H. Kandori, Y. Shichida, and T. Yoshizawa, Photoisomerization in rhodopsin, Biochemistry (Moscow), vol.6611, pp.1197-1209, 2001.

T. Ebrey and Y. Koutalos, Vertebrate Photoreceptors, Progress in Retinal and Eye Research, vol.20, issue.1, pp.49-90, 2001.
DOI : 10.1016/S1350-9462(00)00014-8

D. Gust, Data and signal processing using photochromic molecules, Chem. Commun., vol.133, issue.14, pp.1947-1957, 2012.
DOI : 10.1039/b900712a

URL : http://publications.lib.chalmers.se/records/fulltext/local_155319.pdf

S. Malkmus, All-Optical Operation Cycle on Molecular Bits with 250-GHz Clock-Rate Based on Photochromic Fulgides, Advanced Functional Materials, vol.392, issue.17, pp.3657-3662, 2007.
DOI : 10.1007/s003400000351

E. Orgiu and P. Samorì, 25th anniversary article: Organic electronics marries photochromism: Generation of multifunctional interfaces, materials, and devices, In: Advanced Materials, vol.2612, 2014.

Y. Kohno, Y. Tamura, and R. Matsushima, Simple full-color rewritable film with photochromic fulgide derivatives, Journal of Photochemistry and Photobiology A: Chemistry, vol.201, issue.2-3, pp.98-101, 2009.
DOI : 10.1016/j.jphotochem.2008.10.006

P. Wan, Host???guest chemistry at interface for photoswitchable bioelectrocatalysis, Chemical Communications, vol.117, issue.21, pp.5994-5996, 2011.
DOI : 10.1039/C39840000645

J. Auernheimer, Photoswitched Cell Adhesion on Surfaces with RGD Peptides, Journal of the American Chemical Society, vol.127, issue.46, pp.16107-16110, 2005.
DOI : 10.1021/ja053648q

Y. Chen, Dual-wavelength photochromic fulgides for parallel recording memory, Optical Materials, vol.28, issue.8-9, pp.1068-1071, 2006.
DOI : 10.1016/j.optmat.2005.06.006

X. Pei, Correlation between the Structure and Wettability of Photoswitchable Hydrophilic Azobenzene Monolayers on Silicon, Langmuir, vol.27, issue.15, pp.9403-9412, 2011.
DOI : 10.1021/la201526u

B. Maria-melanie-russew and S. Hecht, Photoswitches : From Molecules to Materials, In: Advanced Materials, vol.22, 2010.

T. Nägele, Femtosecond photoisomerization of cisazobenzene, Chemical Physics Letters, vol.272, issue.97, pp.5-6, 1997.

I. K. Lednev, Femtosecond Time-Resolved UV-Visible Absorption Spectroscopy of trans-Azobenzene in Solution, J. Phys. Chem, vol.10032, pp.13338-13341, 1996.

Y. Hirose, H. Yui, and T. Sawada, Effect of potential energy gap between the n-pi* and the pi-pi* state on ultrafast photoisomerization dynamics of an azobenzene derivative, Journal of Physical Chemistry A, vol.10613, pp.3067-3071, 2002.

S. Monti, G. Orlandi, and P. Palmieri, Features of the photochemically active state surfaces of azobenzene, Chemical Physics, vol.71, issue.1, pp.87-9987008, 1982.
DOI : 10.1016/0301-0104(82)87008-0

H. Rau, Further evidence for rotation in the ??,??* and inversion in the n,??* photoisomerization of azobenzenes, Journal of Photochemistry, vol.26, issue.2-3, pp.221-225, 1964.
DOI : 10.1016/0047-2670(84)80041-6

A. Mason and . Wolak, Thermolysis of a Fluorinated Indolylfulgide Features a Novel 1 , 5-Indolyl Shift, Journal of Organic Chemistry, vol.66, pp.4739-4741, 2001.

Y. Yokoyama and K. Takahashi, Trifluoromethylsubstituted Photochromic Indolylfulgide. A Remarkably Durable Fulgide towards Photochemical and Thermal Treatments, Chemistry Letters, p.1037, 1996.

I. Nadezhda and . Islamova, Improving the stability of photochromic fluorinated indolylfulgides In: Journal of Photochemistry and Photobiology A: Chemistry 195, pp.228-234, 2008.

