

These are the sets of entities that occur as subjects and objects in the relation respec-
tively. Given the definitions of dom(r) and rng(r) respectively, the following equation
provides an estimate for the body size of the rule, i.e., dstd(B ⇒ rh(x, y)) :

d̂std(B ⇒ rh(x, y)) ∶= ∣dom(B)∣ ⋅#yper x (3.4)

However, for the PCA confidence, the denominator is restricted also by the entities in
the effective domain of the head relation. This consideration leads us to the expression :

d̂pca(B ⇒ rh(x, y)) ∶= ∣dom(B) ∩ dom(rh)∣ ⋅#yper x (3.5)

In the following, we describe when it makes sense to use this approximation and then,
in Section. 3.2.3, we discuss how to calculate the terms of Equation 3.5 in an efficient
way. The analysis for Equation 3.4 is analogous.

When to Use the Approximation. Using any form of confidence approximation always
involves the risk of pruning a good rule. At the same time, if the exact confidence value is
cheap to compute, the potential gain of using an approximation is small. For this reason,
we only use the confidence approximation for rules whose exact confidence is relatively
“expensive” to compute. These rules typically have a large number of bindings in the
body because of the presence of intermediate variables. This translates into higher
runtimes and memory usage. An example is the rule we saw before :

directed(x, z) ∧ hasActor(z, y) ⇒ marriedTo(x, y)

In this example, a director x is related to many movies z (the intermediate variable)
that have different actors y. Hence, we consider a rule expensive if its body (i) contains
variables other than the variables appearing in the head atom (z in our example) and (ii)
if these additional variables define a single path between the head variables (x→ z → y
in our example). Note that rules without intermediate variables are usually associated
with more selective queries. An example is the rule

livesIn(x, y) ∧ bornIn(x, y) ⇒ diedIn(x, y)

Rules that contain multiple paths between the head variables are also selective. Consi-
der the rule :

livesIn(x, z1) ∧ locatedIn(z1, y) ∧ bornIn(x, z2) ∧ locatedIn(z2, y) ⇒ isCitizenOf (x, y)

In these two examples, both livesIn and bornIn join on x in the body and restrict the
size of the result.

We therefore use the confidence approximation only for rules where the head va-
riables x, y are connected through a single chain of existentially quantified variables
z1, . . . , zn−1. These rules have the form :

r1(x, z1) ∧ r2(z1, z2) ∧ ... ∧ rn(zn−1, y) ⇒ rh(x, y)

In order to write a rule in this canonical form, we may have to replace some relations by
their inverses (i.e., substitute ri(zi−1, zi) with r−1i (zi, zi−1)) and change the order of the
atoms. We will now see how to compute the approximation for this type of rules.

3.2.3 Computing the Approximation

In the following, we use the shortcut notations ovdr(r1, r2), ovrd(r1, r2), ovdd(r1, r2),
ovrr(r1, r2) for the size of the overlap sets between the effective domains and ranges
of pairs of relations. For example number of common entities between the domain of
relation r1 and the range of relation r2 is denoted by

ovdr(r1, r2) ∶= ∣dom(r1) ∩ rng(r2)∣

Let us now consider again the rule

directed(x, z) ∧ hasActor(z, y) ⇒ marriedTo(x, y)

which implies that a director is married to all actors that acted in his movies. In this case,
dpca(R) is defined as

dpca(R) ∶= #(x, y) ∶ ∃ z, y′ ∶ directed(x, z) ∧ hasActor(z, y) ∧marriedTo(x, y′)

Here B(x, y) = {x,y ∶ ∃z ∶ directed(x, z) ∧ hasActor(z,y)}. To calculate the approxima-
tion defined in Equation 3.5, we need to calculate (1) the number of directors in B(x, y)
that are married, i.e., ∣dom(B) ∩ dom(marriedTo)∣ and (2) the number of actors y
associated to each director x, i.e., #yper x. We focus on (2). The estimation of #yper x

requires us to walk from the most to the least functional variable, i.e., through the path
x → z → y, connecting a director to his potential actors. If fun(r) and ifun(r) denote
the functionality and inverse functionality of the relation r, respectively, then walking
through this path involves the following steps :

1. For each director x, the relation directed will produce on average 1
fun(directed) mo-

vies z.

2. Some or all of these movies z will find join partners in the first argument of
hasActor .

3. For each movie z, hasActor will produce on average 1
fun(hasActor) actors y.

4. Each of these actors in y acted on average in 1
ifun(hasActor) movies of the hasActor

relation.

Up to step 2, we can approximate the number of distinct movies that bind to the variable
z for each director in the variable x as :

#zper x ∶=
ovrd(directed ,hasActor)

∣rng(directed)∣ × fun(directed)

Here, ∣rng(directed)∣ is the number of distinct movies in the effective range of directed
and ovrd(directed ,hasActor) denotes the distinct movies in the overlap between the
objects of directed and the subjects of hasActor . The term 1/fun(directed) corresponds
to step 1. Our join estimation assumes that the movies in the overlap of directed and
hasActor are uniformly distributed among the different directors in the relation directed .

For steps 3 and 4, we can approximate the number of actors in the variable y for
each movie in the variable z as follows :

#yper z ∶=
ifun(hasActor)
fun(hasActor)

The term 1/fun(hasActor) corresponds to step 3. At the end of this step, we already have,
for a single director x, a bag of actors y associated to him. However, these are not
necessarily distinct actors, since x and y are connected through the variable z (movies).
Therefore, a duplicate elimination step is needed. To see why, assume that each director
has directed on average 3 movies and that each movie has 5 actors. Then, the rule will
produce on average 15 actors y for each director x. However, there is no guarantee that
these actors are distinct. If the director trusts specific actors and collaborates repeatedly
with them in some or all of his movies, there will be less than 15 distinct actors.

The term ifun(hasActor) achieves this duplicate elimination : since each actor par-
ticipated in 1/ifun(hasActor) different movies, the actor contributes to the final count with a
weight that is inversely proportional to this number.

In this way of performing duplicate elimination, a single actor y belongs to
1/ifun(hasActor) different movies z, which are chosen from all the movies in the rela-
tion hasActor . In reality, we want the number of different movies to be chosen from
those that remain after step 2, i.e., the average number of movies by the same director
that an actor acts in. This number is obviously smaller, which implies that the factor
ifun(hasActor) is a pessimistic estimator. This makes our approximation an underes-
timation of the real confidence denominator, and the overall confidence approximation
an overestimation of the actual confidence.

We can now estimate the number of actors y that are supposed to be married with
each director x as :

#yper x ∶= #zper x ×#yper z

To calculate d̂pca of Equation 3.5, we are now only missing the expres-
sion ∣dom(B) ∩ dom(marriedTo)∣. Here we make the simplifying assumption that
dom(B) = dom(directed), so that the expression becomes the size of the join
between the relations directed and marriedTo, on the subject argument, i.e.,
ovdd(directed ,marriedTo).

To summarize, the factor d̂pca(R) for a rule r1(x, z) ∧ r2(z, y) ⇒ rh(x, y) can be
approximated by :

d̂pca(R) ∶= ovdd(r1, rh) ⋅ ovrd(r1, r2) ⋅ ifun(r2)
fun(r1) ⋅ ∣rng(r1)∣ ⋅ fun(r2)

For the more general case of a rule that contains n − 1 existential variables forming a
single path from x to y

r1(x, z1) ∧ r2(z1, z2) ∧ ... ∧ rn(zn−1, y) ⇒ rh(x, y)

the formula becomes :

d̂pca(R) ∶= ovdd(r1, rh)
fun(r1)

×
n

∏
i=2

ovrd(ri−1, ri)
∣rng(ri−1)∣

ifun(ri)
fun(ri)

(3.6)

Estimating standard confidence. Equation 3.4 provides an approximation d̂std for the
body size of a rule, i.e., the denominator of the standard confidence formula dstd. As we
did for the general case of d̂pca (Equation 3.6), we assume that B has been rewritten as
a path between the head variables x, y, i.e., B ∶= r1(x, z1)∧ r2(z1, z2) ∧ ⋅ ⋅ ⋅ ∧ rn(zn−1, y).
Under the assumption that dom(B) ∶= dom(r1), the final formula becomes :

d̂std(R) ∶= ∣dom(r1)∣ ×
n

∏
i=2

ovrd(ri−1, ri)
∣rng(ri−1)∣

ifun(ri)
fun(ri)

(3.7)

Implementation. We precompute the functionalities, the inverse functionalities, and the
overlaps between the domains and ranges of each pair of relations when the KB is loa-
ded into the in-memory database. This results in longer loading times, but pays off ea-
sily during rule mining. The sizes of the ranges of the relations are given by our indexes
in constant time. After this preprocessing, the approximation of the confidence can be
computed as a simple product of precomputed values without actually firing a single
query. We apply the approximation only if the query is expensive (see Section 3.2.2). If
the approximated value is smaller than the threshold, we abandon the rule. Otherwise,
we compute the exact PCA confidence and proceed as usual.

Assumptions. The approximations defined by Equations 3.4 and 3.5 make a series of
assumptions. First, we make use of functionalities as average values. In other words,
we assume that for any relation all objects are uniformly distributed among the subjects
(which corresponds to a zero variance). In reality, this is not always the case. Addi-
tionally, the estimation of the expression #zper x uses the term ovrd(ri−1,ri)

∣rng(ri−1)∣ . This term
assumes that the entities in the overlap are uniformly distributed among the entities
in the range of ri−1. This also introduces some error that depends on the variance of
the real distribution. Nevertheless, the duplicate elimination largely underestimates the
count of #yper x, and therefore we expect our approximation to usually result in an ove-
restimation of the actual confidence. This is indeed the case, as our experiments in
Section 3.3 show.

3.2.4 Confidence Upper Bounds

In some particular cases, we can derive lower bounds for the confidence denomina-
tor (dpca, dstd) instead of using the approximation described in Section 3.2.2. Consider
a rule of the form :

r(x, z) ∧ r(y, z) ⇒ rh(x, y)
Here, the standard confidence denominator is given by

dstd ∶= #(x, y) ∶ ∃z ∶ r(x, z) ∧ r(y, z)

Since both atoms contain the same relation, we know that all the entities of z in the first
atom will join with the second atom. Furthermore, we know that the join will result in at
least one y-value for each binding of x, i.e., the case where y = x. This allows us to
deduce

dstd ≥ #(x,x) ∶ ∃z ∶ r(x, z) ∧ r(x, z)

dstd ≥ #x ∶ ∃z ∶ r(x, z) (3.8)

This expression can be calculated in constant time with the indexes of our in-memory
database (Section 2.5.4). A similar analysis can be applied for rules of the form r(z, x)∧
r(z, y) ⇒ rh(x, y).

The same reasoning applies to the denominator of the PCA confidence, yielding

dpca ≥ #x ∶ ∃ z, y′ ∶ r(x, z) ∧ rh(x, y′) (3.9)

Although this expression requires to fire a query, it contains fewer atoms than the origi-
nal expression and counts instances of a single variable instead of pairs. It is therefore
much cheaper than the original query.

Both Inequalities 3.8 and 3.9 define lower bounds for the number of pairs in the
denominator expressions of the standard and the PCA confidence, respectively. Thus,
AMIE+ uses them to upper-bound the respective confidence scores. If the upper bound
is below the threshold, the rules can be pruned even before computing the approximate
confidence denominator.

3.3 Experiments

In this section, we evaluate the runtime improvements of AMIE+ over the previous
version AMIE. Recall from Section 2.5 that the AMIE algorithm consists of three main
phases :

— Refinement (i.e., rule expansion).

— Output, which includes confidence calculation.

— Duplicate elimination.

Table 3.1 shows the proportion of time spent by AMIE in each phase when running
on YAGO2 – first without constants and then with constants. We observe that the re-
finement and output phases dominate the system’s runtime. When constants are not
enabled, most of the time is spent in the refinement phase. In contrast, the addition of
the instantiation operator increases the number of rules and therefore the time spent
in the output and duplicate elimination phases. In both cases, the duplicate elimination
is the least time-consuming phase. The enhancements introduced by AMIE+ aim at
reducing the time spent in the refinement and output phases.

Dataset Rules Refinement Output Dup. elim.

YAGO2 135 87.48% 8.79% 3.74%
YAGO2 (c) 19132 53.54% 35.64% 10.82%

TABLE 3.1 – Time spent in the different phases of the AMIE algorithm on YAGO2, first
without the instantiation operator and then with this operator.

KB Facts Subjects Relations

YAGO2 core 948K 470K 32
YAGO2s 4.12M 1.65M 37
DBpedia 2.0 6.70M 1.38M 1595 1

DBpedia 3.8 11.02M 2.20M 650
Wikidata 8.4M 4.00M 431

TABLE 3.2 – Knowledge bases used to test AMIE and AMIE+.

3.3.1 Experimental setup

Hardware. We compared AMIE and AMIE+ on the same runtime environment used for
the experiments in Section 2.6.1, i.e., a server with 48GB of RAM, 8 physical CPUs
(Intel Xeon at 2.4GHz, 32 threads) with Fedora 21 as operating system.

Datasets. We ran our experiments on different KBs. Table 3.2 shows a summary of the
KBs used for our experiments. As in Section 2.6.1, we removed all facts with literals
(numbers and strings). For both DBpedia 2.0 and 3.8, we used the person data and
mapping-based properties datasets. For Wikidata, we used a dump from December
2014, available for download at http://tools.wmflabs.org/wikidata-exports/rdf/
exports/20140420/.

Settings. AMIE+ inherits the default settings of AMIE described in Section 2.6.1. In
addition, AMIE+ enables the improvements introduced in Section 3.1, namely pruning
by maximum rule length (MRL), the query rewriting (QRW) and the identification of per-
fect rules (PR). These are lossless runtime enhancements that optimize the refinement
phase and do not alter AMIE’s output. If an additional confidence threshold is given,
AMIE+ can use the heuristics presented in Section 3.2 to prune rules below the confi-
dence threshold. This reduces the time spent in the confidence calculation and hence
the output phase. For this reason, we override the default settings and set a confidence
threshold of 0.1 for AMIE+. Any deviation from these settings will be explicitly stated.

Runtime Comparison. Table 3.3 shows the runtimes of AMIE and AMIE+. We set a
threshold of 0.1 PCA confidence for AMIE to make it comparable with AMIE+. For the

1. Relations with more than 100 facts only.

http://tools.wmflabs.org/wikidata-exports/rdf/exports/20140420/
http://tools.wmflabs.org/wikidata-exports/rdf/exports/20140420/

KB AMIE
AMIE+

Only Only Output + FullRefinement Output MRL QRW PR
YAGO2 3.17min 29.37s 2.82min 29.03s 38.16s 2.80min 28.19s
YAGO2 (const) 37.57min 11.72min 37.05min 8.90min 12.04min 36.48min 9.93min
YAGO2 (4) 27.14min 9.49min 26.48min 8.65min 15.69min 24.20min 8.35min
YAGO2s > 1 day > 1 day > 1 day 1h 7min 1h 12min > 1 day 59.38min
DBpedia 2.0 > 1 day > 1 day > 1 day 45.11min 46.37min > 1 day 46.88min
DBpedia 3.8 > 1 day > 1 day 11h 46min 8h 35min 7h 33min 10h 11min 7h 6min
Wikidata > 1 day > 1 day > 1 day 1h 14min 7h 56min > 1 day 25.50min

TABLE 3.3 – Runtime and output comparison between AMIE and AMIE+ on different
KBs. On YAGO2 (4), l = 4. On YAGO2 (const), the instantiation operator was switched
on.

latter, we show the results in several categories :

1. Only refinement : only the improvements affecting the refinement process (Sec-
tion 3.1) are active, namely the maximum rule length (MRL), the query rewriting
(QRW) and the perfect rules (PR).

2. Only output : only the improvements affecting the output process are active, i.e.,
the confidence approximation and the confidence upper bounds, both with confi-
dence threshold 0.1 (Section 3.2).

3. Output + MRL/QRW/PR : the output improvements and one of the refinement
improvements are active.

4. Full : All improvements are active.

We first note that AMIE is not able to finish within a day for YAGO2s, DBPedia 2.0,
DBpedia 3.8, and Wikidata. In contrast, AMIE+ can mine rules on all these datasets
in a matter of hours, and even minutes. For YAGO2 (const), we can see that the full
version of AMIE+ is 3.8x faster than AMIE. For YAGO2, this speed-up nearly doubles to
6.7x. This boost is mainly due to the improvements in the refinement process : AMIE+
with only these improvements is already 3.2x faster on YAGO2 (const) and 6.5x fas-
ter on YAGO2 than AMIE. This is not surprising since for YAGO2 most of the time is
spent on refining rules (Table 3.1). Therefore, the improvements in this phase result in
a significant gain.

Notice also that AMIE+ (only output) is only marginally faster than AMIE for the
YAGO2 family of datasets. This is because the confidence approximation heuristic re-
quires computing the join cardinalities for every pair of relations in the KB. This means
that there is a trade-off between an initial additional cost for pre-computing these values
and the potential savings. For the case of YAGO2, the output phase takes only around
9% of the overall mining time, i.e., the confidence evaluation is not really a problem.

For YAGO2s, DBpedia 2.0, DBpedia 3.8, and Wikidata, we see that using only the
refinement improvements or only the output refinements is not enough. If we activate
all improvements, however, AMIE+ is able to terminate in the majority of cases within
an hour or in the worst case over-night.

Table 3.3 also shows the benefit of individual refinement improvements over the
baseline of AMIE+ (only output). The improvement that offers the highest speedup (up
to 6.7x) is the maximum rule length (MRL), closely followed by query rewriting (QRW,
up to 5.1x speedup), whereas perfect rules (PR) rank last. This occurs because MRL
is much more often applicable than QRW and PR. Besides, perfect rules are relatively
rare in KBs. AMIE found, for instance, 1 perfect rule on YAGO2s and 248 (out of 5K) in
DBpedia 3.8.

All in all, we find that AMIE+ can run on several datasets on which AMIE was not
able to run. Furthermore, on datasets on which both can run, AMIE+ achieves a speed-
up of up to 6.7x.

Output Comparison. Table 3.5 shows a comparison of AMIE and AMIE+ in terms of
output (number of rules). For AMIE+ (full), we report the number of rules that were pru-
ned by the confidence approximation. To assess the quality of the confidence approxi-
mation, we report in addition the pruning precision. The pruning precision is the ratio of
rules for which the confidence approximation introduced in Section 3.2.2 overestimates
the actual confidence. We calculate this ratio by counting the number of times that the
heuristics produce a higher value than the real confidence (among the rules on which
the approximation is applicable). For example, a pruning precision of 96% means that
in 4% of the cases the system erroneously pruned rules with a confidence higher than
0.1. As for the runtime comparison, we set a threshold of 0.1 PCA confidence for AMIE.
We also interrupted the system if it ran more than one day. In those cases, we report
the output and the pruning precision until the point of interruption (denoted by a “*” in
Table 3.5). We remark that in those cases, the pruning precision in Table 3.5 is not
exact since it was computed by comparing the output of AMIE+ to the output of AMIE
in a subset of the rules, i.e., those that were found until AMIE was interrupted.

As we can see, the pruning by approximation does not entail a serious decrease
in the quality of the output : AMIE+ does not miss more than 5% of the rules with
confidence above 10%. At the same time, the pruning yields a speed-up by a factor
of up to 3, as Table 3.3 shows. Table 3.4 shows some examples of rules with high
confidence that we mined.

3.4 AMIE+ Demo

This section is based on our work published in [41] and presents an interactive
demo of AMIE+. Our demo lets the user understand the heuristics that govern the
system’s search strategy (Section 2.5.1) by allowing the user to navigate through the
search space together with the system. The demo is available to users under http:
//luisgalarraga.de/amie-demo.

http://luisgalarraga.de/amie-demo
http://luisgalarraga.de/amie-demo

y :isCitizenOf (x, y) ⇒ y :livesIn(x, y)
y :wasBornIn(x, y)∧ y :isLocatedIn(y, z) ⇒ y :citizenOf (x, z)
y :hasWonPrize(x,G. W. Leibniz) ⇒ y :livesIn(x,Germany)
y :hasWonPrize(x,Grammy) ⇒ y :musicalRole(x,Guitar)
d :countySeat(x, y) ⇒ d :largestCity(x, y)
d :jurisdiction(z, y)∧ d :successor(x, z) ⇒ d :jurisdiction(x, y)
w :ownedBy(x, y) ⇒ w :subsidiary(y, x)
w :relative(y, z)∧w :sister(z, x) ⇒ w :relative(x, y)

TABLE 3.4 – Some rules mined by AMIE on different datasets (y : YAGO, w : Wikidata,
d : DBpedia).

AMIE AMIE+(full)
KB Rules Rules Pruned Prun. prec.
YAGO2 68 68 24 100.00%
YAGO2 (c) 15634 15634 24 100.00%
YAGO2 (4) 645 645 203 100.00%
YAGO2s 94* 94 78 100.00%
DBpedia 2.0 24308* 112865 5380 98.26%
DBpedia 3.8 2470* 5087 2621 98.41%
Wikidata 889* 1512 773 95.35%

TABLE 3.5 – Output comparison of AMIE (PCA conf ≥ 0.1) and AMIE+ full. Starred : out-
put after processing for 1 day. On YAGO2 (4), l = 4. On YAGO2 (const), the instantiation
operator was switched on.

3.4.1 Interface

To demonstrate the AMIE+ algorithm to the user, our demo shows the rule construc-
tion process, starting from the empty rule. At each step, the user can add a new atom
r(x, y). This involves two steps : (1) choosing the relation r and (2) choosing the argu-
ments x, y. The second step offers various permutations of arguments : Each argument
can be a variable (either known or fresh) or an entity (chosen from the set of entities
that lead to the highest support). In this section we depart from the traditional notation
B ⇒ H and write rules as H ⇐ B for usability reasons, i.e., rules are constructed in
a left to right fashion as the user were writing. For instance, imagine the user wants to
follow the path to mine the rule

livesIn(a, b) ⇐ isMarriedTo(a, f) ∧ livesIn(f, b)

The demo starts with the empty rule “...⇐ ...” and asks the user to select a relation for
the head atom H. The system shows as choices a list of relations ranked by size (sup-
port). Once the user picks a relation (i.e., livesIn in our example), the system displays
all possible head atoms using that relation, ranked by support. This includes, in our

FIGURE 3.1 – Mining a closed Horn rule

example, atoms such as livesIn(a, b) and livesIn(a, California). Constants are always
bound to the least functional argument of relations (see Section 1.3.3). In our example,
it is more reasonable to predict the place of residence of a person, that all the people
that live in a place (Section 2.4). Once the arguments are fixed, the atom is appended
to the rule, and the user can choose the relation for the next atom. In the example,
the user would select the relation isMarriedTo. In the next step, the system shows the
user all possible atoms produced by the mining operators presented in Section 2.5.
For the relation isMarriedTo, the OD operator yields the atoms isMarriedTo(a, f) and
isMarriedTo(f, a). Our example rule can be produced by selecting the first atom follo-
wed by a new atom using the relation livesIn (Figure 3.1). The user can also, at any
point, decide to backtrack and to remove the last atom from the rule in order to explore
a different path in the search space.

At each step in the process, the user has complete freedom to choose his options.
However, the system also shows the metrics and pruning strategies that AMIE+ would
apply. These techniques include :

1. Perfect rules. If the rule is closed and has a PCA confidence of 1.0, then no
refinement can make the rule better, because confidence cannot increase and
support can only decrease. Hence, the rule is output and removed from the queue
(Section 3.1).

2. Skyline technique. If the new rule has a lower confidence than the rule that it
is derived from, then the rule is just silently enqueued for further refinement, but
not output. This is because it will have lower confidence and lower support than
the previous rule. This heuristic was designed to avoid over-specifications of the
same logical rule (Section 2.5).

3. Maximum rule length. If the maximum permitted length of a rule is n, then AMIE

will not apply the operator OD at length n−1. This is because the operator adds a
new variable, and thus the rule cannot be closed within the limit of n atoms. This
technique is called the lookahead (Section 3.1).

4. Quasi-bindings. When AMIE adds a new instantiated atom, it will exclude atoms
where the variable of this atom can bind to only one entity in the KB. This is
because these cases induce a quasi-binding of the free variable, meaning that
there is a shorter equivalent rule (Section 2.5.2).

Our demo shows for every possible choice of atoms the support, the head coverage,
the standard confidence, and the PCA confidence that this atom would achieve. Thus,
the user can see which choice achieves the best metrics, and why – much like AMIE+
does during the mining process. For illustration, we also show positive examples and
negative examples under both the CWA and the PCA for the new rule.

3.4.2 Implementation

Our demo is implemented as a client-server application that lets the user drive the
AMIE+ system step by step. We use YAGO [117] as KB. In order to guarantee reaso-
nable response times in the interactive client-server setting, we created a sample of
YAGO following the same procedure as in Section 2.6.2 : We took 10K random seed
entities, and collected all the facts within a range of 3 hops from the seed entities, produ-
cing a sample of 35K facts. The server consists of a Java servlet that serves as interface
to the AMIE+ codebase, namely the mining operators described in Section 2.5 and the
in-memory triple store. The KB is loaded into memory only once when the servlet is
initialized in the servlets container. The client side is a lightweight user-interface written
in Javascript and HTML.

For the AMIE algorithm, it does not matter whether an unknown person or President
Obama is an example or counter-example for a rule. For the user, in contrast, it is more
illustrative to show prominent entities rather than unknown ones. Hence, we computed
a relevance score for each entity e as :

relevance(e) ∶= log(wikilength(e)) × (incoming(e) + 1)

Here, wikilength(e) is the length of the Wikipedia article of the entity (in bytes), and
incoming(e) is the number of Wikipedia articles linking to the article of e. Both numbers
can be easily obtained from YAGO. We add 1 in the second term to guarantee that
the score is a positive number. The relevance of a fact r(x, y) is defined as the sum of
the relevance scores of its arguments. This score is used to rank facts when displaying
examples for rules, so that facts about prominent entities are preferred.

3.5 Conclusion

In this chapter, we have extended AMIE to AMIE+ by a series of pruning and query
rewriting techniques, both lossless and approximate. As our extensive experiments

have shown, AMIE+ runs on millions of facts in only a few minutes, being able to handle
KBs up to 11M facts in a few hours.

The scalability boost provided by AMIE+ clears the way for multiple applications in
data analytics and maintenance. In the upcoming chapters, we explore some of those
applications. The framework provided by AMIE will help us in the tasks of wikilinks
semantification, ontology schema alignment, canonicalization of open knowledge bases
and prediction of completeness.

4.1. Wikilinks Semantification : Motivation 77

Chapitre 4

Wikilinks Semantification

In Chapter 2 we presented AMIE, a system capable of learning Horn rules on large,
potentially incomplete KBs. In this chapter, we show one of the applications of rule
mining with AMIE, namely the task of wikilinks semantification. This is the task of pre-
dicting the semantic relation between two entities that are connected by a hyperlink in
Wikipedia. We refer to those hyperlinks as wikilinks.

The content of this chapter is organized in five sections. Section 4.1 provides a
motivation for this work. Section 4.2 discusses a few existing approaches that make use
of wikilinks for inference tasks in KBs. Section 4.3 describes how to mine semantification
rules on a KB with wikilinks. It also details the process of using semantification rules to
predict candidate relations for wikilinks in DBpedia. Section 4.4, conversely, shows how
wikilinks can improve rule mining, i.e., increase the quality of the rules. Section 4.5
concludes the chapter.

This chapter builds upon the work published in the following workshop article :

— Luis Galárraga, Danai Symeonidou, Jean-Claude Moissinac. Rule Mining for Se-
mantifiying Wikilinks. Proceeding of the 8th Workshop on Linked Open Data. Flo-
rence, Italy, 2015.

4.1 Motivation

Wikipedia-centric KBs such as DBpedia [7] or YAGO [117] store the hyper-
link structure between articles in Wikipedia. That is, if the page of Barack Obama
links to the page of the Nobel Peace Price, these KBs store a triple of the form
linksTo(BarackObama, NobelPeacePrize). We call such facts, wikilinks. Even though
wikilinks account for more than 25% of the non-literal facts in DBpedia, they are rarely
exploited, with a few approaches using them for the type prediction [95, 96]. Neverthe-
less, the fact that two entities are connected via a wikilink often suggests a semantic
connection between them. We aim at discovering the exact meanings of such connec-
tions.

Some wikilinks are already semantified in KBs. YAGO and DBpedia, for example,
know that Barack Obama links to USA and is also a citizen and the President of that

country. KBs can extract such information because it is usually available in the info-
boxes. However, if the information lies somewhere outside the infoboxes, KBs will not
see it, leading to unsemantified wikilinks (see [64, 129] for automatic population of in-
foboxes from text). This is the case for 89% of wikilinks in DBpedia. For instance, the
Wikipedia article of Barack Obama links to the article of the 2009 Nobel Prize, but DB-
pedia does not know that he won the Nobel Prize. In some other cases, the semantic
connection encoded in a wikilink can be meaningless or too vague to be modeled in
the KB. For example, Obama’s article also links to the articles for cocaine and ovarian
cancer.

In this work, we show how to leverage the already semantified wikilinks to semantify
the others. This is achieved by learning frequent semantic patterns from the relations
in the KB and the wikilinks. If we observe that politicians often link to the prizes they
have won, we can suggest that unsemantified wikilinks from politicians to prizes convey
a hasWon relationship. This pattern can be expressed as a logical rule :

linksTo(x, y) ∧ type(x,Politician) ∧ type(y,Prize) ⇒ hasWon(x, y)

In our example with Barack Obama, this rule would predict the concrete fact
hasWon(BarackObama,NobelPeacePrize). Such predictions could be proposed as can-
didate facts to populate KBs.

We use AMIE [43] to mine logical rules like in our example. We then use the rules to
draw conclusions and compute a list of the most likely candidate relations between the
entities of unsemantified wikilinks. Using a straightforward inference method, we can
discover (with high precision) meanings for 180K unsemantified wikilinks in DBpedia.

Rule Mining can semantify wikilinks, but vice versa, wikilinks can also improve rule
mining. We observe that sometimes, wikilinks can increase the confidence of the obtai-
ned rules. For instance, assuming that a rule mining approach learns the rule :

type(y,SportsTeam) ∧ currentMemberOfTeam(x, y) ⇒ hasTeam(x, y)

We observe that by requiring a wikilink between the entities, i.e., adding an atom of the
form linksTo(x, y) to the body, we achieve higher confidence. This observation could be
leveraged by data inference and link prediction approaches. It also provides additional
insights about the KB.

4.2 Related Work

Wikilinks semantification is a form of link prediction in KBs. Also referred as rela-
tional learning, this task aims at predicting relations between entities in a KB. For a
detailed discussion of the state of the art in link prediction, we refer to Section 2.2.5.

All previous link prediction approaches tackle the problem in a general way. In this
chapter we target the special case of predicting semantic links for entities for which
there exists a signal of semantic connection in the form of a wikilink. Some approaches
have leveraged the semantic value conveyed by wikilinks for type inference in KBs. The

Domain Range Relation - % occurrences
Person Person successor 18% assocBand 11% assocMusicArtist 11%
Person Place birthPlace 56% deathPlace 18% nationality 8%
Person Org. team 53% almaMater 8% party 5%
Place Place isPartOf 29% country 28% location 13%
Place Person leaderName 42% architect 32% saint 12%
Place Org. owner 24% tenant 16% operatedBy 12%
Org. Org. sisterStation 18% assocBand 15% assocMusicArtist 15%
Org. Person currentMember 22% bandMember 20% formerBandMember 20%
Org. Place location 19% city 17% hometown 13%

TABLE 4.1 – Top-3 relations encoded in wikilinks between instances of Person, Place
and Organization in DBpedia.

work presented in [96] represents the set of wikilinks as a directed graph where each
entity is replaced by its more specific type in the DBpedia type hierarchy. The method
discovers frequent subgraph patterns on the resulting graph. These are called Ency-
clopedic Knowledge Patterns (EKP). EKPs can be used to describe classes of entities
and therefore predict the types for untyped entities, e.g., instances of soccer players will
often link to instances of coaches and soccer leagues. While this method also makes
use of the instance information to mine patterns, it does not aim at discovering relations
between entities. Thus, it does not make use of any other relations holding between
the endpoints of the wikilinks. In the same spirit, [95] builds upon EKPs and uses the
instance information to map both entities and classes to a vector space. A similarity
function on this space is used to compute the distance of an entity to the prototypical
vectors of classes and predict the types for untyped entities.

4.3 Predicting Semantics for Wikilinks

4.3.1 Mining Semantification Rules

Our approach to semantify wikilinks relies on the intuition that (a) wikilinks often
convey a semantic connection between entities, (b) some of them are already semanti-
fied in KBs, (c) the types of the entities in the wikilink define the signature of its implicit
relation, and (d) the already semantified wikilinks can help us semantify the others. The
already semantified wikilinks constitute our training set. From this training set, we mine
a set of semantic patterns in the form of logical rules.