K. Uchida, Synthesis of Tetrathiafluvalene Derivatives with Photochromic Diarylethene Moieties, Chemistry Letters, vol.28, issue.10, pp.1071-1072, 1999.
DOI : 10.1246/cl.1999.1071

A. Perrier, F. Maurel, and D. Jacquemin, Interplay Between Electronic and Steric Effects in Multiphotochromic Diarylethenes, The Journal of Physical Chemistry C, vol.115, issue.18, pp.9193-9203, 2011.
DOI : 10.1021/jp201229q

A. Fihey, Multiphotochromic molecular systems, Chemical Society Reviews, vol.105, issue.283, pp.3719-3759, 2015.
DOI : 10.1021/cr9904009

E. C. Harvey, Transition metal functionalized photo- and redox-switchable diarylethene based molecular switches, Coordination Chemistry Reviews, vol.282, issue.283, pp.282-283, 2015.
DOI : 10.1016/j.ccr.2014.06.008

B. He and O. S. Wenger, Ruthenium-Phenothiazine Electron Transfer Dyad with a Photoswitchable Dithienylethene Bridge: Flash-Quench Studies with Methylviologen, Inorganic Chemistry, vol.51, issue.7, pp.4335-4342, 2012.
DOI : 10.1021/ic300048r

T. Ron and . Jukes, Photochromic Dithienylethene Derivatives Containing Ru(II) or Os(II) Metal Units. Sensitized Photocyclization from a Triplet State, Inorganic Chemistry, vol.439, pp.2779-2792, 2004.

A. Spangenberg, Photoswitchable interactions between photochromic organic diarylethene and surface plasmon resonance of gold nanoparticles in hybrid thin films, Physical Chemistry Chemical Physics, vol.13, issue.24, 2013.
DOI : 10.1002/cphc.201200442

E. Titov, Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study, The Journal of Physical Chemistry C, vol.119, issue.30, pp.17369-17377, 2015.
DOI : 10.1021/acs.jpcc.5b02473

URL : https://hal.archives-ouvertes.fr/hal-01418528

O. Nosrat and . Mahmoodi, Photochromism of azobenzene-thiol- 1,3-diazabicyclo-[3.1.0]hex-3-ene on silver nanoparticles, Dyes and Pigments, vol.118, pp.110-117, 2015.

S. Evans, S. Johnson, and H. Ringsdorf, Photoswitching of Azobenzene Derivatives Formed on Planar and Colloidal Gold Surfaces, Langmuir, vol.14, issue.22, pp.6436-6440, 1998.
DOI : 10.1021/la980450t

A. Ghavidast, O. Nosrat, and . Mahmoodi, A comparative study of the photochromic compounds incorporated on the surface of nanoparticles, Journal of Molecular Liquids, vol.216, pp.552-564, 2016.
DOI : 10.1016/j.molliq.2015.12.014

S. Snegir, Optically controlled properties of nanoparticles stabilised by photochromic difurylethene-base diarylethenes, Materialwissenschaft und Werkstofftechnik 47, pp.2-3, 2016.
DOI : 10.1021/ac500883x

URL : https://hal.archives-ouvertes.fr/hal-01518910

J. Su, Giant Amplification of Photoswitching by a Few Photons in Fluorescent Photochromic Organic Nanoparticles, Angewandte Chemie -International Edition, vol.5511, pp.3662-3666, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390283

Z. Tian, W. Wu, and A. D. Li, Photoswitchable Fluorescent Nanoparticles: Preparation, Properties and Applications, ChemPhysChem, vol.19, issue.15, pp.2577-2591, 2009.
DOI : 10.1017/CBO9780511813535

O. N. Oliveira, Optical storage and surface-relief gratings in azobenzene-containing nanostructured films, Advances in Colloid and Interface Science, vol.116, issue.1-3, pp.1-3, 2005.
DOI : 10.1016/j.cis.2005.05.008

T. Seki, Modulated photoregulation of liquid crystal alignment by azobenzene Langmuir-Blodgett layers: reversible alignment changes of liquid crystals induced by photochromic molecular films, Part 11, Thin Solid Films, vol.210, issue.211, pp.836-838, 1992.
DOI : 10.1016/0040-6090(92)90418-B

S. Hagen, Kinetic analysis of the photochemically and thermally induced isomerization of an azobenzene derivative on Au(111) probed by??two-photon photoemission, Applied Physics A: Materials Science and Processing 93, pp.253-260, 2008.
DOI : 10.1038/nmat1558

E. Dulkeith, Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects In: Physical review letters 89, p.203002, 2002.

S. Barazzouk, V. Prashant, S. Kamat, and . Hotchandani, Photoinduced electron transfer between chlorophyll a and gold nanoparticles, In: The journal of physical chemistry. B, vol.1092, pp.716-723, 2005.
DOI : 10.1021/jp046474s

M. J. Comstock, Reversible Photomechanical Switching of Individual Engineered Molecules at a Metallic Surface, Physical Review Letters, vol.99, issue.3, pp.1-4, 2007.
DOI : 10.1103/PhysRevLett.77.3865

C. Bronner and B. Priewisch, Photoisomerization of an Azobenzene on the Bi(111) Surface, The Journal of Physical Chemistry C, vol.117, issue.51, pp.27031-27038, 2013.
DOI : 10.1021/jp4106663

V. Sergii and . Snegir, Switching at the nanoscale: Light-and STM-tip-induced switch of a thiolated diarylethene self-assembly on, Au Langmuir, vol.3045, issue.111, pp.13556-13563, 2014.

Y. Wen, Photochemical-Controlled Switching Based on Azobenzene Monolayer Modified Silicon (111) Surface, The Journal of Physical Chemistry B, vol.109, issue.30, pp.14465-14468, 2005.
DOI : 10.1021/jp044256t

Y. Yokoyama and Y. Kurita, Synthesis and Photoreaction of Photochromic Fulgides., Journal of Synthetic Organic Chemistry, Japan, vol.49, issue.5, pp.364-372, 1991.
DOI : 10.5059/yukigoseikyokaishi.49.364

Y. Yokoyama, Fulgides for Memories and Switches, Chemical Reviews, vol.100, issue.5, pp.1717-1740, 2000.
DOI : 10.1021/cr980070c

T. Brust, Increasing the efficiency of the ring-opening reaction of photochromic indolylfulgides by optical pre-excitation, Chemical Physics Letters, vol.489, issue.4-6, pp.4-6, 2010.
DOI : 10.1016/j.cplett.2010.02.071

S. Draxler, Ring-opening reaction of a trifluorinated indolylfulgide: mode-specific photochemistry after pre-excitation, Physical Chemistry Chemical Physics, vol.106, issue.25, pp.5019-5027, 2009.
DOI : 10.1007/s003400000351

S. Malkmus, Ultrafast ring opening reaction of a photochromic indolyl-fulgimide, Chemical Physics Letters, vol.417, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.cplett.2005.10.024

C. Slavov, The ultrafast reactions in the photochromic cycle of water-soluble fulgimide photoswitches, Physical Chemistry Chemical Physics, vol.141, issue.15, pp.10289-10296, 2016.
DOI : 10.1016/j.molliq.2008.02.001

F. O. Koller, Ultrafast Ring-Closure Reaction of Photochromic Indolylfulgimides Studied with UV-Pump???IR-Probe Spectroscopy, The Journal of Physical Chemistry A, vol.112, issue.2, pp.210-214, 2008.
DOI : 10.1021/jp073545p

J. Andréasson, Molecular All-Photonic Encoder???Decoder, Journal of the American Chemical Society, vol.130, issue.33, pp.11122-11128, 2008.
DOI : 10.1021/ja802845z

P. Remón, An All-Photonic Molecule-Based D Flip-Flop, Journal of the American Chemical Society, vol.133, issue.51, pp.20742-20745, 2011.
DOI : 10.1021/ja2100388

E. N. Rodlovskaya, Photochromic fulgimide-containing silicones immobilized on the surface of polyarylate, Polymer Science Series B, vol.53, issue.5-6, pp.5-6, 2011.
DOI : 10.1134/S156009041105006X

S. Nithyanandan and P. Kannan, Photo switchable pendant furyl and thienyl fulgimides containing polypyrroles Polymer Degradation and Stability 98, pp.2224-2231, 2013.
DOI : 10.1016/j.polymdegradstab.2013.08.020

C. Henry and D. Villeneuve, Quantitative IR readout of fulgimide monolayer switching on Si(111) surfaces, In: Advanced Materials, vol.253, pp.416-421, 2013.

K. Rück-braun, Formation of Carboxy- and Amide-Terminated Alkyl Monolayers on Silicon(111) Investigated by ATR-FTIR, XPS, and X-ray Scattering: Construction of Photoswitchable Surfaces, Langmuir, vol.29, issue.37, p.111, 2013.
DOI : 10.1021/la402068d

M. Schulze, Reversible Photoswitching of the Interfacial Nonlinear Optical Response, The Journal of Physical Chemistry Letters, vol.6, issue.3, pp.505-509, 2015.
DOI : 10.1021/jz502477m

L. Thang and L. Nguyen, Organization within molecular layers grafted on Si surface and in uence of photo-switching properties of fulgimides groups on surface