To justify our intuition, we look at the types of the endpoints of semantified wikilinks
in DBpedia. We restrict our analysis to the classes Person, Place and Organization.
Table 4.1 shows the most common relations holding between pairs of those entities for
which there exists at least one wikilink.

For example, we observe that when a person links to a place, in 56% of the cases,
the person was born in that place. Similarly, when an organization links to a place, in
19% of the cases, this corresponds to its location. We also observe that in our dataset,

linksTo(x, y) ∧ is(x,Town) ∧ is(y,Country) ⇒ country(x, y)
linksTo(x, y) ∧ lieutenant(y, x) ∧ is(x,OfficeHolder) ∧ is(y,Governor) ⇒ governor(x, y)
linksTo(x, y) ∧ largestCity(y, x) ∧ is(x,City) ∧ is(y,AdminRegion) ⇒ partOf (x, y)

TABLE 4.2 – Some semantification rules mined by AMIE on DBpedia.

81% of the links for these classes are not semantified. Rule mining techniques can help
us learn the patterns suggested by Table 4.1 and semantify more links.

We start by constructing a training set K from DBpedia 3.8 1 consisting of 4.2M
facts and 1.7M entities, including people, places and organizations. We enhance this
dataset with the type information about the entities, i.e., 8M rdf :type statements, and
the wikilinks between those entities. Since we can only learn from already semantified
wikilinks, we restrict the set of wikilinks to those where both endpoints participate in a
relation in the data, i.e.,

linksTo(a, b) ∈ K ⇔ ∃ r, r′, x, y ∶ (r(x, a) ∨ r(a, x)) ∧ (r′(y, b) ∨ r′(b, y))

This procedure led us to a training set K with a total of 18M facts. We ran AMIE
on this dataset and configured it to mine semantification rules. These are closed Horn
rules of the form :

linksTo∗(x, y) ∧B ∧ type(x,C) ∧ type(y,C ′) ⇒ r(x, y)

where linksTo is an alias for wikiPageWikiLink (DBpedia relation for wikilinks), linksTo*
denotes either linksTo or linksTo−1, “type” is a synonym for rdf :type and B is a conjunc-
tion of up to 2 atoms. To mine semantification rules, we tweaked AMIE to enforce
atoms of the form linksTo∗(x, y) and type(x,C), type(y,C ′) right after the creation of
the head atom. We explore all C, C ′ that produce rules above the given support and
confidence thresholds. With support and PCA confidence thresholds 100 and 0.2 res-
pectively, AMIE found 3546 semantification rules on the training set K. Table 4.2 shows
examples of those rules.

4.3.2 Predicting Relations for Wikilinks

Once we have mined semantification rules on a KB K, we use them to draw a set of
predictions of the form p ∶= r(a, b) /∈ K as in Section 2.7. We restrict even further the set
of predictions by requiring the arguments to be the endpoints of unsemantified wikilinks,
i.e., r(a, b) ∶ ∄ r′ ∶ r′ ≠ linksTo ∧ r′(a, b) ∈ K.

Recall that those predictions may be deduced by multiple rules since AMIE explores
the search space of rules in an exhaustive fashion. Moreover, those rules have different
degrees of confidence. We resort to Formula 2.4 for joint-prediction to account for these
observations. Given an unsemantified wikilink w ∶= linksTo(a, b), Formula 2.4 allows us
to propose a list of candidate meanings for w. If among the set of predictions there are

1. We learn rules on DBpedia 3.8 to corroborate some of their predictions automatically in DBpedia 3.9

Precision@1 Precision@3
0.77 ± 0.10 0.67 ± 0.07

TABLE 4.3 – Average MAP@1 and MAP@3 scores for semantification of wikilinks on
DBpedia.

WikiLink Semantification candidates
Interstate 76 (west) → Colorado State Highway routeJunction (1.0)
J. Bracken Lee → Herbert B. Maw predecessor (1.0), parent(0.998), governor(0.882)
WHQX →WTZE sisterStation (1.0)
Set the Tone (band) → Zones (band) associatedMusicalArtist(1.0), associatedBand(1.0)

TABLE 4.4 – Some examples of semantification candidates for wikilinks. The correct
candidates are in italics.

several facts of the form ri(a, b), then each relation ri is a semantification candidate
for w with confidence score∗(ri(a, b)) (Equation 2.4). For each unsemantified link, we
propose a list of semantification candidates sorted by PCA confidence. Our procedure
proposes relation candidates for 180K unsemantified wikilinks in the training set. Since
we can only corroborate 1% of our predictions in DBpedia 3.9, we evaluate the precision
of our approach on a random sample of 60 unsemantified wikilinks as follows : For each
wikilink we count the number of correct candidates at top 1 and top 3 of the ranking ;
we then add up these counts and divide them by the total number of candidates at top
1 and top 3 respectively. This gives us an estimation of the precision of our approach.
Table 4.3 shows the estimated precision values drawn from the sample as well as the
size of the Wilson Score Interval [16] at confidence 95%. The results imply that, for
example, the precision at top 1 for the whole set of wikilinks lies in the interval 77% ±
10% with 95% probability.

Table 4.4 shows some examples of wikilinks and the ranking of semantification can-
didates proposed by our approach. The number in parentheses corresponds to the
confidence of the semantification candidate. The candidates evaluated as correct ac-
cording to the our evaluation are in italics.

4.4 Wikilinks for Rule Mining

If AMIE finds two rules B ⇒H and B ∧Bn+1 ⇒H and the latter has lower confi-
dence, the system will not output it because it is worse in all dimensions (Section 2.5.1).
We therefore investigate the confidence gain carried by the addition of wikilink atoms in
rules.

We first run standard AMIE on the DBpedia mapping-based triples. In a second run,
we add the wikilinks to the mapping-based triples and instruct AMIE to mine rules of the
form B ∧ linksTo∗(x, y) ⇒ r(x, y). We did not change the standard pruning strategies,
therefore AMIE is allowed to prune the longer rule with the linksTo∗(x, y) atom, if it

Rules without wikilink 857
Rules with wikilink 1509
Rules with confidence gain 1389
Weighted average gain (wag) 0.03
Rules with gain ≥ 0.1 139

TABLE 4.5 – Statistics about rule mining with and without wikilinks.

Rule ∆-conf

operator(x, y) ∧ is(x,Stadium) ⇒ location(x, y) 0.53
debutTeam(x, y) ⇒ team(x, y) 0.28
officialLanguage(x, y) ⇒ spokenIn(x, y) 0.19

TABLE 4.6 – Confidence gain for some rules when specialized with a linksTo atom on
the head variables.

does not lead to a confidence gain. In both cases, we set a threshold of 100 positive
examples for support and no confidence threshold. We report our findings in Table 4.5.
We observe that requiring the head variables to be connected via a wikilink increases
the number of rules from 857 to 1509. This occurs because in the second run, AMIE
sometimes mines extensions of the rules with the linksTo∗ atom. In other words, for
some rules, the addition of a wikilink atom provides a confidence gain. This is the case
for 1389 rules as Table 4.5 shows. We are interested in finding how much confidence
gain is carried by those rules. Thus, we define the gain of a wikilink rule as a variant of
the gain metric used in association rule mining [11] :

gain(R) ∶= supp(R) × (pcaconf (R) − pcaconf (R¬linksTo))

That is, the gain of a wikilink rule is the product of its support and the difference in
confidence with respect to the rule without the linksTo∗ atom. Table 4.5 reports an
average gain of 0.03. This indicates that, in the majority of cases, the wikilinks do not
provide a significant confidence gain to rule mining in DBpedia. The reason lies on the
fact that for 99% of the triples in the DBpedia mapping-based dataset, there is a wikilink
between the arguments of the triples. This implies that the addition of a wikilink atom
does not provide additional information to most of the rules. On the other hand, for
10% of the rules the gain can be higher than 0.1. We show some of those rules with
their corresponding confidence gain in Table 4.6. This occurs because more than 100K
triples in our dataset do not have a wikilink between the subject and the object. Thus,
for those entities, the atoms of the form linksTo∗ make a difference, which leads to a
confidence gain that can be used to improve the quality of the rules.

4.5 Conclusion

While none of the major Wikipedia-centric KBs make further use of the wikilinks, in
this work we have shown that they often encode latent relations between entities. Such
relations may not be captured in KBs. We have shown that rule mining techniques and
naive inference methods are a feasible method to accurately discover those implicit
semantics. This wikilink semantification task can be seen as a particular case of the
link prediction problem in KBs. With this work, we aim at turning the attention to the
wikilinks, as they convey valuable information that can help improve the completeness
of KBs. All the datasets and experimental results produced by this work are available
under http://luisgalarraga.de/semantifying-wikilinks.

http://luisgalarraga.de/semantifying-wikilinks

5.1. Schema Alignment : Motivation 85

Chapitre 5

Schema Alignment

This chapter illustrates the applicability of rule mining to the problem of KB schema
alignment, an important data integration task. Data integration is the process of recon-
ciliating data produced by independent sources about a common domain. Data integra-
tion is crucial for the Semantic Web, given its primary goal of providing a unified web of
entities in the presence of numerous independent contributors.

This chapter is structured as follows. Section 5.1 discusses in detail the problem of
interoperability in the Semantic Web and motivates our work on KB schema alignment.
Section 5.2 presents the related work for the tasks of instance and schema alignment in
KBs. In Section 5.3 we present the requirements of our method for schema alignment.
In Section 5.4 we show the family of alignment mappings that can be found with our
method on real-world KBs. We conclude the chapter in Section 5.5 with a brief outlook
of future work in this area.

The work presented in this chapter is based on the following publication :

— Luis Galárraga, Nicoleta Preda, Fabian Suchanek. Mining Rules to Align Know-
ledge Bases. Proceedings of the 3rd Workshop on Automated Knowledge Base
Construction. pp 43–48. San Francisco, USA, 2013.

5.1 Motivation

Many of publicly available KBs share a lot of information. For instance, KBs that feed
from Wikipedia, such as YAGO, DBpedia, Wikidata, Freebase, and Google’s knowledge
graph, share a large part of their entities. Consequently, many of the (public) KBs have
been connected in the Linked Open Data Cloud [71] (LOD). The LOD cloud provides
instance alignments in the form of sameAs links between equivalent entity identifiers
across KBs. Altogether, the LOD cloud provides hundreds of millions of such links, thus
interconnecting billions of statements.

These links, however, concern mostly instances. The schema of the KBs, i.e., the
class hierarchy and the relations of the KBs, have not yet been mapped at large scale.
This entails that, although the instances are aligned, the data is not interoperable. A
query formulated in the schema of one KB will not have answers in another KB – even

if the desired information is there, and even if the instances have been linked between
the two resources. For example, assume that a user of YAGO asks for the parents of
Elvis Presley, and assume that YAGO knows the father of Elvis, and DBpedia knows his
mother. The user will not get the desired results, if she does not know that the hasChild
relationship of YAGO is formulated as its inverse, i.e., hasParent in DBpedia. Hence,
despite the great advances of linked open data, the KBs are still to a large degree
disconnected databases.

A standard data integration solution based on manually defined mappings would not
scale-up to the hundreds of KBs on the Semantic Web. Recent work [116] has allowed
finding relation and class alignments across KBs at large scale. However, this approach
requires the KBs to have the same structure : One relation in one KB has to correspond
to one relation in the other. Real-data examples show us that this is not always the case.
For example, if the user asks for the country of birth of Elvis, then one KB may express
this by the relationship wasBornInCountry. Another KB, in contrast, may require a join
of the relationship wasBornInCity with the relationship locatedInCountry. This problem
is particularly prevalent in cases where one KB distinguishes between the entity and
its label, while the other one does not. For example, one KB could say sang(Elvis, ‘All
Shook Up’), while the other one could say sang(Elvis, AllShookUp), label(AllShook-
Up, ‘All Shook Up’). Such a structural mismatch would derail any alignment system
that assumes isomorphic KBs. Consequently, any query evaluation algorithm that uses
them would miss relevant query plans.

Another important issue faced by data integration systems is the translation of lite-
ral values from one KB to another. For example, different KBs may use different labels
for the same entities. MusicBrainz uses abbreviated names for countries, stating for
example livedIn(Elvis, ‘DE’). YAGO, on the other hand, uses complete names for coun-
tries. If the data of MusicBrainz were integrated directly into YAGO, the result would be
inconsistent.

This leaves us to conclude that, even though KBs talk about the same things in
the same representation format, and even though they may complement each other,
they speak in different “languages”. The reason is a structural mismatch between the
schemas of the KBs. Our vision is that this structural mismatch be overcome. We would
like to see a Semantic Web where the KBs are not just linked by their instances, but
also by their relations and classes – irrespective of structural differences, and across
different schemas. This would allow users to make full use of the data and links of the
Semantic Web.

Contribution. The contribution of this chapter is to illustrate how to mine schema ali-
gnments between two KBs. For this purpose, we resort to a simple, yet very effective
technique. We assume that some of the instances of two KBs have already been ali-
gned. Then we coalesce the two KBs to a single KB, and apply rule mining [43]. This
yields what we call ROSA rules (Rule for Ontology Schema Alignment) : Logical rules
that reveal complex relationships between properties and concepts of the KBs. This
idea subsumes state-of-the-art ontology matching [116], in that it can find equivalences

of relationships, equivalence to the inverse of a relationship, and the subsumption of
relationships. However, it goes further by finding that one “hop” in one KB can corres-
pond to a several hops in the other. It can find that one literal in one KB corresponds
to a different constant in the other KB, or that one class in one KB corresponds to a
relationship in the other. We hope that, by this illustration, we can open up the door for
a new, and exciting, area of research.

5.2 Related work

Scope. Several aspects of KB alignment have been addressed in recent work : the
alignment of classes [51, 57], the alignment of classes together with relations (T-Box)
[8, 23, 110], and the alignment of instances (A-Box) [13, 63, 71]. Holistic approaches
have been investigated in [36,116,121].

We agree that the alignment of instances has been solved to a large degree. Howe-
ver, we are concerned that state-of-the-art solutions for the schema alignment of KBs
are not yet mature enough.

Instance-Based Approaches. Some approaches [36,116,121] can align the instances
and the schema of two KBs at the same time. ILIADS [121] combines a clustering
algorithm based on lexical, graph-structure and data instance statistics with a logical
inference to check the consistency of the mappings. Most large KBs, however, do not
come with the OWL axioms on which ILIADS relies. PARIS [116] develops a probabilistic
model for graph alignment. The approach presented in [36] models a KB, expressed
in OWL Lite, as a graph. Given two KBs, a set of similarity metrics are used to find
equivalences between the nodes of the input KBs. These metrics are applicable to both
the A-Box and T-Box of the KB and exploit multiple features such as neighbourhood
similarity. However, all these approaches assume that one relation or class in one KB
corresponds to one relation or class in the other KB. In practice, this is often not the
case.

Schema Alignment. We refer to [111] for a comprehensive survey on ontology schema
alignment. We mention the most relevant work surveyed in [111] and complement the
discussion with more recent approaches. The CLIO system [82] implements schema
alignment of relational databases. The system is based on a query discovery method
that depends on database constraints provided by the user. Such constraints are nor-
mally not available in KBs, thus they must be defined by the user. Moreover we focus
on the RDF data model. COMA++ [8] is a customizable utility designed to align the
schema of two RDF KBs. It takes OWL descriptions and instance alignments as in-
put and offers a set of strategies to align the different components of the schema, i.e.,
classes and properties. AgreementMaker [23] provides a layered architecture consis-
ting of a set of matchers that implement specific tasks, e.g., alignmnent of classes. The
output of a matcher can serve as input to another matcher, allowing the user to de-
sign a customized strategy to align the schemas of the input KBs. Both COMA++ and

AgreementMaker provide a user interface to drive the user in the alignment process.
They also offer methods to evaluate the quality of the resulting alignments. Unlike our
approach, these systems require heavy parameter tuning and some knowledge about
the structure of the datasets.

The iMAP system [31] can learn schema alignments involving arbitrary functions
like in address ≡ concat(city , state), given a set of integrity constraints provided by the
users. In our vision, the alignment of KBs would happen fully automatically and without
the need for database constraints or expert knowledge. The work in [106] goes beyond
the alignment of binary predicates and allows for schema integration of classes and
relations via a mediated schema and a set of reification rules (to deal with n-ary rela-
tions). Such approach can learn, e.g., an alignment between the class BirthEvent and
the binary relations birthPlace and birthDate. Our approach, in constrast, does not deal
with reified facts as we focus on binary predicates.

Data Translation. The approach of [17] argued for the introduction of more complex
mapping rules, which are able to express data translations. However, such formalisms
have not yet been widely adopted due to scalability issues. In this work, we propose to
focus on mining a small, yet expressive set of mappings patterns, which capture many
real-data cases. The actual translation of data from one KB to another KB shares re-
semblance to the query discovery problem [82]. Query discovery and schema matching
are seen as complementary and independent problems [72]. Query discovery solutions
are not directly applicable to KBs as they are data model dependent or rely on data-
base constraints. Furthermore, the data transformations that we envision go beyond
data restructuring.

Association Rule Mining for Ontology Alignment. To our knowledge, there are only
few works that mine rules for KB alignment [27,119]. These works focus exclusively on
the alignment of hierarchies of entities. Our vision goes beyond this goal. We would like
to express more complex mappings and actual data transformations.

5.3 Method

We are interested in discovering complex schema relationships between two given
KBs K1 and K2 in RDF format. We denote the set of instances and relations of K1 and
K2 as E1, E2, R1 and R2 respectively (Section 1.3.1). We assume that some instances
of the KBs have already been aligned, e.g., by means of sameAs links. This can be done
by a (partial) substitution φ, which maps the instances of E1 to the sameAs counterparts
from E2 if any, or to themselves otherwise. The substitution φ leaves literals unchanged.
As pointed out in [116], different KBs may use the same relation (as given by a URI)
with different meanings. Therefore, we use a substitution t that substitutes all relation
names in E1 so as to make sure they are different from the relation names in E2. With

r(x, y) ⇒ r′(x, y) (R-subsumption)
r(x, y) ⇔ r′(x, y) (R-equivalence)

type(x,C) ⇒ type′(x,C ′) (C-subsumption)
r1(x, y) ∧ r2(y, z) ⇒ r′(x, z) (2-Hops alignment)
r(z, x) ∧ r(z, y) ⇒ r′(x, y) (Triangle alignment)

r1(x, y) ∧ r2(x,V) ⇒ r′(x, y) (Specific R-subsumption)
r(y, V) ⇒ r′(x,V ′) (Attr-Value translation)

r1(x,V1) ∧ r2(x,V2) ⇒ r′(x,V ′) (2-Value translation)

FIGURE 5.1 – ROSA Rules, r, r1, r2 ∈ R1, r
′ ∈ R2.

this in mind, we coalesce the two KBs as follows :

K ∶= {r̂(φ(x), φ(y)) ∣ r(x, y) ∈ K1 ∧ r̂ = t(r)} ∪ K2

Our coalesced KB subsumes K1 and K2. We could restrict ourselves to the part that is
common to both KBs, but then many alignments are lost because of missing data (KBs
are highly incomplete). We leave the detailed study of different coalescing techniques
for future work.

On the coalesced KB K, we will mine rules. We are particularly interested in rules
that express KB alignments. We call them ROSA rules :

Definition 1. A ROSA rule from a KB K1 to a KB K2 is a rule mined on the coalesced
KB K, such that the relations of the body belong to R1, and the relation of the head
belongs to R2.

This definition is asymmetric in the sense that we can mine ROSA rules from K1 to K2

and from K2 to K1. ROSA rules express one type of cross-schema alignments.

Rule Patterns. Figure 5.1 groups some useful ROSA rules of up to 3 atoms into pat-
terns. Arguments in lower case denote variables, whereas uppercase letters refer to
constant values. Since we assume that every relation r is also present in its inverse
form r−1, the patterns also comprise rules that involve a swap of arguments. In the next
section, we discuss each of these patterns in detail with examples on real-worlds KBs.

5.4 Experiments

Our goal is to qualitatively analyze the complex schema alignments that are neces-
sary to make two KBs interoperable. Some of those alignments are given by ROSA
rules.

5.4.1 Setup

Given two KBs, we can define schema mappings from the first KB to the second,
and from the second to the first. In the following, we assume that we mine ROSA rules
from a KB K1 to a KB K2 on their coalesced KB K. We used the following KBs for our
experiments :

— YAGO 2s : We used the facts about instances contained in the datasets yago-
Facts and yagoLiteralFacts, with 2.9M entities and 22.8M facts in total. We also
used, though separately, the instance data contained in yagoSimpleTypes, which
comprises 5.4M rdf :type statements.

— DBpedia 3.8 : We used the person data and raw infobox properties datasets,
which together contain 11M facts about 2.1M entities. We also used the ontology
infoboxes dataset, which has 13.2M rdf :type statements about 2.3M entities.

— Freebase : We used information about people, which comprises 19M facts about
2.7M subjects. In addition, we used the instance facts, which comprise 140M
rdf :type statements about 74M entities.

— IMDb : We used a custom crawl of IMDb, similar to the one in [116]. It comprises
722K entities and 12M facts.

We use the namespace prefixes Y , D, F , and I for these KBs, respectively. ROSA rules
require pre-existing instance alignments. For the first three KBs, we used the instance
alignments from the Linked Data cloud. For IMDb, we used the gold standard instance
alignments provided by [116]. For the actual mining of rules, we use AMIE with its
default settings (1% head coverage).

Quality. The confidence scores provided by AMIE serve as quality metrics for our ROSA
rules. Due to the inherent incompleteness of KBs and the open world assumption, we
prefer the PCA confidence over the standard confidence as correctness metric.

5.4.2 Simple Mappings

In this section we provide examples of simple schema mappings mined with our
approach on our test KBs. These mappings correspond to ROSA rules of 2 atoms,
without arbitrary constants except for type statements of the form type(x,C). For each
rule pattern, we show the top 3 examples in terms of confidence.

R-subsumption. The R-subsumption rule holds when two ontologies contain seman-
tically close relations with different levels of specificity. In this respect, the rule can
capture subPropertyOf relationships, as defined in RDF Schema [103]. For instance,
in YAGO the relationship between an author and his œuvre is labelled generically with
Y :created, while DBpedia defines more specific relations such as D :writer for authors
or D :musicalArtist for singers. To show this, we ran AMIE on a coalesced KB built from

DBpedia and YAGO. AMIE found 360 R-subsumption alignments. Due to the incomple-
teness and noise of the data, it is unlikely to find perfect subsumption rules, i.e., rules
with confidence 100% are rare. We show the top 3 with their PCA confidences :

D :musicalArtist(x, y) ⇒ Y :created(y, x) (90%)
D :musicalBand(x, y) ⇒ Y :created(y, x) (90%)
D :mainInterest(x, y) ⇒ Y :isInterestedIn(x, y) (88%)

We look only at R-subsumptions A ⇒ B whose inverse B ⇒ A has a low PCA confi-
dence (i.e., < 50%) because otherwise the subsumption is an R-equivalence.

R-equivalence. If two relations r and r′ subsume each other, then they are semantically
equivalent. In our framework, this translates to two ROSA implications. We define the
confidence of an equivalence rule as the minimum of the PCA confidences of the two
implications. On YAGO and DBpedia, we mined a total of 88 R-equivalence rules. The
top 3 by confidence are :

Y :directed ⇔ D :director−1 (98%)
Y :wroteMusicFor ⇔ D :musicBy (97%)

Y :isCitizenOf ⇔ D :nationality (96%)

C-subsumption. A C-subsumption is a rule of the form

type(x,C) ⇒ type ′(x,C ′)

where type is the rdf :type relationship in one KB, and type ′ is the rdf :type relationship in
the other KB. If all instances of class C are also instances of class C ′, then C ′ subsumes
C, i.e. rdfs :subClassOf (C, C ′). Class alignment is a crucial task in ontology integration,
because instance information frequently constitutes a significant part of the contents of
any ontology. As we did for R-subsumption rules, we used AMIE to align the instance
data of YAGO and DBpedia. We show the top 3 alignments (from a total of 59) where
the inverse implication holds with low confidence.

Y :type(x,Y :Site) ⇒ D :type(x,D :PopulatedPlace) (97%)
Y :type(x,Y :Site) ⇒ D :type(x,D :Settlement) (95%)

D :type(x,D :Athlete) ⇒ Y :type(x,Y :Person) (91%)

C-equivalence patterns follow immediately by combining C-subsumption rules with their
corresponding inverse implications.

5.4.3 More complex patterns

Rules with arbitrary constants or with more than 2 atoms increase the size of the
search space drastically. As a consequence, rule mining finds many more rules. Some

of the rules are soft rules. These do not express an a priori alignment, but rather a cor-
relation that happens to be in the data. The rules can still be of use for reasoning [17],
but are of more contingent nature. The following patterns all produce some soft rules
with high PCA confidence. Therefore, we show as examples some handpicked interes-
ting rules from the results. Our goal is to show that some quite complex alignments do
exist between the KBs, even if we cannot identify them fully automatically yet.

2-Hops subsumption. A KB can express a relationship between two entities by pas-
sing through an intermediate entity (a blank node for example), while another KB ex-
presses the same relationship by a single fact. This structural difference between two
KBs can be captured by 2-hops subsumption rules of the form

r1(x, y) ∧ r2(y, z) ⇒ r′(x, z)

For instance, in IMBb, the attribute country-of-birth points to the name of the country,
while in YAGO it points to the country entity, which has a label attribute. By running
AMIE on YAGO and IMDb, we mined the ROSA rule

Y :wasBornIn(x, y) ∧Y :label(y, z) ⇒ I :bornIn(x, z) (37%)

Some of the top 2-hops subsumption alignments found by AMIE between YAGO and
Freebase are soft rules :

Y :married(x, y) ∧Y :child(y, z) ⇒ F :children(x, z) (73%)

Soft rules may not hold for all instances. However, they should not be considered as
wrong. Recent work [17] proposed a reasoning framework that can make use of such
rules when dealing with incomplete data.

Triangle Alignments. The case where the body atoms of a 2-hops subsumption have
the same relation is particularly interesting, because it can capture sibling relationships,
co-author links and other relationships that denote co-participation. We call such rules
triangle alignments. As an example, consider the following rule that we mined on YAGO
and Freebase :

Y :child(x, y) ∧Y :child(x, z) ⇒ F :sibling(y, z) (37%)

Specific R-subsumption. An R-subsumption may become more specific by adding an
attribute-value constraint to one of the arguments in the body of the rule. The following
examples were extracted from YAGO and Freebase :

Y :graduated(x, y) ∧Y :type(y,University) ⇒ F :institution(x,y) (98%)
Y :bornIn(x, y) ∧Y :type(y,City) ⇒ F :birthPlace(x,y) (97%)

For the first example, the corresponding R-subsumption Y :graduated(x, y) ⇒ F :ins-
titution(x, y), has a PCA confidence of only 88%. In this example, the type constraint

strengthened the precision of the mapping by also aligning the ranges of the relations. In
general, if a relation in a K2 subsumes multiple relations in K1, specific R-subsumptions
provide additional information, e.g., type constraints, to distinguish among those rela-
tions.

Attribute-Value Translation. Different conventions for entity labels, as well as missing
links between the literal values across KBs, require ROSA rules of the form

r(x,V) ⇒ r′(x,V ′)

We call these rules attribute-value translations, because they provide a bridge between
the semantics of predicate-object combinations across KBs. By allowing constants in
the arguments of the rules, AMIE mined translations between genders in YAGO and
IMDb (99% confidence), as they are represented as URIs in YAGO and as literals in the
IMDb crawl.

We also found translations between places in YAGO and their corresponding time-
zones in DBpedia, such as :

Y :locatedIn(x, Italy) ⇒ D :timeZone(x,CET) (100%)
Y :locatedIn(x,California) ⇒ D :timeZone(x,PST) (100%)

2-Value Translation. Differences in the verbosity of two ontologies can be captured by
ROSA rules of the form

r1(x,V1) ∧ r2(x,V2) ⇒ r′(x,V ′)

This rule says that two facts about an entity in K1 are mapped to a single fact about the
same entity in K2. An example mined from YAGO and Freebase is :

F :type(x,Royal) ∧ F :gender(x,female) ⇒ Y :type(y,Princess) (55%)

5.5 Conclusion

In this chapter, we have argued that complex schema alignments are needed if we
want to knit the Semantic Web together. To illustrate this, we have defined one class of
such alignments, the ROSA rules. We have shown that these are easy to mine, and that
they already comprise some interesting types of alignments. Preliminary experiments
on real large-scale KBs have shown that there exist quite some alignments that go
beyond simple one-to-one mappings.

However, many challenges remain : Incompleteness in the KBs means that it is
challenging to make the distinction between subsumption semantics and equivalence
semantics, or to distinguish between soft and hard ROSA rules. This is particularly
true for complex patterns like 2-hop subsumption or value translations, where the large
number of soft correlations means that we cannot yet identify meaningful mappings fully

automatically. Moreover, ROSA rules are just one particular possibility of schema align-
ment, that uses Horn rules. We envision that allowing functions [31] in the translation
rules could address even more schema incompatibilities. For instance, the following rule
could translate between a KB that concatenates first name and last name, and a KB
that does not :

K1 :firstName(x, y) ∧K1 :lastName(x, z) ⇒K2 :name(x,concatenate(y, z))

Such kind of rules would suppose an important step towards a full interoperability bet-
ween between the KBs of the Semantic Web. We leave this idea as future work.

6.1. Canonicalization of open KBs : Introduction 95

Chapitre 6

Canonicalization of open KBs

This chapter studies the problem of canonicalization of open KBs. An open KB is a
schema-free KB that has been constructed by automatically harvesting triples from text
in the web.

We structure the contents of this chapter as follows. We start with an introduction
to the problem in Section 6.1. This is followed by the related work in the areas of open
information extraction and synonym detection for both noun and verbal phrases (Sec-
tion 6.2). Section 6.3 studies the problem of canonicalization of noun phrases (enti-
ties). In Section 6.4, we address the canonicalization of verbal phrases (relations). Sec-
tion 6.5 evaluates the performance of our methods on an open KB extracted from the
web. We discuss our conclusions in Section 6.6.

The work presented in this chapter builds upon the following publication :

— Luis Galárraga, Geremy Heitz, Kevin Murphy, Fabian Suchanek. Canonicalizing
Open Knowledge Bases. Conference on Information and Knowledge Manage-
ment, 2014.

6.1 Introduction

Techniques based on Open Information Extraction (open IE [10, 35]), such as Re-
Verb [37], allow the subjects and objects in the KB to be arbitrary noun phrases, and the
predicates to be arbitrary verb phrases. For instance, they may extract the facts ⟨DC, is
capital of, United States⟩ and ⟨Washington, capital city of, USA⟩. At the other extreme,
techniques based on “closed IE” require that the subjects, predicates and objects are
canonical, i.e., that they have unique ids. This is the approach taken by many KBs, such
as YAGO, Wikidata, DBpedia, and Knowledge Vault.

Open IE techniques normally achieve higher coverage than closed IE approaches.
However, the triples in an open KB are “dirty”, that is, it is not clear if they are talking
about the same entities, or even about the same predicate. This means that when we
query the KB for facts about an entity by one name, we cannot be sure that we get all
facts about the entity. Conversely, we cannot be sure that all the facts we get are about
the same entity. There are also systems such as NELL [18], which applies a mixed

approach, in which the predicates are defined in a schema, but the entity names are
open.

Contribution. The main contribution of this chapter is an approach that takes a large
“open” KB, such as produced by ReVerb or NELL, and convert it into a canonicalized
form. In this new form, entities and relation names are mapped to canonical clusters.
More precisely, our contributions are as follows :

— Canonicalization of noun phrases : In Section 6.3, we show how standard clus-
tering techniques, with simple blocking strategies and similarity functions, give
surprisingly good results for entity clustering in both NELL and Reverb data. The
resulting clusters contain noun phrases talking about the same real world entity.

— Canonicalization of verbal phrases : We show how to use AMIE, to learn high
quality clusters of semantically equivalent verbal phrases (relations) from Open
IE triples (Section 6.4).

6.2 Related Work

6.2.1 Open Information Extraction

Open IE systems extract triples of the form ⟨subject, predicate, object⟩ from natural
language text. For example, given the sentence “McCain fought hard against Obama,
but finally lost the election”, an Open IE system will extract two triples, ⟨McCain, fought
against, Obama⟩ and ⟨McCain, lost, the election⟩. Early systems [10,130] typically res-
tricted the subject and object to noun phrases. These can be named entities, such as
Obama, but also common noun phrases, such as the election. The predicate can be
any sequence of words that appear between the two arguments. This basic approach
can harvest a huge number of triples from Web corpora. However, it will also extract
uninformative triples, such as ⟨Hamas, claimed, responsibility⟩ (where it is not clear for
what Hamas claimed responsibility).

The ReVerb approach [37] restricted the predicates to lightweight verbal phrases,
which greatly improved the precision of the triples. The Ollie approach [108] relaxed this
restriction by expanding the syntactic scope of relation phrases to cover a much larger
number of relation expressions, and by adding context information such as attribution
and clausal modifiers. Some approaches use dependency parsing [130], or employ
hand-crafted patterns on the parse trees. ClausIE [30] can reason on the dependency
trees, and thus extract more robust triples.

All of these approaches have in common that their relationships are not canonicali-
zed. The approaches cannot see that was born in and ’s birth place is denote the same
semantic relationship. The approach used in the NELL project [18], in contrast, works
with a predefined set of relationships. It will extract triples of the form ⟨NP, relation, NP⟩,
where the NP are noun phrases and relation is one of the predefined relation names.
Thus, NELL is not strictly speaking an Open IE system. Still, it shares many properties
of Open IE systems. Most notably, all of the Open IE approaches, and NELL, cannot

extract canonical entities. They cannot see that Barack Obama and President Obama
are two names for the same person. We discuss some solutions to this below.

6.2.2 Linking and clustering entities

One approach to resolving entity names is to try to map them to an existing list of
known entities, such as Wikipedia or Freebase. This is known as entity linkage (or “Wiki-
fication” if the target KB is Wikipedia). Typically each mention generates a candidate list
of entities (based on string matching), and then this list is re-ranked using a machine
learned model. There are several kinds of models : some link each entity mention in
isolation using local features [50], some jointly link sets of mentions within a page using
local features and global context [100], and some jointly link mentions across sets of
pages [69].

One problem with the above approaches is that many pages may refer to new enti-
ties that are not already in a KB. This is particularly true for tail entities (i.e., ones that
are not popular enough to have a Wikipedia entry), and/or for new or emerging entities.
The standard approach to this is to allow each mention to either map to an entity on the
shortlist, or to a special NIL or OOKB (out-of-KB) entity (see e.g., [54]). However, that
still leaves the issue of how to cluster these NIL values to create new entities.

The problem of clustering equivalent entities has been widely studied, and is clo-
sely related to the problems of cross-document entity resolution in the NLP commu-
nity [9, 126] and record linkage in the DB community [33]. Most methods use some
variant of the following basic technique : define (or learn) a pairwise similarity func-
tion for comparing two candidate entities, and then apply hierarchical agglomerative
clustering (HAC) to find the mention clusters. For example, this approach was used in
the RESOLVER system of [131] to cluster the entities derived from TextRunner’s Open
IE triples. They defined the similarity of two entities in terms of their string similarity, as
well as the similarity of their attribute values. We use a similar technique in this chapter ;
see Section 6.3 for the details.

We compare our technique to Concept Resolver [61], a state-of-the-art system that
clusters entity mentions on NELL data. Concept Resolver operates in two phases. The
first phase performs disambiguation under the one-sense-per-category assumption.
This assumption states that within a given NELL category, noun phrases are unam-
biguous. For example, Apple can be a company and a fruit, but there cannot be two
companies called Apple (nor two fruits). We can infer the type of a particular noun
phrase by the type signature of the accompanying verb. For instance, for the triple
⟨Apple, hasCeo, Tim Cook⟩, the domain of hasCeo tells us that Apple refers to the
company. This triple is then rewritten as ⟨Apple :company, hasCeo, Tim Cook :person⟩.
The second phase clusters all these type-augmented mentions. For this, they use HAC
with a machine learned similarity metric, similar to our approach.

6.2.3 Clustering relations

There has been less work on clustering synonymous relations than on clustering
synonymous entities. The database community has studied schema alignment, but this
usually relies on knowing the type signature of the relations, which are unavailable for
Open IE triples.

The RESOLVER system [131] used HAC to cluster Open IE relations in TextRunner
data. They used the set of subjects and objects associated with each relation to define
a feature vector ; they then constructed a generative model (known as the “Extracted
Shared Property” model) to compute the probability that two relations are equivalent,
based on counting the number of entity pairs that they had in common. Finally they used
this similarity metric inside HAC. The disadvantage of this approach is that it defines the
feature vector for a relation in terms of the raw string names for the entities, and these
can be very ambiguous. For example, suppose the dataset contains the triples ⟨Indian
Airlines, is headquartered in, Mumbai⟩ and ⟨Indian Airlines, has headquarters in, Bom-
bay⟩. We cannot determine that is headquartered in is equivalent to has headquarters
in unless we know that Mumbai is equivalent to Bombay.

One solution to this is to jointly cluster the entities and relations at the same time ;
this has been called “knowledge graph identification” [98]. We adopt a simpler two-stage
approach. We first perform entity linkage on the triples, mapping the subject and object
to a unique id (e.g., both Bombay and Mumbai map to the Freebase id /m/04vmp). We
then pass these partially-disambiguated triples to the AMIE rule mining system, which
can discover equivalences between synonymous relations. We then use these learned
equivalences to create clusters of semantically equivalent relations. See Section 6.4 for
the details.

The PATTY system [89] uses pattern mining techniques to find subsumption rules
between syntactic patterns (e.g., daughter of ⊏ child of), extracted from a corpus. Like
our approach, PATTY links the arguments of phrases to a KB (YAGO) to find subsump-
tion rules. However, their goal is to construct a taxonomy of verbal phrases, whereas
we are interested in finding equivalences between verbal phrases.

The WEBRE approach [84] can cluster verb phrases with close meaning in the pre-
sence of ambiguity. For instance, the verb phrase be part of holds different semantics
in the sentences “New York is part of the United States” (location is part of location)
and “Sun Microsystems is part of Oracle” (company is part of company). WEBRE first
disambiguates the relational concepts, producing a set of typed relations called type A
relations (e.g. company is part of company). Then, WEBRE performs synonym reso-
lution on such concepts. For this purpose, WEBRE uses both the Open IE triples and
the source text corpus to construct a hypernym graph, an entity similarity graph and
verb phrase similarity graph. Such data structures are used to construct features for
a clustering implementation based on HAC. Our approach also deals with ambiguous
verbal phrases by enforcing type constraints on the arguments of the equivalence map-
pings mined from the Open IE KB. However, unlike WEBRE, our methods rely solely
on the Open IE triples. We compare our approach for relation clustering with WEBRE
in Section 6.5.2.

6.3 Canonicalizing noun phrases

6.3.1 Mentions

Given an Open IE KB, our first goal is to canonicalize its noun phrases. For simplicity,
we concentrate here on canonicalizing the subjects ; the same approach can be used
to canonicalize the objects. We note that the same string can have different meanings
if it appears on two different pages. For example, ⟨Obama, won, an award⟩ can refer
to Barack Obama or Michelle Obama, depending on where the triple was found. We
assume, however, that the same subject phrase on the same Web page will always
refer to the same entity. For example, a news article that uses Obama to refer to the
president may not use that word (without other qualification) to refer to his wife. This is
a common assumption in linguistics [44].

With this in mind, we define a mention as a triple m = (n,u,A) where n is a subject
noun phrase such as Barack Obama, u is the url of a Web document such as bbc.com
where the mention was found, and A is the set of attributes about n that were extracted
from u. Each attribute is a predicate-object pair such as ⟨was born in, Honolulu⟩, or
⟨won, an award⟩. In the rest of this chapter, we model A as a table with columns pred
and obj and resort to relational algebra (with set semantics) to express queries on this
table. For instance πpred(A) denotes the set of predicates occurring in A. We conclude
that a mention defines the profile of a noun phrase n in a particular Web source u.

6.3.2 Clustering

Our goal is to partition the set of mentions, so that all mentions in one partition refer
to the same real-world entity. This task can be seen as a clustering problem, where the
real number of clusters, i.e., the number of different entities in the data, is unknown. To
solve this problem, we use Hierarchical Agglomerative Clustering (HAC) on the set of
mentions built from the Open IE triples.

In its general formulation, HAC has O(N3) time complexity, where N is the num-
ber of mentions [76]. This makes it inadequate for large datasets. To alleviate this fact,
we used token blocking [97], a method that resembles the canopies method introduced
in [79]. This method first assigns each mention to one or several groups, called cano-
pies. One standard approach is to assign the noun phrases to canopies based on the
words that the noun phrases contain. For example, a noun phrase President Obama will
be assigned to the canopy for President and to the canopy for Obama. Then, standard
HAC is applied within each canopy. This partitions each canopy into a set of clusters.
Finally, the clusters that live in different canopies but share a mention are merged. In
the example, the cluster {Barack Obama, President Obama} from the Obama canopy
will be merged with the cluster {President Obama, US President} from the President
canopy. This technique reduces the number of pairwise comparisons required by the
standard HAC implementation. Furthermore, it facilitates parallelism, because each ca-
nopy can run HAC on a smaller subset of data.

Canopies can drastically affect the recall of the clustering algorithm : If two mentions

refer to the same real-world entity, but are assigned to different canopies, then they
might never end up in the same cluster. For example, Mumbai and Bombay will go to
different canopies, and unless there is a mention that connects them, they will remain
in different clusters. Thus, we face a trade-off, where assigning a mention to a small
number of canopies will improve efficiency (decrease the runtime), but hurt recall and
precision.

We propose the following solution to this problem, which we call “object canopy
expansion” : We assign two mentions m1 = ⟨n1,w1,A1⟩ and m2 = ⟨n2,w2,A2⟩ to the
same canopy, if (1) n1 and n2 share a word that is not a stopword, or if (2) there exist
two objects o1 ∈ πobj (A1), o2 ∈ πobj (A2) that share a word. In this way, we can merge
Mumbai and Bombay, if, e.g., they both appear in triples ⟨Mumbai, is located in, the
Republic of India⟩ and ⟨Bombay, is a city in, India⟩.

6.3.3 Similarity Functions

HAC requires a similarity function on the mentions. In this paper, we study different
similarity functions, with the goal of determining which ones work best under which
conditions. Many of the functions use the Jaccard coefficient :

jaccard(S,S ′) = ∣S ∩ S ′∣
∣S ∪ S ′∣

Given two mentions m = (n,u,A) and m′ = (n′, u′,A′), we define the following similarity
functions (called features) :

Attribute Overlap. The attribute overlap is the Jaccard coefficient of the set of attri-
butes :

fattr(m,m′) ∶= jaccard(A,A′)

Two attributes (p, o) ∈ A, (p′, o′) ∈ A′ are equal if p = p′ and o = o′.

String Similarity. We use the Jaro-Winkler similarity [127] between n and n′ as a fea-
ture

fstrsim(m,m′) ∶= jarowinkler(n,n′)

String Identity. As a special case of the string similarity (and as a baseline), we consi-
der the string identity :

fstrid(m,m′) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if n = n′

0, else

IDF Token Overlap. If two noun phrases share a word, they are more likely to be similar,
but not if many other mentions share that word. For example, the fact that Rhine River
and Ruhr River share the word River is not very significant, because this word also
appears in a plethora of other river names. Therefore, we introduce a weighted word

overlap, in which a word is given more importance if it appears in fewer mentions. We
follow the standard Inverse Document Frequency (IDF) approach :

fitol(m,m′) =
∑w∈w(n)∩w(n′) log(1 + df(w))−1

∑w∈w(n)∪w(n′) log(1 + df(w))−1

Here, w(⋅) is the set of words of a string, excluding stop words. df(w) is the frequency
of the word in the collection of all words that appear in the subjects and the objects of
the OpenIE triples.

Word Overlap. If two Web pages share many words, then this can be an indication that
two mentions on these pages refer to the same entity. We define

fwol(m,m′) = jaccard(t(u), t(u′))

where t(⋅) is the set of the top 100 words on a page, ranked in terms of TF-IDF [77].

Entity Overlap. Since words can be ambiguous, we also experimented with an over-
lap of entities. We applied a standard entity linkage algorithm [40] on the pages, and
identified the set e(u) of linked Freebase entities on the page u. Then we define

feol(m,m′) = jaccard(e(u), e(u′))

Type Overlap. Shared types can be a signal for merging two mentions. We used the
results of the type induction algorithm [105] on the verbal phrases of the attributes
(as provided by the authors of [105]). This approach proposes types for the subject
arguments of verbal phrases, e.g., type(is the capital of) = country, which is equivalent
to provide candidate types for the subject noun. We define

ftol(m,m′) = jaccard(types(πpred(A)), types(πpred(A′))

So far, we have described how to compute the similarity between two mentions. The
similarity between two clusters is calculated using the single linkage criterion [52], that
is, the maximum of the intercluster pairwise similarities. Our experience suggests that
the complete linkage criterion (the policy that uses the minimum intercluster similarity)
and even the average linkage criteria are too conservative and therefore lead to low
clustering recall.

6.3.4 Combined Feature

In addition to the individual features, we also study a combined feature, which is a
logistic function :

fml(m,m′) = 1

1 + e−fsim(m,m′)

Here, fsim(m,m′) is a linear combination of features :

fsim(m,m′) = c0 +
N

∑
i=1
cifi(m,m′)

The f1, . . . , fN are the similarity functions discussed in Section 6.3.3. We also study
a simple combined feature fsml that excludes the metrics that depend on information
outside the open KB, namely the words overlap, the entity overlap, and the type overlap.
In both cases, the weights ci are determined by training a logistic regression classifier.

To train the combined similarity function, we need labeled training data, i.e., a set
of mention pairs that are labeled as being equal or unequal. Such training data can
be obtained, for instance, from approaches that perform entity disambiguation (Section
6.2.2), i.e., that map Open IE triple subjects to entities in a KB. In our case (i.e., in
the case of ReVerb triples), half of the triples already have their subjects mapped to
Freebase entities [40]. We use these mappings for training, so that we can partition the
remaining, yet-unmapped, mentions into synonymous clusters.

To learn robust weights for our features, we have to make sure that our training
set contains hard cases, where the same entity appears with different names, because
otherwise we will learn to put too much weight on just the string similarity. To do this, we
randomly sample 200 Freebase entities that appear with different names in our triples.
For example, our set of entities contains the Greek poet Homer, because he appears as
Homer and as Homerus in our triples. Every one of these names, in turn, can refer to
several entities (homonyms). For example, Homer does not just refer to the Greek poet,
but also to Homer Simpson, the cartoon character from “The Simpsons”. Hence, we add
to our set also Homer Simpson, and all names that refer to Homer Simpson. This results
in 436 entities with 714 names in total. Next we collect all triples that contain one of
these 714 names (in mapped form), and construct their mentions (using the provenance
information in the Reverb triples). This results in 43K mentions. From these mentions,
we can construct a training set of pairs of mentions that are labeled as equal or unequal.
We construct a set of 1137 pairs, balanced between equal and unequal pairs. We also
make sure that each entity contributes with at least two examples, because standard
random sampling would penalize entities with few mentions. This set of pairs is then
used to train our weighted similarity function. In Section 6.5.1, we compare this learned
similarity function to the baseline approaches.

6.3.5 Canonicalization

Given a cluster of synonym mentions m = (n,w,A), the canonicalization consists
of selecting a representative noun phrase n̂ that will replace the other noun phrases in
the canonicalized KB. We propose a simple approach that selects the noun phrase n̂
with the highest number of different Web sources u. In case of a tie, an alternative is to
select the longest noun phrase.

6.4 Canonicalizing verbal phrases

In this section, we describe our approach for clustering verbal phrases that have
equivalent meaning. The basic idea is to learn rules that predict when one phrase is
semantically equivalent to another, and then to perform clustering by applying the tran-
sitivity of the equivalence relation.

6.4.1 A semi-canonicalized KB

Our approach to verbal phrase clustering requires that the subjects and objects of
the Open IE triples are already canonicalized. There are two ways to achieve this. Either
we can use our noun phrase clustering algorithm of Section 6.3, or we can make use
of the existing mappings to Freebase. We consider both approaches. In particular, for
the latter case, we take a subset of all the Reverb triples where the subject was already
mapped to Freebase (as provided in the data in [40]), and where we can unambiguously
map the object to Freebase using a simple string matching technique.

With either of these techniques, we obtain a “semi-canonicalized” KB, where the
subjects and objects are fully canonicalized, and the predicates are still uncanonicalized
verbal phrases (the “dual” of NELL). This KB may contain, e.g., ⟨Barack Obama, was
born in, Honolulu⟩ and ⟨Barack Obama, ’s birthplace is, Honolulu⟩.

6.4.2 Rule Mining

Suppose we have the two Open IE relations r=was born in and r′ =’s birthplace is.
We would like to discover that these are equivalent, i.e., that r ⊏ r′ and r′ ⊏ r, where
r ⊏ r′ means that r′ is more general than r (r′ subsumes r), i.e.,

∀r(x, y) ∈ K ∶ r(x, y) ⇒ r′(x, y)
Unfortunately not all triples with r will necessarily appear with r′. Conversely, rela-

tions that are very sparse may occur with the same subject and object by chance, even
though they are not equivalent. For example, if we find ⟨Woody Allen, married, Soon-Yi
Previn⟩ and ⟨Woody Allen, ’s stepdaughter, Soon-Yi Previn⟩, we should not deduce ’s
stepdaughter ⊏ married, even if all triples with the former verbal phrase appear with the
latter. Therefore, we resort to our rule mining approach AMIE from Chapter 2.

We apply AMIE to our semi-canonicalized KB to mine subsumption rules of the
form r(x, y) ⇒ r′(x, y). As suggested in Section 5.4, we infer equivalence rules of the
form r(x, y) ⇔ r′(x, y) by merging subsumptions in both directions. We score each
subsumption with the PCA confidence, and score an equivalence with the minimum of
the two subsumption scores. The output of the AMIE system is a set of equivalent verb
phrases like be-named-after(x, y) ⇔ take-its-name-from(x, y)

6.4.3 Phrase Clustering

The rule mining has given us a set of weighted equivalence relations between verbal
phrases. Since the equivalence relation is transitive, we iteratively merge equivalence

mappings with at least one verbal phrase in common. For instance, given the equiva-
lences

— stand-for(x, y) ⇔ be-an-acronym-for(x, y)

— be-short-for(x, y) ⇔ be-an-acronym-for(x, y)

— refer-to(x, y) ⇔ be-short-for(x, y)

we merge the relations stand-for, be-an-acronym-for, short-for and refer-to into a single
cluster.

6.4.4 Canonicalization

We propose to canonicalize clusters of verbal phrases by mapping them to Freebase
relations. To achieve this, we resort to the ROSA approach presented in Chapter 5 to
coalesce our open KB with Freebase. This is possible thanks to the instance alignment
provided in the form of links from noun phrases to Freebase entities. To coalesce our
open KB with Freebase, we restrict our set of triples to those that have a subject and
an object linked to Freebase. Then we join this set with Freebase as proposed in Sec-
tion 5.3, so that we obtain a set with facts of the form vp(x, y) and fr(x, y). Here, x and
y are Freebase entities, vp is a verbal phrase and fr is a Freebase relation. Then, we
run AMIE on our coalesced KB in order to mine cross-ontology equivalence rules of the
form vp(x, y) ⇔ fr(x, y). The rule

bought(y, x) ⇔ acquiring_company(x, y)

is an example. For each cluster of Reverb verb phrases, we collected all the Freebase
relations implied by the verbal phrases in these equivalences. In Section 6.5.2, we show
that in some cases it is possible to map clusters unambiguously to Freebase. If a cluster
cannot be mapped to Freebase (e.g., because it represents a novel relation that is
not part of the Freebase schema), a representative for the cluster can be chosen by
selecting either the verbal phrase that appears in most equivalences, or the phrase with
the largest number of triples.

6.5 Experiments

We conducted two groups of experiments, one to evaluate different entity clustering
features, and one to evaluate the relation clustering.

6.5.1 Entity clustering

6.5.1.1 Evaluation metrics

To evaluate the quality of a clustering of mentions, we assume each mention m can
be mapped to a corresponding entity e(m) from Freebase according to a gold standard
clustering E. Each cluster e ∈ E contains all mentions that map to the same entity. Given

“Homer”
(poet)

“Homerus”
 (poet)

“Homer”
(poet)

“Homerus”
 (poet)

A B

“Homer”
(author)

“Homer Hickam”
(author)

Cpure pure

1 hit 1 hit 1 hit

“Homer Simpson”
(cartoon)

FIGURE 6.1 – An example of a clustering of N=7 mentions and a gold standard with 3
Freebase entities, labeled in parentheses below the mentions.

this, we can measure precision and recall of the clustering in 3 different ways, which we
call macro analysis, micro analysis and pairwise analysis.

We will explain these metrics using the example in Figure 6.1, which illustrates a
set of ∣M ∣ = 7 mentions distributed across ∣C ∣ = 3 clusters. There are ∣E∣ = 3 Freebase
entities, all called “Homer” : the Greek poet, the cartoon character Homer Simpson, and
the author Homer Hickam. (Each entity also has other aliases.)

Macro-analysis. We define the macro precision of the clustering as the fraction of
clusters that are pure, i.e., where all the mentions in the cluster are linked to the same
entity :

precisionmacro(C,E) = ∣c ∈ C ∶ ∃=1 e ∈ E ∶ e ⊇ c∣
∣C ∣

Macro recall is calculated by swapping the roles of the ground truth and the resulting
clustering, i.e., recallmacro(C,E) = precisionmacro(E,C). This corresponds to the fraction
of Freebase entities that get assigned to a unique cluster. In Figure 6.1, we can see
that clusters A and C are pure as they do not mix mentions of different entities. Hence
precisionmacro = 2/3. Conversely, the cartoon character and the author are pure entities
because they occur only in one cluster, therefore recallmacro = 2/3.

Micro analysis. Micro precision is defined as the purity [76] of the resulting clustering.
This is computed by assuming that the most frequent Freebase entity of the mentions
in a cluster is the correct entity. That is, we compute

precisionmicro(C,E) = 1

N
∑
c∈C

max e∈E ∣c ∩ e∣

whereN is the number of mentions in the input. Macro recall is symmetrically defined as
recallmicro(C,E) = precisionmicro(E,C). For example, in Figure 6.1, the most frequent

Macro Micro Pairwise

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
String identity 1.000 0.436 0.607 1.000 0.798 0.888 1.000 0.740 0.851
String similarity 0.995 0.658 0.792 0.998 0.844 0.914 0.999 0.768 0.986
IDF token overlap 0.994 0.879 0.933 0.996 0.969 0.982 0.999 0.973 0.986
Attribute overlap 1.000 0.05 0.102 1.000 0.232 0.377 1.000 0.094 0.173
Entity overlap 0.996 0.436 0.607 0.995 0.934 0.964 0.999 0.932 0.964
Type overlap 0.987 0.926 0.956 0.995 0.973 0.984 0.999 0.972 0.985
Word overlap 0.988 0.913 0.949 0.995 0.973 0.984 0.999 0.973 0.986
Simple ML 0.994 0.899 0.944 0.996 0.972 0.984 0.999 0.973 0.986
Full ML 0.994 0.906 0.948 1.000 0.937 0.967 1.000 0.973 0.869

TABLE 6.1 – Precision and recall on ReVerb’s Base dataset. The highest values in each
column are in bold.

entity for clusters A and B is the poet (2 mentions in each cluster) and for C is the
author (2 mentions), so the micro precision is 6/7. Analogously recallmicro = 5/7 because
the highest frequencies in a cluster for the entities are : 2 times for the poet, 2 times for
the author, and 1 time for the cartoon character.

Pairwise analysis. In the pairwise evaluation, we measure the precision and recall of
individual pairwise merging decisions. To be more precise, let us say that two mentions
from the same cluster produce a hit if they refer to the same Freebase entity. We define
the pairwise precision as

precisionpairwise(C,E) = ∑c∈C #hitsc

∑c∈C #pairsc

#pairsc = ∣c∣ × (∣c∣ − 1)/2 is the total number of mention pairs in a cluster. Likewise, we
define recall as

recallpairwise(C,E) = ∑c∈C #hitsc

∑e∈E #pairse

In Figure 6.1, clusters A and C produce 1 hit out of 1 pairwise decision, whereas cluster
B produces 1 hit out of 3 pairwise decisions. Hence the pairwise precision is 3

5 . To
compute recallpairwise , we calculate the total number of pairwise decisions in the gold
standard E : #pairspoet +#pairsauthor +#pairscartoon = 6 + 1 + 0, so recallpairwise = 3/7.

In all cases, the F1 measure is defined as the harmonic mean of precision and
recall, i.e.,

F1x (E,C) = 2 × precisionx (C,E) × recallx (C,E)
precisionx (C,E) + recallx (C,E)

Macro Micro Pairwise

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
String identity 1.000 0.436 0.607 1.000 0.798 0.888 1.000 0.740 0.851
String similarity 0.948 0.477 0.634 0.971 0.811 0.884 0.973 0.743 0.842
IDF token overlap 0.994 0.879 0.933 0.996 0.969 0.982 0.999 0.973 0.986
Attribute overlap 0.994 0.054 0.102 0.990 0.232 0.376 0.990 0.094 0.172
Entity overlap 0.000 0.805 0.000 0.169 0.987 0.289 0.051 0.981 0.097
Type overlap 0.750 0.980 0.850 0.157 1.000 0.272 0.051 0.999 0.097
Word overlap 0.000 1.000 0.000 0.157 1.000 0.271 0.051 1.000 0.097
Simple ML 0.979 0.490 0.653 0.824 0.916 0.868 0.405 0.937 0.565
Full ML 0.990 0.154 0.267 0.776 0.889 0.829 0.396 0.931 0.555

TABLE 6.2 – Precision and recall on ReVerb’s Base dataset, without canopies. Highest
values in bold.

Datasets freebase entities mentions triples
Base 150 8.5K 9.1K
Ambiguous 446 34K 37K

TABLE 6.3 – Testing datasets for the mentions clustering on ReVerb

6.5.1.2 Clustering ReVerb

ReVerb 1 [37] is a state-of-the-art Open IE system that was run on the Clueweb09
corpus 2. It produced 3M triples. Half of these triples have their subject linked to Free-
base, as in [40]. To evaluate the different clustering features, we built a gold standard
as follows : We sampled 150 Freebase entities that appear with at least 2 names in
our dataset, and collected all their mentions in our triples. This resulted in 8.5K men-
tions. We call this dataset Base. We then enrich this dataset with all the mentions of
homonym entities, as in Section 6.3.4. We name this dataset Ambiguous. This results
in 446 Freebase entities and 34K mentions. For both datasets, we constructed a gold
standard clustering by grouping those mentions that are linked to the same Freebase
entity. Table 6.3 summarizes the information about the testing datasets.

Results on Base. We ran our implementation of HAC on the Base dataset. On a Intel
Core i7 (8 logical cores, 2.40 GHz) with 16 GB of RAM, our implementation (using the
full ML similarity function, plus expanded canopies) created 157 clusters in 54.3 se-
conds (averaged across 3 runs). Our memory footprint reaches a peek of 5.7GB. Next,
we assess the quality of the different similarity features introduced in Section 6.3.2.
We show the results in Table 6.1, using a confidence threshold 3 that was chosen to
maximize the F1 score. Our first observation is that all the features deliver very good

1. http://OpenIE.cs.washington.edu/
2. http://www.lemurproject.org/clueweb09.php/
3. In HAC the confidence threshold defines the minimum similarity between two clusters that is required

to merge them.

http://Open IE.cs.washington.edu/
http://www.lemurproject.org/clueweb09.php/

precision. This means that they rarely produce a cluster than contains two different
entities. Thus, the features behave rather conservatively.

Let us now look at recall. The macro-recall is very low in general, because as soon
as one entity appears in more than one cluster, the metrics decreases (even if all other
mentions of the entity are clustered correctly). Let us therefore look at the micro-recall
and the pairwise-recall. All features perform decently. This is mainly because all features
can build on the pre-clustering that the canopies already established, i.e., every feature
is applied only to pairs of mentions with overlapping words. When comparing the recall
of the features, the attribute overlap stands out with lowest recall. This is because our
triples are very sparse : It rarely happens that two different mentions of the same entity
share many attributes. The type overlap, in contrast, works very well : The fact that two
mentions with similar names share a type is a strong signal that they refer to the same
entity. The word overlap performs well for a similar reason. Among the features that do
not require preprocessing, the IDF token overlap is a clear winner.

Rather surprisingly, the combined features (Full ML and Simple ML) are not the best
performing methods. We thought that this would be because of the canopies, which
make the resulting data distribution at test time quite different from what was used to
train the model. To assess this conjecture, we also ran HAC without canopies on this
dataset (Table 6.2). We can observe that the string identity, the IDF tokens overlap,
and the attributes overlap are insensitive to the canopies policy. The other features, in
contrast, perform much worse without canopies. This suggests that they provide little
or no extra evidence of synonymy by themselves. They are noisy signals that mainly
mislead the ML methods. This, in turn, explains the performance of the ML methods
with and without canopies.

Table 6.4 lists some examples of pure entity clusters that the Simple ML feature
could find. We can for instance cluster the mentions “Phoenix Arizona" and “Phoenix"
using as signals the tokens overlap and common attributes such as ⟨located in, Ari-
zona⟩. Moreover we can avoid mixing these mentions with the mythological creature of
the same name. On the other hand, the sparseness of the attribute overlap still leads
to losses in recall. For example, we could not cluster the mentions “Beijing National
Stadium” and “National Stadium” together, even though they are the same entity.

Results on Ambiguous. On the Ambiguous dataset and with the same setup as for
Base, our implementation produces 823 clusters in 15.045 minutes on average with a
peek memory footprint of 6.5GB. The results are shown in Table 6.5. Not surprisingly,
precision is lower on this dataset. This is mainly caused by the single linkage criterion
for clusters. Under this policy, the similarity of a pair of clusters is determined by the hi-
ghest intercluster similarity score. While this aggressive strategy was shown to improve
recall significantly, it also propagates errors more easily. Furthermore, this phenome-
non is amplified by the reclustering phase and the ambiguity of the test set. To see this,
consider a set of mentions with labels Barack Obama, Michelle Obama, and Obama,
the latter referring ambiguously to both Barack and Michelle Obama. A single clustering
error on the ambiguous mentions (Obama) will move the three entities in the same clus-

ter, and thus decrease precision. Conversely, the baseline approach is less sensitive to
ambiguity in this particular case because the precision will only penalize the merge of
the ambiguous mention Obama, as Barack Obama and Michelle Obama will be never
clustered together. Hence, all features produce lower precision. The attribute overlap
has highest precision – but this is mainly because it is a very sparse feature that he-
sitates to merge mentions. Let us therefore look at the micro-F1 and the pairwise-F1.
We see that the IDF token overlap is the strongest feature, even in presence of am-
biguity. It is followed by the combined features. For comparison, the table also shows
the Simple ML without the “object canopy expansion” (Section 6.3.2). We see that the
expansion increases recall slightly, and has a negligible effect on precision. Therefore,
we conclude that the technique is indeed useful. Table 6.4 shows some examples of
impure clusters.

Lessons Learned. Our study of features shows that, among the more advanced fea-
tures, the type overlap and the word overlap produce significant leverage if combined
with canopies – both on the random dataset and on the ambiguous one. They are clo-
sely followed by the IDF token overlap, which stands out as the strongest simple feature,
with and without canopies. The combined features also perform decently. All in all, the
best features can cluster entities in the general case with nearly 100% precision, and a
pairwise-recall of more than 98%.

6.5.1.3 Clustering NELL

The NELL project [18] also extracts triples from the ClueWeb09 corpus. The
Concept Resolver approach [61] aims to cluster the entities of these triples. Concept
Resolver operates under the one-sense-per-category assumption, which states that wi-
thin one category, names are unambiguous. We note that we can now give a justification
for this assumption based on the good performance of the Type Overlap feature on the
ReVerb data. Once the type for a noun phrase has been extracted, Concept Resolver
collects all the type compatible triples about the noun phrase and builds a “sense” for
that noun phrase, the equivalent of what we call a “mention”. The authors of [61] provi-

Pure clusters

{Phoenix Arizona, Phoenix}
{Hannibal Hamlin, Hamlin, Hannibal}
{The Colorado Rockies, The Rockies}

Impure clusters

{John’s Gospel, John Peel, Peel}
{Suns, Phoenix Coyotes, Phoenix Suns}

{Ethanol, Cellulosic Ethanol }

TABLE 6.4 – Some examples of successfull and unsuccessful synonym identification

Macro Micro Pairwise

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1
String identity 0.734 0.390 0.510 0.932 0.771 0.844 0.942 0.565 0.706
String similarity 0.607 0.442 0.511 0.792 0.873 0.831 0.809 0.574 0.671
IDF token overlap 0.643 0.509 0.568 0.913 0.847 0.879 0.900 0.703 0.789
Attribute overlap 0.997 0.083 0.153 0.998 0.162 0.279 0.997 0.024 0.047
Entity overlap 0.905 0.480 0.627 0.663 0.939 0.777 0.458 0.892 0.606
Type overlap 0.467 0.917 0.619 0.626 0.970 0.760 0.401 0.914 0.558
Word overlap 0.390 0.926 0.549 0.625 0.970 0.760 0.401 0.915 0.557
Simple ML, no obj.can. 0.711 0.444 0.546 0.808 0.909 0.855 0.630 0.889 0.738
Simple ML 0.709 0.444 0.546 0.808 0.923 0.862 0.649 0.968 0.777
Full ML 0.685 0.552 0.611 0.671 0.955 0.788 0.302 0.989 0.463

TABLE 6.5 – Precision and recall on ReVerb’s Ambiguous dataset. The highest values
in each column are in bold.