A. Moraillon, Amidation of Monolayers on Silicon in Physiological Buffers:??? A Quantitative IR Study, The Journal of Physical Chemistry C, vol.112, issue.18, pp.7158-7167, 2008.
DOI : 10.1021/jp7119922

G. S. Higashi, Ideal hydrogen termination of the Si???(111) surface, Applied Physics Letters, vol.32, issue.7, pp.656-658, 1990.
DOI : 10.1063/1.337743

S. Ciampi, J. B. Harper, and J. J. Gooding, Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si???C bonds: surface preparation, passivation and functionalization, Chemical Society Reviews, vol.78, issue.551, p.923890, 2010.
DOI : 10.1103/PhysRevB.38.6084

P. Allongue, C. H. Villeneuve, and J. Pinson, Structural characterization of organic monolayers on Si???111??? from capacitance measurements, Electrochimica Acta, vol.45, issue.20, pp.3241-3248, 2000.
DOI : 10.1016/S0013-4686(00)00428-X

A. Faucheux, Well-Defined Carboxyl-Terminated Alkyl Monolayers Grafted onto H???Si(111):?? Packing Density from a Combined AFM and Quantitative IR Study, Langmuir, vol.22, issue.1, pp.153-162, 2006.
DOI : 10.1021/la052145v

H. Asanuma, G. P. Lopinski, and H. Yu, Kinetic control of the photochemical reactivity of hydrogenterminated silicon with bifunctional molecules, In: Langmuir, vol.2111, pp.5013-5018, 2005.

S. Sam, Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces, Langmuir 26, pp.809-814, 2010.
DOI : 10.1021/la902220a

F. O. Koller, Ultrafast Structural Dynamics of Photochromic Indolylfulgimides Studied by Vibrational Spectroscopy and DFT Calculations, The Journal of Physical Chemistry A, vol.110, issue.47, pp.12769-12776, 2006.
DOI : 10.1021/jp0657787

R. Matsushima and H. Sakaguchi, Comparison of the photochromic properties of fulgides and fulgimides, Journal of Photochemistry and Photobiology A: Chemistry, vol.108, issue.2-3, pp.239-245, 1997.
DOI : 10.1016/S1010-6030(97)00095-6

I. Nadezhda and . Islamova, Thermal stability and photochromic properties of a fluorinated indolylfulgimide in a protic and aprotic solvent, Journal of Photochemistry and Photobiology A: Chemistry, vol.1991, pp.85-91, 2008.

B. Otto and K. Rück-braun, Syntheses and UV/Vis Properties of Amino-Functionalized Fulgimides, European Journal of Organic Chemistry, vol.2003, issue.13, pp.2409-2417, 2003.
DOI : 10.1002/ejoc.200200680

X. Chen, Synthesis and Optical Properties of Aqueous Soluble Indolylfulgimides, The Journal of Organic Chemistry, vol.74, issue.17, pp.6777-6783, 2009.
DOI : 10.1021/jo900909d

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, Synthesis and Properties of Photochromic Fluorescing 2-Indolyl Fulgide and Fulgimide Copolymers, Macromolecules, vol.35, issue.25, pp.9377-9382, 2002.
DOI : 10.1021/ma020750o

A. Mason and . Wolak, Optical and thermal properties of photochromic fluorinated indolylfulgides, Journal of Photochemistry and Photobiology A: Chemistry, vol.1471, issue.01, pp.39-44, 2002.

C. Slavov, Ultrafast coherent oscillations reveal a reactive mode in the ring-opening reaction of fulgides, Physical Chemistry Chemical Physics, vol.112, issue.21, pp.14045-14053, 2015.
DOI : 10.1063/1.481059

A. Nenov, Molecular model of the ring-opening and ringclosure reaction of a fluorinated indolylfulgide, Journal of Physical Chemistry A, vol.11643, pp.10518-10528, 2012.

T. Brust, Stability and reaction dynamics of trifluorinated indolylfulgides, Chemical Physics Letters, vol.477, issue.4-6, pp.4-6, 2009.
DOI : 10.1016/j.cplett.2009.07.013

T. Brust, Photochemistry with thermal versus optical excess energy: Ultrafast cycloreversion of indolylfulgides and indolylfulgimides, Journal of Photochemistry and Photobiology A: Chemistry, vol.207, issue.2-3, pp.209-216, 2009.
DOI : 10.1016/j.jphotochem.2009.07.012

T. Brust, Ultrafast dynamics and temperature effects on the quantum efficiency of the ring-opening reaction of a photochromic indolylfulgide, Journal of Molecular Liquids, vol.141, issue.3, pp.137-139, 2008.
DOI : 10.1016/j.molliq.2008.02.011

S. Draxler, Ultrafast reaction dynamics of the complete photo cycle of an indolylfulgimide studied by absorption, fluorescence and vibrational spectroscopy, Journal of Molecular Liquids, vol.141, issue.3, pp.130-136, 2008.
DOI : 10.1016/j.molliq.2008.02.001

B. Heinz, Compare photoinduce pericyclic ring open & closure: differences in the excited state pathways, J. Am. Chem. Soc, vol.12927, pp.8577-8584, 2007.