Micro-evaluation Pairwise

Precision Recall F1 Precision Recall F1
Simple ML 0.660 0.578 0.616 0.376 0.188 0.250
Concept Resolver 0.778 0.633 0.699 0.542 0.335 0.415
IDF Token Overlap 0.700 0.475 0.566 0.356 0.067 0.113

TABLE 6.6 – Comparison of entity clustering methods on the NELL data.

ded us with the data and the training examples used to evaluate Concept Resolver. As
described in Section 6.3.4, we used the triples to construct mentions.

The challenge is to cluster together several names that refer to the same entity.
Since not all the triples contained the source from which they were extracted, we de-
fined a default source for those without provenance. We also restricted our dataset to
the categories considered in the evaluation of Concept Resolver. The resulting dataset
consists of 18K mentions and 20K triples.

Gold Standard. Concept Resolver comes with a manually compiled set of noun
phrases that should be clustered together as one entity. We estimated our precision
by sampling a random subset of 100 clusters from the output and checking them ma-
nually. For Concept Resolver we report the precision value from [61], averaged across
all categories and weighted by the number of senses (mentions in our approach) per
category.

We note that our notion of precision is not fully comparable to theirs : the one-sense-
per-category assumption merges all mentions of the same type into one mention – no
matter if the triples come from different sources. This can cause problems. For example,
Obama :Person is assumed to map to only one entity, whereas we allow it to map to
multiple entities, depending on which page the mention was seen. Moreover, Concept
Resolver removes singleton clusters from the evaluation of precision. For us, in contrast,
such a singleton cluster can correspond to several successfully merged mentions from

Precision

Conf. Phrases Clusters Macro Micro Pairwise In Freebase Triples covered

Linked KB 0.8 522 118 0.900 0.936 0.946 18% 15%
0.5 967 143 0.896 0.690 0.337 25% 29%

Linked KB
(types)

0.8 752 303 0.946 0.980 0.997 9% 21%
0.5 1185 319 0.861 0.892 0.779 14% 27%

Clustered KB 0.8 826 234 0.940 0.716 0.273 6% 16%
0.5 1185 264 0.813 0.665 0.292 8% 33%

TABLE 6.7 – Quality of relation clusters for two different confidence thresholds.

Verb phrases Freebase relation

be an abbreviation-for, be known as, stand for, be
an acronym for

-

be spoken in, be the official language of,
be the national language of

location.country.official_language

be bought, acquire organization.organization.acquired_by
be the birth place of, be-the-hometown-of ns:location.location.people_born_here

TABLE 6.8 – Examples of clusters of verbal phrases. The last two were mapped to
Freebase.

different pages. This also makes trivial any comparison to our string identity baseline.
Therefore, we restricted our manual evaluation to non-singleton clusters according to
Concept Resolver and used the IDF token overlap as baseline. Concept Resolver does
not report values for the macro dimension, we show results for the micro and pairwise
evaluation.

Results. We ran our synonym resolution machinery on the NELL triples and compu-
ted precision and recall. The results are shown in Table 6.6. The Simple ML feature
can achieve decent precision and recall, albeit inferior to the values of Concept Resol-
ver. We believe this is because the logistic regression model implemented by Concept
Resolver leverages information from the ontology, which is not possible in an Open IE
scenario. Whereas our Simple ML uses a Jaccard score on the attributes of mentions
as signal for synonymy, Concept Resolver also builds features from the properties of
the relations. For instance, their approach will penalize the similarity for the mentions
Auburn and Auburn Hills as they have different values for the functional predicate ci-
tyLocatedInState (the first located in Maine and the second in Michigan) even if they
have other attributes in common (e.g. both located in USA). Additionally, Concept Re-
solver makes use of inverse and quasi-inverse functions as they can identify mentions
uniquely. The fact that the mentions Mumbai and Bombay share the inverse functional
predicate ⟨cityCapitalofState, Maharastra⟩ is used as strong evidence for synonymy.
Still, our Simple ML and the IDF token overlap deliver reasonable results even without

Datasets freebase entities triples verbal phrases
Clustered KB 25K 600K 17K
Linked KB 206K 1.3M 33K

TABLE 6.9 – Testing datasets for verbal phrase clustering on ReVerb

this additional information.

Lessons Learned. We can see here that the relation schema that Concept Solver uses
improves the entity clustering results. If such data is not available, a synonym resolu-
tion approach based on Open IE attributes and string similarity features can deliver
reasonable results. Even a simple baseline such as the IDF token overlap should not
be outright discarded for the task of synonym resolution.

6.5.2 Relation clustering

6.5.2.1 Dataset

Since the relations of NELL are already canonicalized, we run the relation clustering
only on the ReVerb set of triples. As discussed in Section 6.4.1, the relation clustering
requires a semi-canonicalized KB, in which the subjects and objects have been canoni-
calized. There are two ways to achieve this : either by our entity clustering (“Clustered
KB”) or by a mapping to Freebase (“Linked KB”). The Clustered KB was constructed
by sampling 25K freebase ids from the Linked KB and gathering all their triples. This
results in 600K triples. Both the Clustered and the Linked KB are given as input to the
AMIE system in order to mine relation equivalences. We ran AMIE using a support thre-
shold of 5, meaning that two verbal phrases must have at least 5 pairs in common. This
also implies that relations with less than 5 cases are discarded. Table 6.9 summarizes
the information about the input datasets.

6.5.2.2 Ambiguous phrases

In [84] it is suggested that approximately 22% of the Reverb phrases are polyse-
mous. The phrase belongs-to, e.g., conveys different meanings in the sentences “The
Wii belongs to Nintendo” (invention created by organization) and “Mallorca belongs to
Spain” (island belongs to country). Polysemy hurts precision, since phrases with un-
related meanings will be transitively clustered as synonyms due to the polysemic rela-
tions. To alleviate this effect, we also run AMIE on triples from the Linked KB where the
entities are augmented with types. This option makes AMIE enforce type constraints
on the arguments of the equivalence mappings when possible. Thus, a single verbal
phrase can generate multiple specific relations that differ only in their signatures. Since
the Freebase ontology has approximately 23K different data types, we allowed type en-
hacement only with the most common types, i.e., person, organization, location, and
string.

6.5.2.3 Evaluation metrics

Since evaluating recall would require identifying all the actual relations occurring in
the set of 1.3M triples, we focus on measures of precision. As in Section 6.5.1.1, we
can measure the precision of a relation cluster at the macro, micro or pairwise level.
The pairwise precision measures the quality of a set of clusters as the ratio of correct
pairwise merges. A pairwise merge is counted as correct if the corresponding verbal
phrases mean the same, or if one of them is slightly more general than the other. For
instance, the phrases be-spoken-in and be-the-official-language-of count as a correct
merge. The micro-precision assumes the most frequent meaning in a cluster as ground
truth. Hence, it is calculated by adding up the frequency of the most common mea-
ning in each of the clusters and dividing this number by the total number of phrases.
Conversely, the macro-precision is the ratio of pure clusters, i.e., the proportion of clus-
ters where all the phrases belong to the same meaning. For micro and macro precision,
phrases were labeled with the most general meaning.

6.5.2.4 Results

On the Clustered KB, AMIE mined 3.5K equivalence mappings, whereas mining
the Linked KB produced 4.3K equivalence rules. When the type enhancement is en-
abled, the number rises to 22K mappings. For example, we find use-truck-for ⇔ use-
van-for with confidence 1.0 and support 19, or stand-for ⇔ be-an-acronym-for with
confidence 0.88 and support 44. With the type enhancement, AMIE can discriminate
between a country changing location, e.g., “Israel moved to Mont Hor”, a person visi-
ting a place, e.g., “Barack Obama moved to Los Angeles”, and an organization changing
location, e.g., “Fostoria Glass moved to Moundsville”. This results in different equiva-
lence rules for the phrase move-to such as moved-to(location → location) ⇔ located-
in(location → location) (support 8, confidence 0.5) and moved-to(person → location)
⇔ move-permanently-to(person → location) (support 5, confidence 0.5). In these
examples our coarse-grained type constraints are enough to avoid mixing phrases that
denote permanent location (e.g. situated-in) with phrases that denote place of resi-
dence (e.g. now-lives-in).

The mappings have different confidence scores, and therefore we tested the phrase
clustering at two confidence thresholds : 0.8 and 0.5. Table 6.7 shows the results, toge-
ther with the number of clusters and phrases. As we see, the precision of our clusters
is very good, meaning that we do not merge phrases that do not belong together. Natu-
rally, a higher confidence threshold always leads to fewer phrases being clustered, and
to fewer clusters. Our results are better on the cleaner Linked KB than on the Clustered
KB. We can also observe the benefit of the type enhancement. In general, we can clus-
ter only a very small portion of the verbal phrases. However, our clusters are non-trivial
and contain an average of 4-5 phrases.

Comparison to WEBRE. We compare our results to the WEBRE system [84] for verbal
phrase clustering. WEBRE operates in two phases. In the first phase, the system iden-

tifies typed relations, e.g., “location is part of location”, called type A relations. In the
second phase synonym resolution is applied to the set of type A relations. This stage
produces a final set of latent relations, called type B relations. We use the precision on
the Linked KB with types because the type-enhanced phrases resemble the type A rela-
tions introduced by WEBRE. To be comparable, we report a weighted micro-precision,
where the correct assignments of phrases to clusters are weighted by the number of
triples with the verbal phrase. We get a score of 0.981, which is slightly better than
WEBRE’s score of 0.897. Nevertheless, this comparison must be taken with a grain
of salt because the evaluation performed in WEBRE is somewhat different from ours
(see Section 5 in [84]). First, their method to generate typed verbal phrases is different.
In particular, WEBRE extracts the instance information (types) from the source web
corpus of the triples, while we we use fixed set of types from Freebase. Second, we
could not have access to their gold standard for precision and recall. Third, the micro-
precision formula of WEBRE uses are more granular definition of synonymy : a phrase
can be a synonym of the true relation of a cluster (score 1), somehow related (score
0.5) or unrelated (score 0). Nevertheless, it is safe to say that our approach is not far off
from the state-of-the-art in terms of precision.

Mapping to Freebase. As described in Section 6.4.4, we used AMIE and ROSA rules
to find equivalences between verbal phrases and Freebase relations. We ran AMIE
on a combination of Freebase and Reverb with support threshold 5, producing 5.1K
cross-ontology mappings. We then applied the same confidence thresholds as for re-
lation clustering (0.5 and 0.8) and used the rules to map the clusters of verb phrases
to Freebase. We counted clusters that were mapped to one Freebase relation or to two
mutually inverse Freebase relations as “correctly mapped”. For example, Freebase ex-
presses the fact that Steven Spielberg directed the Titanic movie with a pair of mutually
inverse relations, ⟨Steven Spielberg, directed, Titanic⟩ and ⟨Titanic, directed by, Steven
Spielberg⟩. The last column in Table 6.7 shows the proportion of triples whose relation
could be mapped. We find a large number of very interesting mappings, some of which
are shown in Table 6.8. Going manually through the mappings, we find an average
precision of 88% for the Clustered KB with threshold 0.8.

Lessons Learned. We conclude that rule mining can be used to cluster verbal phrases,
and to map them to canonical Freebase relations. A cleaner KB and the type enhan-
cement both help. This method can produce such clusterings and mappings only for
a small portion of the verbal phrases, but it can do so at a high precision and for a
significant percentage of the Reverb triples.

6.6 Conclusions

We have shown that it is possible, using fairly simple and standard machine lear-
ning techniques, to identify synonym mentions in a reasonable fraction of the triples
coming from standard Open IE systems, such as Reverb and NELL. In addition, we

have illustrated how rule mining and the notions of schema alignment can help us solve
this problem when it comes to synonym verbal phrases.

Regarding the canonicalization of noun phrases, our results suggest that, even with
a certain level of ambiguity, the IDF token overlap is the strongest signal of synonymy
for noun phrases on the Web, whereas more sophisticated features extracted from the
sources are insufficient for this task on their own. We also provided useful and novel
insights about the impact of canopies in the performance of Hierarchical Agglomerative
Clustering, a standard technique for record linkage and identification of synonyms.

In relation to the canonicalization of verbal phrases, we have shown how our rule
mining techniques can identify verbal phrases of close meaning with high precision in
an open KB. The resulting clusters of relations are semantically meaningful ; some of
them could be mapped to existing relations in Freebase using the schema alignment
techniques proposed in Chapter 5.

We believe this hybrid approach — whereby we use high recall open extractors,
followed by clustering methods to improve the precision — shows great promise for
bridging the gap between Open and Closed IE methods for knowledge base construc-
tion.

Finally, we remark that we have studied the problem of canonicalization of open KBs
as two separate subproblems. A potential direction of research in this matter would be
to intertwine the solutions for those subproblems. We have shown that canonicalizing
the noun phrases serves the canonicalization of verbal phrases. In our vision, this pro-
cess could be iterative and incremental, i.e., the canonicalized verbal phrases could
help us improve the canonicalization of mentions, which in a later stage could help us
canonicalize even more verbal phrases.

7.1. Predicting Completeness in Knowledge Bases : Introduction 117

Chapitre 7

Predicting Completeness in
Knowledge Bases

This chapter addresses the problem of predicting completeness in KBs. This pro-
blem is of great importance to KB maintainers due to the inherent incompleteness and
the open semantics of KBs.

This chapter is structured as follows. In Section 7.1, we motivate the problem of
predicting completeness in KBs. Section 7.2 summarizes the related work in this field.
In Section 7.3, we define completeness for KBs. Section 7.4 proposes a set of signals
to estimate completeness for given pairs of entities and relations. Section 7.5 describes
how to combine completeness signals and learn completeness rules using AMIE. In
Section 7.6, we evaluate the performance of the proposed signals and our method
to predict completeness. Section 7.7 shows an application scenario for completeness
assertions in KBs. We draw our conclusions and discuss directions of future work in
Section 7.8.

At the time of writing, the contents of this chapter are under revision :

— Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian Suchanek. Predicting
Completeness in Knowledge Bases. Proceeding of the 10th International Confe-
rence on Web Search and Data Mining. Cambridge, UK, 2017.

7.1 Introduction

Motivation. Current KBs suffer from data quality problems. These problems include
false data, missing information, or schema inconsistencies. Traditionally, many ap-
proaches have tried to clean up erroneous information [132]. YAGO, e.g., guarantees
that 95% of its facts are correct w.r.t the extraction source. In contrast, completeness
(recall) has remained relatively unexplored. While we often know what proportion of the
facts in the KB are correct, we usually do not know what proportion of the facts in the
real world are known to KB.

For example, as of 2016, Wikidata knows the father for only 2% of all people in

the KB – even though in the real world everyone has a father. DBpedia contains only 6
Dijkstra Prize winners – but in the real world there are 35. Likewise, according to YAGO,
the average number of children per person is 0.02. In general, between 69% and 99%
of instances in popular KBs lack at least one property that other entities in the same
class have [83, 114]. Thus, we know that today’s KBs are highly incomplete, but we do
not know where the information is missing.

This unknown degree of completeness poses several problems [102]. First, users
do not have any guarantee that a query run against the KB yields all the results that
match the query in the real world. Second, the data providers themselves may not
know where the data is incomplete, and thus do not know where to focus their efforts. If
they knew, e.g., which people are missing their alma mater, they could focus on tracing
these pieces of information and adding them. Third, completeness information can help
identify wrong facts. If we know, e.g., that Barack Obama has only 2 children, then a
KB that contains 3 children has to be erroneous. Finally, completeness information can
be insightful on its own, because it induces counter-evidence for KBs. If it is stated the
KB knows all the children of Barack Obama, then any other child is a certified counter-
example. This can be exploited by rule mining and machine learning algorithms that
require negative evidence.

Thus, it would be of tremendous use for both data providers and data consumers if
we could know where the information in the KB is complete. In the ideal case, we would
want to make what we call completeness assertions, which say, e.g., This KB contains
all children of Barack Obama.

Challenges. The main obstacle to establish such completeness assertions is the Open
World Assumption (OWA), which nearly all KBs make (Section 1.3.2). Furthermore,
today’s KBs provide no way to store completeness information. For example, YAGO
says that Barack Obama is married to Michelle Obama, but it does not say that Ba-
rack Obama is not (and was never) married to any other woman. In fact, there is not
even a way that YAGO and similar KBs could express this idea. The KBs are not just
incomplete, but also, by design, unable to provide any indications of completeness.

Contribution. In this chapter, we make a first step towards generating completeness
information automatically. Our goal is to determine automatically whether certain pro-
perties of certain objects are complete : whether a person has more children in reality
than in the KB, whether a person graduated from a university in real life even though
the KB does not know about it, or whether a person has had more spouses in reality
than are known to the KB. More precisely :

— We conduct a systematic study of signals that can indicate completeness of pro-
perties of objects in a KB.

— We show how completeness assertions can be learned through a rule mining
system, AMIE – based on training data obtained through crowd-sourcing.

— We find that completeness can be predicted for certain relations with up to 100%
precision on real KBs (YAGO and Wikidata).

— As a use case, we show that our completeness assertions can increase the pre-
cision of rule mining.

7.2 Related Work

Knowledge Bases. Many of today’s KBs provide estimations of their precision.
YAGO [118] was manually evaluated and found to be 95% correct. NELL [18] is regu-
larly checked by humans for precision. Facts in the Knowledge Vault [32] are annotated
with an estimated precision. However, little is known about the recall/completeness of
these KBs. Of course, larger sizes may indicate higher completeness, but size is only a
very coarse proxy for completeness.

Incompleteness Studies. Some studies have found that KBs are indeed quite incom-
plete. For instance, a watermarking study [114] reports that 69%–99% of instances in
popular KBs lack at least one property that other entities in the same class have. Google
found that 71% of people in Freebase have no known place of birth, and 75% have no
known nationality [32]. This tells us that KBs are incomplete in general, but it does not
tell which parts of the KB are complete.

Manual Indicators. The Wikidata community maintains lists that explain where infor-
mation is still missing – e.g., a list of people without birth dates 1. Also, Wikidata contains
no-value statements, which say that an empty relation is complete for an entity [34]. An
extension for Wikidata allows contributors to manually add recall information [26]. Ho-
wever, these annotations are mostly provided manually : our work aims at deducing
such annotations automatically.

Partial Completeness Assumption. Some approaches simply assume that KBs are
complete in certain areas. In Section 2.4 we introduced the partial completeness as-
sumption (PCA), which is used by AMIE [42, 43]. This same assumption is applied
in [32] under the name of local closed world assumption. We discuss the PCA as a
signal of completeness in Section 7.4.

Rule Mining. Inductive Logic Programming and Rule Mining approaches [66] find rules
such as If a person lives in a city, then their spouse lives most likely in the same city.
These rules can then be used to predict new information (here : where the spouse lives).
As a side effect, this procedure determines where the KB is incomplete. However, such
approaches can only ever mine new facts between instances that are already known
to the KB. They cannot tell us that a spouse is missing if that spouse is not in the KB.
We will show in our experiments how rule mining can benefit from the techniques we
develop in this paper.

1. https://www.wikidata.org/wiki/Wikidata:Database_reports/top_missing_properties_by_number_of_
sitelinks/P569

https://www.wikidata.org/wiki/Wikidata:Database_reports/top_missing_properties_by_number_of_sitelinks/P569
https://www.wikidata.org/wiki/Wikidata:Database_reports/top_missing_properties_by_number_of_sitelinks/P569

Completeness Reasoning. On the database side, some work has investigated how to
combine completeness information about parts of databases to deduce completeness
annotations on query results [68, 85, 101]. However, this work assumes that the KB
has already been annotated with completeness assertions. Our goal, in contrast, is to
generate such assertions.

7.3 Preliminaries

Completeness. In line with work in databases [85,102], we define completeness via a
hypothetical ideal KB K∗, which contains all facts of the real world. A KB K is complete
for a query q, if q delivers the same results on K as on K∗. In this chapter, we focus on
a particular type of queries, namely those that ask for the objects of a given subject and
relation. Thus, a pair of an entity s and a relation r is complete in a KB K, if

{o ∶ r(s, o) ∈ K} ⊇ {o ∶ r(s, o) ∈ K∗}

For example, a KB is complete for the subject Barack Obama and the relation hasChild,
if it contains both of Obama’s children. If the KB is complete for a subject s and a relation
r, we make a completeness assertion of the form complete(s, r). Our goal is to establish
such completeness assertions.

In general, completeness assertions make less sense for relations with low func-
tionality (see Section 1.3.3 for the definition of functionality). For example, it does not
make sense to ask a KB if it knows all citizens of France, but it is more sensible to ask
whether the KB knows all nationalities of one person. Therefore, we consider complete-
ness primarily for relations with high functionality, and for the more functional direction
of relations. When a relation is incomplete for a subject, we could also try to estimate
how many objects are missing. This would amount to a cardinality estimation. In this
chapter, however, we focus on the simpler task of establishing completeness assertions,
and leave cardinality estimations for future work.

Completeness Considerations. The notion of completeness is not well-defined for all
relations [102]. Take, e.g., the relation hasHobby. It is not always clear whether an acti-
vity counts as a hobby or not. Thus, it is difficult to establish whether a KB is complete
on the hobbies of a certain person. Even for seemingly well-defined relations such as
hasOfficialLanguage, completeness is not easy to establish : a country may have de
facto official languages that are not legally recognized (e.g., the US) ; languages that
are official in some regions but not in the country (e.g., India) ; or an official language
that is not a spoken language (e.g., New Zealand). In this paper, we manually selected
relations for which completeness is well-defined, and concentrate on these.

Completeness Oracles. A completeness oracle tries to guess whether a given relation
is complete for a given subject in the fixed KB K. Technically, a completeness oracle is
a binary relation on entities and relations that holds whenever the oracle predicts that

a given subject is complete for a given relation. The Partial Completeness Assumption
(PCA) is an example of a simple completeness oracle. It predicts completeness for a
subject s and a relation r if there exists an object x with r(s, x). For instance, if Barack
Obama has one child in the KB, then the PCA oracle will (wrongly) assume that Barack
Obama is complete for relation hasChild, i.e., pca(BarackObama, hasChild) will be true.

The precision and recall of an oracle o are defined as follows, where complete de-
notes the completeness assertions that are true relative to the ideal KB K∗ :

precision(o) ⋅⋅=
#(e, r) ∶ o(e, r) ∧ complete(e, r)

#(e, r) ∶ o(e, r)

recall(o) ⋅⋅=
#(e, r) ∶ o(e, r) ∧ complete(e, r)

#(e, r) ∶ complete(e, r)

The F1 measure is defined as usual from precision and recall.

7.4 Completeness Oracles

We now present various completeness oracles, of which we study two kinds : simple
oracles and parametrized oracles.

7.4.1 Simple Oracles

Closed World Assumption. The Closed World Assumption (CWA) assumes that any
fact that is not in the KB does not hold in the real world. That is, the CWA assumes that
the entire KB is complete, i.e., K ⊇ K∗. In general, the CWA is incompatible with the phi-
losophy of the Semantic Web. Still, the CWA may be suitable under certain conditions.
For instance, if a person is not known to be the president of any country, then most likely
the person is indeed not the president of any country. Formally, the CWA completeness
oracle is simply defined as :

cwa(s, r) ⋅⋅= true

Partial Closed World Assumption (PCA). The PCA is an oracle that has proven useful
for rule mining in Chapter 2. Under the PCA, a subject-relation pair s, r is considered
complete if there is an object o with r(s, o). In other words, we assume that, if the KB
knows some r-values for s, then it knows all its values. The PCA is more cautious at
predicting completeness than the CWA : it predicts the completeness only if objects
are already known. This implies that the PCA makes predictions only for those entities
that have an object for the relationship, and remains silent otherwise. For instance,
according to the CWA, a person that has no nationality in the KB has no nationality in
reality, but the PCA will not make such claims. Formally, the PCA oracle is :

pca(s, r) ⋅⋅= ∃o ∶ r(s, o)

The PCA is especially well suited for functional relations, where an entity can have at
most one object. Indeed, if an entity has some object for a functional relation, then it
is complete. As shown in the evaluation carried in Section 2.4, the PCA also performs
well for quasi-functions such as nationality.

Cardinality. A more cautious oracle than the PCA is the cardinality oracle. For an inte-
ger value k, the oracle says that a subject s is complete for a relation r if s has at least
k different objects for r. Formally :

cardk(s, r) ⋅⋅= #(o ∶ r(s, o)) ≥ k

This oracle subsumes the CWA and PCA : card0 is cwa, and card1 is pca. Other values
for k can be useful ; for instance, card2 can be effectively used as a predictor for the
hasParent relation. In our experience, however, larger values are rarely useful, and
hence we categorize this oracle as a simple oracle.

Popularity. The previous oracles have looked at properties of entities in isolation. We
can also look at the entities in the context of the entire KB. For example, we can hypo-
thesize that entities which are popular (by some measure) are more likely to be com-
plete. For example, we expect that Wikipedia-based KBs are more complete for famous
entities such as Albert Einstein than for entities that have only stub-articles. For a Boo-
lean measure pop that indicates whether an entity is popular or not, we can define this
completeness oracle as

popularitypop(s, r) ⋅⋅= pop(s)

No Change. So far, we have only looked at a single snapshot of the KB. An alternative
is to study how the KB changes over time. If the objects of a particular subject do not
change, then this may suggest that the subject is complete. Given a Boolean measure
of change chg , where chg(s, r) indicates whether the set of objects for entity s and
relation r has changed over time, we define :

nochangechg(s, r) ⋅⋅= ¬chg(s, r)

7.4.2 Parametrized Oracles

We now move on to the study of oracles that depend on parameters that are difficult
to determine upfront, such as classes and relations.

Star Patterns. Instead of trying to estimate the completeness for a relation by loo-
king only at that relation, we can look at facts involving other relations. For example, if
someone has won a Nobel Prize, then we probably know their alma mater. Formally,
we consider “star-shaped patterns” of certain relations around the subject, and predict
completeness if they are all present :

star r1...rn(s, r) ⋅⋅= ∀i ∈ {1, . . . , n} ∶ ∃o ∶ ri(s, o)

Class Information. In some circumstances, the class to which an entity belongs can
indicate completeness with respect to some relations. For example, the instances of the
class LivingPeople should not have a death date. If we assume that the KB is correct,
this implies that any instance of that class is complete with respect to that relation.
Formally, the class-based oracle for a class expression c is

classc(s, r) ⋅⋅= type(s, c) ∈ K

We restrict our study to two types of class expressions : plain class names such as
Living_people or negated class expressions of the form t̂ ∧ ¬t where t is a subclass of
t̂, like in Person ∧ ¬Adult .

Others. Many other completeness oracles can be envisaged. For example, we could
extract information from the Web to find out whether we can find more objects ; we
could ask a crowd of users for more objects ; we could compare two KBs to see if one
contains more information than the other ; or we could pull in yet other sources. In this
work, however, we limit ourselves to a single source, and leave other such approaches
to future work.

7.5 Learning Completeness

7.5.1 Combining Oracles

Some completeness oracles cannot be used out-of-the-box. For example, there
exists a star oracle for every possible sequence of relations r1 . . . rn that form a star-
shaped query in the KB. Another example is the class oracle. Since YAGO has more
than 200K classes, there is a large number of potential class oracles that could be
conceived in this KB. Furthermore, oracles may work best in combination : for instances
of some classes, the PCA may be the best oracle, while the cardinality oracle may be
better in other cases. Our goal is thus to generalize and learn completeness oracles
from the simple and parametrized ones that we presented.

Towards this goal, we assume that we already have a certain number of gold stan-
dard completeness assertions as training data. We show in Section 7.6 how to obtain
such assertions from a crowd of users with good precision. Based on these gold stan-
dard annotations, we can then learn combinations and parametrizations of the oracles.
To this end, we adapt the AMIE rule mining approach presented in Section 2.5.

7.5.2 Enhancing AMIE

Recall from Chapter 2 that AMIE learns rules of the form B ⇒ H, such as
wasBornIn(x, y) ⇒ livesIn(x, y), on KBs. AMIE starts with rules with an empty body,
i.e., with rules of the form ⇒ r(X,Y) 2, and refines them using a number of operators.

2. In r(X,Y) at least one of the arguments is a variable

Each of the operators takes a rule as input, and produces a set of refined rules as
output, by adding one particular type of atom to the body of the rule :

— Add Dangling Atom : A dangling atom joins the rule on an existing variable and
introduces a new variable in the other position.

— Add Closing Atom : A closing atom is an atom that joins on two existing variables
in the rule.

— Add Instantiated Atom : An instantiated atom has one instantiated argument (a
constant/entity) and joins with the rule on the other argument.

The operators always produce rules with less support than the original rule. AMIE ap-
plies them iteratively to find all rules above a given support threshold.

In order to mine rules about completeness, all of the completeness oracles (Sec-
tion 7.4) have to be translated into the AMIE framework. We represent unary atoms
p(x) as p(x, ‘True ’) so that the AMIE operators can apply. Then, we define the follo-
wing new types of atoms :

— complete(x, R), incomplete(x, R) : Our training data (Section 7.5.1) takes the
form of completeness assertions complete(x,R) and incomplete(x,R), where x
binds to entities in the domain of relation R, i.e., type(x,domain(R)). We add
these assertions to the KB.

— isPopular(x) : The popularity oracle relies on an external measure pop of entity
popularity. We considered three such measures : (i) number of facts for that entity,
(ii) length of the article in the English Wikipedia, and (iii) number of ingoing links
to the Wikipedia page. Manual inspection revealed that (i) correlated best with
completeness. Thus, we add isPopular(x) to the KB if x is among the 5% entities
with the most facts in the KB.

— hasNotChanged(x, R) : Given an older version of the KB, we add facts of the
form hasNotChanged(x,R) to the new KB if x has exactly the same R-objects in
the new KB as in the old KB. These type of facts are required by the nochange
oracle. In our experiments, we used YAGO1 and YAGO3.

— notype(x, T) : The notype(x,T) atom states that an entity is not an instance of
class T . Such atoms are always used in conjunction with instantiated atoms of the
form type(x, T̂) where T̂ is a super-class of T . These types of atoms allow us to
integrate class expressions of the form c = T̂ ∧¬T as defined for the classc oracle.
Moreover, they assume the instance information in the KB is complete.

— lessThann(x, R), moreThann(x, R) : An atom of the form lessThann(x,R) with
k > 0 is satisfied if x has less than k objects for relation R in the KB. The more-
Thank atom is defined analogously. These kind of atoms allow AMIE to learn the
pca and cardk oracles.

We let AMIE mine only rules with heads of the form c(x,R), where c is either complete
or incomplete, R is a relation, and x is a variable. For performance reasons, we en-
able the “Add Instantiated Atom” operator only for isPopular(x), hasNotChanged(x,R),

type(x,T) and notype(x,T). Unlike the standard AMIE syntactic language bias, we only
enforce the head variables of the rule to be closed. This relaxation of the language bias
allows to mine rules with star patterns like for example

hasWonPrize(x, z) ∧ isPoliticianOf (x,w) ⇒ complete(x, isCitizenOf)

Still, we do not allow open variables in the new types of atoms, e.g., isPopular and
hasNotChanged . We also forbid atoms with the relation R in the body of the rules. Fur-
thermore, we define five additional mining operators to capture the oracles that we
defined :

— Add Type : Given a rule B ⇒ c(x,R), this operator adds an atom of the form
type(x,T), where T = domain(R). The operator is applied only if the rule does
not yet contain a type atom.

— Specialize Type : Given a rule type(x,T) ∧B ⇒ c(x,R), this operator produces
a new rule type(x,T ′) ∧B ⇒ c(x,R) where T ′ is a subclass of T .

— Add Negated Type : Given a rule type(x,T)∧B ⇒ c(x,R), the application of this
operator produces a new rule notype(x,T ′) ∧ type(x,T) ∧B ⇒ c(x, r), where T ′

is a subclass of T .

— Add Cardinality Constraint : Given a rule B ⇒ c(x,R), this operator adds an
atom of the form moreThan0(x,R) or lessThank(x,R), where k is the highest
number of objects seen for any subject in the relation R.

— Tighten Cardinality Constraint : Given a rule lessThank(x,R) ∧B ⇒ c(x,R),
this operator replaces k by the largest value k′ (k′ < k) that decreases the support
of the original rule. Likewise, given a rule moreThank(x,R) ∧ B ⇒ c(x,R), we
replace k by the smallest value k′ (> k) that decreases the support.

Examples. In the following, we show how AMIE uses the new mining operators to mine
rules about completeness.

Example 1 : notype(x,Adult) ∧ type(x,Person) ⇒ complete(x,hasChild)

This rule says that if a person is not an adult, then the KB is complete for the children of
that person (most likely zero). AMIE starts with the simple rule⇒ complete(x,hasChild)
and applies all the mining operators described in Section 7.5.2. Among the dif-
ferent new rules generated by this step, the “Add Type” operator produces the
rule type(x,Person) ⇒ complete(x,hasChild). In the next step, the operator “Add
Negated Type” produces new rules of the form notype(x,T) ∧ type(x,Person) ⇒
complete(x,hasChild), where T is a subclass of Person. In particular, for T = Adult ,
we obtain our example rule.

Example 2 : lessThan1 (x, isCitizenOf) ⇒ incomplete(x, isCitizenOf)

This rule states that if a person has less than one citizenship, then the KB is in-
complete in the citizenship relation for that person. AMIE starts with the rule ⇒
incomplete(x, isCitizenOf), and applies the “Add Cardinality Constraint”. Assuming
that in the KB nobody has more than 3 nationalities, the operator produces the
rule lessThan3 (x, isCitizenOf) ⇒ incomplete(x, isCitizenOf) with some support s. In
a later step, AMIE tries to tighten the cardinality constraint by means of the “Tigh-
ten Cardinality Constraint” operator. The operator searches for the closest k < 3
such that the support of the new rule drops. If the number of incomplete people
with less than 2 nationalities is smaller than s, the system will chose k = 2 and
the rule becomes lessThan2 (x, isCitizenOf) ⇒ incomplete(x, isCitizenOf). An additio-
nal call to the operator “Tighten Cardinality Constraint” on the new rule will produce
lessThan1 (x, isCitizenOf) ⇒ incomplete(x, isCitizenOf). We remark that depending on
the data distribution, AMIE may need a single call to the “Tighten Cardinality Constraint”
to produce the target rule, i.e., it may skip the intermediate step where k = 2.

7.5.3 AMIE as Completeness Oracle

AMIE will learn rules that predict completeness as well as rules that predict incom-
pleteness. Unlike the standard setting, AMIE counts on explicit counter-examples for
such rules. For the first type of rules, she uses the complete(x, r) statements of the
training data as examples, and the incomplete(x, r) statements as counter-examples.
For the second type of rules, the roles are reversed. This implies that confidence for
completeness and incompleteness rules follows the formula :

conf(B ⇒ c(x,R)) ∶= supp(B ⇒ c(x,R))
supp(B ⇒ c(x,R)) + supp(B ⇒ ¬c(x,R))

where c ∈ {complete, incomplete}.

Predicting completeness. Once the rules have been learned, we can define a new
completeness oracle, the AMIE oracle. For a given entity e and a relation r, the AMIE
oracle checks whether any of the learnt rules predicts complete(e, r). If so, and if there is
no rule with higher or equal confidence that predicts incomplete(e, r), the oracle returns
true. If there is a rule with equal confidence that predicts incomplete(e, r), the oracle
returns true if the support of the completeness rule is higher. In all other cases, the
oracle returns false.

By restricting AMIE to only star atoms or only class atoms, we can produce a Star
oracle and a Class oracle, respectively, analogously to the AMIE oracle.

7.6 Experiments

7.6.1 Setup

Knowledge bases. Our goal is to measure the precision and recall of the complete-

ness oracles on real data. We conducted our study on two KBs : YAGO3, released in
September 2015, and a dump of Wikidata of December 2015. For both datasets, we
used the facts between entities, the facts with literal object values (except for the rela-
tion rdfs :label) and the instance information. These choices leave us with a KB of 89M
facts (78M type statements) for YAGO, and a KB of 15M facts (3.6M type statements)
for Wikidata. We studied completeness on a set of relations covering a large variety of
cases. For one type of relations, basically every entity of the domain has to have exactly
one object : hasGender, wasBornIn in YAGO ; sex_or_gender (P21), mother (P25), fa-
ther (P22), place_of_birth (P19) in Wikidata. For other relations, entities do not need
to have an object, but can have at most one : diedIn in YAGO ; place_of_death (P20)
in Wikidata. Again others usually have one object, but can have more : isCitizenOf and
director (Movie, Person) in YAGO ; country_of_citizenship (P27) and director (P57) in
Wikidata. In the most general case, a subject can have zero, one, or several objects :
hasChild, graduatedFrom, isConnectedTo(Airport, Airport), and isMarriedTo 3 in YAGO ;
child (P40), alma_mater 4 (P69), brother, and spouse (P26) in Wikidata. One relation
has to have 2 objects : hasParent 5 in YAGO. Our relations cover people, movies, and
geographical locations.

Ground Truth. In order to evaluate our completeness oracles, we need a set of com-
pleteness assertions and incompleteness assertions as a gold standard. For some
relations, we could generate this gold standard automatically. Namely, for the rela-
tions where every subject has to have exactly one object, we have complete(s, r) iff
∃o ∶ r(s, o). For the relations where every subject must have at least one object, we
can directly label as incomplete all subjects without a value. For the relations with at
most one object, all subjects with one object are considered complete. For the relation
isConnectedTo, we used the OpenFlights 6 dataset as ground truth, which we assumed
to be complete for all airports in this dataset (identified by their IATA code). However,
due to data inaccuracies, in some cases YAGO knew more flights than OpenFlights :
we discarded those airports.

Crowdsourcing. For the remaining relations, we used crowdsourcing to obtain ground
truth data. Given an entity, a relation, and the objects known in the KB, we asked crowd
workers whether they could find any additional objects on the Web. If they could, we
labelled the entity-relation pair as incomplete, otherwise as complete. To make the task
well-defined and manageable, we asked workers to look only at a set of given Web
pages. We manually defined queries for each relation (e.g., “x died” for diedIn(x, y) or
“x child” for hasChild(x, y)), and then gave workers the first 4 URLs retrieved using the
Bing search API. We used the Crowdflower platform 7 for crowdsourcing, and paid 1
cent per answer. For each entity, we collected 3 opinions.

3. Despite the name, this relation captures also past spouses.
4. We use the same semantics as in YAGO : places a person graduated from.
5. This is how we call the inverse of hasChild in YAGO.
6. http://openflights.org/data.html
7. https://www.crowdflower.com

http://openflights.org/data.html
https://www.crowdflower.com

Quality Control. To monitor quality, we generated 20–29 test questions for each re-
lation, for which we manually checked the correct answer. Annotators had to pass a
qualification test of 10 questions with at least 80% correct answers ; further, the re-
maining test questions were mixed with the data, and annotators had to maintain 80%
correctness while working. About a quarter of annotators failed at the initial tests, and
about 5% fell below the correctness threshold while working. Their answers were discar-
ded. Furthermore, we used only the annotations where all 3 answers were unanimous.
These make up 55% of the annotations. We carried out a second round of annotations
to compensate for the discarded answers.

Sampling. In order to evaluate the popularity oracle, we took a random sample of 100
entities among the popular entities in the domain of the studied relations. We call this
gold standard popular. Likewise, we produced another gold standard of 100 entities
among those whose objects did not change w.r.t YAGO1. This sample is called no-
change. For the other experiments, we constructed a gold standard consisting of 200
randomly picked entities in the domain of the studied relations. We call this sample
uniform. The uniform sample is not always useful. For example, only 1% of people have
a citizenship in YAGO. Thus, in a sample of 200 people, we may expect a citizenship
for only 2 of them. This is too few to learn a rule. Therefore, for relations where less
than 10% of the subjects have an object we construct a biased sample instead. Instead
of choosing 200 entities randomly, we choose 100 entities randomly among those that
have an object, and 100 among those that do not. In our experiments, we mark the
relations where we used the biased sample. For the calculation of precision and recall,
we carried out a de-biasing step. This means that the values we report reflect the true
population of entities in the KBs. For the learned oracles, we use 80% of our gold
standard for training, and the rest for testing.

7.6.2 Basic Completeness Oracles

Experiment. Our completeness oracles from Section 7.4 try to guess whether a pair of
a subject and a relation is complete. We considered the subject–relation pairs where we
had a gold standard, and computed precision and recall values as described in Section
7.3. Table 7.2 shows the results for the oracles for YAGO3, and Table 7.4 for Wikidata.
Table 7.3 and Table 7.5 show the corresponding F1 measures.

Cardinality Oracles. The first column in the tables shows the CWA. It trivially achieves
a recall of 100% : for all pairs that are complete in reality, it makes a correct prediction.
However, its precision is lower. This precision value corresponds to the actual comple-
teness of the KB with respect to the real world. We see, e.g., that YAGO is complete for
the death place for 44% of the people. This means that these people are either alive,
or dead with a known death place in YAGO. We also observe that Wikidata is generally
more complete than YAGO.

The next oracle is the PCA. It achieves 100% precision for all functional relations : if
a subject has an object, the PCA rightly assumes that the subject is complete. For quasi-
functions, such as isCitizenOf, the PCA still performs decently, failing only for people
with several nationalities. The PCA has a recall of 100% for relations that are mandatory
(such as hasGender) : whenever this relation is complete in the gold standard, the PCA
indeed predicts it. For the other relations, the PCA has much lower values in precision
and recall.

The card2 oracle has a much lower recall. We could not compute it for relations
where the sample did not contain any entity with sufficiently many objects. This oracle
basically makes sense only for the hasParent relation, where it performs perfectly. As
card3 behaves worse that card2 on both datasets, we omitted it.

Popularity Oracle. The fourth column shows the performance of the popularity oracle
computed on the popular sample. The oracle was not computed for isConnectedTo due
to noise in the data. The popularity oracle generally has a low recall, because there are
not many popular entities. Its precision is generally good, indicating that popular entities
(those that have many facts in general) are indeed more complete than unpopular ones.
However, even popular entities are incomplete for parents and citizenship in YAGO, and
for parents in Wikidata.

NoChange Oracle. The next column shows the NoChange oracle on YAGO, for those
relations that exist in both YAGO1 and YAGO3. It has a very low recall, indicating that
most entities did indeed change their objects over time (they most likely gained more
objects). The precision is decent, but not extraordinary.

7.6.3 Learned Completeness Oracles

Learning. We took 80% of our gold standard to train our modified AMIE approach
(Section 7.5) with 4-fold cross-validation. The training phase measures the performance
of AMIE at different configurations, i.e., different values for the support and confidence
thresholds. We tested values for support in the range from 10 to 100 entities (in steps of
10), while confidence was tested on values from 0.3 to 1.0 (in steps of 0.1). We report
the best configuration in terms of F1 measure for each relation, and use it to measure
performance in the testing set (remaining 20% of the gold standard). Training took 44
hours on YAGO, and 4 hours in Wikidata. This difference is mainly due to the much
larger type hierarchy in YAGO (78M type assertions as opposed to 3.6M). Table 7.1
shows some of the rules that AMIE learned. The first rule says that a person who has a
date of death, but no place of death, is incomplete for the place of death. In the second
rule, the IMDb id acts as a substitute for the type movie, which is not always consistently
used in Wikidata. Thus, the rule basically says that if a movie has a producer, then it is
most likely complete on the director.

dateOfDeath(x, y) ∧ lessThan1(x, placeOfDeath) ⇒ incomplete(x, placeOfDeath)
IMDbId(x, y) ∧ producer(x, z) ⇒ complete(x, director)
notype(x, Adult) ∧ type(x, Person) ⇒ complete(x, hasChild)
lessThan2(x, hasParent) ⇒ incomplete(x, hasParent)

TABLE 7.1 – Example rules that AMIE learned (2 on Wikidata, 2 on YAGO)

Results. AMIE learns her rules using the best configuration from the training set. After
the rules have been learned, making the actual predictions on the testing set takes
only seconds. We evaluated these predictions against the remaining 20% of our gold
standard, and report the precision, recall, and F1 values in the three last columns of
Tables 7.2 and 7.3 for YAGO, and in Tables 7.4 and 7.5 for Wikidata. For the star oracle,
we use a star size of n = 1 for YAGO, and n = 3 for Wikidata. We observe that this
oracle can improve the F1 value for the isMarriedTo relation. The class oracle, likewise,
performs well for certain relations. In particular, the oracle learned that the YAGO class
LivingPeople means that the diedIn relation must be complete, boosting F1 from 60%
to 99%. This shows that parametrized oracles can be useful.

In general, the oracles complement each other. Only the complete AMIE approach
can nearly always perform best. This is because AMIE learns the strengths of the in-
dividual oracles, and combines them as is most useful. As explained in Section 7.5.3,
AMIE uses the most confident rules to make completeness predictions. For functio-
nal relations, AMIE learned a rule that mimics the PCA, predicting completeness for
a subject whenever one object is present : moreThan0(X,r) ⇒ complete(X,r). For
diedIn, AMIE learned a rule that mimics the class oracle : type(x,LivingPeople) ⇒
complete(x,diedIn). When such relation-specific rules are not available, AMIE learns
the CWA. This is the case for difficult relations such as brother, graduatedFrom or is-
ConnectedTo. In particular, AMIE learns the CWA in rules of the form

type(x,domain(r)) ⇒ complete(x, r)

All this shows that it is indeed possible to predict completeness with very good preci-
sion and recall for a large number of relations. We can predict whether people are alive,
or whether they have siblings – all by just looking at the incomplete KB. Only for spouse
and alma_mater, our oracles perform less well. However, guessing whether someone
is married, or whether someone graduated from university, is close to impossible even
for a human.

7.7 Application

Rule mining is generally used to find arbitrary rules in a KB, not just completeness
rules. These rules can be used for fact prediction, i.e. to predict which person lives
where, or which city is located in which country (Section 2.7). The predictions can be
compared to the real world, with the proportion of correct predictions being the precision
of the approach. This section shows how to improve the precision of fact prediction

Relation CWA PCA card2 Pop. No change Star Class AMIE
Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

diedIn 43% 100% 100% 13% — — 97% 2% 74% 8% 100% 33% 100% 97% 96% 96%
directed 25% 100% 93% 100% 72% 11% 91% 3% 90% 59% 0% 0% 0% 0% 100% 100%
graduatedFrom 80% 100% 70% 2% 79% 1% 89% 1% 82% 6% 84% 94% 85% 100% 77% 100%
hasChild 55% 100% 36% 1% 41% 0% 78% 1% 70% 7% 83% 26% 63% 100% 65% 100%
hasGender 64% 100% 100% 100% — — 98% 1% — — 92% 81% 91% 100% 100% 100%
hasParent* 0% 100% 37% 100% 100% 100% — — — — 0% 0% 0% 0% 100% 100%
isCitizenOf* 2% 100% 97% 100% 93% 6% 2% 1% 2% 7% 6% 33% 2% 53% 100% 100%
isConnectedTo 77% 100% 67% 23% 60% 12% — — — — 77% 62% 79% 100% 81% 100%
isMarriedTo* 38% 100% 84% 4% 92% 0% 66% 1% 51% 7% 25% 74% 40% 100% 29% 100%
wasBornIn 16% 100% 100% 100% — — 73% 3% 33% 5% 0% 0% 0% 0% 100% 100%

TABLE 7.2 – Precision and recall of all completeness oracles on YAGO3. Relations with a biased
sample are marked with *.

Relation CWA PCA card2 Pop. No change Star Class AMIE

diedIn 60% 22% — 4% 15% 50% 99% 96%
directed 40% 96% 19% 7% 71% 0% 0% 100%
graduatedFrom 89% 4% 2% 2% 10% 89% 92% 87%
hasChild 71% 1% 1% 2% 13% 40% 78% 78%
hasGender 78% 100% — 2% — 86% 95% 100%
hasParent* 1% 54% 100% — — 0% 0% 100%
isCitizenOf* 4% 98% 11% 1% 4% 10% 5% 100%
isConnectedTo 87% 34% 19% — — 68% 88% 89%
isMarriedTo* 55% 7% 0% 3% 12% 37% 57% 46%
wasBornIn 28% 100% — 5% 8% 0% 0% 100%

TABLE 7.3 – F1 measure of all completeness oracles on YAGO3. Relations with a biased
sample are marked with *.

Relation CWA PCA card2 Pop Star Classes AMIE
Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

alma_mater 82% 100% 80% 8% 95% 2% 57% 1% 76% 100% 76% 100% 76% 100%
brother 86% 100% 57% 0% — — 61% 1% 92% 96% 92% 100% 92% 100%
child 54% 100% 15% 1% — — 25% 0% 73% 86% 58% 95% 79% 68%
c._of_citizenship* 27% 100% 95% 100% 100% 5% 38% 1% 0% 0% 0% 0% 96% 100%
director 68% 100% 100% 100% — — 95% 1% 89% 100% 85% 94% 100% 100%
father* 3% 100% 100% 100% 100% 3% 16% 6% 100% 80% 4% 82% 100% 100%
mother* 1% 100% 100% 100% 100% 1% 12% 9% 52% 96% 2% 86% 100% 100%
place_of_birth 36% 100% 100% 100% 100% 4% 90% 3% 86% 41% 0% 0% 100% 100%
place_of_death 81% 100% 100% 21% 100% 1% 97% 1% 77% 87% 77% 87% 93% 100%
sex_or_gender 69% 100% 100% 100% 100% 3% 96% 1% 87% 98% 85% 97% 100% 100%
spouse* 40% 100% 88% 4% — — 29% 1% 38% 99% 37% 99% 38% 100%

TABLE 7.4 – Precision and recall of all completeness oracles on Wikidata. Relations with a biased
sample are marked with *.

Relation CWA PCA card2 Pop. Star Class AMIE

alma_mater 90% 14% 5% 1% 87% 87% 87%
brother 93% 1% — 1% 94% 96% 96%
child 70% 1% — 1% 79% 72% 73%
country_of_citizenship* 42% 97% 10% 3% 0% 0% 98%
director 81% 100% — 3% 94% 89% 100%
father* 5% 100% 6% 9% 89% 8% 100%
mother* 3% 100% 3% 10% 67%* 5% 100%
place_of_birth 53% 100% 7% 5% 55% 0% 100%
place_of_death 89% 35% 1% 2% 81% 81% 96%
sex_or_gender 81% 100% 6% 3% 92% 91% 100%
spouse* 57% 7% — 1% 54% 54% 55%

TABLE 7.5 – F1 measure of all completeness oracles on Wikidata. Relations with a
biased sample are marked with *.

using completeness assertions. For this purpose, we filter out a fact prediction r(s, o),
if we know that complete(s, r). For example, if the fact prediction says that a person has
a parent, but the KB already knows 2 parents, then we discard the prediction.

Setup. We follow the same experimental setup as in Section 2.7 : We ran the stan-
dard AMIE system on YAGO3 and used the obtained rules to infer new facts. Each
rule (and thus each prediction) comes with a confidence score. We grouped the predic-
tions in buckets by confidence score. For each bucket, we resorted to crowd-workers
to evaluate the precision of the predictions on a sample of 100 facts. The lower line in
Figure 7.1 shows the number of predictions versus the cumulative precision estimated
on the samples. Each data point corresponds to a predictions bucket, i.e., the first point
on the left corresponds to the predictions with confidence score between the 0.9 and
1, the second point to those with confidence between 0.8 and 0.9, and so on. In the
second phase of the experiment, we use completeness assertions to filter out predic-
tions. We produce completeness assertions as in Section 7.6.3, by training AMIE with
cross-validation on our entire set of gold standard completeness assertions. The upper
line in Figure 7.1 shows the cumulative precision and number of predictions for each
bucket after filtering.

Results. As we can observe, the filtering could successfully filter out all wrong predic-
tions. The remaining predictions have a precision of 100%. This high precision has to
be taken with a grain of salt : the remaining predictions are mainly about the citizen-
ship, which is guessed from the place of residence or place of birth. The completeness
assertions filter out any predictions that try to assign a second citizenship to a person,
and thus drastically increase the precision. However, there are also a few other relations
among the predictions, e.g., death place, or alma mater (guessed from the workplace
of the academic advisor).

50000 250000 450000 650000 850000 1050000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AMIE
AMIE + completeness

Number of predictions

P
re

c
is

io
n

FIGURE 7.1 – Precision of fact prediction

This precision comes at a price. In total, AMIE made 1.05M predictions. Of these,
400K were correct. From these, the filtering incorrectly removed 110K. Thus, the filtering
removes roughly 25% of the correct predictions as a side-effect. Still, we believe that
our experiments make the case that completeness assertions can significantly improve
the performance of fact prediction.

7.8 Conclusion

Completeness is an important dimension of quality, which is orthogonal to the di-
mension of correctness, and which has so far received less attention. In this chapter, we
have defined and analyzed a range of simple and parametrized completeness oracles.
We have also shown how to combine these oracles into more complex oracles by rule
mining. Our experiments on YAGO and Wikidata prove that completeness can be pre-
dicted with high precision for many relations. Completeness estimations can be then
used to improve fact prediction to 100% precision in specific cases.

We hope that this work can lead to new research avenues, aiming to design know-
ledge bases that are not only highly accurate, but also highly complete. All the data and
rules produced for this chapter are available at
http://luisgalarraga.de/completeness-in-kbs.

http://luisgalarraga.de/completeness-in-kbs

8.1. Vision on Numerical Rule Mining : Introduction 135

Chapitre 8

Vision on Numerical Rule Mining

This chapter takes the first step towards numerical rule mining by defining a lan-
guage to express numerical rules. We rely on the framework for rule mining presented
in Chapter 2. The content of this chapter is based on the following publication :

— Luis Galárraga, Fabian Suchanek. Towards a Numeric Rule Mining Language.
Automated Knowledge Base Construction Workshop, 2014.

8.1 Introduction

In chapter 2 we have proposed AMIE, a system to learn Horn rules on potentially
incomplete KBs. The results presented in Section 2.6 show that AMIE can learn in-
teresting rules on KBs, and that those rules can be used to infer new facts with high
precision (Section 2.7). Nevertheless, our experimental setup made use of a subset of
the KBs, namely the facts holding between entities. We deliberately discarded literal
facts because they tend to hold unique values. For instance, it is rare for distinct enti-
ties in a KB to have the exact same string representation (relation rdfs :label in RDF
Schema). Traditional rule mining on such relations would lead to rules with low support.
Moreover, unlike relations defined between sets of entities, e.g., livesIn ∶ Person → City ,
relations such as surfaces or geographical locations are defined on a range, which is
uncountably infinite. Also, prediction on real numbers is substantially different from link
prediction and is normally addressed via regression models. While one could think of
literal relations with finite countable or bounded ranges, such as hasAge, hasHeight,
this is not the case for most of the literal relations we find in KBs.

In this chapter, we propose to exploit some of the literal relations in KBs to extend
the scope of rule mining. This can be achieved by enlarging our language bias to accept
numerical rules. A numerical rule contains variables that do not bind to named entities,
but to literal numerical values. Consider, e.g., the rule

type(x,MarketEcon) ∧ import(x, y) ∧ export(x, z) ∧ cad(x,w) ⇒ w ≈ 1.2×(y − z)

This rule says that if x is a market economy, then its current account deficit (cad) is
roughly 120% of the difference between its import and export (measured in dollars,

Constraint Example rule with this constraint

x ≥ φ age(x, y) ⇒ y ≥ 0
x > φ type(x, solvent) ∧ balance(x, y) ⇒ x > 0
x = φ type(x,dog) ∧ numLegs(x, y) ⇒ y = 4
x ∈ [a, b] lat(x, y) ⇒ y ∈ [−90,90]
x ≈ φ wikiLinks(x, y) ∧ articleLength(x, z) ⇒ z ≈ 3.4×log(y)

TABLE 8.1 – Numerical constraints and some examples

for example). Such rules would add tremendous value to today’s KBs : First, the rules
could be used to spot errors in the data. If the cad of a country does not fall in the
expected range, then the value could be flagged as erroneous or less confident. Se-
cond, such rules could be used to compute missing information. If, e.g., we do not have
the cad of France, we could compute it from the data. Finally, the rules carry human-
understandable insight. The finding that the cad of a country correlates with its import
and export has a value in itself [115].

Mining such rules is challenging for several reasons. First, there are infinitely many
numerical constants. In the example, the factor could be refined to 1.21 or 1.3. Second,
there are infinitely many ways in which numerical variables can correlate. For example,
the cad could be the sum, product or any other function of the ages of its members of
parliament. Thus, the search space becomes unbearably large. Finally, numerical rules
bridge two traditionally different areas of research : inductive logic programming (ILP)
and statistical data mining. While statistical data mining techniques can spot correla-
tions of values, they are less able to simultaneously derive logical constraints such as
type(x, MarketEcon). ILP, on the other hand, traditionally does not deal with numerical
values.

In this chapter, we study different types of numerical rules. We develop a unified lan-
guage for writing down numerical rules, and we explain which types of rules can already
be mined by existing work. With this thrust, we hope to lay the ground for research that
will enable us to mine numerical rules just as efficiently as logical rules.

8.2 Numerical Rules

8.2.1 Numerical Constraints

One of the most intuitive ways to add numerical constraints to Horn rules is to permit
constraints, i.e., atoms of the form x ○ φ. Here, x is a numerical variable, ○ is a binary
operator that returns a truth value, and φ is an expression that may or may not involve
variables, e.g., x = 1.2×y. The atom holds under an instantiation σ (Section 1.3.4), if
σ(x) ○ σ(φ) = true. Atoms that are not constraints are called categorical atoms. Cate-
gorical atoms that contain a numerical variable are called numerical atoms. Table 8.1
shows some types of numerical constraints and example rules.

We could also aim to mine cardinality constraints such as

hasWonPrize(x,EmmyAward) ∧ actedIn(x, y) ⇒#y > 10

Using the notation proposed in Section 7.5.2, this rule is equivalent to

hasWonPrize(x,EmmyAward) ⇒ moreThan10 (x,actedIn)

Cardinality constraints in the head of rules are particularly interesting because they
allow us to mine and predict negations by setting #y = 0 or #y < c for c ∈ N. Negations,
however, are inconsistent with the Open World Assumption that KBs make.

We could also mine rules such as :

type(x,City) ∧ hasPopulation(x, y) ⇒ y ∼ N(µ;σ)

This rule states that the population of cities follows a certain distribution. We leave such
rules as future work and concentrate on the operators from Table 8.1.

Pathological cases. We notice that the addition of numerical constraints may lead to
pathological cases such as

p(x, y) ⇒ z = y (8.1)
p(x, y) ∧ z = y ⇒ r(x, y) (8.2)
p(x, y) ∧ z > y ⇒ r(x, z) (8.3)

In cases (1) and (2), we are binding a variable z that serves no purpose. In case (3), we
are predicting r(x, z) where z has no defined value. These phenomena are a particula-
rity of constraints. If we replace the constraints by categorical atoms, the problem does
not appear :

p(x, y) ⇒ q(z, y) (8.4)
p(x, y) ∧ q(z, y) ⇒ r(x, y) (8.5)
p(x, y) ∧ q(z, y) ⇒ r(x, z) (8.6)

To avoid the pathological rules, we impose that every numerical variable has to appear
in at least one categorical atom. We also impose that the head atom can only contain
bound variables, i.e., variables that appear in the body either in a categorical atom or
in a constraint that restricts it to one particular value. This is usually the case for the
operator “=” 1, although not necessarily, cf. x = x. Unlike the standard AMIE language
bias, we do not impose that every variable has to appear at least in two categorical
atoms, because we want to allow rules such as hasAdvisor(x, y) ∧ age(y, z) ⇒ z > 30.

8.2.2 Descriptive and Predictive rules

Consider the following rule :

gdp(x, y) ∧ natDebt(x, z) ⇒ z = 0.9 × y

1. The constraint x ∈ [a, a] also binds.

This rule says that if x has a GDP and a national debt, then the debt can be computed
as 90% of the GDP. If x has no national debt, then the rule will always hold trivially. We
say that the rule is a descriptive rule because it will not try to predict the debt of x. Any
rule with a numerical constraint in the head is descriptive. Now consider the following
variant of the rule :

gdp(x, y) ⇒ ∃z ∶ natDebt(x, z) ∧ z = 0.9 × y

This rule says that every x that has a GDP also has a national debt, and that this debt
amounts to 90% of the GDP. This formula allows for prediction of the national debt of
a country given only its GDP. However, it does not qualify as a Horn rule, because it
contains a conjunction and an existential quantifier in the head. We propose to write
this rule as

gdp(x, y) ∧ z = 0.9 × y ⇒ natDebt(x, z)
This rule has the same semantics, but does not require the existential quantifier in the
head 2. We call numerical rules with a categorical atom in the head predictive rules.

8.2.3 Functional notation

A function is a relation that has, for each subject, at most one object in the KB (Sec-
tion 1.3.3). It is very common for rule mining systems to assume that numerical atoms
bind to relations that are functions. In our survey of the state of the art in Section 8.3, we
did not find any approach that would not make this assumption. For example, a country
can have only one national debt value. This assumption makes sense only if we do not
take into account the dimension of time.

If all numerical atoms are functions, we can use them in constraints. For example,
given the rule :

gdp(x, y) ∧ natDebt(x, z) ∧ z > 5y ⇒ hasProblem(x, ‘true ’)

We could rewrite it as :

natDebt(x) > 5×gdp(x) ⇒ hasProblem(x, ‘true ’)

In general, any expression of the form f(x, y) ∧ y ○ φ where f is a functional relation,
can be rewritten as f(x) ○ φ. This rewriting applies also if the function term is in the
head :

type(x, Indebted) ∧ natDebt(x, y) ∧ gdp(x, z) ⇒ y = 5×z
This rule becomes :

type(x, Indebted) ⇒ natDebt(x) = 5×gdp(x)

This transformation, however, allows only the descriptive semantics of the operator “=”.
There is no way to predict that x has a national debt, if x does not have that property

2. The FORS system [59] uses the same notation, albeit with the Prolog predicate is/2.

already. To allow for this subtlety, we permit the assignment atom f(x) ∶= φ in the head.
If a rule contains the pattern

. . . y = φ ⇒ f(x, y)

We can rewrite it as
. . . ⇒ f(x) ∶= φ

Thus, given the rule

type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ⇒ natDebt(x, y)

We can rewrite it as

type(x, Indebted) ⇒ natDebt(x) ∶= 5×gdp(x)

In the way we have defined our rewriting, every rule with function terms can be trans-
formed into an equivalent rule without function terms. Vice versa, every rule in which all
numerical atoms are functions can be rewritten to an equivalent rule without numerical
variables. As we will show in the next section, function terms allow us to extend the
notions of support and confidence – designed originally for categorical rules – to rules
with constraints. For this reason, we propose to use the language of Horn rules with
function terms as a unified language for rules with numerical constraints.

8.2.4 Evaluation Metrics

Support. The statistical significance of a rule is measured by the support metric. Recall
from Section 2.3.2.1 that the support of a rule B ⇒ H is the absolute number of cases
in the KB where the rule holds. The support follows the formula :

supp(B ⇒H) ∶= #(vars(H)) ∶ ∃z1, ..., zm ∶B ∧H

This definition of support does not transfer well to rules that have a constraint in the
head, such as natDebt(x, y)∧gdp(x, z) ⇒ y > z. This is because we would want to count
the different countries x for which this rule holds, not the different pairs of countries and
debt values y, z. In our language of function terms, we get this behavior for free : The
rule becomes ⇒ natDebt(x) > gdp(x) (with an empty body). In such a rule, vars(H) =
{x} thanks to the function terms.

Confidence. The standard (Section 2.3.3.1) and PCA confidence (Section 2.4) mea-
sure the ratio of correct conclusions of a rule according to the formulas :

confstd(B ⇒H) ∶= supp(B ⇒H)
#vars(H) ∶ ∃z1, . . . , zk ∶B′

confpca(B ⇒H) ∶= supp(B ⇒H)
#vars(H) ∶ ∃z1, . . . , zk, y′ ∶B′ ∧ r(x, y′)

Here, B′ is the body of the rule after all function terms have been rewritten. For example,
consider the following descriptive rule

⇒ natDebt(x) = 0.9 × gdp(x)

From Section 8.2.3 it follows that this rule denotes

gdp(x, y) ∧ natDebt(x, z) ⇒ z = 0.9 × y

The standard confidence of this example rule is given by the expression :

confstd(B ⇒H) ∶= #x ∶ ∃ y, z ∶ gdp(x, y) ∧ natDebt(x, z) ∧ z = 0.9×y
#x ∶ ∃ y, z ∶ gdp(x, y) ∧ natDebt(x, y)

We notice that for descriptive rules, the PCA confidence boils down to the standard
confidence. To see this, recall that if the head of the rule contains an expression of the
form x ○ φ(y) in its function term free form, the head atom becomes x ○ φ(y′) in the
denominator, like in

confpca(B ⇒H) ∶= #x ∶ ∃ y, z ∶ gdp(x, y) ∧ natDebt(x, z) ∧ z = 0.9×y
#x ∶ ∃ y, z ∶ gdp(x, y) ∧ natDebt(x, y) ∧ z = 0.9×y′

Since y′ is an unbound variable, the expression z = 0.9 × y′ is trivially fulfilled and
can be omitted.