J. Voll, Influence of static and dynamical structural changes on ultrafast processes mediated by conical intersections, Journal of Photochemistry and Photobiology A: Chemistry, vol.190, issue.2-3, pp.352-358, 2007.
DOI : 10.1016/j.jphotochem.2007.01.032

T. Cordes, Wavelength and solvent independent photochemistry: the electrocyclic ring-closure of indolylfulgides, Photochemical & Photobiological Sciences, vol.101, issue.4, pp.528-534, 2009.
DOI : 10.1007/s003400000351

A. Mason and . Wolak, Tuning the optical properties of fluorinated indolylfulgimides, Journal of Organic Chemistry, vol.682, pp.319-326, 2003.

G. Rothenberger, Solvent influence on photoisomerization dynamics, Journal of Chemical Physics, vol.7911, 1983.
DOI : 10.1063/1.445699

M. Kim, G. R. Kerry, and . Fleming, Influence of solvent on photochemical isomerization: Photophysics of Diphenyl Butadiene in polar solvents, Chemical Physics Letters, vol.934, pp.2-6, 1982.

P. Stephan, G. X. Velsko, and . Fleming, Solvent influence on photochemical isomerizations: photophysics of DODCI, Chemical Physics, vol.65, pp.59-70, 1982.

R. Klajn, Immobilized azobenzenes for the construction of photoresponsive materials, Pure and Applied Chemistry, vol.3, issue.12, pp.2247-2279, 2010.
DOI : 705619

T. David and . Valley, Steric hindrance of photoswitching in selfassembled monolayers of azobenzene and alkane thiols, In: Langmuir, vol.2937, pp.11623-11631, 2013.

T. Moldt, Tailoring the Properties of Surface-Immobilized Azobenzenes by Monolayer Dilution and Surface Curvature, Langmuir, vol.31, issue.3, pp.1048-1057, 2015.
DOI : 10.1021/la504291n

N. R. Krekiehn, UV/Vis Spectroscopy Studies of the Photoisomerization Kinetics in Self-Assembled Azobenzene-Containing Adlayers, Langmuir, vol.31, issue.30, 2015.
DOI : 10.1021/acs.langmuir.5b01645

S. Ajeet and . Kumar, Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments, Nano Letters, vol.86, pp.1644-1648, 2008.

S. Sortino, Monitoring photoswitching of azobenzenebased self-assembled monolayers on ultrathin platinum films by UV/Vis spectroscopy in the transmission mode, Journal of Materials Chemistry, vol.145, p.811, 2004.

K. Tamada, H. Akiyama, and T. Wei, Photoisomerization reaction of unsymmetrical azobenzene disulfide selfassembled monolayers studied by surface plasmon spectroscopy: Influences of side chain length and contacting medium, Langmuir, vol.1813, pp.5239-5246, 2002.

F. Lloyd and . Qune, Reversible work function changes induced by photoisomerization of asymmetric azobenzene dithiol self-assembled monolayers on gold, Applied Physics Letters, vol.938, pp.1-4, 2008.

B. Baisch, Mounting Freestanding Molecular Functions onto Surfaces: The Platform Approach, Journal of the American Chemical Society, vol.131, issue.2, pp.442-443, 2009.
DOI : 10.1021/ja807923f

U. Jung, Structural and spectroscopic characterization, Azobenzene-containing triazatriangulenium adlayers on Au In: Langmuir, vol.2710, issue.111, pp.5899-5908, 2011.

V. Sergii and . Snegir, STM Observation of Open-and Closed-Ring Forms of Functionalized Diarylethene Molecules Self-Assembled on a Au(111) Surface, The Journal of Physical Chemistry Letters, vol.219, pp.2433-2436, 2011.

N. Katsonis, Reversible Conductance Switching of Single Diarylethenes on a Gold Surface, Advanced Materials, vol.289, issue.11, pp.1397-1400, 2006.
DOI : 10.1002/adma.200600210

K. Uchida, Reversible On/Off Conductance Switching of Single Diarylethene Immobilized on a Silicon Surface, Journal of the American Chemical Society, vol.133, issue.24, pp.9239-9241, 2011.
DOI : 10.1021/ja203269t

M. Han, Light-driven molecular switches in azobenzene self-assembled monolayers: effect of molecular structure on reversible photoisomerization and stable cis state, Chemical Communications, vol.99, issue.20, pp.3598-3600, 2010.
DOI : 10.1039/b921801g

P. Dietrich, An anchoring strategy for photoswitchable biosensor technology: azobenzene-modified SAMs on Si(111), Applied Physics A: Materials Science and Processing 93, pp.285-292, 2008.
DOI : 10.1103/PhysRevB.65.115311

H. Asanuma, E. M. Bishop, and H. Yu, Electrochemical impedance and solid-state electrical characterization of silicon (111) modified with ??-functionalized alkyl monolayers, Electrochimica Acta, vol.52, issue.8, pp.2913-2919, 2007.
DOI : 10.1016/j.electacta.2006.08.060

L. Kortekaas, A Remarkable Multitasking Double Spiropyran: Bidirectional Visible-Light Switching of Polymer-Coated Surfaces with Dual Redox and Proton Gating, Journal of the American Chemical Society, vol.138, issue.4, pp.1301-1312, 2016.
DOI : 10.1021/jacs.5b11604

R. Wesley and . Browne, Photochemistry of immobilized photoactive compounds, In: Coordination Chemistry Reviews, vol.252, pp.23-24, 2008.

T. Moldt, Differing Isomerization Kinetics of Azobenzene-Functionalized Self-Assembled Monolayers in Ambient Air and in Vacuum, Langmuir, vol.32, issue.42, pp.10795-10801, 2016.
DOI : 10.1021/acs.langmuir.6b01690

S. Rath, Periodic Organic Nanodot Patterns for Optical Memory, Nano Letters, vol.7, issue.12, pp.3845-3848, 2007.
DOI : 10.1021/nl072598f

U. Jung, Photoswitching behavior of azobenzenecontaining alkanethiol self-assembled monolayers on Au surfaces, In: Langmuir, vol.2617, pp.13913-13923, 2010.

O. Ivashenko, UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers, Langmuir, vol.29, issue.13, p.Langmuir, 2013.
DOI : 10.1021/la400192c

K. Bala and . Pathem, Surface-Enhanced Raman Spectroscopy to Probe Reversibly Photoswitchable Azobenzene in Controlled Nanoscale Environments, Nano Letters, pp.3447-3452, 2011.

K. Uchida, Non-Destructive Readout of the Photochromic Reactions of Diarylethene Derivatives Using Infrared Light, Advanced Materials, vol.7, issue.2, pp.121-125, 2003.
DOI : 10.1002/adma.200390023

A. Tamim and . Darwish, Characterizing the photoinduced switching process of a nitrospiropyran self-assembled monolayer using in situ sum frequency generation spectroscopy, Langmuir, vol.2839, pp.13852-13860, 2012.

S. Wagner, Reversible photoisomerization of an azobenzene-functionalized self-assembled monolayer probed by sum-frequency generation vibrational spectroscopy, Physical Chemistry Chemical Physics, vol.109, issue.29, pp.6242-6248, 2009.
DOI : 10.1021/jp0537005

E. Benassi, Can Azobenzene Photoisomerize When Chemisorbed on a Gold Surface? An Analysis of Steric Effects Based on Nonadiabatic Dynamics Simulations, The Journal of Physical Chemistry C, vol.119, issue.11, pp.5962-5974, 2015.
DOI : 10.1021/jp511269p

E. Titov, Dynamics of Azobenzene Dimer Photoisomerization: Electronic and Steric Effects, The Journal of Physical Chemistry Letters, vol.7, issue.18, pp.3591-3596, 2016.
DOI : 10.1021/acs.jpclett.6b01401

X. L. Zhou, X. Y. Zhu, and J. M. White, Photochemistry at adsorbate/metal interfaces, Surface Science Reports, vol.13, issue.3-6, pp.3-6, 1991.
DOI : 10.1016/0167-5729(91)90009-M

J. Dokic, Quantum Chemical Investigation of Thermal Cis-to-Trans Isomerization of Azobenzene Derivatives: Substituent Effects, Solvent Effects, and Comparison to Experimental Data, The Journal of Physical Chemistry A, vol.113, issue.24, pp.6763-6773, 2009.
DOI : 10.1021/jp9021344

J. M. Hicks, Polarity-dependent barriers and the photoisomerization dynamics of molecules in solution, Chemical Physics Letters, vol.135, issue.4-5, pp.4-5, 1987.
DOI : 10.1016/0009-2614(87)85181-3

T. Garm-pedersen, P. Ramanujam, and P. Michael-johansen, Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers, Journal of the Optical Society of America B, vol.15, issue.11, pp.2721-2730, 1998.
DOI : 10.1364/JOSAB.15.002721

J. Peretti, Remanent photoinduced birefringence in thin photochromic sol???gel films, Applied Physics Letters, vol.74, issue.12, pp.1657-1659, 1999.
DOI : 10.1021/jo00239a022

A. Jacques, K. Delaire, and . Nakatani, Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials, In: Chemical Reviews, vol.1005, pp.1817-1846, 2000.