Now let us consider the predictive rule

type(x, Indebted) ⇒ natDebt(x) ∶= 5×gdp(x)

denoting
type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ⇒ natDebt(x, y)

The standard confidence of such rule is defined according to the formula :

confstd(B ⇒H) ∶= #x ∶ ∃ y, z ∶ type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ∧ natDebt(x, y)
#x ∶ ∃ y, z ∶ type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z

where the equality constraint in the denominator is trivially satisfied and could be omit-
ted :

confstd(B ⇒H) ∶= #x ∶ ∃ y, z ∶ type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ∧ natDebt(x, y)
#x ∶ ∃ z ∶ type(x, Indebted) ∧ gdp(x, z)

We remark that the standard confidence was originally designed for descriptive rules
under the Closed World Assumption, that is, it punishes rules concluding facts that
are not in the KB. In this example, any indebted country with a GDP will lower the
confidence value, no matter if it has the wrong debt value or no value at all. For KBs
operating under the Open World Assumption, we proposed the PCA confidence. In our
example, this yields :

confpca ∶=
#x ∶ ∃ y, z ∶ type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ∧ natDebt(x, y)

#x ∶ ∃ y, z, y′ ∶ type(x, Indebted) ∧ gdp(x, z) ∧ y = 5×z ∧ natDebt(x, y′)

Again, the equality constraint in the denominator is trivially fulfilled because y is un-
bound, thus the constraint can be omitted. We see that the PCA confidence counts as
counter-examples only those countries for which a national debt value is known. While
the standard and PCA confidence are equivalent for descriptive rules, we prefer the
PCA confidence for predictive rules.

Confidence and support measure two orthogonal dimensions of the quality of a rule,
which can be combined [74], but are kept distinct in most rule mining approaches [4,
43,46,113].

Error measures. If a rule contains a numerical constraint in the head, other measures
may become applicable. For example, if the rule concludes y ≈ 3x, then the quality of the
rule could depend on the difference ∣y − 3x∣. If we know that x follows certain probability
distribution, x ∼ F (µ,σ), then the confidence could be the probability that our predic-
tions were drawn from such a distribution, i.e., P (y ∣ y = 3x ∧ x ∼ F (µ;σ)). While such
measures abound, the difficulty is to make numeric measures interoperable with clas-
sical measures. For example, if a rule mining algorithm produces both numerical and
non-numerical rules, and if numerical rules have an error measure but no confidence,
then it is unclear how these rules can be ranked together. We propose to replace a
constraint of the form y ≈ φ by y>φ−ε ∧ y<φ+ε for a suitable error margin ε. If the
constraint appears in the head, the rule has to be split into two rules that each have one
of the conjuncts in the head (to still meet the language of Horn rules). The value of ε
depends on the domain of y. If the domain of y operates under a value scale, i.e., scales
for which ratios are not defined (such as temperatures or geographic coordinates), ε can
be defined as an absolute error. This requires the choice of an appropriate numerical
constant, which depends, e.g., on the unit system that y uses. An absolute error of 2
units for predicting temperatures in Celsius may be too loose if the scale is changed to
Fahrenheit or if we are trying to predict latitudes. If y operates under a ratio scale (as
is the case for populations or distances), we can use a relative error ε = αy, α ∈ (0,1).
Then, α is independent of the unit system and can be set to a default value.

With this change, all error measures become binary measures, and hence interope-
rable with the categorical support and confidence measures.

8.3 Existing Work

We survey here existing work in the area of numerical rule mining, and express
the rules in our proposed language with function terms. The work of [99] studies the
problem of mining optimized rules of the form A ∈ [a, b] ∧ C1 ⇒ C2 on a database table.
Here, A is a column name and C1,C2 are equality constraints on columns, as in the rule

year ∈ [1990,2000] ∧ src_city = NY ⇒ dest_city = Paris

In our language, we would define a unique identifier for each row of the table and ex-
press the columns as binary relations and function terms, e.g.,

year(id) ∈ [1990,2000] ∧ src_city(id,NY) ⇒ dest_city(id,Paris)

The problem consists in finding the values of a and b that maximize either support
or confidence given a minimum threshold for the other metric. The general problem
with an arbitrary disjunction of inequality constraints is shown to be NP-Hard [99].
One way to reduce the search space is to discretize it. [39] uses equi-depth bucke-
ting and computational geometry techniques to calculate a and b almost optimally,
providing bounds for the approximation error. The approach described in [15] pro-
poses to optimize for the gain, a function of support and confidence. A method based
on genetic algorithms [107] allows mining confidence-optimized rules with categorical
atoms and multiple interval constraints. In our language these rules take the form, e.g.,
height(x) ∈ [150,170] ⇒ weight(x) ∈ [50,90].

The work presented in [6] incorporates interval constraints into the standard ILP
framework. In our language, the rules look like age(x) ∈ [a, b] ⇒ status(x,Single). The
goal is to find a, b that maximize the rule confidence. Before refining the rule, the system
performs an independence test between the age of people and their marital status. If
the variables are not independent, then the algorithm reports intervals where it is more
likely to find single people, i.e., intervals where confidence is maximized.

Regression trees [60] are a common method to learn functional correlations in nu-
merical structured data. Imagine we want to predict the length of a Wikipedia article
as a function of its number of links. In our language for numerical rules, such a rule is
written as

⇒ wikiLength(x) ∶= g(wikiLinks(x))

Most mining systems use the writing

wikiLinks(x, y′) ⇒ ∃ y ∶ wikiLength(x, y) ∧ y = g(y′)

The learning process starts with a training set consisting of all the articles x where the
dependent variable y is known. If some quality conditions are met, a regression model
y ≈ g(y′) is induced and the algorithm stops. Otherwise, the training set is split into po-
sitive and negative examples and their hypothesis refined with new categorical atoms,
e.g., type(x,Scientist). The algorithm is then recursively applied to the new hypotheses
and training sets. FORS [59] was one of the first systems in integrating functional cor-
relations using regression trees into the ILP framework. In the syntax of FORS, the rule
is expressed as follows :

wikiLinks(x, y′) ∧ is(y, g(y′)) ⇒ wikiLength(x, y)

FORS cannot mine the descriptive variant of such a rule. Furthermore, the system was
tried out only on toy examples and is unlikely to scale to the millions of facts in today’s
KBs. A more recent approach [38] relies on regression trees for the prediction of nume-
rical attributes in OWL KBs. The approach learns rules that predict the value of one fixed
numerical attribute of an entity, based on the properties of that entity. In our language,
these rules look like type(x,TalkShow) ∧ dealsWith(x,Sports) ⇒ popularity(x) ∶= 12%.

8.4 Conclusion

We have seen that there has been quite some work on numeric rule mining. In our
proposed rule language, these approaches become comparable. However, so far, these
works solve only islands of numeric rule mining. None of the approaches can mine full-
fledged rules with function terms at scale. This, however, may be about to change :
As we make progress on small scale numerical rule mining, and as categorical rule
mining starts to scale, these islands may soon become connected. A unified syntax for
numerical rules may be the first step.

9.1. Conclusion : Summary 145

Chapitre 9

Conclusion

9.1 Summary

In this thesis we have illustrated the great value that rule mining techniques can
bring to knowledge bases (KBs). The contribution of this thesis can be categorized
along two major lines : (1) how to efficiently mine rules on KBs (rule mining), and (2)
how to apply those rules in multiple tasks related to the maintenance of semantic data
(applications).

Rule Mining. Regarding the extraction of rules on KBs, the contributions of this thesis
are as follows :

— We propose a novel way to generate counter-evidence for rule mining based
on the Partial Completeness Assumption (PCA, Section 2.4). Our empirical re-
sults on YAGO, show that the PCA is much more sensible at generating counter-
evidence than the Closed World Assumption (CWA), made by several rule mining
systems [20,46]. Moreover, the definition of confidence based on the PCA identi-
fies predictive rules more accurately than the standard CWA confidence. The PCA
confidence in combination with a simple joint-prediction approach, and the use of
types, can predict hundreds of thousands of facts on YAGO with a precision of up
to 70% (Section 2.7.1).

— We have shown that, in spite of being inherently a hard problem in its general
form, rule mining can be efficiently solved on large KBs. In this regard, we have
proposed AMIE (Section 2.5), a system designed to mine Horn rules on potentially
incomplete KBs operating under the Open World Assumption (OWA). AMIE relies
on a monotonic definition of support, a parallelized implementation, and a set of
heuristics to drive the exploration of the search space in an efficient manner. This
allows the system to mine rules on large KBs with millions of facts in a matter of
minutes.

Applications. We have discussed multiple applications of rule mining in this thesis.

— Wikilinks Semantification. In Chapter 4, we have explained how to use rule mi-
ning to semantify wikilinks in DBpedia. Our simple approach finds semantification
rules, a particular type of Horn rules. Those rules are then used to make predic-
tions about the semantic relations that hold between the endpoints of a wikilink.
With this approach, we are able to semantify 180K wikilinks in DBpedia with high
precision.

— ROSA rules. In Chapter 5, we have presented ROSA rules. These rules express
complex alignments between the schemas of two KBs. Such alignments can be
used to integrate the data from different KBs in the spirit of a unified web of ob-
jects. We have shown how to mine ROSA rules from two instance-aligned KBs.
We have also provided some examples of schema alignments between real-world
KBs.

— Canonicalization of open KBs. We have introduced a method to canonicalize
open KBs, i.e., schema-free KBs with triples extracted from arbitrary text (Chap-
ter 6). This process encompasses two subproblems : clustering of synonym noun
phrases and clustering of verbal phrases (relations). We have performed a syste-
matic study of multiple signals of synonymy for noun phrases in a web-extracted
open KB. Our results show that the IDF tokens overlap constitutes a simple,
yet strong signal of synonym for noun phrases. This signal can still be combi-
ned appropiately with other signals via machine learning methods and clustering
techniques for detection of synonyms in web extractions. The clustering of verbal
phrases, on the other hand, can be accurately solved via rule mining techniques,
given a canonicalization of the noun phrases.

— Prediction of Completeness. In Chapter 7, we have conducted a systematic study
of a set of signals for completeness in KBs. These signals span from simple heu-
ristics, such as the Partial Completeness Assumption, to more complex oracles
based on rule mining techniques and inference. We have illustrated how to obtain
completeness annotations from crowd-workers. We have also described how to
learn rules from those annotations. The obtained rules can predict completeness
assertions for entities in the domains of a set of relations in YAGO and Wikidata,
with very high precision in some cases. We have made use of predicted complete-
ness assertions to improve the precision of a fact inference task. In this scenario,
the completeness statements play the role of counter-evidence that allow us to
discard spurious predictions and achieve 100% on a sample of 1000 predictions,
drawn from a population of 1M facts.

9.2 Outlook

We now provide an outlook of potential avenues of research in the field of rule mining
in knowledge bases. As we did for Section 9.1, we frame our outlook within the lines of
rule mining per se and its potential use cases.

Rule Mining. AMIE mines Horn rules in the language of closed rules Lclosed (Sec-
tion 2.3.1). While we have justified the choice Lclosed for the purposes of prediction and
tractability, this language may be too restrictive for some applications. For example, our
work on completeness in KBs (Chapter 7) required us to relax the AMIE language bias
to allow for existentially quantified variables in the body of rules. Besides, our vision on
numerical rule mining in Chapter 8 illustrates the value that numerical rules could bring
to rule mining and KBs.

To address such a limitation, we envision to develop a framework for general rule
mining inspired by the AMIE algorithm. We believe this is feasible since AMIE mines
rules in a top-down, still fairly generic fashion. In this spirit, users could customize the
AMIE framework by defining, among other things, (a) their own mining operators, (b)
their own metrics to gauge quality, and (c) their own data sources. Requirement (a)
would allow users to mine non-closed Horn rules, rules with numerical constraints, or
even patterns outside the language of Horn rules. Requirement (c) would let users
exploit other scalable data storage solutions. In [20], the authors use Apache Spark
to store the KB and compute the scores for rules. This design decision allows their
approach to scale to datasets that are even larger than those discussed in this work.

Numerical Rule Mining. We could extend our vision on numerical rule mining to accept
expressions on strings, like in the rules :

⇒ label(x) ∶= firstName(x) + lastName(x)

type(x,Country) ⇒ alpha3Code(x) ∶= label(x)[1,3]

Applications. In the following we discuss challenges and potential future work in the
context of the applications we have studied in this thesis.

— ROSA rules and schema alignment. In Chapter 5 we proposed a method to mine
schema mappings from a KB K1 to a KB K2 on a coalesced KB K. The coalescing
step depends on the existing instance alignments. In this line, the study of different
coalescing strategies is a potential research direction. In addition, the problem
of discriminating between soft constraints and crisp schema mappings for some
types of ROSA rules remains a challenge in this context.

— Joint prediction. In Section 2.7 we have proposed a fairly simple method for joint
prediction of facts. Our approach assigns predictions a score that depends on
all the rules that entail the prediction. The strategy makes the strong assumption
that rules are independent events. In general, however, this is not case. Thus, an
interesting direction for future work is the design of joint prediction mechanisms
that take into account the correlations between rules in a KB. Furthermore, in
order to improve the recall of fact inference, we envision an iterative approach
that deduces new facts and uses them as evidence to mine new rules. Desi-
rable properties of such an approach are determinism and convergence, which
are challenging for two reasons. First, rules can make contradictory predictions,

which due to the OWA, cannot be trivially spotted. Second, since fact inference is
not perfect, the evidence provided by those predictions should not have the same
weight as the evidence contained originally in the KB. This natural requirement
poses tractability challenges, if we confer weights a probabilistic meaning. Such
interpretation would require us to redefine our queries and metrics (support and
confidence) to operate in a setting where facts have also a confidence or proba-
bility of being correct.

— Completeness as counter-evidence for Rule Mining. In Section 7.7, we applied
predicted completeness assertions to generate explicit counter-evidence for an
inference approach. These counter-examples allowed us to discard spurious pre-
dictions and to improve the precision of fact inference. While this could also help
us for the vision of joint prediction we just discussed, it could also provide counter-
evidence for the rule mining itself. In this line of thinking, for example, a new de-
finition of confidence could use as counter-examples those predictions that are
believed to be wrong by a completeness oracle, and the PCA otherwise.

— Canonicalization of open KBs. We have studied the canonicalization of open KBs
as a two-dimensional problem in Chapter 6, where we solve the canonicalization
of noun phrases first and use it to canonicalize the verbal phrases. We envision
an iterative approach, in which the clustering of verbal phrases can also help
improve the clustering of noun phrases. Moreover, we could also use rule mining
and inference to deduce new facts for open KBs. This, in combination with schema
alignment techniques could serve the task of populating existing KBs.

The rise of large machine-readable KBs has given computers the power to handle
the contents of the web in a deeper and more insightful way. KBs provide a model of the
real-world that allow computer programs to reason about the available knowledge. For
example, KBs have changed the way we ask search engines. Thanks to the available
semantic data, search engines have departed from the traditional bag-of-words query
model to a more semantic concept-centric model. This allows search engines to deliver
accurate answers to queries about e.g., artists we like or places we want to visit.

With this thesis, we have a made a step forward towards an even more semantic
web, by making sense out of the existing semantic information. Rule Mining finds trends
and insights in data. Such insights are powerful tools that can make computers more
proactive and “smarter”. Rules allow computer programs to reason and predict factual
information, to describe the rules that govern a given domain of knowledge (taking the
role of human experts), and in a broader sense, to maintain the quality of the knowledge
that is available to us. We have shown the great value that rule mining techniques can
bring to the field of knowledge management and, we hope this will motivate further
research in this direction. We believe that study of more expressive rule languages and
the develop of more scalable methods for rule mining will be an important factor in the
realization of the Semantic Web.

Bibliography 149

Bibliographie

[1] Z. Abedjan, J. Lorey, and F. Naumann. Reconciling ontologies and the web of
data. In CIKM, 2012.

[2] Ziawasch Abedjan and Felix Naumann. Synonym analysis for predicate expan-
sion. In ESWC, 0 2013.

[3] Hilde Adé, Luc Raedt, and Maurice Bruynooghe. Declarative bias for specific-to-
general ilp systems. Machine Learning, 20, 1995.

[4] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets
of items in large databases. In SIGMOD, 1993.

[5] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Advances in knowledge
discovery and data mining, 1996.

[6] Martin Theobald André Melo and Johanna Völker. Correlation-based refinement
of rules with numerical attributes. In FLAIRS, 2014.

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. DBpedia : A nucleus for a Web of open data. In ISWC,
2007.

[8] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema
and ontology matching with coma++. In SIGMOD, 2005.

[9] Amit Bagga and Breck Baldwin. Entity-based cross-document coreferencing
using the vector space model. In COLING, 1998.

[10] Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and
Oren Etzioni. Open information extraction from the web. In IJCAI, 2007.

[11] Roberto J. Bayardo. Mining the most interesting rules. pages 145–154, 1999.

[12] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5) :28–37, 2001.

[13] Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. Linda :
distributed web-of-data-scale entity matching. In CIKM, 2012.

[14] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. Translating embeddings for modeling multi-relational data. In
NIPS, 2013.

[15] Sergey Brin, Rajeev Rastogi, and Kyuseok Shim. Mining optimized gain rules for
numeric attributes. In SIGKDD, 1999.

[16] Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval estimation for
a binomial proportion. Statistical Science, 2001.

[17] Andrea Calì, Thomas Lukasiewicz, Livia Predoiu, and Heiner Stuckenschmidt.
Rule-based approaches for representing probabilistic ontology mappings. In
URSW (LNCS Vol.), 2008.

[18] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hru-
schka Jr., and Tom M. Mitchell. Toward an architecture for never-ending language
learning. In AAAI, 2010.

[19] Craig Chasseur and Jignesh M. Patel. Design and evaluation of storage organi-
zations for read-optimized main memory databases. Proc. VLDB Endow., 6(13),
August 2013.

[20] Yang Chen, Sean Goldberg, Daisy Zhe Wang, and Soumitra Siddharth Johri. On-
tological pathfinding : Mining first-order knowledge from large knowledge bases.
In Proceedings of the 2016 ACM SIGMOD international conference on Manage-
ment of data. ACM, 2016.

[21] Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent Subtree
Mining - An Overview. Fundam. Inf., 66(1-2), 2004.

[22] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Comparing Conceptual, Di-
visive and Agglomerative Clustering for Learning Taxonomies from Text. In ECAI,
2004.

[23] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker :
Efficient matching for large real-world schemas and ontologies. PVLDB, 2(2),
2009.

[24] Claudia d’Amato, Volha Bryl, and Luciano Serafini. Data-driven logical reasoning.
In URSW, 2012.

[25] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. Inductive learning for the
Semantic Web : What does it buy ? Semant. web, 1(1,2), April 2010.

[26] F. Darari, S. Razniewski, R. Prasojo, and W. Nutt. Enabling fine-grained RDF data
completeness assessment. In ICWE, 2016.

[27] Jérôme David, Fabrice Guillet, and Henri Briand. Association Rule Ontology Mat-
ching Approach. Int. J. Semantic Web Inf. Syst., 3(2), 2007.

[28] Luc Dehaspe and Hannu Toironen. Discovery of relational association rules. In
Relational Data Mining. Springer-Verlag New York, Inc., 2000.

[29] Luc Dehaspe and Hannu Toivonen. Discovery of frequent DATALOG patterns.
Data Min. Knowl. Discov., 3(1), March 1999.

[30] Luciano Del Corro and Rainer Gemulla. Clausie : clause-based open information
extraction. In WWW, 2013.

[31] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domin-
gos. imap : Discovering complex semantic matches between database schemas.
In Proceedings of the 2004 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’04, pages 383–394, New York, NY, USA, 2004. ACM.

[32] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault : A web-scale approach to probabilistic
knowledge fusion. In KDD, 2014.

[33] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in com-
plex information spaces. In SIGMOD, 2005.

[34] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandecic. Introducing
Wikidata to the linked data web. In ISWC, 2014.

[35] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam. Open Informa-
tion Extraction : the Second Generation. In IJCAI, 2011.

[36] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in
OWL-Lite. In Proc. 16th european conference on artificial intelligence (ECAI),
Proc. 16th european conference on artificial intelligence (ECAI), pages 333–337,
Valencia, Spain, August 2004. IOS press. euzenat2004c.

[37] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information
extraction. In EMNLP, 2011.

[38] N. Fanizzi, C. d’Amato, and F. Esposito. Towards numeric prediction on owl know-
ledge bases through terminological regression trees. In ICSC, 2012.

[39] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.
Mining optimized association rules for numeric attributes. Journal of Computer
and System Sciences, 58(1) :1 – 12, 1999.

[40] Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Subramanya. FACC1 :
Freebase annotation of ClueWeb corpora, version 1, June 2013.

[41] Luis Galárraga. Interactive Rule Mining in Knowledge Bases. In 31ème Confé-
rence sur la Gestion de Données (BDA 2015), Île de Porquerolles, October 2015.
Papier Demo.

[42] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Fast Rule
Mining in Ontological Knowledge Bases with AMIE+. VLDB Journal, November
2015.

[43] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Sucha-
nek. Amie : Association rule mining under incomplete evidence in ontological
knowledge bases. In WWW, 2013.

[44] William A. Gale, Kenneth W. Church, and David Yarowsky. One sense per dis-
course. In Workshop on Speech and Natural Language, 1992.

[45] Alberto García-Durán, Antoine Bordes, and Nicolas Usunier. Effective blending
of two and three-way interactions for modeling multi-relational data. In ECML-
PKDD, 2014.

[46] Bart Goethals and Jan Van den Bussche. Relational Association Rules : Getting
WARMER. In Pattern Detection and Discovery, volume 2447. Springer Berlin /
Heidelberg, 2002.

[47] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On the complexity of
some inductive logic programming problems. In Proceedings of the 7th Interna-
tional Workshop on Inductive Logic Programming, ILP ’97, pages 17–32, London,
UK, UK, 1997. Springer-Verlag.

[48] Paul Grice. Logic and conversation. J. Syntax and semantics, 3, 1975.

[49] Gunnar Aastrand Grimnes, Peter Edwards, and Alun D. Preece. Learning Meta-
descriptions of the FOAF Network. In ISWC, 2004.

[50] B. Hachey, W. Radford, J. Nothman, M. Honnibal, and J. Curran. Evaluating entity
linking with wikipedia. Artificial Intelligence, 194, 2013.

[51] Michael Hartung, Anika Groß, and Erhard Rahm. Conto-diff : generation of com-
plex evolution mappings for life science ontologies. J. of Biomedical Informatics,
46(1), 2013.

[52] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. Springer, 2001.

[53] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL Class
Descriptions on Very Large Knowledge Bases. Int. J. Semantic Web Inf. Syst.,
5(2), 2009.

[54] Johannes Hoffart, Yasemin Altun, and Gerhard Weikum. Discovering emerging
entities with ambiguous names. In WWW, 2014.

[55] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2 : a spatially and temporally enhanced knowledge base from Wikipedia.
Artificial Intelligence Journal, 2013.

[56] Yi Huang, Volker Tresp, Markus Bundschus, Achim Rettinger, and Hans-Peter
Kriegel. Multivariate prediction for learning on the semantic web. In ILP, 2011.

[57] Prateek Jain, Pascal Hitzler, Amit P. Sheth, Kunal Verma, and Peter Z. Yeh. On-
tology alignment for linked open data. In ISWC, 2010.

[58] Joanna Jozefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. The role
of semantics in mining frequent patterns from knowledge bases in description
logics with rules. Theory Pract. Log. Program., 10(3), 2010.

[59] Aram Karalič and Ivan Bratko. First order regression. Machine Learning, 26(2-
3) :147–176, 1997.

[60] Stefan Kramer. Structural regression trees. In AAAI, 1996.

[61] Jayant Krishnamurthy and Tom M. Mitchell. Which noun phrases denote which
concepts ? In HLT, 2011.

[62] Michihiro Kuramochi and George Karypis. Frequent Subgraph Discovery. In
ICDM. IEEE Computer Society, 2001.

[63] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and Z. Ghahra-
mani. Sigma : Simple greedy matching for aligning large knowledge bases. In
KDD, 2013.

[64] Dustin Lange, Christoph Böhm, and Felix Naumann. Extracting structured infor-
mation from wikipedia articles to populate infoboxes. In CIKM, 2010.

[65] Ni Lao, Tom Mitchell, and William W. Cohen. Random walk inference and learning
in a large scale knowledge base. In EMNLP, 2011.

[66] N. Lavrac and S. Dzeroski. Inductive logic programming. In WLP, 1994.

[67] Jens Lehmann. DL-Learner : Learning Concepts in Description Logics. Journal
of Machine Learning Research (JMLR), 10, 2009.

[68] A. Y. Levy. Obtaining complete answers from incomplete databases. In VLDB,
1996.

[69] Thomas Lin, Mausam, and Oren Etzioni. Entity linking at web scale. In AKBC-
WEKEX, 2012.

[70] Francesca A. Lisi. Building rules on top of ontologies for the semantic web with
inductive logic programming. TPLP, 8(3), 2008.

[71] http ://linkeddata.org/.

[72] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema mat-
ching with cupid. In VLDB, 2001.

[73] Alexander Maedche and Valentin Zacharias. Clustering Ontology-Based Meta-
data in the Semantic Web. In PKDD, 2002.

[74] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. Yago3 : A know-
ledge base from multilingual wikipedias. In CIDR, 2015.

[75] T Mamer, CH Bryant, and JM McCall. L-modified ilp evaluation functions for
positive-only biological grammar learning. In F Zelezny and N Lavrac, editors,
Inductive logic programming, number 5194 in LNAI. Springer-Verlag, 2008.

[76] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval, chapter Hierarchical Clustering. Cambridge University
Press, 2008.

[77] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval, chapter Scoring, term weighting and the vector space
model. Cambridge University Press, 2008.

[78] Cynthia Matuszek, John Cabral, Michael Witbrock, and John Deoliveira. An in-
troduction to the syntax and content of Cyc. In AAAI Spring Symposium, 2006.

[79] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD, 2000.

[80] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder. An Envi-
ronment for Merging and Testing Large Ontologies. In KR, 2000.

[81] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda
Zhang. Discovering meta-paths in large heterogeneous information networks. In
WWW, 2015.

[82] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. Schema mapping
as query discovery. In VLDB, 2000.

[83] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek. Distant supervision for
relation extraction with an incomplete knowledge base. In NAACL, 2013.

[84] Bonan Min, Shuming Shi, Ralph Grishman, and Chin Y. Lin. Ensemble semantics
for large-scale unsupervised relation extraction. In EMNLP-CoNLL, 2012.

[85] A. Motro. Integrity = Validity + Completeness. TODS, 1989.

[86] Stephen Muggleton. Inverse entailment and progol. New Generation Comput.,
13(3&4), 1995.

[87] Stephen Muggleton. Learning from positive data. In ILP, 1997.

[88] Ndapandula Nakashole, Mauro Sozio, Fabian Suchanek, and Martin Theobald.
Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules.
In Workshop on Very Large Data Search (VLDS) at VLDB, 2012.

[89] Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. Patty : A taxo-
nomy of relational patterns with semantic types. In EMNLP, 2012.

[90] Victoria Nebot and Rafael Berlanga. Finding association rules in semantic web
data. Knowl.-Based Syst., 25(1), 2012.

[91] Thomas Neumann and Gerhard Weikum. RDF-3X : a RISC-style engine for RDF.
Proc. VLDB Endow., 1(1), August 2008.

[92] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In ICML, 2011.

[93] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago : sca-
lable machine learning for linked data. In WWW, 2012.

[94] Natalya Fridman Noy and Mark A. Musen. PROMPT : Algorithm and Tool for
Automated Ontology Merging and Alignment. In AAAI/IAAI. AAAI Press, 2000.

[95] Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti, and Paolo Cian-
carini. Type inference through the analysis of wikipedia links. In LDOW, 2012.

[96] AndreaGiovanni Nuzzolese, Aldo Gangemi, Valentina Presutti, and Paolo Cian-
carini. Encyclopedic knowledge patterns from wikipedia links. In ISWC. 2011.

[97] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser.
Efficient entity resolution for large heterogeneous information spaces. In WSDM,
2011.

[98] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identi-
fication. In ISWC, 2013.

[99] R. Rastogi and K. Shim. Mining optimized association rules with categorical and
numeric attributes. IEEE Trans. on Knowl. and Data Eng., 14(1) :29–50, January
2002.

[100] L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms
for disambiguation to wikipedia. In NAACL, 2011.

[101] S. Razniewski, F. Korn, W. Nutt, and D. Srivastava. Identifying the extent of
completeness of query answers over partially complete databases. In SIGMOD,
2015.

[102] S. Razniewski, F. M. Suchanek, and W. Nutt. But what do we actually know ?
AKBC, 2016.

[103] W3C Recommendation. RDF Schema 1.1, 2014.

[104] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
Learning, 62(1-2), 2006.

[105] Alan Ritter and Oren Etzioni. A latent dirichlet allocation method for selectional
preferences. In ACL, 2010.

[106] Jacobo Rouces, Gerard de Melo, and Katja Hose. Complex schema mapping
and linking data : Beyond binary predicates. In Proceedings of the WWW 2016
Workshop on Linked Data on the Web (LDOW 2016), 2016.

[107] Ansaf Salleb-aouissi, Christel Vrain, and Cyril Nortet. Quantminer : A genetic
algorithm for mining quantitative association rules. In IJCAI, pages 1035–1040,
2007.

[108] Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, et al. Open
language learning for information extraction. In EMNLP-CoNLL, 2012.

[109] Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis. Learning
first-order Horn clauses from web text. In EMNLP, 2010.

[110] Len Seligman, Peter Mork, Alon Y. Halevy, Kenneth P. Smith, Michael J. Carey,
Kuang Chen, Chris Wolf, Jayant Madhavan, Akshay Kannan, and Doug Burdick.
Openii : an open source information integration toolkit. In SIGMOD, 2010.

[111] Pavel Shvaiko and Jérôme Euzenat. A Survey of Schema-Based Matching Ap-
proaches, pages 146–171. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[112] Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix
factorization. In KDD, 2008.

[113] Ashwin Srinivasan. The aleph manual, 2001.

[114] F. M. Suchanek, D. Gross-Amblard, and S. Abiteboul. Watermarking for Ontolo-
gies. In ISWC, 2011.

[115] Fabian Suchanek and Nicoleta Preda. Semantic culturomics (vision paper). In
VLDB, 2014.

[116] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS : Probabilistic
Alignment of Relations, Instances, and Schema. PVLDB, 5(3), 2011.

[117] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO : A core of
semantic knowledge. In WWW, 2007.

[118] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago : A Core of
Semantic Knowledge. In WWW, 2007.

[119] Christos Tatsiopoulos and Basilis Boutsinas. Ontology mapping based on asso-
ciation rule mining. In ICEIS (3), 2009.

[120] Metaweb Technologies. The freebase project. http://freebase.com.

[121] Octavian Udrea, Lise Getoor, and Renée J. Miller. Leveraging data and structure
in ontology integration. In SIGMOD, 2007.

[122] Ryuhei Uehara. The number of connected components in graphs and its appli-
cations, 1999.

[123] Johanna Völker and Mathias Niepert. Statistical schema induction. In ESWC,
2011.

[124] D. Vrandečić and M. Krötzsch. Wikidata : a free collaborative knowledgebase.
Communications of the ACM, 2014.

[125] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In AAAI, 2014.

[126] Michael Wick, Sameer Singh, and Andrew McCallum. A discriminative hierarchi-
cal model for fast coreference at large scale. In ACL, 2012.

[127] William E. Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In Section on Survey Research, 1990.

[128] Word Wide Web Consortium. RDF Primer (W3C Recommendation 2004-02-10).
http://www.w3.org/TR/rdf-primer/, 2004.

[129] Fei Wu and Daniel S. Weld. Autonomously semantifying wikipedia. In CIKM,
2007.

[130] Fei Wu and Daniel S Weld. Open information extraction using wikipedia. In ACL,
2010.

[131] Alexander Yates and Oren Etzioni. Unsupervised methods for determining object
and relation synonyms on the web. J. Artif. Int. Res., 34(1), March 2009.

[132] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer. Quality
assessment for linked data : A survey. Semantic Web Journal, 2015.

[133] Qiang Zeng, Jignesh Patel, and David Page. QuickFOIL : Scalable Inductive
Logic Programming. In VLDB, 2014.

http://freebase.com
http://www.w3.org/TR/rdf-primer/

Bibliography 157

Appendices

A.1. Résumé en français : Introduction 159

Annexe A

Résumé en français

A.1 Introduction

Depuis la conception du Web Sémantique en 2001, les bases de connaissances
sont devenues de plus en plus incontournables. Des initiatives telles que DBpedia [7],
YAGO [117], NELL [18], Cyc [78], Wikidata [124], et Knowledge Vault [32] ont toutes
pour objectif de construire et d’entretenir des collections volumineuses de données sur
le monde réel. Ces données consistent en des ensembles de faits tels que “Londres
est la capitale du Royaume-Uni”, ou encore “Tous les politiciens sont des personnes”.
Ces faits sont normalement stockés dans des formats lisibles par des machines. De
telles bases de connaissances trouvent donc naturellement de nombreuses applica-
tions, notamment dans la recherche d’information, le traitement de requêtes, ainsi que
le raisonnement automatique. Par exemple, confrontés avec une requête sur le lieu
de naissance de Barack Obama, tous les moteurs de recherche de nos jours sont ca-
pables de comprendre que la chaîne de caractères “Barack Obama” fait référence à
une personne et que l’utilisateur pose une question sur un attribut de cette personne.
Les bases de connaissances actuelles ont été construites á partir de méthodes au-
tomatiques et semi-automatiques d’extraction d’information. Ces méthodes varient de
techniques d’extraction d’information (IE) aux techniques d’apprentissage automatique
(Machine Learning) en passant par les mécanismes de crowd-sourcing.

Ces dernières années, les bases de connaissances sont devenues suffisamment
volumineuses pour rendre possible l’extraction d’informations intelligibles. Il est ainsi
devenu possible de découvrir des motifs intéressants et fréquents dans les données.
Par exemple, nous pouvons trouver la règle ci-dessous :

livesIn(x, z) ∧ marriedTo(x, y) ⇒ livesIn(y, z)

Cette règle dit que si deux personnes sont mariées, elles résident dans la même
ville. De telles règles font parfois de fausses prédictions. C’est pourquoi on leur assigne
normalement un score de confiance, qui mesure la taux de cas dans lesquels les règles
se trompent. Dans notre exemple, la règle fait des erreurs chez les couples qui habitent
dans des villes différentes.

L’extraction de règles peut donc servir plusieurs objectifs. D’abord, les règles
peuvent être utilisées pour déduire de nouveaux faits, qui peuvent être ajoutés aux
bases de connaissances. Deuxièmement, les règles peuvent aider à identifier des er-
reurs dans les données. Troisièmement, plusieurs méthodes de raisonnement automa-
tique [88, 104] dépendent des règles, normalement fournies par des experts. Finale-
ment, les règles nous permettent de mieux comprendre les données. Par exemple, on
peut constater que le mariage est une relation symétrique, ou que les musiciens sont
souvent influencés par d’autres musiciens, qui jouent des mêmes instruments.

Tout cela montre que l’extraction de règles dans des bases de connaissances porte
une grande valeur pour des tâches telles que l’analyse, la prédiction et la maintenance
de données.

A.2 Contribution

Cette thèse présente deux contributions principales. D’une part, elle présente une
méthode pour extraire des règles “intéressantes” à partir d’une base de connaissances.
Ces règles doivent (1) être supportées par les données (être statistiquement significa-
tives), et (2) faire des conclusions correctes. D’autre part, cette thèse montre comme
appliquer telles règles dans plusieurs tâches orientées données. Nous étudions ainsi
des applications sur la prédiction de faits, l’intégration de données et la prédiction de
complétude. La structure de la thèse est détaillée ci-dessous :

1. Préliminaires

2. Extraction de règles

3. Accélérer l’extraction de règles

4. Semantification de wikilinks

5. Alignement de schémas

6. Mise en forme canonique de bases de connaissances ouvertes

7. Prédiction de complétude

8. Extraction de règles numériques

9. Conclusion

A.3 Préliminaires

A.3.1 Bases de connaissances RDF

Une base de connaissances K est un ensemble de faits lisibles par une machine.
Nous nous intéressons aux bases de connaissances RDF (Resource Description Fra-
mework) [128]. Dans ce format, un fait est un triplé ⟨sujet, relation, objet⟩, tel que ⟨UK,
hasCapital, London⟩ ou ⟨Barack, type, Politician⟩. Les bases de connaissances RDF
possèdent aussi un schéma qui définit les relations et la hiérarchie de classes. Par

exemple, le triplé ⟨Politicien, rdfs :subClassOf, Person⟩ dit que tous les politiciens sont
aussi des personnes. Dans cette thèse nous utilisons le format Datalog ; le triplé ⟨x, r,
y⟩ devient r(x, y). Nous écrivons r(x, y) pour dire r(x, y) ∈ K.

A.3.2 Hypothèses du monde clos et du monde ouvert

L’hypothèse du monde clos est une supposition selon laquelle tous les faits qui
ne sont pas connus par une base de connaissances sont faux ; ainsi elle présume
que la base de connaissances est complète par rapport au monde réel. En revanche
l’hypothèse du monde ouvert ne fait pas cette supposition et suppose que les faits
absents sont seulement inconnus. Les base de connaissances qui sont étudiées dans
cette thèse utilisent l’hypothèse du monde ouvert.

A.3.3 Clauses de Horn (Règles)

Un atome est un fait qui peut contenir des variables dans le sujet ou l’objet.
Quelques exemples sont livesIn(x,USA) or isCitizenOf (x, y). Une règle B ⇒ H est
un clause de Horn. Elle consiste en un antécédent et une conséquence. L’antécédent
est une conjonction logique de plusieurs atomes B ∶= B1 ∧ ...∧Bn, tandis que la consé-
quence consiste en un seul atome H. Un exemple de règle est celle qui traduit le fait
que des couples mariés habitent dans la même ville :

livesIn(x, y) ∧ isMarriedTo(x, z) ⇒ livesIn(z, y)

Une instanciation σ est une fonction qui associe à chaque variable une constante.
L’application d’une instanciation σ à un atome B produit un nouvel atome σ(B), dont les
variables ont été remplacées par les constantes correspondantes dans l’instanciation
σ. Cette définition est facilement extensible aux conjonctions d’atomes et aux règles de
la forme B ⇒ H. Nous disons qu’un fait r(x, y) est une prédiction d’une règle B ⇒ H
dans une base de connaissances K, si ∃ σ ∶ ∀Bi ∈ B ∶ σ(H) = r(x, y) ∧ σ(Bi) ∈ K.
Prenons par exemple une base de connaissances contenant les faits livesIn(Barack,
Washington) et isMarriedTo(Barack ,Michelle) et la règle ci-dessus. Dans ce cas, le
fait livesIn(Michelle,Washington) est une prédiction de la règle sous l’instanciation σ ∶=
{x→ Barack , y →Washington, z →Michelle}.

Deux atomes sont connectés dans une règle s’ils partagent un argument (variable
ou constante). Une règle est connectée si tous ses atomes sont transitivement connec-
tés les uns aux autres. Une variable est fermée si elle apparaît au moins dans deux
atomes. Une règle est fermée si toutes ses variables sont fermées. Nous nous in-
téressons aux règles fermées, car elles nous permettent de faire des conclusions
concrètes, plutôt que de prédire la simple existence de faits comme dans la règle
diedIn(x, y) ⇒ wasBornIn(x, z).

A.4 Extraction de règles

A.4.1 Introduction

Objectif. L’objectif de ce chapitre est d’extraire des règles d’association dans des bases
de connaissances de grandes tailles et potentiellement incomplètes. Par ailleurs, nous
nous intéressons aux règles qui prédisent correctement de nouvelles connaissances.

Défis. L’extraction de règles dans les bases de connaissances reste encore un défi
pour deux raisons. En premier lieu, les techniques traditionnelles d’induction d’hypo-
thèses 1 ont besoin de contre-exemples sous la forme de faits négatifs. Or les bases de
connaissances RDF ne disposent que d’affirmations. Le modèle de données RDF ne
permet pas de représenter, par exemple, le fait que Barack Obama n’est pas citoyen
français. À cause de l’hypothèse du monde ouvert, les faits qui ne sont pas connus par
la base de connaissances ne peuvent pas servir comme contre-évidence non plus.

En deuxième lieu, la taille des bases de connaissances courantes rend l’extrac-
tion de règles plus difficile. En 2016 la dernière version de YAGO [117] consiste en
120 millions de faits sur 10 millions d’entités. En outre le Knowledge Vault (la base
de connaissances de Google) contient 1,6 milliards de faits avec plus de 4000 rela-
tions. Comme le problème d’induire une hypothèse à partir de données est infaisable
(NPNP -complète [47]), il est impossible de résoudre ce problème pour de tels volumes
de données.

Nous présentons une solution à ces problèmes dans ce chapitre.

A.4.2 Mesures de Significativité

Tous les systèmes d’extraction de règles définissent des mesures de significativé
pour les règles. Ces mesures ont pour objectif de quantifier l’évidence d’une règle
dans les données. Une règle avec une faible évidence n’est pas utile pour faire des
conclusions. Ci-dessous nous décrivons deux mesures de signifiance : le support et la
couverture.

Support. Le support compte le nombre de prédictions de la règle, qui sont connues
– et donc correctes – par la base de connaissances. Nous calculons le support d’une
règle B ⇒H avec la formule suivante :

supp(B ⇒H) ∶= #(vars(H)) ∶ ∃z1, ..., zm ∶B ∧H

Dans cette formule vars(H) représente l’ensemble de variables présentes dans la
conséquence H et {z1, ..., zm} = vars(B) − vars(H). Notre définition de support est
monotone, donc l’addition d’atomes à une règle ne peut jamais augmenter son sup-
port.

1. Étudiées dans le domaine de Inductive Logic Programming (ILP)

Couverture. La couverture mesure la proportion de prédictions correctes d’une règle
par rapport à la taille de la relation dans la conséquence. La couverture est calculée à
partir de la formule suivante :

hc(B ⇒H) ∶= supp(B ⇒H)
size(r)

où size(r) ∶= #(x′, y′) ∶ r(x′, y′) dénote le nombre de faits de la relation r.

A.4.3 Mesures de confiance

Les mesures de significativé quantifient le nombre de prédictions vérifiables d’une
règle dans la base de connaissances. Elles ne prennent pas en compte les prédictions
fausses. Comme les bases de connaissances ne stockent pas de faits négatifs, toutes
les mesures de confiance doivent présumer de la contre-évidence de certaines règles.
Dans cette section, nous discutons de deux mesures de confiance : la confiance stan-
dard, et la confiance sous la présomption de complétude partielle.

Confiance Standard. La confiance standard est la proportion de prédictions d’une
règle, qui sont dans la base de connaissances. Elle est calculée à partir de la formule
suivante :

conf (B ⇒H) ∶= supp(B ⇒H)
#(vars(H)) ∶ ∃z1, ..., zm ∶B (A.1)

La confiance standard est la mesure transitionnelle utilisée par les systèmes d’ex-
traction de règles d’association. Elle s’appuie sur l’hypothèse du monde clos, donc elle
n’est pas adéquate pour les bases de connaissances que nous étudions dans cette
thèse. Nous proposons une mesure plus appropriée pour des scénarios qui opèrent
sous l’hypothèse du monde ouvert.

A.4.4 La Présomption de Complétude Partielle

Nous proposons de tenir pour acquis des contre-exemples sous la Présomption de
Complétude Partielle ou PCA 2. La PCA est la supposition que

r(x, y) ∈ K ⇒ ∀ y′ ∶ r(x, y′) ∉ K ∶ r(x, y′) is false

C’est-à-dire, si la base de connaissances connaît au moins un objet y pour une entité
x et une relation r, elle connaît tous les objets y qui sont vrais dans le monde réel.
Cette présomption implique des contre-exemples de façon moins restrictive que ne le
permet la confiance standard. Si la base de connaissances ne contient aucun lieu de
naissance pour une personne, la confiance standard assume que la personne n’a pas
un lieu de naissance. Par contre, la PCA ne fait aucune supposition dans ce cas, donc

2. Abréviation de Partial Completeness Assumption

elle accepte que certains faits puissent être inconnus. Cette notion nous permet de
définir une nouvelle mesure de confiance, que nous appelons la confiance PCA :

confpca(B ⇒ r(x, y)) ∶= supp(B ⇒H)
#(vars(H)) ∶ ∃z1, ..., zm, y′ ∶B ∧ r(x, y′) (A.2)

A.4.5 AMIE

Dans cette section nous décrivons AMIE, notre système d’extraction de règles pour
les bases de connaissances.

Algorithme. L’algorithme 6 décrit notre approche d’extraction de règles. L’algorithme
prend en entrée une base de connaissances K, un seuil maximal l pour le nombre
d’atomes, un seuil minimal de couverture et un seuil minimal de confiance. Nous dé-
taillons la sélection des valeurs pour ces arguments plus tard dans cette section.

L’algorithme commence avec l’initialisation d’une file d’attente (ligne 1) avec toutes
les règles de taille 1 – de la forme ⇒ r(x, y), avec un antécédent vide. Ensuite l’al-
gorithme opère de façon itérative en retirant une règle à chaque itération. Si la règle
remplit certains critères (ligne 5), elle est délivrée. Si la règle n’excède pas la longueur
maximale l (ligne 7), elle est spécialisée. La spécialisation produit de nouvelles règles
dérivées à partir d’une règle mère. Si une règle dérivée n’est pas le doublon d’une autre
règle et qu’elle dépasse le seuil de couverture donné (ligne 10), elle est ajoutée dans
la file. L’algorithme termine lorsque la file d’attente est vide.

Algorithm 6: AMIE
Input: a KB : K, longueur maximale : l, seuil de couverture : minHC , seuil de

confiance : minConf
Output: ensemble de clause de Horn : rules

1 q = [r1(x, y), r2(x, y) . . . rm(x, y)]
2 rules = ⟨⟩
3 while ¬q.isEmpty() do
4 r = q.dequeue()
5 if AcceptedForOutput(r,out ,minConf) then
6 rules.add(r)
7 if length(r) < l then
8 R(r) = Refine(r)
9 for each rule rc ∈ R(r) do

10 if hc(rc) ≥minHC ∧ rc ∉ q then
11 q.enqueue(rc)

12 return rules

Spécialisation. AMIE explore l’espace de recherche en dérivant de nouvelles règles à
partir de règles plus simples. Cela est accompli à travers l’application d’un ensemble
d’opérateurs aux règles. Ces opérateurs sont décrits ci-dessous :

1. Add Dangling Atom (OD) produit de nouvelles règles en ajoutant un nouvel
atome à l’antécédent de la règle prise en entrée. Le nouvel atome partage une
variable avec la règle et introduit une nouvelle variable (la variable “dangling”).

2. Add Instantiated Atom (OI) ajoute un nouvel atome instancié à l’antécédent de
la règle prise en entrée. L’atome partage une variable avec la règle et a une valeur
constante pour l’autre argument.

3. Add Closing Atom (OC) ferme une règle en ajoutant un atome dont les variables
existent dans la règle.

À travers l’application itérative de cet ensemble d’opérateurs, AMIE explore l’espace de
recherche et rapporte toutes les règles fermées en ayant au plus l atomes qui excèdent
le seuil de support et confiance.

Critères de sortie. La ligne 5 de l’algorithme 6 décide si une règle est délivrée dans la
sortie. Les critères pour accepter une règle incluent :

1. Être fermée (Section A.3.3)

2. Excéder le seuil de confiance minConf .

3. Avoir une confiance supérieure à celle de toutes ses mères. Les mères sont
toutes les règles déjà délivrées, telles que l’application d’un des opérateurs pro-
duit la règle originelle. La raison de cette condition est d’éviter des règles redon-
dantes.

Paramètres. L’algorithme 6 est infaisable pour des bases de connaissances volumi-
neuses à cause de la taille de l’espace de recherche. Par exemple l’opérateur OI pro-
duit un nombre d’atomes de l’ordre de ∣R∣ × ∣E ∪ L∣. Pour cette raison, AMIE définit des
paramètres qui réduisent l’espace de recherche, à savoir le seuil de couverture minHC
et la longueur maximale l. Par défaut AMIE désactive l’opérateur OI et utilise un seuil
de couverture de 1% (minHC = 0.01) et une longueur maximale de 3 atomes (l = 3).
Ceci étant dit l’utilisateur peut changer ces paramètres comme il l’entend.

Autres détails d’implémentation. AMIE s’appuie sur une base de données en mé-
moire pour stocker la base de connaissances. Cette base de données est optimisée
pour les types de requêtes requises par les opérateurs susmentionnés et aussi pour
le calcul de la confiance de règles. En outre, AMIE exécute Algorithme 6 en paral-
lèle, donc l’accès à la file d’attente est synchronisé de telle sorte que plusieurs règles
puissent être traitées en même temps.

Constantes WARMR AMIE

non 18h 6.02s
oui (48h) 1.43min

TABLE A.1 – Temps d’exécution d’AMIE et WARMR sur une échantillon de YAGO2.
Pour AMIE “Constantes” implique l’activation du opérateur d’instanciation.

A.4.6 Expérimentation

Dans cette section nous évaluons notre système AMIE par rapport à son perfor-
mance d’exécution et la qualité de la sortie. Pour l’évaluation du temps d’exécution nous
avons comparé AMIE avec deux systèmes d’extraction de règles dans l’état de l’art, à
savoir WARMR [28,29] et ALEPH [113]. Pour évaluer la qualité de la sortie, nous avons
mesuré la pertinence de la confiance PCA en identifiant des règles de bonne qualité. La
qualité d’une règle est définie par la précision de ses prédictions. Nous avons comparé
la confiance PCA avec la confiance standard et la fonction “Positives-only” proposé par
les auteurs d’ALEPH.

Contexte expérimental. Nos expériences ont été effectuées dans un serveur avec
48GB RAM, 8 CPUs physiques (Intel Xeon at 2.4GHz, 32 fils d’exécution) et en utilisant
Fedora 21 comme système d’exploitation. Sauf indication contraire, nous avons testé
AMIE avec sa configuration par défaut.

Données. Pour la plupart de nos expériences nous avons testé AMIE sur un jeu de
données construit à partir de YAGO2, consistant de 948 mille faits sur 470 mille entités
et avec 32 relations. Comme nos concurrents ne supportent pas tel volume de données,
nous avons construit un échantillon de YAGO, qui contient 47 mille faits sur 14 mille
entités. Nous avons aussi testé AMIE sur une partie de DBpedia ayant 13,7 millions de
faits, 1,4M relations entités et 1595 relations.

AMIE vs. WARMR. WARMR [28,29] est un système d’extraction de règles implémenté
en Prolog. Contrairement à AMIE, WARMR opère sous l’hypothèse du monde clos,
donc il utilise la confiance standard pour évaluer la qualité des règles. De plus, WARMR
exige à l’utilisateur de mettre un “language bias”, qui consiste dans un ensemble de
configurations qui détermine le types de règles a rapporter. En revanche, AMIE n’a pas
besoin d’un tel paramètre.

La table A.1 montre les résultats de la comparaison du temps d’exécution entre
AMIE et WARMR sur notre échantillon de YAGO2. Pour obtenir une comparaison juste,
nous avons adapté AMIE de sorte qu’elle simule la notion de support implémentée
par WARMR. Nous avons utilisé un seuil de support de 5 entités pour les deux sys-
tèmes. Nos résultats montre qu’AMIE est de trois ordres de grandeur plus rapides que
WARMR. Ceci est possible grâce à notre implémentation en parallèle spécialement

Jeu de données ALEPH AMIE

YAGO2 4.96s à > 1 jour 4.41min
YAGO2 (échantillon) 0.05s à > 1 jour 5.65s

TABLE A.2 – Temps d’exécution ALEPH vs. AMIE

adaptée aux bases de connaissances RDF et les types de requêtes requises par notre
algorithme. Au niveau de la sortie, WARMR a trouvé 41 règles tandis que AMIE à rap-
porté 75 règles, qui incluent ceux rapportée par WARMR.

AMIE vs. ALEPH. ALEPH est un système ILP qui offre un ensemble de mesures de
confiance pour évaluer la qualité des règles. Dans nos expériences nous avons uti-
lisé la fonction “Positives-only” [75, 87] car elle n’a pas besoin de contre-évidence de
façon explicite. Cette fonction assume des contre-exemples aléatoirement, donc elle
favorise les règles qui concluent des faits connus par la base de connaissance et qui
ne concluent aucun des contre-exemples. Cette fonction prend aussi en compte la lon-
gueur des règles, donc elle préfère des clauses de Horn avec moins d’atomes.

Pour comparer AMIE et ALEPH, nous avons testé les deux systèmes sur YAGO2
et l’échantillon qui nous a utilisé pour WARMR avec un seuil de support de 2 entités.
Pour ALEPH nous avons limité le nombre de contre-exemples générés aléatoirement à
50. Tout comme WARMR, ALEPH ne peut pas être directement utilisé car il requit d’un
“language bias”. En outre, ALEPH prend en entrée la relation objectif r pour la consé-
quence des règles, donc l’utilisateur doit démarrer le système pour chaque relation qui
lui intéresse. La table A.2 illustre nos constatations. Comme ALEPH traite une seul re-
lation objective par exécution, nous montrons le meilleur et le pire temps d’exécution.
Pour quelques relations (e.g., isPoliticianOf), ALEPH a finit très vite, alors que pour des
autres relations le système n’était pas capable de finir pendant un jour d’exécution -
après lequel nous l’avons interrompu. En revanche AMIE a pris moins de 5 minutes sur
YAGO2 et quelques secondes sur notre échantillon.

AMIE pour l’inférence de faits. Pour évaluer la confiance PCA comme mesure de
qualité, nous avons testé AMIE en utilisant la confiance PCA et la confiance standard
comme mesures de classement pour les règles extraites à partir de YAGO2. De la
même façon, nous avons comparé la confiance PCA de AMIE, avec celle d’ALEPH
dans notre échantillon de YAGO2. Tous les deux comparaisons s’appuient sur le même
protocole expérimental : (1) nous avons extrait des règles, (2) nous avons classé les
règles par la mesure de confiance correspondante, (3) nous avons fait des prédictions
au-delà de la base de connaissances et (4) nous avons mesuré la précision de ces
prédictions en les vérifiant soit dans le web soit dans YAGO2s 3. La précision agrégée
par rapport au nombre de prédictions est montré respectivement pour nos deux cas

3. YAGO2s est la version suivante à YAGO2.

0.
4

0.
6

0.
8

1.
0

Aggregated Predictions (beyond the initial KB)

A
gg

re
ga

te
d

P
re

ci
si

on

●
●●●
● ●

●
●● ● ●●●●●

●

●

● ●

●
●

●

●

●

●

PCA+types+inference
PCA confidence (rules 1−30)
Std confidence (rules 1−30)
Std confidence (rules 31−46)

0 50000 150000 250000 350000

FIGURE A.1 – Confiance standard vs. confiance PCA sur YAGO2

Top n Prédictions Exactitude
Positives-only 7 2997 27%
Confiance PCA 12 2629 62%
Positives-only 9 5031 26%
Confiance PCA 22 4512 46%
Positives-only 17 8457 30%
Confiance PCA 23 13927 43%

TABLE A.3 – Confiance PCA vs. fonction positives-only : précision agrégé pour les
règles extraites dans un échantillon de YAGO2.

d’étude dans le graphique A.1 et la table A.3.
Nous constatons qu’AMIE avec la confiance PCA est capable d’identifier de règles

prédictives de bonne qualité, de un façon plus efficace que celle de la confiance stan-
dard (troisième courbe de haut en bas dans le graphique A.1). Par ailleurs, en utilisant
les classes des arguments des prédictions, en combinaison avec un mécanisme simple
de prédiction-jointe (courbe en haut dans le graphique A.1), il est possible d’améliorer
encore la qualité des prédictions. D’une part les classes de la base de connaissances
sont utilisées pour filtrer de fallacieuses prédictions. D’autre part, la prédiction-jointe
assigne un score agrégé aux prédictions. Ce score dépend de la confiance de toutes
les règles qui font telle prédiction. Il aussi permet de classer les prédictions. Toutes ces
considérations nous permettent de prédire 350 mille faits avec une précision de 70%.
Nous pouvons aussi constater que la confiance PCA surpasse la fonction “Positives-
only” en repérant des règles de nature prédictive.

AMIE avec des configurations différentes. Comme preuve de concept, nous avons

Jeu de données Temps d’exécution # de règles

YAGO2 3.62min 138
YAGO2 (l = 4) 27.14min 645
YAGO2 const 17.76min 18886
DBpedia 2.0 (l = 2) 2.89min 6963

TABLE A.4 – AMIE avec des configurations différentes

testé AMIE avec (1) sa configuration par défaut, (2) l’activation de l’opérateur d’instan-
ciation (OI) et (2) avec une longueur maximal de 4 (l = 4) sur YAGO2 and de 2 (l = 2)
sur DBpedia 2.0. Les résultats sont présentés dans la table A.4. Dans la table A.5, nous
montrons quelques règles rapportés par AMIE dans YAGO et DBpedia.

y :hasAdvisor(x, y)∧ y :graduatedFrom(x, z) ⇒ y :worksAt(y, z)
y :wasBornIn(x, y)∧ y :isLocatedIn(y, z) ⇒ y :isCitizenOf (x, z)
y :hasWonPrize(x,Grammy) ⇒ y :hasMusicalRole(x,Guitar)
d :capital(x, y) ⇒ d :largestCity(x, y)

TABLE A.5 – Quelques règles trouvées par AMIE dans YAGO (y :) et DBpedia (d :)

A.4.7 Conclusion

Dans ce chapitre, nous avons présenté AMIE, une approche pour la fouille de règles
d’association (clauses de Horn) dans des bases de connaissances. AMIE s’appuie sur
un model d’extraction de règles adaptée pour des bases de connaissances qui opèrent
sous l’hypothèse de monde ouvert. Contrairement au systèmes traditionnels d’extrac-
tion de règles, AMIE peut être utilisé “out-of-the-box” sans que l’utilisateur doive fournir
des configurations ou ajuster les paramètres. AMIE surclasse les autres systèmes de
fouille de règles dans l’état de l’art, tant en performance qu’en la qualité des règles
rapportées.

A.5 Accélérer l’extraction de règles

A.5.1 Introduction

La section expérimentale présentée dans le dernier chapitre a montré qu’AMIE est
capable de trouver des règles d’association dans une base de connaissances d’un
million de faits. Dans ce chapitre nous présentons AMIE+, une extension d’AMIE qui
implémente un ensemble d’optimisations visant à améliorer la performance du système
pour le permettre de traiter de plus grands volumes de données. Nos extensions visent
à accélérer deux phases du algorithme 6, à savoir la spécialisation et le calcul de la
confiance des règles. Nous décrivons nos optimisations ci-dessous.

A.5.2 Accélérer la phase de spécialisation

Dans cette section nous décrivons les stratégies implémentées par AMIE+ pour
accélérer la spécialisation de règles.

Longueur maximal. La longueur maximal l est un paramètre de notre système. La
phase de spécialisation consiste en l’application de trois opérateurs qui produisent des
nouvelles règles dérivées à partir d’une règle mère. AMIE n’applique pas les opéra-
teurs décrits dans la section A.4.5 aux règles de l atomes. Nous observons cependant
que cette stratégie peut en principe produire de règles qui sont inutiles. Par exemple,
l’application de l’opérateur OD à une règle de l − 1 atomes produit des règles de lon-
gueur l qui ne sont pas fermées et donc ni spécialisées ni rapportées. Pour cette raison
AMIE+ n’applique pas cet opérateur aux règles de taille l − 1. Un analyse similaire est
applicable aux autres opérateurs.

Règles parfaites. Par définition, une règle ne peut pas avoir une confiance plus grande
que 100%, donc pour telles règles – qui nous appelons règles parfaites – l’addition de
nouveaux atomes ne sert à rien. Il en est ainsi parce que des atomes additionnels ne
peuvent que baisser le support des règles dérivées alors que la confiance ne peut pas
augmenter. Cela veut dire que les spécialisations de règles parfaites sont toujours de
pire qualité. Pour cette raison, AMIE+ ne spécialise pas ces règles.

Simplification de requêtes. Nos mesures de support et couverture sont monotones,
donc l’addition de nouveaux atomes ne peut pas augmenter le support des règles déri-
vées. Bien que dans la plupart de cas le support baisse, il y a de cas où les règles dé-
rivées par l’opérateur OD ont le même support que leur règle mère. Cela arrive lorsque
la nouvelle variable n’impose aucune contrainte additionnelle à la règle mère, donc tous
les deux règles conduisent à une requête équivalente dans la base de connaissances.
Cela implique que les règles dérivées dans ce cas peuvent être remplacées par leur
règle mère pendant leur spécialisation. Cette stratégie accélère la spécialisation car
elle produit des requêtes avec moins d’atomes qui s’exécutent plus rapidement.

A.5.3 Accélérer le calcul de la confiance

Un partie importante du temps du algorithme 6 est utilisé dans le calcul de la
confiance des règles. Lorsque AMIE calcule la confiance d’une règle, elle connaît déjà
son support, donc il ne reste que évaluer la valeur du dénominateur des équations A.1
et A.2. Ce calcul peut être coûteux au niveau de temps d’exécution si l’antécédent
d’une règle a de nombreuses instanciations. Pour cette raison nous avons conçu deux
méthodes pour atténuer ces problèmes. Nos méthodes sont applicables aux certains
types de règles et visent à écarter des règles fallacieuses sans investir du temps dans
le calcul de leur confiance. Nos méthodes sont applicables tant à la confiance standard
que à la confiance PCA.

Limites supérieures de confiance. Pour des règles de la forme r(x, z) ∧ r(y, z) ⇒
rh(x, y), le dénominateur de l’équation de la confiance standard (équation A.1) est
calculé selon la formule suivante : dstd ∶= #(x, y) ∶ ∃z ∶ r(x, z) ∧ r(y, z). Comme tous les
deux atomes ont la même relation, nous pouvons réécrire cette formule comme suit :

dstd ≥ #x ∶ ∃z ∶ r(x, z) (A.3)

Cette expression peut être calculée en temps constant. Le même analyse est appli-
cable au dénominateur de la formule de la confiance PCA en produisant l’expression
ci-dessous :

dpca ≥ #x ∶ ∃ z, y′ ∶ r(x, z) ∧ rh(x, y′) (A.4)

Tous les deux inégalités A.3 et A.4 définissent une limite supérieure (facile à calculer)
pour la confiance. AMIE+ se sert de ces limites pour écarter en avance des règles dont
leur limite supérieure de confiance est moindre que le seuil donné au système.

Approximation de la confiance. Si les variables x, y dans la conséquence d’une règle
B ⇒ r(x, y) sont connectés par une seule chaîne de variables existentiellement quanti-
fiées z1, . . . , zn−1, nous pouvons estimer la confiance de façon efficace. Ces règles sont
de la forme :

r1(x, z1) ∧ r2(z1, z2) ∧ ... ∧ rn(zn−1, y) ⇒ rh(x, y)

Un exemple est la règle qui marrie chaque metteur en scène avec tous les acteurs
qui ont joué dans ses films : directed(x, z) ∧ hasActor(z, y) ⇒ marriedTo(x, y). Les
antécédents de ce type de règles ont de nombreux instanciations qui font le calcul
de la confiance très coûteux. Grâce à l’expression suivante, nous pouvons estimer
le dénominateur de la confiance PCA d’une règle de manière très vite sans encourir
l’exécution de requêtes extrêmement coûteuses.

d̂pca(R) ∶= ovdd(r1, rh)
fun(r1)

×
n

∏
i=2

ovrd(ri−1, ri)
∣rng(ri−1)∣

ifun(ri)
fun(ri)

(A.5)

La formule A.5 utilise de valeurs de fonctionalités pour des relations (fun et ifun,
voir [116]), ainsi que de statistiques sur la taille des domaines et des images des rela-
tions (rng) et sur le nombre d’entités en commun entre les arguments des relations ov .
La formule A.5 tend à sous-estimer la valeur de dpca, donc la confiance est normalement
sur-estimée. De cette façon AMIE ne écarte pas de règles incorrectement.

A.5.4 Expérimentation

Le but de cette évaluation expérimentale est de montrer les bénéfices menés par les
optimisations d’AMIE+. Nous comparons donc le temps d’exécution d’AMIE et AMIE+.

Contexte expérimental. Nos expériences pour ce chapitre utilisent le même contexte

Jeu de données AMIE
AMIE+

Seulement Seulement Sortie + ToutSpécialisation Sortie MRL QRW PR
YAGO2 3.17min 29.37s 2.82min 29.03s 38.16s 2.80min 28.19s
YAGO2 (const) 37.57min 11.72min 37.05min 8.90min 12.04min 36.48min 9.93min
YAGO2 (l = 4) 27.14min 9.49min 26.48min 8.65min 15.69min 24.20min 8.35min
YAGO2s > 1 jour > 1 jour > 1 jour 1h 7min 1h 12min > 1 jour 59.38min
DBpedia 2.0 > 1 jour > 1 jour > 1 jour 45.11min 46.37min > 1 jour 46.88min
DBpedia 3.8 > 1 jour > 1 jour 11h 46min 8h 35min 7h 33min 10h 11min 7h 6min
Wikidata > 1 jour > 1 jour > 1 jour 1h 14min 7h 56min > 1 jour 25.50min

TABLE A.6 – Comparaison du temps d’exécution entre AMIE et AMIE+ dans des plu-
sieurs jeus de données. YAGO2 (const) : l’operateur d’instanciation est activé.

expérimental de celles du chapitre A.4. Nous avons aussi testé les systèmes sur DB-
pedia 3.8 (11 millions de faits, plus de 600 relations) et Wikidata 4 (8,4 millions de faits,
plus de 400 relations)

Résultats. La table A.6 montre une comparaison du temps d’éxecution d’AMIE et
AMIE+. Pour AMIE+ la table détaille l’effet individuel de chacune des optimisations,
à savoir l’accéleration de la spécialisation (Seulement spécialisation) et l’accélération
du calcul de confiance (Sortie+). Pour la première catégorie nous avons aussi détaillé
l’effet isolé de chaque stratégie : MLR (longueur maximal), QRW (simplification de re-
quêtes), PR (règles parfaites). Nous avons aussi constaté le bénéfice de chacune de
ces stratégies en combinaison avec l’optimisation du calcul de la confiance. Sous la
catégorie “Tout” nous montrons l’effet conjoint de toutes nos stratégies.