S. Polo and K. Wilson, Infrared Intensities in Liquid and Gas Phases, The Journal of Chemical Physics, vol.23, issue.12, pp.2376-2377, 1955.
DOI : 10.1021/ja01299a050

Y. J. Chabal, Surface infrared spectroscopy, Surface Science Reports, vol.8, issue.5-7, pp.211-357, 1988.
DOI : 10.1016/0167-5729(88)90011-8

E. D. Palik, Handbook of Optical Constants of Solids, 1985.

R. Matsushima, M. Nishiyama, and M. Doi, Improvements in the fatigue resistances of photochromic compounds, Journal of Photochemistry and Photobiology A: Chemistry, vol.139, issue.1, pp.63-69, 2001.
DOI : 10.1016/S1010-6030(00)00422-6

Y. Liang, P. Dvornikov, and . Rentzepis, Solvent and ring substitution effect on the photochromic behavior of fluorescent 2-indolylfulgide derivatives, Journal of Photochemistry and Photobiology A: Chemistry, vol.125, issue.1-3, pp.1-3, 1999.
DOI : 10.1016/S1010-6030(99)00079-9

M. , C. Mc, D. Daniel, and . Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size Related Properties and Applications toward Biology, Catalysis and Nanotechnology, Chemical Reviews, vol.104, pp.293-346, 2004.

V. Prashant and . Kamat, Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles, In: The Journal of Physical Chemistry B, vol.10632, pp.7729-7744, 2002.

E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity ISSN: 0306-0012 (Print) 0306-0012 (Linking) DOI: 10.1039/b806051g, In: Chemical Society Reviews, vol.386, pp.1759-1782, 2009.

P. Ghosh, Gold nanoparticles in delivery applications???, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1307-1315, 2008.
DOI : 10.1016/j.addr.2008.03.016

E. C. Dreaden, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev., vol.45, issue.135, p.2740, 2012.
DOI : 10.1021/es103031a

A. David and . Giljohann, Gold nanoparticles for biology and medicine, Angewandte Chemie -International Edition, vol.4919, pp.3280-3294, 2010.

J. Turkevich, P. C. Stevenson, and J. Hiller, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.
DOI : 10.1039/df9511100055

N. Matthew and . Martin, Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly, In: Langmuir, vol.2610, pp.7410-7417, 2010.

S. Perrault and W. Chan, Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50-200, In: Journal Of The American Chemical Society, vol.13233, pp.17042-17043, 2009.

M. Brust, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid???Liquid system, J. Chem. Soc., Chem. Commun., vol.19, issue.7, pp.801-802, 1994.
DOI : 10.1039/dt9800000767

S. Eustis and M. A. El-sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev, vol.353, pp.209-217, 2006.

D. Enders, Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold, Physical Chemistry Chemical Physics, vol.88, issue.11, p.4935, 2011.
DOI : 10.1063/1.2201880

R. Bukasov and J. S. Shumaker-parry, Silver Nanocrescents with Infrared Plasmonic Properties As Tunable Substrates for Surface Enhanced Infrared Absorption Spectroscopy, Analytical Chemistry, vol.81, issue.11, pp.4531-4535, 2009.
DOI : 10.1021/ac900477p

F. Le, Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption, ACS Nano, vol.2, issue.4, pp.707-718, 2008.
DOI : 10.1021/nn800047e

H. Yamaguchi, K. Matsuda, and M. Irie, Excitedstate behavior of a fluorescent and photochromic diarylethene on silver nanoparticles, In: Journal of Physical Chemistry C, vol.11110, pp.3853-3862, 2007.

J. Zhang, J. K. Whitesell, and M. A. Fox, Photoreactivity of selfassembled monolayers of azobenzene or stilbene derivatives capped on colloidal gold clusters, Chemistry of Materials, vol.137, pp.2323-2331, 2001.