Sauf pour YAGO2, AMIE n’est pas capable de finir pendant un jour d’exécution.
Nous remarquons aussi que la seule activation des optimisations pour la spécialisation
comporte un bénéfice important, surtout sur YAGO2. Par contre, dans certains cas (par
exemple DBpedia 3.8), il faut activer toutes nos optimisations pour que AMIE+ finisse.

A.5.5 Conclusion

Dans ce chapitre nous avons présenté AMIE+, une extension de AMIE qui inclut un
ensemble d’optimisations. Grâce à ces optimisations, AMIE est capable d’extraire de
règles d’association dans de bases de connaissances de jusqu’à 11 millions de faits.

A.6 Semantification de wikilinks

A.6.1 Introduction

Les bases de connaissances construites à partir de données de Wikipedia telles
que DBpedia [7] ou YAGO [117], stockent les hyperliens entre les entités de Wikipedia.
Par exemple, si la page Wikipedia de Barack Obama a un lien à la page du prix Nobel,

4. Nous avons testé AMIE et AMIE+ sur un vidage de Wikidata de décembre 2014.

YAGO et DBpedia représentent cela comme un fait de la forme linksTo(BarackObama,
NobelPeacePrize). Nous appelons ces faits wikilinks. Bien que les wikilinks repré-
sentent une partie importante du contenu des bases de connaissances, ils sont ra-
rement utilisés, même si un hyperlien entre deux entités suggère l’existence d’une re-
lation. Dans ce chapitre nous présentons une méthode pour prédire telle relation. Nous
appelons cette tâche “sémantification de wikilinks” et nous observons qu’elle est une
forme particulière d’inférence de faits.

A.6.2 Méthode

Notre approche de sémantification de wikilinks s’appuie sur les observations sui-
vantes : (a) Parfois, des wikilinks portent une relation implicite entre deux entités, (b)
quelques wikilinks sont déjà sémantifiés dans les bases de connaissances, (c) les
classes des entités d’un wikilink définissent la signature la relation, (d) les wikilinks
sémantifiés peuvent servir à la sémantification des autres. Un wikilink est sémantifié si
la base de connaissances contient un autre fait qui connecte les arguments du wikilink.

Nous avons donc évalué notre intuition comme suit. Nous avons construit un jeu de
données à partir de DBpedia 3.8 avec 18 millions de faits 5 en incluant 4 millions de
wikilinks. Nous profitons des wikilinks semantifiés en extrayant des règles de la forme :

linksTo∗(x, y) ∧B ∧ type(x,C) ∧ type(y,C ′) ⇒ r(x, y)

Ici, linksTo est un alias pour wikiPageWikiLink (la relation DBpedia), linksTo* dé-
signe soit linksTo soit linksTo−1, “type” est un synonyme pour rdf :type, et B est une
conjonction logique de au plus 2 atomes. Nous avons adapté AMIE pour extraire
des règles de ce type. Avec un seuil de support de 100 et un seuil de confiance de
0.2, AMIE a trouvé 3546 règles dans notre jeu de données. Un exemple est la règle
linksTo(x, y) ∧ is(x,Town) ∧ is(y,Country) ⇒ country(x, y).

Une fois ayant trouvé des règles d’association, nous les avons utilisées pour
faire de prédictions de la forme r(a, b) selon la méthodologie présentée dans la sec-
tion A.5.4. Cela a produit 180 mille prédictions. Pour certains wikilinks non-semantifiés
linksTo(a, b), notre méthode propose plusieurs prédictions r(a, b). Ces prédictions pos-
sèdent un score de confiance. Il s’ensuit que nous pouvons classer ces prédictions et
proposer les relations r comme candidats pour la sémantification des entités a, b. Nous
avons évalué la précision de ce classement pour les candidats dans le top-1 et top-3
de la liste. Nos résultats sont présentés dans la table A.7.

A.6.3 Conclusion

Nous avons montré comme l’extraction des règles peuvent servir à la sémantifi-
cation de wikilinks, une forme particulière d’inférence de données. Avec ce travail de
recherche nous visons à tourner l’attention aux wikilinks car ils portent des informations
précieuses qui peuvent être utilisées pour alimenter les bases de connaissances avec
des nouveaux faits.

5. 4,2 millions de faits et 1,7 millions d’entités entre des personnes, des lieux et des organisations

Confiance@1 Confiance@3
0.77 ± 0.10 0.67 ± 0.07

TABLE A.7 – Scores MAP@1 et MAP@3 moyen pour la sémantification de wikilinks sur
DBpedia.

A.7 Alignement de schémas

A.7.1 Introduction

Les bases de connaissances généralistes telles que DBpedia [7], YAGO [117] ou
Wikidata possèdent beaucoup de faits en commun. Il en est ainsi parce qu’elles ont été
construites à partir d’une source commune, à savoir Wikipedia. Un travail considérable
a été accompli en intégrant les bases de connaissances au niveau d’instances. L’initia-
tive “Linked Open Data” (LOD) offre des liens entre les instances de différentes bases
de connaissances sous la forme de faits sameAs permettant de connecter des milliards
de faits fournis par des sources indépendantes.

Néanmoins, l’alignement des instances ne suffit pas pour une véritable intégration
de données dans l’esprit du web sémantique. Une requête lancée sur une base de
connaissances K n’aura pas de réponse dans une autre base de connaissances K′ à
moins qu’il n’y ait aussi un alignement au niveau des relations et des classes (schéma).
Nous observons aussi que la solution consistant à faire l’alignement manuellement
est inefficace pour les milles de base de connaissances qui composent le LOD. Nous
proposons donc une méthode automatique pour aligner les schémas de deux bases de
connaissances pour lesquelles il existe un alignement au niveau d’instances.

A.7.2 Méthode

Notre approche pour l’alignement de schémas de bases de connaissances suppose
qu’on dispose d’un alignement entre les instances. Cet alignement est utilisé pour fu-
sionner les bases de connaissances à traiter. Cette fusion produit une nouvelle base de
connaissances dans laquelle toutes les relations sont préservées. Par contre les iden-
tifiants d’une des bases de connaissances sont remplacés par leurs correspondants
dans l’autre base de connaissance.

Sur la base de connaissances fusionnée nous appliquons l’extraction de règles
avec AMIE. Nous avons adapté AMIE pour extraire des règles telles que l’antécédent
contient des relations d’une base de connaissances, tandis que la conséquence a une
relation de l’autre base de connaissances. Nous nous intéressons à certains types de
règles, que nous appelons règles ROSA 6. La table A.2 montre les types d’alignements
pris en charge par les règles ROSA.

Expérimentation. Les règles ROSA expriment certains alignements intéressants entre

6. ROSA est l’acronyme de Rule for Ontology Schema Alignment

r(x, y) ⇒ r′(x, y) (R-subsumption)
r(x, y) ⇔ r′(x, y) (R-equivalence)

type(x,C) ⇒ type′(x,C ′) (C-subsumption)
r1(x, y) ∧ r2(y, z) ⇒ r′(x, z) (2-Hops alignment)
r(z, x) ∧ r(z, y) ⇒ r′(x, y) (Triangle alignment)

r1(x, y) ∧ r2(x,V) ⇒ r′(x, y) (Specific R-subsumption)
r(y, V) ⇒ r′(x,V ′) (Attr-Value translation)

r1(x,V1) ∧ r2(x,V2) ⇒ r′(x,V ′) (2-Value translation)

FIGURE A.2 – Règles ROSA, r, r1, r2 ∈ R1, r
′ ∈ R2.

Type Example Confiance

R-subsumption D :musicalArtist(x, y) ⇒ Y :created(y, x) 90%
R-equivalence Y :isCitizenOf (x, y) ⇔ D :nationality(x, y) 96%
C-subsumption Y :type(x,Y ∶ Site) ⇒ D :type(x,D ∶ PopulatedPlace) 97%
2-Hops alignment Y :wasBornIn(x, y) ∧ Y :label(y, z) ⇒ I :bornIn(x, z) 37%
Triangle alignment Y :hasChild(y, z) ∧ Y :hasChild(y, x) ⇒ F :sibling(x, z) 37%
Specific R-subsumption Y :bornIn(x, y) ∧ Y :type(y,City) ⇒ F :birthPlace(x, y) 97%
Attr-Value translation Y :locatedIn(x, Italy) ⇒ D :timeZone(x,CET) 100%
2-Value translation F :type(x,Royal) ∧ F :gender(x, female) ⇒ Y :type(y,Princess) 55%

TABLE A.8 – Examples de règles ROSA.D : DBpedia, Y : YAGO, I : IMDB, F : Freebase

les schémas de deux bases de connaissances. On trouvera dans la table A.8 des
exemples de chaque type de règles ROSA que nous avons trouvés en fusionnant
YAGO2 avec DBpedia 3.8, un crawl de données de IMDB (utilisé par [116]) et Free-
base. Nous avons utilisé la confiance PCA comme mesure de précision pour les aligne-
ments. Comme une R-equivalence (r⇔ r′) n’est que la conjonction de deux règles R-
subsumption (r⇒ r′, r′ ⇒ r), son score est le minimum des scores de ses règles com-
posantes. Nous remarquons aussi que chez les alignements plus complexes comme le
2-Hops subsumption, l’extraction de règles a fourni de nombreux résultats intéressants
qui ne sont pas des alignements, mais plutôt des règles soft.

Conclusion. Dans ce chapitre, nous avons argumenté que l’intégration de données sé-
mantiques requiert d’un alignement qu’il soit aussi bien au niveau des instances qu’au
niveau des schémas. Nous avons contribué au deuxième problème en définissant les
règles ROSA. Ces règles sont facile à extraire en ayant un alignement au niveau des
instances. En outre, elles expriment des alignements complexes qui peuvent servir à
l’intégration efficace de deux bases de connaissances.

A.8 Mise en forme canonique de bases de connaissances
ouvertes

A.8.1 Introduction

Les techniques d’extraction ouverte d’information (open IE [10, 35]), tels que Re-
Verb [37], produisent des bases de connaissances dont les sujets et objets sont des
groupes nominaux arbitraires et les relations des groupes verbaux arbitraires. Par
exemple ces techniques pourraient extraire les faits ⟨DC, is capital of, United States⟩
and ⟨Washington, capital city of, USA⟩. Même si les techniques Open IE entraînent un
meilleur rappel par rapport aux techniques IE standard, elles produisent des bases de
connaissances que ne peuvent pas être directement utilisées. Il en est ainsi parce que
les faits obtenus ne sont pas canoniques ; il faut connaître tous les synonymes d’une
entité et d’une relation pour obtenir des réponses complètes à leur propos. Inverse-
ment, il n’y a aucune garantie qu’un groupe verbal fasse référence à l’entité à laquelle
on s’intéresse.

Contribution. Dans ce chapitre nous proposons une approche qui prend une base
de connaissances ouverte et la met en forme canonique. Cette canonisation regroupe
tous les groupes nominaux qui font référence à la même entité. De la même façon notre
méthode regroupe tous les groupes verbaux qui dénotent la même relation.

A.8.2 Canonisation de groupes nominaux

Mention. Une mention est un triplet m = (n,u,A) où n est un groupe verbal comme
Barack Obama, u est l’URL de la source de la mention (par exemple bbc.com), et A
est un ensemble d’attributs sur n. Chaque attribut est un couple ⟨relation, object⟩, par
exemple, ⟨was born in, Honolulu⟩.

Regroupement. Nous utilisons des techniques de regroupement hiérarchique (HAC
en anglais) pour regrouper les mentions m dont leurs groupes verbaux n font référence
à la même entité. HAC a besoin d’une mesure de similarité pour les mentions. Nous
avons étudié les différentes mesures de similarité listées ci-dessous :

1. Attributes overlap. Intersection des attributs.

2. String similarity. Similarité des groupes nominaux en utilisant la fonction de Jaro-
Winkler [127].

3. String identity. Identité des groupes nominaux.

4. IDF tokens overlap. Intersection des mots dans les groupes nominaux pondérée
par IDF (inverse document frequency).

5. Word overlap. Intersection des mots dans les sources des mentions (u).

6. Entity overlap. Intersection des entités référencées dans les sources des men-
tions (u).

7. Types overlap. Intersection des classes (types) des groupes nominaux.

8. Full ML. Mesure combinée qui implémente un modèle de régression logistique à
partir de toutes les mesures décrites ci-dessus.

A.8.3 Canonisation de groupes verbaux

Notre méthode de canonisation de groupes verbaux suppose que les sujets et ob-
jets de la base de connaissances ont été déjà canonisés. Sur cette base de connais-
sances demi-canonisée, nous appliquons l’extraction de règles avec AMIE pour trouver
des relations de subsomption r ⊏ r′ entre deux groupes verbaux. Ces relations cor-
respondent aux règles de la forme r(x, y) ⇒ r′(x, y). Nous construisons des relations
d’équivalence r ⇔ r′ entre deux phrases verbales, en combinant les règles r ⇒ r′ et
r⇒ r′.

Regroupement. À partir d’un ensemble de règles d’équivalence, nous pouvons re-
grouper les groupes verbaux en fusionnant les relations d’équivalence qui partagent un
groupe verbal (grâce à la transitivité de l’équivalence).

A.8.4 Experimentation

Contexte experimental. Nous avons testé la canonisation de groupes nominaux dans
des jeux de données construits à partir de Reverb [37] et ClueWeb 7. En appliquant
Reverb sur Clueweb, nous avons obtenu une base de connaissances ouverte com-
portant 3 millions de triplets. Nous disposions aussi d’une canonisation pour la moité
des triplets sous la forme d’un alignement entre les groupes nominaux et les entités sur
Freebase [40]. Cette canonisation nous a servi comme “gold standard” pour l’évaluation
de notre méthode de canonisation de groupes nominaux.

Canonisation de groupes nominaux. Dans la table A.9 nous présentons la perfor-
mance de notre approche par rapport à plusieurs définitions de précision et rappel
dans la littérature [76]. Nous avons appliqué notre méthode à un jeu de données de 8,5
milliers de triplets qui parlent de 150 entités différentes référencées au moins avec deux
synonymes. La table montre la performance du regroupement en utilisant chacune des
fonctions de similarité présentées dans la séction A.8.2.

Canonisation de groupes verbaux. Notre approche de canonisation de groupes ver-
baux suppose que les sujets et objets des triplets sont canoniques. Nous avons donc
mis en forme canonique les sujets et objets de 600 mille triplets (avec 17 mille groupes
verbaux) obtenus avec Reverb. Nous appelons ce jeu de données Clustered KB. Nous
avons construit un autre jeu de données en utilisant le “gold standard” [40], dont nous
nous sommes servis pour l’évaluation du regroupement des groupes nominaux. Ce
jeu de données, que nous appelons Linked KB, contient 1,3 million de faits et 33 mille

7. http://www.lemurproject.org/clueweb09.php/

http://www.lemurproject.org/clueweb09.php/

Macro Micro Pairwise

Prec. Rappel F1 Prec. Rappel F1 Prec. Rappel F1
String identity 1.000 0.436 0.607 1.000 0.798 0.888 1.000 0.740 0.851
String similarity 0.995 0.658 0.792 0.998 0.844 0.914 0.999 0.768 0.986
IDF token overlap 0.994 0.879 0.933 0.996 0.969 0.982 0.999 0.973 0.986
Attribute overlap 1.000 0.05 0.102 1.000 0.232 0.377 1.000 0.094 0.173
Entity overlap 0.996 0.436 0.607 0.995 0.934 0.964 0.999 0.932 0.964
Type overlap 0.987 0.926 0.956 0.995 0.973 0.984 0.999 0.972 0.985
Word overlap 0.988 0.913 0.949 0.995 0.973 0.984 0.999 0.973 0.986
Full ML 0.994 0.906 0.948 1.000 0.937 0.967 1.000 0.973 0.869

TABLE A.9 – Précision et rappel de la canonisation de groupes nominaux sur un jeu de
données construit à partir de Clueweb09 en utilisant Reverb.

Précision

Conf. Groupes Clusters Macro Micro Pairwise Dans Freebase Couverture

Linked KB 0.8 522 118 0.900 0.936 0.946 18% 15%
0.5 967 143 0.896 0.690 0.337 25% 29%

Clustered KB 0.8 826 234 0.940 0.716 0.273 6% 16%
0.5 1185 264 0.813 0.665 0.292 8% 33%

TABLE A.10 – Quality of relation clusters for two different confidence thresholds.

groupes verbaux. La table A.10 offre un résumé de nos constatations en utilisant des
seuils de confiance de 0.5 et 0.8.

A.8.5 Conclusion

Dans ce chapitre nous avons montré que des techniques d’apprentissage automa-
tique – aussi bien que des signaux simples comme l’intersection de mots pondérée
par IDF – sont des outils efficaces pour la canonisation de groupes nominaux dans
une base de connaissances ouverte construite à partir du web. Ce travail montre que
l’extraction de règles est un moyen efficace pour le regroupement de groupes verbaux
sémantiquement proches.

A.9 Prédiction de la complétude

A.9.1 Introduction

Les bases de connaissances actuelles souffrent de problèmes d’incomplétude. Par
exemple, les auteurs de [83,114] ont constaté qu’entre 69% et 99% des entités dans les
bases de connaissances les plus utilisées sont incomplètes, au sens qu’il leur manque
au moins un attribut que d’autres entités dans la même classe possèdent. Bien que
cette incomplétude soit un fait notoire, la proportion de faits manquants reste incon-

nue. L’incomplétude est pourtant un problème grave, pour les fournisseurs de données
comme pour les utilisateurs. D’un côté, les fournisseurs ne peuvent pas savoir dans
quelles parties de la base de connaissances concentrer leurs efforts d’extraction d’in-
formation. De l’autre coté, les utilisateurs ne disposent d’aucune garantie que leurs
requêtes sur les données produiront tous les résultats qui sont vrais par rapport au
monde réel.

Contribution. Dans ce chapitre, nous menons une étude sur la complétude de bases
de connaissances, en analysant un ensemble de signaux qui permettent de prédire la
complétude. En effet, prédire la complétude permet d’atténuer les problèmes mention-
nés ci-dessus.

Défis. L’hypothèse du monde ouvert représente le principal défi pour la prédiction de
complétude, car, pour beaucoup de relations, il est difficile de déterminer si un fait
absent dans la base de connaissances est faux ou inconnu.

A.9.2 Complétude

Suivant les études existantes [85, 102], nous définissons la complétude à travers
une base de connaissances hypothétique K∗ qui contient tous les faits qui sont vrais
dans le monde réel. Une base de connaissances K est complète par rapport à une
requête q, si q produit les mêmes résultats dans K et dans K∗. Nous nous intéressons
dans ce chapitre aux requêtes qui demandent quels sont les objets qui correspondent
à un certain couple sujet–relation.

Oracles de complétude. Un oracle de complétude est un formalisme qui associe une
valeur de complétude à chaque couple sujet–relation dans une base de connaissances
K. Nous étudions un ensemble d’oracles de complétude listés ci-dessous :

— CWA (Closed World Assumption). L’hypothèse du monde clos ; tous les couples
sujet–relation sont complets.

— PCA (Partial Completeness Assumption). Voir section A.4.4.

— Cardinality. Un couple sujet–relation est complet si la base de connaissances
connaît au moins k objets qui lui correspondent.

— Popularity. Un couple sujet–relation est complet si le sujet est populaire selon une
certaine mesure de popularité.

— No change. Un couple sujet–relation est complet si ses objets n’ont pas changé
par rapport à une version antérieure de la base de connaissances.

— Star patterns. Un couple sujet–relation est complet lorsque la base de connais-
sances connaît certains autres attributs pour le sujet.

— Class information. Les entités de certaines classes spécifiques sont complètes
par rapport à certaines relations.

— AMIE. Cet oracle est construit à partir des règles de complétude de la forme
B ⇒ c(x,R). Ici, c veut dire complet ou incomplet et R est une relation dont on
veut étudier la complétude. Par exemple, la règle lessThan1 (x, isCitizenOf) ⇒
incomplete(x, isCitizenOf) indique que toute personnes pour laquelle la base de
connaissances ne connaît aucune nationalité doit être incomplète par rapport à
cette relation. Ces règles ont été extraites en utilisant notre système de fouille de
règles AMIE.

A.9.3 Expérimentation

Contexte expérimental. Nous avons évalué nos oracles de complétude sur YAGO3 et
Wikidata. Nous avons appliqué les oracles pour prédire la complétude pour des sujets
dans les domaines de 11 relations de Wikidata et de 10 relations dans YAGO. Les rela-
tions choisies sont celles pour lesquelles la notion de complétude est bien définie – elle
peut être évaluée par des évaluateurs humains. Pour chaque oracle, nous avons éva-
lué sa précision et son rappel en utilisant un jeu de données consistant d’annotations
de complétude pour 200 couples sujet–relation. Pour certaines relations, notamment
les fonctions obligatoires comme le sexe ou le lieu de naissance, nous avons construit
ce jeu de données de façon complètement automatique : si le sujet ne dispose pas
de l’attribut, il est incomplet, sinon il est complet. Pour d’autres relations, nous avons
construit notre “gold standard” en demandant aux évaluateurs humains s’ils ont trouvé
des objets supplémentaires sur le Web pour ce couple sujet–relation. À cette fin, nous
avons utilisé Crowdflower 8, une plateforme de crowd-sourcing.

Résultats. La table A.11 présente nos résultats portant sur la performance (en termes
de la mesure F1) de nos oracles de complétude sur Wikidata (les résultats sont simi-
laires sur YAGO3). Nous observons que les oracles qui s’appuient sur l’extraction de
règles ont la meilleure performance dans la plupart de cas.

A.9.4 Conclusion

Dans ce chapitre, nous avons défini et étudié un ensemble de signaux de complé-
tude dans deux bases de connaissances. Nous avons montré aussi que, pour quelques
relations les techniques d’extraction de règles peuvent prédire la complétude de ma-
nière très précise, en combinant plusieurs signaux individuels.

A.10 Extraction de règles numériques

A.10.1 Introduction

Dans toutes nos expériences avec AMIE, nous avons délibérément exclu tous les
faits dont les objets ne sont pas des entités mais des valeurs littérales comme des

8. https://www.crowdflower.com

https://www.crowdflower.com

Relation CWA PCA card2 Pop. Star Class AMIE

alma_mater 90% 14% 5% 1% 87% 87% 87%
brother 93% 1% — 1% 94% 96% 96%
child 70% 1% — 1% 79% 72% 73%
country_of_citizenship* 42% 97% 10% 3% 0% 0% 98%
director 81% 100% — 3% 94% 89% 100%
father 5% 100% 6% 9% 89% 8% 100%
mother 3% 100% 3% 10% 67%* 5% 100%
place_of_birth 53% 100% 7% 5% 55% 0% 100%
place_of_death 89% 35% 1% 2% 81% 81% 96%
sex_or_gender 81% 100% 6% 3% 92% 91% 100%
spouse 57% 7% — 1% 54% 54% 55%

TABLE A.11 – Mesure F1 pour nos oracles de complétude sur Wikidata

chaînes de caractères ou des nombres. En effet, dans la plupart des cas, ces valeurs
sont uniques pour les faits, et l’extraction de règles n’obtient donc que des résultats
de faible support. Nous observons néanmoins que certaines règles utilisant ces faits
peuvent avoir une grande valeur pour les bases de connaissances. Considérons par
exemple la règle

type(x,MarketEcon) ∧ import(x, y) ∧ export(x, z) ∧ cad(x,w) ⇒ w ≈ 1.2×(y − z)

Cette règle dit que si x est une économie de marché, son déficit (cad) est environ
120% de la différence entre le montant de ses exportations et celui de ses importa-
tions (exprimé en euros, par exemple). Cette règle est une règle numérique. L’extraction
de ce type de règles est particulièrement délicate, car l’espace de recherche devient
beaucoup plus grand à cause des arguments numériques : ici le facteur aurait pu être
différent, par exemple 1.21 ou 1.3.

Dans ce chapitre, nous faisons le premier pas vers l’extraction de règles numériques
en définissant un langage pour écrire ce type de règles. Notre langage est capable
d’exprimer tous les types de règles numériques qui ont été étudiées dans la littérature.

A.10.2 Le langage

Contraintes numériques. Une contrainte numérique est un atome de la forme x○φ, où
x est une variable et φ est une expression numérique comme 1.2×(y − z), qui peuvent
contenir aussi des variables de la règle.

Notation fonctionnelle. Les relations numériques comme population ou hasHeight ont
dans la plupart de cas un comportement fonctionnel 9 dans les bases de connais-
sances. Nous proposons en conséquence une notation fonctionnelle pour des règles

9. Si on ignore la dimension du temps

numériques, selon laquelle la règle

type(x,MarketEcon) ∧ import(x, y) ∧ export(x, z) ∧ cad(x,w) ⇒ w ≈ 1.2×(y − z)

devient
type(x,MarketEcon) ⇒ cad(x) ≈ 1.2×(import(x) − export(x))

Règles prédictives et descriptives. Considérons les règles

gdp(x, y) ∧ natDebt(x, z) ⇒ z = 0.9 × y

et
gdp(x, y) ⇒ ∃z ∶ natDebt(x, z) ∧ z = 0.9 × y

La première règle décrit un invariant des données – il s’agit donc d’une règle descriptive
– alors que la deuxième fait des prédictions pour la relation natDebt . Elle est donc
une règle prédictive. Nous observons que notre règle prédictive n’est pas une clause
de Horn, donc nous introduisons l’opérateur d’affectation ∶= pour réécrire les règles
prédictives comme des clauses de Horn. Notre exemple devient donc (en utilisant la
notation fonctionnelle) :

⇒ natDebt(x) ∶= 0.9 × gdp(x)

A.10.3 Conclusion

Dans ce chapitre, nous avons présenté un langage pour écrire des règles numé-
riques. Nous croyons que cette contribution est le premier pas vers une solution com-
plète pour l’extraction de règles numériques.

A.11 Conclusion

À travers ce travail, nous avons fait le premier pas vers un web encore plus sé-
mantique, en identifiant – de façon automatique – des tendances dans les données.
Ces tendances constituent des outils pour rendre les ordinateurs plus proactifs et “in-
telligents”. Les règles trouvées par les méthodes que nous avons décrites permettent
ainsi aux ordinateurs de prédire des faits et de décrire un certain domaine de connais-
sances. Nous avons montré dans ce travail la valeur que ces règles peuvent apporter
à de nombreuses tâches liées aux données : par exemple, l’alignement de schémas, la
mise en forme canonique de bases de connaissances et la prédiction de complétude.
Nous espérons que ce travail pourra motiver d’autres recherches dans ce domaine.
En particulier, nous croyons que l’étude de langages de règles plus expressifs est une
direction qui mérite d’être explorée plus en détail.

Rule Mining in Knowledge Bases
Luis Galárraga

RESUME : Le développement rapide des techniques d’extraction d’information a
permis de construire de vastes bases de connaissances généralistes. Ces bases de
connaissances contiennent des millions de faits portant sur des entités du monde réel,
comme des personnes, des lieux, ou des organisations. Ces faits sont accessibles
aux ordinateurs, et leur permettent ainsi de “comprendre” le monde réel. Ces bases
trouvent donc de nombreuses applications, notamment pour la recherche d’information,
le traitement de requêtes, et le raisonnement automatique.

Les nombreuses informations contenues dans les bases de connaissances peuvent
également être utilisées pour découvrir des motifs intéressants et fréquents dans les
données. Cette tâche, l’extraction de règles d’association, permet de comprendre la
structure des données ; les règles ainsi obtenues peuvent être employées pour l’ana-
lyse de données, la prédiction, et la maintenance de données, entre autres applications.

Cette thèse présente deux contributions principales. En premier lieu, nous propo-
sons une nouvelle méthode pour l’extraction de règles d’association dans les bases de
connaissances. Cette méthode s’appuie sur un modèle d’extraction qui convient parti-
culièrement aux bases de connaissances potentiellement incomplètes, comme celles
qui sont extraites à partir des données du Web. En second lieu, nous montrons que
l’extraction de règles peut être utilisée sur les bases de connaissances pour effectuer
de nombreuses tâches orientées vers les données. Nous étudions notamment la pré-
diction de faits, l’alignement de schémas, la mise en forme canonique de bases de
connaissances ouvertes, et la prédiction d’annotations de complétude.

MOTS-CLEFS : Extraction de règles, bases de connaissances, RDF

ABSTRACT : The continuous progress of information extraction (IE) techniques
has led to the construction of large general-purpose knowledge bases (KBs). These
KBs contain millions of computer-readable facts about real-world entities such as
people, organizations and places. KBs are important nowadays because they allow
computers to “understand” the real world. They are used in multiple applications in In-
formation Retrieval, Query Answering and Automatic Reasoning, among other fields.
Furthermore, the plethora of information available in today’s KBs allows for the disco-
very of frequent patterns in the data, a task known as rule mining. Such patterns or rules
convey useful insights about the data. These rules can be used in several applications
ranging from data analytics and prediction to data maintenance tasks.

The contribution of this thesis is twofold : First, it proposes a method to mine rules
on KBs. The method relies on a mining model tailored for potentially incomplete web-
extracted KBs. Second, the thesis shows the applicability of rule mining in several data-
oriented tasks in KBs, namely facts prediction, schema alignment, canonicalization of
(open) KBs and prediction of completeness.

KEY-WORDS : Rule Mining, Knowledge Bases, RDF

	Introduction
	Motivation
	Contribution
	Preliminaries
	RDF Knowledge Bases
	Closed vs. Open World Assumption
	Functions
	Rules
	Language bias

	Rule Mining
	Introduction
	Related Work
	Association Rule Mining
	Inductive Logic Programming
	Expert Rule Mining
	Generating Schemas
	Relational Learning
	Learning Rules From Hybrid Sources
	Further Applications of Rule Mining

	Mining Model
	Language bias
	Measures of Significance
	Measures of Correctness

	The Partial Completeness Assumption
	The PCA in real data

	AMIE
	Algorithm
	Mining Operators
	Confidence calculation
	Query Implementation Details

	Performance Experiments
	Experimental Setup
	AMIE vs. WARMR
	AMIE vs. ALEPH
	AMIE with Different Settings

	Fact Inference with AMIE
	Standard vs. PCA Confidence
	AMIE vs. ALEPH

	Conclusion

	Speeding Up Rule Mining
	Speeding Up Rule Refinement
	Speeding up Confidence Evaluation
	Motivation
	Confidence Approximation
	Computing the Approximation
	Confidence Upper Bounds

	Experiments
	Experimental setup

	AMIE+ Demo
	Interface
	Implementation

	Conclusion

	Wikilinks Semantification
	Motivation
	Related Work
	Predicting Semantics for Wikilinks
	Mining Semantification Rules
	Predicting Relations for Wikilinks

	Wikilinks for Rule Mining
	Conclusion

	Schema Alignment
	Motivation
	Related work
	Method
	Experiments
	Setup
	Simple Mappings
	More complex patterns

	Conclusion

	Canonicalization of open KBs
	Introduction
	Related Work
	Open Information Extraction
	Linking and clustering entities
	Clustering relations

	Canonicalizing noun phrases
	Mentions
	Clustering
	Similarity Functions
	Combined Feature
	Canonicalization

	Canonicalizing verbal phrases
	A semi-canonicalized KB
	Rule Mining
	Phrase Clustering
	Canonicalization

	Experiments
	Entity clustering
	Relation clustering

	Conclusions

	Predicting Completeness in Knowledge Bases
	Introduction
	Related Work
	Preliminaries
	Completeness Oracles
	Simple Oracles
	Parametrized Oracles

	Learning Completeness
	Combining Oracles
	Enhancing AMIE
	AMIE as Completeness Oracle

	Experiments
	Setup
	Basic Completeness Oracles
	Learned Completeness Oracles

	Application
	Conclusion

	Vision on Numerical Rule Mining
	Introduction
	Numerical Rules
	Numerical Constraints
	Descriptive and Predictive rules
	Functional notation
	Evaluation Metrics

	Existing Work
	Conclusion

	Conclusion
	Summary
	Outlook

	Appendices
	Résumé en français
	Introduction
	Contribution
	Préliminaires
	Bases de connaissances RDF
	Hypothèses du monde clos et du monde ouvert
	Clauses de Horn (Règles)

	Extraction de règles
	Introduction
	Mesures de Significativité
	Mesures de confiance
	La Présomption de Complétude Partielle
	AMIE
	Expérimentation
	Conclusion

	Accélérer l'extraction de règles
	Introduction
	Accélérer la phase de spécialisation
	Accélérer le calcul de la confiance
	Expérimentation
	Conclusion

	Semantification de wikilinks
	Introduction
	Méthode
	Conclusion

	Alignement de schémas
	Introduction
	Méthode

	Mise en forme canonique de bases de connaissances ouvertes
	Introduction
	Canonisation de groupes nominaux
	Canonisation de groupes verbaux
	Experimentation
	Conclusion

	Prédiction de la complétude
	Introduction
	Complétude
	Expérimentation
	Conclusion

	Extraction de règles numériques
	Introduction
	Le langage
	Conclusion

	Conclusion