D. Duli´cduli´c, One-way optoelectronic switching of photochromic molecules on gold In: Physical review letters 91, p.207402, 2003.

A. Perrier, F. Maurel, and J. Aubard, Theoretical Study of the Electronic and Optical Properties of Photochromic Dithienylethene Derivatives Connected to Small Gold Clusters, The Journal of Physical Chemistry A, vol.111, issue.39, pp.9688-9698, 2007.
DOI : 10.1021/jp073436a

P. Ahonen, Optical switching of coupled plasmons of Agnanoparticles by photoisomerisation of an azobenzene ligand In: Physical chemistry chemical physics : PCCP 9, pp.651-658, 2007.

J. Cao, Photo-responsive spiropyran monolayer protected gold nanorod, Dyes and Pigments, vol.103, pp.89-94, 2014.
DOI : 10.1016/j.dyepig.2013.11.017

Y. Shiraishi, Light-triggered self-assembly of gold nanoparticles based on photoisomerization of spirothiopyran, Angewandte Chemie -International Edition, vol.5232, pp.8304-8308, 2013.

O. Kobeleva, Spectral-kinetic evidence of interaction of photochromic diarylethenes with silver nanoparticles, 101?105 ST ?Spectral?kinetic evidence of interac, 2010.
DOI : 10.1134/S0030400X10070167

A. Manna, Optimized Photoisomerization on Gold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides, Chemistry of Materials, vol.15, issue.1, pp.20-28, 2003.
DOI : 10.1021/cm0207696

H. Nishi, T. Asahi, and S. Kobatake, Enhanced photocycloreversion reaction of diarylethene polymers attached to gold nanoparticles in the solid state, Journal of Photochemistry and Photobiology A: Chemistry, vol.221, issue.2-3, pp.256-260, 2011.
DOI : 10.1016/j.jphotochem.2011.03.003

H. Nishi, T. Asahi, and S. Kobatake, Plasmonic Enhancement of a Photocycloreversion Reaction of a Diarylethene Derivative Using Individually Dispersed Silver Nanoparticles, ChemPhysChem, vol.49, issue.16, pp.3616-3621, 2012.
DOI : 10.5059/yukigoseikyokaishi.49.364

F. Schulz, Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles, Langmuir 30.I (2014), pp.10779-10784
DOI : 10.1021/la503209b

A. Schaub, Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique, Nanoscale Research Letters, vol.8, issue.1, p.249, 2013.
DOI : 10.1021/nl052210l

A. Faucheux, Thermal decomposition of alkyl monolayers covalently grafted on (111) silicon, Applied Physics Letters, vol.13, issue.19, pp.1-4, 2006.
DOI : 10.1103/PhysRevB.72.045317

A. Faucheux, Mechanisms of Thermal Decomposition of Organic Monolayers Grafted on (111) Silicon, Langmuir, vol.23, issue.3, pp.1326-1332, 2007.
DOI : 10.1021/la061260i

Y. Li, W. Huang, and S. Sun, A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/Water Interface, Angewandte Chemie International Edition, vol.26, issue.16, pp.2537-2539, 2006.
DOI : 10.1038/newbio241020a0

Y. Park, S. Yoo, and S. Park, Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface, Langmuir, vol.23, issue.21, pp.10505-10510, 2007.
DOI : 10.1021/la701445a

F. Reincke, Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface, Angewandte Chemie International Edition, vol.43, issue.4, pp.458-462, 2004.
DOI : 10.1002/anie.200352339

K. C. Grabar, Preparation and Characterization of Au Colloid Monolayers, Analytical Chemistry, vol.67, issue.4, pp.735-743, 1995.
DOI : 10.1021/ac00100a008

C. Jithin and . Mohan, Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines, Journal of Experimental Nanoscience, vol.81, pp.32-45, 2013.

W. Rechberger, Optical properties of two interacting gold nanoparticles, Optics Communications, vol.220, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S0030-4018(03)01357-9

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.3-4, 2012.
DOI : 10.1515/jnum-2012-0013

URL : https://hal.archives-ouvertes.fr/hal-01476313

F. Schreier, Optimized implementations of rational approximations for the Voigt and complex error function, In: Journal of Quantitative Spectroscopy and Radiative Transfer, vol.1126, pp.1010-1025, 2011.

A. Faucheux, Nouvelles fonctionnalities de l'interface silicium/ dielectrique pour la microelectronique, 2005.

H. G. Philipsen, In-situ infrared study of silicon in KOH electrolyte: Surface hydrogenation and hydrogen penetration, Surface Science, vol.644, pp.180-190, 2016.
DOI : 10.1016/j.susc.2015.10.040